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Abstract— This paper studies stability of sampled-data sys-
tems controlled by discrete-time model predictive control (M-
PC) algorithms. We consider a general framework for the co-
design of discrete-time MPC law and the associated scheduling
schemes, where the discrete-time model used in MPC approxi-
mates the behavior of the plant with state-dependent sampling
periods. Sufficient conditions are derived to guarantee uniform
ultimate boundedness of the resulting closed-loop system. The
results can be applied to most existing model approximation
methods with either fixed or time-varying sampling rates.
It is shown that to stabilize the system, the model used in
the FHOCP does not have to be very accurate as long as
the associated scheduling scheme matches the model and the
approximation error is below a threshold related to the running
cost function.

I. INTRODUCTION

Model predictive control (MPC) has been widely applied

in many applications such as process control, power grids,

transportation, robotics, and manufacturing, to name a few.

It solves a finite horizon optimal control problem (FHOCP)

at each sampling instant and applies a part of the optimal

solution to the plant as the control input. When implemented

in computers, the MPC algorithms must be discrete-time,

even though the plant is continuous-time, which motivates

the research on sampled-data MPC.

Conventional approaches sample and solve FHOCP in a

periodic manner [1]–[5]. To make sure that the discrete-time

models used in the FHOCP is close to the behavior of the

plant, the sampling period (or the upper bound on the sam-

pling period) is fixed and usually very small. Such an selec-

tion could be very conservative with respect to computation

efficiency. In general, solving an FHOCP is computationally

expensive. Small sampling periods imply frequently solving

FHOCPs, which will generate a significant number of control

tasks, which could place a heavy computational burden on

the processor and introduce significant computation delays.

Consequently, the system performance may be degraded and

sometimes the system can even be unstable.

To reduce the computation frequency, researchers began to

investigate sampled-data MPC with aperiodic sampling, in-

cluding event-triggered and self-triggered MPC approaches.

Event-triggered MPC solves the FHOCP when some pre-

defined events take place [6]–[10], while self-triggered MPC

predicts the next the sampling instant based on the state

and input information [11]–[14]. In both approaches, the
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sampling time instants are determined by both the system dy-

namics and the current system status. It allows the controller

to dynamically adjust the sampling/computation frequency,

according to what really happens in the system, and therefore

avoid unnecessary computation.

It is worth mentioning that in all aforementioned work

the FHOCP is still continuous-time. Recently, a Lebesgue

approximation based MPC approach was proposed in [15],

[16] for nonlinear systems, where the sampling time and the

state transitions in the approximation model are both aperi-

odic and state-dependent. It can enlarge the inter-sampling

intervals, while reducing the number of steps in the discrete-

time FHOCP to prediction the same length of horizon

in continuous-time domain. Therefore, both frequency and

complexity of solving the FHOCP can be reduced. This

result was extended later to stabilize nonlinear systems with

measurement noises [17]. Both works are limited to first-

order discrete-time approximation model in the FHOCP.

This paper relaxes the assumption of first-order approxi-

mation and considers a more general framework of discrete-

time MPC for continuous-time systems that is suitable to

various approximation models with either time-triggered or

event/self-triggered scheduling schemes. The discrete-time

model used in MPC can approximate the behavior of the

plant with state-dependent sampling periods. The allow-

able model approximation error is also state-dependent and

therefore admits a tighter error bound in MPC framework,

compared with the error bound related to period only. We

provide rigorous analysis on system stability and show that,

as long as the model approximation errors at the scheduled

time instants are bounded by a threshold related the cost

function, the resulting closed-loop system will be uniformly

ultimately bounded. The developed sufficient conditions can

be used as the guidelines to design the discrete-time FHOCP

in sampled-data MPC.

II. PROBLEM FORMULATION

Notations: We denote by R
n the n-dimensional real vector

space, by R
+ the set of real positive numbers, and by Z

+
0

the set of nonnegative integers. We use ‖ · ‖ to denote the

Euclidean norm of a vector and the induced 2-norm of

a matrix. Given a positive constant d, let B(d) = {x ∈
R

n | ‖x‖ ≤ d}. Given two sets X ,S ⊆ R
n, X + S is

the Minkowski sum of these two sets.

Definition 2.1: A continuous function α : R
+
0 → R

+
0

belongs to class K if it is strictly increasing and α(0) = 0.

Definition 2.2: The state x(t) of a system ẋ = f(x) is

called uniformly ultimately bounded (UUB) with ultimate



bound b if there exist positive constants b and c, independent

of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0,

independent of t0 , such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b

for any t ≥ t0 + T .

Consider a nonlinear continuous-time dynamical system:

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (1)

where x ∈ R
n and u ∈ U are the state and input of the

system, respectively, U ⊆ R
m be the input constraint set

including {0}, x0 ∈ R
n is the initial state, and f : Rn ×

R
m → R

n is a locally Lipschitz function that describes the

system dynamics satisfying f(0, 0) = 0.

When implementing state-feedback MPC algorithms in

digital environments, the controller receives measurements

in discrete-time. The basic idea is described as follows:

At the time instant tk, the system samples the state and

the controller obtains the sampled state x(tk). Then the

controller solves an N -step discrete-time FHOCP at time

tk with x(tk) as the initial condition. The FHOCP at time

tk can be stated as follows:

V (x(tk)) = min
ûi
k
∈U, i=0,...,N−1

J
[
{ûi

k}
N−1
i=0 |x(tk)

]
(2a)

s.t. x̂i+1
k = f̂(x̂i

k, û
i
k) (2b)

x̂0
k = x(tk), x̂N

k ∈ XT (2c)

where J
[
{ûi

k}
N−1
i=0 |x(tk)

]
=
∑N−1

i=0 κ(x̂i
k, û

i
k) + Vf (x̂

N
k ),

κ : Rn×R
m → R

+
0 is the running cost function, Vf : Rn →

R
+
0 is the terminal cost function, XT ⊂ R

n is the terminal

set, x̂i
k and ûi

k are the predicted state and input, respectively,

and f̂ : Rn×R
m → R

n is a continuous function to describe

the approximation model. All functions will be determined

later to ensure stability of the closed-loop system.

Let {ûi,∗
k }N−1

i=0 be the optimal control inputs of the FHOCP

at tk and x̂
i,∗
k be the corresponding optimal states. Then û

0,∗
k

will be actuated in the actual plant over the time interval

[tk, tk+1), i.e., u(t) = û
0,∗
k for ∀t ∈ [tk, tk+1). We can define

tk+1 = tk + ĝ(x(tk), û
0,∗
k ) (3)

where ĝ : R
n × R

m → R
+ is a positive function to

be determined, and u(t) = û
0,∗
k over [tk, tk+1). The next

computation cycle starts at tk+1. The overall sampled-data

MPC algorithm is summarized as follows: At time t = tk,

(i) sample the state and obtain x(tk);
(ii) solve the FHOCP in equation (2) for x̂

i,∗
k and û

i,∗
k ;

(iii) set tk+1 using equation (3);

(iv) send the optimal solution û
0,∗
k to the plant, i.e, set

u(t) = û
0,∗
k over [tk, tk+1); and

(v) start the next sampling/computation cycle at tk+1.

Focusing on such a framework, we are interested in the

conditions on the functions f̂ , ĝ, κ, and Vf , under which the

closed-loop system defined by (1) – (2) can be stabilized.

III. STABILITY ANALYSIS

This section discusses stability of the closed-loop system,

which relies on the appropriate selection of the functions f̂ ,

ĝ, κ, and Vf . Several assumptions are made as follows.

Assumption 3.1: Given a pair (x, u) ∈ R
n × U , let z(t)

be the solution satisfying ż(t) = f(z(t), u) with z(0) =
x. There exists a continuous function ε(x) such that the

inequality ‖z(ĝ(x, u))− f̂(x, u)‖ ≤ ε(x) holds.

Remark 3.1: This assumption places a requirement on the

approximation error between the states of the plant and the

approximation model. It means that given the same initial

state and the input (x, u), the state of the continuous-time

system at time ĝ(x, u) should not deviate too much from the

state of the discrete-time model in (2b) that is x+ = f̂(x, u).
The error should be bounded a function ε(x). In our MPC

framework it indicates that the error over [tk, tk+1) will be

bounded by ε(x(tk)).
To define the terminal set XT , we have the following

assumption:

Assumption 3.2: There exist a compact set XT ⊆ R
n, a

positive constant dx̃, and a continuous function h : Rn →
R

m with h(0) = 0 such that

x ∈ XT ⇒ f̂(x+ x̃, h(x+ x̃)) ∈ XT , ∀x̃ ∈ B(dx̃) (4)

h(x) ∈ U , ∀x ∈ XT + B (dx̃) (5)

Vf (f̂(x, h(x)))− Vf (x) ≤ −κ(x, h(x)), ∀x ∈ XT + B (dx̃) .
(6)

Remark 3.2: This assumption is similar to the one in [15],

which is quite standard in robust MPC. XT is basically a

robust positively invariant set of the system x+ = f̂(x +
x̃, h(x + x̃)) for any disturbance x̃ ∈ B(dx̃). The constant

dx̃ actually serves as the bound on the errors between the

states predicted at the kth and k + 1th computation cycles.

We define X0 as the set of admissible initial states for the

FHOCP in (2) and d0 as the largest positive constant so that

V0 = {x ∈ R
n | V (x) ≤ d0} ⊆ X0 (7)

where V is defined in (2).

Assumption 3.3: There exist two class K functions α1 and

α2 such that

κ(x, u) ≥ α1(‖x‖), ∀x ∈ X0, ∀u ∈ U , (8)

V (x) ≤ α2(‖x‖), ∀x ∈ V0. (9)

Let X
N,f̂

be the N -step reachable set of the system z+ =

f̂(z, u) with the initial state inside B
(
α−1
1 (d0)

)
and u ∈ U .

Assumption 3.4: There exist positive constants L
f̂

, Lκ,

and LVf
such that for any x, y ∈ X

N,f̂
and u ∈ U ,

‖f̂(x, u)− f̂(y, u)‖ ≤ L
f̂
‖x− y‖ (10)

‖κ(x, u)− κ(y, u)‖ ≤ Lκ‖x− y‖ (11)

‖Vf (x)− Vf (y)‖ ≤ LVf
‖x− y‖. (12)

Assumption 3.5: There exist two positive constants ρ ∈
(0, 1) and d such that for any x ∈ V0 and u ∈ U ,

θε(x) ≤ ρκ(x, u) + d, (13)

where θ =
∑N−1

i=1 LκLf̂
i−1 + LVf

L
f̂
N−1.

Remark 3.3: Assumption 3.5 reveals an interesting re-

lation between the approximation error and the running

cost function. It means that the discrete-time approximation

model must reach certain level of accuracy (or “consistency”)



marked by the running cost κ(x, u).

With these assumptions, we construct a sequence of con-

trol inputs for the FHOCP at the (k+1)th computation cycle:

ûi
k+1 =

{

û
i+1,∗
k , i = 0, 1, ..., N − 2

h(x̂N−1
k+1 ). i = N − 1

(14)

Then the discrete-time model in (2b) with ûi
k+1 and x̂0

k+1 =
x(tk+1) will generate the predicted states at the (k + 1)st

computation cycle, denoted by x̂i
k+1 for i = 1, 2, · · · , N−1.

Lemma 3.1: If Assumption 3.3 holds, x(tk) ∈ V0, and

tk+1 − tk ≤
α−1
1 (d0)− ‖x(tk)‖

fmax
(15)

holds, where fmax = max
x∈B(α−1

1
(d0)), u∈U f(x, u), then

x(t) ∈ B
(
α−1
1 (d0)

)
for t ∈ [tk, tk+1].

Proof: The proof is straightforward by applying com-

parison principle and therefore omitted.

As long as d0 ≥ V (x0) and V (x(tk)) keeps decreas-

ing, we will have d0 ≥ V (x(tk)) ≥ α1(‖x(tk)‖) and

therefore the right-hand side of inequality (15) will be

nonnegative. Inequality (15) basically places another re-

quirement on ĝ, which may take a formate like ĝ(x, u) =

min
{

∗,
α

−1

1
(d0)−‖x‖
fmax

}

.

Lemma 3.1 implies that tk+1 − tk must be bounded

from above so that x(t) will not leave the set B
(
α−1
1 (d0)

)
.

Therefore, the predicted states will stay in X
N,f̂

. As a result,

the Lipschitz constants in Assumption 3.4 will be valid in

the analysis later.

The next lemma quantifies the error between the predicted

states computed at the kth and k + 1th computation cycle.

Lemma 3.2: If x(tk) ∈ V0, x(tk+1) ∈ B
(
α−1
1 (d0)

)
, and

Assumption 3.1, 3.3, 3.4 hold, then

‖x̂i−1
k+1 − x̂

i,∗
k ‖ ≤ εkLf̂

i−1, i = 1, 2, ..., N. (16)

holds where εk = ε (x(tk)).

Lemma 3.2 means the error between predicted states will

accumulated as the number of iterations increases. This error

may affect the decrease of the Lyapunov function V , if

it is large. Therefore, an upper bound is needed. This is

summarized in the following lemma.

Lemma 3.3: Suppose that Assumptions 3.1–3.5 hold and

x(tk) ∈ V0, x(tk+1) ∈ B
(
α−1
1 (d0)

)
. If inequality

dx̃ ≥ εmaxL
N−1

f̂
(17)

holds, where εmax = maxx∈V0
ε(x), and {x̂i,∗

k , û
i,∗
k }N−1

i=0 is

the optimal solution to the FHOCP (2) at the kth computation

cycle, then
{
x̂i
k+1

}N

i=0
and

{
ûi
k+1

}N−1

i=0
are admissible to

the FHOCP at the k+1st computation cycle. Moreover, the

following inequality holds:

V (x(tk+1))− V (x(tk)) ≤ d− (1− ρ)α1 (‖x(tk)‖) . (18)

Condition (17) implies that the terminal set XT must be

able to guarantee set invariance in the presence of distur-

bances whose magnitude is less than εmaxL
N−1

f̂
, which is

actually an upper bound on the accumulated prediction state

error after N steps.

Lemma 3.3 shows the change in V (x(tk)) between two

consecutive sampling instants, given some assumptions on

x(tk) and x(tk+1). This result can be extended over the

entire time horizon, which is presented as follows.

Theorem 3.1: Assume that the hypotheses in Lem-

mas 3.1–3.3 hold. If x(t0) ∈ V0 and

max
s∈[0, α

−1

1 ( d
1−ρ )]

[α2(s)− (1− ρ) α1(s)] ≤ d0 − d (19)

hold, the FHOCP is always feasible and the closed-loop

system is UUB.

Proof: We will be shown that

x(tk+1) ∈ V0 and (20)

V (x(tk+1))− V (x(tk)) ≤ d− (1− ρ) α1 (‖x(tk)‖) (21)

hold for k = 0, 1, 2, · · · , using mathematical induction.

For k = 0, we know x(t0) ∈ V0. Since the hypotheses of

Lemma 3.1 hold for k = 0, we have x(t1) ∈ B
(
α−1
1 (d0)

)
.

Meanwhile, because x(t0) ∈ V0 ⊆ X0, the FHOCP in (2)

admits a feasible solution at t0. So the hypotheses of Lem-

ma 3.3 are satisfied for k = 0, which implies that {x̂i
1}

N
i=0

and {ûi
1}

N−1
i=0 are admissible to the FHOCP at t1 with the

initial condition x(t1), and

V (x(t1))− V (x(t0)) ≤ −(1− ρ) α1 (‖x(t0)‖) + d.

There are two cases to be discussed:

C1: If ‖x(t0)‖ ≥ α−1
1

(
d

1−ρ

)

, then

V (x(t1)) ≤ V (x(t0)) ≤ d0,

which means x(t1) ∈ V0.

C2: If ‖x(t0)‖ < α−1
1

(
d

1−ρ

)

, then with V (x(t0)) ≤

α2(‖x(t0)‖), we have

V (x(t1)) ≤ α2(‖x(t0)‖)−(1−ρ)α1 (‖x(t0)‖)+d.

By inequality (19), we know V (x(t1)) ≤ d0.

In either case x(t1) ∈ V0 holds. So far, we show that

equation (20) and (21) hold for k = 0.

Assume that (20) and (21) hold for k = p− 1, i.e.,

x(tp) ∈ V0 and

V (x(tp))− V (x(tp−1)) ≤ −(1− ρ)α1 (‖x(tp−1)‖) + d.

We will show that they also hold for k = p.

Inequality (15), together with the fact x(tp) ∈ V0 ⊆ X0,

implies x(tp+1) ∈ B
(
α−1
1 (d0)

)
by Lemma 3.1. Since the

hypotheses of Lemma 3.3 hold for k = p, we know that

V (x(tp+1))− V (x(tp)) ≤ −(1− ρ)α1 (‖x(tp)‖) + d.

Following the previous analysis, two cases will be discussed.

C1: If ‖x(tp)‖ ≥ α−1
1

(
d

1−ρ

)

, then

V (x(tp+1)) ≤ V (x(tp)) ≤ d0.

C2: If ‖x(tp)‖ < α−1
1

(
d

1−ρ

)

, then with

V (x(tp)) ≤ α2(‖x(tp)‖)



given by Assumption 3.3, we have

V (x(tp+1))

≤ α2(‖x(tp)‖)− (1− ρ)α1 (‖x(tp)‖) + d.

By inequality (19), we know V (x(tp+1)) ≤ d0.

So x(tp+1) ∈ V0 holds for both cases and inequalities (20)

and (21) hold for all k ∈ Z
+
0 .

Since x(tk) ∈ V0 ⊆ X0 for all k ∈ Z
+
0 , we know by As-

sumption 3.3 that α1(‖x(tk)‖) ≤ V (x(tk)) ≤ α2(‖x(tk)‖),
which, with inequality (21), implies that {x(tk)}

∞
k=0 is UUB.

Solving the differential inequality

d

dt
‖x(t)− x(tk)‖ ≤ ‖f(x(t), û0,∗

k )‖ ≤ fmax

over [tk, tk+1) with zero initial condition implies ‖x(t) −
x(tk)‖ is uniformly bounded for any t ∈ [tk, tk+1). So the

closed-loop system is UUB.

IV. AN ILLUSTRATIVE EXAMPLE

This section presents the simulation results on the pro-

posed MPC algorithm. The system under consideration is

described as follows:

ẋ1 =
(2‖x‖+ 1)(0.5x1 + 5x2)

0.5x>x+ 2

ẋ2 =
(2‖x‖+ 1)(2.5x1 + 1.25x2 + 2u)

0.5x>x+ 2
.

The input constraint is u(t) ∈ [−2, 2].
Using Euler-forward method to approximate this nonlin-

ear system with the time-varying sampling period Tk =
0.02x>

k xk+0.08
(2‖xk‖+1) , we obtain the state prediction model

x̂i+1
k = f̂(x̂i

k, û
i
k) =

(
1.02x̂i

k,1 + 0.2x̂i
k,2

0.1x̂i
k,1 + 1.05x̂i

k,2 + ûi
k

)

.

Similar to the approach used in [18], we can find

ε(x) = ‖f̂(x, u)‖
(

eLf ĝ(x,u) − 1
)

with a general ĝ(x, u) under Euler forward method, where

Lf is the Lipschitz constant of f(x, u) with respect to x.

The running cost function and the terminal cost function are

κ(x, u) = 10‖x‖+ ‖u‖, Vf (x) = 10‖x‖.

With Tk and inequality (15), we can define ĝ(x, u)

ĝ(x, u) = min

{
0.02x>x+ 0.08

(2‖x‖+ 1)
,
20− ‖x‖

40

}

.

Notice that the choice of ĝ(x, u) must guarantee the satis-

faction of (13). So it cannot be arbitrarily large and must

follow certain formats induced by ε(x) and κ(x, u) such

that (13) can be verified. So given an approximation method,

a possible way to define ĝ is to find ε(x) with a general ĝ

first. Then based on the structure of ε(x) and κ(x, u), we

define the detailed expression of ĝ.

The top plot of Figure 1 shows the state trajectories that

converge to the origin. The input also converges to zero, as

shown in the middle plot. The bottom plot shows the history

of the computation periods. It converges to 0.08, which is

consistent to the theoretical result lim‖x‖→∞ ĝ(x, u) = 0.08
in this case. During the simulation, the FHOCP only runs 30

times in total.

Fig. 1. The state trajectories and computation periods with v(t) = w(t) =
0

In the second simulation, the disturbances and measure

noises are added to check system robustness. In the top plot

of Figure 2 the state trajectory oscillated around the origin

due to disturbances and noises. Accordingly, the inputs and

the computation periods vary slightly around the steady state,

as shown in the middle and bottom plots. The total number

that the FHOCP runs is 31 times, which is similar the first

simulation.

V. SUMMARY

This paper provides rigorous analysis of stability of

continuous-time nonlinear systems controlled by discrete-

time MPC. In this framework the FHOCP is discrete-time,

designed based on a sporadic approximation model of the

plant that includes transitions in both state and time. Suf-

ficient conditions are derived for the closed-loop system to

be uniformly ultimately bounded. The results are applicable

to most commonly used model approximation approaches,

as long as the approximation error is limited over the inter-

sampling time intervals.

VI. PROOFS OF LEMMAS

A. Proof of Lemma 3.2

Proof: We prove the statement using mathematical

induction. Because x(t) is the solution to the system in (1)

with u(t) = û
0,∗
k over [tk, tk+1) starting from x(tk), by



Fig. 2. The state/input trajectories and computation periods in the presence
of disturbances and noises

Assumption 3.1 and x(tk) ∈ V0 ⊆ B
(
α−1
1 (d0)

)
,

∥
∥
∥x
(

tk + ĝ(x(tk), û
0,∗
k )
)

− f̂
(

x(tk), û
0,∗
k

)∥
∥
∥

≤ ε (x(tk)) = εk.

By equation (3), we know

tk+1 = tk + ĝ(x(tk), û
0,∗
k ).

And by equation (2b), we have

x̂
1,∗
k = f̂

(

x(tk), û
0,∗
k

)

.

So the inequality above implies for i = 1

‖x̂0
k+1 − x̂

1,∗
k ‖ =

∥
∥
∥x (tk+1)− x̂

1,∗
k

∥
∥
∥ ≤ εk.

Next we assume that inequality (16) holds for i = p−1, i.e.,

‖x̂p−2
k+1 − x̂

p−1,∗
k ‖ ≤ εkLf̂

p−2 (22)

and prove that inequality (16) also holds for i = p.

According to equation (2b) and the definition of ûi
k+1 in

equation (14), we have

x̂
p,∗
k = f̂(x̂p−1,∗

k , û
p−1,∗
k ) and

x̂
p−1
k+1 = f̂(x̂p−2

k+1, û
p−2
k+1) = f̂(x̂p−2

k+1, û
p−1,∗
k ).

Therefore,

‖x̂p−1
k+1 − x̂

p,∗
k ‖

=‖f̂(x̂p−2
k+1, û

p−1,∗
k )− f̂(x̂p−1,∗

k , û
p−1,∗
k )‖.

Since x(tk), x(tk+1) ∈ B
(
α−1
1 (d0)

)
, x̂

p−2
k+1, x̂

p−1,∗
k ∈ X

N,f̂

holds for any p ≤ N . With û
p−1,∗
k ∈ U , by inequality (10)

in Assumption 3.4 and inequality (22), we have

‖x̂p−1
k+1 − x̂

p,∗
k ‖ ≤ L

f̂
‖x̂p−2

k+1 − x̂
p−1,∗
k ‖ ≤ εkLf̂

p−1,

which completes the proof.

B. Proof of Lemma 3.3

Proof: Given the assumptions in Lemma 3.2, equa-

tion (16) holds, which, together with inequality (17), implies

‖x̂N−1
k+1 − x̂

N,∗
k ‖ ≤ εkLf̂

N−1 ≤ dx̃. (23)

So there exists x̃ ∈ B(dx̃) such that

x̂N−1
k+1 = x̂

N,∗
k + x̃ (24)

and

x̂N
k+1 = f̂

(
x̂N−1
k+1 , ûN−1

k+1

)

= f̂
(
x̂N−1
k+1 , h

(
x̂N−1
k+1

))

= f̂
(

x̂
N,∗
k + x̃, h

(

x̂
N,∗
k + x̃

))

. (25)

Because {x̂i,∗
k , û

i,∗
k }N−1

i=0 is admissible at the kth computation

cycle, x̂
N,∗
k ∈ XT holds and therefore

x̂N−1
k+1 ∈ XT + B (dx̃) .

So by equation (5) in Assumption 3.2,

ûN−1
k+1 = h(x̂N−1

k+1 ) ∈ U

holds. Meantime, by (4), x̂N
k+1 ∈ XT holds. So {x̂i

k+1}
N
i=0

with {ûi
k+1}

N−1
i=0 is admissible to the FHOCP at the k+1th

computation cycle.

Let J [ûk+1|x(tk+1)] be the cost of the FHOCP generated

by ûk+1 =
{
ûi
k+1

}N−1

i=0
with the initial condition x(tk+1).

J [ûk+1|x(tk+1)]− V (x(tk))

=
N−1∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
+ Vf

(
x̂N
k+1

)
− V (x(tk))

=

N−2∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
+ κ

(
x̂N−1
k+1 , ûN−1

k+1

)
+ Vf

(
x̂N
k+1

)

− V (x(tk)) + Vf

(
x̂N−1
k+1

)
− Vf

(
x̂N−1
k+1

)

+ κ
(

x̂
0,∗
k , û

0,∗
k

)

− κ
(

x̂
0,∗
k , û

0,∗
k

)

Re-arranging the terms at the right-hand side, we have

J [ûk+1|x(tk+1)]− V (x(tk))

= κ
(
x̂N−1
k+1 , ûN−1

k+1

)
+ Vf (x̂

N
k+1)− Vf (x̂

N−1
k+1 )

︸ ︷︷ ︸

Ψ

− κ
(

x̂
0,∗
k , û

0,∗
k

)

+Φ (26)

where

Φ =

N−2∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
+ Vf

(
x̂N−1
k+1

)
+ κ

(

x̂
0,∗
k , û

0,∗
k

)

− V (x(tk)).



Notice that

x̂N
k+1 = f̂

(
x̂N−1
k+1 , h(x̂N−1

k+1 )
)
.

So, given

x̂N−1
k+1 ∈ XT + B (dx̃)

and inequality (6) in Assumption 3.2, we have Ψ ≤ 0.

Therefore, equation (26) implies

J [ûk+1|x(tk+1)]− V (x(tk)) ≤ Φ− κ
(

x̂
0,∗
k , û

0,∗
k

)

. (27)

Consider Φ. Notice that the first term in Φ can be

written as

N−2∑

i=0

κ
(
x̂i
k+1, û

i
k+1

)
=

N−1∑

i=1

κ
(
x̂i−1
k+1, û

i−1
k+1

)
.

According to equation (2),

V (x(tk)) = Vf (x̂
N,∗
k ) +

N−1∑

i=0

κ
(

x̂
i,∗
k , û

i,∗
k

)

.

Therefore, using this equation to replace V (x(tk)) in Φ
yields

Φ =

N−1∑

i=1

κ
(
x̂i−1
k+1, û

i−1
k+1

)
+ Vf

(
x̂N−1
k+1

)

−

N−1∑

i=1

κ
(

x̂
i,∗
k , û

i,∗
k

)

− Vf

(

x̂
N,∗
k

)

. (28)

By equation (14), ûi−1
k+1 = û

i,∗
k for i = 1, 2, · · · , N − 1.

So

Φ ≤

N−1∑

i=1

∣
∣
∣κ
(
x̂i−1
k+1, û

i−1
k+1

)
− κ

(

x̂
i,∗
k , û

i,∗
k

)∣
∣
∣

+
∣
∣
∣Vf

(
x̂N−1
k+1

)
− Vf

(

x̂
N,∗
k

)∣
∣
∣

≤

N−1∑

i=1

Lκ

∥
∥
∥x̂

i−1
k+1 − x̂

i,∗
k

∥
∥
∥+ LVf

∥
∥
∥x̂

N−1
k+1 − x̂

N,∗
k

∥
∥
∥ ,

where the last inequality comes from equation (11) and (12)

in Assumption 3.4, given x(tk), x(tk+1) ∈ B
(
α−1
1 (d0)

)
and

therefore x̂i−1
k+1, x̂

i,∗
k ∈ X

N,f̂
for i = 1, 2 · · · , N .

By Lemma 3.2,
∥
∥
∥x̂

i−1
k+1 − x̂

i,∗
k

∥
∥
∥ ≤ εkLf̂

i−1

for i = 1, 2, · · · , N . Therefore,

Φ ≤εk

(
N−1∑

i=1

LκLf̂
i−1 + LVf

L
f̂
N−1

)

= εkθ.

With the inequality above and inequality (13) in Assump-

tion 3.5, inequality (27) can be further simplified as

J [ûk+1|x(tk+1)]− V (x(tk))

≤ −κ
(

x̂
0,∗
k , û

0,∗
k

)

+ εkθ

≤ −(1− ρ) κ
(

x̂
0,∗
k , û

0,∗
k

)

+ d.

Therefore,

V (x(tk+1))− V (x(tk))

= min
û

J [û|x(tk+1)]− V (x(tk))

≤ −(1− ρ) κ
(

x̂
0,∗
k , û

0,∗
k

)

+ d

≤ −(1− ρ) α1 (‖x(tk)‖) + d,

where the last inequality comes from Assumption 3.3 and

the fact x̂
0,∗
k = x(tk).
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