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Abstract— This paper studies stability of sampled-data sys-
tems controlled by discrete-time model predictive control (M-
PC) algorithms. We consider a general framework for the co-
design of discrete-time MPC law and the associated scheduling
schemes, where the discrete-time model used in MPC approxi-
mates the behavior of the plant with state-dependent sampling
periods. Sufficient conditions are derived to guarantee uniform
ultimate boundedness of the resulting closed-loop system. The
results can be applied to most existing model approximation
methods with either fixed or time-varying sampling rates.
It is shown that to stabilize the system, the model used in
the FHOCP does not have to be very accurate as long as
the associated scheduling scheme matches the model and the
approximation error is below a threshold related to the running
cost function.

I. INTRODUCTION

Model predictive control (MPC) has been widely applied
in many applications such as process control, power grids,
transportation, robotics, and manufacturing, to name a few.
It solves a finite horizon optimal control problem (FHOCP)
at each sampling instant and applies a part of the optimal
solution to the plant as the control input. When implemented
in computers, the MPC algorithms must be discrete-time,
even though the plant is continuous-time, which motivates
the research on sampled-data MPC.

Conventional approaches sample and solve FHOCP in a
periodic manner [1]-[5]. To make sure that the discrete-time
models used in the FHOCP is close to the behavior of the
plant, the sampling period (or the upper bound on the sam-
pling period) is fixed and usually very small. Such an selec-
tion could be very conservative with respect to computation
efficiency. In general, solving an FHOCP is computationally
expensive. Small sampling periods imply frequently solving
FHOCPs, which will generate a significant number of control
tasks, which could place a heavy computational burden on
the processor and introduce significant computation delays.
Consequently, the system performance may be degraded and
sometimes the system can even be unstable.

To reduce the computation frequency, researchers began to
investigate sampled-data MPC with aperiodic sampling, in-
cluding event-triggered and self-triggered MPC approaches.
Event-triggered MPC solves the FHOCP when some pre-
defined events take place [6]-[10], while self-triggered MPC
predicts the next the sampling instant based on the state
and input information [11]-[14]. In both approaches, the
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sampling time instants are determined by both the system dy-
namics and the current system status. It allows the controller
to dynamically adjust the sampling/computation frequency,
according to what really happens in the system, and therefore
avoid unnecessary computation.

It is worth mentioning that in all aforementioned work
the FHOCP is still continuous-time. Recently, a Lebesgue
approximation based MPC approach was proposed in [15],
[16] for nonlinear systems, where the sampling time and the
state transitions in the approximation model are both aperi-
odic and state-dependent. It can enlarge the inter-sampling
intervals, while reducing the number of steps in the discrete-
time FHOCP to prediction the same length of horizon
in continuous-time domain. Therefore, both frequency and
complexity of solving the FHOCP can be reduced. This
result was extended later to stabilize nonlinear systems with
measurement noises [17]. Both works are limited to first-
order discrete-time approximation model in the FHOCP.

This paper relaxes the assumption of first-order approxi-
mation and considers a more general framework of discrete-
time MPC for continuous-time systems that is suitable to
various approximation models with either time-triggered or
event/self-triggered scheduling schemes. The discrete-time
model used in MPC can approximate the behavior of the
plant with state-dependent sampling periods. The allow-
able model approximation error is also state-dependent and
therefore admits a tighter error bound in MPC framework,
compared with the error bound related to period only. We
provide rigorous analysis on system stability and show that,
as long as the model approximation errors at the scheduled
time instants are bounded by a threshold related the cost
function, the resulting closed-loop system will be uniformly
ultimately bounded. The developed sufficient conditions can
be used as the guidelines to design the discrete-time FHOCP
in sampled-data MPC.

II. PROBLEM FORMULATION

Notations: We denote by R" the n-dimensional real vector
space, by R the set of real positive numbers, and by Zar
the set of nonnegative integers. We use || - || to denote the
Euclidean norm of a vector and the induced 2-norm of
a matrix. Given a positive constant d, let B(d) = {x €
R™ | ||z|| < d}. Given two sets X,S§ C R”, X + S is
the Minkowski sum of these two sets.

Definition 2.1: A continuous function « : Rf — Ry
belongs to class K if it is strictly increasing and «(0) = 0.

Definition 2.2: The state z(t) of a system & = f(x) is
called uniformly ultimately bounded (UUB) with ultimate



bound b if there exist positive constants b and ¢, independent
of tg > 0, and for every a € (0, c), there is T' = T'(a, b) > 0,
independent of ¢, , such that || (¢o)|| < a implies ||z(t)]| < b
forany t > to + 7.

Consider a nonlinear continuous-time dynamical system:

#(t) = f(z(t),u(t)), x(to) = w0 (1)

where * € R™ and u € U are the state and input of the
system, respectively, / C R™ be the input constraint set
including {0}, zp € R™ is the initial state, and f : R" x
R™ — R"™ is a locally Lipschitz function that describes the
system dynamics satisfying f(0,0) = 0.

When implementing state-feedback MPC algorithms in
digital environments, the controller receives measurements
in discrete-time. The basic idea is described as follows:
At the time instant tj, the system samples the state and
the controller obtains the sampled state z(ty). Then the
controller solves an N-step discrete-time FHOCP at time
tr with 2(t;) as the initial condition. The FHOCP at time
t;, can be stated as follows:

V(x(ty)) = i T [{ad Y e (ty 2
(2(te) =, mim {ak}iso' lo(te)]  (22)
st @bt = f(a,a) (2b)

B =a(ty), &) €Xr (2c)

where J [{a} 1 |o(t)] = So.50" w3 d)) + V@),
£k:R"xR™ — Rg is the running cost function, V; : R" —
Rg is the terminal cost function, X C R" is the terminal
set, #i and 4! are the predicted state and input, respectively,
and f :R™ xR™ — R™ is a continuous function to describe
the approximation model. All functions will be determined
later to ensure stability of the closed-loop system.

Let {@;"} 5" be the optimal control inputs of the FHOCP
at t; and )" be the corresponding optimal states. Then ) *
will be actuated in the actual plant over the time interval

[ty tes1), ie., u(t) = 4™ for Vi € [ty txy1). We can define
tepr = to + J(2(te), 25) 3)
where ¢ : R" x R™ — R* is a positive function to

be determined, and u(t) = 4™ over [ty,txy1). The next

computation cycle starts at f;y;. The overall sampled-data

MPC algorithm is summarized as follows: At time ¢ = g,
(i)  sample the state and obtain x(ty); ‘ _
(ii)  solve the FHOCP in equation (2) for ;" and 4;";

(#47)  set tr4+1 using equation (3);
(tv)  send the optimal solution ﬁg’* to the plant, i.e, set
u(t) = 43" over [ty tri1); and

(v)  start the next sampling/computation cycle at ¢y .

Focusing on such a framework, we are interested in the
conditions on the functions f , §» K, and V¢, under which the
closed-loop system defined by (1) — (2) can be stabilized.

III. STABILITY ANALYSIS

This section discusses stability of the closed-loop system,
which relies on the appropriate selection of the functions f,
g, k, and V. Several assumptions are made as follows.

Assumption 3.1: Given a pair (z,u) € R™ x U, let z(t)
be the solution satisfying 2(t) = f(z(¢t),u) with z(0) =
x. There exists a continuous function e(z) such that the
inequality ||z(g(x,u)) — f(z,u)| < e(z) holds.

Remark 3.1: This assumption places a requirement on the
approximation error between the states of the plant and the
approximation model. It means that given the same initial
state and the input (z,u), the state of the continuous-time
system at time §(x, u) should not deviate too much from the
state of the discrete-time model in (2b) that is 2t = f(x,u).
The error should be bounded a function €(x). In our MPC
framework it indicates that the error over [ty,t;4+1) Will be
bounded by e(z(ty)).

To define the terminal set X7, we have the following
assumption:

Assumption 3.2: There exist a compact set X+ C R", a
positive constant dz, and a continuous function A : R" —
R™ with h(0) = 0 such that

reXr= fx+i h(x+1)eXr, VieB(dz) &)

h(z) eU, Vxe Xr+ B(dz) (5)
Vf(f(x, hMz))) — Vi(z) < —k(z, h(z)), Vo € Xy + B (d(j6)).

Remark 3.2: This assumption is similar to the one in [15],
which is quite standard in robust MPC. X7 is basically a
robust positively invariant set of the system z+ = f (x +
Z,h(xz + %)) for any disturbance & € B(dz). The constant
dz actually serves as the bound on the errors between the
states predicted at the kth and k + 1th computation cycles.

We define X[y as the set of admissible initial states for the
FHOCEP in (2) and dy as the largest positive constant so that

where V is defined in (2).
Assumption 3.3: There exist two class K functions «; and
a9 such that

k(z,u) > ai(||z]]), Vze Ay, Yuel, (8)

Vi(z) < as(llz])), v € Wo. )
Let X, 7 be the N-step reachable set of the system z+ =

f(z,u) with the initial state inside B (o] '(dp)) and u € U.
Assumption 3.4: There exist positive constants L ;, L,
and Ly, such that for any z,y € X i and u € U,

1 (e, u) = f(y,w)| < Lillz =y (10)
£z, u) — Ky, w)|| < Lz -yl (11)
[Vi(z) = Vi)l < Lv; |l —yl|. (12)

Assumption 3.5: There exist two positive constants p €
(0,1) and d such that for any z € Vy and u € U,

be(z) < pr(z,u) +d, (13)

where 6§ = Z?:ll L,QL];F1 + Ly, Lfol.

Remark 3.3: Assumption 3.5 reveals an interesting re-
lation between the approximation error and the running
cost function. It means that the discrete-time approximation
model must reach certain level of accuracy (or “consistency”)



marked by the running cost k(z,u).
With these assumptions, we construct a sequence of con-
trol inputs for the FHOCP at the (k+1)th computation cycle:

~1+1 .
o Jagtri=01,.,N =2
U1 =

14
h(Ey ). i=N-1 (9

Then the discrete-time model in (2b) with @, , and &}, =

x(tr4+1) will generate the predicted states at the (k + 1)st

computation cycle, denoted by &% 4 fore=1,2--- N-1
Lemma 3.1: If Assumption 3.3 holds, z(tx) € Vy, and

ai ' (do) — ||z (tw)l
Jmax

holds, where frax = MAX, ¢ (07 (do)), ueld f(z,u), then

z(t) € B (ay ' (do)) for t € [ty tiii)-
Proof: The proof is straightforward by applying com-
parison principle and therefore omitted. [ ]
As long as do > V(xg) and V(z(tx)) keeps decreas-
ing, we will have dy > V(x(tx)) > ai(||lz(tx)|]) and
therefore the right-hand side of inequality (15) will be
nonnegative. Inequality (15) basically places another re-
quirement on ¢, which may take a formate like §(x,u) =

—1
. o do)—||x
mln{*,il (do)— el

Smax

tht1 — th < (15)

Lemma 3.1 implies that ?54; — t; must be bounded
from above so that z(¢) will not leave the set B (a; ' (do)).
Therefore, the predicted states will stay in X, 7. As a result,
the Lipschitz constants in Assumption 3.4 w111 be valid in
the analysis later.

The next lemma quantifies the error between the predicted
states computed at the kth and k£ 4 1th computation cycle.

Lemma 3.2: 1f x(t) € Vo, z(tg41) € B (a7 (do)), and
Assumption 3.1, 3.3, 3.4 hold, then

|35 — a7 < el ™' i=1,2,.,N.  (16)

holds where €5, = € (z(tg)).

Lemma 3.2 means the error between predicted states will
accumulated as the number of iterations increases. This error
may affect the decrease of the Lyapunov function V, if
it is large. Therefore, an upper bound is needed. This is
summarized in the following lemma.

Lemma 3.3: Suppose that Assumptions 3.1-3.5 hold and
z(tx) € Vo, z(tes1) € B (ay ' (do)). If inequality

dz > EIWL}V‘1 (17)

holds, where €y, = max;cy, €(z), and {;%L*,f&z NG s
the optimal solution to the FHOCP (2) at the kth computation

i N i (N-1 .
cycle, then {&},,} _, and {@j_,},_ = are admissible to
the FHOCP at the k + 1st computation cycle. Moreover, the
following inequality holds:

Vi(@(tes1)) = Viz(te) < d = (1 = paa ([Ja(tp)l]) . (18)
Condition (17) implies that the terminal set X7 must be
able to guarantee set invariance in the presence of distur-
bances whose magnitude is less than emaXL]Y —1 which is
actually an upper bound on the accumulated prediction state

error after N steps.

Lemma 3.3 shows the change in V(z(tx)) between two
consecutive sampling instants, given some assumptions on
2(ty) and z(tgy1). This result can be extended over the
entire time horizon, which is presented as follows.

Theorem 3.1: Assume that the hypotheses in Lem-
mas 3.1-3.3 hold. If z(ty) € V, and

[aa(s) = (1 =p)ai(s)] <dy—d (19)

max

sef0. o7 (+%5)]
hold, the FHOCP is always feasible and the closed-loop
system is UUB.

Proof: We will be shown that

2(tg+1) € Vo and
V((tesr)) = V(z(ty)) < d = (1= p) on (Jlx(te)]) 2D

hold for £ =0,1,2, -, using mathematical induction.

For k = 0, we know x(ty) € V. Since the hypotheses of
Lemma 3.1 hold for k = 0, we have z(t;) € B (a '(do)).
Meanwhile, because z(ty) € Vo C Xy, the FHOCP in (2)
admits a feasible solution at £y. So the hypotheses of Lem-
ma 3.3 are satisfied for k = 0, which implies that {3},
and {@}}N ! are admissible to the FHOCP at ¢; with the
initial condition x(¢;), and

V(z(t)) = V(z(to)) < =(1 = p) ar ([lz(to)[|) +d

There are two cases to be discussed:
Cl: If ||z(to)]| = ay* (2 ) then

(20)

T

V(z(t1)) < V(x(to)) < do,

which means z(t1) € V.

2 If Jla(to)l] < o7 (145
as(]|z(to)]]), we have

V(z(t1)) < aa([|z(to)ll) = (1=p)ar (lz(to)l]) +d

By inequality (19), we know V(z(t1)) < dp.
In either case z(t1) € Vp holds. So far, we show that
equation (20) and (21) hold for k£ = 0.
Assume that (20) and (21) hold for £ = p — 1, i.e,

z(t,) € Vo and
Vix(tp)) = V(z(tp-1)) < —(1 = paa ([2(tp-1)|)) +d

We will show that they also hold for k£ = p.

Inequality (15), together with the fact z(¢,) € Vo C Xy,
implies z(t,4+1) € B(ay'(do)) by Lemma 3.1. Since the
hypotheses of Lemma 3.3 hold for k£ = p, we know that

Vi((tpr1)) = V(z(tp)) < —(1 = p)ea ([[x(tp)]]) + d-
Following the previous analysis, two cases will be discussed.
Cl: If |a(t,)] > a7 (1 p) then

V(z(tp+1)) < V(x(tp)) < do.
€2 If a(t)] < a7 (1_ ) then with
Vi(z(tp)) < az(|[z(tp)l])

, then with V(z(tg)) <



given by Assumption 3.3, we have

V(x(tp1))
< o[z (tp)l) — (1 = p)ax (lz(tp)]) + d-
By inequality (19), we know V(z(t,11)) < do.
So z(tp,+1) € Vo holds for both cases and inequalities (20)
and (21) hold for all k£ € Zg.

Since z(t;) € Vo C &, for all k € Z7, we know by As-
sumption 3.3 that oy (||z(tx)|]) < V(z(tk)) < aa(||z(tr)]]),
which, with inequality (21), implies that {z(t)}3°, is UUB.
Solving the differential inequality

%Hx(t) —a(te)ll < 1F (), 8 < finax

over [ty,tr11) with zero initial condition implies ||z(t) —
x(tx)|| is uniformly bounded for any ¢ € [ty, tx+1). So the
closed-loop system is UUB. |

IV. AN ILLUSTRATIVE EXAMPLE

This section presents the simulation results on the pro-
posed MPC algorithm. The system under consideration is
described as follows:

2||z|| + 1)(0.5z1 + bz2)
0.5z Tz +2
b 2|z + 1)(2.521 + 1.25z5 + 2u)
2 0.5z T + 2 ‘
The input constraint is u(t) € [—2,2].

Using Euler-forward method to approximate this nonlin-
ear system with the time-varying sampling period 7} =
0.02, @), +0.08

Cllzkl+1)

, we obtain the state prediction model

» 2 i o 1.02&} | 4 0.22}
i+l A A ) k,1 “PE2
= @) = ( 0.12% | + .05, , + )

Similar to the approach used in [18], we can find

e(w) = | Fw, ] (b3 1)

with a general §(z, ) under Euler forward method, where
Ly is the Lipschitz constant of f(z,u) with respect to .
The running cost function and the terminal cost function are

w(@,u) = 10|l + [lull,  Vi(z) = 10[z].

With T}, and inequality (15), we can define §(z,u)

(e, ) = min{0.0Qsch—i—0.0S 20 — ||x||}
gt = Qlz[+1) 40

Notice that the choice of §(x,u) must guarantee the satis-
faction of (13). So it cannot be arbitrarily large and must
follow certain formats induced by e(z) and x(x,u) such
that (13) can be verified. So given an approximation method,
a possible way to define § is to find e(x) with a general §
first. Then based on the structure of e(x) and x(x,u), we
define the detailed expression of g.

The top plot of Figure 1 shows the state trajectories that
converge to the origin. The input also converges to zero, as
shown in the middle plot. The bottom plot shows the history

of the computation periods. It converges to 0.08, which is
consistent to the theoretical result lim ;| o §(x, u) = 0.08
in this case. During the simulation, the FHOCP only runs 30
times in total.
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Fig. 1. The state trajectories and computation periods with v(t) = w(¢) =
0

In the second simulation, the disturbances and measure
noises are added to check system robustness. In the top plot
of Figure 2 the state trajectory oscillated around the origin
due to disturbances and noises. Accordingly, the inputs and
the computation periods vary slightly around the steady state,
as shown in the middle and bottom plots. The total number
that the FHOCP runs is 31 times, which is similar the first
simulation.

V. SUMMARY

This paper provides rigorous analysis of stability of
continuous-time nonlinear systems controlled by discrete-
time MPC. In this framework the FHOCP is discrete-time,
designed based on a sporadic approximation model of the
plant that includes transitions in both state and time. Suf-
ficient conditions are derived for the closed-loop system to
be uniformly ultimately bounded. The results are applicable
to most commonly used model approximation approaches,
as long as the approximation error is limited over the inter-
sampling time intervals.

VI. PROOFS OF LEMMAS

A. Proof of Lemma 3.2

Proof: We prove the statement using mathematical
induction. Because z(t) is the solution to the system in (1)
with u(t) = )" over [ty,t,.1) starting from z(ty), by
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Fig. 2. The state/input trajectories and computation periods in the presence
of disturbances and noises

Assumption 3.1 and z(t;) € Vo C B («

o (8 + gttt a2
<e(x(ty)) = ex.
By equation (3), we know
terr =t + §(x(te), a0%).
And by equation (2b), we have

iy = f (wta),ad").

So the inequality above implies for ¢ = 1

1 (do)).

~1%

18241 = 471 = ||z (trsn) — 347 < e

Next we assume that inequality (16) holds for i = p—1, i.e.,

~p—1,%

12555 — 22| < e L2

(22)
and prove that inequality (16) also holds for ¢ = p.

According to equation (2b) and the definition of 4}, 41 in
equation (14), we have

Ap, _f(zl*7Ap 1*) and
p

2 . 7 2 .p—1,
xk+1 f( k+1’u£+1) f(xk+1’“§ ")
Therefore,
||f£+1 —93“? H

2 .p—1, 2ap—1% Ap—1,
:”f(xk;-l,-l?ui *) f(xi *7u£ *)H

Since z(ty,), x(tiy1) € B (ay ' (do)), 2053, 277" € Xy

holds for any p < N. With @}~ 1 * € U, by inequality (10)

in Assumption 3.4 and inequality (22), we have

~p—1 _ .p, “p—2  ap—1, _
1750 — &I < Llagy — a7l < el
which completes the proof. [ ]

B. Proof of Lemma 3.3

Proof: Given the assumptions in Lemma 3.2, equa-
tion (16) holds, which, together with inequality (17), implies

lEpt —an "l < ewL N1 < ds. (23)
So there exists & € B(dz) such that
Nt =ayt v 24)
and
AN F(AN—-1 ~N—1
Frr = f (@ Gegy)
; 13 (AN-1
=f (mk+1 h(2 Trt1 ))
=f(ar+an (s +3)). @9
Because {71, 4"} is admissible at the kth computation
cycle, xg € X7 holds and therefore
i € Xr+B(ds).

So by equation (5) in Assumption 3.2,

ﬁllcv-i-ll = h(fﬁiv-i-ll) ceu
holds. Meantime, by (4), iy, € &7 holds. So {#} ,}I,
with {a ;3N " is admissible to the FHOCP at the k -+ 1th
computation cycle.

Let J[Qyt1|x(trr1)] be the cost of the FHOCP generated
N Ny NZ1 L ..
by 11 = {u;f-%l}z‘:o with the initial condition x(tg41).

V(x(ty))

SO 1]z (ter1)] —
N—-1

= Z K (& 1) + Vi (E041) = Vie(t)
i=0
N—2

= K (xkﬂv uk+1) K (xlivﬂlv 7:LI¢N+11) +Vy (i"icvﬂ)
i=0

= V(a(te) + Vi (#20") = Vi (325
(30 a0) (2 )
+ Rz, U, Ty, Uy
Re-arranging the terms at the right-hand side, we have

V(x(tr))

J[0gq 1] (th1)] —

=k (Fpnt e ) + Ve — Vi@t
M
I GAR TR (26)
where
N-2
d = Z K (£2+1,ﬂ2+1) + Vy (i:kN_i__ll) + K (:172*,122 *)
i=0

- V(I(tk))



Notice that
~N 1 ~N—1
Tpy1 = f ($k+1 7h(xk+1 ))
So, given

ANl

Ty € X7+ B(dz)

and inequality (6) in Assumption 3.2, we have ¥ < 0.
Therefore, equation (26) implies

Tl |2 (tis)] — V(z(ts) < ® -k (xg A ) . Q@7

Consider ®. Notice that the first term in ® can be
written as

N-2 N-1

Z K (ﬁc+1vﬂ§€+1 Z K

=0 i=1

A’L— Al—l
(@)1 ) -
According to equation (2),

N-1

N,* PPN R
B )—i—Zﬂ(xk Uy, )

=0

Vi (ty)) = Vi (&

Therefore, using this equation to replace V(z(t;)) in @
yields

N—1
Al— ~N—1
= K (xk+1’“k+1) + Vi (#00)
z:l
- Z K (xkuk) Vv (ka) @8
i=1
By equation (14), 12211 = a;* fori =1,2,--- ,N — 1.
So
N—1
~t—1 ~i— PN A
¢ < Z ‘ ($k+17uk+1) “(xk » U )‘
i=1

v ) - v (6|

Az*

~ N, %

~i—1 s

Tpy1 —

+ Ly,

AN—1
’szrl - Ty

where the last inequality comes from equation (11) and (12)
in Assumptlon 3 4 glven z(ty), z(ts1) € B (ay'(do)) and

therefore zkH, XN)f fort=1,2--- /N.
By Lemma 3.2,
By — 8| < el
fori=1,2,---, N. Therefore,
N—-1 .
O <ep | > Lol + Ly, LN | = e

i=1
With the inequality above and inequality (13) in Assump-
tion 3.5, inequality (27) can be further simplified as

Sz (trs)] = V()
S K (1'2* ~0, *) + er

—(1—p)f£($2* 112*) +d.

Therefore,

V(z(trt1)) —
= min J [z (te1)] = Vi (ty))
~1-p)k (xgug) +d
—(1=p) ax (lz(t)[) + d,

V(x(ty))

where the last inequality comes from Assumption 3.3 and

the fact #7"
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