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a b s t r a c t

The objective of the paper is to study accuracy of multi-class classification in high-
dimensional setting, where the number of classes is also large (‘‘large L, large p, small n’’
model). While this problem arises in many practical applications and many techniques
have been recently developed for its solution, to the best of our knowledge nobody
provided a rigorous theoretical analysis of this important setup. The purpose of the
present paper is to fill in this gap.

We consider one of the most common settings, classification of high-dimensional
normal vectors where, unlike standard assumptions, the number of classes could be
large. We derive non-asymptotic conditions on effects of significant features, and the
low and the upper bounds for distances between classes required for successful feature
selection and classification with a given accuracy. Furthermore, we study an asymptotic
setup where the number of classes is diverging with the dimension of feature space
and while the number of samples per class is possibly limited. We point out on an
interesting and, at first glance, somewhat counter-intuitive phenomenon that a large
number of classes may be a ‘‘blessing’’ rather than a ‘‘curse’’ since, in certain settings,
the precision of classification can improve as the number of classes grows. This is due
to more accurate feature selection since even weaker significant features, which are not
sufficiently strong to be manifested in a coarse classification, being shared across the
classes, have a stronger impact as the number of classes increases. We supplement our
theoretical investigation by a simulation study and a real data example where we again
observe the above phenomenon.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Classification has been studied in many contexts. In the modern era one is usually interested in classifying objects that
are described by a large number of features and belong to many different groups. For example the large hand-labeled
ImageNet data set http://www.image-net.org/ contains 10,000,000 labeled images depicting more than 10,000 object
categories where each image, on the average, is represented by 482 × 415 ≈ 200,000 pixels (see [22] for description
and discussion of this data set). The challenge of handling large dimensional data got the name of ‘‘large p small n’’
type of problems which means that dimensionality of parameter space p by far exceeds the sample size n. It is well
known that solving problems of this type requires rigorous model selection. In fact, the results of Bickel and Levina [2],
Fan and Fan [11], Shao et al. [23] demonstrate that even for the standard case of two classes, classification of high-
dimensional normal vectors without feature selection is as bad as just pure random guessing. However, while analysis of
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high-dimensional data has become ubiquitous, to the best of our knowledge, there are no theoretical studies that examine
the effect of large number of classes on classification accuracy. The objective of the present paper is to fill in this gap.

At first glance, the problem of successful classification when the number of classes is large seems close to impossible.
On the other hand, humans have no difficulty in distinguishing between thousands of objects, and the accuracy of state-of-
the-art computer vision techniques is approaching human accuracy. In fact, in some settings, the accuracy of classification
improves when the number of classes grows. How is this possible? One of the reasons why multi-class classification
succeeds is that selection of appropriate features from a large sparse p-dimensional vector becomes easier when the
number of classes is growing since even weaker significant features that are not sufficiently strong to be manifested in
a coarse classification with a small number of classes may nevertheless have a strong impact as the number of classes
grows. Simulation studies in [7] and [21] support such a claim. Arias-Castro, Candès and Plan [1] reported on a similar
occurrence for testing in the sparse ANOVA model. Our paper establishes a firm theoretical foundation under the above
phenomenon and confirms it via simulation studies and a real data example.

Although there exists an enormous amount of literature on classification, most of the existing theoretical results
have been obtained for the binary classification (L = 2) (see [4] and references therein for a comprehensive survey).
In particular, binary classification of high-dimensional sparse Gaussian vectors was considered in [2,8,9,11,17] and [23]
among others.

In the meantime, a significant amount of effort has been spent on designing methods for the multi-class classification
in statistical and machine learning literature. We can mention here techniques designed to adjust pairwise classification
to multi-class setting [10,14,18], adjustment of the support vector machine technique to the case of several classes [5,19]
as well as a variety of approaches to expand the linear regression and the neural networks techniques to accommodate
the multi-category setup (see, e.g., [13]). Pan, Wang and Li [20] and Tewari and Bartlett [24] generalized theoretical results
for binary classification to the case of multi-class classification and established consistency of the proposed classification
procedures. However, all above-mentioned investigations considered only the ‘‘small L, large p, small n’’ setup, where the
number of classes was assumed to be fixed.

This paper is probably the first attempt to rigorously investigate ‘‘large L, large p, small n’’ classification and the impact
of the number of classes on the accuracy of feature selection and classification. In particular, we explore the somewhat
counter-intuitive phenomenon, where the large number of classes may become a ‘‘blessing’’ rather than a ‘‘curse’’ for
successful classification as more significant features may be revealed. For this purpose, we consider a well-known problem
of multi-class classification of high-dimensional normal vectors. We assume that only a subset of truly significant features
really contribute to separation between classes (sparsity). For this reason, we carry out feature selection and, following a
standard scheme, assign the new observed vector to the closest class w.r.t. the scaled Mahalanobis distance in the space
of the selected significant features. Our paper considers a realistic scenario where the number of classes as well as the
number of features is large while the number of observations per class is possibly limited (‘‘large L, large p, small n’’
model). We do not fix the total number of observations since in the real world the experience of each new class comes
with its own, usually finite, set of observations.

We start with a non-asymptotic setting and derive the conditions on effects of significant features, and the low and
upper bounds for the distances between classes required for successful feature selection and classification with a given
accuracy. All the results are obtained with the explicit constants and remain valid for any combination of parameters. Our
finite sample study is followed by an asymptotic analysis for a large number of features p, where, unlike previous works,
the number of classes L may grow with p while the number of samples per class may grow or stay fixed. Our findings
indicate that having larger number of classes aids the feature selection and, hence, can improve classification accuracy. On
the other hand, larger number of classes require having larger number of significant features p1 for their separation which
automatically leads to a ‘‘large p’’ setting. Nevertheless, due to increasing point isolation in high-dimensional spaces (see,
e.g., [12], Section 1.2.1), those separation conditions become attainable when p is large.

We ought to point out that our paper does not propose a novel methodology for feature selection or classification.
Rather than that, it studies one of the most popular Gaussian setting and adapts to the case of a large number of classes a
standard general scheme, where feature selection is implemented by a thresholding technique with the properly chosen
threshold and classification is carried out on the basis of the minimal Mahalanobis distance (we consider both the known
and the unknown covariance matrix scenarios). This is a common widely used general scheme for classification and feature
selection in such setting (see, e.g., [11,20] and [23] for similar approaches that differ mostly by selections of thresholds
and distances). Nevertheless, the setup is simple enough for derivations of conditions required for successful classification
with a specified precision when the number of classes is large. Therefore, in our simulation study we do not compare these
simple and well known techniques with the state of the art classification methodologies but instead investigate how these
popular procedures perform when p is large and both the number of classes L and the number of significant features p1
are growing. In particular, simulations support our finding that classification precision can improve when L is increasing.
The real data example confirms that the phenomenon above is not due to an artificial construction and is possible in a
real life setting.

The rest of the paper is organized as follows. In Section 2 we present the feature selection and multi-class classification
procedures and derive the non-asymptotic bounds for their accuracy. An asymptotic analysis is considered in Section 3.
Section 4 discusses adaptation of the procedure in the case of the unknown covariance matrix. In Section 5 we illustrate the
performance of the proposed approach on simulated and real-data examples. Some concluding remarks are summarized
in Section 6. All the proofs are given in Appendix.
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2. Feature selection and classification procedure

2.1. Notation and preliminaries

Consider the problem of multi-class classification of p-dimensional normal vectors with L classes:

Yli = ml + ϵϵϵ li (1)

for l ∈ {1, . . . , L}, i ∈ {1, . . . , nl}, where ml ∈ R
p is the vector of mean effects of p features in the lth class and

ϵϵϵ li ∼ N (0p,Σ) with the common non-singular covariance matrix Σ ∈ R
p×p. To clarify the proposed approach we assume

meanwhile that Σ is known and discuss the situation with the unknown Σ in Section 4.

In what follows, we study a realistic scenario where the number of classes as well as the number of features is large

while the number of observations per class is possibly limited (‘‘large L, large p, small n’’ model). We do not fix the total

number of observations since in the real world the experience of each new class comes with its own, usually finite, set

of observations.

After averaging over repeated observations within each class, model (1) yields

Ȳl = ml + ϵϵϵ∗
l , (2)

where ϵϵϵ∗
l ∼ N (0p, n

−1
l Σ) and l ∈ {1, . . . , L}.

The objective is to assign a new observed feature vector Y0 ∈ R
p to one of the L classes. Denote

N =
L∑

l=1

nl, ρl = nl/(nl + 1), L1 = L − 1, (3)

where evidently 1/2 ≤ ρl < 1.

Since Var(Y0 − Ȳl) = ρ−1
l Σ, we assign Y0 to the class l with the nearest centroid Ȳl w.r.t. to the scaled Mahalanobis

distance:

l̂ = arg min
1≤l≤L

{
ρl (Y0 − Ȳl)

⊤
Σ

−1(Y0 − Ȳl)
}
. (4)

It is well-known (see, e.g., [2,11] and [23]) that the performance of classification procedures is worsening as the number

of features grows (curse of dimensionality). Hence, dimensionality reduction by feature selection prior to classification is

crucial for large values of p.

Re-write (2) in terms of the one-way multivariate analysis of variance (MANOVA) model as follows:

Ȳl = δδδ + βββ l + ϵϵϵ∗
l (5)

for l ∈ {1, . . . , L}, where ml = δδδ + βl, δδδ is the vector of mean main effects of features and βlj, j ∈ {1, . . . , p} is the mean

interaction effect of jth feature with lth class, with the standard identifiability conditions
∑L

l=1 βlj = 0 for each j.

The impact of jth feature on classification depends on its variability between the different classes characterized by

the interactions βlj, l ∈ {1, . . . , L} in the model (5). The larger are the interactions, the stronger is the impact of the

feature. A natural global measure of feature’s contribution to classification is then b2j =
∑L

l=1 β
2
lj . Note that a feature

may still have a strong main effect δj but its contribution to classification nevertheless remains weak if it does not vary
significantly between classes, that is, if b2j is small. The main goal of feature selection is to identify a sparse subset of

significant features for further use in classification.

2.2. Oracle classification

First, we consider an ideal situation where there is an oracle that provides the list of truly significant features with

b2j > 0. In this case, we would obviously use only those features for classification, thus, reducing the dimensionality of

the problem. Define indicator variables xj = I{b2j > 0}, and let p1 =
∑p

j=1 xj and p0 = p−p1 be, respectively, the numbers

of significant and non-significant features. Without loss of generality, we can always order features in such a way that

those p1 significant features are the first ones. The classification procedure (4) then becomes

l̂ = argmin
1≤l≤L

{
ρl (Y

∗
0 − Ȳ∗

l )
⊤(Σ∗)−1(Y∗

0 − Ȳ∗
l )
}
, (6)

where Y∗
0,Y

∗
l ∈ R

p1 are the truncated versions of Y0 and Ȳl respectively: Y
∗
0j = Y0j and Y ∗

lj = Ȳlj, j ∈ {1, . . . , p1}, and
Σ

∗ ∈ R
p1×p1 is the corresponding upper left sub-matrix of Σ.

Theorem 1 provides an upper bound for misclassification error of the oracle classification procedure (6):
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Theorem 1. Consider the model (1) and the equivalent model (5). Let m∗
k ∈ R

p1 , k ∈ {1, . . . , L} be the truncated versions of
class centers mk and assume that for all pairs of classes

(m∗
k − m∗

k′ )
⊤(Σ∗)−1(m∗

k − m∗
k′ ) ≥ 8 ln(L1/α)

min(ρk, ρk′ )

{
1 + 1√

2min(nk, nk′ )

(
1 +

√
2p1/ln(L1/α)

)}
, (7)

for some 0 < α ≤ 1.

Let a new observation Y0 from the class l be assigned to the l̂th class according to classification rule (6). Then, the
misclassification error is

Pr(l̂ ̸= l) ≤ α.

Condition (7) verifies that classes should be sufficiently separated from each other (in terms of Mahalanobis distance)
to achieve the required classification accuracy. In fact, the requirements in (7) are also essentially necessary. Theorem 2,
which is a direct consequence of Fano’s lemma for the lower bound of misclassification error (see, e.g., [15], Section
7.1), implies that the first term O (ln(L1/α)) on the RHS of (7) is unavoidable for successful classification and cannot be
significantly improved (in the minimax sense) even in the idealized case, where the class centers m∗

k are known:

Theorem 2. Consider the model (1). Let a new observation YYY 0 be from one of L classes. If

∆̃2 = min
l̸=k

(mmm∗
l −mmm∗

k)
⊤(Σ∗)−1(mmm∗

l −mmm∗
k) ≤ 2ℵ ln L1,

for some ℵ > 0, then

inf
ψ

max
1≤l≤L

Prl(ψ(YYY 0) ̸= l) ≥ 1 − ℵ − ln 2

ln L1
,

where Prl is the probability evaluated under the assumption that YYY 0 belongs to the lth class, and the infimum is taken over all
classification rules ψ(YYY 0) : YYY 0 → {1, . . . , L}.

The second term on the RHS of (7) appears due to replacing the unknown p1-dimensional class centers m∗
k ’s by the

corresponding within-class sample means Ȳ∗
k ’s in (6). Indeed, straightforward extension of the results of Theorem 1 of [11]

for a general L ≥ 2 yields that, unless for all pairs (k, k′), (m∗
k − m∗

k′ )
⊤(Σ∗)−1(m∗

k − m∗
k′ ) ≥ C

√
p1 ln L1/min(nk, nk′ ) for

some C > 0, the curse of dimensionality affects the accumulated error in estimating high-dimensional m∗
k ’s and yields

classification performance nearly the same as random guessing.

2.3. Feature selection procedure

Consider now classification setup in the MANOVA model (5) with a more realistic scenario, where a set of significant
features is unknown and should be identified from the data.

To simplify the calculus and to avoid complications with post-selection inference, we split the data at random into

two sets Y
(1)
lj ’s and Y

(2)
lj ’s in some fixed proportion π ∈ (0, 1) (in the simplest case, the sizes of both sets are equal with

π = 1/2). Subsequently, use Y
(1)
lj ’s for feature selection and Y

(2)
lj ’s for classification based on the selected features. More

specifically, for lth class, split its nl observations Ylj’s into two sub-samples of sizes n
(1)
l and n

(2)
l at the same proportion

π , i.e., n
(1)
l = ⌊πnl⌋, where ⌊·⌋ is the integer part, and n

(2)
l = nl − n

(1)
l , l ∈ {1, . . . , L}. Denote the total sample sizes of the

resulting two sets by N1 =
∑L

l=1 n
(1)
l and N2 =

∑L

l=1 n
(2)
l , so that N1 + N2 = N .

Following our previous arguments, a jth feature is not significant (irrelevant) for classification if it has zero interaction
effects with all classes, that is, if βlj = 0, j ∈ {1, . . . , L} or, equivalently, b2j = 0. Then, for each j = 1, . . . , p we need to

test the null hypothesis H0j : b2j = 0. An obvious test statistic is then

ζj = σ−2
j

L∑

l=1

n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2, (8)

where σ 2
j = Σjj and Ȳ

(1)
·j = (n

(1)
l )−1

∑L

l=1 Y
(1)
lj . Under the null, ζj ∼ χ2

L1
, while under the alternative ζj ∼ χ2

L1;µj
, where

χ2
L1;µj

is the non-central chi-square distribution with the non-centrality parameter µj = σ−2
j

∑L

l=1 n
(1)
l β

2
lj . Note that unless

Σ is diagonal, ζj’s are correlated.
For a given 0 < α ≤ 1, define a threshold

λ = L1 + 2
√
L1 ln(2p/α) + 2 ln(2p/α) (9)

and select the jth feature as significant (reject H0j) if

ζj = σ−2
j

L∑

l=1

n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2 > λ. (10)
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The following theorem shows that under certain conditions on the minimal required effect for significant features, the
proposed feature selection procedure correctly identifies the true (unknown) subset of significant features with probability
at least 1 − α:

Theorem 3. Consider the feature selection procedure (10) with the threshold (9) for some 0 < α ≤ 1. Define indicator

variables x̂j = I{σ−2
j

∑L

l=1 n
(1)
l (Ȳlj − Ȳ

(1)
·j )2 > λ} for j ∈ {1, . . . , p}. Let

µ∗ = min
1≤j≤p1

σ−2
j

L∑

l=1

n
(1)
l β

2
lj (11)

and assume that for all p1 truly significant features one has

µ∗ ≥ 4
(
3 ln(2p/α) +

√
L1 ln(2p/α)

)
. (12)

Then,

Pr(x̂ = x) ≥ 1 − α.

The condition (12) on the total minimal effect for significant features can be re-formulated in terms of their average

effect per class:

1

σ 2
j L

L∑

l=1

n
(1)
l β

2
lj ≥ 4

(
3 ln(2p/α)

L
+
√

ln(2p/α)

L

)
(13)

for j ∈ {1, . . . , p1}.
Thus, as the number of classes in model (1) increases, even significant features with weaker effects within each class

become manifested and contribute to classification. Effect of a certain feature that remains latent and unnoticed in coarse
classification with a small number of classes may be expressed in a finer classification.

2.4. Classification rule and misclassification error

Consider now the classification rule (6) applied on the second set of the data with Ȳ
(2)∗
l , where the unknown true xj are

replaced by x̂j following the proposed feature selection procedure. Let p̂1 =
∑p

j=1 x̂j be the number of features declared

significant and p̂0 = p − p̂1. Again, order the features in such a way that those p̂1 features selected as significant are the
first ones. Thus, the resulting classification rule can then be presented as follows:

l̂ = argmin
1≤l≤L

{
ρl (Y

∗
0 − Ȳ

(2)∗
l )⊤(Σ∗)−1(Y∗

0 − Ȳ
(2)∗
l )

}
, (14)

where the truncated vectors Y∗
0, Ȳ

(2)∗
l ∈ R

p̂1 , l ∈ {1, . . . , L} are defined now as Y ∗
0j = Y0j, Y

(2)∗
lj = Ȳ

(2)
lj , j ∈ {1, . . . , p̂1},

and Σ
∗ ∈ R

p̂1×p̂1 is the corresponding upper left sub-matrix of Σ, and ρl = n
(2)
l /(n

(2)
l + 1).

We have

Pr(l̂ ̸= l) ≤ Pr(l̂ ̸= l | x̂ = x) + Pr(x̂ ̸= x), (15)

where, due to the fact that different data was used for feature selection and classification, by Theorems 1 and 3, each
probability on the RHS of (15) is at most α. Thus, the following result holds:

Theorem 4. Consider the model (1) and the corresponding model (5). Assume the conditions (7) (with nl replaced by n
(2)
l )

and (12) hold for some 0 < α ≤ 1/2. Apply feature selection procedure (10) and use the selected features for classification via

the rule (14). Then,

Pr(correct classification) ≥ 1 − 2α.

3. Asymptotic analysis

Conditions (7) and (12) (or (13)) of Theorems 1 and 2, respectively, provide the non-asymptotic lower bounds on the
minimal distance between different classes and the minimal effect of significant features required for the perfect feature
selection and classification error bounded above by 2α. In order to gain better understanding of these conditions, we
consider an asymptotic setup.

Standard asymptotics considered in classification literature assume that the number of features p and the sample sizes
nl increase whereas the number of classes L is fixed (see, e.g., [11,23] for L = 2 and [20] for a general but fixed L). On the
contrary, our study is motivated by the case where the number of classes may also be large (‘‘large L, large p, small n’’).
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Recall that N =
∑L

l=1 nl is the total sample size and let the number of features p → ∞. Following [20], assume that all
eigenvalues of the p1 × p1 covariance matrix of significant features Σ

∗ are finite and bounded away from zero, i.e., there
exist absolute constants τ1 and τ2 such that

0 < τ1 ≤ λmin(Σ
∗) ≤ λmax(Σ

∗) ≤ τ2 < ∞.

The samples sizes nl within classes also grow with p. For simplicity of exposition, we assume that they are of the same

asymptotic order and split more or less equally between the two sets (π ∼ 1/2), that is, n
(1)
l ∼ n

(2)
l ∼ n for all

l ∈ {1, . . . , L}, where n = N/(2L) and a ∼ b means a = b(1 + o(1)). In such asymptotic setup, ρl ∼ 1 − 1/n, while√
1 − ρlρk ∼

√
2/n. Though the results in the previous section allow one to study various other settings with unequal

class sizes, the asymptotic analysis of a vast variety of such possible scenarios is beyond the scope of this paper.
Consider now the condition (7) of Theorems 1 and 4 on the minimal separation Mahalanobis distance between any

two class centers as p tends to infinity, while n, the number of significant features p1 and the number of classes L may
increase with p, and α may depend on n, p and L. Thus, (7) yields:

min
k̸=k′

(mmm∗
k −mmm∗

k′ )
⊤(Σ∗)−1(mmm∗

k −mmm∗
k′ ) ≥ ∆2

∗ ∼ 8 ln(L1/α)

{
1 + 1√

2n

(
1 +

√
2p1/ln(L1/α)

)}
. (16)

Define

η1 = lim
p→∞

√
p1

n ln(L1/α)

Depending on η1, the condition (16) implies two possible asymptotic regimes for ∆2
∗:

∆2
∗ ∼

⎧
⎪⎪⎨
⎪⎪⎩

8 ln

(
L1

α

)
(1 + η1), 0 ≤ η1 < ∞, sparse regime — small number of significant features,

8

√
p1 ln(L1/α)

n
, η1 = ∞, dense regime — large number of significant features.

For sparse regime (η1 < ∞), the required minimal between-class distance ∆2
∗ grows slowly as ln L and from Theorem 2

it immediately follows that this is the lowest possible rate for successful classification:

Proposition 1. Let L → ∞ and p1 → ∞ as p → ∞. Let a new observation YYY 0 be from one of L classes. If

∆2
∗ ∼ 2 δp1 ln L1,

where δp1 → 0 arbitrarily slow as p → ∞, then

lim
p→∞

inf
ψ

max
1≤l≤L

Prl(ψ(YYY 0) ̸= l) = 1,

where Prl is the probability evaluated under the assumption that YYY 0 belongs to the lth class, and the infimum is taken over all
classification rules ψ(YYY 0) : YYY 0 → {1, . . . , L}.

For dense regime, the number of significant features p1 is large enough for the accumulated error of estimating

p1-dimensional m∗
k ’s by Ȳ

(1)∗
k ’s to become dominant (see Section 2.2) and the classes should be, therefore, much stronger

separated to deal with the curse of dimensionality.
It is natural that for successful classification the between-class distances should grow with L. Note, however, that unless

the number of classes increases exponentially with p1, the growth rate of ∆2
∗ is o(p1) and the corresponding average

per-feature distances 1
p1
(mmm∗

k −mmm∗
k′ )

⊤(Σ∗)−1(mmm∗
k −mmm∗

k′ ) still tend to zero.

Similarly, from the condition (12) in Theorems 3 and 4 on the minimal effect for significant features required for the
perfect feature selection, we have asymptotically

b2∗ = min
1≤j≤p1

σ−2
j b2j ∼ 4

n

(
3 ln(2p/α) +

√
L1 ln(2p/α)

)
.

Let

η2 = lim
p→∞

√
ln(2p/α)

L1
.

Then,

b2∗ ∼
{
4n−1

√
L1 ln(2p/α)(1 + 3η2), 0 ≤ η2 < ∞, large number of classes,

12n−1 ln(2p/α), η2 = ∞, small number of classes.
(17)

and the threshold λ in (9) for feature selection can be presented as

λ ∼
{
L1(1 + 2η2 + 2η22), 0 ≤ η2 < ∞,

2 ln(2p/α), η2 = ∞.
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To gain some insight on the minimal required effect for a significant feature to contribute to classification as the
number of classes increases, assume for simplicity that each significant feature has equal effects on each class, that is,
βlj in (5) vary only in signs: β2

lj = β2
j , l ∈ {1, . . . , L}. Since 0 ≤ η2 < ∞ implies that L is large, so that L1 = L − 1 ∼ L,

condition (17) yields as p → ∞:

β2
j ∼

{
4σ 2

j n−1 η2(1 + 3η2), 0 ≤ η2 < ∞, large number of classes,

12σ 2
j n−1 L−1 ln(2p/α), η2 = ∞, small number of classes.

(18)

Since η2 is decreasing with L for a given value of α, the required minimal level for β2
j on the RHS of (18) decreases as

L grows and, therefore, more significant features become manifested in classification for larger number of classes. Thus,
while it might be hard to perform coarse classification with a set of weak features, their impacts grow as one considers
finer and finer separation between objects (see also the corresponding remarks at the end of Section 2.3).

Although in this section our goal was to explore the case when L → ∞, calculations above remain valid for a fixed value
of L (commonly, L = 2). In particular, if L is fixed and n = o(p), conditions (16) and (18) are of the form ∆2

∗ ∼ C1

√
p1/n

and β2
j ∼ C2n

−1 ln(p/α), C1, C2 > 0 and are similar to those of Theorem 1 and Theorem 3 in [11]. See also the results

of [8,9] and [17] for closely related setups.

4. Unknown covariance matrix

So far the covariance matrix Σ was assumed to be known. In practice, however, it should usually be estimated from
the data. The standard MLE estimator based on the first sub-sample

Σ̂
(1) = 1

N1

L∑

l=1

n
(1)
l∑

i=1

(
Y
(1)
il − Ȳ

(1)
l

)(
Y
(1)
il − Ȳ

(1)
l

)⊤
(19)

and the similar unbiased pooled estimator commonly used in MANOVA behave poorly for high-dimensional data.
However, under the sparsity assumption, the proposed classification procedure requires only to estimate the variances

σ 2
j in feature selection procedure (8) and the inverse of the upper left sub-matrix Σ

∗ ∈ R
p̂1×p̂1 of Σ in classification rule

(14). Thus, when p1 ≪ p, a low-dimensional matrix (Σ̂∗)−1 may still be a good estimator of the true sub-matrix (Σ∗)−1

and (under some additional mild conditions) may be used instead of the latter in (14).

Assume that p ≤ α
2
e(N1−L)/4. Replace σ 2

j in (8) by σ̂ 2
j = Σ̂

(1)
jj and consider the feature selection procedure (10) with a

somewhat larger threshold

λ1 = λ

1 − κ
, (20)

where λ is the threshold (9) used for the case of known variances and

κ = κ(p,N1, L, α) = 2

√
ln(2p/α)

N1 − L
+ 2

ln(2p/α)

N1 − L
< 1 (21)

The following theorem shows that under slightly stronger conditions on the minimal required effect for significant
features, the above feature selection procedure with estimated σ 2

j still controls the probability of correct identification of
the true subset of significant features.

Theorem 5. Let 0 < α ≤ 1/2 and assume that p ≤ α
2
e(N1−L)/4. Define indicator variables

x̂j = I{σ̂−2
j

L∑

l=1

n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2 > λ1} (22)

for j ∈ {1, . . . , p} with λ1 given in (20). Assume that µ∗ in (11) satisfies

µ∗ + L1 − 2
√
(L1 + 2µ∗) ln(2p/α) > λ1(1 + κ). (23)

Then,

Pr(x̂ = x) ≥ 1 − 2α.

Consider now the classification procedure (14). In what follows we assume that Σ
∗ is non-singular. Consider an

estimator Σ̂∗ of Σ∗ of the form

Σ̂∗ = 1

N2

L∑

l=1

n
(2)
l∑

i=1

(Y
(2)∗
il − Ȳ

(2)∗
l )(Y

(2)∗
il − Ȳ

(2)∗
l )⊤,

where Y
(2)∗
il are the corresponding p̂1-dimensional truncated versions of Y

(2)
il .
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Assign Y0 the l̂th class by replacing the true (unknown) (Σ∗)−1 in (14) by (Σ̂∗)−1:

l̂ = argmin
1≤l≤L

{
ρl (Y

∗
0 − Ȳ

(2)∗
l )⊤(Σ̂∗)−1(Y∗

0 − Ȳ
(2)∗
l )

}
. (24)

Then the following version of Theorem 4 holds:

Theorem 6. Consider the model (1) and the corresponding model (5), where p ≤ α
2
e(N1−L)/4,

max

{
L, 2 ln

(
2

α

)}
< p1 <

1

4C1

(
λmin(Σ

∗)

λmax(Σ∗)

)4

N2 (25)

for some 0 < α < 1/4 and C1 is an absolute constant specified in the proof. Denote

γp1,N2
= 2

λ2max(Σ
∗)

λ2min(Σ
∗)

√
C1p1

N2

(26)

and note that γp1,N2
< 1 due to (25). Assume the condition (23) and a somewhat stronger version of the condition (7), namely,

(m∗
k − m∗

k′ )
⊤(Σ∗)−1(m∗

k − m∗
k′ ) ≥ 8 ln(L1/α)

(1 − γp1,N2
)min(ρk, ρk′ )

×

⎧
⎪⎨
⎪⎩
1 +

√
1

2min
(
n
(2)
k , n

(2)

k′

) + γ 2
p1,N2

·
(
1 +

√
2p1

ln(L1/α)

)⎫⎪⎬
⎪⎭

(27)

Apply feature selection procedure (22) and use the selected features for classification via the rule (24). Then,

Pr(correct classification) ≥ 1 − 4α.

Theorem 6 shows that for a sparse setup the proposed classification procedure can still be used when the covariance
matrix is unknown and estimated from the data.

5. Examples

In this section we demonstrate the performance of the proposed feature selection and classification procedure on
simulated and real-data examples. Its main goal is to illustrate the phenomenon of improving the accuracy as the number
of classes grows as discussed in the previous sections.

We found that in practice there is no real need to split the original data and used the entire data set for both feature
selection and classification.

5.1. Simulation study

Simulated examples follow the settings presented in [20].
We generated the class means as i.i.d. normal vectors mmml ∼ N (0, σ 2

mX), l ∈ {1, . . . , L}, where X ∈ R
p×p is a diagonal

matrix with xi = 1 for p1 indices and xi = 0 for others. Since the vectors generated in this manner do not necessarily
satisfy our assumptions, in order to reduce an impact of a particular choice of vectorsmmml, we generated M1 replications of
the class means. Furthermore, following the model (2), for each replication of class meansmmml, l ∈ {1, . . . , L} we generated
M2 sets of training samples Ȳlji = mlj + ϵ∗

lji, j ∈ {1, . . . , p}, i ∈ {1, . . . , n}, where ϵ∗
lji are i.i.d. N (0, n−1

Σ). Finally, for each

of M1 · M2 sets of training samples, we drew a test set of M3 new vectors from randomly chosen classes as i.i.d. normal
vectors N (mmml,Σ).

We used the same three choices for covariance matrix Σ as in [20]. In Example 1 features were independent,
i.e., Σ = σ 2Ip. In Example 2 we used the autoregressive covariance structure with Σh1,h2 = σ 2 0.5|h1−h2|, while in Example

3 we set Σh1,h2 = σ 2 (0.5+ 0.5 I{h1 = h2}), h1, h2 ∈ {1, . . . , p} implying equal variances σ 2 and all covariances equal to

σ 2/2 (compound symmetric structure). We carried out simulations with both the true covariance matrix Σ and its MLE
Σ̂ given by (19). Since the performances of feature selection and classification procedures in both cases were similar, in
what follows we present only the results obtained with Σ̂.

For each training sample we first carried out the feature selection procedure described above with the threshold
λ1 defined in (20) and α = 0.05. Subsequently, we used the selected features for classifying M3 vectors from the
corresponding test set according to the rule (24). In the case when it delivered a non-unique solution, we chose one
of the suggested solutions at random.

In all simulations we used M1 = M2 = M3 = 50, p = 500, σ = 1 and n = 20. Note that classification
precision depends on the variance ratio τ 2 = σ 2

m/(σ
2/n) that may be viewed as a signal-to-noise ratio. For this reason,
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Table 1

Average proportions of false negative features for p = 500 and various values of L, p1 and τ over

M1 · M2 = 2500 training samples.

p1 τ Example 1 Example 2

L = 2 L = 10 L = 20 L = 50 L = 2 L = 10 L = 20 L = 50

10 1 1.000 .996 .975 .785 1.000 1.000 .978 .788

2 .936 .297 .033 .000 .991 .592 .186 .000

3 .880 .158 .006 .000 .898 .147 .003 .000

50 1 1.000 .995 .976 .785 1.000 .995 .977 .783

2 .975 .604 .187 .001 .979 .609 .172 .001

3 .896 .158 .005 .000 .901 .146 .004 .000

100 1 1.000 .996 .975 .784 1.000 .996 .976 .782

2 .976 .601 .177 .001 .981 .611 .169 .000

3 .895 .149 .005 .000 .898 .142 .004 .000

200 1 1.000 .995 .976 .783 1.000 .995 .977 .783

2 .975 .605 .172 .000 .980 .617 .175 .000

3 .892 .150 .004 .000 .895 .150 .004 .000

we studied performance of feature selection and classification for various combinations of p1, L and τ . In particular, we
used p1 = 10, 50, 100, 200, L = 2, 10, 20, 50 and several values of τ depending on p1.

The results of simulations indicate that for such data generating model (somewhat different from that analyzed in
the paper), the threshold λ1 in (20) (as well as λ in (9) for the known variances) might be too high, especially for
small values of τ . The latter led to an over-conservative feature selection procedure. Thus, in all simulations the feature
selection procedure did not detect false positive features. The information on the proportions of false negative features
(over the total number of significant features) for several combinations of p1, L and τ over M1 · M2 = 2500 training
samples is summarized in Table 1 for Example 1 and Example 2 (the results for Example 3 were similar and we omit
their presentation to save the space). In particular, Table 1 clearly shows that for small values of τ and small L, due to the
over-conservative feature selection procedure, almost not a single significant feature has been detected and the resulting
classification is then essentially reduced to just a pure random guess. However, for any τ the detection rate improves as L
grows. The improvement rate is very fast for τ ≥ 2. Thus, for L = 50 the vast majority of significant features were detected
in spite of high level of noise. As we have mentioned, this improves the classification precision since weaker significant
features that remained latent in coarse classification become active and may have a strong impact with increasing L.

For each combination of p1, L and τ we calculated the corresponding average misclassification errors: see Figs. 1–3 for
Examples 1–3, respectively. Figs. 1–3 show similar behavior for all three examples. For any p1 and L misclassification error
tends to zero as τ increases. The decay is faster for larger p1 – the more significant features, the easier is classification.
The figures demonstrate also another interesting phenomenon: for moderate and large p1, the larger L, the faster is the
decay. As we have argued, this is due to the fact that the impact of weaker significant features becomes stronger with
increasing L. For small τ (strong noise), misclassification errors are higher for larger number of classes L. This is naturally
explained by the failure of feature selection procedure to detect significant features in this case (see comments above), so
that the resulting classification is similar to a random guess with a misclassification error 1−1/L (see Figs. 1–3). However,
as τ increases, even the first few detected significant features strongly improve classification precision.

5.2. Real-data example

We applied feature selection techniques discussed above to a data set of communication signals recorded from South
American knife fishes of the genus Gymnotus. These nocturnally active freshwater fishes generate pulsed electrostatic
fields from electric organ discharges (EODs). The three-dimensional electrostatic EOD fields of Gymnotus can be summa-
rized by two-dimensional head-to-tail waveforms recorded from underwater electrodes placed in front of and behind a
fish. EOD waveforms vary among species and are used by genus Gymnotus in order to recognize its own kind for more
productive mating and other purposes.

The data set consists of 512-dimensional vectors of the Symmlet-4 discrete wavelet transform coefficients of signals
obtained from eight genetically distinct species of Gymnotus (G. arapaima (G1), G. coatesi (G2), G. coropinae (G3), G.
curupira (G4), G. jonasi (G5), G. mamiraua (G6), G. obscurus (G7), G. varzea (G8)) at various stages of their development.
In particular, species were divided into six ontogenetic categories: postlarval (J0), small juvenile (J1), large juvenile (J2),
immature adult (IA), mature male (M) and mature female (F). The EODs were recorded from 42 of 48 possible combinations
of eight species and six categories. There are 677 samples from 42 classes with sizes varying from 3 to 69. The complete
description of the data can be found in [6].

As it is evident from [6], there is no expectation that these groups should all be mutually separable: there are
considerable overlaps between developmental stages of the same species as well as among juveniles of different species.
For this reason, we reduced the number of classes to include only those species/categories that might be potentially
separated. In particular, we ran our feature selection and classification procedure with the data sets comprised of 10 to
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Fig. 1. Average misclassification errors as functions of τ for various combinations of p1 and L for Example 1.

Table 2

The sample sizes of train (Ntrain) and test (Ntest ) sets, the numbers of selected significant

features (p̂1) and misclassification errors with standard errors in brackets averaged over

100 splits for the Gymnotus fish data.

L Ntrain Ntest p̂1 Misclassification error

10 32 10 67.0 .077 (.006)

11 38 13 68.3 .092 (.006)

12 46 16 65.3 .127 (.007)

13 51 18 67.6 .166 (.007)

14 57 20 83.7 .149 (.006)

15 64 23 87.4 .130 (.006)

16 68 24 86.8 .162 (.007)

16 classes listed in the order they appear: G2-M, G4-M, G5-M, G1-F, G2-F, G5-F, G7-F, G8-F, G2-J1, G4-J1, G2-F, G1-J1,

G7-AI, G1-F, G6-M, G7-J1.

We split the respective data sets into training and test parts. For this purpose, in each class we chose at random at

most 1/3 of the total number of observations for validation leaving the rest of the data as training samples. Using those

training samples, we carried out feature selection and subsequent classification of vectors in the test part of the data set.

We repeated the process 100 times for various splits and recorded the average misclassification errors and their standard

errors for each of the cases (L ∈ {10, . . . , 16}). Table 2 presents results of the study: the average sample sizes of train

(Ntrain) and test (Ntest ) sets for each L, the average number of selected significant features (p̂1) and average misclassification

error with the corresponding standard errors.

The table shows that when one starts with 10 well separated classes the misclassification error is initially grows when

L increases from 10 to 13. However, at L = 13 there is a strong jump in the numbers of detected features and the

misclassification errors again start to decrease when L grows from 13 to 15 due to better feature selection. For L > 15

the misclassification error grows again with L due to poor separation of juvenile Gymnotus EOD waveforms shapes.
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Fig. 2. Average misclassification errors as functions of τ for various combinations of p1 and L for Example 2.

6. Concluding remarks

The paper considers multi-class classification of high-dimensional normal vectors, where the number of classes may

diverge. This is a first attempt to rigorously study ‘‘large L, large p, small n’’ classification problem. Our main goal was

not to propose a novel methodology but to explore interesting phenomena arising in such a new setup. In particular, our

results indicate that the precision of classification can improve as the number of classes grows. This is, at first glance,

a somewhat counter-intuitive conclusion and has not been observed so far due to shortage of literature on multi-class

classification. It is explained by the fact that even weaker significant features, that might be undetected for smaller L,

being shared across classes, can strongly contribute to successful classification when the number of classes is large. We

believe that the results of the paper motivate further investigation of ‘‘large L, large p, small n’’ classification in other,

more complicated setups.

The contents of this paper can be extended in a variety of ways. To begin with, an extension to different covariance

matrices across the classes is straightforward. One can also allow different supports of sparsity for different clusters

and/or relax the Gaussian assumption by considering sub-Gaussian or sub-exponential data in a similar way, though

such generalizations will require to re-derive the corresponding conditions for correct classification.
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Appendix

We start from recalling two lemmas of [3] that will be used further in the proofs.
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Fig. 3. Average misclassification errors as functions of τ for various combinations of p1 and L for Example 3.

Lemma 1 (Lemma 8.1 of [3]). Let ζ ∼ χ2
k,µ, µ > 0. Then, for any x > 0

Pr(ζ > µ+ k + 2
√
(k + 2µ)x + 2x) ≤ e−x

and

Pr(ζ < µ+ k − 2
√
(k + 2µ)x) ≤ e−x.

Lemma 2 (Lemma 8.2 of [3]). Let X be a random variable such that

ln
{
E
(
esX
)}

≤ (as)2

1 − bs
for 0 < s < b−1,

where a and b are positive constants. Then

Pr
(
X ≥ 2a

√
x + bx

)
≤ e−x for all x > 0.

Proof of Theorem 1. Note that

Pr(l̂ ̸= l) =
∑

k̸=l

Pr(l̂ = k) ≤ L1 max
k̸=l

Pr(l̂ = k), (28)

For a given k ̸= l define a (2p1)-dimensional random vector Ỹ =
(
Y∗
0 − Y∗

l

Y∗
0 − Y∗

k

)
, where the vectors Y∗

0,Y
∗
l and Y∗

k are defined

just after (6). A straightforward calculus yields

Ỹ ∼ N (θθθ,V) with θθθ =
(

0p1

m∗
l − m∗

k

)
, V = σ 2

(
ρ−1
l Σ

∗
Σ

∗

Σ
∗ ρ−1

k Σ
∗

)
, (29)

where ρl is defined in (3). Then, it follows from (6) that

Pr(l̂ = k) ≤ Pr
(
ρl(Y

∗
0 − Y∗

l )
⊤(Σ∗)−1(Y∗

0 − Y∗
l ) > ρk(Y

∗
0 − Y∗

k)
⊤(Σ∗)−1(Y∗

0 − Y∗
k)
)

= Pr(̃Y⊤ÃY ≥ 0),
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where

A =
(
ρl (Σ

∗)−1 0p1×p1

0p1×p1 −ρk (Σ∗)−1

)
.

Consider a random variable ξ = ỸYY
⊤
AỸYY . Since V−1 is a symmetric positive-definite matrix and A is symmetric, they

can be simultaneously diagonalized, that is, there exists a matrix W, such that W⊤V−1W = I and W⊤AW = Λ, where Λ

is a diagonal matrix of the eigenvalues ϕj, j = 1, . . . , 2p1 of R = VA. Then, from the known results on the distribution
of quadratic forms of normal variables (e.g., [16]), ξ can be represented as a weighted sum of independent (generally)
non-central chi-square variables, namely,

ξ =
2p1∑

j=1

ϕjχ
2

1,η2
j

, (30)

where ηηη is such that θθθ = Wηηη with θθθ given by (29). By a straightforward matrix calculus, obtain

R2 =
(
(1 − ρkρl) Ip1 0p1×p1

0p1×p1 (1 − ρkρl) Ip1

)

and, therefore, all eigenvalues ϕj, j ∈ {1, . . . , 2p1} of a matrix R = VA are of the forms

ϕj = ±ϕ∗, ϕ∗ =
√
1 − ρkρl (31)

for j ∈ {1, . . . , 2p1}.
Consider now the logarithm of the moment generating function of the centered random variable ξ − E(ξ ), where ξ is

defined in (30). We have Eξ =
∑2p1

j=1 ϕj(1 + η2j ) =
∑2p1

j=1 ϕjη
2
j , where recall that Wηηη = θθθ . Hence, using formula (31), for

s < 1/(2ϕ∗), we have

ln Ees(ξ−Eξ ) =
2p1∑

j=1

η2j ϕjs

1 − 2ϕjs
− 1

2

2p1∑

j=1

ln(1 − 2ϕjs) − s

2p1∑

j=1

ϕj(1 + η2j )

=
2p1∑

j=1

(
η2j ϕjs

1 − 2ϕjs
− η2j ϕjs

)
− 1

2

2p1∑

j=1

(
ln(1 − 2ϕjs) + 2ϕjs

)
≤

2p1∑

j=1

2s2η2j ϕ
2
∗

1 − 2ϕjs
+

2p1∑

j=1

s2ϕ2
∗

1 − 2ϕjs

≤ 2s2

1 − 2ϕ∗s
ϕ2

∗∥ηηη∥2 + 2s2ϕ2
∗p1

1 − 4ϕ2
∗s

2
≤ 2s2

1 − 2ϕ∗s
ϕ2

∗∥ηηη∥2 + 2s2ϕ2
∗p1

1 − 2ϕ∗s
.

Denote

∆2 = (m∗
l − m∗

k)
⊤(Σ∗)−1(m∗

l − m∗
k)

Using W⊤V−1W = I, W⊤AW = Λ and Wηηη = θθθ , one can verify that ϕ2
∗∥ηηη∥2 = ηηη⊤

Λ
2ηηη = θθθ⊤AVAθθθ = ρk ∆

2, where θθθ and
V are defined in (29). Thus,

ln Ees(ξ−Eξ ) ≤ a2s2

1 − bs
,

where b = 2ϕ∗ and

a =
√
2ρk∆2 + 2ϕ2

∗p1 ≤
√
2
(√
ρk |∆| + ϕ∗

√
p1
)
.

In addition,

Eξ = ηηη⊤
Ληηη = θθθ⊤Aθθθ = −ρk ∆2.

A straightforward calculus shows that, under the condition (7) of Theorem 1, one has ρk∆
2 ≥ 2a

√
ln(L1/α) + b ln(L1/α).

Then, applying Lemma 2, one obtains

Pr(ξ > 0) ≤ Pr
(
ξ ≥ −ρk ∆2 + 2a

√
ln(L1/α) + b ln(L1/α)

)
≤ α

L1

that, together with (28), completes the proof.

Proof of Theorem 3. Let p̂01 =
∑p

j=1 I{x̂j = 1 | xj = 0} and p̂11 =
∑p

j=1 I{x̂j = 1 | xj = 1} be the numbers of erroneously

and truly identified significant features respectively, where obviously p̂01 and p̂11 are independent, and p̂01 + p̂11 = p̂1.
Note that

Pr(x̂ ̸= x) ≤ Pr(p̂01 > 0) + Pr(p̂11 < p1).
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Recall that for xj = 0, the corresponding ζj ∼ χ2
L1
. Let uj, j ∈ {1, . . . , p0} be any, possibly correlated, χ2

L1
random

variables. Then,

Pr(p̂01 > 0) = Pr

(
max
1≤j≤p0

uj > λ

)
≤ p Pr

(
uj > L1 + 2

√
L1 ln(2p/α) + 2 ln(2p/α)

)
.

Apply Lemma 1 for the particular case µ = 0 to obtain

Pr
(
uj > L1 + 2

√
L1 ln(2p/α) + 2 ln(2p/α)

)
≤ α

2p
,

so that Pr(p̂01 > 0) ≤ α/2. Similarly, let µ∗ = min1≤j≤p1 µj = min1≤j≤p1 σ
−2
j

∑L

l=1 n
(1)
l β

2
lj and consider any, possibly

correlated, non-central chi-squared variables vj ∼ χ2
L1;µ∗ , j ∈ {1, . . . , p1}. We have

Pr(p̂11 < p1) ≤ Pr

(
min

1≤j≤p1

vj ≤ λ

)
≤ p Pr

(
vj < λ

)
.

A straightforward calculus shows that, under the condition (12) on µ∗, one has µ∗ + L1 − 2
√
(L1 + 2µ∗) ln(2p/α) > λ.

Thus, Lemma 1 yields Pr(vj < λ) ≤ α/(2p) and, therefore, Pr(p̂11 < p1) ≤ α/2, which completes the proof.

Proof of Theorem 5. We start with the following lemma:

Lemma 3.

Pr

(
max
1≤j≤p

⏐⏐σ̂ 2
j /σ

2 − 1
⏐⏐ ≤ κ

)
≥ 1 − α,

where κ was defined in (21).

Let A be the event {max1≤j≤p

⏐⏐σ̂ 2
j /σ

2 − 1
⏐⏐ ≤ κ} and IA its indicator. By Lemma 3,

Pr(x̂ ̸= x) ≤ Pr
(
(x̂ ̸= x)IA

)
+ α, (32)

where

Pr
(
(x̂ ̸= x)IA

)
≤ Pr

(
(p̂01 > 0)IA

)
+ Pr

(
(p̂11 < p1)IA

)
. (33)

Let ζ̂j = σ̂−2
j

∑L

l=1 n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2. Then, on the event A

Pr
(
(ζ̂j > λ1)IA | xj = 0

)
= Pr

((
uj > λ1 σ̂

2
j /σ

2
j

)
IA
)

≤ Pr(uj > λ),

where uj ∼ χ2
L1
, j ∈ {1, . . . , p0}. Hence, following the arguments of Theorem 3, by Lemma 1

Pr
(
(p̂01 > 0)IA

)
≤ Pr

(
(max
1≤j≤p

ζ̂j > λ1)IA | xj = 0

)
≤ Pr( max

1≤j≤p0

uj > λ) ≤ α

2
. (34)

Similarly, Pr
(
(ζ̂j < λ1)IA | xj = 1

)
≤ Pr

(
vj < λ1(1 + κ)

)
, where vj ∼ χ2

L1;µ∗ , j ∈ {1, . . . , p1}. Then, under the condi-

tion (12) of the theorem, Lemma 1 yields

Pr
(
(p̂11 < p1)IA

)
≤ Pr

(
min

1≤j≤p1

vj ≤ λ1(1 + κ)

)
≤ α

2
. (35)

Combination of (32)–(35) completes the proof.

Proof of Theorem 6. Assume that Y0 is from the lth class. From (15) we have Pr(l̂ ̸= l) ≤ Pr(l̂ ̸= l | x̂ = x) + Pr(x̂ ̸= x),

where Pr(x̂ ̸= x) ≤ 2α by Theorem 5. Consider a set Ω = {ω : x̂ = x} with Pr(Ω) ≥ 1 − α. In order to bound above

Pr(l̂ ̸= l | x̂ = x) we assume that ω ∈ Ω . We will use the following two lemmas:

Lemma 4. If ∥Σ̂∗ − Σ
∗∥ ≤ λmin(Σ

∗)/2, then ∥(Σ̂∗)−1 − (Σ∗)−1∥ ≤ 2 λ−2
min(Σ

∗) ∥Σ̂∗ − Σ
∗∥.

Lemma 5. Under the condition (25), Pr
(
∥Σ̂∗ − Σ

∗∥ ≤ λmax(Σ
∗)
√

C1p1
N2

)
≥ 1 − 2α.

From Lemmas 4 and 5 it follows that under (25),

Pr
(
∥(Σ̂∗)−1 − (Σ∗)−1∥ ≤ γp1,N2

)
≥ 1 − 2α, (36)
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where γp1,N2
is defined in (26). Furthermore, for any 1 ≤ k ≤ L,

(Y∗
0 − Ȳ∗

k)
⊤ ((Σ̂∗)−1 − (Σ∗)−1

)
(Y∗

0 − Ȳ∗
k)

(Y∗
0 − Ȳ∗

k)
⊤(Σ∗)−1(Y∗

0 − Ȳ∗
k)

≤ ∥Σ∗ ((Σ̂∗)−1 − (Σ∗)−1
)
∥ ≤ τ2∥(Σ̂∗)−1 − (Σ∗)−1∥ . (37)

Since the sample mean and the sample covariance matrix are independent in the case of the normal distribution,

inequalities (36) and (37) imply that with probability at least 1 − 2α

ρl (Y
∗
0 − Ȳ

(2)∗
l )⊤(Σ̂∗)−1(Y∗

0 − Ȳ
(2)∗
l ) − ρk (Y

∗
0 − Ȳ

(2)∗
k )⊤(Σ̂∗)−1(Y∗

0 − Ȳ
(2)∗
k )

= ρl (Y
∗
0 − Ȳ

(2)∗
l )⊤(Σ∗)−1(Y∗

0 − Ȳ
(2)∗
l ) − ρk (Y

∗
0 − Ȳ

(2)∗
k )⊤(Σ∗)−1(Y∗

0 − Ȳ
(2)∗
k )

+ ρl (Y
∗
0 − Ȳ

(2)∗
l )⊤

(
(Σ̂∗)−1 − (Σ∗)−1

)
(Y∗

0 − Ȳ
(2)∗
l ) − ρk (Y

∗
0 − Ȳ

(2)∗
k )⊤

(
(Σ̂∗)−1 − (Σ∗)−1

)
(Y∗

0 − Ȳ
(2)∗
k )

≤ ρl(1 + γp1,N2
) (Y∗

0 − Ȳ
(2)∗
l )⊤(Σ∗)−1(Y∗

0 − Ȳ
(2)∗
l ) − ρk(1 − γp1,N2

) (Y∗
0 − Ȳ

(2)∗
k )⊤(Σ∗)−1(Y∗

0 − Ȳ
(2)∗
k ) .

Define ρ ′
l = ρl(1 + γp1,N2

) and ρ ′
k = ρk(1 − γp1,N2

). In particular, note that ρ ′
lρ

′
k = ρlρk(1 − γ 2

p1,N2
). Repeating the proof of

Theorem 1 but with ρ ′
l and ρ

′
k and under the stronger condition (27), obtain Pr(l̂ ̸= l | x̂ = x) ≤ 2α that, together with

(15) and Pr(x̂ ̸= x) ≤ 2α, completes the proof.

Proof of Lemma 3. Note that σ−2
j (N1 − L)σ̂ 2

j ∼ χ2
N1−L and apply Lemma 1 to obtain Pr(|σ̂ 2

j /σ
2 − 1| ≥ κ) ≤ α/p for all

j ∈ {1, . . . , p} and, therefore, Pr
(
max1≤j≤p |σ̂ 2

j /σ
2 − 1| ≥ κ

)
≤ α.

Proof of Lemma 4. Under the condition of the lemma we have

∥(Σ̂∗)−1∥−1 = min
∥a∥=1

a⊤
Σ̂∗a ≥ min

∥a∥=1
a⊤

Σ
∗a − max

∥a∥=1
a⊤(Σ̂∗ − Σ

∗)a ≥ λmin(Σ
∗)/2

and, therefore,

∥(Σ̂∗)−1 − (Σ∗)−1∥ ≤ ∥(Σ̂∗)−1∥ · ∥Σ̂∗ − Σ
∗∥ · ∥(Σ∗)−1∥ ≤ 2λ−2

min(Σ
∗) ∥Σ̂∗ − Σ

∗∥ .

Proof of Lemma 5. Define Zil =
(
Y∗
il

)(2) − m∗
l ∼ N (0p1 ,Σ

∗), i ∈ {1, . . . , n(2)
l }, l ∈ {1, . . . , L}. The sample covariance

matrix is translation invariant and, therefore,

Σ̂∗ = 1

N2

L∑

l=1

n
(2)
l∑

i=1

(Zil − Z̄l)(Zil − Z̄l)
⊤ = 1

N2

L∑

l=1

n
(2)
l∑

i=1

ZilZ
⊤
il − 1

N2

L∑

l=1

n
(2)
l Z̄lZ̄

⊤
l = S1 − S2.

Thus,

∥Σ̂∗ − Σ
∗∥ ≤ ∥S1 − Σ

∗∥ + ∥S2∥ . (38)

By Remark 5.51 of [25], under the conditions of the lemma there exists an absolute constant C0 such that

Pr

(
∥S1 − Σ

∗∥ ≤ τ2

√
C0p1

N2

)
≥ 1 − α. (39)

Consider now S2. Define a matrix Z̄ ∈ R
p1×L with columns Z̄l, l ∈ {1, . . . , L} and the diagonal matrix D =

diag

(√
n
(2)
1 , . . . ,

√
n
(2)
L

)
. It is easy to see that S2 = N−1 (Z̄D)(Z̄D)⊤ and that matrix Ξ = (Σ∗)−1/2Z̄D has i.i.d. N (0, 1)

entries. Indeed, columns Ξl =
√
n
(2)
l (Σ∗)−1/2 Z̄l of matrix Ξ are independent with Cov(Ξl) = Ip1 . Hence,

∥S2∥ = N−1
2 ∥Z̄D∥2 = N−1

2 ∥
√
Σ∗ Ξ∥2 ≤ N−1

2 λmax(Σ
∗)∥Ξ∥2.

Then, by Corollary 5.35 of [25]

Pr

(
∥S2∥ ≤ N−1

2 λmax(Σ
∗)
(√

p1 +
√
L +

√
2 ln(2/α)

)2)
≥ 1 − α

that, under (25), yields

Pr
(
∥S2∥ ≤ 9λmax(Σ

∗)N−1
2 p1

)
≥ 1 − α. (40)

Combination of (38)–(40) completes the proof with C1 = max(
√
C0, 9).
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