See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334892111

Classification with many classes: Challenges and pluses

Article in Journal of Multivariate Analysis - August 2019

DOI: 10.1016/j.jmva.2019.104536

CITATIONS
7

2 authors:

Felix Abramovich
Tel Aviv University

56 PUBLICATIONS 2,404 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et Applications of Transformations in Parametric Inference View project

roect  Statistical signal processing View project

All content following this page was uploaded by Felix Abramovich on 27 August 2019.

The user has requested enhancement of the downloaded file.

READS
187

Marianna Pensky
University of Central Florida

96 PUBLICATIONS 1,662 CITATIONS

SEE PROFILE

ResearchGate



Journal of Multivariate Analysis 174 (2019) 104536

Contents lists available at ScienceDirect

Multivariate
Analysis

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

L)

Check for
updates

Classification with many classes: Challenges and pluses

Felix Abramovich **, Marianna Pensky "

2 Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel
b Department of Mathematics, University of Central Florida, 4393 Andromeda Loop N Orlando, FL 32816, USA

ARTICLE INFO ABSTRACT
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large. We derive non-asymptotic conditions on effects of significant features, and the
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High-dimensionality selection and classification with a given accuracy. Furthermore, we study an asymptotic

Misclassification error setup where the number of classes is diverging with the dimension of feature space
Multi-class classification and while the number of samples per class is possibly limited. We point out on an
Sparsity interesting and, at first glance, somewhat counter-intuitive phenomenon that a large
number of classes may be a “blessing” rather than a “curse” since, in certain settings,
the precision of classification can improve as the number of classes grows. This is due
to more accurate feature selection since even weaker significant features, which are not
sufficiently strong to be manifested in a coarse classification, being shared across the
classes, have a stronger impact as the number of classes increases. We supplement our
theoretical investigation by a simulation study and a real data example where we again
observe the above phenomenon.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Classification has been studied in many contexts. In the modern era one is usually interested in classifying objects that
are described by a large number of features and belong to many different groups. For example the large hand-labeled
ImageNet data set http://www.image-net.org/ contains 10,000,000 labeled images depicting more than 10,000 object
categories where each image, on the average, is represented by 482 x 415 = 200,000 pixels (see [22] for description
and discussion of this data set). The challenge of handling large dimensional data got the name of “large p small n”
type of problems which means that dimensionality of parameter space p by far exceeds the sample size n. It is well
known that solving problems of this type requires rigorous model selection. In fact, the results of Bickel and Levina [2],
Fan and Fan [11], Shao et al. [23] demonstrate that even for the standard case of two classes, classification of high-
dimensional normal vectors without feature selection is as bad as just pure random guessing. However, while analysis of
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high-dimensional data has become ubiquitous, to the best of our knowledge, there are no theoretical studies that examine
the effect of large number of classes on classification accuracy. The objective of the present paper is to fill in this gap.

At first glance, the problem of successful classification when the number of classes is large seems close to impossible.
On the other hand, humans have no difficulty in distinguishing between thousands of objects, and the accuracy of state-of-
the-art computer vision techniques is approaching human accuracy. In fact, in some settings, the accuracy of classification
improves when the number of classes grows. How is this possible? One of the reasons why multi-class classification
succeeds is that selection of appropriate features from a large sparse p-dimensional vector becomes easier when the
number of classes is growing since even weaker significant features that are not sufficiently strong to be manifested in
a coarse classification with a small number of classes may nevertheless have a strong impact as the number of classes
grows. Simulation studies in [7] and [21] support such a claim. Arias-Castro, Candés and Plan [1] reported on a similar
occurrence for testing in the sparse ANOVA model. Our paper establishes a firm theoretical foundation under the above
phenomenon and confirms it via simulation studies and a real data example.

Although there exists an enormous amount of literature on classification, most of the existing theoretical results
have been obtained for the binary classification (L = 2) (see [4] and references therein for a comprehensive survey).
In particular, binary classification of high-dimensional sparse Gaussian vectors was considered in [2,8,9,11,17] and [23]
among others.

In the meantime, a significant amount of effort has been spent on designing methods for the multi-class classification
in statistical and machine learning literature. We can mention here techniques designed to adjust pairwise classification
to multi-class setting [10,14,18], adjustment of the support vector machine technique to the case of several classes [5,19]
as well as a variety of approaches to expand the linear regression and the neural networks techniques to accommodate
the multi-category setup (see, e.g., [13]). Pan, Wang and Li [20] and Tewari and Bartlett [24] generalized theoretical results
for binary classification to the case of multi-class classification and established consistency of the proposed classification
procedures. However, all above-mentioned investigations considered only the “small L, large p, small n” setup, where the
number of classes was assumed to be fixed.

This paper is probably the first attempt to rigorously investigate “large L, large p, small n” classification and the impact
of the number of classes on the accuracy of feature selection and classification. In particular, we explore the somewhat
counter-intuitive phenomenon, where the large number of classes may become a “blessing” rather than a “curse” for
successful classification as more significant features may be revealed. For this purpose, we consider a well-known problem
of multi-class classification of high-dimensional normal vectors. We assume that only a subset of truly significant features
really contribute to separation between classes (sparsity). For this reason, we carry out feature selection and, following a
standard scheme, assign the new observed vector to the closest class w.r.t. the scaled Mahalanobis distance in the space
of the selected significant features. Our paper considers a realistic scenario where the number of classes as well as the
number of features is large while the number of observations per class is possibly limited (“large L, large p, small n”
model). We do not fix the total number of observations since in the real world the experience of each new class comes
with its own, usually finite, set of observations.

We start with a non-asymptotic setting and derive the conditions on effects of significant features, and the low and
upper bounds for the distances between classes required for successful feature selection and classification with a given
accuracy. All the results are obtained with the explicit constants and remain valid for any combination of parameters. Our
finite sample study is followed by an asymptotic analysis for a large number of features p, where, unlike previous works,
the number of classes L may grow with p while the number of samples per class may grow or stay fixed. Our findings
indicate that having larger number of classes aids the feature selection and, hence, can improve classification accuracy. On
the other hand, larger number of classes require having larger number of significant features p; for their separation which
automatically leads to a “large p” setting. Nevertheless, due to increasing point isolation in high-dimensional spaces (see,
e.g., [12], Section 1.2.1), those separation conditions become attainable when p is large.

We ought to point out that our paper does not propose a novel methodology for feature selection or classification.
Rather than that, it studies one of the most popular Gaussian setting and adapts to the case of a large number of classes a
standard general scheme, where feature selection is implemented by a thresholding technique with the properly chosen
threshold and classification is carried out on the basis of the minimal Mahalanobis distance (we consider both the known
and the unknown covariance matrix scenarios). This is a common widely used general scheme for classification and feature
selection in such setting (see, e.g., [11,20] and [23] for similar approaches that differ mostly by selections of thresholds
and distances). Nevertheless, the setup is simple enough for derivations of conditions required for successful classification
with a specified precision when the number of classes is large. Therefore, in our simulation study we do not compare these
simple and well known techniques with the state of the art classification methodologies but instead investigate how these
popular procedures perform when p is large and both the number of classes L and the number of significant features p
are growing. In particular, simulations support our finding that classification precision can improve when L is increasing.
The real data example confirms that the phenomenon above is not due to an artificial construction and is possible in a
real life setting.

The rest of the paper is organized as follows. In Section 2 we present the feature selection and multi-class classification
procedures and derive the non-asymptotic bounds for their accuracy. An asymptotic analysis is considered in Section 3.
Section 4 discusses adaptation of the procedure in the case of the unknown covariance matrix. In Section 5 we illustrate the
performance of the proposed approach on simulated and real-data examples. Some concluding remarks are summarized
in Section 6. All the proofs are given in Appendix.
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2. Feature selection and classification procedure
2.1. Notation and preliminaries

Consider the problem of multi-class classification of p-dimensional normal vectors with L classes:
Y =m + € (1)

forl € {1,...,L}, i € {1,...,n}, where m; € RP is the vector of mean effects of p features in the Ith class and
€ ~ N(0,, =) with the common non-singular covariance matrix ¥ € RP*P. To clarify the proposed approach we assume
meanwhile that 3 is known and discuss the situation with the unknown X in Section 4.

In what follows, we study a realistic scenario where the number of classes as well as the number of features is large
while the number of observations per class is possibly limited (“large L, large p, small n” model). We do not fix the total
number of observations since in the real world the experience of each new class comes with its own, usually finite, set
of observations.

After averaging over repeated observations within each class, model (1) yields

Y, =m +e€], (2)

where € ~ N(0,,n;'=) and I € {1,...,L}.
The objective is to assign a new observed feature vector Yy € R” to one of the L classes. Denote

L
N=>m, p=n/m+1), L=L-1, (3)
=1

where evidently 1/2 < p < 1. _

Since Var(Yy — Y)) = Pf] >, we assign Yy to the class [ with the nearest centroid Y, w.r.t. to the scaled Mahalanobis
distance:

1= arg min {p (Yo - ¥)'=""(Yo - ¥)}. (4)
1<I<L

It is well-known (see, e.g., [2,11] and [23]) that the performance of classification procedures is worsening as the number
of features grows (curse of dimensionality). Hence, dimensionality reduction by feature selection prior to classification is
crucial for large values of p.

Re-write (2) in terms of the one-way multivariate analysis of variance (MANOVA) model as follows:

Y =8+B+e€ (5)

forl e {1,...,L}, where m; = § + B, § is the vector of mean main effects of features and 8, j € {1, ..., p} is the mean
interaction effect of jth feature with Ith class, with the standard identifiability conditions Zlel Bij = 0 for each j.

The impact of jth feature on classification depends on its variability between the different classes characterized by
the interactions B, | € {1,...,L} in the model (5). The larger are the interactions, the stronger is the impact of the
feature. A natural global measure of feature’s contribution to classification is then bj2 = lezl /3,?. Note that a feature
may still have a strong main effect §; but its contribution to classification nevertheless remains weak if it does not vary
significantly between classes, that is, if bf is small. The main goal of feature selection is to identify a sparse subset of
significant features for further use in classification.

2.2. Oracle classification

First, we consider an ideal situation where there is an oracle that provides the list of truly significant features with
bj2 > 0. In this case, we would obviously use only those features for classification, thus, reducing the dimensionality of
the problem. Define indicator variables x; = I {bj2 > 0}, and let p; = j;l x; and pg = p —p; be, respectively, the numbers
of significant and non-significant features. Without loss of generality, we can always order features in such a way that
those p, significant features are the first ones. The classification procedure (4) then becomes

1= argmin {p; (Y5 — Y))"(=")7'(Ys - Y]}, ©)
1<I<L
where Yj, Y/ € RP! are the truncated versions of Y, and Y, respectively: Y(;; = Yy and Y,;? = }_’U, jef{l,...,p1}, and

>* € RP1*P1 js the corresponding upper left sub-matrix of 3.
Theorem 1 provides an upper bound for misclassification error of the oracle classification procedure (6):
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Theorem 1. Consider the model (1) and the equivalent model (5). Let mj; € RP1, k € {1,..., L} be the truncated versions of
class centers my and assume that for all pairs of classes

.. 8lIn(L/a) {1

(m; —m}) (=) (m} —m}) > —
ok K= min( o, i)

2p1/n(L:/0)) } , (7)

2 min(ny, ny) (

forsome 0 <« < 1. A
Let a new observation Yy from the class | be assigned to the Ith class according to classification rule (6). Then, the
misclassification error is

Prl#1) <a.

Condition (7) verifies that classes should be sufficiently separated from each other (in terms of Mahalanobis distance)
to achieve the required classification accuracy. In fact, the requirements in (7) are also essentially necessary. Theorem 2,
which is a direct consequence of Fano’s lemma for the lower bound of misclassification error (see, e.g., [15], Section
7.1), implies that the first term O (In(L,/«)) on the RHS of (7) is unavoidable for successful classification and cannot be
significantly improved (in the minimax sense) even in the idealized case, where the class centers m; are known:

Theorem 2. Consider the model (1). Let a new observation Y be from one of L classes. If
1

A? :r&i’? (m; —m}) (=) \(mf —m}) <2RInL,,

for some R > 0, then
In2
InLy
where Pr) is the probability evaluated under the assumption that Y, belongs to the Ith class, and the infimum is taken over all
classification rules y(Yo) : Yo — {1,..., L}

The second term on the RHS of (7) appears due to replacing the unknown p;-dimensional class centers m;’s by the
corresponding within-class sample means Y;’s in (6). Indeed, straightforward extension of the results of Theorem 1of [11]
for a general L > 2 yields that, unless for all pairs (k, k'), (m} — mk,) (=*)~ (mk —my) > C+/p1InL;/min(n, ny) for

some C > 0, the curse of dimensionality affects the accumulated error in estimating high-dimensional m;’s and yields
classification performance nearly the same as random guessing.

’

12f{1§11a§)i Pr(¢(Yo) #D = 1-8—

2.3. Feature selection procedure

Consider now classification setup in the MANOVA model (5) with a more realistic scenario, where a set of significant
features is unknown and should be identified from the data.

To simplify the calculus and to avoid complications with post-selection inference, we split the data at random into
two sets Y,;l)’s and Yéz)’s in some fixed proportion 7w € (0, 1) (in the simplest case, the sizes of both sets are equal with

7w = 1/2). Subsequently, use Y(U's for feature selection and Y(z)'s for classification based on the selected features. More
speaflcally, for Ith class, split 1ts n; observations Yj;’s 1nto two sub samples of sizes n ) and n ) at the same proportion
m,ie., ng = |y, where |-] is the integer part, and nl =n - nl ,lefl,...,L}. Denote the total sample sizes of the

resulting two sets by Ny = Y n{"” and N, = Y1, n®), so that Ny + N, = N.
Following our previous arguments, a jth feature is not significant (irrelevant) for classification if it has zero interaction
effects with all classes, that is, if 8; = 0, j € {1, ..., L} or, equivalently, bj2 = 0. Then, for each j = 1, ..., p we need to

test the null hypothesis Hy; : b2 = 0. An obvious test statistic is then

—2 Zn 1) (1)) (8)

where 02 = ¥j and Y(1 ) Ty 1Yl]l) Under the null, § ~ XL , while under the alternative ¢ ~ )(L1 e where
XL1 ” is the non-central chi-square distribution with the non-centrality parameter u; = o; —2 Z, T n,]),B,] Note that unless

3 is diagonal, ¢'s are correlated.
For a given 0 < « < 1, define a threshold

A =1Ly +2yLiIn(2p/a) + 2In(2p/a) 9

and select the jth feature as significant (reject Hy;) if

L
=02 Y mly —v? > (10)
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The following theorem shows that under certain conditions on the minimal required effect for significant features, the
proposed feature selection procedure correctly identifies the true (unknown) subset of significant features with probability
at least 1 — «:

Theorem 3. Consider the feature selection procedure (10) with the threshold (9) for some 0 < « < 1. Define indicator
vanablesxj_l 211” Y, Y ) > A} forje{1,...,p}. Let

W= i o Z”ll)ﬂu (an
and assume that for all p, truly significant features one has

i = 4 (31n2p/) + VI In(2p/a)) (12)
Then,

Pr(x=x)>1—q.

The condition (12) on the total minimal effect for significant features can be re-formulated in terms of their average
effect per class:

1T (1.0 3In(2p/a)  [In(2p/a)

forje{l,...,p1}.

Thus, as the number of classes in model (1) increases, even significant features with weaker effects within each class
become manifested and contribute to classification. Effect of a certain feature that remains latent and unnoticed in coarse
classification with a small number of classes may be expressed in a finer classification.

2.4. Classification rule and misclassification error

Consider now the classification rule (6) applied on the second set of the data with \7,(2)*, where the unknown true x; are
replaced by %; following the proposed feature selection procedure. Let p; = ZJ’.’:l X; be the number of features declared
significant and po = p — p;. Again, order the features in such a way that those p, features selected as significant are the
first ones. Thus, the resulting classification rule can then be presented as follows:

1 = argmin {p, Y(2 Y - ?52)*)} , (14)
1<I<L
where the truncated vectors Y, Yz)* e R, | e {1,...,L} are defined now as Yo = Yoj, Yl;z)* ,J ,jeft,...,p1},
and =* € RP1*P1 is the corresponding upper left sub-matrix of =, and p; = ngz /(ngz) + 1).
We have
Pr(l # 1) < Pr(l # [ | X = x) + Pr(& # x), (15)

where, due to the fact that different data was used for feature selection and classification, by Theorems 1 and 3, each
probability on the RHS of (15) is at most «. Thus, the following result holds:

Theorem 4. Consider the model (1) and the corresponding model (5). Assume the conditions (7) (with n; replaced by nfz))
and (12) hold for some 0 < a < 1/2. Apply feature selection procedure (10) and use the selected features for classification via
the rule (14). Then,

Pr(correct classification) > 1 — 2«.
3. Asymptotic analysis

Conditions (7) and (12) (or (13)) of Theorems 1 and 2, respectively, provide the non-asymptotic lower bounds on the
minimal distance between different classes and the minimal effect of significant features required for the perfect feature
selection and classification error bounded above by 2«. In order to gain better understanding of these conditions, we
consider an asymptotic setup.

Standard asymptotics considered in classification literature assume that the number of features p and the sample sizes
n; increase whereas the number of classes L is fixed (see, e.g., [11,23] for L = 2 and [20] for a general but fixed L). On the
contrary, our study is motivated by the case where the number of classes may also be large (“large L, large p, small n”).
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Recall that N = Zlel n; is the total sample size and let the number of features p — oo. Following [20], assume that all
eigenvalues of the p; x p; covariance matrix of significant features =* are finite and bounded away from zero, i.e., there
exist absolute constants 7; and 7, such that

O<t =< )\min(z*) =< )\max(z*) <17 < O00.

The samples sizes n; within classes also grow with p. For simplicity of exposition, we assume that they are of the same
asymptotic order and split more or less equally between the two sets (x ~ 1/2), that is, ngl) ~ n52) ~ n for all
le{1,...,L}, where n = N/(2L) and a ~ b means a = b(1 + o(1)). In such asymptotic setup, p; ~ 1 — 1/n, while
V1 — pipx ~ +/2/n. Though the results in the previous section allow one to study various other settings with unequal
class sizes, the asymptotic analysis of a vast variety of such possible scenarios is beyond the scope of this paper.

Consider now the condition (7) of Theorems 1 and 4 on the minimal separation Mahalanobis distance between any
two class centers as p tends to infinity, while n, the number of significant features p; and the number of classes L may
increase with p, and « may depend on n, p and L. Thus, (7) yields:

min (m} —m};,)"(=*)"'(m} —m},) > A2 ~ 8In(L;/a)

1
1+ —
k#k! { v/2n

Define

= eV ninLy /a)

Depending on 7, the condition (16) implies two possible asymptotic regimes for A2:

(1 n \/2p1/ln(L1/oz))} . (16)

L
81n (—1> (14mn1), 0=<n <oo, sparseregime — small number of significant features,
2 o
A In(L; /)
8 plTl N1 = 00, dense regime — large number of significant features.

For sparse regime (; < oo), the required minimal between-class distance A2 grows slowly as InL and from Theorem 2
it immediately follows that this is the lowest possible rate for successful classification:

Proposition 1. Let L — oo and p; — oo as p — oo. Let a new observation Y be from one of L classes. If
2
A* ~ 28p1 ll‘lLl,
where 8, — 0 arbitrarily slow as p — oo, then

lim inf max Prj(¥(Yo) # 1) =1,
p—>o0 Y 1<I<L

where Pr; is the probability evaluated under the assumption that Y, belongs to the Ith class, and the infimum is taken over all

classification rules ¥(Yo) : Yo — {1,...,L}.

For dense regime, the number of significant features p; is large enough for the accumulated error of estimating
pi-dimensional m;}’s by YE(U*'S to become dominant (see Section 2.2) and the classes should be, therefore, much stronger
separated to deal with the curse of dimensionality.

It is natural that for successful classification the between-class distances should grow with L. Note, however, that unless
the number of classes increases exponentially with p;, the growth rate of A2 is o(p;) and the corresponding average
per-feature distances i(mz —m;)T (=) (mj —m},) still tend to zero.

Similarly, from the condition (12) in Theorems 3 and 4 on the minimal effect for significant features required for the
perfect feature selection, we have asymptotically

b?> = min o,72b? ~ 4 (3 In(2p/a) + /L ln(2p/a))
* j j n 1 .

1<j=pq
Let
. In(2p/a)
7, = lim
p—0o0 L]
Then,
b2~ 4n~' /L1 In(2p/a)(14 3nm), 0 <1, < oo, large number of classes, (17)
* 12n~ ! In(2p/a), Ny = 00, small number of classes.

and the threshold A in (9) for feature selection can be presented as

5o L1+ 20 +203), 0=z < o0,
21In(2p/a), N2 = 00.
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To gain some insight on the minimal required effect for a significant feature to contribute to classification as the
number of classes increases, assume for simplicity that each significant feature has equal effects on each class, that is,
Bij in (5) vary only in signs: /3,] B2, 1e{1,...,1}. Since 0 < i, < oo implies that L is large, so that L; = L — 1 ~ L,
condition (17) yields as p — oo:

,82 {40 n~ (14 3n,), 0 <1, < o0, large number of classes, (18)

J 1262 'L~ 'In(2p/a), 1 = o0, small number of classes.

Since n, is decreasing with L for a given value of «, the required minimal level for ﬁjz on the RHS of (18) decreases as
L grows and, therefore, more significant features become manifested in classification for larger number of classes. Thus,
while it might be hard to perform coarse classification with a set of weak features, their impacts grow as one considers
finer and finer separation between objects (see also the corresponding remarks at the end of Section 2.3).

Although in this section our goal was to explore the case when L — oo, calculations above remain valid for a fixed value
of L (commonly, L = 2). In particular, if L is fixed and n = o(p), conditions (16) and (18) are of the form A% ~ C;./p;/n
and ﬁjz ~ Gn~'In(p/a), C;,C, > 0 and are similar to those of Theorem 1 and Theorem 3 in [11]. See also the results

of [8,9] and [17] for closely related setups.
4. Unknown covariance matrix

So far the covariance matrix X was assumed to be known. In practice, however, it should usually be estimated from
the data. The standard MLE estimator based on the first sub-sample

LSS () (%)

and the similar unbiased pooled estimator commonly used in MANOVA behave poorly for high-dimensional data.
However, under the sparsity assumption, the proposed classification procedure requires only to estimate the variances
ojz in feature selection procedure (8) and the inverse of the upper left sub-matrix =* € RP1*?1 of 5 in classification rule
(14). Thus, when p; < p, a low-dimensional matrix (£*)~! may still be a good estimator of the true sub-matrix (*)!
and (under some additional mild conditions) may be used instead of the latter in (14).

Assume that p < % eN171/4 Replace sz in (8) by 6]2 = ﬁj(j]) and consider the feature selection procedure (10) with a
somewhat larger threshold

A
M= , (20)
1—«
where A is the threshold (9) used for the case of known variances and
In(2 In(2
= k(p. Ny L o) = 2. 2p/e)  , In(2p/e) 1)

Ny —L N —L
The following theorem shows that under slightly stronger conditions on the minimal required effect for significant
features, the above feature selection procedure with estimated a still controls the probability of correct identification of
the true subset of significant features.

Theorem 5. Let 0 < o < 1/2 and assume that p < % eN1=1/4, Define indicator variables
L
2 A— 1), o1 (1
B =167 n(V — ViU > ) (22)

forje{1,...,p} with »; given in (20). Assume that u, in (11) satisfies
fi + Ly — 2¢/(Ly + 2p1,) In(2p/a) > Aq(1 + &) (23)

Then,
Pr(x =x)>1—2a.

Consider now the classification procedure (14). In what follows we assume that * is non-singular. Consider an
estimator =* of =* of the form

(2)
Z Z(Y 2%y Y(Z)* Y(Z)*

=1 i=1

where Y are the corresponding p;-dimensional truncated versions of Y.
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Assign Yo the Ith class by replacing the true (unknown) (%)~ in (14) by (%)~ ':
i::mgnm{pmvg—?V”f(Ea—%vg—??”ﬁ. (24)
1<I<L

Then the following version of Theorem 4 holds:

Theorem 6. Consider the model (1) and the corresponding model (5), where p < % elN1=1/4,

Lam(2 BRI 2
max{ R n(a)} <p1 < ac, (lmax(E*)> 5 (25)

for some 0 < @ < 1/4 and C; is an absolute constant specified in the proof. Denote
— 2)\‘?113)((2*) Clp]
(=5)V N,

2 (26)
and note that y,, n, < 1 due to (25). Assume the condition (23) and a somewhat stronger version of the condition (7), namely,

Vp1.N,
min

8 In(L; /o)

(m; —m}) (=) (m} —m},) > :
k K k K (1 — yp,.n, ) Min( ok, pir)

2p; ) (27)

1
x 14 | — 21+
2 min (nf), ng)) P1l2 ( In(Ly/ex)

Apply feature selection procedure (22) and use the selected features for classification via the rule (24). Then,

Pr(correct classification) > 1 — 4a.

Theorem 6 shows that for a sparse setup the proposed classification procedure can still be used when the covariance
matrix is unknown and estimated from the data.

5. Examples

In this section we demonstrate the performance of the proposed feature selection and classification procedure on
simulated and real-data examples. Its main goal is to illustrate the phenomenon of improving the accuracy as the number
of classes grows as discussed in the previous sections.

We found that in practice there is no real need to split the original data and used the entire data set for both feature
selection and classification.

5.1. Simulation study

Simulated examples follow the settings presented in [20].

We generated the class means as i.i.d. normal vectors m; ~ A0, o,%X), le{1,...,L}, where X € RP*P is a diagonal
matrix with x; = 1 for p; indices and x; = O for others. Since the vectors generated in this manner do not necessarily
satisfy our assumptions, in order to reduce an impact of a particular choice of vectors m;, we generated M; replications of
the class means. Furthermore, following the model (2), for each replication of class meansmy, I € {1, ..., L} we generated
M; sets of training samples Yj; = m;; + e,jf,-, jef{l,...,p}, ie{l,...,n}, where el’]'.‘,- are i.i.d. A(0, n~'x). Finally, for each
of M7 - M, sets of training samples, we drew a test set of M3; new vectors from randomly chosen classes as i.i.d. normal
vectors N(m;, ).

We used the same three choices for covariance matrix ¥ as in [20]. In Example 1 features were independent,
i.e., = = oI,. In Example 2 we used the autoregressive covariance structure with =, », = o 0.5/" =2l while in Example
3 we set Xy, p, = 02 (0.54 0.5 I{hy = hy}), hy,hy € {1, ..., p} implying equal variances o and all covariances equal to
o?/2 (compound symmetric structure). We carried out simulations with both the true covariance matrix X and its MLE
S given by (19). Since the performances of feature selection and classification procedures in both cases were similar, in
what follows we present only the results obtained with 3.

For each training sample we first carried out the feature selection procedure described above with the threshold
A1 defined in (20) and « = 0.05. Subsequently, we used the selected features for classifying M3 vectors from the
corresponding test set according to the rule (24). In the case when it delivered a non-unique solution, we chose one
of the suggested solutions at random.

In all simulations we used M; = M, = M3 = 50, p = 500, ¢ = 1and n = 20. Note that classification
precision depends on the variance ratio t> = 02 /(c%/n) that may be viewed as a signal-to-noise ratio. For this reason,
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Table 1
Average proportions of false negative features for p = 500 and various values of L, p; and 7 over
M; - M = 2500 training samples.

D1 T Example 1 Example 2
L=2 L=10 L=20 L=750 L=2 L=10 L=20 L=150

10 1 1.000 .996 975 785 1.000 1.000 978 788
2 936 297 .033 .000 991 592 .186 .000
3 .880 158 .006 .000 .898 147 .003 .000
50 1 1.000 .995 .976 785 1.000 995 977 783
2 975 .604 187 .001 979 .609 172 .001
3 .896 158 .005 .000 901 .146 .004 .000
100 1 1.000 .996 975 784 1.000 .996 .976 782
2 976 .601 177 .001 981 611 .169 .000
3 .895 .149 .005 .000 .898 142 .004 .000
200 1 1.000 .995 .976 783 1.000 .995 977 783
2 975 .605 172 .000 980 617 175 .000
3 .892 .150 .004 .000 .895 .150 .004 .000

we studied performance of feature selection and classification for various combinations of pq, L and 7. In particular, we
used p; = 10, 50, 100, 200, L = 2, 10, 20, 50 and several values of t depending on p;.

The results of simulations indicate that for such data generating model (somewhat different from that analyzed in
the paper), the threshold A; in (20) (as well as A in (9) for the known variances) might be too high, especially for
small values of 7. The latter led to an over-conservative feature selection procedure. Thus, in all simulations the feature
selection procedure did not detect false positive features. The information on the proportions of false negative features
(over the total number of significant features) for several combinations of p;, L and t over M; - M, = 2500 training
samples is summarized in Table 1 for Example 1 and Example 2 (the results for Example 3 were similar and we omit
their presentation to save the space). In particular, Table 1 clearly shows that for small values of t and small L, due to the
over-conservative feature selection procedure, almost not a single significant feature has been detected and the resulting
classification is then essentially reduced to just a pure random guess. However, for any 7 the detection rate improves as L
grows. The improvement rate is very fast for t > 2. Thus, for L = 50 the vast majority of significant features were detected
in spite of high level of noise. As we have mentioned, this improves the classification precision since weaker significant
features that remained latent in coarse classification become active and may have a strong impact with increasing L.

For each combination of py, L and t we calculated the corresponding average misclassification errors: see Figs. 1-3 for
Examples 1-3, respectively. Figs. 1-3 show similar behavior for all three examples. For any p; and L misclassification error
tends to zero as t increases. The decay is faster for larger p; — the more significant features, the easier is classification.
The figures demonstrate also another interesting phenomenon: for moderate and large p;, the larger L, the faster is the
decay. As we have argued, this is due to the fact that the impact of weaker significant features becomes stronger with
increasing L. For small 7 (strong noise), misclassification errors are higher for larger number of classes L. This is naturally
explained by the failure of feature selection procedure to detect significant features in this case (see comments above), so
that the resulting classification is similar to a random guess with a misclassification error 1—1/L (see Figs. 1-3). However,
as t increases, even the first few detected significant features strongly improve classification precision.

5.2. Real-data example

We applied feature selection techniques discussed above to a data set of communication signals recorded from South
American knife fishes of the genus Gymnotus. These nocturnally active freshwater fishes generate pulsed electrostatic
fields from electric organ discharges (EODs). The three-dimensional electrostatic EOD fields of Gymnotus can be summa-
rized by two-dimensional head-to-tail waveforms recorded from underwater electrodes placed in front of and behind a
fish. EOD waveforms vary among species and are used by genus Gymnotus in order to recognize its own kind for more
productive mating and other purposes.

The data set consists of 512-dimensional vectors of the Symmlet-4 discrete wavelet transform coefficients of signals
obtained from eight genetically distinct species of Gymnotus (G. arapaima (G1), G. coatesi (G2), G. coropinae (G3), G.
curupira (G4), G. jonasi (G5), G. mamiraua (G6), G. obscurus (G7), G. varzea (G8)) at various stages of their development.
In particular, species were divided into six ontogenetic categories: postlarval (JO), small juvenile (J1), large juvenile (J2),
immature adult (IA), mature male (M) and mature female (F). The EODs were recorded from 42 of 48 possible combinations
of eight species and six categories. There are 677 samples from 42 classes with sizes varying from 3 to 69. The complete
description of the data can be found in [6].

As it is evident from [6], there is no expectation that these groups should all be mutually separable: there are
considerable overlaps between developmental stages of the same species as well as among juveniles of different species.
For this reason, we reduced the number of classes to include only those species/categories that might be potentially
separated. In particular, we ran our feature selection and classification procedure with the data sets comprised of 10 to
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Fig. 1. Average misclassification errors as functions of = for various combinations of p; and L for Example 1.

Table 2

The sample sizes of train (Ngqin) and test (Nes:) sets, the numbers of selected significant
features (p;) and misclassification errors with standard errors in brackets averaged over
100 splits for the Gymnotus fish data.

L Nirain Niest 1 Misclassification error
10 32 10 67.0 .077 (.006)
11 38 13 68.3 092 (.006)
12 46 16 65.3 127 (.007)
13 51 18 67.6 .166 (.007)
14 57 20 83.7 .149 (.006)
15 64 23 87.4 .130 (.006)
16 68 24 86.8 .162 (.007)

16 classes listed in the order they appear: G2-M, G4-M, G5-M, G1-F, G2-F, G5-F, G7-F, G8-F, G2-]1, G4-]1, G2-F, G1-]1,
G7-Al, G1-F, G6-M, G7-]1.

We split the respective data sets into training and test parts. For this purpose, in each class we chose at random at
most 1/3 of the total number of observations for validation leaving the rest of the data as training samples. Using those
training samples, we carried out feature selection and subsequent classification of vectors in the test part of the data set.
We repeated the process 100 times for various splits and recorded the average misclassification errors and their standard
errors for each of the cases (L € {10, ..., 16}). Table 2 presents results of the study: the average sample sizes of train
(Nirain) and test (Ngs; ) sets for each L, the average number of selected significant features (p;) and average misclassification
error with the corresponding standard errors.

The table shows that when one starts with 10 well separated classes the misclassification error is initially grows when
L increases from 10 to 13. However, at L = 13 there is a strong jump in the numbers of detected features and the
misclassification errors again start to decrease when L grows from 13 to 15 due to better feature selection. For L > 15
the misclassification error grows again with L due to poor separation of juvenile Gymnotus EOD waveforms shapes.
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Fig. 2. Average misclassification errors as functions of t for various combinations of p; and L for Example 2.

6. Concluding remarks

The paper considers multi-class classification of high-dimensional normal vectors, where the number of classes may
diverge. This is a first attempt to rigorously study “large L, large p, small n” classification problem. Our main goal was
not to propose a novel methodology but to explore interesting phenomena arising in such a new setup. In particular, our
results indicate that the precision of classification can improve as the number of classes grows. This is, at first glance,
a somewhat counter-intuitive conclusion and has not been observed so far due to shortage of literature on multi-class
classification. It is explained by the fact that even weaker significant features, that might be undetected for smaller L,
being shared across classes, can strongly contribute to successful classification when the number of classes is large. We
believe that the results of the paper motivate further investigation of “large L, large p, small n” classification in other,
more complicated setups.

The contents of this paper can be extended in a variety of ways. To begin with, an extension to different covariance
matrices across the classes is straightforward. One can also allow different supports of sparsity for different clusters
and/or relax the Gaussian assumption by considering sub-Gaussian or sub-exponential data in a similar way, though
such generalizations will require to re-derive the corresponding conditions for correct classification.
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Appendix

We start from recalling two lemmas of [3] that will be used further in the proofs.
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Lemma 1 (Lemma 8.1 of [3]). Let ¢ ~ Xliu' u > 0. Then, for any x > 0
Pr(¢ > pu+k+2/(k+2u)x+2x) <e™

and
Pr(¢ < pu+k—2(k+2u)x) <e™
Lemma 2 (Lemma 8.2 of [3]). Let X be a random variable such that
(as) _
In{E(E*)) < —— for 0<s<b7!,
(EE)) <20 for 0<s<
where a and b are positive constants. Then

Pr(X > 2ay/x+bx) <e™ forall x> 0.

Proof of Theorem 1. Note that

Pr(f #1) = Z Pr(f =k) <L, ITklalx Pr(f =k), (28)
kit ?
For a given k # [ define a (2p;)-dimensional random vector Y = <zg B Yi‘ ) where the vectors Y§, Y/ and Y} are defined
0~ Tk

just after (6). A straightforward calculus yields

o ) 0 ,0712* >*
Y~N@®,V) with 6=(_,7 ], vzaz(’ z ) 29
0.v) (o) T (29)

where p; is defined in (3). Then, it follows from (6) that
Pr(l = k) < Pr (oi(Yy — Y)) ()71 (Y5 — Y7) > oYy — Y1) (Z*) (Y5 — Y3)) = Pr(YTAY > 0),
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where

A= 101(2*)71 0p1><p1 -
0p, xp, —pk (Z*)

Consider a random variable £ = Y'AY. since V-'is a symmetric positive-definite matrix and A is symmetric, they
can be simultaneously diagonalized, that is, there exists a matrix W, such that WTV-'W = I and WTAW = A, where A
is a diagonal matrix of the eigenvalues ¢;, j = 1, ..., 2p; of R = VA. Then, from the known results on the distribution
of quadratic forms of normal variables (e.g., [16]), £ can be represented as a weighted sum of independent (generally)
non-central chi-square variables, namely,

2pq
E=) ekl o (30)
i=1 !
where 7 is such that 8 = Wn with @ given by (29). By a straightforward matrix calculus, obtain
R2 — (] - /Okpl) Ip1 0p1><p1
0p1 XP1 (1 — prpr) lp1

and, therefore, all eigenvalues ¢;, j € {1, ..., 2p;} of a matrix R = VA are of the forms

O =E@x, @=+1—pxp (31)

forje{1,...,2p}.

Consider now the logarithm of the moment generating function of the centered random variable & — E(¢), where £ is
defined in (30). We have E§ = Zf:pll oi(1+ an) = 212:1711 ‘Pj’)jz. where recall that Wy = 0. Hence, using formula (31), for
s < 1/(2¢4), we have

2p1 7}'2%‘5 1 2p1 2p1
InESEE) =) " L=~y "in(1 —2¢5) —s (1477
j; =205 2 E] (1—2¢;s) ng @i(1+n7)
2p1 2. 2p1 2p1 2.2 2 2p1 2 2
n; ¢is 2 1 25°n7 5 s“;
= ——— —nigis | — = In(1 — 2¢;s) + 2¢js) < +
Z(l—zsz i i 2,2( (1= 209)+ 2¢35) = Zl—zsz Z]—Zgojs
Jj=1 Jj=1 j=1 Jj=1
< B g 20D B g 200
T 1-2ps * 1—4¢2s2 =~ 1-2¢, " 1—2¢,s

Denote
A% = (m] —my)"(z)”'(m] — my)

Using W'V-'W = I, WTAW = A and Wn = 0, one can verify that ¢?||n||> = n' A’p = 0 "AVAG = p, A2, where 6 and
V are defined in (29). Thus,

as?

1—bs

InEes¢—F8) <

’

where b = 2¢, and

a=/2p A2+ 202p1 < V2 (Vpr |Al + @ui/P1) -
In addition,
Ee=nTAp=6TA9 = —p, A°.

A straightforward calculus shows that, under the condition (7) of Theorem 1, one has pi A% > 2a./In(L; /) + bIn(L; /).
Then, applying Lemma 2, one obtains

Pr(€ > 0) < Pr (s > —pp A2+ 2a/In(Ly Jo0) + bln(Ll/oz)) < Lﬁ
1
that, together with (28), completes the proof.

Proof of Theorem 3. Let py; = Z}’Zl % =1|x =0}and py; = Zj’.’zl I{* = 1| x; = 1} be the numbers of erroneously
and truly identified significant features respectively, where obviously po; and p;; are independent, and pg; + p11 = p1.
Note that

Pr(% # x) < Pr(po1 > 0) + Pr(p11 < p1).
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Recall that for x; = 0, the corresponding g; ~ XL21' Let uj, j € {1,...,po} be any, possibly correlated, XLZI random
variables. Then,

Pr(po; > 0) = Pr ( max u; > k) <pPr (uj > L1+ 2L In(2p/a) 4+ 2 In( 2p/a))

1<j=<po

Apply Lemma 1 for the particular case i = 0 to obtain

Pr (uj > L1 4+ 2y/L1In(2p/a) + 21n(2p/a)) < za—p,
so that Pr(pp; > 0) < «/2. Similarly, let p, = minj<j<p, 4j = ming<j<p, oj_z ZIL:] ngl)ﬂi and consider any, possibly

correlated, non-central chi-squared variables v; ~ XLZ]; ue J €L p1). We have

Pr(p11 < p1) < Pr( min v; < A) <p Pr(vj < A),
1sj=p;

A straightforward calculus shows that, under the condition (12) on f,, one has w, + Ly — 24/(L1 + 2u.) In(2p/a) > A
Thus, Lemma 1 yields Pr(v; < 1) < «/(2p) and, therefore, Pr(p11 < p1) < /2, which completes the proof.

Proof of Theorem 5. We start with the following lemma:

Lemma 3.

Pr (max |67/0% — 1| < K) >1—a,
1<j<p
where k was defined in (21).
Let A be the event {maxi<j<, |67/0% — 1| < i} and I 4 its indicator. By Lemma 3,
Pr(x # x) < Pr((X # X)) +a, (32)
where
Pr((% # x)La) < Pr((Po1 > 0).4) + Pr((p11 < p1)la)- (33)

Let ; = 672 S oY Y(1 Y(1 )2. Then, on the event A
Pr((&j >Ala | %= 0) =Pr((y > 21 67/07) L) < Pr(y; > 1),

where u; ~ XL21’ j€{1,...,po}. Hence, following the arguments of Theorem 3, by Lemma 1

Pr (o1 > 0)L4) < Pr <(max G > Al | x = 0) <Pr(max u; > 1) < (34)

15j=<p 1<j<po

N R

Similarly, Pr ((EJ <A)la %= 1) < Pr(v < A1(1+«)), where v; ~ X{i.psd € {1,....p1}. Then, under the condi-
tion (12) of the theorem, Lemma 1 yields

Pr((p11 < p1)ia) < Pr( min v < A1(1 +;<)> <2 (35)
1<j<p; 2
Combination of (32)-(35) completes the proof.
Proof of Theorem 6. Assume that Y, is from the Ith class. From (15) we have Pr( 1 (Il#D < Pr(f # 1| X =x)+ Pr(X # x),
X 1

l
where Pr(X # x) < 2a by Theorem 5. Consider a set 2 = {w : X = x} with Pr(§£2) > 1 — «. In order to bound above
Pr(l # 1 | X = x) we assume that w € £2. We will use the following two lemmas:

Lemma 4. If |[£F — S| < Amin(E*)/2, then [|(£%)7" — (Z*)7|| < 2 A 5(SY) ITF — =¥

mm(

Lemma 5. Under the condition (25), Pr (||E* | < Amax(Z*) C”“) >1- 2.

From Lemmas 4 and 5 it follows that under (25),

Pr(I()™ = (=) < vprny) = 1— 20, (36)
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where y;, v, is defined in (26). Furthermore, for any 1 < k <1,

;- Y () = (=)7") (Y - ¥p)
(Y5 — YT (=)~ (Y5 — Y;)

< I=(E) 7T = =) = wlIE) T - (=97 (37)

Since the sample mean and the sample covariance matrix are independent in the case of the normal distribution,
inequalities (36) and (37) imply that with probability at least 1 — 2«

p(Yg = YP)T(5F )1<Yz; Y2 = e (Y5 = V) (Y* Y

= 1 (Y — ¥ T(2) 'Y — Y) — on (Y — v‘z G - Y

+ o (Y =Y ((z*) - (= ))(Y* Y7 - pk(v* Y”*) (@)‘1—@:) ") (% - Y
< i1+ Vo) (Y5 = V) TS0V = Y27%) = o1 = 7, ) (Vg = YT (7)1 (Y5 = Y)

Define p; = pi(1 4 yp,.n,) and p, = pr(1 — ¥p, n,)- In particular, note that pj o, = p1o(1 — sz],Nz ). Repeating the proof of
Theorem 1 but with p; and p, and under the stronger condition (27), obtain Pr(i # 1| X = x) < 2a that, together with
(15) and Pr(x # x) < 2a, completes the proof.

Proof of Lemma 3. Note that <7j_2(N1 —L)67 ~ x§,_, and apply Lemma 1 to obtain Pr(|6? /0 — 1| > «) < «/p for all
je{1,...,p}and, therefore, Pr (max;<j<p |67 /0% — 1| > k) < a.

Proof of Lemma 4. Under the condition of the lemma we have

I(E=H" = min a'>%a > min a's*a— max a'(ZF — 2")a > hmin(T7)/2

and, therefore,

IE) T = (=) < IED) - ISR —=*) - 1S9 71 < 20539 ISF — =7 .

mm(

Proof of Lemma 5. Define Z; = (Y;“,)(Z) —m ~ N(0,,,X%), i € {1, n§2)}, I € {1,...,L}. The sample covariance
matrix is translation invariant and, therefore,
) L
1 __
(2) T
121:,21:(2” )2y -7) = ; IZ:Z:!Z N, ;”z ZZ, =S, -85,

Thus,
IS% — =% < IS1 — =*|| + ISz - (38)

By Remark 5.51 of [25], under the conditions of the lemma there exists an absolute constant Cy such that

C
Pr <||s1 N °p1> >1-a. (39)
N,
Consider now S,. Define a matrix Z < RP<L with columns Z, I € {1,...,1L} and the diagonal matrix D =

diag (\/E e W) It is easy to see that S, = N~!(ZD)(ZD)T and that matrix & = (=*)~/2ZD has iid. A(0, 1)
entries. Indeed, columns =, = \/E(E*) 1/2Z, of matrix = are independent with Cov(Z;) = I,,. Hence,
IS21l = Ny 1ZD])* = Ny ' [VE* &[> < Ny ! Ama(SH) I
Then, by Corollary 5.35 of [25]
Pr <||52|| < Ny Amax(E¥) (Jp?r Vi+ \/m)2> >1-«
that, under (25), yields
Pr([IS2]l < Mmax(Z*)N; ' p1) = 1 —a. (40)

Combination of (38)-(40) completes the proof with C; = max(./C, 9).
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