
DRAFT VERSION OCTOBER 1, 2020
Typeset using LATEX twocolumn style in AASTeX62

On the maximum stellar rotation to form a black hole without an accompanying luminous transient

ARIADNA MURGUIA-BERTHIER,1, 2 ALDO BATTA,3, 4, 1, 2 AGNIESZKA JANIUK,5, 2 ENRICO RAMIREZ-RUIZ,1, 2 ILYA MANDEL,6, 7, 8, 2

SCOTT C. NOBLE,9 AND ROSA WALLACE EVERSON1, 2

1Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
2DARK, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

3Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla 72840, México
4Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, CDMX, C.P. 03940, Mexico

5Centrum Fizyki Teoretycznej PAN Al. Lotników 32/46, 02-668 Warsaw, Poland
6Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia

7The ARC Center of Excellence for Gravitational Wave Discovery – OzGrav
8Institute of Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom

9Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

ABSTRACT

The collapse of a massive star with low angular momentum content is commonly argued to result in the
formation of a black hole without an accompanying bright transient. Our goal in this Letter is to understand
the flow in and around a newly-formed black hole, involving accretion and rotation, via general relativistic
hydrodynamics simulations aimed at studying the conditions under which infalling material can accrete without
forming a centrifugally supported structure and, as a result, generate no effective feedback. If the feedback
from the black hole is, on the other hand, significant, the collapse would be halted and we suggest that the
event is likely to be followed by a bright transient. We find that feedback is only efficient if the specific angular
momentum of the infalling material at the innermost stable circular orbit exceeds that of geodesic circular flow
at that radius by at least ≈ 20%. We use the results of our simulations to constrain the maximal stellar rotation
rates of the disappearing massive progenitors PHL293B-LBV and N6946-BH1, and to provide an estimate of the
overall rate of disappearing massive stars. We find that about a few percent of single O-type stars with measured
rotational velocities are expected to spin below the critical value before collapse and are thus predicted to vanish
without a trace.

Keywords: stars: massive, black holes, direct collapse, disks: hydrodynamics

1. INTRODUCTION

Recent evidence for the disappearance of massive stars
(Gerke et al. 2015; Adams et al. 2017; Allan et al. 2020) em-
phasizes the importance of studying the formation of black
holes (BHs) and the conditions under which their formation
might trigger a bright transient event (Fryer 1999; Woosley
& Heger 2006; Lovegrove & Woosley 2013; Smartt 2015;
Kochanek 2015; Sukhbold et al. 2016).

It is widely believed that the lack of a bright transient is due
to the collapse of a slowly rotating star (Fryer 1999; Smartt
2015). In this scenario, it is commonly assumed that the
central engine involves a newly-formed BH accreting mate-
rial from the collapsing star. The properties of the inflowing
material depend on the internal structure of the pre-collapse
star and, in particular, its angular momentum (Perna et al.
2014; Lee & Ramirez-Ruiz 2006; Zalamea & Beloborodov
2009). The angular momentum content of the stellar pro-
genitor is a key ingredient as even a small amount of ro-

tation can break spherical symmetry and could produce a
centrifugally-supported accretion disk, which will evolve via
internal magneto-hydrodynamic (MHD) stresses (Balbus &
Hawley 1991). It has been noted that even in the absence
of rotation, convective motions in the outer parts of highly
evolved stars could also produce accretion disks (Gilkis &
Soker 2014, 2016; Quataert et al. 2019).

Spherical accretion onto BHs is relatively inefficient at
producing feedback because the material is compressed but
not shocked and thus cannot effectively convert gravitational
to thermal energy (Bondi 1952; Blondin & Raymer 2012).
This changes dramatically when the infalling material has
a critical amount of specific angular momentum (Fryxell &
Taam 1988; MacLeod & Ramirez-Ruiz 2015). When this is
the case and if material is injected at large radii, a standard
accretion disk will form. Disk material will then gradually
spiral inwards as internal MHD stress transports its angular
momentum outwards.
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Accretion disks naturally produce MHD winds, which
carry both bulk kinetic energy and ordered Poynting flux
(Tchekhovskoy et al. 2011; McKinney et al. 2012). The
energy released by this accretion disk feedback is expected
to be significantly larger than the binding energy of the star
(Kohri et al. 2005; Yuan & Narayan 2014), which implies
that the motion of the inflowing stellar gas can be effectively
reversed. If the inflow is halted, we can then set constraints
on the final mass and spin of the newly-formed BH (Batta
& Ramirez-Ruiz 2019). Our understanding of the fate of the
collapsing star thus depends on our ability to determine the
critical specific angular momentum below which material is
able to accrete without generating feedback.

General relativity plays a crucial role and sets the specific
angular momentum at the innermost stable circular orbit. The
flow pattern changes dramatically if the specific angular mo-
mentum of the inflowing material is near this critical value,
as gas will not only be compressed but will be able to dis-
sipate its motion perpendicular to the plane of symmetry
and form a disk that is only marginally supported by rota-
tion (Beloborodov & Illarionov 2001; Lee & Ramirez-Ruiz
2006; Zalamea & Beloborodov 2009). As the specific angu-
lar momentum increases, the rotational support becomes pro-
gressively more dominant until a standard Keplerian disk is
formed. In this Letter we perform the first multidimensional
general relativistic simulations of uniformly rotating, low an-
gular momentum non-magnetized flows (Section 2), in order
to derive the properties of the flow near this critical transition
(Section 3) and establish when feedback becomes relevant
(Section 4). We then make use of these results to obtain an
upper limit on the angular momentum that would allow the
observed massive stellar progenitors to vanish without a trace
(Section 5).

2. NUMERICAL SETUP AND INITIAL CONDITIONS

We performed two-dimensional numerical simulations
of low angular momentum, flows using the Eulerian code
HARM (Gammie et al. 2003; Noble et al. 2006), which
solves the equations of general relativistic MHD (GRMHD).
Our setup consists of a quasi-radial inflow of non-magnetized
gas onto an accreting BH. The infalling gas has specific angu-
lar momentum near the critical value, defined as that assigned
to the innermost stable circular orbit (ISCO) of a BH. The
numerical setup is similar to the one described in Suková &
Janiuk (2015), Suková et al. (2017), Janiuk et al. (2018) and
Palit et al. (2019).

The boundary conditions in the angular direction are set
to be periodic while the outer inner boundary is set to be
out-flowing and the outer radial boundary is set to the inflow
condition. This boundary is placed at large enough radii such
that it will not impact the central region over the duration of
the simulation (≈ 300rg/c) (Suková et al. 2017).

The units of the code are in the geometric system in which
lengths are expressed in terms of the gravitational radius

rg =
GMbh

c2 , (1)

where Mbh is the mass of the BH. For converting to cgs
units, we used the same convention as that described in Ja-
niuk (2019). In this convention, if Mbh = 1M�, the time
unit is 5× 10−6s and rg = 1.48km. In our particular case,
we choose Mbh = 20M�, which corresponds to a time unit of
9.9×10−5s, and a length unit of 29.5km. For our simulations,
the enclosed mass in the computational domain, defined as
2π
∫ π

0

∫ Rdomain

Rin
ρ
√

−gdrdθ, is chosen to be 0.2M� (where g is
the determinant of the metric, Rin is the inner radius, and
Rdomain is the domain size), which in turn corresponds to a
mass accretion rate of 0.1M�/s.

The domain covers Rdomain = 200rg around the BH for sim-
ulations with a non-spinning BH, and Rdomain = 100rg for
simulations with spin. The resolution is 800× 800 cells in
the x1 and x2 directions, where x1 and x2 are the coordi-
nates in spherical Kerr-Schild form for a non-spinning BH,
and 400× 400 for a BH with spin. The initial radial com-
ponent of the velocity (ur) of the material is determined by
the relativistic version of the Bernoulli equation (Shapiro &
Teukolsky 1986). In this formalism, the critical point (rs,
where subscript s stands for the sonic point), where the flow
becomes supersonic, is set as a free parameter. In this case,
the critical point lies outside the domain at rs = 1000rg, re-
sembling a collapsing 34M� star from models of Woosley &
Heger (2006). This implies that matter is always supersonic
within our computational domain. The fluid is considered a
polytrope with a pressure P = Kργ , where ρ is the density,
γ = 4/3 is the adiabatic index, and K is the specific entropy,
in this case taken to be that of a relativistic fluid with ineffi-
cient cooling. In what follows we describe how we generate
the initial conditions.

Once the critical point is determined, the velocity at this
critical point is (Shapiro & Teukolsky 1986):

[ur
s]

2 =
GMbh

2rs
, (2)

where r is the radial coordinate and ur is the radial component
of the four-velocity. The radial velocity can be obtained by
numerically solving the relativistic Bernoulli equation:(

1 +
γ

γ − 1
P
ρ

)2(
1 −

2GMbh

r
+ [ur]2

)
= constant, (3)

and the density is set by the mass accretion rate Ṁ:

ρ =
Ṁ

4πr2ur . (4)

The specific entropy value, K, depends on the radial veloc-
ity and is taken to be (Suková & Janiuk 2015; Suková et al.
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2017; Palit et al. 2019):

K =
(

ur4πr2 c
2

γ−1
s

γ
1

γ−1 Ṁ

)γ−1

, (5)

where c2
s = γP

ρ is the local sound speed.
In order to derive the angular velocity at each radius, we

use the specific energy and angular momentum at the ISCO
(Suková & Janiuk 2015; Suková et al. 2017; Palit et al. 2019):

εisco = −ut,isco =
1 − 2/risco + a/r3/2

isco√
1 − 3/risco + 2a/r3/2

isco

(6)

and

lisco = uφ,isco =
r1/2

isco − 2a/risco + a2/r3/2
isco√

1 − 3/risco + 2a/r3/2
isco

, (7)

where the radius of the ISCO risco in units of rg if a func-
tion of the dimensionless BH spin a. The angular velocity
in Boyer-Lindquist coordinates for a Kerr metric can then be
constructed as

uφ = gφνuν , (8)

where ν is an index used for Einstein summation notation,
ν belongs to {t,r,θ,φ}. For geodesic circular motion at the
ISCO, the angular velocity is thus

uφisco = −gφtεisco + gφφlisco, (9)

where the components of the Kerr BH metric are gtφ =
−2ar/(Σ∆) and gφφ = (∆ − a2 sin2 θ)/(Σ∆sin2 θ), with Σ =
r2 + a2 cos2 θ, ∆ = r2 − 2r + a2, and θ is the angular coordi-
nate.

In our simulations, we include a factor C sin2 θ in the initial
angular velocity profile such that

uφ = C sin2 θ(−gtφεisco + gφφlisco). (10)

The factor sin2 θ ensures that the angular momentum van-
ishes smoothly in the polar regions (Suková et al. 2017), and
C is a parameter that we vary. Note that C = 0 corresponds to
Bondi spherical accretion.

The initial angular momentum per unit mass is then given
by l = uφ = gφνuν . In the case of a = 0, it reduces to

l = Clisco sin2 θ. (11)

In what follows we study the outcome of our simulations as
we systematically vary C from the classical C = 0 (spherical
Bondi) to C = 2. This allows us to study the formation of
accretion disks in low angular momentum flows along with
exploring the dissipation of energy in the flow and ensuing
feedback.

3. LOW ANGULAR MOMENTUM FLOWS

As the star collapses, material will flow towards the newly
formed BH and its angular momentum content will deter-
mine the final fate of the accreting object. If there is even
a small amount of angular momentum, there will be dissi-
pation of energy at the equator as material is shocked rather
than solely compressed (Beloborodov & Illarionov 2001; Lee
& Ramirez-Ruiz 2006; Zalamea & Beloborodov 2009).

If the specific angular momentum is below critical, the
energy dissipation will be small and the heated gas will be
promptly advected onto the BH. This is shown in Figure 1,
where we plot contours of internal energy density and ve-
locity vectors from simulations with varying C. The internal
energy density in our simulations is related to the pressure as
U = P

γ−1 . As the specific angular momentum increases, ma-
terial will be marginally bound and shocked near the equa-
tor before being accreted. When the angular momentum is
near the critical one, a shock discontinuity forms that steadily
dissipates energy, which leads to a significant pressure build
up. This is most evidently seen in the simulations at around
C = 1.1. This pressure build up slows down the incoming
material and produces an angular momentum redistribution
shock. It is noteworthy to point out that this shock is only
transonic for the case of C = 2. It is useful to compare the en-
ergy density in cases with higher angular momentum to the
case C = 0, where we expect inefficient feedback.

As more material accumulates near the ISCO, the pres-
sure supported structure grows and expands for C & 1.2, ul-
timately halting the flow. The top panel of Figure 2 com-
pares the time evolution of the energy dissipation for simula-
tions with C = 0.9 and C = 1.2. In the case of C = 0.9, where
the specific angular momentum is below the critical one, the
dissipated energy is advected with the flow before being ac-
creted by the BH. When C = 1.2, a rotationally supported
structure forms, which creates an expanding high-pressure
region or hot bubble. The energy accumulation in this re-
gion continues until the end of the simulations, leading to
the steady increase of the bubble’s size. This steady accu-
mulation of energy could, in principle, halt the collapse of
the infalling star and cause the envelope to be disrupted. The
bottom panel of Figure 2 shows the position of the shock in
the equatorial plane as a function of time, as well as the ve-
locity of the shock. The shock moves outward with a veloc-
ity that is roughly constant in time and is larger than the es-
cape velocity at the outer edge of the computational domain
(which is 0.07c). The material inside the shock will gain in-
ternal specific energy similar to the shock’s kinetic energy,
which is larger than the specific binding energy at the edge
of the computational domain. This means that the expanding
shock will be able to halt the collapse and effectively unbind
the material at the edge of the computational domain. How-
ever, this should be treated with caution, because it ignores
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Figure 1. Contour plot of internal energy density (in code units) at t = 300rg/c for simulations of initially non-spinning BHs (a0 = 0) with
varying C. The arrows represent the velocity vectors of the flow, and the cyan circle shows the location of the ISCO.

the pressure from external material, which may act as a lid.
In order to reach firm conclusions about the fate of the col-
lapsing star, we need to track the long-term evolution of the
shock as it evolves through the entire stellar interior.

We note that in our simulations, we don’t include the ef-
fects of a changing metric, which are explored by Janiuk et al.
(2018). Not surprisingly, the authors found that the BH ac-
cretes matter more rapidly for a changing metric, which can
potentially alter the critical value of C. However, this effect is
only relevant in our simulations at times that are much larger
than those currently explored. This is becaus throughout our
simulation, the BH only accretes a fraction . 0.01 of its own
mass, and thus the effects of both the self-gravity of the gas
residing in the box and the corresponding change in the met-
ric can be safely ignored. The critical angular momentum
can also be altered by the inclusion of magnetic fields in the
pre-collapse progenitor as well as the inclusion of radiation
feedback. In the former case there can be additional outflows
driven by the magnetic field stresses that can inject extra en-
ergy into the infalling material (McKinney et al. 2012; Janiuk
2019; Batta & Ramirez-Ruiz 2019). In the latter case, we ex-
pect that photons will be entirely advected onto the BH by
the very optically thick accretion flow that is many orders
of magnitude above the Eddington mass accretion limit in
our simulation. The material is also expected to be optically
thick to neutrinos, but if hypercritical accretion produces a
neutrino-driven outflow, it could further help unbind the star
(Kohri et al. 2005).

4. ENERGY DISSIPATION AND FEEDBACK

As shown in Section 3, the dissipation of energy in the in-
falling gas from a collapsing star with C & 1.2 can steadily
accumulate near the equatorial plane. In this case, the energy
dissipation rate exceeds the advection rate as the size of the
dissipation region increases and, as a result, a hot pressure

region or bubble is produced. This bubble, surrounded by
a clear discontinuity in both density and velocity, grows as
material continues to be accreted. The corresponding pres-
sure build up halts the motion of the infalling material in the
equatorial plane while increasing the rate of accretion in the
polar direction, as material at high latitudes is deflected to-
wards the BH (Figure 1). This can be seen in Figure 3, which
shows the accretion rate in the polar direction as a function
of time for all simulations with initial a = 0 and varying C.

The amount of energy dissipated by accretion is commonly
thought to be primarily determined by Ṁ. Yet, since BHs do
not have a hard surface, the feedback efficiency cannot be
given solely by Ṁ as in the case of neutron stars or white
dwarfs. Nor can BHs build up enough pressure to slow down
the infalling gas. Therefore, spherical accretion onto BHs
advects any dissipated energy, without appreciable feedback.
This situation changes dramatically when the inflow has a
non-negligible amount of angular momentum and material is
able to form a rotationally supported structure. In these cases,
the energy dissipation rate is drastically altered. This can be
seen in Figure 4, where we plot in the top panel the inter-
nal energy density profile (normalized to Bondi) around the
ISCO as a function of θ. In this figure, θ = 90◦ corresponds
to the equator and θ = 0◦ (180◦) to the polar direction.

Even though there is internal energy and mass accumula-
tion when C . 1.2, feedback will be inefficient because the
flow is supersonic and the internal energy will be advected.
The dissipation rate increases dramatically with C as can be
seen in the bottom panel of Figure 4. Plotted in this panel
is the integrated energy density out to a given radial coor-
dinate normalized to the classical Bondi case (C = 0). The
total dissipated energy increases as material with low angu-
lar momentum is shocked in the equatorial plane before be-
ing advected onto the BH. A noticeable transition occurs at
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Figure 2. Top panel: The evolution of the internal energy density
for two different simulations with C = 0.9 and C = 1.2 plotted at two
different times for BHs with initial spin a0 = 0. The resolution is the
same as in Figure 1. Bottom panel: The location of the shock dis-
continuity in the equatorial plane as a function of time. Plotted here
are the shock locations for C = 2 (purple line), C = 1.5 (pink line),
and C = 1.2 (blue line). Shown in the legend are the average shock
front expansion velocities measured at the equator for the different
values of C.

C ≈ 1.2, as material begins to form a rotationally supported
structure. The now differentially rotating flow requires MHD
stress in order to dissipate energy and transport angular mo-
mentum, thereby enabling the inward accretion of gas. At
this stage, the energy dissipation rate decreases as material
becomes rotationally supported and shock dissipation is re-
placed by shear viscosity. In the absence of magnetic fields,
shear viscosity in our simulation is driven by numerical dis-
sipation, which also acts over many orbital timescales. We
thus caution the reader that the exact value of C from our
hydrodynamical simulations might be altered when internal
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Figure 3. Mass accretion rates (in units of Ṁbondi) in the polar region
for simulations with varying C and initially non-spinning BHs. The
values for both Ṁ and ˙Mbondi are averaged at the ISCO over one
quadrant of the simulation. The polar region is defined here by 0◦ ≤
θ < 60◦, with θ = 90 corresponding to the equatorial plane.

MHD stresses are self-consistently included, as a magnetized
outflow can form that can further help halt the stellar collapse
(McKinney et al. 2012; Janiuk 2019; Batta & Ramirez-Ruiz
2019). In our current simulations, it is around C ≈ 1.2 that
we see the formation of the hot bubble, which continues to
grow as the dissipated energy effectively accumulates near
the ISCO (Figure 2). As the angular momentum continues
to increase, a disk forms, which halts the advection of ma-
terial and acts as a feedback term to slow the growth of en-
ergy dissipation near the ISCO. We thus conclude that for
flows with C & 1.2, we expect feedback to likely halt the
collapse of the infalling star. Because the binding energy of
failed SN progenitors steeply declines with increasing radius,
it is suggested that any additional accumulation of energy
will ultimately result in the disruption of the entire collaps-
ing progenitor (Quataert et al. 2019; Batta & Ramirez-Ruiz
2019). As the expanding envelope cools and radiation dif-
fuses from it (e.g., Schrøder et al. 2020), a transient is ex-
pected to accompany the formation of the BH (Fryer 1999;
Woosley & Heger 2006; Lovegrove & Woosley 2013; Smartt
2015; Kochanek 2015; Sukhbold et al. 2016; Quataert et al.
2019).

In addition to the initially non-spinning a0 = 0 BH models,
we also ran simulations with a0 = 0.05 and a0 = 0.1 and con-
firm that the feedback transition also occurs near C≈ 1.2 and
that the energy dissipation profiles are similar to those plot-
ted in Figure 4. This is consistent with Janiuk et al. (2018),
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Figure 4. The dissipation of energy in low angular momentum
flows. Top panel: Internal energy density at the ISCO as a function
of θ for initially non-spinning BHs. Here θ = 90◦ corresponds to the
equator. The normalization factor (Ubondi) corresponds to C = 0 case,
which is spherically symmetric accretion and is solely driven by the
compression of the flow. Bottom panel: Integrated internal energy
out to a given radial scale as a function of C. The integrated internal
energy is calculated as U(r) = 2π

∫ π

0

∫ r
2rg

√
−g(r′)U(r′)dr′dθ, where

g is the determinant of the metric and we use r = [1,1.17,1.33]risco.
All the analyses make use of the snapshot at t = 300rg/c for all sim-
ulations.

where the authors use a dynamical metric to explore how the
accretion onto a BH influences the spin and final mass of the
BH. They conclude that different initial spins lead to rather
similar qualitative results, as we have found here.

5. DISCUSSION

Having determined the critical specific angular momentum
at which accretion onto a BH can generate feedback, we turn
our attention to the conditions required for a stellar progeni-
tor to collapse without producing a bright transient under the
assumption that significant feedback will unavoidably gener-
ate a discernible signal. In what follows, for simplicity, we
assume that the star is uniformly rotating.

The corresponding critical angular velocity of the stellar
progenitor is quantitatively estimated using the framework
established by Batta & Ramirez-Ruiz (2019), in which the
formation and evolution of a BH is followed throughout the
stellar collapse. For feedback not to be effective, the stel-
lar progenitor needs to satisfy the following condition at all
radii:

l(r)≤ lfb(r) = Cfblisco(r). (12)

Here Cfb is the critical normalization factor taken to be Cfb =
1.2 and lisco(r) is the specific angular momentum at the ISCO
(Bardeen et al. 1972), which evolves as collapsing material
is accreted by the BH.

While rotating at such limiting angular velocity, only the
star’s outermost material has enough specific angular mo-
mentum ΩlimR2

∗ to balance the critical condition Cfb lisco(R∗).
At the same time, the rest of the material satisfies condi-
tion 12. In the ensuing subsections we express Ωlim in terms
of the star’s breakup angular velocity, Ωbreak =

(
GM∗/R3

∗
)1/2

,
where M∗ and R∗ are the stellar mass and radius, respectively.

5.1. On the disappearing stellar progenitors of N6946-BH1
and PHL293B-LBV

Let us now turn our attention to the properties of N6946-
BH1 and PHL293B-LBV, two stars that have been argued to
disappear without an accompanying bright transient (Gerke
et al. 2015; Adams et al. 2017; Allan et al. 2020). While
other explanations might be viable, a collapse to a BH with-
out feedback is a possible explanation for the sudden disap-
pearance of the star.

We use the stellar evolution code MESA (Paxton et al.
2011, 2013) version 8845 in order to constrain the structure
and observational properties of these stars. We use the de-
fault MESA parameters for massive stars. For simplicity, our
models are non-rotating, and their evolution is halted when
carbon burning ends. We ran the models using a Dutch hot
wind scheme (Glebbeek et al. 2009) with a scaling factor
of 0.8. In this wind scheme, the mass loss rate prescription
changes depending on the evolutionary stage of the star. For
the rest of the paper, we take Z� = 0.02.

N6946-BH1 is a disappearing star found by Gerke et al.
(2015) and Adams et al. (2017) using the Large Binocular
Telescope. The star is found to be embedded in a highly
dusty environment in the galaxy NGC 6946. This red su-
pergiant star was observed to increase its optical magnitude
by around 5 magnitudes after a weak optical outburst in 2009.
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Figure 5. Left Panel: Hertzsprung-Russell diagram of the MESA models used in our analysis (Paxton et al. 2011, 2013). The solid lines
are models with Z = Z�. The solid lines are stellar models that start at MZAMS = 15M� and are plotted every 5M� until 40M�. In teal we
show the luminosity and temperature constraints for N6946-BH1 (Gerke et al. 2015; Adams et al. 2017). The dotted lines represent models
with Z = 0.02Z�. Models start at MZAMS = 80M� and are plotted every 10M� until 120M�. Models with Z = 0.02Z� were used to constrain
PHL293B-LBV (Allan et al. 2020), whose luminosity and temperature constraints are shown in orchid. Middle Panel: Maximum angular
velocity at which a star can disappear without an accompanying bright transient as a function of the initial mass of the progenitor. Here
Ωbreak is the breakup velocity. The different lines are the constraints derived at different metallicities, which have been selected to match those
of N6946-BH1 and PHL293B-LBV. Also plotted are the mass estimates we derive from our MESA models. Models in this specific mass
range spend a fraction of their last 104 years of evolution within the corresponding uncertainty region in the HR diagram (Left Panel). Right
Panel: Angular velocity as a function of the initial mass of the stellar progenitor. Plotted are the rotational velocities of single O-type stars at
Z = 0.2Z� taken from Ramírez-Agudelo et al. (2013), with masses derived by Weidner & Vink (2010). We evolve the rotational velocities of
MESA models of these O-type stars by applying Equation 13 and assuming rigid body rotation until carbon burning ends (see text for details
about this assumption). These pre-collapse rotational velocities, labelled as evolved data, are compared with the range of angular velocities for
these stars to collapse without an accompanying bright transient (hatched region).

One possibility for this disappearing star is a collapse to a BH
where the angular momentum was low enough that feedback
from the BH was unable to unbind the collapsing progenitor.

Information on the progenitor was deduced using archival
data from the Hubble Space Telescope, which was taken
around two years before the weak outburst. Using dust and
stellar evolution models, Gerke et al. (2015) and Adams et al.
(2017) deduced a luminosity of logL/L� = 5.29+0.04

−0.06 and a
temperature of T = 3260+1670

−320 K for the pre-collapse progeni-
tor. Their solar metallicity models constrained the progenitor
mass to be 20 − 30M�.

PHL293B-LBV (Allan et al. 2020) is another disappear-
ing star. This luminous blue variable (LBV) was found in
the galaxy PHL293B. Allan et al. (2020) used ESO/VLT’s
ESPRESSO and X-shooter to obtain spectra of this galaxy
in 2019. These spectra lacked an LBV signature, which was
clearly present from 2011 to 2019. One of many viable pos-
sibilities is that when the eruptive period ended, the LBV col-
lapsed into a BH. Using radiative transfer models, Allan et al.
(2020) derived a luminosity between logL/L� = 6.3 − 6.7
and a temperature between T = 9,500 − 15,000K for the pre-
collapse star.

We compare the temperature and luminosity constraints of
N6946-BH1 and PHL293B-LBV with our stellar models in
order to constrain both their masses and internal structures.
The left panel of figure 5 shows the locations of N6946-BH1
and PHL293B-LBV on the Hertzsprung-Russell diagram to-

gether with the MESA stellar evolutionary models. The solid
lines correspond to models with Z = Z�, which are relevant
to N6946-BH1 (Gerke et al. 2015; Adams et al. 2017), while
the dotted lines correspond to models with Z = 0.02Z�, ap-
propriate for PHL293B-LBV (Allan et al. 2020). Using these
models we constrain the initial masses of N6946-BH1 and
PHL293B-LBV to be 23 − 28M� and 98 − 130M�, respec-
tively. These constraints are consistent with those quoted
in the literature. We caution the reader that given the mass
range deduced for PHL293B-LBV, the final outcome could
be a pair instability supernova (Woosley 2017). Nonetheless,
the lack of a transient event for PHL293B-LBV suggests that
this was not the case, as argued by Allan et al. (2020).

We use these models to also constrain the internal density
structure of the progenitor, which in turn sets the moment of
inertia and allows us to place a limit on the maximum angu-
lar velocity needed for the star to collapse without forming a
disk. These limits for N6946-BH1 and PHL293B-LBV are
plotted in the middle panel of Figure 5. Within the hatched
region, the angular velocity of the pre-collapse progenitor is
below the critical one in which feedback becomes efficient.
The regions extends to higher fractions of the break-up veloc-
ity for high-mass solar-metallicity stars because these stars
self-strip due to rapid wind-driven mass loss, leaving behind
compact, low moment of inertia Wolf-Rayet stars. We thus
suggest that progenitors within this region will collapse with-
out producing a bright transient.
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5.2. Is it common for stars to vanish without a trace?

In the preceding sections we have endeavoured to out-
line the rotational constraints needed for stellar progenitors
to vanish without a trace. We caution that even in the ab-
sence of rotation, the outer layers might be still ejected by,
for example, the loss of rest mass energy via neutrinos (e.g.,
Lovegrove & Woosley 2013) and could still produce a faint
transient signal (e.g. MacLeod et al. 2017).

Herein we assume that stellar spin is an essential parameter
and turn to the problem of assembling the pre-collapse rota-
tional constraints derived in this Letter into a general scheme
involving the evolution of massive stars. In the right panel of
figure 5 we plot the observationally derived rotation rates of
single O-type (Z = 0.2Z�) stars taken from Ramírez-Agudelo
et al. (2013) with initial stellar masses derived by Weidner &
Vink (2010).

We produce MESA models to match the age and stellar
mass of these stars, using Z = 0.2Z� and assuming rigid body
rotation. Applying the observationally derived rotation rates,
we then make use of the following standard relation (Villata
1992):

1
Ω

dΩ
dt

= −
1
I∗

dI∗
dt

+
2
3

R2
∗

I∗

dM∗
dt

. (13)

Where where M∗ and R∗ are the stellar mass and radius, re-
spectively, I∗ = 8π

3

∫ R∗
0 ρ(r)r4dr is the moment of intertia of

the star, and Ω is the angular velocity. The evolution of the
rotational velocity is then computed until the end of the star’s
life, which in our models corresponds to the end of carbon
burning. In the right panel of Figure 5 we plot the final ro-
tational velocity derived for each observed system with the
corresponding symbols labelled as Evolved data.

Throughout this paper, we assumed rigid-body rotation,
i.e., very efficient angular momentum transport within the
star. It is evident that the mechanisms responsible for trans-
porting angular momentum inside massive stars are currently
not well understood (Kissin & Thompson 2015; Fuller & Ma
2019). Even in the simplest case of uniform rotation, we find
that stellar winds can extract a significant amount of angular
momentum from the star and in a small fraction of cases pro-
duce rotation rates close to those required for stars to vanish
without a trace (right panel of Figure 5). More specifically,
we find that ≈5% of the stars we evolved (from a total of
163) have (Ω/Ωbreak) below the critical value (hatched re-
gion in the right panel of Figure 5). In these cases we expect
the collapse to proceed without the formation of an accretion
disk, allowing the progenitor to vanish in our model.

Although the evolution of O-type stars may be be com-
monly associated with supernovae, some of them might be
expected to disappear. If single O-type stars with (Ω/Ωbreak)
below the critical value are expected to vanish, we then con-
clude that these objects are at least tens of times rarer than
standard supernova events. This of course has been derived

under the assumption that a standard supernova event is the
natural outcome for the vast majority of O-type stars with
(Ω/Ωbreak) above the critical value. Obviously, the above cal-
culation is limited and should be taken as an order of magni-
tude estimate at present. For example, using the same Dutch
hot wind scheme in MESA but with a scaling factor of 1.0
(instead of the standard 0.8) we find that≈7% of the stars we
evolved have (Ω/Ωbreak) below the critical (mass-dependent)
value.

This simple estimate for the rate of disappearing massive
stars should improve as more objects have their rotational
rates measured and massive stellar evolution modelling im-
proves. Having said this, it is important to note that this few
percent estimate is roughly consistent with the one derived by
Gerke et al. (2015), where they argued that the current rate of
vanishing stars is & 7% the rate of core collapse supernova.
This estimate can also be altered for red supergiants, as con-
vective motions in their outer layers might produce accretion
disks and thus effective feedback even in the absence of net
rotation (Quataert et al. 2019).

Most massive stars are born in binaries, and binary inter-
actions can significantly impact stellar structure and stellar
rotation through mass transfer and tides (Sana et al. 2012).
Accounting for the impact of binary evolution would further
change the expected fraction of vanishing stars.

Many core collapses of massive stars are expected to pro-
duce supernovae when forming neutron stars in spherical
explosions (Ugliano et al. 2012; Sukhbold et al. 2016) but
some are expected to have insufficient neutrino deposition
(Woosley 1993; Fryer et al. 2009; Lazzati et al. 2012; Love-
grove & Woosley 2013) and will form a BH in the center of
the star.

The modeling of stellar collapse leading to BH formation
is a formidable challenge to computational techniques. It is,
also, a formidable challenge for observers, in their quest for
finding stars that disappear. If we were to venture on a gen-
eral classification scheme for failed supernovae, on the hy-
pothesis that the central object involves a BH formed in a
core collapse explosion, we expect the specific angular mo-
mentum of the infalling stellar material to be a critical pa-
rameter. When l(r) . lfb(r) we predict the star will vanish
without a trace. On the other hand, when l(r) & lfb(r) the col-
lapse may instead be followed by a bright transient, whose
properties will likely depend on the mass and spin of the BH,
the rate at which gas is supplied, the spin orientation relative
to our line of sight, and the structure of the envelope through
which any outflows will be re-processed.
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