Reasoning About Recursive Tree Traversals

Yanjun Wang
Purdue University
West Lafayette, Indiana, USA
wang3204@purdue.edu

Dalin Zhang
Beijing Jiaotong University
Beijing, China
dalin@bjtu.edu.cn

Abstract

Traversals are commonly seen in tree data structures, and
performance-enhancing transformations between tree tra-
versals are critical for many applications. Existing ap-
proaches to reasoning about tree traversals and their trans-
formations are ad hoc, with various limitations on the
classes of traversals they can handle, the granularity of de-
pendence analysis, and the types of possible transforma-
tions. We propose RETREET, a framework in which one can
describe general recursive tree traversals, precisely repre-
sent iterations, schedules and dependences, and automati-
cally check data-race-freeness and transformation correct-
ness. The crux of the framework is a stack-based represen-
tation for iterations and an encoding to Monadic Second-
Order (MSO) logic over trees. Experiments show that RE-
TREET can automatically verify optimizations for complex
traversals on real-world data structures, such as CSS and
cycletrees, which are not possible before. Our framework is
also integrated with other MSO-based analysis techniques
to verify even more challenging program transformations.

CCS Concepts: « Theory of computation — Abstraction;
Program verification; Automated reasoning; « Software and
its engineering — Compilers; Recursion; « General and
reference — Verification.

Keywords: tree traversals, iterations, program equivalence,
monadic second-order logic

ACM Reference Format:

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu. 2021.
Reasoning About Recursive Tree Traversals. In 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’21), February 27-March 3, 2021, Virtual Event, Republic of Korea.

ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3437801.

3441617

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP °21), February 27-March 3, 2021, Virtual Event, Republic of
Korea, https://doi.org/10.1145/3437801.3441617.

Jinwei Liu
Beijing Jiaotong University
Beijing, China
12251187@bjtu.edu.cn

Xiaokang Qiu
Purdue University
West Lafayette, Indiana, USA
xkqiu@purdue.edu

1 Introduction

Trees are one of the most widely used data structures in
computer programming and data representations. Traver-
sal is a common means of manipulating tree data structures
for various systems, as diverse as syntax trees for compil-
ers [19], k-d trees for scientific simulation [11, 12, 21, 22],
and DOM trees for web browsers [16]. Due to dependence
and locality reasons, these traversals may iterate over the
tree in many different orders: pre-order, post-order, in-order
or more complex, and in parallel for disjoint regions of the
tree. A tree traversal can be regarded as a sequence of iter-
ations (each executing a code block on a tree node) ! and
many transformations essentially tweak the order of itera-
tions for better performance or code quality, with the hope
that no dependence between iterations is violated.

Matching this wide variety of applications, orders, and
transformations, there has been a fragmentation of mecha-
nisms that represent and analyze tree traversal programs,
each making different assumptions and tackling a differ-
ent class of traversals and transformations, using a differ-
ent formalism. For instance, Meyerovich and Bodik [15] and
Meyerovich et al. [16] use attribute grammars to represent
webpage rendering passes and automatically compose/par-
allelize them, but the traversals representable and fusible
are limited, as the dependence analysis is coarse-grained at
the attribute level. TreeFuser [26] uses a general imperative
language to represent traversals, but the dependence graph
it can build is similarly coarse-grained. In contrast, the re-
cently developed PolyRec [27] framework supports precise
instance-wise analyses for tree traversals, but the underly-
ing transducer representation limits the traversals they can
handle to a class called perfectly nested programs, which ex-
cludes mutual recursion and tree mutation. All these mech-
anisms are ad hoc and incompatible, making it impossible
to represent more complex traversals or combine heteroge-
neous code transformations. For instance, a simple, mutu-
ally recursive tree traversal is already beyond the scope of
all existing approaches (see our running example later).

1We call it an iteration because it is akin to a loop iteration in a loop.

https://doi.org/10.1145/3437801.3441617
https://doi.org/10.1145/3437801.3441617
https://doi.org/10.1145/3437801.3441617

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Therefore, toward automated reasoning about tree tra-
versals arising from emerging computing applications, we
believe that there are two fundamental research questions.
First, how to generally represent tree traversals and ana-
lyze the dependences between iterations? An expressive lan-
guage in which one can freely write and combine complex
tree traversals is a precursor of handling many new applica-
tions. Second, how to automatically verify the validity of
subtle transformations between tree traversals? From the
perspective of static analyses, the key challenge is how to de-
sign an appropriate abstraction of the program such that it
is as precise as possible yet amenable for automated reason-
ing. Our answers to these questions are RETREET, a general
framework (as illustrated in Figure 1) in which one can write
almost arbitrary tree traversals, reason about dependences
between iterations of fine granularity, and check correct-
ness of transformations automatically. This framework fea-
tures an abstract yet detailed characterization of iterations,
schedules and dependences, which we call Configuration, as
well as a powerful reasoning algorithm.

In this paper, we first present RETREET (“REcursive TREE
Traversal”) as an expressive intermediate language that al-
lows the user to flexibly describe tree traversals in a recur-
sive fashion (Section 2). Remarkably, RETREET can express
mutually recursive traversals, which cannot be handled by
existing techniques. Second, we propose Configuration as a
detailed, stack-based abstraction for dynamic instances in a
traversal (Section 3). Intuitively, a configuration profiles the
call stack maintained during the execution; it preserves the
full computation history except for function calls, i.e., recur-
sive calls become abstract and may return arbitrary values.
Furthermore, this abstraction can be encoded to Monadic
Second-Order (MSO) logic over trees, which allows us to
reason about dependences and check data-race-freeness and
equivalence of RETREET programs (Section 4). The encoded
formulae can be checked using MSO-based decision proce-
dures such as the one implemented in MoNa [7]. Our frame-
work is sound and incomplete. In other words, all verified
programs are indeed data-race-free/equivalent, but there is
no guarantee that all data-race-free/equivalent programs
can be verified. Therefore, finally, we show our framework
is practically useful by synthesizing or verifying provably-
correct optimizations for four different classes of programs,
including real-world applications such as CSS minification
and Cycletree routing, for the first time. One of these case
studies also shows how RETREET is integrated with other
MSO-based analysis techniques to verify list-traversal trans-
formations that cannot be handled by RETREET alone (Sec-
tion 5).

2 A Tree Traversal Language

In this section, we present RETREET, our imperative, gen-
eral tree traversal language. While RETREET is syntactically

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

simple and not intended to serve as an end-user program-
ming language, we envision RETREET as an intermediate lan-
guage for automatic analyses and many language features
commonly used in practice should be translated to RETREET
through a preprocessor. See more discussion in Section 2.1.

RETREET programs execute on a tree-shaped heap which
consists of a set of locations. Each location, also called node,
is the root of a (sub)tree and associated with a set dir of
pointer fields and a set f of local fields. Pointer fields dir
contain the references to the children of the original loca-
tion; local fields f store the local Int values.

The syntax of RETREET is shown in Figure 2. A program
consists of a set of functions; each has a single Loc param-
eter and optionally, a vector of Int parameters. We assume
every program has a Main function as the entry point of
the program. The body of a function comprises Blocks of
code combined using conditionals, sequentials and paral-
lelizations.

A block of code is either a function call or a straight-line
sequence of assignments. A function call takes as input a
LExpr which can be the current Loc parameter or any of
its descendants, and a sequence of AExpr’s of length as ex-
pected. Each AExpr is an integer expression combining Int
parameters and local fields of the Loc parameter. Non-call
assignments compute values of AExpr’s and assign them
to Int parameters, fields or special return variables. Note
that the functions in RETREET can be mutually recursive, i.e.,
two or more functions call each other. However, there is a
special syntactic restriction: every function g(n, 0) should
not call, directly or indirectly through inlining, itself, i.e.,
g(n, ...) with arbitrary Int arguments (see more discussion
below).

The semantics of RETREET is common as expected and
we omit the formal definition. In particular, all function pa-
rameters are call-by-value; the parallel execution adopts the
statement-level interleaving semantics (every execution is a
serialized interleaving of atomic statements).

Example 2.1. Figure 3 illustrates our running example,
which is a pair of mutually recursive tree traversals. Odd(n)
and Even(n) count the number of nodes at the odd and even
layers of the tree n, respectively (n is at layer 1, n.| is at layer
2, and so forth). Odd and Even recursively call each other;
and the Main function runs Odd and Even in parallel, and
returns the two computed numbers. Note that the mutual
recursion is beyond the capability of all existing automatic
frameworks that handle tree traversals [1, 15, 16, 26, 27, 32].

2.1 Discussion of the Language Design

We remark about some critical design features of RETREET.
Served as an intermediate language for analyses, RETREET
is semantically expressive but syntactically simple. In a nut-
shell, RETREET has been carefully designed to be maximally

Reasoning About Recursive Tree Traversals

code
block

run

.retreet

Break down

Runtime lterations

Traversal

Data Structure

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Abstract

(Section 3)

Y
1 Solve

P
MSO Formulae :
MONA Solver

s

(Section 4)

Figure 1. RETREET reasoning framework

ST Dependences between
(Section 2) Iterations
dir € Loc Fields v € Int Vars n € Loc Vars
f € Int Fields g : Function IDs
LExpr == n|LExpr.dir
AExpr == 0|1 ‘ n.f | v | AExpr + AExpr \ AExpr — AExpr
BExpr == LExpr == nil | true | AExpr> 0 | ! BExpr
| BExpr &8 BExpr
Assgn = nf= AExpr| v = AExpr
Block == o = g(LExpr, AExpr) | Assgn®
Stmt u= Block| if (BExpr) Stmt else Stmt\ Stmt ; Stmt
| {Stmt || Stmt}
Func = g(n,0){ Stmt}
Prog := Func'
Figure 2. Syntax of RETREET
Odd(n)

if (n == nil) return 0

else return Even(n.l) + Even(n.r) + 1
Even(n)

if (n == nil) return 0

else return Odd(n.l) + Odd(n.r)
Main(n)

{0 =0dd(n) || e = Even(n) }

return (o, e)

Figure 3. Mutually recursive traversals (original)

permissible of describing tree traversals, yet encodable to the
MSO logic.

Key Language Restrictions. Three major design features
make possible our MSO encoding presented in Section 4:

obviously terminating, single node traversal and no-tree-
mutation. Despite these restrictions, RETREET is still more
general and more expressive than the state of the art—to the
best of our knowledge, all the restrictions we discuss below
can be seen in all existing approaches (find more discussion
in Section 6).

Termination: RETREET allows obviously terminating tree
traversals. Any function g(n, ©) should not contain re-
cursive calls to g(n, . . .), regardless of directly in Stmt¢
or indirectly through inlining arbitrarily many calls in
Stmt. The restriction guarantees not only the termina-
tion, but also a bound of the steps of executions. With
this restriction, every function call makes progress to-
ward traversing the tree downward. Hence, the height
of the call stack will be bounded by the height of the
tree, and every statement ? is executed on a node at
most once. Therefore, running a RETREET program P
on a tree T will terminate in O(|P|"D)) steps where
h(T) is the height of the tree. This bound is critical
as it allows us to encode the program execution to
a tree model, with only a fixed amount of informa-
tion on each node. In contrast, RETREET excludes the
following program: A(n, k): if (k <= 0) return 0; else
return A(n, k-1) + ... The program terminates, but the
length of execution on node n is determined by the in-
put value k, which can be arbitrarily large and makes
our tree-based encoding impossible.

Single node traversal: In RETREET, all functions take only
one Loc parameter. Intuitively, this means the tree

2Notice that two different call sites of the same function are considered two
different statements. So the number of statements is bounded by the size
of the program.

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

traversal is not allowed to manipulate more than one
node at one time. For example, traversing two trees at
the same time to find the max height is not allowed in
RETREET. This is a nontrivial restriction and necessary
for our MSO encoding. The insight of this restriction
will be clearer in Section 4.

No tree mutation: Mutation to the tree topology is gen-
erally disallowed in RETREET. General tree mutations
will possibly affect the tree-ness of the topology, where
our tree-based encoding cannot fit in.

Other Restrictions for Simplification. As an intermedi-
ate language, RETREET has more syntactic restrictions, which
are not fundamental and does not jeopardize the expressiv-
ity. In particular, RETREET does not support loops, global

variables, return statements or integer arguments. These re-
strictions are not essential because loops or global variables

can be rewritten to recursion and local variables, respec-
tively. Return values or integer arguments can also be rewrit-
ten to local fields. As long as the rewritten program satisfies

the real restrictions we set forth above, it can be handled by

our framework. See our discussions below.

Loop-freeness: The RETREET language does not allow it-
erative loops. Recall that RETREET is meant to describe tree
traversals, and the no-loop restriction guarantees that the
program manipulates every node only a bounded number
of times, and hence the termination of the program. That
said, most typical loops or even nested loops traversing a
tree only compute a limited number of steps on each node,
and hence can be naturally converted to recursive functions
in RETREET.

No global variables: We omit global variables in RETREET.

However, it is not difficult to extend for global variables.
Note that when the program is sequential, i.e., no concur-
rency, one can simply replace a global variable with an ex-
tra parameter for every function, which copies in and copies
out the value of the global variable. In the presence of con-
currency, we need to refine the current syntax to reason
about the schedule of manipulations to global variables. Ba-
sically, every statement accessing a global variable forms a
separate Block, so that we can compare the order between
any two global variable operations.

No return statements and no integer arguments: We
handle recursive calls with return values with the following
preprocessing. For every function, we introduce a special
local field with the function name (if no conflict occurs) in
each node to store the return value of the function call. Each
return statement can be rewritten to a writing to the spe-
cial local field in the callee (the unique Loc argument of the
call). For each recursive call to a function in the program,
we ignore the return value from the call and instead read

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

O@d(n)) Even(n)
|f(n == I’lll) /] c0 |f(n == nll) /] cl
n.0dd =0//s0 n.Even =0 // s4
else else
Ezeﬂg:?) /5512 Odd(n.l) //s5
en(n. Odd(n.r) // s6

n.0dd = n.l.Even +

n.Even = n.l.Odd + n.r.Odd // s7
n.r.Even + 1//s3

Main(n)
{Odd(n) || // s8
Even(n)} //s9
n.Main = (n.Odd, n.Even) //s10

Figure 4. Mutually recursive traversals (no-return-value)

from the corresponding special local field of the callee. Re-
cursive calls with integer arguments are handled with simi-
lar preprocessing: the caller writes to special local fields of
the callee such that the callee can read them as integer argu-
ments. After this preprocessing step, the running example
shown in Figure 3 are rewritten to the one in Figure 4. °
For the simplification of presentation, in the rest of the
paper, we also assume: all trees are binary with two pointer
fields | and r, every function only calls itself or other func-
tions on n.| or n.r, and returns only a single Int value (which
is rewritten to a special local field), and every boolean ex-
pression is atomic, i.e., of the form LExpr == nil or AExpr >
0. Calls to other functions on n are always inlined to make
all operations on fields of n explicit. In addition, we assume
the program is free of null dereference, i.e., every term le.dir
is preceded by a guard le != nil. Note that relaxing these as-
sumptions will not affect any result of this paper, because
any RETREET program violating these assumptions can be
easily rewritten to a version satisfying the assumptions.

2.2 Code Blocks

With assumptions made above, RETREET programs can be
decomposed to code blocks, which are a key to our frame-
work. Each code block is a function call or a sequence of
straight-line, non-call assignments derived from the Block
symbol of the grammar (see Figure 2). We use some nec-
essary notations for blocks, of which the meaning is deter-
mined by the syntactic structure of the program. Figure 5
lists common sets of functions, blocks, parameters and nodes
that will be frequently used in this paper.

We also define the possible relations between blocks, as
shown in Figure 6. Every function’s body can be represented
as a syntax tree whose leaves are statement blocks and non-
leaf nodes are sequentials, conditionals or parallels. Then
the relation between two statement blocks is determined by

3Composed expressions, such as n.l.Even, are used for code readability. Ac-
cesses to the special local field are allowed when n == nil, since the trans-
formed program is not executable and used for analysis only. In our MSO
encoding (described in Section 4), isNil is a special MSO predicate.

Reasoning About Recursive Tree Traversals

AllFuncs the set of all functions
AllParams | the set of all Int function parameters
AllBlocks | the set of all blocks
AllCalls the set of all blocks for function calls
AlIN the set of all blocks for straight-line non-call
onCalls .
assignments
Blocks(f) | the set of all blocks belonging to a function f
Calls(f) Blocks(f) N AllCalls
Params(f) | the set of Int parameters for f
Nodes(T) | the set of all nodes in the tree T
the set of all possible paths (through statement-
Paths(t) level interleaving) to t from the entry point
of the function that t belongs to

Figure 5. Commonly used notations

LCA(s, t) | The least common ancestor (LCA) of blocks s
and t in the syntax tree.

sat s is a function call to f and t € Blocks(f).

s and t are from the same function definition,
ie., s, t € Blocks(f) for some function f.

s <t LCAC(s, t) is a sequential, i.e., s precedes t.
LCA(s, 1) is a conditional, i.e., there is a condi-
sTt tional if (...) then A else B such that s and t
belong to A and B, respectively.

LCA(s, t) is a parallel, i.e., s and t can be exe-
cuted in arbitrary order.

Figure 6. Relations between blocks

their positions in the syntax tree. In particular, when two
blocks s ~ t belong to the same function f, there are three
possible relations, determined by the least common ancestor
(LCA) node of s and t that is a sequential, conditional or
parallel.

Example 2.2. In our running example (Figure 4), there are
11 blocks. We number the blocks with s0 through s10, as
shown in the comment following each block. There are six
call blocks: AllCalls = {sl,s2,s5,s6,s8,s9}; and five non-
call blocks: AlINonCalls = {s0, s3, s4, s7,s10}. Take s6 for ex-
ample, Path(s6) is just the path from the beginning of func-
tion Even (which sb belongs to) to s6, i.e., from — cl to sb
then s6. The ~ relation holds between any two blocks from
the same group: sO through s3, s4 through s7, or s8 through
s10. s2 « s7 because s2 calls Even and s7 € Blocks(Even);
sb < s7 because sb precedes s7; sO T sl because sO belongs
to the if-branch and sl belongs to the else-branch; s8 || s9
because they are running in parallel.

Lemma 2.3. For any two statement blocks s and t, s ~ t if
and only if exactly one of the following relations holds: s < t,
sTtt<s,tTsors|t

Read&Write analysis. In our framework, data depen-
dences are represented and analyzed at the block level. We
perform a static analysis over the program to extract the sets
of local fields and variables being accessed in each non-call
block. Intuitively, we use several read sets and write sets

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

to represent local fields and global variables being read or
written, respectively, in each statement block.

For every non-call block s, we build the read set Ry by
adding all data fields and local variables that occur on the
RHS of an assignment. The data fields can be from the cur-
rent node (such as n.v) or a neighbor node (such as n.Lv).
The write set Wy can be built similarly: all data fields and
local variables that occur on the LHS of an assignment are
added.

3 Iteration Representation

As we mentioned above, code blocks (function calls or
straight-line assignments) are building blocks of RETREET
programs and are a key to our framework. In our running
example (Figure 4), there are 11 blocks. Then the execution
of a RETREET program is a sequence of iterations, each run-
ning a non-call code block on a tree node. For example, con-
sider executing our running example on a single-node u (i.e.,
u.l = u.r = nil), one possible execution is a sequence of iter-
ations (also called instances in the literature):

(s0, u.l), (sO, u.r), (s7,u), (s4, u.l), (s4, u.r), (s3, u)

Note that every iteration is unique and appears at most once
in a traversal, as per the obviously terminating restriction of
RETREET. However, this representation is not sufficient to
reason about the dependences between steps. For example,
if the middle steps (s7, u), (s4, u.l) were swapped, is that still
a possible sequence of execution? The question can’t be an-
swered unless we track back the contexts in which the two
steps are executed: (s7,) is executed in the call to Even(u)
(block s9); (s4, u.l) is executed in the call to Even(u.l) (block
s1), which is further in Odd(u) (block s8). As the two calls
are running in parallel, swapping the two steps yields an-
other legal sequence of execution. Automating this kind of
reasoning is extremely challenging. In fact, even determin-
ing if an iteration exists is already undecidable:

Theorem 3.1. Determining if an iteration may occur in a
RETREET program execution is undecidable.

Proof. We prove the undecidability through a reduction from
the halting problem of 2-counter machines [17]. We can build
a RETREET program to simulate the execution of a 2-counter
machine. Given a 2-counter machine M, every line of non-
halt instruction ¢ in M can be converted to a function in a
RETREET program. The function is of the form f.(n,v1, v2):
n is a Loc parameter and vy, v are Int parameters. It treats
v1, Vo as the current values of the two counters, updates the
two counter values to uy, up by simulating the execution of
¢, then recursively calls fo/(n.l) if ¢’ the next instruction. for
the halt instruction, a special function fp,; will pass up the
signal by recursive calls, and finally run a special line of code
s on the root. Then M halts if and only if the iteration (s, root)
occurs. O

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

R# Content

0 | (main,r,s8=5,...)
1 (s9,r,s5=3,...)
2 (s6,p,...)

3 (s1,q,...)

4 | (s5 w,s1=0,s2=0)
5 (s3, w)

(a) A configuration (b) Represented as labels on the tree

Figure 7. Example of configuration encoding

3.1 Configuration

As precise reasoning about RETREET is undecidable, we pro-
pose an iteration representation called configuration, which
is aright level of abstraction for which automated reasoning
is possible. Intuitively, a configuration looks like a snapshot
of the call stack, which consists of multiple records. The last
record describes the current running block as we discussed
above. Each other record describes a call context which in-
cludes: the callee block, the single Loc parameter, and other
Int variables’ values. These Int values include: first, for each
Int parameter, the context records its initial value received
when the call begins; second, for each function call within
the current call, the context uses ghost variables to predict
the return values.

Example 3.2. Figure 7a gives an example of a configura-
tion, which consists of 6 records. The last record (record
#5) indicates that the current step is running block s3 on
tree node w, and the current values of local variables. In
other records, we only show the callee stack, the Loc pa-
rameter, and other relevant Int variables. For example, the
value s8 = 5 means that the call in s8 is predicted to finish
and return value 5, which might be relevant to the next call
context, s9.

Obviously, not all stacks of records are valid configura-
tions. In particular, the beginning record should run main
and the last record should run a non-call block. More impor-
tantly, for any non-beginning record, one of the path condi-
tions * of the block should be satisfied, i.e., this block of code
can be reached from the beginning of the function it belongs
to. While a precise characterization of these constraints is
expensive and leads to undecidability as per Theorem 3.1,
we make two key assumptions below which make it possi-
ble for configurations to be abstractions of real call stacks
in an execution:

1. all function calls not shown in the stack can return
arbitrary values;

4We consider all the finitely many possible statement-level interleavings.

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

2. a call stack is valid if every pair of adjacent records in
the stack are consistent.

With these two assumptions, we can now formally define
configuration:

Definition 3.3 (Configuration). A configuration of length
k onatree T is amapping C : [k] — AllBlocksx Nodes(T)x
(AllParams U AllCalls — Z) such that:

e For any 0 < i < k, C(i) is of the form (s, u, M) where
s € AllCalls is a call to a function f, and M is only
defined on Params(f) U Blocks(f).

e The last record C(k) is of the form (s, u, @), where s €
AlINonCalls.

e The first record C(0) is of the form (main, rootr, ...).

e For any two adjacent records C(i — 1) = (s,u, M),
C(i) = (t, v, N),sis acall to the function that t belongs
to (denoted as s < t, see Figure 6). Moreover, (s, u, M)
speculatively reaches (t, v, N).

The speculative reachability mentioned in the last condition
of the definition above does not relate to any concrete run
of a program and is a key notion that captures the second as-
sumption we made above. In other words, we consider two
adjacent records consistent if the first one can speculatively
reaches the second one. We next define speculative reacha-
bility formally.

3.2 Speculative Reachability

Intuitively, a record (s, u, M) speculatively reaches (or just
reaches for short) another record (t, v, N) if an execution
triggered by (s, u, M) can lead to the next record (t,v, N).
More concretely, if s is a call to a function f, then one
can run f on node u, with initial integer arguments from
M|params(f)- Whenever a function call within the body of f
is encountered, one just skips the call and returns the specu-
lative output from M|c,is(f). The execution should lead to a
run of block t on node v. If t is also a function call, the input
arguments for the call should match the expected, specula-
tive inputs from N. We call this execution process a specula-
tive execution:

Definition 3.4 (Speculative Execution). Given a function
f, a group of initial values I : Params(f) — Z and a group
of speculative outputs O : Calls(f) — Z, a speculative ex-
ecution of f with respect to I and O follows the following
steps:
1. initialize each parameter p with value I(p), and let the
current block c be the first block in f;
2. if c is not a call, then simulate the execution of ¢, and
move to the next block;
3. if c is a call of the form v = g(le, ie), then update the
special field le.g’s value with O(c).

With the formal definition above, we can formulate the
speculative reachability using logical formulae. Note that

Reasoning About Recursive Tree Traversals

wp(n.f = AExpr, ¢, M) @[AExpr/n.f]
wp(v = AExpr, ¢, M) = @[AExpr/v]
wp(@ =t(...), ¢, M) = o[M(s)/v]

where s is the id of the current statement

wp(l; I, @, M) = wp(l,wp(l’, 9))

Figure 8. Weakest precondition

the speculative execution may be nondeterministic due to
the concurrency. However, there are only finitely many pos-
sible paths with statement-level interleaving and each path
is of finite length. Then for each concrete path, the specu-
lative execution of a function is completely deterministic
as all initial parameters and return values from function
calls are determined by M. More specifically, for every code
snippet | without branching and every logical constraint ¢
that should be satisfied after running I, we can compute the
weakest precondition wp(l, ¢, M) that must be satisfied be-
fore running |. The definition of wp is shown in Figure 8.

Now if s is a call to function g, we can determine if the
speculative execution of g with respect to M hits block t.
The path from the entry point of g to t will be a straight-line
sequence of statements of the form

l{;assume(cy);. . .;assume(c,_1); l,; Block t

where every branch condition is converted to a correspond-
ing assume(c;). Then we can compute the path condition
for t by computing the weakest precondition for every con-
dition c; on the path:

WP(c;, M) = wp(ly;...; i, ¢y M)[M(P)/P]

where p is the sequence of arguments for g.

Moreover, when t is another call block, we also need to
make sure that the initial parameters in N match the spec-
ulative execution of the above code sequence w.r.t. M. We
denote this condition as Matchs(u, v, M, N).

Lemma 3.5. Let (s,u, M) and (t,v, N) be two records such

that s <t (as defined in Figure 6). Then (s, u, M) speculatively

reaches (t, v, N) if (u, v, M, N) satisfies

PathCond; ((u,v, M, N) =
Matchs (u, v, M, N) A (/\ WP(c, M))

PePaths(t) ceP

Examples. We present several examples to illustrate how
the paths and path conditions are determined.

Example 3.6. Consider a code block s calling a function
foo(n, p, r0) { nf = p + 1;r1 =r0; if (nf < r1) {.} else {
foo(n.l, p, r0) // Block t } }. For record (s, u, M) to reach record
(t,v, N), there is only one path on which there is one con-
dition, n.f < r1, which occurs negatively. In other words,
the code sequence reaching tis nf=p + 1;r1 = r0; as-
sume (n.f > r1); Block t . In addition, since code blocks s

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

and t invoke function foo on nodes n and n.l, respectively,
Match(u, v, M, N) should ensure that v is the left child of u,
i.e. in this case, Match(u,v, M, N) = u.l = v. Therefore the
path condition can be represented as

PathConds ¢ (u,v, M,N) = M(p) +1 = M(r0) Aul =v

Example 3.7. This example illustrates how paths are deter-
mined in the presence of concurrency. Consider a function
foo(n) { v = 0; if (v == 1) { foo(n.l) // Block t; } || v=1;} in
which the recursive call to foo(n.l) is parallel to the assign-
ment v = 1. Since every possible statement-level interleaving
is considered, weakest preconditions for all the three possi-
ble paths are computed: 1) v=0; v=1; assume v==1; foo(n.l); 2)
v=0; assume v==1; v=T1; foo(n.l); 3) v=0; assume v==1; foo(n.l);
v=T;. The recursive call foo(n.l) is reachable in the first pos-
sible path.

Example 3.8. This example illustrates that non-recursive
calls can be precisely handled without any speculation. Con-
sider the code snippet foo(n) { n.f = 0; bar(n); if (n.f == 1) {
foo(n.l) // Block t } } bar(n) { n.f = 1;} where function bar is
indeed a single assignment manipulating the local field f of
n. As we mentioned in Section 2.1, during preprocessing of
function foo, calls to other functions on n are always inlined
to make all operations on fields of n explicit. Function call to
bar(n) in foo(n) will be inlined to n.f = 1, thus the recursive
call to foo(n.l) is obviously reachable.

4 Encoding to Monadic Second-Order Logic

The configuration-based abstraction described above allows
us to encode the schedules and dependences between config-
urations to Monadic Second-Order (MSO) logic over trees, a
well known decidable logic. Furthermore, some common de-
pendence analysis queries can be checked by checking MSO
formulae. We show the encoding in this section. The syntax
of the logic contains a unique root, two basic operators left
and right. There is a binary predicate reach as the transitive
closure of left and right, and a special isNil predicate with
constraint Yo. (isNil(v) — isNil(lef(v)) A isNil(right(v))).

4.1 Configurations, Schedules and Dependences

First of all, we need to encode configurations we presented
in Section 3. Given a RETREET program, we define the fol-
lowing labels (each of which is a second-order variable):

e for each code block s, introduce a label (a second-order
variable) Ls such that Ls(u) denotes that there exists a
record (s, 4, . . .) in the configuration;

e for each branch condition c, introduce a label C. such
that C.(u) denotes that WP(c, M) is satisfied by a
record of the form (s, u, M);

e for each pair of blocks s and t such that s < t, in-
troduce a label K such that K (1, v) denotes that
Matchs(u, v, M, N) is satisfied by records (s, u, M) and
(t,v, N).

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea
Note that these labels allow us to build an MSO predicate

PathConds; as an abstracted version of the path condition

PathConds; defined in Lemma 3.5:
(/\ cw)

PePaths(t) c€P

PathCondsy(u,v) = Kst(u,v) A

Example 4.1. The configuration in Figure 7a can be en-
coded to labels on the tree in Figure 7b. Note that the labels
Cco and C.; are labeled on nilnodes only. If a node has a par-
ticular label, the node belongs to the set represented by the
corresponding second-order variable. For example, node u
is in Lgg but nodes r, v and w are not.

As the set of blocks and the set of conditions are fixed and
known, we can simply represent these second-order vari-
ables using labeling predicates £ C AllCallsUAlINonCalls x
Nodes(T) and C € AllConds x Nodes(T) such that L(s, u) if
and only if Ls(u), C(c, u) if and only if C.(u). In other words,
L(s, u) is the syntactic sugar for Ls(u) and C(c, u) is the syn-
tactic sugar for C(u).

Now we are ready to encode configurations to MSO.
We define a formula Configuration(L, C, g, v) below, which
means £ and C correctly represent a configuration with
(g, v, ...) as the current record, for some non-call block q:

Configuration(L, C, q,v) = L(main, root)
A Current(L, q,v) A Yu.(u # v — -L(s,u))
seAllNonCalls
A Vu. /\ (L(s, u) — \/ (Next(L,C,u,s,t)
seAllCalls sat
A A ~=Next(L,C,u,s, t’)))
ottt
A Yu. /\ (L(t, u) — Prev(L,C,u, t))
teAllCallsUAlINonCalls
AV \/ (/\ceuwn /\~Clew)
CeConsistentCondSet ceC cgC
The first three lines claim that main is marked on the root,
and q is the only non-call block marked on the tree, where
Current(L, q,v) is a subformula indicating that for the cur-
rent node v, a record (q,v,...) is in the stack for exactly
one non-call block g:

Current(L, q,v) = L(q,v) A
q’eAllNonCalls,q’#q

_'L(q’7 U)

The next two lines, intuitively, say that every record has
a unique successor (and predecessor) that can reach to (and
from). Predicates Next and Prev are defined as below:

Next(L,C,u,s,t) = Jo. (_ﬁ(t, v) A PathConds(u, v))

Pre(L,C,u,t) = Elv.(\/ (L(s, v) A PathConds (v, u)
sat

AN

s’'at,s’#s

=(L(s’,v) A PathConds (v, u))))

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

(a) A configuration running s3 (b) A configuration running s7
onm ongq

Figure 9. Examples of configuration

Next(L, C, u,s,t) indicates that a record (t,v,...) exists
and is reachable from record (s, u, ...). Pre(L, C,u,t) con-
strains that, for a record (t,u,...), there should exist one
and only one record (s, v, . . .) that can reach (t,u, .. .).

The last line makes sure that for each node u, the set of
satisfied conditions C is consistent, i.e., /\ WP(c, M) is sat-

ceC
isfiable for every record (s, u, M). In other words, a consis-

tent condition set for a node u represents a feasible condi-
tional path from the root of the tree to reach node u. Notice
that this is a linear integer arithmetic constraint and SMT-
solvable. Hence we can assume the set of all possible consis-
tent condition set, denoted by ConsistentCondSet, has been
computed a priori.

Example 4.2. Let us continue on Figure 7b. The labels on
the tree show a valid instance of configuration for the run-
ning example in Figure 4. The root node r belongs to the
second order variable L,in. Block s3 running on node w is
the only non-call block marked on the tree and node w is
the only node that is running a non-call block. Along with
the execution path (r — p — g — w), each record has a
unique successor and predecessor. For example, node w la-
beled Lgs is the only successor of label Lg; running on node
q and s1 <s5. In contrast, if the label L¢s on w is changed to
Lg>, the whole model is no longer a configuration because s1
does not call s2 directly (hence the third line of the formula
is violated).

4.2 Schedules and Dependences

The definition and encoding of configurations above have
paved the way for reasoning about RETREET programs. Given
two configurations, a basic query one would like to make is
about their order in a possible execution: can the two config-
urations possibly coexist? If so, are they always ordered? Or
can they occur in arbitrary order due to the parallelization
between them? To answer these questions, intuitively, we
need to pairwisely compare the records in the two config-
urations from the beginning and find the place where they

Reasoning About Recursive Tree Traversals

Ordered(Ly, L2, Cy1,C2) =
Consistents 1, +,(L1, L2, C1, Cs)

s,ty,ty
saty,s<ty,ty <ty

Parallel(L, L3, Cy,Cy) =
Consistents 1, +,(L1, L2, C1, Cz)

s,ty,ty
saty,saty,ty Ity

Figure 10. Relations between consistent configurations

diverge. We define the following predicate:
Consistents 1, +,(L1, L2, C1, Cy) = Jz. [

Vv.(reach(v, z) > (/\ (Li(s,v) & Ly(s,v))

A\ (Gilew) & G v))))

A Li(s,z) A Ly(s,z) A Next(L1,Cr1, 2,8, t1)
ANext(L3, Cs, z, s, tz)]

The predicate assumes that there are two sequences of
records represented as (L, Cy) and (L, C;), respectively,
and indicates that there is a diverging record (s,z,...) in
both sequences such that: 1) the two configurations match
on all records prior to the diverging record; 2) the next
records after the diverging one are (t1,...) and (t2,...), re-
spectively, and they can be reached at the same time (i.e., Cy
and C; agree on the diverging node z).

Blocks t; and tp are obviously in the same function. If
t1 # to, there are two possible relations between them: a) if
t; precedes t (or symmetrically, tp precedes tj), then con-
figuration (L1, C;) always precedes (L, C;) (or vice versa);
b) otherwise, t; and t, must be two parallel blocks, then the
two configurations occur in arbitrary order. Both relations
can be described in MSO (see Figure 10).

Example 4.3. Let the configuration shown in Figure 7b be
denoted as (L3, C3). Consider another configuration (L4, Cy)
shown in Figure 9a with execution pathr — p — ¢ — m.
Instead of labeling Lgs and Lg3 on node w, Lg and Lgs is
labeled on node m. All the other labels on nodes r, p, q in
L4, Cy4 are the same with the ones in L3, Cs. In this case,
Consistentsy s5,s6(L3, L4, C3, Cs) and q is the node where two
configurations diverge. Since s1 < s5,s1 < s6 and s5 < s6,

Ordered(Ls, L4, Cs, Cy). In other words, configurations (L3, Cs)

and (L4, Cy) are ordered.

Another set of relations is necessary to describe the
data dependences. Recall that we use a read&write analy-
sis to compute the read set Ry and write set Wy for each
non-call block s. These sets allow us to define two binary
predicates: Writes(u, v) if running s on u will write to v;
ReadWrites(u,v) if running s on u will read or write to
v. The following predicate describes two configurations

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

(L1, C1,s,u) and (L, Co, t, v) with data dependence if both
last records (s,u,...) and (t,v,...) access the same node z
and at least one of the accesses is a write:

Dependence, ,(u, v, L1, L2, Cy, Cy) =
Configuration(L;, Cy, s, u) A Configuration(Ls, Cz, t, v)

A 32.((ReadWrites(u, z) A Write(v, z))
V(Writes(u, z) A ReadWrite(v, z)))

Example 4.4. Considering another configuration (Ls, Cs)
with execution path r — p — ¢ shown in Figure 9b. The
labels in configuration (L5, Cs) on nodes r, p are the same
with the ones in configuration (L3, C3). Labels Ls; and Lg;
are on node q. Thus Dependencess s5(w, q, L3, L5, C3,Cs) is
true since s3 is writing n.Odd on node w while s7 is reading
n.Odd on w.

4.3 Data Race Detection and Equivalence Checking

Now we are ready to encode some common dependence
analysis queries to MSO. A data race may occur in a RE-
TREET program P if there exist two parallel configurations
between which there is data dependence:

DataRace[P] = Tx1, x2, L1, Lo, C, Czo(
q1,92 €AlINonCalls
Dependence,, ., (x1, %2, L1, L3, C1, C2)

AParallel(Ly, Lo, Cy, Cs))

Theorem 4.5. A RETREET program P is data-race-free if
DataRace[P] is invalid.

Proof. If P is not data-race-free, there must exist two itera-
tions, represented as (L1, C;) and (L, C,) and running blocks
g1 and gz on nodes x; and x,, respectively, such that there
is data dependence but no happens-before relation between

them. This pair witnesses the validity of the formula DataRace[P],

as Dependence encodes data dependences and Parallel en-
codes the absence of happens-before. O

Besides data race detection, another critical query is the
equivalence between two RETREET programs, which is com-
mon in program optimization. For example, when two se-
quential tree traversals A(); B() are fused into a single tra-
versal AB(), one needs to check if this optimization is valid,
i.e., if A(); B() is equivalent to AB(). Again, while the equiv-
alence checking is a classical and extremely challenging
problem, we focus on comparing programs that are built
on the same set of straight-line blocks and simulate each
other. The comparison is sufficient since the goal of the RE-
TREET framework is to automate the verification of common
program transformations such as fusion or parallelization,
which only reorder the operations of a program.

Definition 4.6. Two RETREET programs P and P’ bisim-
ulate if there exists a mapping between blocks Sim

AllBlocks(P) — AllBlocks(P’) such that

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

e for any q € AllNonCalls, g and Sim(q) are identical
(modulo variable renaming).

e Sim is a bijective mapping between AllNonCalls(P)
and AllNonCalls(P’).

o for any call s € AllCalls(P), s and Sim(s) are calling
the same node.

e if s<tin P, then Sim(s) <« Sim(t) in P’.

e if s’ «t’ in P’/ and Sim(t) = t’, then there is a unique s
such that s «t and Sim(s) = s’.

e for any nodes u, v, s, speculative values M, N, and any
blocks s’, t,t” such that Sim(s) = s’ and Sim(t) = t’,
the path conditions PathConds(u,v, M,N) and
PathCondy v (u, v, M, N) are equivalent.

Intuitively, P and P’ bisimulate if any configuration for
P can be converted to a corresponding configuration for P’,
and vice versa. It is not hard to develop a naive bisimulation-
checking algorithm to check if two RETREET programs P and
P’ bisimulate: just enumerate all possible relations between
P blocks and P’ blocks, by brute force.

The correspondence between configurations can be ex-
tended to executions, i.e., every execution of P corresponds
to an execution of P’ that runs exactly the same blocks
of code on the same nodes, and vice versa. To guarantee
the equivalence, it suffices to make sure that the correspon-
dence does not swap any pair of ordered configurations with
data dependences. ° In the following formula, the predicates
Dependencegl, q, and Dependencegll’ o, Buarantee four config-
urations, two on P and two on P’, and pair-wisely bisimu-
lating (as they end with the same blocks).

Conflict[P, P’] =

! ’ ’ !
31,0, L1, L2, Cr, o L1, £5,C1, G
q1,q2 €AllNonCalls
Dependenc ql,gz(xl,xz,ﬁl,ﬁz,cl,cz)
P ’ ’ ’ ’
/\Dependenceql’qz(xl,xg, L, Cl.C))

A Ordered” (L1, £5,C1,Cz) A Ordered” (L}, L1, C}, Cl'))

Theorem 4.7. For any two data-race-free RETREET programs
P and P’ that bisimulate, they are equivalent if Conflict[P, P’]
is invalid.

Proof. According to Definition 4.6, it can be proved by re-
cursion that there is a one-to-one correspondence between
the configurations for P and the configurations for P’ such
that the corresponding configurations are running the same
block of code. Therefore for any execution of P, P’ can run
exactly the same set of iterations, and vice versa. Further-
more, as Conflict[P, P’] is invalid, the corresponding exe-
cutions keep the same order for all pairs of dependent it-
erations. Therefore the two executions are equivalent. The

5We assume both programs are free of data races; otherwise the equiva-
lence between them is undefined.

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

f(n)
h - height(n.)
s = size(n.l)

if (h==5&& s == 3)
f(n.l)

Figure 11. Example of incompleteness

correctness of the formula encoding can be verified by read-
ers. O

Theorem 4.8. The MSO encoding for Theorems 4.5 and 4.7 is
incomplete.

Proof. Since the outputs of speculative execution are arbi-
trary, the precision of the path conditions is lost. Consider a
function f as shown in Figure 11 where height and size recur-
sively compute the height and size of the tree, respectively.
Due to speculative execution, the call to f(n.l) is considered
reachable since arbitrary h and s values are legal. However,
f(n.l) is unreachable during real computation since height of
a tree can never be greater the size of the tree. O

5 Evaluation

We prototyped the RETREET framework, which implements
all techniques presented above and also incorporates other
existing MSO-based analysis techniques. We evaluated the
effectiveness and efficiency of the framework through
four case studies: mutually recursive size-counting traver-
sals, CSS minification, cycletree routing, and list sum-and-
shift traversals. For the first two case studies, we synthe-
sized provably-correct optimizations (parallelizing a traver-
sal and/or fusing multiple traversals) using MSO encod-
ing. More concretely, our prototype constructed a candidate
fused program by heuristically enumerating possible map-
pings that establish the bisimulation relation between the
original and fused programs, and finally checked their data-
race-freeness and equivalence using the MSO encoding pre-
sented in this paper. For cycletree routing, our prototype
automatically verified some manually-crafted optimizations.
The list sum-and-shift traversals, our prototype verified
known optimizations using a combination of configuration-
based abstraction presented in this paper and the Streaming
Register Transducer (SRT) techniques for streaming list tra-
versals [20]. To the best of our knowledge, none of these ver-
ification tasks can be automatically done by existing tech-
niques before RETREET.

Our framework leverages MoNA [7], a state-of-the-art
WS2S (weak MSO with two successors) logic solver as our
back-end constraint solver. All experiments were run on
a server with a 40-core, 2.2GHz CPU and 128GB memory
running Fedora 26. The bisimulation checking step is cur-
rently done by hand but can be automated in the future. The

Reasoning About Recursive Tree Traversals

Fused(n)
Fused(n) if (n == nil) return (0, 0)
if (n == nil) return (0, 0) else
else (ret1,ret2) =(Is +rs+ 1, lv + rv)

(Is, Iv) = Fused(n.l)
(rs, rv) = Fused(n.r)
return (Is + rs + 1, Iv + rv)

(Is, Iv) = Fused(n.l)
(rs, rv) = Fused(n.r)
return (ret1, ret2)

(a) A valid fusion (b) An invalid fusion

Figure 12. Fusing two mutually recursive traversals

time spent on program construction and encoding is negli-
gible. Remember our MSO encodings of data-race-freeness
and equivalence are sound but not complete, the negative
answers could be spurious. To this end, whenever Mona
returned a counterexample, we manually investigated if it
corresponds to a real evidence of violation.

Mutually Recursive Size-Counting. This is our running
example presented in Figure 4. We synthesized a fused tra-
versal shown in Figure 12a and verified that the mutually re-
cursive traversals Odd and Even can be fused to the single
traversal (solved by Mona in 0.14s). This simple synthesis
and verification task, to our knowledge, is already beyond
the capability of all existing approaches. We also designed
an invalid fused traversal (shown in Figure 12b) and encode
the fusibility to MSO. MoNA returned a counterexample in
0.14s that illustrates how the data dependence is violated.
Basically, the read-after-write dependence between a child
and its parent in traversal Even is violated after the fusion.
We manually verified that the counterexample is a true pos-
itive.

We also checked the data-race-freeness of the original
program. The two parallel traversals Odd(n) and Even(n) in
the main function are independent because in every layer
of the tree there is exactly one Odd call and one Even call
and they belong to different traversals on each layer of the
tree. The data-race-freeness was checked in 0.02s.

CSS Minification. Cascading Style Sheets (CSS) are a
widely-used style sheet language for web pages. In order to
lessen the page loading time, many minification techniques
are adapted to reduce the size of CSS document so that the
time spent on delivering CSS documents can be reduced [2—
4, 6, 18]. When minifying the CSS file, the Abstract Syntax
Tree (AST) of the CSS code is traversed several times to
perform different kinds of minifications, such as shortening
identifiers, reducing whitespaces, etc. In the case that the
same AST is traversed multiple times, fusing the traversals
together would be desirable to enhance the performance of
minification process.

Hence, we consider fusing three CSS minification traver-
sals. Traversal ConvertValues converts values to use differ-
ent units when conversion result in smaller CSS size. For

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

ConvertValues(n)
if (n == nil) return 0
else
for each child p: ConvertValues(n.p)
if (n.type == "word” || n.type == "’func”)
n.value = TransValue(n.value)
MinifyFont(n)
if (n == nil) return 0 Main(n)
else ConvertValues(n)
for each child p: MinifyFont(n.p) MinifyFont(n)
if (n.prop == "font-weight”) Reducelnit(n)
n.value = MinifyWeight(n.value)
Reducelnit(n)
if (n == nil) return 0
else
for each child p: Reducelnit(n.p)
if (length(n.value) < initialLength)
n.value = Reducelnitial(n.value)

Figure 13. CSS minification traversals

instance, 100ms will be represented as .1s. Traversal Minify-
Font will try to minimize the font weight in the code. For ex-
ample, font-weight: normal will be rewritten to font-weight:
400. Traversal Reducelnit reduces the CSS size by convert-
ing the keyword initial to corresponding value when key-
word initial is longer than the property value. For example,
min-width: initial will be converted to min-width: 0. Notice
that these programs involve conditions on string which are
not supported by RETREET. Nonetheless, since the traver-
sals in Figure 13 only manipulate the local fields of the AST,
these conditions can be replaced by some simple arithmetic
conditions. Moreover, as the ASTs of CSS programs are typ-
ically not binary trees and cannot be handled by Mona di-
rectly, we converted the ASTs to left-child right-sibling bi-
nary trees and then simplify the traversals to match RE-
TREET syntax. The three minification traversals are fused
and their fusibility was checked in 6.88s.

We believe RETREET is the first framework to synthesize
and verify these CSS traversal fusions. The CSS minification
technique proposed by Hague et al. [10] also aims to gener-
ate minimized CSS file with the original semantics of the file
preserved. However, they focus on one type of CSS minifica-
tion method, called rule-merging, only, while RETREET can
reason about the fusibility of different kinds of CSS minifi-
cation methods.

Cycletree Routing. Our most challenging case study is
about Cycletrees [29], a special class of binary trees with an
additional set of edges. These additional edges serve the pur-
pose of constructing a Hamiltonian cycle. Hence, cycletrees
are especially useful when it comes to different communi-
cation patterns in parallel and distributed computation. For
instance, a broadcast can be efficiently processed by the tree
structure while the cycle order is suitable for point-to-point

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

RootMode(n, number)
if (n == nil) return
else
n.num = number
number = number+1
PreMode(n.l, number)
PostMode(n.r, number)
PreMode(n, number)
if (n == nil) return
else
n.num = number
number = number+1
PreMode(n.l, number)
InMode(n.r, number)

InMode(n, number)

if (n == nil) return

else
PostMode(n.l, number)
n.num = number
number = number+1
PreMode(n.r, number)

PostMode(n, number)

if (n == nil) return

else
InMode(n.l, number)
PostMode(n.r, number)
n.num = number
number = number+1

ComputeRouting(n)
if (n == nil) return
else
ComputeRouting(n.l)
ComputeRouting(n.r)
n.Imin = n.l.min
n.rmin = n.r.min
n.Imax = n.l.max
n.rmax = n.r.max
n.max = MAX(n.Imax, n.rmax, n.num)
n.min = MIN(n.Imin, n.rmin, n.num)
Main(n)
RootMode(n, 0)
ComputeRouting(n)

Figure 14. Ordered cycletree construction and routing data
computation

communication. Cycletrees are proven to be an efficient net-
work topology in terms of degree and number of communi-
cation links [28-30].

We consider two traversals regarding cycletrees. A traver-
sal, called RootMode, is a mutually recursive traversal that
constructs the cyclic order on a binary tree to transform the
binary tree to a cycletree. Another traversal ComputeRout-
ing computes the router data of each node which are essen-
tial for an efficient cycletree routing algorithm presented

n [29]. In the event of cyclic order traversal and routing
had to be performed repeatedly—in case of link failures—it
would be useful to think about ways we can optimize these
procedures by fusion or parallelization. Figure 14 shows the
code for these two traversals.

We first consider checking the fusibility of these two tra-
versals RootMode and ComputeRouting. Since the mapping
relation between the unfused traversals and expected fused
one is very subtle and does not satisfy the bisimulation rela-
tion defined in Definition 4.6, we designed the fused traver-
sal manually and apply RETREET to verify the correctness
of the fusion. The total time spent to verify the fusibility of
these two traversals was 490.55s.

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

Sum(n)
if (n == nil) return Fused(n)
else . .
if (n == nil) return
Sum(n.next)
else
nv = n.next ? 0 : n.next.v
nv = n.next ? 0 : n.next.v
n.v=nv+nv nv = nv
Shift(n))
if (n == nil) ret Fused(n.next)
1 {n ==l return nv = n.next ? 0 : n.next.v
else
n.v=nv+nv
nv = n.next ? 0 : n.next.v
n.v = nv

(b) Single fused traversal

Shift(n.next
ift(n.next) (swapped order)

(a) Traversals on list

Figure 15. Two functions traversing a list

We then considered whether the two traversals can run
in parallel. This time MonNa spent 0.95s and returned a coun-
terexample which allows us to discover a data race that vi-
olates a read-after-write dependence. We manually verified
that the counterexample is indeed a true positive.

List Sum and Shift. In this case study, we show how Re-
TREET integrates other MSO-based techniques and enables
optimizations not possible with any of the techniques alone.
Consider the two list traversals discussed in [25] (as shown
in Figure 15a). Traversal Sum updates the local fields v in the
list to the aggregation of values v in the list. Traversal Shift
shifts the element in the list to the left and sets the last ele-
ment in the list to be 0. A program invokes Sum followed by
Shift. Sakka [25] shows the two traversals can be fused at the
cost of an extra field for each node. However, if one swaps
the order of the two traversals (step 1, from Sum(n);Shift(n)
to Shift(n);Sum(n)), they can be fused without introducing
the extra field and form the optimal program (step 2, from
Shift(n);Sum(n) to Figure 15b). While the core RETREET can
verify step 2, unfortunately, it is not sufficient to verify step
1, since there does not exist a relation between the original
and the swapped traversals that preserves all data depen-
dences in the original program.

Nonetheless, we extended RETREET to support other exist-
ing MSO-based analysis techniques. For example, both Sum
and Shift can be described by streaming register transducer
(SRT) [20], an automaton-based machine model for what
they call streaming transformations with additive operations,
which are essentially list traversals. It is also shown in [20]
that these traversals are closed under composition and can
be defined in MSO. The crux of the proof is: for every node
y of the output list, there exists a set of nodes N(y) from
the input list such that the data value stored in y is the sum
of values stored in N(y). Following their encoding, we can
define two MSO predicates:

sum(x,y) =x <y

shift(x,y) = x.next =y

Reasoning About Recursive Tree Traversals

such that sum(x, y) (resp. shi ft(x, y)) means x belongs to the
set N(y) for traversal Sum (resp. Shift). We can further en-
code similar predicates for “sum then shift” and “shift then
sum”, respectively:

sum_shift(x,y) = Az.shift(x, z) A sum(z,y)

shift_sum(x,y) = Jz.sum(x, z) A shift(z,y)

Then RETREET verifies the validity of step 1 by checking the
validity of the following formula:

shift_sum(x,y) & sum_shift(x,y)

Furthermore, RETREET verifies the validity of step 2 using an
encoding similar to the tree-mutation example. The whole
chain of optimization was verified automatically, for the first
time, in 0.11s.

6 Related Work

There has been much prior work on program dependence
analysis for tree data structures. Using shape analyses [13],
Ghiya et al. [8] detect function calls that access disjoint sub-
trees for parallel computation in programs with recursive
data structures. Rugina and Rinard [24] extract symbolic
lower and upper bounds for the regions of memory that a
program accesses. Instead of providing a framework that de-
scribes dependences in programs, these works only focus on
detecting the data races and the potential of parallel comput-
ing so that is not able to handle fusion or other transforma-
tions.

Amiranoff et al. [1] propose instance-wise analysis to per-
form dependence analysis for recursive programs involving
trees. This framework represents each dynamic instance of
a statement by an execution trace, and then abstracts the ex-
ecution trace to a finitely-presented control word. Nonethe-
less, the framework does not support applications other than
parallelization and they cannot handle programs with tree
mutation. Weijiang et al. [32] also present a tree dependence
analysis framework that reason the legality of point block-
ing, traversal slicing and parallelization of traversals with
the assumption that all traversals are identical preorder tra-
versals. Their framework allows restricted tree mutations in-
cluding nullifying or creating a subtree but the traversals
that they consider are also single node traversals like RE-
TREET. Deforestation [5, 9, 14, 23, 31] is a technique widely
applied to fusion, but it either does not support fusion over
arbitrary tree traversals, or does not handle reasoning about
imperative programs.

The last decade has seen significant efforts on reasoning
transformations over recursive tree traversals. Meyerovich
and Bodik [15] and Meyerovich et al. [16] focus on fusing
tree traversals over ASTs of CSS files. They specify tree tra-
versals as attribute grammars and present a synthesizer that
automatically fuses and parallelizes the attribute grammars.

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Their framework only supports traversals that can be writ-
ten as attribute grammars, basically layout traversals. Rajb-
handari et al. [21] provide a domain specific fusion compiler
that fuses traversals of k-d trees in computational simula-
tions. Both frameworks are ad hoc, designed to serve spe-
cific applications. The tree traversals they can handle are
less general than RETREET.

Most recently, TreeFuser presented by Sakka et al. [26] is
an automatic framework that fuses tree traversals written
in a general language. TreeFuser supports code motion and
partial fusion, i.e., parts of a traversal (left subtree or right
subtree) can be fused together when possible, even if the
traversals cannot be fully fused. Their approach cannot han-
dle transformations other than fusion. In other words, par-
allelization of traversals is beyond the scope of TreeFuser.
Besides, TreeFuser also suffers from the restrictions that Re-
TREET has, i.e. no tree mutation and single node traversal.
PolyRec [27] is a framework that can handle schedule trans-
formations for nested recursive programs only. PolyRec tar-
gets a limited class of tree traversals, called perfectly nested
recursive programs, hence the framework is not able to han-
dle arbitrary recursive tree traversals. Also PolyRec does
not handle dependence analysis and suffers from the restric-
tion that no tree mutation is allowed. The transformations
that they handle are interchange, inlining and code motion
rather than fusion and parallelization. Another deforesta-
tion transformation proposed by Sakka [25] combines fu-
sion and tupling to optimize functional programming. Their
framework focuses on runtime complexity and termination
guarantees, hence they do not handle dependence analysis
either. None of the dependence analysis in the frameworks
above is expressive enough to handle mutual recursion.

7 Conclusion

We introduced RETREET, a general tree-traversal-describing
language, and developed a stack-based, fine-grained repre-
sentation of dynamic instances in a tree traversal. Based on
the new language and new representation, we presented a
MSO encoding that can check data-race-freeness and trans-
formation correctness automatically. Our approach is more
general than existing approaches and allows us to efficiently
reason about traversals with sophisticated mutual recur-
sion on real-world data structures such as CSS and cycle-
trees, and synthesize provably-correct optimizations. We
also show our approach can be integrated with other MSO-
based analysis techniques.

Acknowledgments

We would like to thank Milind Kulkarni and Kirshanthan
Sundararajah for the fruitful discussions we had when we
started this project.

This research was supported in part by the National Sci-
ence Foundation under Grant No. CCF-1919197.

PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

References
[1] Pierre Amiranoff, Albert Cohen, and Paul Feautrier. 2006. Beyond It-

[2] Johan Bleuzen. 2015. cssmin.

—
[N)
flas!

—
w

—_
(=}
—

[10

[11

[12

[13

[14

(15

[16

(17

—

—

—

]

]

—

]

=

]

]

—

eration Vectors: Instancewise Relational Abstract Domains. In Static
Analysis, Kwangkeun Yi (Ed.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 161-180.

https://www.npmjs.com/package/
cssmin

Ben Briggs. 2015. cssnano. https://cssnano.co/

Steve Clay. 2007. minify. https://github.com/mrclay/minify

Loris D’Antoni, Margus Veanes, Benjamin Livshits, and David Mol-
nar. 2014. Fast: A Transducer-based Language for Tree Manipulation.
SIGPLAN Not. 49, 6 (jun 2014), 384-394.

Roman Dvornov. 2011. csso. https://github.com/css/csso

Jacob Elgaard, Nils Klarlund, and Anders Meller. 1998. MONA 1.x:
New techniques for WS1S and WS2S. In Computer Aided Verification,
Alan J. Hu and Moshe Y. Vardi (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 516-520.

Rakesh Ghiya, Laurie J. Hendren, and Yingchun Zhu. 1998. De-
tecting Parallelism in C Programs with Recursive Darta Structures.
In Proceedings of the 7th International Conference on Compiler Con-
struction (CC ’98). Springer-Verlag, London, UK, UK, 159-173. http:
//dl.acm.org/citation.cfm?id=647474.727598

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A
Short Cut to Deforestation. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture (Copen-
hagen, Denmark) (FPCA ’93). ACM, New York, NY, USA, 223-232.
https://doi.org/10.1145/165180.165214

Matthew Hague, Anthony W. Lin, and Chih-Duo Hong. 2019. CSS
Minification via Constraint Solving. ACM Trans. Program. Lang. Syst.
41, 2, Article 12 (June 2019), 76 pages. https://doi.org/10.1145/3310337
Youngjoon Jo and Milind Kulkarni. 2011. Enhancing locality for re-
cursive traversals of recursive structures. In Proceedings of the 2011
ACM international conference on Object oriented programming systems
languages and applications (Portland, Oregon, USA) (OOPSLA ’11).
ACM, New York, NY, USA, 463-482. https://doi.org/10.1145/2048066.
2048104

Youngjoon Jo and Milind Kulkarni. 2012. Automatically Enhancing
Locality for Tree Traversals with Traversal Splicing. In Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA
’12). Association for Computing Machinery, New York, NY, USA, 355—
374. https://doi.org/10.1145/2384616.2384643

Neil D. Jones and Steven S. Muchnick. 1982. A Flexible Approach
to Interprocedural Data Flow Analysis and Programs with Recur-
sive Data Structures. In Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Albuquerque,
New Mexico) (POPL ’82). ACM, New York, NY, USA, 66-74. https:
//doi.org/10.1145/582153.582161

MoNica MartiNez and Alberto Pardo. 2013. A Shortcut Fusion Ap-
proach to Accumulations. Sci. Comput. Program. 78, 8 (Aug. 2013),
1121-1136. https://doi.org/10.1016/j.scic0.2012.09.002

Leo A. Meyerovich and Rastislav Bodik. 2010. Fast and Parallel Web-
page Layout. In Proceedings of the 19th International Conference on
World Wide Web (Raleigh, North Carolina, USA) (WWW °10). As-
sociation for Computing Machinery, New York, NY, USA, 711-720.
https://doi.org/10.1145/1772690.1772763

Leo A. Meyerovich, Matthew E. Torok, Eric Atkinson, and Rastislav
Bodik. 2013. Parallel Schedule Synthesis for Attribute Grammars.
In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13).
ACM, New York, NY, USA, 187-196. https://doi.org/10.1145/2442516.
2442535

Marvin L. Minsky. 1967. Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Yanjun Wang, Jinwei Liu, Dalin Zhang, and Xiaokang Qiu

Jakub Pawlowicz. 2011. clean-css.
jakubpawlowicz/clean-css

Dmitry Petrashko, Ondfej Lhotak, and Martin Odersky. 2017.
Miniphases: Compilation Using Modular and Efficient Tree Trans-
formations. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Barcelona, Spain)
(PLDI 2017). ACM, New York, NY, USA, 201-216. https://doi.org/10.
1145/3062341.3062346

Xiaokang Qiu. 2020. Streaming Transformations of Infinite Ordered-
Data Words. arXiv:2001.06952 [cs.FL] https://arxiv.org/abs/2001.
06952

S. Rajbhandari, J. Kim, S. Krishnamoorthy, L. Pouchet, F. Rastello, R. J.
Harrison, and P. Sadayappan. 2016. A Domain-Specific Compiler for
a Parallel Multiresolution Adaptive Numerical Simulation Environ-
ment. In SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, Pis-
cataway, NJ, 468-479. https://doi.org/10.1109/SC.2016.39

Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-
Noél Pouchet, Fabrice Rastello, Robert J. Harrison, and P. Sadayappan.
2016. On Fusing Recursive Traversals of K-d Trees. In Proceedings of
the 25th International Conference on Compiler Construction (Barcelona,
Spain) (CC 2016). Association for Computing Machinery, New York,
NY, USA, 152-162. https://doi.org/10.1145/2892208.2892228

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jo-
vanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. 2013. Optimizing Data Structures in High-level
Programs: New Directions for Extensible Compilers Based on Stag-
ing. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (Rome, Italy) (POPL °13).
ACM, New York, NY, USA, 497-510. https://doi.org/10.1145/2429069.
2429128

Radu Rugina and Martin Rinard. 2000. Symbolic Bounds Analysis of
Pointers, Array Indices, and Accessed Memory Regions. In Proceed-
ings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation (Vancouver, British Columbia, Canada)
(PLDI °00). ACM, New York, NY, USA, 182-195. https://doi.org/10.
1145/349299.349325

Laith Sakka. 2020. Techniques for Automatic Fusion of General Tree
Traversals. Ph.D. Dissertation. Purdue University.

Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. 2017.
TreeFuser: A Framework for Analyzing and Fusing General Recursive
Tree Traversals. Proc. ACM Program. Lang. 1, OOPSLA, Article 76 (Oct.
2017), 30 pages. https://doi.org/10.1145/3133900

Kirshanthan Sundararajah and Milind Kulkarni. 2019. Composable,
Sound Transformations of Nested Recursion and Loops. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
ACM, New York, NY, USA, 902-917. https://doi.org/10.1145/3314221.
3314592

Margus Veanes and Jonas Barklund. 1996. Construction of Natural
Cycletrees. Inf. Process. Lett. 60, 6 (1996), 313-318. https://doi.org/10.
1016/S0020-0190(96)00179-2

Margus Veanes and Jonas Barklund. 1996. Natural Cycletrees: Flexible
Interconnection Graphs. j. Parallel Distrib. Comput. 33 (02 1996), 44—
54. https://doi.org/10.1006/jpdc.1996.0023

Margus Veanes and Jonas Barklund. 1996. On the Number of Edges
in Cycletrees. Inf. Process. Lett. 57, 4 (1996), 225-229. https://doi.org/
10.1016/0020-0190(95)00183-2

Philip Wadler. 1990. Deforestation: transforming programs to elim-
inate trees. Theoretical Computer Science 73, 2 (1990), 231 — 248.
https://doi.org/10.1016/0304-3975(90)90147-A

Yusheng Weijiang, Shruthi Balakrishna, Jiangiao Liu, and Milind
Kulkarni. 2015. Tree Dependence Analysis. In Proceedings of the 36th

https://github.com/

https://www.npmjs.com/package/cssmin
https://www.npmjs.com/package/cssmin
https://cssnano.co/
https://github.com/mrclay/minify
https://github.com/css/csso
http://dl.acm.org/citation.cfm?id=647474.727598
http://dl.acm.org/citation.cfm?id=647474.727598
https://doi.org/10.1145/165180.165214
https://doi.org/10.1145/3310337
https://doi.org/10.1145/2048066.2048104
https://doi.org/10.1145/2048066.2048104
https://doi.org/10.1145/2384616.2384643
https://doi.org/10.1145/582153.582161
https://doi.org/10.1145/582153.582161
https://doi.org/10.1016/j.scico.2012.09.002
https://doi.org/10.1145/1772690.1772763
https://doi.org/10.1145/2442516.2442535
https://doi.org/10.1145/2442516.2442535
https://github.com/jakubpawlowicz/clean-css
https://github.com/jakubpawlowicz/clean-css
https://doi.org/10.1145/3062341.3062346
https://doi.org/10.1145/3062341.3062346
https://arxiv.org/abs/2001.06952
https://arxiv.org/abs/2001.06952
https://arxiv.org/abs/2001.06952
https://doi.org/10.1109/SC.2016.39
https://doi.org/10.1145/2892208.2892228
https://doi.org/10.1145/2429069.2429128
https://doi.org/10.1145/2429069.2429128
https://doi.org/10.1145/349299.349325
https://doi.org/10.1145/349299.349325
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3314221.3314592
https://doi.org/10.1145/3314221.3314592
https://doi.org/10.1016/S0020-0190(96)00179-2
https://doi.org/10.1016/S0020-0190(96)00179-2
https://doi.org/10.1006/jpdc.1996.0023
https://doi.org/10.1016/0020-0190(95)00183-2
https://doi.org/10.1016/0020-0190(95)00183-2
https://doi.org/10.1016/0304-3975(90)90147-A

Reasoning About Recursive Tree Traversals PPoPP 21, February 27-March 3, 2021, Virtual Event, Republic of Korea

ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Portland, OR, USA) (PLDI ’15). ACM, New York, NY,
USA, 314-325. https://doi.org/10.1145/2737924.2737972

https://doi.org/10.1145/2737924.2737972

	Abstract
	1 Introduction
	2 A Tree Traversal Language
	2.1 Discussion of the Language Design
	2.2 Code Blocks

	3 Iteration Representation
	3.1 Configuration
	3.2 Speculative Reachability

	4 Encoding to Monadic Second-Order Logic
	4.1 Configurations, Schedules and Dependences
	4.2 Schedules and Dependences
	4.3 Data Race Detection and Equivalence Checking

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

