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We discuss recent developments in measurement protocols that generate quantum
entanglement between two remote qubits, focusing on the theory of joint continuous
detection of their spontaneous emission. We consider a device geometry similar to that
used in well-known Bell state measurements, which we analyze using a conceptually
transparent model of stochastic quantum trajectories; we use this to review photode-
tection, the most straightforward case, and then generalize to the diffusive trajectories
from homodyne and heterodyne detection as well. Such quadrature measurement
schemes are a realistic two-qubit extension of existing circuit QED experiments, which
obtain quantum trajectories by homodyning or heterodyning a superconducting qubit’s
spontaneous emission, or an adaptation of existing optical measurement schemes to
obtain jump trajectories from emitters. We mention key results, presented from within a
single theoretical framework, and draw connections to concepts in the wider literature
on entanglement generation by measurement (such as path information erasure and
entanglement swapping). The photon which-path information acquisition, and therefore
the two-qubit entanglement yield, is tunable under the homodyne detection scheme
we discuss, at best generating equivalent average entanglement dynamics as in the
comparable photodetection case. In addition to deriving this known equivalence, we
extend past analyses in our characterization of the measurement dynamics: we include
derivations of bounds on the fastest possible evolution toward a Bell state under joint
homodyne measurement dynamics and characterize the maximal entanglement yield
possible using inefficient (lossy) measurements. @ 2021 Optical Society of America

https://doi.org/10.1364/A0P.399081


mailto:plewalle.quantum@gmail.com
https://doi.org/10.1364/AOP.399081

518 Vol. 13, No. 3/ September 2021 / Advances in Optics and Photon){_zsl ‘ Tutorial

L. INETOAUCHION ..ttt ettt 519
2. Continuously Monitoring Two-Qubit Fluorescence: Formalism........................ 520
2.1.  Open Systems and (Un)Conditional Evolution ...........ccccceveveneiirencnenens 521
2.2. Conditional Two-Qubit Dynamics..........ccecerereeirinenieieirienieieeseseienas 524
3. Which-Path Information and Interference............ccocooeevirenienieininenieieireseeenns 528
3.1. Photodetection and INterference............coeoeveirirenrenirieineererecseene 529
3.2. Quadrature Measurements and Which-Path Information......................... 529
3.3. Connecting Which-Path Information Erasure to Entanglement
SWAPPINIZ . .evveevreeiieriierteeie et et et e rteestaesebeesseeseeseesseesssesssessseesseesseesses 532
4. Jump Trajectories from Continuous Photodetection...........ccccceeviviienieiinineniencns 534
5. Entanglement by Joint Homodyne Detection of Fluorescence.............c.ccouenveeee. 537
5.1, Concurrence Yield.......ccoocieiiieiiiinienieiii et 537
5.2. Maximally Entangled States ..........ccocoiiiiiiiiiiiieneeeeeeeeeeee, 540
5.3. Upper Bound on Concurrence Generation............coovevveererververeeiesersernenens 541
5.4. Entanglement Preservation ...........ccoccocverierieeisiinenienieresesiessesseesessessenens 542
5.5. Summary of Pure State Results........ccceevvvriieviieriieriieeieeie e 544
6. Impact of Measurement INeffiCIENCY......cccevveviririerieiiisieeeeseeee e 544
6.1. Inefficient Photodetection............cccecieiririenieiiireieeceeree e 545
6.2. Inefficient Homodyne Detection.............coceveirirenienieinenieieieesieseienas 547
7. Discussion and COncClUSION .........cecuieiieiiieriieriierie ettt 547
Appendix A: Additional Simulations of Pure-State Diffusive Dynamics................... 551
Appendix B: One-Step Entanglement TeStS ........cceevvivrerieriiinienieieisesieieesesseiennas 553
Appendix C: Mixing Diffusive and Jump Dynamics: Role of Interference................ 556
C.1. Simulation Procedures............cccoreirreririeirieireeseere e 558
C.2. Interference Effects ........ccooiririeiiiieierieee e 560
Appendix D: More on Measurement Inefficiency ..........cocceevvireneniniinineneiieneenas 561
D.1. Methods for Inefficient Photodetection ............cccocvvuerieieiriinienieiniesieenens 562
D.2. Methods for Inefficient Homodyne Detection...........cccceevveivienieirienienienene 564
Appendix E: Review of Two-Qubit Density Matrices and Entanglement.................. 565
E.1. Two-Qubit Entanglement and CONCUITENCE.........cccvevverveerrerrerieirierresiennas 565
E.2. Generalized Gell-Mann Matrices and Effective System Coordinates . 566
Appendix F: Mapping Equations of Motion from Kraus Operators to the SME ...... 568
F.1. Homodyne Detection..........ccceeeierieriiieiieiiesiieriieeee et 568
F.L1. Ideal Case......covueevuiiiiieieeieeie ettt st st 568
F.1.2. Inefficient Measurement .............coeueveeeeirieneenieeneneesieeeneseeseeneeneens 569
F.2. Heterodyne DeteCtion.........ccceevierieeieeiieiiieiiesiee et 571
FUNAING....eoitiiiie ettt et s tb e stb e s sbeesbeesseessaesenas 572
ACKNOWICAGMENL.......cccviiiiiiieiiiiicie ettt este e ere e b et staestreesbeesbeereesraessaeseneanns 572
DISCIOSUTES -..nveeeeneieieee it te et ee et et e ettt et e et e e st et e s teeat e seeseente et eneanteeneeneenees 572



Tutorial i \/ol. 13, No. 3/ September 2021 / Advances in Optics and Photonics 519

Entanglement of a pair of
quantum emitters via continuous
fluorescence measurements: a
tutorial

PHILIPPE LEWALLE, CYRIL ELOUARD,
SREENATH K. MANIKANDAN, XIAO-FENG QIAN,
JOSEPH H. EBERLY, axo ANDREW N. JORDAN

1. INTRODUCTION

The present work draws on three distinct areas of research; entanglement, quantum
trajectories arising from continuous measurement, and spontaneous emission all play
arole in what follows. Entanglement has interested and confounded the physics com-
munity since it was first noted [ 1-3]. It has since been shown to be a valuable resource
for applications to cryptography or metrology, and protocols have been found to
generate and preserve it. Spontaneous fluorescence is a long-studied and fundamental
example of behavior arising from the interaction between a physical system and its
optical environment. When left unmonitored, spontaneous emission becomes a source
of disentanglement [4,5] and/or decoherence; when collected and measured, however,
this need not be the case. Recent efforts to track the impact of environment-induced
dynamics, such as a qubit’s fluorescence, have led to stochastic quantum trajectories
(SQTs) [6—14], which arise from time-continuous measurements of a system. These
stochastic dynamics are those that occur conditioned on the outcomes of measure-
ments on the system’s environment, in contrast with the dissipative dynamics arising
in unmonitored open quantum systems.

We find our present topic at the intersection of these three areas. Specifically, we take
recent theoretical [15—19] and experimental [20—30] developments in the continuous
monitoring of a single qubit’s spontaneous emission as our point of departure. While
our work is inspired by the recent progress in experiments using superconducting
qubits, our analysis is not restricted to this specific platform. From there, we con-
sider how two qubit generalizations of such measurement protocols might be used to
entangle the continuously monitored quantum emitters. Specifically, we investigate
a device, illustrated in Fig. 1, in which two remote identical qubits’ spontaneous
emission is mixed and monitored continuously. We review and expand on key results
in this area [31-33] using a straightforward and conceptually transparent model,
drawing connections to the wider literature as we go.

The overall aim of this paper is to illustrate how an observer may infer the pres-
ence or absence of coherent correlations (entanglement) between remote systems,
using a quantum state evolution that is conditioned on the real-time outcomes of
measurements tracking the two-qubit state. We begin by establishing some straight-
forward principles (based on standard ideas for open quantum systems and Bayesian
inference) in Section 2. Some general conceptual discussion there coalesces into a
measurement model that underpins the rest of the paper. Section 3 applies the model
to answer the question: What joint measurements and measurement settings are suit-
able for generating correlations between subsystems? This discussion necessarily
emphasizes the erasure of which-path information, drawing connections between our



520 Vol. 13, No. 3/ September 2021 / Advances in Optics and Photonics | Tutorial

model and the wider literature on the subject. In Sections 4 and 5, we perform detailed
analysis of the dynamical changes in entanglement due to time-continuous tracking of
the two qubits, emphasizing the correlations between them that an observer may infer
by acquiring different forms of quantum mechanically complete information, using
ideal measurement devices. This may be contrasted with the case in which an observer
attempts to draw inferences based on incomplete information obtained via inefficient
measurements, which we discuss in Section 6. Some conclusions and further dis-
cussion of the literature context into which these ideas fit are included in Section 7.
Finally, some technical details and additional pedagogical points are covered in the
appendices.

2. CONTINUOUSLY MONITORING TWO-QUBIT FLUORESCENCE:
FORMALISM

Continuous monitoring of a quantum system, given its initial state, leads to a real-time
estimate of the system’s evolution, conditioned on the measurement record. Such an
evolution may generically include both unitary dynamics and the stochastic effects of
measurement backaction.

The stochasticity of the dynamics is a direct outgrowth of the randomness implicit
in quantum measurement. Whereas the evolution described by the Schrédinger
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Left, the kind of setup we envisage. Qubits in cavities A and B emit spontaneously
into transmission lines 1 or 2, respectively. Each cavity and transmission line can be
engineered to capture the fluorescence with high efficiency. These single-photon sig-
nals are mixed on a 50/50 beam splitter, and any phase in the two paths (relative to an
external reference) is characterized with a pair of phase plates. The combined effect
of these unitary transformations on modes 1 and 2 before they reach the detector at
outputs 3 and 4 is summarized by Eq. (1). Right, we consider continuous monitoring
(dr « 'Th) at the outputs D and D, with three different measurement options. Direct
photodetection of the emitted signal leads to a number of clicks in each time step
(zero, one, or two photons may arrive at a detector). Homodyne detection and hetero-
dyne detection involve measuring one or both quadratures of the field, respectively;
both rely on mixing the signal with a strong coherent state local oscillator (LO). The
relative phase 4 or 3 between each signal and LO determines the particular quadra-
ture(s) that are monitored. In the language of quantum-limited amplifiers (QLAs),
pertinent to existing single-qubit circuit QED experiments, homodyne detection cor-
responds to a “phase-sensitive” amplification, and heterodyne detection corresponds
to “phase-preserving” amplification. See Section 2 and/or [18,19], and references
therein, for details.
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alone pertains to closed system dynamics, in which measurements cannot be directly
accounted for due to the system’s isolation from any possible probe, we here con-
sider an example of open system evolution. More specifically, we will consider that
quantum degrees of freedom in our apparatus illustrated in Fig. 1, may be divided
into a primary system (two qubits) and their environment (optical degrees of free-
dom that may contain some emitted photons). The optical degrees of freedom may
be monitored and then inferences can be drawn to update the two-qubit state in real
time, conditioned on the outcomes of the optical measurements at each time step.
Generically, such conditional stochastic evolution of the system (monitored via
generalized measurements) is called a stochastic quantum trajectory (SQT).

2.1. Open Systems and (Un)Conditional Evolution

We may formalize notions of system—environment interaction, and the resulting
dissipative or conditional evolution, by reviewing the Kraus representation [34-36]
(or operator—sum representation [37]). We suppose we have a quantum system in
the Hilbert space Hy, with free dynamics governed by the Hamiltonian Hs. The
system is also interacting with one (or more) environmental degree(s) of freedom
in the Hilbert space Hy: and characterized by the free Hamiltonian Hp:. A generic
interaction Hamiltonian Hin describes possible interactions between the system and
the environment. The evolution of the system and environment together is assumed

unitary in the extended Hilbert space Hse = Hs ® Hpg , described by the
Hamiltonian = + |

Hsge Hs Hg  Hi. This formulation implies that our system of interest is com-
pletely isolated, except for its interaction with the environmental degree(s) of freedom
that has (have) been specified explicitly; these environmental degrees of freedom will
mediate all possibility of measurement going forward.

We consider the scenario where the system and its environment are initially uncorre-
lated, as per

pse(0) = p(0) ® O, (1)

where p denotes the state of the system and O denotes the state of the environment.
The combined state of the system and environment evolves as

pse(dt) = U(dt)pse()UT(dy),  for U(dt) = expl—idt Hsg] (2)

(in units ril_—> 1). We may further choose a basis in which Q@  , ¢ is diago-
nal. The reduced evolution of the system of interest is obtained by tracing over the
reservoir degrees of freedom, i.e.,

ple+d) =tefpse(r+ dy = jlUADpH)®  pelk) £l U'(an)l))
7 £
= Mu(d)p ()M (ay). (3)

Jk

The operators Mk(df):\/ml</|f](df)|/é) are Kraus operators. Equation (3)

iE trace preserving, and the Kraus operators obey the completeness relation

Jjk Mk(f)Mk(t) =1, such that they form elements of a positive operator valued
measure (POVM). This description will be useful going forward, not only because the
sum over 7 and £ allows us to describe the dynamics of an open system, but because

the individual Mk will allow us to describe the evolution of a quantum system con-
ditioned on its environment evolving from |[£) to |;). Initial conditions of Eq. (1)
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adequately describe the case when the environment is probed directly with some
detection apparatus in every time interval, possibly exchanging energy, entropy, and
information through the coupling with the measurement apparatus.

The dissipative dynamics due to a quantum system’s interaction with an unmonitored
environment are often formalized via the Lindblad master equation [38]. The latter
approach is effectively a time-continuum description of the dynamics above and is
otherwise equivalent. Specifically, expansion of the dynamical rule (3) to O(d?) leads
to [39]

( )|
. o . . p(t + dt) — p(z
p=ilp, Hl+  LpLi=y LT pspL] = = @
‘ L I dt

The density matrix p again describes the state of the system, while the Lindblad
operators I. describe the effects of different channels ¢ by which information may
“leak” into environmental degrees of freedom. Closed system evolution alone may be
described by the first term p° =7 |p, Hy ] (this is equivalent to the Schrodinger equa-
tion). The remainder of the master equation [Eq. (4)], concerning interaction via open
channels to the environment, causes the state purity to degrade over time. In other
words, the accumulated loss of information to the environment prevents the system
state from being described as a pure state (coherent) superposjtion, as p = |y) w|;

lost information leads instead to (incoherent) mixed states p = ; ;|w;) w:| (where
¢, 1s the probability to draw a pure state|y;) from an ensemble). In this sense, try:

in Eq. (3) may be regarded as an average over all of the measurement outcomes that
could have been obtained if a measurement had been performed on the environment.

We begin developing these ideas in our specific problem of interest by considering the
spontaneous emission of one qubit. The typical decay statistics of spontaneous emis-
sion may be derived from an interaction

Fiw= (a6 +i'5-), (5)

J

between a qubit with raising and lowering operatorg™*, and many modes; of its
electromagnetic environment with frequencies w, and photon creation and annihi-
lation operators a“j and 4 ;. The coupling between the qubit and each field mode is
characterized by the constant g ;. The resulting dynamics of the qubit may be captured
in the Lindblad form Eq. (4), however (see, e.g., [13] for an accessible derivation).
Specifically, a qubit (two level quantum system) decaying into its optical environment
may be described by

N P Pec Peg  _ TV Pec ~4Peg (6)
P=yo_ —20 o-p~ 2P0 o0- T S = , s
re-pe ’ P Pge Pgg —iPge VPez

where p is the qubit density matrix, I- \Ly*a_ describes decay at ratex 1/T), and
any unitary contributions to the dynamics have been eliminated by going into a rotat-
ing frame (see, e.g., [13,18]). Equation (6) describes exponential decay of the qubit’s
excited state population, i.€., pee(?) = pee(0)e 2.

We are here interested in developing the case of monitored spontaneous emission,
in which case we may discuss not only the unconditioned evolution above but also
evolution that is conditioned on the outcomes of measurements performed on the
emitted photons. Tracking of a single qubit in this way has been acheived in recent
experiments [20-30]. Following such implementations, we should imagine that
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spontaneously emitted photons are captured and routed to a detector through a trans-
mission line. Connecting these ideas more formally to the description above, the
measurement is performed on a temporal mode of the line, i.e., on traveling modes
propagating from the qubit to the detector [9,40—42]. In each time step, a new mode
interacts with the qubit and will then be measured; we formalize this below in a way
that closely follows collision models of quantum optics [41]. We may then describe a
single time step as an interaction between the qubit and single field mode, initialized
in vacuum [43].

In order to develop a simple model of this type of situation, suppose we initially have a
qubit in some arbitrary pure state, coupled to an empty output line that routes its spon-
taneous emission to a detector, characterized by the joint state | 4;) = ({|e) + ¢lg)) ®
|0). After some short time evolution, | .4;) transforms to

N N
|A) = ¢ (le,0)+9lg, 00+ 1—¢ Llg 1), (7)

where we have defined =47. We have written a pure state that explicitly respects
the decay statistics that are detailed above and expected on average. This state update
could be equivalently wr&ten, for small , asan o\geration,

=0 ¢

47 = @lo)= V. @ o) (8)

o+ “(af 1
in the {l¢, 0), |g, 0)} qubit-field basis [44]. The operator ' creates a photon
(i.e., 210) =[1)) in the transmission line, leading to a detection apparatus. The
utility of this formulation is that we may choose a final state of the optical degree of
freedom and, thereby, obtain an operator that updates the qubit state conditioned on
the optical measurement outcome.

For example, if a photon number measurement is made after a short time (« 1), then
we may extract two Kraus operators [18,19],

v VA

Mo=o0| - ‘1’|0) and Mi=1] -7 (1’|0), 9)

a t a i
from Eq. (8). Conditional evolution of the qubit state is then implemented by

Mop ()M Mp1)M' (10)
\

€ or p(t+d) = —%

p(t+dy) = )
tr  Mop( )M

7,

:\M p(YMi '

tr

where the first expression is used in the event that the photon counter does not click
(no photon is emitted) and the second expression is used in the event that the detector
does receive an emitted photon. One may understand the process described from
Eq. (7) up to this point as one of Bayesian inference, in which the qubit state is
updated conditioned on acquiring new information from its environment (and given
a model of the qubit—field decay interaction, such that the meaning of the detector
readout, relative to the qubit state, is clear). A similar approach may be applied in
cases with different qubit—field interactions (e.g., dispersive qubit—cavity coupling) as
well [45]. This formal structure also lets us describe the unmonitored (unconditioned)
evolution: If we trace out all possible outcomes that could have occurred, i.e.,

p(t+dt) = Mop ()M '+ Mip ()M, (11)

as in Eq. (3), and then expand to O(4#), the unmonitored evolution Eq. (6) is immedi-
ately recovered. This reduction of the Kraus operators to a single output channel is
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coAnsisyant with the reduction of the associated master equation to a single channel
L =" "y o and is furthermore typical of operator—sum representations of a relax-
ation channel, as presented from a quantum information perspective [37]. The
conditional (i.e., continuously monitored) evolution of a single qubit has been stud-
ied in detail using this model [17-19], leading to good agreement with experiments
[20-30].

2.2. Conditional Two-Qubit Dynamics

The device geometry we focus on, shown in Fig. 1, has been used in conjunction with
photodetection and, outside of the context of quantum trajectories, to entangle many
types of solid-state quantum systems that interact with their optical environment
[46—49] (see Section 7 for additional references and discussion). One of the key
features of the device geometry in question is that it allows for the creation of entan-
glement between distant qubits, without the need for them to interact directly;
coherently correlated states of the emitters are established purely from the infer-
ences that can be drawn from the optical measurements. Similar methods have been
leveraged to perform loophole-free Bell tests [50,51], and promising extensions to
the above experiments, within the framework of quantum trajectories, have been
proposed [33].

We extend the single qubit treatment above to describe the system illustrated in Fig. 1.
For simplicity, we only consider the case where the qubits and cavities, and therefore
the decay rates y of qubit—cavity systems .4 and B, are identical. A beam splitter
illus- trated in Fig. 1 implements a unitary mixing operation on the optical modes
coming from either cavity, and some measurement devices can then be placed at the
output ports 3 and 4. A two-qubit two-cavity system may be expressed by a pair of

operatorsas in Eq. (8),
VA V [ —

A= o Y gl WL, Y (12)

’

211 1 day 1

emitting into different transmission lines (where 21%1 and &TZ create photons in paths 1
and 2, respectively). Then the two-qubit two-mode state update goes as

lya) = (A ® B)(|4) ® |B)), (13)

which gives a short-time state update, now in the two-qubit two-mode basis
{lee, 0102), leg, 0102), [ge, 0102), |gg, 0:102)} (assuming some state |B;) =
(&le) + ¢lg)) ® 0, which transforms like

A:)). This is equivalently notated as

1= 0 0 0 g
|w>:.f4g_z&; \/1— Vo 0t el00)  (14)
dt . (1 _ )&i \/Q \/1__ O . gof . 12
il i A U
M [yo):

where the matrix M will become the object of primary interest in deriving Kraus
operators that act on the two-qubit state above.

The effect of the beam splitter and phase plates can be characterized by the unitary
transformations, ) )

A= e ¢ 4t A= e = Gt (15a)
3 4

J
1 2 3 4 2 2

or, conversely,
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A 0t At S RS NS
ay = Le a\ta,, a,=Le a,—a, . (15b)

The state update matrix ) can be modified accordingly to represent these optical
transformations, leading to the outputs D;" and th', and then it reads

- 0 0 0
— N
O J /58,00 _ 9 1-— 0 0-
M- Zlae" —a%?) v .. (16)
L2051 4 5T) 0 = 0.

_ - . v_
20680820 — JH 20 203 4 0%%) 23 — %) 1
The operator that updates the two-qubit state under particular measurement outcomes
is then obtained by projecting out final optical states |y :34) consistent with a particu-

lar detection process, i.c., M r= Wy 34|/ MEDs adts purely on the two-qubit state,
updating it (conditioned on optical measurement outcomes) via

M p)M'
p(t+dy) = —— Loy (17)

7 T
tr M;p(')M;

Such an approach will ultimately form the basis of all of our derivations and numeri-
cal modeling below. Note that an update of this type is the state update an observer
can make at 77, given previous knowledge of the state p(#), and access to the
measurement record at both outputs 3 and 4, under the assumption that no information
is lost to the environment at any stage between the qubits and detectors. The joint
qubit—field system remains perfectly isolated except for ideal, perfectly efficient,
measurements made at ports 3 and 4. We will momentarily clarify below how the use
of |yy:3.4 )in this presentation corresponds a type of measurement, with well-defined
outcomes that are amplified to point where they correspond to the classical output of
a measurement device. For generalizations to the case of inefficient measurements,
see Section 6 and/or Appendix D. In assuming that the observer’s state update applies
in real time, we implicitly assume that the photon travel times between the qubits and
detectors are negligible (as is the case, e.g., in any circuit QED experiment in a single
dilution refrigerator) [52].

Fluorescence moves the qubits from their excited states to their ground states. The

clearest way to generate entanglement then involves starting with |e¢), counting
photons, and recognizing a Bell state [#+) = J |¢g) + J |g¢) when a detector clicks.

Consider (with 6 = 0 = §)
0 0 00

Azil 0 00. (18)
=00 00. )
vV—v—

0o Y3Y30

1504/ M|0504) [ee) = .

which describes the update of the two-qubit state by the jump operator, which occurs
conditioned on the detector at output 3 registering the arrival of a single photon
in the requisite time step. After normalization, this state corresponds to [#/*). If a
click occurs at output 4 instead, we take|ee¢)to B/~ )(up to a sign) via the opera-

tion 0314 |k ¢ ¢)| Dhe key point to take away from this simplest case is that,
depending on which channel registers an event, we get a different Bell state, and

the matrix elements highlighted in purple are primarily responsible for generating
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entanglement by correlating or anti-correlating |eg) and [ge¢) as amplitude decays out
of |ee). When a second click is registered, we know that both qubits have emitted, and
the state is updated to |gg) with the entanglement destroyed.

Two-photon events (events in which both qubits emit “simultaneously”) exhibit
interference, similar to the type exhibited in the classic Hong—Ou—Mandel experiment
[53]. Our model coarse grains the notion of simultaneity to mean merely that both
emissions occur within the same detector integration interval 4z. The probability of
emission within the same interval 47 is sufficiently small (to O( %) at worst) that the
effects of this simplification to our model should be negligible. Related points are
discussed in Appendix B. The two-photon interference visibility is determined by
the indistinguishability [54] (or identicalness) of the two photons. Thus, the induced
coherence with continuous fluorescence measurements can be viewed as a process of
distilling the two-photon indistinguishability. Our use of these ideas is, in this sense,
similar to that of induced coherence without induced emission first studied by Zou,
Wang, and Mandel [55-58]. Fabricating solid-state qubits that emit genuinely indis-
tinguishable photons is not necessarily easy, but the problem has been studied in the
context of the device geometry of interest and entanglement generation [ 59—-62].

We do ultimately wish to proceed to considering homodyne or heterodyne measure-
ments in addition to photodetections. Heterodyne monitoring can be modeled by
projecting onto coherent state outcomes instead of Fock states [7], i.e., we use a Kraus

operator Maﬁ = of|M]|00) =

1- J 0 0 0
e —lal22-1p122 (=) (o0 — B* 9 = V 0 0-
—gxe? +/€*ei9)) 0 1- 0
(2, 2 ) v _ VY
Tk 2 — fr 20 s*d’ + p*e®)  s(are” — pre) 1
(19)

Physically, this is achieved by mixing the signal beams with a strong coherent state
local oscillator (LO), or equivalently doing phase-preserving quantum-limited ampli-
fication (see Fig. 1). As in the one qubit case [17-19], the subsequent readouts are
related to the coherent state eigenvalues by

o= ;(r]-i-z'rg), L= izt(r}ﬁm). (20)

Heterodyne detection (or phase-preserving amplification) involves the measurement
of two non-commuting observables (measuring both quadratures of the field is like
measuring the position and momentum of a quantum harmonic oscillator). This proc-
ess is consequently limited by the Heisenberg uncertainty principle. Coherent states
satisfy and saturate the Heisenberg uncertainty principle, and the use of coherent
state outcomes corresponds to the best possible balanced measurement of the two
quadratures allowed by quantum mechanics. For additional details, see, e.g., [63,64]
and references therein.

Homodyne detection is similar to heterodyne detection [65], but information is
only collected about one quadrature instead of both (the unmeasured one is effec-
tively squeezed out) [63,66]. We model this by choosing our final optical states
to be eigenstatgs of a particular quadrature, i.c., we take the eigenstates of the
X = (a" + a)/ 2 quadrature at both outputs [7] (without loss of generality, since

6 and & are completely tunable), such that we have M= X3X4 |M00) =
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Vexp =X+ X?) X
= 33 4

y - /0 0 0

\/ﬁ(eﬂ}(ﬁ — ¥ Xy) 1_ y 0 0
(1= )" Xs+e"Xy) 0 J 1- 0"

XA — ) — AHXU—1) (P X3+ X (e? X5 — e Xy) 1

(21)

We have used the standard Hermite polynomial solutions in the appropriate matrix
elements,

X|O) = 7[721(6'7}{20, (223)
V_
X|)=r"1eX2 2 (22b)
X
1 2X2,— 1
X)) = i —v/—z , (22¢)

for the X representation of the harmonic oscillator wave function (for dimensionless
X)), which we now use in each field mode, for all the matrix elements ofA4. The read-
outs are related to the real numbers X by

dr dt
X3= " n Xa= T n (23)
2 2
using the same logic underpinning Eq. (20). The operator describes a valid measure-
ment and complete set of possible outcomes, i.¢.,

[oe]

dry dry MM, o 1, (24)

— 00

indicating that it forms a POVM [37] (the same is true of the photodetection and
heterodyne operators we have discussed above). For derivations and an overview
of the analogous objects in the single qubit case, see [18,19], and for a very detailed
treatment of the single qubit heterodyne case, see [17].

A few remarks about the process above, and Egs. (20) and (23) in particular, are war-
ranted before continuing. In transitioning to the readout notations r, we imply that
an amplification step has taken place, such that the readouts r are, e.g., the current or
voltage observed on a laboratory device at a macroscopic or classical scale. When we
use an update like Eq. (17), we are imagining that an observer, in possession of the
information encoded in any relevant r, is inferring the evolution of the two-qubit state
conditioned on information gained by measuring the qubits’ optical environment.
Such an inference is drawn given a picture of the device that we have encoded in
M [Eq. (16)]. While the records r take on sharp values in any individual measure-
ment time step, they are intrinsically noisy (stochastic) due to the limits quantum
mechanics imposes on measurement and amplification. For additional comments
regarding quantum—optical measurement and/or amplification, as applied above and
in connection with contemporary experiments, consult, e.g., [63,64,66—72].

Note that it is very common to express continuous quantum measurement in the
language of stochastic differential equations (SDEs), by using the stochastic master
equation (SME) [9,13,73]. The typical Itd SME for diffusive quantum trajectories
reads
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A ¢ L
dp = ilp, Hsldt + Llp, I..]dt + \/WTK[p, LJ]dWw, . (25a)

The super operators are the Lindblad dissipation term

)
. o e o o
Llp, LI=LpL -, L'Lp+pL'L. , (25b)
and the measurement backaction term
. ) i C, )
Klp, L1=Lp+pLl -ptr Lp+pLl . (25¢)

The introduction of K effectively supplements Eq. (4) with a stochastic term,

implementing the conditional evolution given measurement outcomes. Each of
the operators I. , describes a particular measurement channel, which is monitored
with efficiency #.d[ 1 )] where 7. =denotes a channel from which all possible
information is collected, and 7, =0 indicates that the channel is an opening to the
environment, but none of the information leaking out is collected. Any unitary part of
the dynamics can be applied using the Hamiltonian Hs. The 41V, denotes a Wiener

process associated with each measurement; this delta-correlated Gaussian white noise
models the random nature of the measurement backaction and is responsible for the
stochasticity of Eq. (25), as well as the noise in the measurement records,

|
. . AW,
ro=tr p(L + L) + . (26)
t

When the conditional state update Eq. (17) is expanded to O(4z), using the operators
[Eq. (19) or Eq. (21)], one may recover the SME and, thus, ascertain that these two
approaches agree (i.e., the SME may be recovered as an approximation of the formal-
ism we emphasize, for all cases of diffusive measurement dynamics considered in this
manuscript). See Appendix F for details.

The SME has been fruitfully applied in past work on systems similar to those we
consider here [31-33,74-78]. While the SME is a powerful tool for the purposes of
calculations, developing the corresponding Kraus operator treatment as we have done
above has some advantages; specifically, our Kraus operators (1) offer a conceptually
transparent view of the measurements we consider here and the inferences an observer
may draw from their outcomes and (2) offer a good alternative to direct integration of
the SME in numerical modeling, as fewer approximations are necessarily made (see,
e.g., [73,79,80] for closely related comments).

3. WHICH-PATH INFORMATION AND INTERFERENCE

We now consider the “which-path information” available in the measurement records
obtained by photon counting, homodyne detection, and heterodyne detection. In
other words, we consider under what circumstances an observer using these protocols
is able to ascertain which qubit makes particular contributions to the measurement
record. Measurements that erase the which-path information (i.e., do not carry
information that disambiguates the origin of the emitted signal) are suitable for
entanglement generation. Conversely, those that allow emission from qubit A or
B to become distinguishable will reduce or spoil the possibility of entanglement
generation.
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3.1. Photodetection and Interference

An ideal photodetector at port 3 measures the pboton number N; = Zz;&; at eacp time
step, and the photodetector at port 4 measures Ny = &%ds. Notice that N5 and Nj are
totally independent of the phases 6 and § (see Fig. 1), so these do not impact the mea-
surement at all in this case. If a photon is inserted with certainty at either port 1 or port
2, the probability that the ensuing click is registered at 3 or 4 is the same either way;
this overlap in the probabilities associated with the measurement outcomes between
our two paths indicates that the which-path information is erased by this measure-
ment. Moreover, the path erasure occurs unitarily, without any loss of coherence.
In this sense, the beam splitter functions as a quantum eraser [81-85]. This means
that, given an initial two-qubit state for which the photon origin is ambiguous (such
as ¢ ¢ )), our photon counting measurement will be unable to disambiguate which
qubit the photon came from and can, therefore, generate entanglement (coherent
correlations) between emitters.

Our model predicts that certain qubit states lead to complete destructive interference
at either output ports 3 or 4. This is because entangled states of the qubits/emitters
map directly onto enfangled photon states. Consider the two-qubit Bell state
[W+) = (leg) + |ge))/ 2. The resulting photon emission is given by

( )
Loat 24l 1000y), (27)

2
and the beam splitter Eq. (15) shows that these then become either

¢ 570504)(+) or ¢?47)0304) (). (28)

This means that when the qubits are in state|[#+)port 4 is completely dark, and J- )
leaves port 3 dark. A direct consequence is that in the photodetection case, the second
photon measured must be seen at the same detector as the first because the first click
creates one of the two Bell states |#*+), which in turn creates an interference effect
for the next photon. The interference occurs independently of the type of measure-
ments performed after the beam splitter, and some interesting consequences of this are
developed in Appendix C.

3.2. Quadrature Measurements and Which-Path Information

What happens when the observer makes some measurement along one (homodyne) or
both (heterodyne) quadratures at ports 3 and 4 instead? Consider measuring combina-
tions of

at3: Xs=J(a +a) P
2 3

at 4: X4 = ;;(&I + 224), Py = lz(gzz— 214).

L(&T - 223),
2 3

(29)

From the beam splitter Eq. (15), it is apparent that (e.g., foe=0 & 9), we can have
situations where a photon originating from port 1 leads to an in-phase measurement
event, as experienced between 3 and 4, whereas a photon originating from port 2
leads to an effect that is 180° out of phase between ports 3 and 4. We need to be care-
ful then: Depending on which quadrature(s) we measure at each output, we may be
able to determine whether light was reflected or transmitted at a beam splitter. We
will confirm that in situations where we can, thereby, make inferences about the
which-qubit origin of information in the measurement signals, the possibility to create
entanglement between the qubits with that measurement is destroyed.



530 Vol. 13, No. 3/ September 2021 / Advances in Optics and Photon)};‘ Tutorial

We proceed by looking more closely at measurements involving information from
only one quadrature, i.e., homodyne detection (equivalently, measurements made via
phase-sensitive amplification of each output). We can consider a probability density
associated with the blue terms in Eq. (21). It is useful to consider an optical state
2110102) (+) or 25/0,0,) (=) (a single photon enters from one input or the other), for
which the output optical state at the detectors is given by

( )
|w34>—7 i il 109). (30)

These states, by definition, carry perfect which-path information from the start, and
the two-qubit states jg e)or 4¢ yhat map onto them are, therefore, inappropriate
initial states from which to begin a process leading to entanglement production. Our
point here is to see which measurements preserve or erase that information, which we
are presently inserting into the system in the most definite way we can. The optical
state Eq. (30) leads to the probability density

(X5, X4|6}1T (+) or &; (-) = X3X4|W? NIE
oc =%~ (XZ + X7 +2X X cos(d — 9)) (31)

It is obvious that the distributions [Eq. (31)] will be different between the cases
(and, therefore, those cases are at least partially distinguishable), except for a choice

of 6 and & such that cos(® —3) = 0. In other words, we can erase the which-path
information by choosing, e.g., ¢ =0 and 9= 90°, Wthh is effectively equivalent
to measuring the X quadrature of mode 3, and the P quadrature of mode 4. See
Fig. 2. The function g is a proper probability density because the statfds )f form a
complete set.

We can make similar comments about the heterodyne case by looking at the joint
(two-mode) Husimi-Q function at the outputs 3 and 4 [64]. If y34 describes the
output photon state, the Q function is given by

Olo, B) = 5| aflysa)l?, (32)

where we are using a coherent state a3/a) = ala) at mode 3 and a coherent state
as|B) = B|B) at mode 4. We will decompose the complex coherent state eigenvalues
accordingto a = X3 + /P and f = X4 + 7 P4. Then we may write

0= ! e—\a\2—\m2|a*€;9 iﬂ*€j9|2

27
o X5 X PPy
=g XN B4R |
+ 2(X3X4 + P3P4) COS(@ — 19) + 2(X4P3 — X3P4) sin(@ — 19) , (33)

where the gorresponds to the case where a photon started in port 1 and the cor-
responds to the case where a photon started in port 2. This derivation works in a
similar spirit to the one used in the homodyne case, with the notable difference that
the O-function is a quasiprobability distribution (because the stateg| )}, unlike the
states £X )}form an overcomplete basis). We can immediately see that functional
form Eq. (33) would allow for thg and case to be distinguished; this suggests that
heterodyne monitoring is always able to keep our sources distinguishable, and such
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measurements are consequently expected to be much less interesting to us from an
entanglement genesis standpoint (which we confirm below and in Appendix C).

Above we have provided simple arguments (1) for how joint homodyne detection
can lead to erasure of the which-path information in our system (and therefore lead
to some entanglement generation) and (2) that this information erasure is impossible
for the cases of interest using joint heterodyne detection. We briefly highlight how
path distinguishability leads to separable states before shifting our focus to the more
interesting entangling cases.

The heterodyne measurement, as discussed above, generates outcomes corresponding
to coherent states |a) and |f), respectively, on the ports 3 and 4, satisfying the rela-

tions a3|a3Ba) = alasfs) and as|asPs) = Blasfs). Inverting the beam splitter relations
[Eq. (15)], we can establish that the action of 2" and &~ > on such a state follows

Figure 2

_0(Xs, Xala]), 0 =9 (X3, Xala}), |0 — 9] = 90°

-2 -1 0 1 2

We plot the probability density Eq. (31), corresponding to homodyne measure-
ments at both system outputs, as a function of X3 (xaxis) and X4 (y axis). A photon
is allowed to enter at one port or the other; overlap of the subsequent probability
density distributions for the measurement outcomes indicate that this which-path
information is erased, while different distributions between the two cases indicate
that the measurement can distinguish the photon source. In the left column, we show
the probability distributions for the homodyne measurement settings 6 = 0 = J;
since the distributions differ between the case 2~ I(top) and aAZT (bottom), we conclude
that the which-path information is not erased under these settings, which prevents
measurement-induced entanglement genesis between our qubits. In the right column,
by contrast, we see that the choice & — 0 and $ — 90° leads to the same distribution
of measurement outcomes for either photon input; the which-path information is,
thereby, erased for these settings, which will be used for most of the homodyne exam-
ples developed later in the text. Generically, any choice that satisfies 0 ¢ = 90°
erases the which-path information, yielding overlap as shown in the right column.
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atlazfpa) = 4 (e Lo+ e~ B)|azfa), arlosfa) = L Lo — e~ B)|asfa). (34)

This implies that |a3f4 can be written as a product of coherent states in modes 1 and 2
aswell, 1.e.,

lasfBa) = | Lz(e*fga +ep) L{e*ﬁa -e?B)). (35)

mode 1 mode 2

This proves that joint heterodyne measurement is effectively preparing separable
states of modes 1 and 2, leading to no entanglement generation between qubits.

The same kind of separability argument can be made for the homodyne measure-
ment in the case =%, which maximizes which-path distinguishability (minimizes
which-path information erasure). To see this, we consider measurement of observ-
ables X 3 and X 4 in ports 3 and 4 respectwely, yielding outcomes X3 and X4, such
that X3|X3X4)—X3|X3X4) and X4|X3¥_) X4|X3X4) For the ChOlCC\/Q 3,
we  may wrlte X3 = [X{)(Q) +X2(0))/ 2 and X4=[X1(0) - X2(0))/ 2, for
X, (0) = (" a +¢”4,)/ 2 is a local observable at port ; =1, 2. We, therefore,
have

: : Vi : A -
[X10)+X20)| X3X4) = 2X53|X53X4) and [X1(0)-X2(0)| X3X4) = 2X4|X5Xy),
(36a)
which may be rearranged to read

X](@)‘X3X4)=EL(X3+X4)|X3X4) and }%2(9)|X;3X4)=\L(X3—X4)‘X3X

4).
(36b)

As in the heterodyne case, we see that X5 X 4) is a separable state also for modes 1 and
2,1.e.,

| X3X4) — | %(X3+X4)2L(X3—X4)). (37)

mode 1 mode 2

We consequently see that the distributions in the left-hand column of Fig. 2, with
the most path distinguishability, correspond to a measurement that projects the opti-
cal degrees of freedom in a separable state, rather than an entangled one. Related
calculations, including the entangling case, appear in Appendix B.

3.3. Connecting Which-Path Information Erasure to Entanglement Swapping

Here we argue that the generation of entanglement in our optimal homodyne scheme,
as described above, can also be understood as entanglement swapping using a
continuous variable Einstein—Podolsky—Rosen (EPR) basis measurement [3]. In
entanglement swapping, one has two pairs of initially entangled parties (four parties
in total). To swap the entanglement, one generically performs a measurement in an
entangled basis on two parties—one from each initially entangled pair. This, in turn,
entangles the remaining parties, effectively swapping the quantum entanglement
between them. In our context, the fluorescence process naturally generates some
time-dependent entanglement between each qubit and its cavity output mode [qubit
A is entangled to mode 1, qubit B to mode 2, as per Eq. (7)]; by jointly measuring
the fields after they are mixed on the beam splitter (modes 3 and 4), we can swap the
entanglement around so that the two qubits share correlations instead.
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This can be realized as follows: The observables X = }Aq_l X,and=P. _ P

P, commute and completely characterize the two-mode quantum state. Jointly
measur- ing them can generate EPR correlations between the modes 1 and 2. A
measurement

of X, with readout 7+ and a measurement of P_ yielding readout »-, prepare a con-
tinuous variable EPR state with X | + X,= r and Pi— P,= r—. We first focus on

the perfectly correlated scenario X |+X =0 and Py — P, =0: the two mode wave
function is then [86]

X1X2|l//1,2) oC 5(X1 + Xz) (383)
in the position basis, and
Py Pa|y2) o< 0(Pr — Py) (38b)

in the momentum basis. The particular state Eq. (38a) (which has the same symmetry
of a photon pair produced from vacuum) can also be written in the Wigner form as
[87]

WXy, X, P, P) = 6(X1 + X2)o(P1 — P). (39)

An arbitrary set of readouts {-, r+} preparing maximally entangled ficld modes
is related to Eq. (38a) by a local unitary operation in either of the modes, which
is a generic single mode displacement operation that preserves the entanglement.
Equation (38a) is also the limit of maximal squeezing in a two mode squeezed vacuum
state,

[oe]

LI
V12 = " oange) 2 1 Al d (40)

The wave function X, X:|yj,) is identical to Eq. (38a) in the limit s — oo [86],
highlighting the role of the squeezing operation implicit in quantum-limited detection.
Implementation of such an operation via a single two-input quantum-limited amplifier
operating in the large gain limit is described by, e.g., [88—90].

In our setting, the modes X . and P_ are realized from modes 1 and 2 by passing them
through the beam splitter. Then local measurements of quadratures on the outgoing
ports realize the measurements of the sum X, and difference P quadraturgs of the
input modes. W¢_can formalize this statement by noting that (- X1+ X))/ 2—Xs
and (P - P»)/ "2 — P4 under thg beam splitter relations Eq. (15), with § =0 = 3.
Equivalently, we have (P - P)/ 2 — X4 with 6 =0 and 9=90° (for the gen-
eralized Xu = (dye’® + ase=*)/ 2); thus, the measurement we have claimed
erases which-path information, with &9 [99°, is exactly of the EPR form just
introduced.

We note that there is some precedent for the double homodyne detection device
we emphasize. Quite similar devices have been used to verify the properties of
continuous-variable (optical) EPR states [3,88,91], as well as in related experiments
concerned with the steerability of such states [92,93]. The entanglement swapping
interpretation we give above has also been used in explaining the effect of such homo-
dyne measurements elsewhere [94,95] and applies to the photodetection case as well
[33]. Implementations of these concepts directly using microwave amplification
hardware, which is critical in realizing quantum trajectory experiments with super-
conducting qubits, have been proposed and realized. Specifically, the sorts of EPR
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measurements of interest have been performed with microwave quantum optics (with-
out qubits at the source) [89]. Furthermore, an implementation of the measurement of
interest has been proposed in the context of dispersive qubit measurement, based on
typical amplifiers used in superconducting circuit experiments [90]. The homodyne
measurement of fluorescence we derive above as optimal for erasing which-path
information has previously been shown also to be the optimal diffusive unraveling of
the two-qubit master equation based on decay channels for the purposes of entangle-
ment preservation [31]. As we explore numerical results for this case in Sections 5 and
6, we will be able to further confirm that result and elaborate substantially on it.

This concludes our general overview of the measurements we wish to consider. We
have formalized several continuous measurement schemes above and may go forward
with an understanding of how they build on an established conceptual and experimen-
tal foundation. The remainder of the paper is dedicated to detailing the dynamics of
the two-qubit states for specific measurement cases using numerical simulation. We
review the case of photodetection and jump trajectories in Section 4. We then develop
the homodyne detection case in Section 5, drawing comparisons with the photodetec-
tion case. Characterization and comparison of these dynamics allows us to illustrate
in detail how different measurements create different types of two-qubit correlations,
putting the principles we have discussed above into practice. With the ideal case
established we then also consider the more realistic case of inefficient measurements
in Section 6.

4. JUMP TRAJECTORIES FROM CONTINUOUS PHOTODETECTION

We turn our attention to photodetection and jump trajectories. Three types of events
that can occur within a single measurement time step are of primary interest; either no
photons are detected as described by Moo = 0304/ M0504), a photon is measured in
output 3 as described by Mo = 1 304|M10504), or a photon is measured in output 4

as described by M 1= 0314|M|0304). There is also the more remote possibility that
both cavities emit at once (within the same detector integration interval 47), described

by Mo or M,. These Kraus operators are given by

1

. 1= \/ 0 0 0
Moo = 0 = \/ 0 0. (413)
0 0 - 0"
0 0 0 1
0 0 00 "o 0 0 0
A . =20 00. i .. =10 0 0.
M1o= . - s MOI = . B , (41b)
(1= ) (1=)
00° W 0 0
2 ‘}) 2
— V= 0 - J=
0 .5750 . : - 30
) 0 000 ) 0 000
Mn= "9 000- Me= o o00". (41c)
0/ 000 © 0,000
/2000 -, 2000

These form a complete set of outcomes, such that Lo M _I , where the sum is

over all five matrices above. Simulations of this situation simply involve applying the
appropriate M; to p according to
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Mp ()M,

plt+dy = _( L (42)
tr Myp ()M

where the outcomes of different combinations of detector clicks are generated
randomly over time, according to the correct statistics. To do this, we derive the
probabilities

( ) :
ij w
assigned to each of the outcornﬁstra}%(/éf%ich Qﬁ%)'normalized such thlsz w1,

Then we may draw a number from a multinomial distribution at every time step, each
possibility of which corresponds to a given detector outcome. The weight factors are

woo =1 —dty +dPy? (44a)

( ) ( )
Wi = ydf E—?%_yzdzi i WO]Z')/df _{_g% _y2df2 , (44b)

2

y2dr
Wor = TZ W0, (44c)
for
— 2 — 1
=1+4+&+8 =t e+ &40 (44d)

We have introduced a set of two-qubit generalized Bloch coordinates ¢,, with 1 </ <
15 (see Appendix E.2 for details).

Some simulations of this scenario are shown in Fig. 3, and we find that we can create
substantial entanglement between the two qubits, as expected. Specifically, if both
qubits are prepared in the excited state, the overwhelming majority of trajectories
involve two photons coming out within a few 77 — y ~' of the start of the experiment.
A Bell state is prepared when the first photon comes out, and then the qubits must
be in |g gywhen the second exits. The concurrence of jump trajectories simulated
according to the scheme above, as well as their ensemble average, is plotted in Fig. 3.
Concurrence is a measure of two qubits’ entanglement [96], which is defined formally
in Appendix E.l. The concurrence takes on values C € [0, 1], with C =1 denoting

maximal entanglement (as in a Bell state), and C = 0 denotes a separable state.

The average concurrence yield over an ensemble of trajectories may be inferred from
statistical arguments. Given the initial state ¢ ¢ ) it is the projection of the optical field
into either |0314) or|1304) (i.e., into the{| 1,0y, |0:12)} subspace) that generates one
of the entangled states |I#) under photodetection. A single qubit, initially in |¢), has a
probability @. () =e~’* to remain in ¢ )and a probability @,(?) =1 —.(2) to have

decayed to ground. It follows that in the two qubit case, with the initial state|e ¢), the
probability for either one (but not both!) of the qubits A and B to have decayed goes as

PP + PUPP(H = 201 = ) = C (1), (45)

We denote this ( because the probability to get a state with concurrence 1 is precisely
the average concurrence generated over an ensemble of jump trajectories. This may
equivalently be derived from the two qubit generalization of Eq. (7); the average
concurrence given other initial states may be inferred via the same strategy, consistent
with our earlier comments about our model effectively implementing a statistical
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inference procedure [97]. See Fig. 3(a) for a comparison between the analytic expres-
sion ( and average from the simulated measurement process. The protocol described

above can also be understood as an entanglement swap and has been interpreted in
this way elsewhere [33].

Figure 3
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We illustrate the entanglement generation process, as experienced by an observer
with access to the measurement record obtained by perfect photodetectors, and sim-
ulate ensembles of the corresponding quantum trajectories for various initial states.
The concurrence ©f a dozen individual jump trajectories (low opacity, in multiple
colors unique to each trajectory) and the average concurrence over an ensemble of
10,000 quantum trajectories (blue) are plotted above. The surrounding pale blue
envelope denotes the standard deviation of the concurrence of the underlying ensem-
ble. All figures are generated with simulations described in Section 4 and assume
that ideal photodetectors are placed at ports 3 and 4, as illustrated in Fig. 1. We use
y =1 MHz =1 y(s)-!, and d7 < 5ns for numerical purposes, with a total duration
T = 5T. Both qubits are assumed to have the same decay rate y = T,”'. The qubits
are initialized in the state (a) |£¢), and as illustrated above, () [<I*), and (c) [W+),
where |<I*) = (lee) £ |gg))/ 2 and |W*) = (leg) £ |ge))/ 2 are Bell states. In
(a) we see the rise and fall of entanglement generated by the measurement given
the initial state |ee), which follows C =2¢-"*(1 —~"?) [dotted red; see Eq. (45)]. In
(b) and (c) we see that the measurement gradually erodes the initial two-qubit
entanglement, which asymptotically approaches C = 0 for 7 >» T1. The averages from
simulation (solid blue) are in good agreement with the expressions C = ¢ /(2 — ¢ =)

andC =¢~"in :b: and ‘c h resRectivelx sdotted red:.
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We comment briefly on the decay of concurrence from different Bell states under
this measurement protocol/as illustrated in Figs. 3(b) and 3(c). Initializing our qubits
in [<I*) = (lee) = |gg))/ 2 leads to the longest-lived average concurrence under
photodetection; the slope of the average concurrence C = ¢~"/(2 — ¢~") is zero at
+ = 0, indicating a prolonged entanglement lifetime before the exponential decay sets
in. This is best understood in comparison with Fig. 3(c); there the average concur-
rence from |W*) = (leg) + [ge))/ 2 decays simply as C = ¢, This is because an
initial state J¥/* jgenerates only one jump in any realization, and that jump then drops
the concurrence from C =1 to ¢ = 0. Then the characteristic decay dynamics of the
individual qubits map directly onto the decay of the concurrence. By contrast, the
states [</%) lead to either two jumps or no jumps in any given realization. The concur-
rence stays high at the beginning of the no-jump case before we can infer with high
confidence that we are not going to get a photon, and the first jump in the two-jump
case does not kill the concurrence, but rather creates the other Bell state|#*), which
decays to @=only after the second jump. Thus, the states /*)exhibit a longer
entanglement lifetime on average by effectively delaying their decay to the separable
state § ¢) This brings to mind other works, which have shown that changing the
encoding of an entangled state can make it more or less susceptible to disentangle-
ment via certain environmental interactions [4,98—100]; we will be able to elaborate
further on additional connections present in the continuous measurement case [31,32]
in the following section.

We conclude this section with some remarks about entanglement genesis and entan-
glement sudden death. Certain states are prone to finite-time disentanglement in the
case where the system we have discussed is unmonitored (i.e., when the detectors are
turned off) [4]. Measurement both alters the average concurrence dynamics of the
system and opens the possibility for many distinct trajectories about that average, con-
ditioned on the stochastic measurement outcomes. Under measurement, generically,
areverse process of sudden entanglement genesis after a finite waiting time becomes
possible [101]. The individual trajectories described above may be regarded as further
examples of such lines of thinking; the jumps discussed above can herald the sudden
genesis of entanglement from a separable state, or its complete destruction.

5. ENTANGLEMENT BY JOINT HOMODYNE DETECTION OF
FLUORESCENCE

We now investigate the case where both of the outputs are homodyned, i.e., we
consider dynamics generated by a measurement of Eq. (21). Recall from the dis-
cussion above that we can optimally erase the which-path information by choosing
ﬁ _9 | 90° in this scenario and, therefore, expect these settings to correspondingly

be optimal for generating two-qubit entanglement.

5.1. Concurrence Yield

We develop additional expressions from Eq. (21) that we need to perform simula-
tions and then work toward understanding the two-qubit state dynamics generated
by this measurement. The denominator of the state update Eq. (17) describes the
probability density from which the readouts are drawn at each time step. As in the
single qubit cases [17—19], it is useful to expand the logarithm of that probability
density to O(dz), in much the same way we have when doing optimal path analy-
sis [17-19,24,102-107]. Expanding in this way gives us an expression G such that
tr(M,p M 24) = ¢c+8ar+0(r); the term G typically leaves expressions that are quad-
ratic (Gaussian) in the readout, and this case is no exception. The readout statistics
obey



538 Vol. 13, No. 3/ September 2021 / Advances in Optics and Photonies l Tutorial
( v_) v )

Gu=—%rs= s~ 'y & W a4

+3 <X32 +Xf) -y + gi(sin29) - sin(26)) + g7(cos(23) — cos(26))],
(46a)

with y3 = (q11 + g2 + qua + q15) sin 0 + (g5 + gs + g8 + g9) cos §  and (46b)

xa= —(q5s — g6 — gs + qo) 08 3 — (q11 — gq12 — qua + q15) sin §. (46¢)

We consequently seg that our readopts 3 and r4 are drawn from Gaussians of variance

1/dt, with means ~ yx3(6) and = yys($), respectively. The coordinates q param-
eterize arbitrary two-qubit states; they and the associated generalized Gell-Mann
matrices I are defined in Appendix E.2. Simulations are implemented by iteratively

updating the density matrix over small time steps, using readouts generated stochas-
tically from the Gaussians just described. In the language of the SME, measurement
records are 5= L 3+ I, N+&and = L 4 +.L ) + &, where the &~ dW/ds,
for j 3z 4, are the noise terms. The & IV, represents Wiener increments, i.e., ¢ ; rep-
resents Gaussian variables of zero mean and variance 1/47[13,108]. The Gaussian
form of exp((G34) is key in demonstrating that the form of the SME [Eq. (25)] written
in terms of Wiener increments 417 and is in fact suitable for describing the scenario
of interest. We infer that the appropriate operators for the SME, which reproduce the

correct signal means for § = 0 and 9= 90°, are . 3+ L T3= (— s+ 6+ s+ 9

and LA 4+ IIA = y_(— ) 1+ ) n+ ) 14— ) 15), or equivalently
v ( ) v ( )

li= 2 Li®s'+6 @1y , La=i 72 ¢ ol,-Li®s" . (47)

The factor i on L.~ 4 relative to L. 3 is the 90° phase difference, which ensures the

erasure of which-path information. For further details about the connection between
the SMEand our Kraus operator approach, see Appendix F.

We run simulations initialized from pe¢)and show some plots in Fig. 4 highlighting
the most basic features of the entanglement dynamics. Comparing the homodyne
case in Fig. 4(a) to the photodetection case of Fig. 3(a), we immediately see that
there are, of course, stark differences in character between individual trajectories
under photodetection, as compared with quadrature measurements. The diffusive
trajectories we obtain from homodyning do not even allow us to say that the photon
was emitted at any particular time, as in the one qubit case [18,19]; the system dif-
fuses from e gto g g yvithout any single well-defined emission event. Despite these
differences, however, the average concurrence over the duration of the simulation is
identical to Eq. (45) we derived in the photodetection case. It has already been shown
by Viviescas et al. [31] (using different arguments) that a measurement satisfying
|0 & 9Q=is the optimal one among those utilizing decay channels to generate two-
qubit diffusive trajectories for the purposes of preserving two-qubit entangle- ment.
One of their key results is the derivation of a differential equation describing the
evolution of the average concurrence: They use the stochastic Schrodinger equation
(SSE) [109] to derive

C =—yC +2pue™, (48)

where C again denotes the average concurrence, dots denote time derivatives, and
pee 18 the initial excited state population. We again consider the case p.. = 1 [which
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implies the initial valueC (=0) @, and find that the solution to Eq. (48) is pre-
cisely the function Eq. (45) we derived from the photodetection case. This suggests
that the average entanglement yield between these two measurements is not just sim-
ilar but formally equivalent when 8 and & are chosen optimally; such an equivalence
has been noted before [32]. While it may be surprising that the two protocols we
have discussed lead to identical concurrence yield on average, given the differences
between jump and diffusive trajectories, it follows naturally from the entanglement
swapping ideas [33,95] we have discussed. From that viewpoint, the fluorescence
process generates a certain amount of entanglement in the system (between each qubit
and its output mode) as a function of time, irrespective of the subsequent measure-
ments; both photodetection and the EPR/homodyne strategy are able to perform an
optimal swap in this case, rearranging that entanglement. They do this in very differ-
ent ways, but the two measurements are ultimately manipulating the same resources
in the system, leading to the same average concurrence yield.

Less-than-ideal measurements (which fail to completely erase the which-path infor-
mation) could be understood as wasting some of that potential entanglement; for
example, in Fig. 4(b) we see that changing the relationship between 6 and 3 retains
the shape of the curve from Fig. 4(a) but modulates it down by an overall factor
~|sin(@ —3) Jas the degree of which-path distinguishability is changed (flatlin-
ing to zero two-qubit concurrence for all time, in the case of total distinguishability
0 =0=39). We finally note that under the ideal homodyne measurements with
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We show the average concurrence, and that of some trajectories, obtained from two
homodyne detectors monitoring the output ports 3 and 4 of the device illustrated
in Fig. 1. The initial state is|¢ y for all trajectories. We plot the average two-qubit
concurrence, and that of inc&iwdual trajectories, in the left panel, using relative
measurement phases 6_0° and 9 90°, which are ideal for generating two-qubit
entanglement. We see that many trajectories do much better than the average, reach-
ing maximal concurrence C =1. These best trajectories are bounded by Eq. (54)
(shown in dashed—dotted black), as discussed in the main text. By comparing again
with Eq. (45) in dotted red, we see that the average concurrence from these diffusive
trajectories is in good agreement with the average concurrence in the photodetection
case [see Fig. 3(a)]. Note that the colors of individual trajectories in the left panel
match those same trajectories as they appear in Appendix A (shown here with lower
opacity). In the right panel we show how entanglement genesis is hurt by changing
the relative phases of the two homodyne measurements; the optimal choice (dotted
black, or the top panel) eliminates competition between the two measurements and
allows for deterministic entanglement genesis, while the least optimal choice (orange)
destroys any possibility of entanglement genesis entirely. A few trajectories for each

case are plotted, matching the colors assigned to the averages.
I —
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|0 — 9| =90°, some trajectories do reach the maximum C =1 within a few T; of the
start of the simulation.

We continue by extending the quantum trajectory analysis of the homodyne scheme
beyond previous discussions [31], first by characterizing the dynamics of trajectories
leading to strong entanglement and then by deriving a bound on the fastest possible
rise to a Bell state due to joint homodyne fluorescence detection.

5.2. Maximally Entangled States

The states we reach at times of maximal concurrencg =1 are superpositions of three
of the four Bell states. Any pure two-qubit state may be expressed in the Bell basis
according to

ly) = A|<I*) + B|<[") + C|W*) + D|W-). (49)

The concurrence of the state is given, in this representation, by ¢ = |A* + D* — B> —
C?|. For trajectories initialized at ep , the blue terms in Eq. (21) guarantee that we
generate correlations with a real C (generated by ) and imaginary D (generated by
irs) in the odd-parity subspace. The amplitude ¢¢ )at any given time is given by
J (A 4 B), which remains real and nonnegative along the duration of any trajectory
initialized at f ¢ ) Re-parameterizing D £, and assuming A, B, and C are real (con-
sistent with all our simulations initialized at|e) for =0 and 9=90°), we then
have

C=p?-B*-Cc*E P (50)

Under these conditions, we find that C'is maximized when A = 0, i.e., we maximize (
when the measurement pushes the two-qubit state into a form,

ly) = B|<I") + C|W+) + iE|W-), (51)

for real B, C, and E. The particular values of these normalized amplitudes depend
on the measurement record in a given realization. Upon obtaining such a maximally
entangled state, one can shift it to a single Bell state through a local unitary operation
on a single qubit. For example, consider applying a pulse to qubit B to implement the
rotation,

B C-E

Uslp) =1, ®
sly) =L —~(C+/E) B

ly) = [<I), (52)

where |y is of the form in Eq. (51). Thus, correlations may be rearranged into a par-
ticular form or encoding, if desired, using local operations and knowledge of the state
acquired through continuous monitoring. The operation shown above, for example,
allows an observer located at qubit B to make a local rotation, which guarantees that
the outcomes of subsequent local Pauli-y measurements on qubits A and B will be
correlated in individual runs of the experiment. Such an operation requires thaq v of
the form above is created by continuous joint homodyne monitoring and that the mea-
surement record (or two-qubit state |)) be communicated classically to the observer
at qubit B, so that they may perform a local operation to transform |y) — |<I-).

We may consider the statistics of the maximally concurrent states created by our
homodyne measurement. Specifically, we look at an ensemble of states that suc-
cessful trajectories initialized at |e¢) generate, in the first time step at which they

attain C > 0.999 (still with @ = 0 and $= 90°); we then confirm that A = 0 for all such
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states and look at the distribution of the non-zero Bell basis amplitudes B, C, and E
in the ensemble. The analysis in question is shown in Fig. 5 and highlights a substan-
tial difference between the homodyne and photodetection cases. Recall that for the
photodetection case, the concurrence appears in the forni Wy or|W#-) only. The
homodyne measurement not only adds the possibility of having|</-) appear, but, in
fact, |<[) is the single most likely state for a trajectory to reach as it attaf@s= 1; in
Fig. 5, we clearly see that the histogrammed distributions (probability density) of state
amplitudes are peaked about B= 1 and C= (=E. However, a generic realization is
not restricted to any one Bell state, or even a small subset of them; the distribution
covers the entire space of normalized states for C, &[- 1, ] and B>0. The proba-
bility density within those possibilities has positive amplitude B and is symmetric in
C and E, but no other constraints appear on the range of possible random( = 1 states
that arise from this measurement. For further details about the dynamics leading to
this distribution of states, see Appendix A.

5.3. Upper Bound on Concurrence Generation

We next demonstrate that there is a finite time before which a given degree of entan-
glement may be generated by joint homodyne fluorescence detection, given the initial
state 4 ¢ ) We may derive a bound on the fastest rise in entanglement by consider-
ing the case of perfectly correlated outcomes for joint quadrature measurements on
the emitted photons [recall Eq. (38a)], creating EPR-like correlations [87]. In other
words, we consider the readouts » = 0 = 4, equivalent to the perfectly correlated
and maximally symmetric outcomes X + X, =0 and P, — P, =0 (still for § =0
and ¢ = 90°). In this case the state dynamics will be restricted purely to the subspace
alee) — 1 —a?gg) for a € [0, 1], and we are effectively deriving the ideal trajec-
tory that travels to £/~ )as quickly as possible. By choosing these particular values
of the measurement record (which are smooth), the dynamics of the system can be
reduced to an ordinary differential equation, rather, than a stochastic one. We find that
while concurrence is increasing (i.e., while 2> 1 — a2), the relevant differential
equation is

v |
C=yC+1) 1-C+ 1-C, (53)

which, for Cy = 0, admits the solution

26t _ 2

==y

(54)

This curve sets the bound on the speed at which concurrence is created from the
initial state p¢) via our double homodyne measurement, until it hits its maximum
at ) In(2). After this point, the concurrence may fluctuate stochastically for an
arbitrarily long time, taking on any valueg ¢ f, 1] as illustrated in Fig. 4(a). While
we note that this particular best-case measurement record »— O— 74, which bounds
the fastest possible path to maximum concurrence, requires blind luck to acquire
(we have no control over what measurement outcomes we get, in practice), simi-
lar records, or records exhibiting qualitatively the same concurrence dynamics, do
occur naturally in this system with relatively high probability; indeed, many trajec-
tories which stay close to Eq. (54) and achieve a Bell state within 7 < T are visible
in Fig. 4(a). Recent works have shown that feedback may be used to enforce a con-
dition 3 0 4 throughout the two-qubit evolution on average, which optimizes
entanglement creation [19,110,111].
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5.4. Entanglement Preservation

A final example, shown in Fig. 6, serves to illustrate the behavior of different types
of correlations in response to our measurement; we choose each of the Bell states as
initial two-qubit states and look at the evolution of the concurrence under homodyne
6 = 0 and 3 =90° measurement. We find that they exhibit different average lifetimes,
such that the Bell state |[</*) whose correlation type runs against entangling dynamics
of the measurement /=0 and 3 Q0° decays on average at least twice as fast as
any of the others. This is in contrast with the photodetection case, where this faster
decay does not appear. Dynamics originating from the other three Bell states, under
our homodyne scheme, have clear counterparts in the photodetection case, however,
which are apparent from comparing Figs. 3 and 6. This again reinforces the notion that

Figure 5
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We plot one- and two-dimensional histograms describing the statistics with which dif-
ferent combinations of the Bell basis amplitudes B, C, and E defined in Eq. (51)
appear. Simulations are of the double homodyne measurement with § = 0 and
$90°. We use an ensemble of 100,000 states, each obtained from the first time
step in which a quantum trajectory initialized at|¢) reachesC= 0.999. The color
bar denotes count density per bin in the two-dimensional histograms ¢ and *),
while relative counts (r ¢ ) per bin are plotted in the one-dimensional (marginal) his-
tograms (¢). In the figures marked with an xand ¢, we plot using our Bell basis
amplitudes B, C, and E; one-dimensional histogramseare aligned with the two-
dimensional histograms such that summing out a row or column of bins in the two-
dimensional plots would give the accompanying one-dimensional plot. We see
that the distributions in C and E are symmetric and centered about 0 with their
peak there. Normalization then demands that the single most likely state about
which the distribution is peaked occurs at B = 1, i.e., the state which is most likely to
occur when the concurgénce is maximized, under the given measurement settings, is
|<I7) = (lee) — |gg))/ 2. However, the maximally concurrent states that we obtain

are generically superpositions of the Bell states Eq. (51), and while states with B =0
are the least likely, the system does explore the full space of states for C, E ¢ [- 1, 1]
and B ¢ [0, 1], which satisfy the normalization condition B> 4 C* 4 E* = 1. The addi-
tional density plot * in which we histogram ¢, against ¢; is significant in that it shows
that ¢7 is never positive for the maximally concurrent states in the simulated sample;
this indicates that A _ 0, as discussed in the main text, justifying its exclusion from

the other plots.
I —
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our joint homodyne measurement exhibits some preferred type of correlations (as well
as reinforcing the comments we have made about entanglement swapping connecting
different types of measurements). Further discussion can be found in Appendix B.
The solutions obtained analytically for the photodetection case in Fig. 3, and in the
homodyne case Figs. 4 and 6(a)—6(c), are all solutions to the Eq. (48) derived by [31].
Note, however, that the solution in Fig. 6(c) is not a solution to Eq. (48) because the
choice 8 = 0 and 3 =90° is the least optimal choice of measurement settings given
|<I*), and Eq. (48) assumes the optimal unraveling. The problem can be rotated in
several ways; if we want to preserve, e.g.,|</") instead of £/-), we may change our
measurement settings to = —90° and $ =0 and, thereby, swap the behavior seen
in Figs. 6(b) and 6(c). While our discussion above has focused on &= 0 and 3= 90°
for clarity, all the results we discuss there are conceptually correct for any choice
satisfying 3 4 9Q°, up to a corresponding rotation of all the amplitudes. Given a
state

lw) = alee) + de’|gg) + ¢ (X|W+)+z'Y|W—)), (55)
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We plot the concurrence decay from different Bell states, under our double homodyne
measurement dynamics, using the optimal settings & 0 and 3-90°. In (a) the initial
state is [+ ) its pair J/~ )exhibits qualitatively the same concurrence dynamics and
is shown in (b). Note that the concurrence decay from these states is the same as in
the photodetection case on average [compare with Fig. 3(c), and the dotted red line
C = ¢~"7]. In (c) the initial state is| <) ; as in the photodetection case [Fig. 3(b)], we
see that the initial slope of the average concurrence decay is zero; this extends the
concurrence lifetime somewhat on average, with the decay from simulation (solid
blue) matching C =¢-"/(2 —¢~") (dotted red). The final simulation, plotted in
(d), is initialized at the one Bell state [</*) that does not play a helpful role creating
concurrence from our double homodyne measurement for 8 0 and § 90°=Its built-
in correlations are anathema to the type created by the measurement and lead to
exponential decay as  Ce=?" (dotted red); 10,000 trajectories were simulated to
compute the averages, and the envelope of 1 standard deviation around it. For

further comments, see Section 5.4.
I
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moderately more general than Eq. (51), assuming 3 =6 90°, and with a, d, X, Y all

real, the optimal choice of measurement parameters is given bsx 0 (@ w)/2. Such
considerations are formally derived by [31] using the SSE.

5.5. Summary of Pure State Results

In summary, we find that the entangling double homodyne measurement Eq. (21)
creates a set of dynamics in which the overall decay from ¢ ) — | gg) is achieved by
a process that exhibits correlation between different two-qubit basis states, at every
step of the decay. For the measurement settings € 0 and 3=90°, with an initial
amplitude 1 on ¢e, )every Bell state except <[4 coptributes constructively to the two-
qubit entanglement, as per Eq. (50). In this sense, the measurement exhibits some
asymmetry, admitting only truncated manifestations of <[+ put allowing for
completely coherent manifestations of the other Bell states. While the average entan-
glement yields [Eq. (45)] are identical between photodetection and optimal homodyne
detection, the measurements differ in virtually every other qualitative sense. Notably,
jumps can occur at any time, such that some realizations of the photodetection process
initialized at |c ¢y lead to immediate entanglement; our diffusive trajectories, however,
are bounded by Eq. (54), such that no measurement record allows these trajectories to
reach a Bell state before /_ T1 In(2) ,0.69T). Taken together, the discussion leading
to this point, from concepts to numerics, constitutes a complete study of two-qubit
entanglement generated via ideal measurements of spontaneously emitted photons.

6. IMPACT OF MEASUREMENT INEFFICIENCY

While it is conceptually useful to study the behavior of an idealized measurement
process, completely lossless measurement devices do not exist in any laboratory of
which we are yet aware. Consequently, it is of great practical importance that we con-
sider how inefficient measurements affect the ideas presented above. We now extend
our model to this case, again deriving some useful upper bounds on concurrence
generation in the process. It will become apparent as we go that the case of inefficient
measurement has a great deal to offer pedagogically, as well as practically.

Figure 7
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We sketch a modification of Fig. 1, which includes unbalanced beam splitters (purple)
in the monitored channels, used to model measurement inefficiency. These unbal-
anced beam splitters allow the signal to reach an (otherwise ideal) detector with
probability #, but the signal may be lost with probability L #. See Eq. (56). The
value of 7<) 1 then denotes the measurement efficiency, where n=1 recovers the
ideal case of lossless measurement.
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A simple model for measurement inefficiency is shown in Fig. 7, which elaborates
on Fig. 1; after modes 3 and 4 are mixed on the main beam splitter, we then imagine
that they are split into a “signal” portion and “lost” portion (i.e., 3 and 4 are mixed
with vacuum modes on unbalanced beam splitters). Algebraically, we express this
according to

. . ) Ve
a;r — 11343T + 1—11342f aZ — \/;74;;4 + 1—114;”4@ (56)

where # represents the efficiency of each measurement (a signal photon may be trans-
mitted to the detector with probability #, or lost with probability 1 #). Finally, the
surviving signal passes through phase plates, which effectively set the field quadra-
ture that each homodyne device monitors. The overall transformation of the optical
modes, from emission up to the detector, can then be summarized by the unitary
transformations,

. _A 1__17é“r _A 1__173AT
mT_,ei‘) 172—361; + ) ase + ¢i? %ﬂt‘ + ) a4 (573)
. _A T=n3.4 _A- 1=-74,
o = el 172_361;r + ) as3p — o %ﬂz - ) ﬂT4£ (57b)

The ideal case is recovered by the choice 773 = 1= 74 (complete information goes to
the signal mode), while inefficient measurements have #3 < 1 and/or 774 < 1. A matrix
M, can be obtained by applying Eq. (57) within the matrix M, defined in Eq. (14).
A series of Kraus operators can then be derived fromd4], for different types of mea-
surements, much as they were in Section 2; these will necessarily now depend on
outcomes not only in the signal channels s but also in the lost channels £. The essential
operational meaning of measurement inefficiency, and of the channels £ being “lost”,
is that all outcomes that could have occurred in the lost channels must be traced out,
leaving a modified state update equation that will tend to generate partially mixed
states. In this sense, the inefficient measurements we are here considering form a case
intermediate between the ideal conditional evolution [Eq. (17)] and the completely
dissipative evolution [Eq. (4)] arising when no measurement is made at all. We will
leave the algebraic details of this to Appendix D and proceed here to discuss the
qualitative impact of measurement inefficiency in greater detail, based on numerical
simulations. The comparable analysis for the one qubit case can be found in [18,19].

6.1. Inefficient Photodetection

We simulate jump trajectories, from the initial state |e ), for efficiencies 73 = 0.9 =
N4, 13 =0.75 = na, and y3 = 0.5 = 54, and we plot the subsequent concurrence in
Fig. 8. Generically, the accumulated loss of information over time, due to continuous
inefficient measurement, causes the state of the system to lose purity. We see this
manifested in two distinct features of the plots in Fig. 8. First, the shape of the curve
Eq. (45) representing the average concurrence from the ideal case has effectively
been preserved and is simply shrunk by an overall factor # (where #3 = 5 = 74).
Second, the concurrence that is generated in individual realizations no longer tops
out at C = 1 but instead hits a ceiling C!,,(2). We may derive the latter bound and,
thereby, straightforwardly quantify the cumulative effect of successive inefficient
measurements on the two-qubit entanglement generation.

The decay of the purity and maximum concurrence is determined by the no-click
dynamics, initialized from |7+ )(the state we infer is created from an immediate

jump, before the losses due to accumulated inefficient measurements). A density
matrix of the form
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c = 20| WE) WE+ (1 -2x)gg) 2g] (58)

is then adequate derive the solutions C!_, (#). The concurrence of Eq. (58) is simply
given by C = 2x. In the time-continuum limit, the dynamics inbetween the first click
and a possible second, with #3 = # = 4, may be summarized by

C =pyC-yC (59)

For the initial condition x = Lor Cy = 1, the solution is given by

, 1
Coan()) = —————— (60)
(I=mn)e’" +n
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We plot the average concurrence (solid blue) and that of a dozen jump trajectories
(multiple colors), obtained from performing inefficient photodetection on qubits
initialized in |e ¢). We use (a) 73 = 0.90 = 4, (b) 73 =0.75 =74, (¢) 73 = 0.50 = 74,
and (d) #3 = 0.35= 74. We notate #3 — # — 74 below. We observe that the dynamics
of the average concurrence are similar to those in Fig. 3(a) or Fig. 4(a); although
we have not formally derived an analytic expression for the average concurrence
in the case 57 < 1, we observe that attenuating the ideal solution Eq. (45) according
to C() = 2ne""(1 — ¢7") (shown in dotted red) leads to good agreement with the

average from simulation (solid blue, and computed from an ensemble of 10,000 tra-
jectories). We also see that the maximum concurrence attainable from a jump event
decreases as a function of time, because the no-click dynamics of the system cause
any entangled two-qubit states to lose purity when the measurement efficiency is
imperfect. The analytic solution Eq. (60) for this maximal concurrence is superposed
atop the simulation curves in dashed black and defines a tight upper bound on the

maximum concurrence attainable at anz time in this scenario.
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This expression is found to be in good agreement with the maximum concurrence
curves visible in the numerics from Fig. 8. The impact of measurement inefficiency
is easily quantified from such an upper bound and is substantial after significant time
evolution; for example, a jump at £5T1, which would still generate a perfect Bell
state for 7=, now generates & 0.1 even for a reasonably good measurement char-
acterized by 7 0.9. Qualitatively, this indicates that after this relatively long wait for
the first click, the likelihood that the click is genuinely from the first emitted photon
is low; the likelier option is that the measured photon was the second, while the first
was lost and never recorded. Without the possibility of certainty about which photon
was caught, the observer’s state is necessarily a statistical mixture of the two pos-
sible options, that is, after longer waiting times %71, heavily weighted toward the
separable part g ¢y ¢, father than the entangled part = j* .|This is a direct illus-
tration of how imperfect information collection degrades an observer s knowledge of
the two-qubit correlations in an individual experimental run.

6.2. Inefficient Homodyne Detection

A similar analysis can be performed for the homodyne case. We again leave a discus-
sion of the generalized state update expressions to Appendix D and summarize two
main points that emerge from that analysis: The mixed states generated by inefficient
homodyne detection are of a more complex form than those in the photodetection case
[e.g., Eq. (58)], and the measurement signal in each channel is attenuated relative to
the noise by a factor\é but is otherwise unchanged. Numerical simulations easily
account for these features, and the evolution of the concurrence they give is plotted
in Fig. 9. Several important features of those dynamics are then readily apparent.
First, the upper bounds [Eq. (60)] we just derived in the photodetection case still
apply but are no longer tight, meaning that the joint homodyne measurement here
never outperforms the corresponding photodetection scheme in terms of concurrence
generation. Second, this measurement’s ability to generate two-qubit concurrrence is
eliminated entirely for # 50%, which is a substantial disadvantage compared with
the photodetection case. Our homodyne measurement is, in this sense, substantially
more sensitive to inefficiency than the corresponding photodetection protocol. This
result is consistent with related analyses performed in the context of feedback control
[110,111].

We are able to derive an upper bound on the entanglement creation in the same way
we did for the pure state case. Although we are not able to get a closed-form expres-
sion as we did with Eq. (54), the condition r3 — 0 — # still has the same effect, and
we are able to obtain curves from this concept using numerical methods in the case
n3 g na{see Appendix F.1.2 for the computational details). For the initial density
matrix |ee) ee ], and 6 = 0 and 9= 90°, these bounds on the maximum entanglement
and fastest rise to it are obtained by numerically integrating a system of three coupled
differential equations. These numerical upper bounds apply until the concurrence hits
its maximum and are shown in Fig. 9. This constitutes a straightforward characteri-
zation of the impact of lossy measurements, allowing us to solve both the maximum
possible concurrence arising from this measurement, as well as the time at which that
maximum may be reached.

7. DISCUSSION AND CONCLUSION

We have presented a comprehensive and self-contained quantum trajectory analysis
of entangling measurements based on continuous monitoring of two identical qubits
via their mixed decay channel. Entanglement is widely understood to be a quantum
information resource. Spontaneous emission is, in many contexts, an error channel
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that impedes quantum information processing and/or destroys entanglement [98];
by monitoring this T; channel, however, we see that this natural process can be used
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We plot the average concurrence (solid blue) and that of a dozen diffusive trajectories
(various colors) obtained by simulating inefficient homodyne detection on qubits
initialized in b ¢) An ensemble of 10,000 trajectories is used to compute the average
concurrence and the envelope ofH standard deviation around it. We show simula-
tions for (a) H3= 0.98= N4, (b)ﬂ3 =095 = N4, (C) "3 =0.90 =14, (d) N3 = 0.75= Ha,
and (e) 73 = 0.60= #4. As in the ideal case, the trajectory defined by » =0 = n
[i.e., the generalization of Eq. (54) to #=<I] sets a tight bound on the maximum attain-
able entanglement and the fastest rise time to it (see the main text and Appendix F.1.2
for details). This bound is plotted in dashed—dotted black in (a) through (e). In (f),
we plot the maximum concurrence, as determined from the peak of the=r 6 n
trajectory, as a function of 7. We see that for homodyne detection, no concurrence
at all is generated for #<50%, in contrast with the equivalent photodetection case.
The maximum homodyne concurrence yield decreases approximately linearly from
the ideal, toGuax & at 1 ' =We again plot the bound Eq. (60) we derived from the
photodetection case in dashed black in (a) through (e); these are still correct as upper
bounds, although they are no longer tight, further confirming that the homodyne mea-
surement never yields more concurrence than photodetection for # < 1. While we do
not derive an analytic expression for the average concurrence, we find that attenuating
the ideal solution Eq. (45) according to C(?) =225 —1)e =7 (1 —e =7#) (shown in
dotted red) leads to good agreement with the numerical average (shown in blue) in
plots (a) through (e).
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to our advantage instead. The device geometry we have used to do this, shown in
Fig. 1, resembles that typically associated with performing a Bell state measurement.
We have gone beyond the typical analysis of a Bell state measurement by consid-
ering time-continuous measurements (i.e., SQTs). We have developed a consistent
theoretical framework suitable for efficient numerical implementation in the device
geometry of interest, allowing us to explore different measurement dynamics in
detail. Our Kraus operators are motivated by a physically intuitive picture, highlight-
ing the distinct roles of the qubit—field interaction [characterized by M, e.g., as in
Eq. (16)] and eventual detection device (corresponding to |y :3.4)) in making gener-
alized joint measurements to infer coherent correlations between distant subsystems.
Furthermore, our approach allows us to simulate SQTs more efficiently than via direct
Euler integration of the SME, in the same spirit as in [73,79,80].

We have reviewed the major known results pertaining to the device shown in Fig. 1
and expanded on them with our numerical modeling of the measurement-induced
dynamics, including analysis of inefficient measurements and the derivation of useful
bounds on the maximum amount of entanglement generated by different measure-
ments. Specifically, we have shown that homodyne monitoring of quadratures 90°
apart is the optimal quadrature measurement for entangling our two qubits in our
context, consistent with other works that have considered such homodyne measure-
ments [31,87-95]. That measurement scenario is often understood to be performing
an entanglement swapping operation [94]; in our context, this manifests as taking
correlations between individual qubits and their field modes created in the sponta-
neous emission process and swapping such that we entangle the qubits with each
other instead. The degree to which this double homodyne measurement can entangle
the emitters is tunable, and it depends on the relative phase between the quadratures
measured at each output. We are able to explain this tunability, and the success or
failure of any of the fluorescence measurements we have considered to generate
two-qubit entanglement, in terms of the erasure of information about which qubit
originated any given signal. Such considerations arise in the device geometry we
have considered even when a different qubit—field coupling is used as the basis of
measurement [90]. We find that the average entanglement yield of the optimal double
homodyne measurement is equivalent to that of the photodetection case (from the ini-
tial state |¢¢)), consistent with past works that have found the same equivalence from
the standpoint of entanglement preservation [32]. Thus we are able to clearly explain
our numerical results by invoking a number of conceptual elements present in the
literature. Despite the equivalence of optimal photodetection and homodyne schemes
on average, all details of the dynamics are markedly different. Photodetection behaves
optimally regardless of measurement phase settings (as long as the mixing beam
splitter is balanced, the which-path information remains indistinguished) and cre-
ates Bell states when entanglement is generated. In contrast, even for optimal phase
settings, homodyne detection generates both partially entangled states in some real-
izations and a wide variety of maximally entangled states in its best realizations.
We have considered the case of inefficient measurement and leveraged some of the
conceptual connections we have made to the wider literature to derive bounds on the
maximum entanglement generated by our measurements. A particularly important
result, practically speaking, is that homodyne detection requires a minimum of 50%
efficiency in order to generate any two-qubit entanglement (consistent with recent and
closely related results leveraging the measurements of interest for feedback control
[110,111]).

We see many immediate opportunities to test and expand on our analysis. It is
grounded in methods that are experimentally feasible on a variety of systems: Works
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that consider or incorporate measurement devices with the geometry we have empha-
sized include, e.g., [33,46-49,51,61,89,92,112—-130]. The DLCZ (Duan, Lukin,
Cirac, Zoller) [116] protocol, which uses similar principles to generate entanglement
between atomic ensembles over distance, is especially widespread and has been
developed in connection with quantum repeaters [131,132]. Quantum repeaters are a
technology currently under development, which aims to use entanglement to counter-
act photon losses which inhibit long-distance communication over quantum networks.
The EPR-like (i.e., homodyne) measurements we discuss have also been applied to
quantum repeaters [ 133—135] and discussed in the context of steering [93] and are of
interest both for applications to quantum computing and quantum communication.

A variety of related devices and schemes, which use different measurement channels
or device geometries to generate entanglement, have also been proposed and/or real-
ized [62,78,90,101,136—149]. Those alternatives that implement a quantum trajectory
approach often rely on dispersive measurements [150—154] instead of continuous
monitoring of fluorescence.

We have emphasized the rich recent literature on SQTs of a decay channel [15—
31]; the scheme we have described could be viewed as scaling up these existing
single-qubit experiments to two qubits. The majority of recent quantum trajectory
experiments have been performed using superconducting qubits and/or microwave
quantum optics [154,155]. While efficient photodetection is relatively well-
developed, e.g., for optical photons, effective photocounting in the microwave
regime is still emerging and substantially more difficult [156—159], and it is con-
sequently of practical interest to understand the behavior of alternative entangling
measurements. The quadrature measurements we discuss offer such an alternative and
require tools that are well-established on these circuit QED platforms (although the
measurement efficiencies required for strong entanglement may still be challenging,
in the near term). The types of measurements we have emphasized are possible on
other platforms as well [94,160,161]. Scaling our theoretical methods to larger num-
bers of qubits, as has been proposed elsewhere [33] using SME-based methods, also
appears feasible.

We have described a method by which entanglement between individual quantum
systems may be created by the measurement process that tracks its formation. One
does not need to stop there, however; given real-time measurement outcomes, an
observer has the option to intervene in the system dynamics with further conditional
operations in order to promote some desired behavior. In other words, advances in
continuous quantum measurement are a prerequisite for feedback-based quantum
control strategies [162], which continue to be an important avenue in contemporary
research [163,164]. Feedback has been incorporated into quantum trajectory schemes,
including from the measurement of a single qubit’s decay channel [22,27,30]. It has
also been used to generate and/or preserve entanglement [165—177]. Such strate-
gies are of interest in that they typically allow for entanglement generation and/or
entanglement lifetimes exceeding those from the measurement dynamics alone.

As of recently, feedback schemes based precisely on the kind of device and measure-
ments we have emphasized above have been proposed [19,110,111]; these aim to
increase the degree of two-qubit correlations on average and extend the lifetime of the
entangled state, using local operations and classical communication (LOCC). This
means that these schemes function based on continually sending the measurement
record to observers located at each qubit, such that operations may be applied to each
qubit conditioned on the real-time measurement outcomes. In experiments involving
qubits that are far apart, there will necessarily be a fundamental delay time in applying
feedback operations due to the time required to communicate classical measurement
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outcomes to the locations of the individual emitters. Even if the qubits and their
respective cavities are placed close together (e.g., in the same dilution refrigerator
or on the same lab bench), feedback delay due to signal processing times can never
be completely eliminated in experiments (see [110] for further discussion of these
time scales in an experimental realization). In an ideal setup, however, in which these
delay times are negligible compared to the qubit decay time scale and the measure-
ment efficiency is perfect, the feedback protocols detailed in [19,110,111] allow for
preservation of concurrence near 1 on average for arbitrary durations, using the mea-
surements described above. Specifically, ideal feedback based on the joint homodyne
detection we have described allows for deterministic generation of a Bell state, which
is possible due to the incremental nature of diffusive trajectories (in contrast with
jump trajectories). The diffusive entangling scheme we have discussed here exhibits
more complicated behavior than the photodetection case. However, such advances in
feedback schemes reinforce the motivation for considering other options and further
demonstrate that the complexity of the homodyne scheme we have discussed can be
both manageable and useful.

APPENDIX A: ADDITIONAL SIMULATIONS OF PURE-STATE DIFFUSIVE
DYNAMICS

We here reconsider entanglement generation due to ideal homodyne detection, with
0 =0 and 3 =90° and the initial state |e¢), in greater detail. We turn our attention
to the stochastic trajectories, in order to understand how individual realizations of
the measurement process generate the class of states [Eq. (51)]. In Figs. 10 and 11
we show trajectories according to their density matrix components and the ensemble
density of SQTs.

Several additional insights emerge from these figures. First, we can see that at the
level of individual trajectories there are perfect correlations between the real parts of
the coherences involved with amplitudes moving in and out of ther‘ e and| g 4 sub-
space (coordinates ¢s & ¢s and ¢s & ¢v, in the notation of Appendix E.2) and perfect
anti-correlations in the imaginary parts of those coherences (411 & ¢12 and g14 & ¢15).
Note that the means of the signals represent combinations of precisely these terms.
Reaching maximal entanglement requires for the coherences within the [¢g) and |ge)

subspace to be able to explore their full range [— Y, 4] (we refer to elements described
by coordinates ¢4 associated with C, and ¢10 associated with E). The central elements
of Figs. 10 and 11 show that we are able to do this. Likewise, entanglement in the
even-parity Bell subspace depends on the coherences between ¢e )and |z g) being
able to explore their whole range (coordinates ¢7 and ¢13). We see that the imaginary
part of this coherence is never used by the measurement we consider now (13 is zero
for all time), while the real part is able to explore its full negative range [~ !, 0], but

not its full positive range. The range of the real part of the |¢¢) gg| element is only
able to access [0, ‘Z] while the range [;, ‘2] associated with fully manifesting the state

| <I*+) appears forbidden.

We infer that our homodyne measurement with &0 and 3 =90° “prefers” generat-
ing correlations of the type |[</-) as opposed to those of type|<I%) [consistent with the
arguments made in and around Eq. (50)]. One clear expression that contributes to this
is the factors-in the red matrix element of Eq. (21), which move population directly
from ¢ jo gl . For futher comments in this vein, see appendix B. We can spot par-
ticular realizations in Figs. 4 and 10, which conform especially well to the different
options we see in the statistical discussion surrounding Fig. 5; the burgundy path in
Figs. 4 and 10, for instance, is a prototypical path that maximizeg by generating
large B and low C| and El- It is a good example of a “real” trajectory with behavior
very close to the idealized one underlying the best-case bound derived in Eq. (54). By
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contrast, the lavender-colored path exhibits the other extreme behavior, maintaining
an unremarkable B and maximizing its concurrence by generating amplitude in C and
E instead.

Some of the points we make are clearer in contrast with a non-entangling case of
the dynamics. We show trajectories and densities for the case 8 — 0 = & in Figs. 12

and 13. Coherences associated with moving amplitude in and out of the {|eg) gle )}
subspace appear correlated on aggregate, but are not at the level of individual trajec-

tories. Furthermore, the coherences within the {|ee), [22)} (¢7) and {|eg), |g¢)} (q)

Figure 10
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We plot a dozen individual simulated SQTs initialized at|e¢), monitored according
to our double homodyne detection scheme with & 0 and 9=90°; as discussed in the
main text, these parameters are ideal for erasing which-path information and generat-
ing two-qubit entanglement. The sampling of trajectories shown here is the same as
those plotted in Fig. 4(a), with matched colors. They lead to the average concurrence
in the ensemble peaking at ¢ =, with the best realizations reaching ¢ = 1 at points
in their evolution. The plots above are arranged similarly to the density matrix. The
population is plotted down the diagonal, the real parts of the coherences are plotted
in the upper triangular region, and the imaginary parts of the coherences are plotted
in the lower triangular region (in inverse color). A key clarifying this layout and the
colored plot markers is provided in Eq. (E15). The correlations between different
elements of p, in individual realizations, are visible. For instance, the populations
in 18 < & |89 » are perfectly correlated in all realizations. Similarly, the real parts of
the coherence/transition elements from ¢ ¢ tov&;ard eg e}nd) ge J &) )sare per- fectly
correlated, as are those transitioning from eg a‘I‘ )g e tpw gy ( &u); Whe
imaginary parts of these same elements are perfectly ant1 correlated 1e &

¢+, and & ferm anti-correlated pairs. (Equivalently, ¢s & g6 and ¢s & ¢o, exhibit
perfect correlations in all realizations, at all times. Likewise, 411 & ¢12 and g4 &
q15, exhibit perfect anti-correlations in all realizations, at all times.) This indicates
that we have a correlated and coherent link between ¢ 4 and g g); every possible
transition of amplitude from| toward g gyexhibits internal correlations. That the
measurement at hand generates entanglement between our two emitters is a reflection
of this. We note the asymmetry in the |e¢) gg| = element; the system clearly exhibits
a preference for correlations of the type [<I) = J (lee) — |gg)) over those of type

|<[+) =, (lee) + |
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subspaces, which are key to generating Bell states, are all restricted to a truncated
range. Both of these features are consistent with our observation that no trajectory
achieves any concurrence at any point in its evolution for these measurement settings.
Only the real parts of the density matrix are utilized for & 0 = 9. In the Bell state
basis notation of Eq. (49), this corresponds to having D be completely real instead of
completely imaginary. We can consequently understand the entangling measurement
0 8 and § 90° as allowing the readouts »3 and 4 to work cooperatively in gener-
ating concurrence. By contrast, the non-entangling measurement 8 = 0= 3 causes
C and D to be forced into direct competition, destroying the possibility of generating
concurrence [in contrast with the expression Eq. (50)].

APPENDIX B: ONE-STEP ENTANGLEMENT TESTS

We define a “one-step test” for entanglement genesis, starting from the excited state
ee | 4, 0,0, 0). Effectively, we take one step from |e¢), which is separable € = 0),
with an idealized measurement (such that the state is still pure) and see how the con-
currence behaves. We have already dealt with this problem both by several analytical
arguments (which-path information, separability of the optical states) and numerical
methods (longer-time simulations) in the main body of the text. The single step test we

Figure 11
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We plot the density of SQTs as a function of time, with the ensemble of 10,000 initial-
ized from |¢ ¢ with =0 and 3 00°. This gives the density profile of each matrix
element, corresponding to the individual realizations plotted in Fig. 10. The layout
follows Eq. (E15), with the populations down the diagonal (yellow and orange), the
real parts of the coherence in the upper triangular region (yellow and green), and
the imaginary parts of the coherences in the lower triangular region (inverse color).
Correlations between the density matrix elements on aggregate are visible in this
representation; the ability of the measurement to generate entanglement is, however,
also captured by the fact that these correlations exist not just on aggregate, but also
within individual realizations of the continuous measurement process, as described
in Fig. 10. This becomes clearer through comparison with the same plots for the
non-entangling measurements, €.g., as in Figs. 12 and 13.
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consider now is simple enough to keep useful analytic expressions in play; while it is
less general than the numerics already presented, some features of these simple argu-
ments can help us understand what we see numerically and add to the analytic argu-
ments we have already presented.

If we heterodyne both outputs, our state update after one step goes like

1 —

. o () ggxt — BEi8) .

Moleyoe . 2 ey (B1)
(12,) (a*em +ﬂ*€ 8"
7( 2 2 2 w*y
b e -
such that we find

Cocp=t| (a*”)* — (Bre’)* — (axe” — Bre?)(axe” + Bre?)| = 0. (B2)

So we see again that in the heterodyne case, in which we always acquire information
about the photon source, there is no possibility to get any entanglement from |e ¢),
independent of the choices of LO phases # and 9. Simulations show that the situation
does not improve as the system continues to evolve; see Appendix C.

Figure 12
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We plot a dozen simulated SQTs, initialized from | ¢) and computed with =0 = 9.
As noted throughout the main text, this measurement scenario does not generate
entanglement. Note the lack of clear (anti-)correlations in individual realizations of
the measurement process, in contrast with the entangling case (see Fig. 9). Instead
of getting clear correlations among the real parts of coherences according the mea-
surement record 73, and anti-correlations in the imaginary parts of the coherences
according to the measurement record s, both measurement records send their
uncorrelated noise to the real parts of the density matrix; this effectively generates
a competition between |W+)-type correlations and those of the [~ )-type, destroying
entanglement. No trajectory plotted above exhibits any two-qubit concurrence at any
point in its evolution. The layout follows Eq. (E15), reflecting the two-qubit density
matrix, with populations down the diagonal, the real parts of the coherences in the
upper triangular region, and the imaginary parts of the coherences plotted in the lower

triangular region (in inverse color).
|
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Let us contrast this with the corresponding calculation in the homodyne case.
We have

\/H}”Xz —¢?Xy)
My ee) . V Ao X 4P Xy , (B3)
X3 — ) — PX )
where we note that both X 3 and X 4 are real numbers [as opposed to a* and f*, which

were complex; this allows for the cooperative behavior between different types of cor-
relations, rather than competition, as described in and around Eq. (50)]. The concur-
rence after one measurement step goes like

Co (1= )W(}g2 -- e2f9(Xi - - (e X5 — ¢ Xy)(e? X5 + ¢# X4)|

— (12/|€21}9 _ €2i€|'
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We plot the density of simulated SQTs in the case of homodyne detection, with
0 =0 = 8. As discussed in the main text, this choice of quadrature measurements
leads to the acquisition of which-path information and does not generate entangle-
ment at any point in time, in any of the underlying SQTs (see Fig. 12). The plots are
arranged to reflect the layout of the density matrix, with the populations down the
diagonal (yellow and orange), the real parts of the coherences in the upper triangular
region (corresponding to ¢4 through ¢o, in yellow and green), and the imaginary parts
of the coherences in the lower triangular region (corresponding to ¢io through ¢1s, in
inverse color). See Appendix E.2, and Eq. (E15) in particular, for details about this
labeling scheme. Notice that many of the density matrix elements appear correlated
on aggregate, but they are not in individual realizations (see Fig. 12), which spoils the
possibility of entanglement. Furthermore, the coherencea andsare both truncated to
half of their full range, indicating that Bell states are not represented in this ensemble

with hiﬁh ﬁdelitz.
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Notice that we now have ¢ =0 for & =0 =9 as above, but we have ¢ > 0 (and with
the greatest possible increase) for the cases that maximize the photon indistinguisha-
bility, e.g., 8 = 0 and 9= 90-.

The constant term in the Hermite polynomials [see Eq. (22¢)] is very important
for avoiding complete cancellation of terms in the concurrence. Furthermore, this
actually leads to a potentially desirable property: Entanglement genesis in the first
step does not depend at all on the measurement records and is, therefore, determin-
istic. It has recently been shown that this property can be retained in subsequent
steps as well, using suitable feedback control [110]. The appearance of the second
order Hermite polynomials is connected to our beam splitter Eq. (15), and it per-
tains to the matrix element that (at least in the photodetection case) is best ascribed
to double/simultaneous emission events. Given the apparent importance of these
terms in the concurrence generation, we infer that they are enforcing the source-
indistinguishability requirement we have discussed at length (i.e., we see a clear
connection between our assumption/requirement that our qubits emit indistinguish-
able photons and subsequent possibility of entanglement genesis between the emitters
by measurement). We reiterate that, e.g., [59-62] consider photon indistinguishability
in more detail, in the context of setups pertinent to our own.

It is possible to take a second step in the evolution and still obtain expressions that
help us to understand the dynamics apparent from simulation. Consider, for 8 = 0 and

9= 90°, a sequence of two measurements

J 1-2
Ve o V- X —
% 34lee) . \/_(X3+X3 X4 .ZX“)_' +0( 7). (B5)
X+ X, +iX +iX,)
4

-2

We see the continued growth of correlations between 4g pnd g¢ ;)in the language of
Eq. (49), the sequence of outcomes X3 promote the growth of C across sequen- tial
measurements, and the sequence of outcomes X4 perform the same role for D or

E. What is more striking, however, is the way amplitude appears in |g g); there are
higher order (in ) corrections to this term 2 , which depend on the measurement
outcomes, but what we essentially see to O( ) is that there is quasi-deterministic
growth of correlations of the type B over a sequential pair of measurements. This
helps to underscore what we mean when we say that the system “prefers” correla-
tions of type [<[-yover §I* pnd offers hints as to how the state 1), which never
plays a role in the photodetection scenario, actually ends up being the single most
likely maximally concurrent state that can emerge from the homodyne scenario under
our chosen measurement settings. It is also apparent, from Egs. (B3) and (B5), that
selecting X 30 =y provides an express route to the state /- ) as discussed in the
arguments leading to Eq. (54).

APPENDIX C: MIXING DIFFUSIVE AND JUMP DYNAMICS: ROLE OF
INTERFERENCE

This appendix aims to fulfill two aims: First, we describe our simulation procedures in
slightly more detail than in the main text, illustrating the flexibility of our method by
applying it to a situation that uses heterodyne detection at one output and photodetec-
tion at another (see Fig. 14). Second, and more interestingly, we show that (assuming
our qubits emit indistinguishable photons) correlations in the qubit state that create
interference at the mixing beam splitter may select one detector or the other with
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complete certainty, thereby selecting a different type of measurement backaction.
This example highlights the consequences of the interference described in Section 3.1
and the ways it is reflected in our formalism and measurement statistics.

The particular forms of the Kraus operators M, 7 we are now interested in (using 0 =
0=39) are

|- 0 0 0
. o A=) \/1 — 0 0°
Moo _ ,-lapr e vV : (c1)
ot 2 0 1\/— 0-
(a*)Z o* v_ o — 1
2 2 2

for 304/ M|0304) (no click at output 4),

0 000
. e _.—yT= 000,
Ma=e"" 37 V=000, (C2)
0 1-10

for a314|M|0504) (one click at output 4), and finally

Cuin 0 000"

s 0 000
Ma2 =¢ E . 0\7L 000 (C3)

— 2000

for as24 |M404 (two clicks at output 4). These also form a proper POVM (verifi-
able by summing over ; -0, 1, 2 and integrating out 7). In the event that we turn
on the photodetector, we update our state by

M.,p ()M’

p(t+ dt) = (C4)

trk]\é a/p(f)Mi/))

whereas if the output of channel 4 is irretrievably lost (i.e., if the photodetector is
turned off), the state update is given by

T, TQ

O :
- 3
2

We sketch an apparatus that employs heterodyne detection at output 3 and photode-
tection at output 4. Trajectories behave purely diffusively conditioned on no photons
exiting at output 4, but jumps may also occur unless interference effects prohibit
a click event at port 4. Both beam splitters are assumed to be 50/50 (such that the

cavities’ si%nals are mixed szmmetricallz, and the heterodzne detection is balanced:.
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L . .
T
Moo,
| . "
o N,p@mM,

=012

(C9)

p("+dy) =

instead.

Heterodyning one port and discarding the other does not lead to entanglement genesis.
The purity of the system, given by tr(p*), drops considerably on its way from lee Ytog
4 » @fact that substantially impedes the creation of entanglement on its own (i.e., see the
discussion of inefficient measurements), even without the other problematic prop-
erties of heterodyne detection with respect to generating concurrence [recall, e.g., the
argument in and around Eq. (35)]. The purity recovers as the system decays since £4)
is technically a pure state. We show the purity in Fig. 15.

We proceed to the case where the (ideal) photodetector in Fig. 14 is turned on, such
that the click record at that port is available, and the two-qubit state update goes like
Eq. (C4). The operation Eq. (C1), which describes the diffusive dynamics due to het-
erodyning between click events, does nominally generate some correlations between
42 and g4 , yccording to the matrix elements highlighted in green, but does not gen-
erate concurrence. We can again attribute this to the argument in and around Eq. (35),
although many of the other points we have mentioned above apply as well. Any con-
currence generated by this mixed detection scheme is generated by the click detector
at port 4, not the diffusive dynamics from the heterodyne measurement at port 3.

C.1. Simulation Procedures

We describe our simulation procedures for the situation above, in the interests of
completeness. The reader more interested in the behavior that arises from the present
scheme should jump to the next sub-section.

Figure 15

o 1 2 3 4 5 & 1 8
t(us)
We initialize our two qubits in k ¢), for the system diagrammed in Fig. 14 with the
photodetector turned off. This scenario is modeled by the state update rule Eq. (C5).
We plot the state purity P(z) =r(p?(2)) as a function of time, showing both the purity of
individual quantum trajectories in gray, and the average purity over an ensemble of
such trajectories in black. The purity is 1 at the start and end because both ¢4 apdgg
qre pure states, but the purity drops substantially during the dynamics moving between
them, due to information being discarded at port 4 after the beam splitter.
Trajectories do not reach the maximally mixed two-qubit state (P = 1/4), and some
stay well above, such that the average purity does not drop below P = 1/2. We have

z =1 MHZi such that times in microseconds are also in units of both ﬂubits’ TI'
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We describe how Egs. (C1)—(C3) and state update Eq. (C4) are implemented numer-
ically to simulate the stochastic trajectory dynamics, and we then show results for a
few revealing initial states. The case here is in many ways more numerically com-
plex than the cases in the main text, and many statements about the general strategy
employed here apply across all of our simulations. As in the main text, we expand the
denominator of the state update equation to approximate the probability distribution
describing possible measurement outcomes at each step. This leads us to defing,
such that (

\ L)
tr Ma/p(f)ij/ v (Cr+G O (C6)

It turns out that when we do this kind of expansion, we will find some Gaussian terms
with some additional state-dependent coefficients attached, i.e., we find

G0 = wogo, ¢ G = wigi,  and e GG = W22, (C7)
where the g terms are Gaussians in r; and rg [recall, e.g., Eq. (20)] with variance
1/dz, and the remaining terms that survive the expansion are collected into the weight
factors w. As in the case with photodetectors we considered earlier, the w; are state-
dependent and are used to make a multinomial choice about whether (and how many
times) the photodetector registers an event in a given time step. This then also deter-
mines which Gaussian g, the heterodyne readout result is drawn from. Using the full
set of available information to draw the measurement records is necessary to ensure
that we do not create records that are inconsistent with one another [even if we were to
suppose we have multiple observers with incomplete information, the records would
still have to be generated on the basis of a “super observer’s” record(s), which account
for all available measurement information]; see [19,178,179] for further comments in
this vein.

The particulars of the weights and Gaussians are described here, starting with the
terms in the no-click case. We have

( NI Vo) (

) :
G=—r—x 5 —hrg—X ¥ v *i X§+X2Q’ with  (C8a)
X1 = COS Q(qs + g6 + g3 + qg) — sin Q(qn + g2+ qi3 + q15), (C8b)

Xo = —sinb(gs + g5 + gs + q9) = cos O(qu + g2 + 4 + q1s). (C8c)

The coordinates q parameterizing the two-qubit density matrix are described in
Appendix E.2, and wg @ned in\];q._(44d). We, thus, have Gaussians with variance
1/dt and means y; /2 and yy y/2 for r; and rg, respectively. The remaining
terms are included to the weight factor used to determine the correct statistics for the
no-click event, which is

[
wo =N exp —y +%()(21+ng ) (C9)

The term pris a normalization for the click probabilities, used to make L w1
The remaining Gaussians in r; and r g, for the one-click and two-click terms, both
have mean zero, and the same variance 1/4¢ This indicates that in the event of a
click, we know the photon went to port 4 and, therefore, did not go to the heterodyne
detection at port 3; the heterodyne readouts then contain no signal in the requisite
time step (there is no information at port 3 without the possibility of a photon having
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arrived there) and only pure noise from the LO. These conditions are key to enforcing
that correlations between the optical modes are properly reflected in simulations
(again, this is necesary to generate mutually consistent measurement records). The
probabilites associated with these jump events are given by

_ A Ldis YKl
wi =N ¢y CXP AP and (C10)
dry? ( V_ V_ Vo)
w2 =N 3+6 20 +2 6q+2 33 > (C11)
where we have shorthanded some expressions,
Vo Voo Vo
¢ = 3 2+ 3q1 + 342 +2 6q3 — 6q4, (C12a)
3 VooooWo
k== 164 +2 3p + 63, (C12b)
2

for ease of notation.

The simulation procedure in each time step can then be summarized as:

1. Use the state-dependent w; as probabilities in a multinomial distribution; draw an
outcome for the number of clicks at the detector at port 4 accordingly.

2. Given the outcome at the click detector, draw r; and r o from the appropriate
Gaussian distributions, with variance 1/47 and state-dependent means, to simulate
the heterodyne measurement at port 3.

3. Choose the appropriate operator [Egs. (C1)~(C3)], according to the jump out-
come, put in the stochastic readouts »; and r o, and then update the state with
Eq. (C4). Repeat until desired evolution time is reached.

The procedure for the codes in the main body of the text is quite similar (and is sim-
pler than that shown here, as it is more straightforward to draw readouts all of one type
than it is to combine diffusive and jump dynamics). We have here shown, however,
that our methods generalize to cases in which we mix diffusive and jump trajectories.
Few works in the quantum trajectories literature have studied the dynamics arising
under simultaneous different #ypes of continuous measurements (i.e., jumps and
diffusion) at all [78,180,181].

C.2. Interference Effects

We put the numerical strategies we just described to work. In Fig. 16, we plot the state
evolution originating from /= )[Eq. (E6b)]. We immediately see that one Bell state

allows for trajectories that only experience diffusion (| #*) and sends all its output to

the heterodyne detector at output 3), and the other allows only jumps (| #-) and sends
all its output to the photodetector at output 4). The pure states that generate these inter-
ference conditions are, more generally, of the form

(C13)

It is apparent from simulation that the relevant measurement dynamics preserve
the correlations and coherence in the |eg) and [ge) terms, even as the population
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is shifted to |gg)over time by the natural decay process. Therefore, the conditions
for complete interference do not only appear at the beginning of the simulation but
are preserved for its duration once they are established. We also understand that the
interference effect is naturally reproduced by the weight factors [Egs. (C9)—~(C11)];
we have applied them in the codes without adding any further constraints. We may,
thus, appreciate an interesting feature of our model, which stems from the assumption
of indistinguishable photons: We have a case where the phase of the entangled two-
qubit state may select a detector output with certainty; if different detector types are
used at the outputs, then completely different types of measurement backaction are
effectively selected by interference.

The concurrence in Fig. 16 decays on average at the rate y at which the individual
qubits relax, despite exhibiting very different trajectories for individual realizations.
We also see that the concurrence among the diffusive trajectories originating from
w )does not decrease monotonically in individual realizations; although we can-
not generate entanglement from simple separable states using heterodyne detection,
certain trajectories do still exhibit partial decay and regrowth of concurrence.

APPENDIX D: MORE ON MEASUREMENT INEFFICIENCY

Recall from Fig. 7, and the main text, that measurement inefficiency is effectively
modeled by imagining the signal to be diverted into a lost mode with some probabil-
ity, rather than arriving at an ideal detector with certainty. In practice, no experimental
detection scheme achieves perfect measurement efficiencies. In fact, a wider range of
detector imperfections are commonplace (see, e.g., [ 130] for some details and char-
acterization of the effect of such imperfections on similar entanglement schemes).
The relevant optical transformation was summarized by Eq. (57) and allows us to get
a matrix M, from the M we defined in Eq. (14).

1.0

0.8

I~

0 1 2 3 4 5
HT HT

We plot concurrence as a function of time, originating either from| W*)(left) or '~ )
(right) [Eq. (E6D)], in the setup of Fig. 14, which combines heterodyne detection at
one port with photodetection at the other. The effect of the interference at the beam
splitter created by the correlation or anti-correlation between| ¢g) and |g ¢) is clearly
visible here, because determining the output port determines the type of measurement
backaction; dynamics originating from|W+ yonly interact with the heterodyne device,
resulting in diffusive quantum trajectories of the two-qubit state, whereas only jump
dynamics arise from |W-), since all of the output goes to the photodetector in that
case. The average concurrence is in good quantitative agreement with ({7 = ~in
both cases shown above, consistent with the photodetection case in Fig. 3(b) and

the homodyne case of Fig. 6(a). No post-selection is used in the simulations above
because the interference conditions for the states in question perfectly select one

output or the other.
|
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We have mentioned that our state update must be modified for the case of ineffi-
cient detection by tracing out over possible outcomes in the “lost” modes that we
do not have access to. For example, for inefficient photodetection with the outcome
{3 na } 0,40 agthe signal ports (where #; and #4 are a number of photons received in
the requisite interval 47), we would have a group of Kraus operators,

Moe,c = 0505050 M, 10000), (D1)
and the state update equation p(7 + 4#) =

Moo00p M, gooo +Moo10p M, b0+ Mooor pM hoo1 + M. 00200 M bo20+ M 00020 M. boo2 N

tr \M 0000p M 3000 +M 0010,DM Bo 10 +M 0001 ,DM 3001 +M oozopM :r)ozo +M, ooosz J(r)ooz ’
(D2)
for p = p(?). For such an update with finite measurement efficiency, the basis in
which we do the trace over the outcomes in the lost mode does not matter, as long as it
represents a complete set of outcomes. By that token, inefficient homodyne detection
is most straightforwardly modeled by an operator

My = X3Xantnf|M,]0000), (D3)

where the signal modes are projected into a quadrature X 3 or X 4, as in the ideal case,
but the lost modes are projected into the Fock basis. Such operators can be used with
the state update p(7 + dz) =

{\JxoopML + MipM. + MxopM, + MxpM, + MxppM, .
n n T A A A A + A A + A A :
tr MxwpMy + MxipML + MxopMy +MxpMy + MxppMy,
(D4)
Summing over the lost modes in the discrete Fock basis is computationally simpler
than integrating out another pair of continuous-valued homodyne (quadrature basis)
outcomes, although the latter would also be correct. We continue into a more detailed

discussion of each type of inefficient measurement. The comparable exploration of
the one qubit case can be found in [18,19].

D.1. Methods for Inefficient Photodetection

We now summarize all possible outcomes and Kraus operators used to model inef-
ficient photodetection. All Kraus operators here are notated according to M, ,, ,, 4 <,
where the #» are outcomes in the Fock basis at their respective ports. The phases
and 4 in Eq. (15) may be set to zero when we monitor the system via photodetection,

without loss of generality.

When neither detector clicks, the following options are valid:

Moo = 0000|M,|0000), (D5a)
Moo = 0010|D,0000), (D5b)
M1 = 0001|M,/0000), (D5c)

Moo = 0020|M,10000), (D5d)



Moo, = 0002|M,0000). (D5e)

The first represents the ideal option, in which we registered no photons because
there were, in fact, no photons emitted. The next operators, however, account for the

possibility that one or two photons were emitted but were routed {o one of {he ]}o,ss
channels ‘and were not measured. The probability of the outcome oy = 1S

1)

given by

L . .
woo =tr  MpM' =1- (g3+10) + Lfpu-m)gt 0P
;
(D6)
where ; indices the five operators in Eq. (D5), and we have defined and in
Eq. (444).

If the detector at port 3 registers the arrival of a single photon, the following options
are at play:

Mo = 1000|M,|0000), (D7a)

Moo = 1010|M,/0000). (D7b)

(Either one photon was emitted, and we caught it, or two photons were emitted, in
which case they both had to go to the same output under the assumption of photon
indistingflishabilit ,.in this case 3, but the S?C_Olﬁl }())lin(_)ton was lost on account of

n3 < 1.) The probability of the outcome {n-;, ”, 1s given by
)
Wio = tr M1000pM1000 + M1010pM1010 = % + _\%44 - 27]23 . (D8)

Likewise, if the detector at port 4 registers a single photon, we have the operators

Moo = 0100|M,/0000), (D9a)
Moo = 0101|M,]0000), (D9b)

and the probability of the outcome {#5, :,} = {0, 1} is given by

( )

wor = tr MmoopMI)]OO +M0101PM2101 = % B

«— 272, . (D10)

If the detectors at port 3 or 4 register a double click, we know that we have received all
of the photons, because it was not possible for more to be emitted in a single time step.
This situation involves the operators

Moo = 2000|M,|0000), (D11a)
or
Moo = 0200|M,/0000), (D11b)

which are invoked with the probabilities

€. " ) U
Woo = tr MoooopMso00 = D (D12a)
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or

(. L)

Wo2 = tr MozoopMozgo = (D12b)

respectively.

We can verify that we have exhausted the set of possible Kraus operators for the Fock
basis that can arise from M), in that they form elements of a POVM, i.e.,

MM, =1, (D13)
J
where the sum here is over all of the operators (D5), (D7), (D9), and (D11). The prob-

abilities w for the five possible outcomes we have listed are also already properly nor-
malized, in that they too sumto 1.

D.2. Methods for Inefficient Homodyne Detection

The same principles can be used to generate the corresponding model for inefficient
. . . . A T

homodyne detection. We project the output signal modes (corresponding to «', and

4} ) into a quadrature, as in the ideal case, and we will project the lost modes into the

Fock basis as we just did for inefficient photodetection. A total of five Kraus operators
arise from such an analysis, and they are

X 21x2)n

Myoo = X3X400|M |OOOO) —V%X
1- \/0_ 0 0"
. \/%1*—)(\/'1#"6}(3*\/4“"95{4) 1 0 0. (D14a)
A 0 v ,
(A=) me X3+ naedXa) 1- 0 -

v

205 3= =2 ] Y e x4,

Y

nae® Xa) " (Vie? X3 7\/115"9 x4 1

Mo = X3X410[M,0000)
0 0 0 0

_ex? xhp _—

L=001 —py) 0 o 0. (D14b)
:3i4 . 2
= a1 _n) , 0 0 o'

eszzﬁﬁﬂ—’ﬁ)—ﬂ"ﬁfﬂ.’?%

Mo = X3X401|M,]0000)
0 0 0 0

_ex? X2n _—
— =21 -5y 0 0 0.
EENE 2
= = a0 n) , 0 0 0’
— ¢’ X4 2mft—np— &_WT (—12-6- !
’ (D14c)

M = X3X420|M,0000)
0 000
0 000

N
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T 000 °
H(1=13) 000
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A

My = X3X402|M,|0000) .
0 000

_cedpde 0 000 (D14e)
- 0 000" "

—~5(1-n) 000

We reiterate that the state update is given, in terms of the above operators, by
Eq. (D4). These operators again form a complete set, in that

dXsdXs M Myg=1, (D15)

J

where ;/ indices all five operators in Eq. (D14). The statistics of the measurement rec-
ord they imply are summarized by

( \/_ )2 ( \/ _)2

Gh==Yrs— Mx:—'yr V1Ja

( )
+ T oyttt = s e+ M — n3)

+ v, q1(14 c08(23) — 13 c0s(260)) +y iqla(m cos ¢ sin & — 73 cos @ sin 6),
(D16)

which should be compared with Eq. (46a), and where y3 and y4 are still defined as
in Eq. (46b). In summary then, inefficient homodyne detection may be simulated
using Eq. (D4) and stochastic \yeadouts r3 and ry, drawn from Gaussian distributions
of variance 1/4t and mean  y73yx3(0) and = ppaya($), respectively. Comparing
to the ideal case, we can understand that we have the same noise, but the means y;3
and y4 (which set the signal content of the readout) are now attenuated by a factor

7 relative to the noise. Thus, inefficient measurements, which only partially collect
the information the optical degree of freedom “knows” about the qubits, result in a
worsened signal-to-noise ratio, along with some decoherence due to averaging over
lost information.

APPENDIX E: REVIEW OF TWO-QUBIT DENSITY MATRICES AND
ENTANGLEMENT

A two-qubit density matrix p can be any 4x4 matrix that satisfies the properties
pij #"; and tr(p) & as demanded by quantum mechanics and normalization of
probability densities. A subset of such density matrices describes separable sys-
tems. We discuss two-qubit entanglement in Appedix E.1, and then go through some
details of a general coordinate parameterization of the two-qubit density matrix in
Appendix E.2. Inefficient measurements and mixed states are ubiquitous in laboratory
situations, and we consequently use a density matrix rather than a pure state in many
parts of the main text.

E.1. Two-Qubit Entanglement and Concurrence
A commonly accepted measure of entanglement between two qubits is concurrence
[96]. The concurrence C of a two-qubit density matrix is given by

C[p] = max{O, ),1 - 12 - ),3 - ),4}, (E1)

where the /; are the eigenvalues of the Hermitian matrix
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R = p(o, ® 6,)p*(0,®0,) p (E2)

listed in decreasing order. In practice, it is often easier to compute the eigenvalues of

p (0, ® 6,)p*(o, ® 0,), which give A* instead. We have used the usual definition of
the Pauli matrix,

0 -7

70 (E3)

0y =

The qubits described by p are said to be entangled if C > 0 and are unentangled (sepa-
rable) when C = 0.

Note that this simplifies nicely for the case of a pure two-qubit state,
w| = (a*, b* c* d*), (E4)

where we are still using a basis {|¢¢), |eg), |g¢), |g2)}. The concurrence reduces in this
case to

C=2lad — bc]|. (E5)

The concurrence C may range from 0 to 1, where C = 0 denotes a separable state, and
C = 1 denotes a maximally entangled state, e.g., any of the standard Bell states,

[<I¥) = L lee) £ 1 |g0), (E6a)

W)= 2, leg) = 2ge). (E6b)
If we instead express our generic two-qubit pure state in the Bell basis,

ly) = A|<I*) + B|<I") + C|W*) + D|W), (E7)
the concurrence reads

C=|a*-B?-c?+pt (E8)

The mapping between the two bases listed here is given by the unitary,

100 1
U= 1100 -1
5.011 0 - (E9)
01-10

such that, if |y) is in the standard {a, b, c, d} basis, U |y) is the same state expressed
in the Bell basis {2, B, C, D}.

E.2. Generalized Gell-Mann Matrices and Effective System Coordinates
We here describe the coordinate parameterization of the two-qubit density matrix,
which we use in the main text and throughout our simulations. It is always possible to

decompose an » X » density matrix according to

I .
p=-—L+q r (E10)

n
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Here q is a generalized Bloch vector, and F is the vector of generalized Gell—
Mann matrices. There are »* — 1 =dim(q) coordinates and matrices. In the

two-dimensional case, q represents the usual Bloch coordinates, and # represents
the Pauli matrices. Parameterizing a 4 x 4 density matrix requires 15 coordinates in
the most general case.

We adapt the matrices from [182] to define some coordinates for our two-qubit sys-
tem, beginning with the three diagonal matrices,

R 1 000 R 10 00 100 0
= 10-1000  Cy=yl (0100: 1 0100
5.0000. 6 00 20- 120010 -
0000 0000 000-3
(E11)
Next we list the six symmetric matrices of the set,
0000 0100 0010
4=+ 0010 T,=J -1000 - ¢=+ 0000 -
2:0100 - 20000 - 21000 -
0000 0000 0000
. : (E12)
0001 0000 0000
0000 0001 0000
7=%5100000  *T1000050 °T3I0001
1000 0100 0010
We conclude with the remaining six anti-symmetric matrices of the set,
0000 0-i00 00-i0
. :00-i0 . i 000 -J 0000
=507 00 n="%:0000:" "2T%=I;000:
000 0 0000 0000
000 -7 0000 0000
) ‘000 0 - 000 —; 000 0
B=Y500000 0 T 0000 5=%5 000 -
;000 0:00 007 0
(E13)

Using Eq. (E10), we may write an arbitrary 4 X 4 density matrix in terms of the 15
generalized Bloch coordinates q. This yields p =

) % J3 N ]
1 + ﬂg;—-i-” zgﬁ—"_ Vg3 g2+ ﬂ@{—?—qw g3 — q1
° 4 —= -

) %—_Z'Zqz% @]78—_1'2%34 -. '

THEp b g9 iqs
qo + iqis + -3y

2 g6 + iq12 ga + iqio

q1 + iqi3 gs + iqua 3
(E14)
We see that the populations are described by coordinates 1-3 [corresponding to
Egs. (E11)] and that the coherences are described by the remaining coordinates,
with real parts corresponding to Eq. (E12) and the imaginary parts to Eq. (E13).
We can also codify this information visually, as it relates to the arrays of plots in
Figs. 1013, by
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A o BER ¢ R ¢ |
|+ < -l -3
- [ =+ > (i '
] = B v (E15)

r

In terms of the above coordinates, the purity of the state is described by

Pp)=u@p’)="+ 4% (E16)

APPENDIX F: MAPPING EQUATIONS OF MOTION FROM KRAUS
OPERATORS TO THE SME

Our expectation, based on the one qubit cases [17-19] and other continuous mea-
surement schemes, is that the equations of motion derived from the stochastic master
equation (SME) [Eq. (22)] can be taken as [t6 Langevin equations, converted to their
Stratonovich form, and will then be found to be identical to the equations of motion
derived by expanding the state update with our Kraus operators to O(4#) (where the
latter is performed without treating the readout variables in any special way, and using
regular calculus). The It6 and Stratonovich conventions basically concern which
Riemann sum is used to integrate a stochastic differential equation (SDE): While
different Riemann sums will give equivalent results when integrating ordinary dif-
ferential equations, they give different results when applied to diffusive stochastic
equations, because the latter are non-differentiable at all time scales. The details of
either convention, and the rules for converting between them, are well understood
(see, e.g., [108]). We perform the requisite computations and conversions for our two-
qubit homodyne detection and heterodyne detection models in turn; further pertinent
details appear in, e.g., [19].

F1. Homodyne Detection

F11  Ideal Case

Let us start with our Kraus operator methods. We will use double homodyne detec-
tion, in the entangling case &0 and $290°. We may expand our operator [Eq. (21)]
according to

Mo 532552 5 14 Zdr + 0(dP), (F1)

where we can eliminate the Gaussian pre-factor and any other constants that appear in
every matrix element of the operator because they will cancel off from the state update
normalization momentarily anyway. Then the state update can be approximated by

A+ Zdp A+ ZTdr) )
A=+ S

U Zidp(A+ Z dy)

p(t+dt) =

(. . (4 0))
mp+dtIp+pll-ptr Zp +pZ' -, (F2)

which can then be rearranged according to p (# + d#) — p () = dt p, such that

. . ( )
p=Zp+pZi-ptr Zp +pZ' . (F3)



The non-trivial part of the Kraus operator, to O(d2), is

—y 0 o 0
N ;(73 - il”4) —y/2 0 0 :
L= s + ira) 0 -y/2 0 (F4)
2
—y "y +ir) T (rnsin) 0

The equation of motion Eq. (F3) with Eq. (F4) is best represented as 15 coupled equa-
tions in the coordinates q, obtained as q = tr(#p); for the sake of brevity, we do not
list them out here.

The SME Eq. (25) is derived in a similar spirit, using It6 calculus [9—11,13]. Recall
that the corresponding Lindblad operators for the SME Eq. (47) are

VA G RV ( )

Ly= 30" '+d", Ls=i 35" -d", (F5)
which denote the observables in channels 3 and 4, which should be used in Eq. (25)
with ¢ 3 4. We are able to obtain another 15-dimensional system of equations
(represented in q) from this SME-derived expression for p, expressed in terms of the
white noise terms & _d W3/drand & d Wa/dr in channels 3 and 4, respectively. Ifthe
system of SDEs from the SME is a set of [t6 equations,

q=a(q) +b3(q) & +ba(q) &, (F6)
then they can be converted to the corresponding Stratonovich form
qQ=A(q) +b3(q) & +ba(q) &, (F7)

according to the transformation [108]
A=a-— 1§(b3 . V)b3 - 1{[)4 . V)b4, (F8)

where ¥ here the vector derivative in all 15 coordinates . Again without listing out
the 15 equations or details of the transformation, we find for the example at hand that
the Stratonovich version of the SME Eq. (F7) is exactly equivalent to the Eq. (F3),
with the relationship

r= JV_(qs + g6+ g3+ q) + & (F9a)

= \/V_(—qll + g2 + qua — q15) + &, (F9b)

between the readouts and white noise [valid to O(4#]. Thus, the two approaches we
have described are equivalent, provided we account for the fact that we have carried
each of them out using a different stochastic calculus.

F12  Inefficient Measurement

We are able to repeat the same procedure for the case of 74 474 and, thereby,
check that our equations for inefficient measurement correctly translate to the SME
as well. We verify that the correspondence between our Kraus operators (yielding a
Stratonovich-like equation, expressed in terms of the records 73 and 1) and [t6 SME
(yielding an It6 equation expressed in terms of 4 W3 and 4 W4) works for the general
homodyne case characterized by the SME operators,

\/— -H(AA AB) \/— -S(AA_ "B)

Li= 12¢7 0 "+0 ", Ls= 1L¢ S=-0",

(F10)
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for any n30f 1 ,]ya @[ 1, pnd any combination of ¢ and &, corresponding to the
most general update Eq. (D4) with Eq. (D14). The procedure is similar to that above,
and the details are not repeated here (but more appear in [19]).

Instead, we show some of the n =0 = equations (derived using regular cal-
culus/using the Stratonovich approach) that upderpin the results of Section 6.2.
In particular, the case characterized by ¢1 = 2¢2, g5 = g6, 98:% 99, q11 = —q12,
qi3 =0, and ¢14 = —¢i5 is especially useful. The condition 41 = 24, ensures that
the elements 4g d and ge e aye identical. This leads us to define two special
coordinates for this case, according to

g =4t L+ L+ A gs, (F11a)

=L+ %qz + ;1_12q3 - Lgl, (F11b)

which, combined with ¢1= 24, set the diagonal terms of the density matrix to
be defined only in terms of ¢, and g¢,. Specifically, ¢, is the population in de ) gis
the correlated population on both eg| apd g4 ,yand 1 g 24 is the popula- tion
on gg . Weythen list the system of nine differential equations that define the state
dynamics under the condition r; 0 ry (ie., we list the Stratonovich-like dynamics
corresponding to the first-order expansion of Eq. (D4), for the special case X3 = 0 =

X4 and N =n= 774)2

4o =274+ 17 24uq7 + 207 4u(q: + ). (F12a)
. v
7 =y(q(V=1) =qs) +ny 249597+ 207 9:(q. + q1), (F12b)
g a=—yqa+ny 2qqn + 2mq(q. + @), (F12c)
g s =vgs +ny 2 gsqr + 2nmvgs(qs + @), (F12d)
. Lo
q 1==yq1+tny 24" —q.) + 2myq1(q. + qv), (F12e)
. L
g s =795 35 'vqs — 2nygs +ny 2 qsqr + 2nygs8(q. + q), (F12f)
g 10==yq0 T 707 2 q10q7 + 2myqi0(g. + g, (F12g)
_ Na
g n=73%qu+ny 2quqg +2nyq1(q. + q), (F12h)
g 14 = —yqu —5'yqis + 20pqn + 0y 2 quar + 2myqu(q. + q). (F12i)

This system of equations is somewhat messy, and these nine coordinates do not
reduce nicely into a simple expression for the concurrence. We can, however, under-
stand this system of equations as the generalized case of Eq. (53); by numerically
integrating Eq. (F13) for the initial condition ¢,—1 and q — 0 otherwise, we obtain
the bounds on concurrence creation, e.g., as shown in Fig. 9. While the full set of
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equations are needed for more general initial conditions, several equations may be
eliminated for the particular initial conditions above, leaving only

| v
9o ==2yq. 0y 24,97+ 207 9.(9. + q1), (F13a)
=7 -1)=q)+ny 2qq71 +207 (9. + q1), (F13b)
| L
g 1==yq1+ny 2g —q.) +2nyq1(q. + qv). (F13c)

Note also that by integrating this system for the casecrz ', we figgl=0 for all time,
demonstrating that the upper bound forces the concurrence yield down to zero for
homodyne efficiencies below 50%, as shown in simulations and discussed in the main
text.

F2 Heterodyne Detection

We repeat the analysis above for the cases of interest involving heterodyne detection,
again for the case .0 and 3 90° emphasized in the main text. Recall that the full
operator is Eq. (19), which leads to an approximate form,

— 0 0 0
\/7
.T(rz—z'rQ—irx—ry) —’)//2 0 0.
A= Y5 .
- T(ﬁ - z'rQ + irx + 7‘)/) J 0 J —j/ﬂ 0.
0 i(rr —irg +irx +ry) Vlr/ —irg—irx —mn) 0
2 2
(F14)

which is defined according to

M el V2 2 T Ade + O(dA). (F15)

As above, we can then write some first-order state update rule,

A A A )
prAp+pAT-ptr Ap +pAT (F16)

which uses the approximate measurement operator A.
The readO\I}ts have means = (g5 + g6 + g8 + ¢q9) (for 1), = * 7 €g11 + 12 + q14 + q15)
Vi

Zz
(for ro),  %(—gn + qu + qu — qus) (for rx), and  5(=gs + g6 + g5 — go) (for ).
This is emininently sensible as compared with the homodyne case, as we have the
signal portion of the readout attenuated by a factor 2, such that the signal-to-noise
ratio of, e.g., r;is reduced compared to that of » on account of our having now split
our attention between both (non-commuting) quadratures. We can, thus, infer the
corresponding Lindblad operators, which are

Ly Z%ZUA—A-FJC) LQ=—Z'V7;0A4+0AB)
TE RNy =i Y F17)

Ix=it o "= ¥, Iy=106"1-0¢"

As in the other cases, the It6 Eq. (25) and Stratonovich-like Eq. (F16) are equivalent,

in that either one is derived exactly from the other by using », =L ;,+L /)T+ ¢ jand
the appropriate transformation dictated by a consistent stochastic calculus [ 108].

Some of the figures in this paper also appear in Dr. Lewalle’s dissertation [ 19].
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