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We discuss recent developments in measurement protocols that generate quantum 

entanglement between two remote qubits, focusing on the theory of joint continuous 

detection of their spontaneous emission. We consider a device geometry similar to that 

used in well-known Bell state measurements, which we analyze using a conceptually 

transparent model of stochastic quantum trajectories; we use this to review photode- 

tection, the most straightforward case, and then generalize to the diffusive trajectories 

from homodyne and heterodyne detection as well. Such quadrature measurement 

schemes are a realistic two-qubit extension of existing circuit QED experiments, which 

obtain quantum trajectories by homodyning or heterodyning a superconducting qubit’s 

spontaneous emission, or an adaptation of existing optical measurement schemes to 

obtain jump trajectories from emitters. We mention key results, presented from within a 

single theoretical framework, and draw connections to concepts in the wider literature 

on entanglement generation by measurement (such as path information erasure and 

entanglement swapping). The photon which-path information acquisition, and therefore 

the two-qubit entanglement yield, is tunable under the homodyne detection scheme 

we discuss, at best generating equivalent average entanglement dynamics as in the 

comparable photodetection case. In addition to deriving this known equivalence, we 

extend past analyses in our characterization of the measurement dynamics: we include 

derivations of bounds on the fastest possible evolution toward a Bell state under joint 

homodyne measurement dynamics and characterize the maximal entanglement yield 

possible using inefficient (lossy) measurements. Qc  2021 Optical Society of America 
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1. INTRODUCTION 

The present work draws on three distinct areas of research; entanglement, quantum 

trajectories arising from continuous measurement, and spontaneous emission all play 

a role in what follows. Entanglement has interested and confounded the physics com- 

munity since it was first noted [1–3]. It has since been shown to be a valuable resource 

for applications to cryptography or metrology, and protocols have been found to 

generate and preserve it. Spontaneous fluorescence is a long-studied and fundamental 

example of behavior arising from the interaction between a physical system and its 

optical environment. When left unmonitored, spontaneous emission becomes a source 

of disentanglement [4,5] and/or decoherence; when collected and measured, however, 

this need not be the case. Recent efforts to track the impact of environment-induced 

dynamics, such as a qubit’s fluorescence, have led to stochastic quantum trajectories 

(SQTs) [6–14], which arise from time-continuous measurements of a system. These 

stochastic dynamics are those that occur conditioned on the outcomes of measure- 

ments on the system’s environment, in contrast with the dissipative dynamics arising 

in unmonitored open quantum systems. 

We find our present topic at the intersection of these three areas. Specifically, we take 

recent theoretical [15–19] and experimental [20–30] developments in the continuous 

monitoring of a single qubit’s spontaneous emission as our point of departure. While 

our work is inspired by the recent progress in experiments using superconducting 

qubits, our analysis is not restricted to this specific platform. From there, we con- 

sider how two qubit generalizations of such measurement protocols might be used to 

entangle the continuously monitored quantum emitters. Specifically, we investigate 

a device, illustrated in Fig. 1, in which two remote identical qubits’ spontaneous 

emission is mixed and monitored continuously. We review and expand on key results 

in this area [31–33] using a straightforward and conceptually transparent model, 

drawing connections to the wider literature as we go. 

The overall aim of this paper is to illustrate how an observer may infer the pres- 

ence or absence of coherent correlations (entanglement) between remote systems, 

using a quantum state evolution that is conditioned on the real-time outcomes of 

measurements tracking the two-qubit state. We begin by establishing some straight- 

forward principles (based on standard ideas for open quantum systems and Bayesian 

inference) in Section 2. Some general conceptual discussion there coalesces into a 

measurement model that underpins the rest of the paper. Section 3 applies the model 

to answer the question: What joint measurements and measurement settings are suit- 

able for generating correlations between subsystems? This discussion necessarily 

emphasizes the erasure of which-path information, drawing connections between our 
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model and the wider literature on the subject. In Sections 4 and 5, we perform detailed 

analysis of the dynamical changes in entanglement due to time-continuous tracking of 

the two qubits, emphasizing the correlations between them that an observer may infer 

by acquiring different forms of quantum mechanically complete information, using 

ideal measurement devices. This may be contrasted with the case in which an observer 

attempts to draw inferences based on incomplete information obtained via inefficient 

measurements, which we discuss in Section 6. Some conclusions and further dis- 

cussion of the literature context into which these ideas fit are included in Section 7. 

Finally, some technical details and additional pedagogical points are covered in the 

appendices. 

 
2. CONTINUOUSLY MONITORING TWO-QUBIT FLUORESCENCE: 

FORMALISM 

Continuous monitoring of a quantum system, given its initial state, leads to a real-time 

estimate of the system’s evolution, conditioned on the measurement record. Such an 

evolution may generically include both unitary dynamics and the stochastic effects of 

measurement backaction. 

The stochasticity of the dynamics is a direct outgrowth of the randomness implicit 

in quantum measurement. Whereas the evolution described by the Schrödinger 
 

 Figure 1  
 

Left, the kind of setup we envisage. Qubits in cavities A and B emit spontaneously 

into transmission lines 1 or 2, respectively. Each cavity and transmission line can be 

engineered to capture the fluorescence with high efficiency. These single-photon sig- 

nals are mixed on a 50/50 beam splitter, and any phase in the two paths (relative to an 

external reference) is characterized with a pair of phase plates. The combined effect 

of these unitary transformations on modes 1 and 2 before they reach the detector at 

outputs 3 and 4 is summarized by Eq. (1). Right, we consider continuous monitoring 

(dt « T1) at the outputs Det. and Det., with three different measurement options. Direct 

photodetection of the emitted signal leads to a number of clicks in each time step 

(zero, one, or two photons may arrive at a detector). Homodyne detection and hetero- 

dyne detection involve measuring one or both quadratures of the field, respectively; 

both rely on mixing the signal with a strong coherent state local oscillator (LO). The 

relative phase θ or ϑ between each signal and LO determines the particular quadra- 

ture(s) that are monitored. In the language of quantum-limited amplifiers (QLAs), 

pertinent to existing single-qubit circuit QED experiments, homodyne detection cor- 

responds to a “phase-sensitive” amplification, and heterodyne detection corresponds 

to “phase-preserving” amplification. See Section 2 and/or [18,19], and references 

therein, for details. 
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alone pertains to closed system dynamics, in which measurements cannot be directly 

accounted for due to the system’s isolation from any possible probe, we here con- 

sider an example of open system evolution. More specifically, we will consider that 

quantum degrees of freedom in our apparatus illustrated in Fig. 1, may be divided 

into a primary system (two qubits) and their environment (optical degrees of free- 

dom that may contain some emitted photons). The optical degrees of freedom may 

be monitored and then inferences can be drawn to update the two-qubit state in real 

time, conditioned on the outcomes of the optical measurements at each time step. 

Generically, such conditional stochastic evolution of the system (monitored via 

generalized measurements) is called a stochastic quantum trajectory (SQT). 

 
2.1. Open Systems and (Un)Conditional Evolution 

We may formalize notions of system–environment interaction, and the resulting 

dissipative or conditional evolution, by reviewing the Kraus representation [34–36] 

(or operator–sum representation [37]). We suppose we have a quantum system in 

the  Hilbert  space  HS ,  with  free  dynamics  governed  by  the  Hamiltonian  ĤS .  The 
system is also interacting with one (or more) environmental degree(s) of freedom 
in the Hilbert space HE  and characterized by the free Hamiltonian  ĤE . A generic 

interaction Hamiltonian Ĥint  describes possible interactions between the system and 
the environment. The evolution of the system and environment together is assumed 

unitary in the extended Hilbert space HSE = HS ⊗ HE , described by the 

Hamiltonian 
ĤSE        ĤS        ĤE         Ĥint. This formulation implies that our system of interest is com- 
pletely isolated, except for its interaction with the environmental degree(s) of freedom 

that has (have) been specified explicitly; these environmental degrees of freedom will 

mediate all possibility of measurement going forward. 

We consider the scenario where the system and its environment are initially uncorre- 

lated, as per 
 

ρSE(0) = ρ(0) ⊗ Q, (1) 

where ρ denotes the state of the system and Q denotes the state of the environment. 

The combined state of the system and environment evolves as 

ρSE(d t) = Û (d t)ρSE(0)Û †(d t), for Û (d t) = exp[−i d t ĤSE] (2) 
 

(in units ri     1). We may further choose a basis in which Q     k ℘k k   k is diago- 

nal. The reduced evolution of the system of interest is obtained by tracing over the 

reservoir degrees of freedom, i.e., 

 

ρ(t + d t) = trE {ρSE(t + d t)} = 
 

  j |Û (d t)ρ(t) ⊗ 

 
  

℘k|k) k|

  

Û †(d t)| j ) 

= 
  

M̂ 
jk(d t)ρ(t)M̂ † 

(d t). (3) 
jk 

 

The   operators   M̂ 
jk(d t) = 

√
℘k  j |Û (d t)|k)  are   Kraus   operators.   Equation   (3) 

is trace preserving, and the Kraus operators obey the completeness relation 
L

jk M̂ † 
(t)M̂ 

jk(t) = 11, such that they form elements of a positive operator valued 

measure (POVM). This description will be useful going forward, not only because the 

sum over j and k allows us to describe the dynamics of an open system, but because 

the individual M̂ 
jk  will allow us to describe the evolution of a quantum system con- 

ditioned on its environment evolving from |k) to | j ). Initial conditions of Eq. (1) 
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ρ̇ge ρ̇gg 
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adequately describe the case when the environment is probed directly with some 

detection apparatus in every time interval, possibly exchanging energy, entropy, and 

information through the coupling with the measurement apparatus. 

The dissipative dynamics due to a quantum system’s interaction with an unmonitored 

environment are often formalized via the Lindblad master equation [38]. The latter 

approach is effectively a time-continuum description of the dynamics above and is 

otherwise equivalent. Specifically, expansion of the dynamical rule (3) to O(dt) leads 

to [39] 

ρ̇ = i [ρ , Ĥ ] + 
   

L̂ 
 

 

ρ L̂ †  − 1  

(
L̂ † 

L̂ 

ρ + ρ Lˆ † 

L̂ 

)l 
≈ 

ρ(t + dt) − ρ(t) 
. (4)

 

 

The density matrix ρ again describes the state of the system, while the Lindblad 

operators Lˆ describe the effects of different channels c by which information may 

“leak” into environmental degrees of freedom. Closed system evolution alone may be 

described by the first term ρ     i  ρ , ĤS     (this is equivalent to the Schrödinger equa- 
tion). The remainder of the master equation [Eq. (4)], concerning interaction via open 
channels to the environment, causes the state purity to degrade over time. In other 
words, the accumulated loss of information to the environment prevents the system 

state from being described as a pure state (coherent) superposLition, as ρ = |ψ) ψ |; 

℘i is the probability to draw a pure state ψi from an ensemble). In this sense, trE 

in Eq. (3) may be regarded as an average over all of the measurement outcomes that 
could have been obtained if a measurement had been performed on the environment. 

We begin developing these ideas in our specific problem of interest by considering the 

spontaneous emission of one qubit. The typical decay statistics of spontaneous emis- 

sion may be derived from an interaction 

Ĥint  = 
  

g j (â j σ̂+ + â
†
σ̂−), (5) 

j 

 
between a qubit with raising and lowering operators +, and many modes of its 

electromagnetic environment with frequencies ω j  and 
−

photon creation and annihi- 
lation operators a † and a j . The coupling between the qubit and each field mode is 
characterized by the constant g j . The resulting dynamics of the qubit may be captured 
in the Lindblad form Eq. (4), however (see, e.g., [13] for an accessible derivation). 
Specifically, a qubit (two level quantum system) decaying into its optical environment 

may be described by 

˙ = ˆ ˆ+  − ˆ+  ˆ − ˆ +  ˆ ↔ 

  
ρ̇ee ρ̇eg 

  

= 

 
−γ ρee − γ  ρeg 

 
 

 

 

(6) 

where ρ is the qubit density matrix, Lˆ √
γ σ− describes decay at rate γ 1/T1, and 

any unitary contributions to the dynamics have been eliminated by going into a rotat- 
ing frame (see, e.g., [13,18]). Equation (6) describes exponential decay of the qubit’s 

excited state population, i.e., ρee(t) = ρee(0)e −γt . 

We are here interested in developing the case of monitored spontaneous emission, 

in which case we may discuss not only the unconditioned evolution above but also 

evolution that is conditioned on the outcomes of measurements performed on the 

emitted photons. Tracking of a single qubit in this way has been acheived in recent 

experiments [20–30]. Following such implementations, we should imagine that 

2 

c 

S c c c 

1 
2 , 
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spontaneously emitted photons are captured and routed to a detector through a trans- 

mission line. Connecting these ideas more formally to the description above, the 

measurement is performed on a temporal mode of the line, i.e., on traveling modes 

propagating from the qubit to the detector [9,40–42]. In each time step, a new mode 

interacts with the qubit and will then be measured; we formalize this below in a way 

that closely follows collision models of quantum optics [41]. We may then describe a 

single time step as an interaction between the qubit and single field mode, initialized 

in vacuum [43]. 

In order to develop a simple model of this type of situation, suppose we initially have a 
qubit in some arbitrary pure state, coupled to an empty output line that routes its spon- 

taneous emission to a detector, characterized by the joint state | Ai ) = (ζ |e ) + φ|g )) ⊗ 

|0). After some short time evolution, | Ai ) transforms to 

| A f ) = 
√

e − ζ |e , 0) + φ|g , 0) + 
√

1 − e − ζ |g , 1), (7) 

where we have defined   γdt .  We have written a pure state that explicitly respects 

the decay statistics that are detailed above and expected on average. This state update 
could be equivalently written, for small , as an operation, 

   √
1√−  ζ 

 √
1 −   0 

    
ζ 
 

 

| A f ) = 
φ +

 
 ζ â†

 
⊗ |0) = √

 â †    1 φ 
⊗ |0), (8) 

in  the  {|e , 0), |g , 0)}  qubit–field  basis  [44].  The  operator  â †    creates  a  photon 

(i.e.,  â †|0) = |1))  in  the  transmission  line,  leading  to  a  detection  apparatus.  The 

utility of this formulation is that we may choose a final state of the optical degree of 

freedom and, thereby, obtain an operator that updates the qubit state conditioned on 

the optical measurement outcome. 

For example, if a photon number measurement is made after a short time (   1), then 

we may extract two Kraus operators [18,19], 

M̂ 0 = 0| 

 √
1 − 0 

 
 
|0) and M̂ 1 = 1| 

 √
1 − 0 

 
 
|0), (9) 

 

from Eq. (8). Conditional evolution of the qubit state is then implemented by 
 

M̂ 
0ρ(t)M̂ †

 M̂ 
1ρ(t)M̂ †

  (10) 
ρ( + dt) = 

tr 
( 

ˆ t 
† 

or ρ(t + dt) = 
t ˆ †

) , 

 

where the first expression is used in the event that the photon counter does not click 

(no photon is emitted) and the second expression is used in the event that the detector 

does receive an emitted photon. One may understand the process described from 

Eq. (7) up to this point as one of Bayesian inference, in which the qubit state is 

updated conditioned on acquiring new information from its environment (and given 

a model of the qubit–field decay interaction, such that the meaning of the detector 

readout, relative to the qubit state, is clear). A similar approach may be applied in 

cases with different qubit–field interactions (e.g., dispersive qubit–cavity coupling) as 

well [45]. This formal structure also lets us describe the unmonitored (unconditioned) 

evolution: If we trace out all possible outcomes that could have occurred, i.e., 

ρ(t + d t) = M̂ 
0ρ(t)M̂ †  

+ M̂ 
1ρ(t)M̂ †

, (11) 

as in Eq. (3), and then expand to O(dt), the unmonitored evolution Eq. (6) is immedi- 
ately recovered. This reduction of the Kraus operators to a single output channel is 
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consistent with the reduction of the associated master equation to a single channel 

Lˆ 
−    γ σ− and is furthermore typical of operator–sum representations of a relax- 

ation channel, as presented from a quantum information perspective [37]. The 
conditional (i.e., continuously monitored) evolution of a single qubit has been stud- 

ied in detail using this model [17–19], leading to good agreement with experiments 

[20–30]. 

 
2.2. Conditional Two-Qubit Dynamics 

The device geometry we focus on, shown in Fig. 1, has been used in conjunction with 

photodetection and, outside of the context of quantum trajectories, to entangle many 

types of solid-state quantum systems that interact with their optical environment 

[46–49] (see Section 7 for additional references and discussion). One of the key 

features of the device geometry in question is that it allows for the creation of entan- 

glement between distant qubits, without the need for them to interact directly; 

coherently correlated states of the emitters are established purely from the infer- 

ences that can be drawn from the optical measurements. Similar methods have been 

leveraged to perform loophole-free Bell tests [50,51], and promising extensions to 

the above experiments, within the framework of quantum trajectories, have been 

proposed [33]. 

We extend the single qubit treatment above to describe the system illustrated in Fig. 1. 

For simplicity, we only consider the case where the qubits and cavities, and therefore 

the decay rates γ of qubit–cavity systems A and B , are identical. A beam splitter 

illus- trated in Fig. 1 implements a unitary mixing operation on the optical modes 

coming from either cavity, and some measurement devices can then be placed at the 

output ports 3 and 4. A two-qubit two-cavity system may be expressed by a pair of 

operators as in Eq. (8), 

 √
1 − 0

 √
1 − 0 

 
 

    

emitting into different transmission lines (where â
†  

and â
†  

create photons in paths 1 

and 2, respectively). Then the two-qubit two-mode state update goes as 

|ψdt) = (A ⊗ B)(| Ai ) ⊗ |Bi )), (13) 

which gives a short-time state update, now in the two-qubit two-mode basis 

{|e e , 0102),   |e g , 0102),   |g e , 0102),   |g g , 0102)} (assuming   some   state   |Bi ) = 

(ξ |e ) + ϕ|g )) ⊗ 0, which transforms like | Ai )). This is equivalently notated as 

 
√

 1 − √ 0  0 0 
  

ζξ   

|ψ  ) =  √ (1 −  )â2 1 −   √    ⊗ |0 0 ), (14) 
dt 

 (1 −  )â
† 

0 1 −   0   φξ  

      

M |ψ0 ) 

where the matrix will become the object of primary interest in deriving Kraus 

operators that act on the two-qubit state above. 

The effect of the beam splitter and phase plates can be characterized by the unitary 

transformations, 

â
†  
= √1   

(
â

†
e iθ + â

†
e iϑ 

)
, â

†  
= √1   

(
â

†
e iθ − â

†
e iϑ 

)
, (15a) 

1 2 3 4 

 

or, conversely, 

2 2 3 4 

φϕ 1 2 1 2 1 

1 2 1 1 

A = , (12) 

† 

1 2 
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2 3 4 
M →  

  
 (1− ) (â

†
e iθ + â

†
e iϑ) 0 

√
1 −   0 

 . (16)
 

  (â
†
â

†
e 2iθ − â

†
â

†
e 2iϑ) 

  (â
†
e iθ + â

†
e iϑ)   (â

†
e iθ − â

†
e iϑ) 1 

 
 (1    ) 

2 
0 0 0 

 
   0 0 0 0  

 
✓ ✓ 

 

 

4 

2 

â
†  
= √1   e −iθ 

(
â

†  
+ â

†
) 

, â
†  
= √1   e −iϑ 

(
â

†  
− â

†
) 

. (15b) 

 

The state update matrix can be modified accordingly to represent these optical 

transformations, leading to the outputs Det. and Det., and then it reads 
3 4 

1 −   
 

  (1− ) (â †e iθ  − â †e iϑ) 
 

√ 
0 0 0  

1 − 0 0  
 

 2 3 
✓ ✓ 

 

 

The operator that updates the two-qubit state under particular measurement outcomes 
is then obtained by projecting out final optical states |ψ f :3,4) consistent with a particu- 

lar detection process, i.e.,   ˆ 
f ψ f :3,4 0304 acts purely on the two-qubit state, 

updating it (conditioned on optical measurement outcomes) via 

M̂ 
f ρ(t)M̂ †

 

ρ(t + dt) = 
tr 

( 
ˆ
 

f 
.
 

t ˆ † (17) 
M f ρ( )Mf 

 
Such an approach will ultimately form the basis of all of our derivations and numeri- 
cal modeling below. Note that an update of this type is the state update an observer 
can make at t dt, given previous knowledge of the state ρ(t), and access to the 

measurement record at both outputs 3 and 4, under the assumption that no information 

is lost to the environment at any stage between the qubits and detectors. The joint 
qubit–field system remains perfectly isolated except for ideal, perfectly efficient, 
measurements made at ports 3 and 4. We will momentarily clarify below how the use 

of ψ f :3,4 in this presentation corresponds a type of measurement, with well-defined 

outcomes that are amplified to point where they correspond to the classical output of 

a measurement device. For generalizations to the case of inefficient measurements, 

see Section 6 and/or Appendix D. In assuming that the observer’s state update applies 

in real time, we implicitly assume that the photon travel times between the qubits and 

detectors are negligible (as is the case, e.g., in any circuit QED experiment in a single 

dilution refrigerator) [52]. 

Fluorescence moves the qubits from their excited states to their ground states. The 

clearest way to generate entanglement then involves starting with |e e ), counting 
photons, and recognizing a Bell state |W±) = √1   |e g ) ± √1   |g e ) when a detector clicks. 

2 2 

Consider (with θ = 0 = ϑ) 
 
 
 

(18) 
 1304|M|0304)|e e ) =   

 (1− )  0 0 0 
 |e e ), 

    

which describes the update of the two-qubit state by the jump operator, which occurs 

conditioned on the detector at output 3 registering the arrival of a single photon 

in the requisite time step. After normalization, this state corresponds to W+ . If a 

click occurs at output 4 instead, we take e e to W− (up to a sign) via the opera- 

tion 0314 0304 e e . The key point to take away from this simplest case is that, 
depending on which channel registers an event, we get a different Bell state, and 

the matrix elements highlighted in purple are primarily responsible for generating 

0   

2 

  

2 
0 

2 3 3 4 4 2 3 4 2 3 4 
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2 α∗ e 2iθ − β∗ e 2iϑ 

  (α∗eiθ + β∗e iϑ)   (α∗e iθ − β∗e iϑ) 1 

 

 

entanglement by correlating or anti-correlating |e g ) and |g e ) as amplitude decays out 

of |e e ). When a second click is registered, we know that both qubits have emitted, and 

the state is updated to |g g ) with the entanglement destroyed. 

Two-photon events (events in which both qubits emit “simultaneously”) exhibit 

interference, similar to the type exhibited in the classic Hong–Ou–Mandel experiment 

[53]. Our model coarse grains the notion of simultaneity to mean merely that both 

emissions occur within the same detector integration interval dt. The probability of 

emission within the same interval dt is sufficiently small (to O( 2) at worst) that the 

effects of this simplification to our model should be negligible. Related points are 

discussed in Appendix B. The two-photon interference visibility is determined by 

the indistinguishability [54] (or identicalness) of the two photons. Thus, the induced 

coherence with continuous fluorescence measurements can be viewed as a process of 

distilling the two-photon indistinguishability. Our use of these ideas is, in this sense, 

similar to that of induced coherence without induced emission first studied by Zou, 

Wang, and Mandel [55–58]. Fabricating solid-state qubits that emit genuinely indis- 

tinguishable photons is not necessarily easy, but the problem has been studied in the 

context of the device geometry of interest and entanglement generation [59–62]. 

We do ultimately wish to proceed to considering homodyne or heterodyne measure- 

ments in addition to photodetections. Heterodyne monitoring can be modeled by 

projecting onto coherent state outcomes instead of Fock states [7], i.e., we use a Kraus 

operator M̂ 
αβ  =  αβ|M|00) = 

−|α|2 /2−|β|2 /2   

1 −   
 

 (1− ) (α∗eiθ − β∗e iϑ) 
√ 

0 0 0  

1 − 0 0  e  
 (1− ) (α∗e iθ + β∗e iϑ) 0 

√
1 − 0 

 .
 

 
( 2 2 ) ✓ ✓  

 

Physically, this is achieved by mixing the signal beams with a strong coherent state 

local oscillator (LO), or equivalently doing phase-preserving quantum-limited ampli- 

fication (see Fig. 1). As in the one qubit case [17–19], the subsequent readouts are 

related to the coherent state eigenvalues by 

α =

 
dt (

r 

 
+ ir 

) 
, β =

  
dt 

(r 

 
+ irY 

 

) . (20) 

 

 

Heterodyne detection (or phase-preserving amplification) involves the measurement 

of two non-commuting observables (measuring both quadratures of the field is like 

measuring the position and momentum of a quantum harmonic oscillator). This proc- 

ess is consequently limited by the Heisenberg uncertainty principle. Coherent states 

satisfy and saturate the Heisenberg uncertainty principle, and the use of coherent 

state outcomes corresponds to the best possible balanced measurement of the two 

quadratures allowed by quantum mechanics. For additional details, see, e.g., [63,64] 

and references therein. 

Homodyne detection is similar to heterodyne detection [65], but information is 

only collected about one quadrature instead of both (the unmeasured one is effec- 

tively squeezed out) [63,66]. We model this by choosing our final optical states 
to  be  eigensta√tes  of  a  particular  quadrature,  i.e.,  we  take  the  eigenstates  of  the 
X̂ = (â †  + â)/   2  quadrature  at  both  outputs  [7]  (without  loss  of  generality,  since 

θ and ϑ are completely tunable), such that we have M̂ 
34  =  X 3 X 4|M|00) = 

(19) 

I Q X 
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34 

M 

π 2 3 4 

 e 2iθ (X 2 − 1 ) − e 2 iϑ(X 2 − 1 )  (e iθ X 3 + e iϑ X 

4) 

 (e iθ X 3 − e iϑ X 4) 1 

4 e 
/ 

√
2
 

2 2 

√
1 exp 

[
− 1 (X 2 + X 2)

 
× 

 
√ 

1 − √ 0  0 0  
 (1 − )(e iθ X 3 − e iϑ X 4) 1   

 (1 − )(e iθ X 3 + e iϑ X 4) √ 0 

  0  0 

√ 1 − 0  . 
 

 

We have used the standard Hermite polynomial solutions in the appropriate matrix 

elements, 
 

 X |0) = π 4 e −X 2 /2 , (22a) 
 

 X |1) = π 4 e −X 2 /2 

X 

√
2, (22b) 

 

— 1  −X 2 2  

  

2X 2 − 1 
 

 

 

for the X representation of the harmonic oscillator wave function (for dimensionless 
X ), which we now use in each field mode, for all the matrix elements of . The read- 
outs are related to the real numbers X by 

 

X 3 = 

  
dt 

r3, X 4 = 

  
dt 

r4, (23) 
 

using the same logic underpinning Eq. (20). The operator describes a valid measure- 

ment and complete set of possible outcomes, i.e., 

∞ 

dr 
−∞ 

 

dr4 M̂ †  M̂ 
34 ∝ Î, (24) 

indicating that it forms a POVM [37] (the same is true of the photodetection and 

heterodyne operators we have discussed above). For derivations and an overview 

of the analogous objects in the single qubit case, see [18,19], and for a very detailed 

treatment of the single qubit heterodyne case, see [17]. 

A few remarks about the process above, and Eqs. (20) and (23) in particular, are war- 
ranted before continuing. In transitioning to the readout notations r , we imply that 

an amplification step has taken place, such that the readouts r are, e.g., the current or 

voltage observed on a laboratory device at a macroscopic or classical scale. When we 
use an update like Eq. (17), we are imagining that an observer, in possession of the 
information encoded in any relevant r , is inferring the evolution of the two-qubit state 

conditioned on information gained by measuring the qubits’ optical environment. 
Such an inference is drawn given a picture of the device that we have encoded in 

[Eq. (16)]. While the records r take on sharp values in any individual measure- 

ment time step, they are intrinsically noisy (stochastic) due to the limits quantum 
mechanics imposes on measurement and amplification. For additional comments 
regarding quantum–optical measurement and/or amplification, as applied above and 
in connection with contemporary experiments, consult, e.g., [63,64,66–72]. 

Note that it is very common to express continuous quantum measurement in the 

language of stochastic differential equations (SDEs), by using the stochastic master 

equation (SME) [9,13,73]. The typical Itô SME for diffusive quantum trajectories 

reads 

(21) 

    

3 2 4 2 

 X |2) = 

π 

, (22c) 

 

3 
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= 
∈ [ ] = 

c 2 c c 

c c 

c c c dt 

c 

dρ = i [ρ, ĤS ]d t + 
  (

L̂[ρ, L̂ 
c ]d t + 

√
ηc K̂ [ρ, L̂ 

c ]d Wc 
) 

. (25a) 

The super operators are the Lindblad dissipation term 

L̂[ρ, L̂ 
c ] ≡ L̂ 

c ρ L̂ †  − 1  

(
L̂ † L̂ 

c ρ + ρ L̂ † L̂ 
c 

) 
, (25b) 

and the measurement backaction term 

K̂ [ρ, L̂ 
c ] ≡ L̂ 

c ρ + ρ L̂ †  − ρ tr 
(

L̂ 
c ρ + ρ L̂ †

) 
. (25c) 

 

The  introduction  of  K̂  effectively  supplements  Eq.  (4)  with  a  stochastic  term, 
implementing the conditional evolution given measurement outcomes. Each of 

the operators Lˆ 
c  describes a particular measurement channel, which is monitored 

with efficiency ηc 0, 1 , where ηc 1 denotes a channel from which all possible 
information is collected, and ηc     0 indicates that the channel is an opening to the 
environment, but none of the information leaking out is collected. Any unitary part of 

the dynamics can be applied using the Hamiltonian  ĤS . The d Wc  denotes a Wiener 

process associated with each measurement; this delta-correlated Gaussian white noise 

models the random nature of the measurement backaction and is responsible for the 

stochasticity of Eq. (25), as well as the noise in the measurement records, 

r  = tr 
 
ρ(L̂  + L̂ †)

l 
+ 

d Wc 
. (26) 

 

When the conditional state update Eq. (17) is expanded to O(dt), using the operators 

[Eq. (19) or Eq. (21)], one may recover the SME and, thus, ascertain that these two 

approaches agree (i.e., the SME may be recovered as an approximation of the formal- 

ism we emphasize, for all cases of diffusive measurement dynamics considered in this 

manuscript). See Appendix F for details. 

The SME has been fruitfully applied in past work on systems similar to those we 

consider here [31–33,74–78]. While the SME is a powerful tool for the purposes of 

calculations, developing the corresponding Kraus operator treatment as we have done 

above has some advantages; specifically, our Kraus operators (1) offer a conceptually 

transparent view of the measurements we consider here and the inferences an observer 

may draw from their outcomes and (2) offer a good alternative to direct integration of 

the SME in numerical modeling, as fewer approximations are necessarily made (see, 

e.g., [73,79,80] for closely related comments). 

 

3. WHICH-PATH INFORMATION AND INTERFERENCE 

We now consider the “which-path information” available in the measurement records 

obtained by photon counting, homodyne detection, and heterodyne detection. In 

other words, we consider under what circumstances an observer using these protocols 

is able to ascertain which qubit makes particular contributions to the measurement 

record. Measurements that erase the which-path information (i.e., do not carry 

information that disambiguates the origin of the emitted signal) are suitable for 

entanglement generation. Conversely, those that allow emission from qubit A or 

B to become distinguishable will reduce or spoil the possibility of entanglement 

generation. 
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3.1. Photodetection and Interference 

An ideal photodetector at port 3 measures the photon number N̂3  = â
†
â3 at each time 

step, and the photodetector at port 4 measures N̂4        a †a4. Notice that N̂3  and N̂4  are 
totally independent of the phases θ and ϑ (see Fig. 1), so these do not impact the mea- 

surement at all in this case. If a photon is inserted with certainty at either port 1 or port 

2, the probability that the ensuing click is registered at 3 or 4 is the same either way; 

this overlap in the probabilities associated with the measurement outcomes between 

our two paths indicates that the which-path information is erased by this measure- 

ment. Moreover, the path erasure occurs unitarily, without any loss of coherence. 

In this sense, the beam splitter functions as a quantum eraser [81–85]. This means 

that, given an initial two-qubit state for which the photon origin is ambiguous (such 

as e e ), our photon counting measurement will be unable to disambiguate which 

qubit the photon came from and can, therefore, generate entanglement (coherent 

correlations) between emitters. 

Our model predicts that certain qubit states lead to complete destructive interference 

at either output ports 3 or 4. This is because entangled states of the qubits/emitters 

map  directly  onto  en√tangled  photon  states.  Consider  the  two-qubit  Bell  state 

|W±) = (|e g ) ± |g e ))/  2. The resulting photon emission is given by 

√1    

(
â

†  
± â

†
) 

|0102), (27) 

 

and the beam splitter Eq. (15) shows that these then become either 
 

e iθ â
†
|0304)(+)  or  e iϑ â

†
|0304)(−). (28) 

 

This means that when the qubits are in state W+ port 4 is completely dark, and W− 

leaves port 3 dark. A direct consequence is that in the photodetection case, the second 
photon measured must be seen at the same detector as the first because the first click 

creates one of the two Bell states W± , which in turn creates an interference effect 

for the next photon. The interference occurs independently of the type of measure- 

ments performed after the beam splitter, and some interesting consequences of this are 

developed in Appendix C. 

 
3.2. Quadrature Measurements and Which-Path Information 

What happens when the observer makes some measurement along one (homodyne) or 

both (heterodyne) quadratures at ports 3 and 4 instead? Consider measuring combina- 

tions of 
 

at 3 : X̂ 
3  = √1   (â

†  
+ â3),  P̂3  = √i   (â

†  
− â3), 

2 3 2 3 (29) 

at 4 : X̂ 
4  = √1   (â

†  
+ â4),  P̂4  = √i   (â

†  
− â4). 

 

From the beam splitter Eq. (15), it is apparent that (e.g., for θ 0 ϑ), we can have 
situations where a photon originating from port 1 leads to an in-phase measurement 
event, as experienced between 3 and 4, whereas a photon originating from port 2 

leads to an effect that is 180◦ out of phase between ports 3 and 4. We need to be care- 

ful then: Depending on which quadrature(s) we measure at each output, we may be 

able to determine whether light was reflected or transmitted at a beam splitter. We 

will confirm that in situations where we can, thereby, make inferences about the 

which-qubit origin of information in the measurement signals, the possibility to create 

entanglement between the qubits with that measurement is destroyed. 
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We proceed by looking more closely at measurements involving information from 
only one quadrature, i.e., homodyne detection (equivalently, measurements made via 
phase-sensitive amplification of each output). We can consider a probability density 

associated with the blue terms in Eq. (21). It is useful to consider an optical state 

â
†
|0102) (+) or â

†
|0102) (−) (a single photon enters from one input or the other), for 

which the output optical state at the detectors is given by 

|ψ    ) = 
  1   (

â
†
e iθ ± â

†
e iϑ 

) 
|0 0 ). (30) 

 

These states, by definition, carry perfect which-path information from the start, and 

the two-qubit states g e or eg that map onto them are, therefore, inappropriate 

initial states from which to begin a process leading to entanglement production. Our 

point here is to see which measurements preserve or erase that information, which we 

are presently inserting into the system in the most definite way we can. The optical 

state Eq. (30) leads to the probability density 

℘(X 3, X 4|â
†  

(+)  or  â
†  

(−)) = | X 3 X 4|ψ3 4)|
2

 
1 2 , 

∝ e −X
2 −X 2 (

X 2 + X 2 ± 2X X cos(θ − ϑ)
) 

. (31) 

 

It is obvious that the distributions [Eq. (31)] will be different between the cases 
(and, therefore, those cases are at least partially distinguishable), except for a choice 

of θ and ϑ such that cos(θ − ϑ) = 0. In other words, we can erase the which-path 
information by choosing, e.g., θ = 0 and ϑ= 90◦, which is effectively equivalent 

to measuring the Xˆ quadrature of mode 3, and the Pˆ quadrature of mode 4. See 

Fig. 2. The function ℘ is a proper probability density because the states X form a 
complete set. 

We can make similar comments about the heterodyne case by looking at the joint 
(two-mode) Husimi–Q function at the outputs 3 and 4 [64]. If ψ3,4 describes the 

output photon state, the Q function is given by 

Q(α, β) = 1  | αβ|ψ3,4)|
2, (32) 

where  we  are  using  a  coherent  state  â3|α) = α|α) at  mode  3  and  a  coherent  state 

â4|β) = β|β) at mode 4. We will decompose the complex coherent state eigenvalues 

according to α = X 3 + i P3 and β = X 4 + i P4. Then we may write 

1 
Q = 

2π2
 e 

−|α|2 −|β|2 

|α∗e iθ ± β∗e iϑ  |
2 

e −X 2 −X 2 − P 2 − P 2    
 

± 2(X 3 X 4 + P3 P4) cos(θ − ϑ) ± 2(X 4 P3 − X 3 P4) sin(θ − ϑ)
l
, (33) 

where the corresponds to the case where a photon started in port 1 and the cor- 
responds to the case where a photon started in port 2. This derivation works in a 
similar spirit to the one used in the homodyne case, with the notable difference that 

the Q-function is a quasiprobability distribution (because the states α , unlike the 

states X , form an overcomplete basis). We can immediately see that functional 

form Eq. (33) would allow for the and case to be distinguished; this suggests that 
heterodyne monitoring is always able to keep our sources distinguishable, and such 

= 3 4 3 4 
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measurements are consequently expected to be much less interesting to us from an 

entanglement genesis standpoint (which we confirm below and in Appendix C). 

Above we have provided simple arguments (1) for how joint homodyne detection 

can lead to erasure of the which-path information in our system (and therefore lead 

to some entanglement generation) and (2) that this information erasure is impossible 

for the cases of interest using joint heterodyne detection. We briefly highlight how 

path distinguishability leads to separable states before shifting our focus to the more 

interesting entangling cases. 

The heterodyne measurement, as discussed above, generates outcomes corresponding 
to coherent states |α) and |β), respectively, on the ports 3 and 4, satisfying the rela- 

tions â3|α3β4) = α|α3β4) and â4|α3β4) = β|α3β4). Inverting the beam splitter relations 

[Eq. (15)], we can establish that the action of aˆ1 and aˆ2 on such a state follows 

 

 Figure 2  
 

We plot the probability density Eq. (31), corresponding to homodyne measure- 
ments at both system outputs, as a function of X 3 (x axis) and X 4 (y axis). A photon 

is allowed to enter at one port or the other; overlap of the subsequent probability 
density distributions for the measurement outcomes indicate that this which-path 
information is erased, while different distributions between the two cases indicate 
that the measurement can distinguish the photon source. In the left column, we show 

the probability distributions for the homodyne measurement settings θ = 0 = ϑ; 

since the distributions differ between the case aˆ (top) and aˆ (bottom), we conclude 
that the which-path information is not erased under these settings, which prevents 
measurement-induced entanglement genesis between our qubits. In the right column, 

by contrast, we see that the choice θ     0 and ϑ    90◦ leads to the same distribution 

of measurement outcomes for either photon input; the which-path information is, 
thereby, erased for these settings, which will be used for most of the homodyne exam- 

ples developed later in the text. Generically, any choice that satisfies θ ϑ   90◦ 

erases the which-path information, yielding overlap as shown in the right column. 
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â1|α3β4) = √1   (e −iθ α + e −iϑβ)|α3β4), â2|α3β4) = √1   (e −iθ α − e −iϑβ)|α3β4). (34) 

 

This implies that α3β4 can be written as a product of coherent states in modes 1 and 2 

as well, i.e., 
 

|α3β4) = | √1   (e −iθ α + e −iϑβ) √1   (e −iθ α − e −iϑβ)). (35) 
 

mo

 
d

 
e  1 mo

 
d

 
e  2 

 

This proves that joint heterodyne measurement is effectively preparing separable 

states of modes 1 and 2, leading to no entanglement generation between qubits. 

The same kind of separability argument can be made for the homodyne measure- 

ment in the case θ ϑ, which maximizes which-path distinguishability (minimizes 

which-path information erasure). To see this, we consider measurement of observ- 
ables Xˆ 

3 and Xˆ 
4 in ports 3 and 4 respectively, yielding outcomes X 3 and X 4, such 

that   X̂ 
3|X 3 X 4) = X 3|X 3 X 4)  and   X̂ 

4|X 3√X 4) = X 4|X 3 X 4).  For  the  choice√θ = ϑ , 

we   may   write   X̂ 
3  = [X̂√1(θ ) + X̂ 

2(θ)]/   2   and   X̂ 
4  = [X̂ 

1(θ) − X̂ 
2(θ)]/   2,   for 

X̂ 
j (θ) = (e −iθ â

†  
+ e iθ â j )/   2 is a local observable at port  j = 1, 2. We, therefore, 

have 

[X̂ 
1(θ)+X̂ 

2(θ )]|X 3 X 4) = 
√

2X 3|X 3 X 4) and  [X̂ 
1(θ)−X̂ 

2(θ )]|X 3 X 4) = 
√

2X 4|X 3 X 4), 
 

which may be rearranged to read 

X̂ 
1(θ)|X 3 X 4) = √1   (X 3 + X 4)|X 3 X 4) and X̂ 

2(θ)|X 3 X 4) = √1   (X 3 − X 4)|X 3 X 

4). 

(36b) 

As in the heterodyne case, we see that X 3 X 4 is a separable state also for modes 1 and 
2, i.e., 

 

|X 3 X 4) ↔ | √1   (X 3 + X 4) √1   (X 3 − X 4)). (37) 
 

mo

 
d

 
e  1 mo

 
d

 
e  2 

 

We consequently see that the distributions in the left-hand column of Fig. 2, with 

the most path distinguishability, correspond to a measurement that projects the opti- 

cal degrees of freedom in a separable state, rather than an entangled one. Related 

calculations, including the entangling case, appear in Appendix B. 

 
3.3. Connecting Which-Path Information Erasure to Entanglement Swapping 

Here we argue that the generation of entanglement in our optimal homodyne scheme, 

as described above, can also be understood as entanglement swapping using a 

continuous variable Einstein–Podolsky–Rosen (EPR) basis measurement [3]. In 

entanglement swapping, one has two pairs of initially entangled parties (four parties 

in total). To swap the entanglement, one generically performs a measurement in an 

entangled basis on two parties—one from each initially entangled pair. This, in turn, 

entangles the remaining parties, effectively swapping the quantum entanglement 

between them. In our context, the fluorescence process naturally generates some 

time-dependent entanglement between each qubit and its cavity output mode [qubit 

A is entangled to mode 1, qubit B to mode 2, as per Eq. (7)]; by jointly measuring 

the fields after they are mixed on the beam splitter (modes 3 and 4), we can swap the 

entanglement around so that the two qubits share correlations instead. 

2 2 

2 2 
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This can be realized as follows: The observables  X̂ 
+      X̂ 

1        X̂ 
2  and  P̂−      P̂1        

P̂2 commute and completely characterize the two-mode quantum state. Jointly 
measur- ing them can generate EPR correlations between the modes 1 and 2. A 
measurement 

of X̂ 
+  with readout r+ and a measurement of P̂−  yielding readout r−, prepare a con- 

tinuous variable EPR state with X 1   X 2   r+ and P1   P2   r−. We first focus on 

the perfectly correlated scenario X 1 X 2  0 and P1  P2  0: the two mode wave 
function is then [86] 

 

 

 
in the position basis, and 

 X 1 X 2|ψ1,2) ∝ δ(X 1 + X 2) (38a) 

 
 P1 P2|ψ1,2) ∝ δ(P1 − P2) (38b) 

 

in the momentum basis. The particular state Eq. (38a) (which has the same symmetry 

of a photon pair produced from vacuum) can also be written in the Wigner form as 

[87] 
 

W(X 1, X 2, P1, P2) = δ(X 1 + X 2)δ(P1 − P2). (39) 

An arbitrary set of readouts  r−, r+  preparing maximally entangled field modes 

is related to Eq. (38a) by a local unitary operation in either of the modes, which 
is a generic single mode displacement operation that preserves the entanglement. 

Equation (38a) is also the limit of maximal squeezing in a two mode squeezed vacuum 

state, 
 

|ψs ) =
 1 

tanh (s )n|n )|n ). (40) 
 

 
 

The wave function X 1, X 2|ψs ) is identical to Eq. (38a) in the limit s → ∞ [86], 

highlighting the role of the squeezing operation implicit in quantum-limited detection. 

Implementation of such an operation via a single two-input quantum-limited amplifier 

operating in the large gain limit is described by, e.g., [88–90]. 

In our setting, the modes X̂ 
+ and P̂− are realized from modes 1 and 2 by passing them 

through the beam splitter. Then local measurements of quadratures on the outgoing 

ports realize the measurements of the sum X̂ 
+  and difference  P̂−

ˆ 
quadratu√res of the 

input modes. W√e  can formalize this statement by noting that (X 1 + X̂ 
2)/   2 → X̂ 

3 

and ( P̂1  − P̂2)/   2 → P̂4  under the√beam splitter relations Eq. (15), with θ = 0 = ϑ . 

Equivalently,  we
† 
have  ( P̂1  − P̂2√)   2 → X̂ 

4   with  θ = 0  and  ϑ= 90◦  (for  the  gen- 
eralized   X̂ 

4  = (â4 e i
ϑ + â4e −iϑ)/   2);   thus,   the   measurement   we   have   claimed 

erases which-path information, with θ ϑ 90◦, is exactly of the EPR form just 

introduced. 

We note that there is some precedent for the double homodyne detection device 

we emphasize. Quite similar devices have been used to verify the properties of 

continuous-variable (optical) EPR states [3,88,91], as well as in related experiments 

concerned with the steerability of such states [92,93]. The entanglement swapping 

interpretation we give above has also been used in explaining the effect of such homo- 

dyne measurements elsewhere [94,95] and applies to the photodetection case as well 

[33]. Implementations of these concepts directly using microwave amplification 

hardware, which is critical in realizing quantum trajectory experiments with super- 

conducting qubits, have been proposed and realized. Specifically, the sorts of EPR 

n=0 
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measurements of interest have been performed with microwave quantum optics (with- 

out qubits at the source) [89]. Furthermore, an implementation of the measurement of 

interest has been proposed in the context of dispersive qubit measurement, based on 

typical amplifiers used in superconducting circuit experiments [90]. The homodyne 

measurement of fluorescence we derive above as optimal for erasing which-path 

information has previously been shown also to be the optimal diffusive unraveling of 

the two-qubit master equation based on decay channels for the purposes of entangle- 

ment preservation [31]. As we explore numerical results for this case in Sections 5 and 

6, we will be able to further confirm that result and elaborate substantially on it. 

This concludes our general overview of the measurements we wish to consider. We 

have formalized several continuous measurement schemes above and may go forward 

with an understanding of how they build on an established conceptual and experimen- 

tal foundation. The remainder of the paper is dedicated to detailing the dynamics of 

the two-qubit states for specific measurement cases using numerical simulation. We 

review the case of photodetection and jump trajectories in Section 4. We then develop 

the homodyne detection case in Section 5, drawing comparisons with the photodetec- 

tion case. Characterization and comparison of these dynamics allows us to illustrate 

in detail how different measurements create different types of two-qubit correlations, 

putting the principles we have discussed above into practice. With the ideal case 

established we then also consider the more realistic case of inefficient measurements 

in Section 6. 

 

4. JUMP TRAJECTORIES  FROM CONTINUOUS  PHOTODETECTION 

We turn our attention to photodetection and jump trajectories. Three types of events 

that can occur within a single measurement time step are of primary interest; either no 

photons are detected as described by M̂ 
00  =  0304|M|0304), a photon is measured in 

output 3 as described by M̂ 
10  =  1304|M|0304), or a photon is measured in output 4 

as described by   ˆ 
01         0314      0304 . There is also the more remote possibility that 

both cavities emit at once (within the same detector integration interval dt), described 
by M̂ 

20  or M̂ 
02. These Kraus operators are given by 

 

 

M̂ 
00  =  1 − √ 0 0  , (41a)
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M̂ 
20  =  

0 0 0 0  

 , 
M̂ 

02  =  
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 . (41c) 
 0√

 0 0 0   0√
 0 0 0  

 

These form a complete set of outcomes, such that   ˆ †  ˆ 
ij   Iˆ, where the sum is 

over all five matrices above. Simulations of this situation simply involve applying the 

appropriate M̂ 
ij  to ρ according to 

,  

 

0 

0 0 0 0 0 0 0 0 

0 0 0 1 

M̂ 
10  =    , (41b) 
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where the outcomes of different combinations of detector clicks are generated 

randomly over time, according to the correct statistics. To do this, we derive the 

probabilities 
 

† 

ij 

 

assigned to each of the outcomes above, which are normalized such that wij   1. 

Then we may draw a number from a multinomial distribution at every time step, each 

possibility of which corresponds to a given detector outcome. The weight factors are 

w00 = 1 −dt γ     + dt2γ 2   , (44a) 

w10 = γ d t 
( 
   − √q4  

) 
− γ 2d t2 , w01 = γ d t 

( 
   + √q4  

) 
− γ 2d t2 , (44b) 

 

 
 
 

for 

w02 = 
γ 2dt2 

2 
= w20, (44c) 

  ≡ 1 + √q1
 + √q2 + 2

√
q3 ,   ≡ 1  + √q1

 + √q2 +  q√3    . (44d) 
 

We have introduced a set of two-qubit generalized Bloch coordinates q j , with 1 j 
15 (see Appendix E.2 for details). 

Some simulations of this scenario are shown in Fig. 3, and we find that we can create 
substantial entanglement between the two qubits, as expected. Specifically, if both 
qubits are prepared in the excited state, the overwhelming majority of trajectories 

involve two photons coming out within a few T1   γ −1 of the start of the experiment. 

A Bell state is prepared when the first photon comes out, and then the qubits must 

be in g g when the second exits. The concurrence of jump trajectories simulated 
according to the scheme above, as well as their ensemble average, is plotted in Fig. 3. 
Concurrence is a measure of two qubits’ entanglement [96], which is defined formally 

in Appendix E.1. The concurrence takes on values C ∈ [0, 1], with C = 1 denoting 

maximal entanglement (as in a Bell state), and C = 0 denotes a separable state. 

The average concurrence yield over an ensemble of trajectories may be inferred from 
statistical arguments. Given the initial state e e , it is the projection of the optical field 

into either 0314   or 1304   (i.e., into the   1102 , 0112    subspace) that generates one 
of the entangled states  W under photodetection. A single qubit, initially in e , has a 

probability ℘e (t)    e −γt to remain in e , and a probability ℘g (t)    1    ℘e (t) to have 
decayed to ground. It follows that in the two qubit case, with the initial state e e , the 
probability for either one (but not both!) of the qubits A and B to have decayed goes as 

℘(A)(t)℘(B)(t) + ℘(A)(t)℘(B)(t) = 2e −γt (1 − e −γt ) = C¯(t). (45) 
 

We denote this ¯ because the probability to get a state with concurrence 1 is precisely 

the average concurrence generated over an ensemble of jump trajectories. This may 

equivalently be derived from the two qubit generalization of Eq. (7); the average 

concurrence given other initial states may be inferred via the same strategy, consistent 

with our earlier comments about our model effectively implementing a statistical 

2 6 2 6 
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inference procedure [97]. See Fig. 3(a) for a comparison between the analytic expres- 

sion ¯ and average from the simulated measurement process. The protocol described 

above can also be understood as an entanglement swap and has been interpreted in 

this way elsewhere [33]. 
 

 
 Figure 3  

 

We illustrate the entanglement generation process, as experienced by an observer 

with access to the measurement record obtained by perfect photodetectors, and sim- 

ulate ensembles of the corresponding quantum trajectories for various initial states. 

The concurrence of a dozen individual jump trajectories (low opacity, in multiple 

colors unique to each trajectory) and the average concurrence over an ensemble of 

10,000 quantum trajectories (blue) are plotted above. The surrounding pale blue 

envelope denotes the standard deviation of the concurrence of the underlying ensem- 

ble. All figures are generated with simulations described in Section 4 and assume 

that ideal photodetectors are placed at ports 3 and 4, as illustrated in Fig. 1. We use 

γ = 1 MHz = 1 µ(s)−1, and dt ≤ 5 ns for numerical purposes, with a total duration 

T = 5T1. Both qubits are assumed to have the same decay rate γ = T1
−1. The qubits 

are initialized in the state (a)√|e e ), and as illustrated above, (√b) |<I+), and (c) |W+), 
where |<I±) = (|e e ) ± |g g ))/  2 and |W±) = (|e g ) ± |g e ))/  2 are Bell states. In 
(a) we see the rise and fall of entanglement generated by the measurement given 

the initial state e e , which follows ¯ 2e −γt (1  e −γt ) [dotted red; see Eq. (45)]. In 
(b) and (c) we see that the measurement gradually erodes the initial two-qubit 
entanglement, which asymptotically approaches C = 0 for t » T1. The averages from 

simulation (solid blue) are in good agreement with the expressions C¯ = e −γt (2 − e −γt ) 

and C¯ = e −γt in (b) and (c), respectively (dotted red). 
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We comment briefly on the decay of concurrence from different Bell states under 

this measurement protoco√l,  as illustrated in Figs. 3(b) and 3(c). Initializing our qubits 
in |<I±) = (|e e ) ± |g g ))/  2 leads to the longest-lived average concurrence under 

photodetection; the slope of the average concurrence C¯ = e −γt (2 − e −γt ) is zero at 

t = 0, indicating a prolonged entanglement lifetime before the exponential decay sets 
in. This is best understood in com√parison with Fig. 3(c); there the average concur- 

rence from |W±) = (|e g ) ± |g e ))/  2 decays simply as C¯ = e −γt . This is because an 

initial state W± generates only one jump in any realization, and that jump then drops 

the concurrence from       1 to       0. Then the characteristic decay dynamics of the 

individual qubits map directly onto the decay of the concurrence. By contrast, the 

states <I± lead to either two jumps or no jumps in any given realization. The concur- 

rence stays high at the beginning of the no-jump case before we can infer with high 
confidence that we are not going to get a photon, and the first jump in the two-jump 

case does not kill the concurrence, but rather creates the other Bell state W± , which 

decays to 0 only after the second jump. Thus, the states <I± exhibit a longer 
entanglement lifetime on average by effectively delaying their decay to the separable 

state g g . This brings to mind other works, which have shown that changing the 

encoding of an entangled state can make it more or less susceptible to disentangle- 

ment via certain environmental interactions [4,98–100]; we will be able to elaborate 

further on additional connections present in the continuous measurement case [31,32] 

in the following section. 

We conclude this section with some remarks about entanglement genesis and entan- 

glement sudden death. Certain states are prone to finite-time disentanglement in the 

case where the system we have discussed is unmonitored (i.e., when the detectors are 

turned off) [4]. Measurement both alters the average concurrence dynamics of the 

system and opens the possibility for many distinct trajectories about that average, con- 

ditioned on the stochastic measurement outcomes. Under measurement, generically, 

a reverse process of sudden entanglement genesis after a finite waiting time becomes 

possible [101]. The individual trajectories described above may be regarded as further 

examples of such lines of thinking; the jumps discussed above can herald the sudden 

genesis of entanglement from a separable state, or its complete destruction. 

 

5. ENTANGLEMENT BY JOINT HOMODYNE DETECTION OF 

FLUORESCENCE 

We now investigate the case where both of the outputs are homodyned, i.e., we 
consider dynamics generated by a measurement of Eq. (21). Recall from the dis- 
cussion above that we can optimally erase the which-path information by choosing 

θ    ϑ    90◦ in this scenario and, therefore, expect these settings to correspondingly 

be optimal for generating two-qubit entanglement. 

 

5.1. Concurrence Yield 

We develop additional expressions from Eq. (21) that we need to perform simula- 

tions and then work toward understanding the two-qubit state dynamics generated 

by this measurement. The denominator of the state update Eq. (17) describes the 

probability density from which the readouts are drawn at each time step. As in the 

single qubit cases [17–19], it is useful to expand the logarithm of that probability 

density to O(dt), in much the same way we have when doing optimal path analy- 

sis [17–19,24,102–107]. Expanding in this way gives us an expression G such that 

tr(M̂ ρM̂ †  
) = e C+Gd t+O(d t

2 ); the term G typically leaves expressions that are quad- 
ratic (Gaussian) in the readout, and this case is no exception. The readout statistics 

obey 
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with χ3 = (q11 + q12 + q14 + q15) sin θ + (q5 + q6 + q8 + q9) cos θ and (46b) 

 
χ4 = −(q5 − q6 − q8 + q9) cos ϑ − (q11 − q12 − q14 + q15) sin ϑ. (46c) 

We consequently se
√
e that our read

√
outs r3 and r4 are drawn from Gaussians of variance 

eterize arbitrary two-qubit states; they and the associated generalized Gell–Mann 

matrices r̂ are defined in Appendix E.2. Simulations are implemented by iteratively 

updating the density matrix over small time steps, using readouts generated stochas- 

tically from the Gaussians just described. In the language of the SME, measurement 

records are r3 = Lˆ 
3 + Lˆ †) + ξ3 and r4 = Lˆ 

4 + Lˆ †) + ξ4, where the ξ j ∼ d Wj /dt, 

for j 3, 4, are the noise terms. The d Wj represents Wiener increments, i.e., ξ j rep- 
resents Gaussian variables of zero mean and variance 1/dt [13,108]. The Gaussian 
form of exp( 34) is key in demonstrating that the form of the SME [Eq. (25)] written 
in terms of Wiener increments d W and is in fact suitable for describing the scenario 
of interest. We infer that the appropriate operators for the SME, which reproduce the 

correct signal means for θ = 0 and ϑ= 90◦, are Lˆ 
3 + Lˆ † 

= γ(  ˆ 5 + ˆ 6 + ˆ 8 + ˆ 9) 

and Lˆ 
4 + Lˆ = γ(− ̂  11 + ˆ 12 + ˆ 14 − ˆ 15), or equivalently 

L̂ 
3  = 

✓
γ /2 

(
ÎA  ⊗ σ̂ B  + σ̂ A  ⊗ ÎB 

) 
, L̂ 

4  = i 
✓

γ /2 
(

σ̂ A  ⊗ ÎB  − ÎA  ⊗ σ̂ B 
) 

. (47) 

 

The factor i on Lˆ 
4 relative to Lˆ 

3 is the 90◦ phase difference, which ensures the 

erasure of which-path information. For further details about the connection between 
the SME and our Kraus operator approach, see Appendix F. 

We run simulations initialized from e e and show some plots in Fig. 4 highlighting 

the most basic features of the entanglement dynamics. Comparing the homodyne 

case in Fig. 4(a) to the photodetection case of Fig. 3(a), we immediately see that 

there are, of course, stark differences in character between individual trajectories 

under photodetection, as compared with quadrature measurements. The diffusive 

trajectories we obtain from homodyning do not even allow us to say that the photon 

was emitted at any particular time, as in the one qubit case [18,19]; the system dif- 

fuses from e e to g g without any single well-defined emission event. Despite these 

differences, however, the average concurrence over the duration of the simulation is 

identical to Eq. (45) we derived in the photodetection case. It has already been shown 

by Viviescas et al. [31] (using different arguments) that a measurement satisfying 

θ ϑ 90◦ is the optimal one among those utilizing decay channels to generate two-

qubit diffusive trajectories for the purposes of preserving two-qubit entangle- ment. 
One of their key results is the derivation of a differential equation describing the 

evolution of the average concurrence: They use the stochastic Schrödinger equation 

(SSE) [109] to derive 

C˙¯ = −γ C¯ + 2γρeee −2γt , (48) 

where C¯ again denotes the average concurrence, dots denote time derivatives, and 

ρee is the initial excited state population. We again consider the case ρee = 1 [which 

(46a) 



Tutorial Vol. 13, No. 3 / September 2021 / Advances in Optics and Photonics 539 

 

 

C = = 

∼| − | 

| ) 

= = 

C = 

 

implies the initial value ¯(t 0) 0], and find that the solution to Eq. (48) is pre- 

cisely the function Eq. (45) we derived from the photodetection case. This suggests 

that the average entanglement yield between these two measurements is not just sim- 

ilar but formally equivalent when θ and ϑ are chosen optimally; such an equivalence 

has been noted before [32]. While it may be surprising that the two protocols we 

have discussed lead to identical concurrence yield on average, given the differences 

between jump and diffusive trajectories, it follows naturally from the entanglement 

swapping ideas [33,95] we have discussed. From that viewpoint, the fluorescence 

process generates a certain amount of entanglement in the system (between each qubit 

and its output mode) as a function of time, irrespective of the subsequent measure- 

ments; both photodetection and the EPR/homodyne strategy are able to perform an 

optimal swap in this case, rearranging that entanglement. They do this in very differ- 

ent ways, but the two measurements are ultimately manipulating the same resources 

in the system, leading to the same average concurrence yield. 

Less-than-ideal measurements (which fail to completely erase the which-path infor- 

mation) could be understood as wasting some of that potential entanglement; for 

example, in Fig. 4(b) we see that changing the relationship between θ and ϑ retains 

the shape of the curve from Fig. 4(a) but modulates it down by an overall factor 

sin(θ ϑ)  as the degree of which-path distinguishability is changed (flatlin- 

ing to zero two-qubit concurrence for all time, in the case of total distinguishability 

θ = 0 = ϑ). We finally note that under the ideal homodyne measurements with 
 

 
 Figure 4  

 

We show the average concurrence, and that of some trajectories, obtained from two 
homodyne detectors monitoring the output ports 3 and 4 of the device illustrated 
in Fig. 1. The initial state is e e for all trajectories. We plot the average two-qubit 
concurrence, and that of individual trajectories, in the left panel, using relative 

measurement phases θ 0◦ and ϑ 90◦, which are ideal for generating two-qubit 

entanglement. We see that many trajectories do much better than the average, reach- 

ing maximal concurrence    1. These best trajectories are bounded by Eq. (54) 

(shown in dashed–dotted black), as discussed in the main text. By comparing again 

with Eq. (45) in dotted red, we see that the average concurrence from these diffusive 

trajectories is in good agreement with the average concurrence in the photodetection 

case [see Fig. 3(a)]. Note that the colors of individual trajectories in the left panel 

match those same trajectories as they appear in Appendix A (shown here with lower 

opacity). In the right panel we show how entanglement genesis is hurt by changing 

the relative phases of the two homodyne measurements; the optimal choice (dotted 

black, or the top panel) eliminates competition between the two measurements and 

allows for deterministic entanglement genesis, while the least optimal choice (orange) 

destroys any possibility of entanglement genesis entirely. A few trajectories for each 

case are plotted, matching the colors assigned to the averages. 
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θ    ϑ    90◦, some trajectories do reach the maximum     1 within a few T1 of the 

start of the simulation. 

We continue by extending the quantum trajectory analysis of the homodyne scheme 

beyond previous discussions [31], first by characterizing the dynamics of trajectories 

leading to strong entanglement and then by deriving a bound on the fastest possible 

rise to a Bell state due to joint homodyne fluorescence detection. 

 
5.2. Maximally Entangled States 

The states we reach at times of maximal concurrence    1 are superpositions of three 

of the four Bell states. Any pure two-qubit state may be expressed in the Bell basis 

according to 
 

|ψ) = A|<I+) + B|<I−) + C|W+) + D|W−). (49) 

The concurrence of the state is given, in this representation, by A2 D2 B2 

C2 . For trajectories initialized at e e , the blue terms in Eq. (21) guarantee that we 

generate correlations with a real C (generated by r3) and imaginary D (generated by 

ir4) in the odd-parity subspace. The amplitude e e  at any given time is given by 
√1   (A  B), which remains real and nonnegative along the duration of any trajectory 
initialized at e e . Re-parameterizing D i E, and assuming A, B, and C are real (con- 

sistent with all our simulations initialized at e e for θ 0 and ϑ 90◦), we then 

have 
 

C = |A − B − C − E |. (50) 

Under these conditions, we find that is maximized when A 0, i.e., we maximize 

when the measurement pushes the two-qubit state into a form, 

|ψ) = B|<I−) + C|W+) + i E|W−), (51) 

for real B, C, and E. The particular values of these normalized amplitudes depend 

on the measurement record in a given realization. Upon obtaining such a maximally 

entangled state, one can shift it to a single Bell state through a local unitary operation 

on a single qubit. For example, consider applying a pulse to qubit B to implement the 

rotation, 

UB |ψ) = ÎA  ⊗ 

  
B C − i E 

  

|ψ) = |<I−), (52) 

where ψ is of the form in Eq. (51). Thus, correlations may be rearranged into a par- 
ticular form or encoding, if desired, using local operations and knowledge of the state 
acquired through continuous monitoring. The operation shown above, for example, 
allows an observer located at qubit B to make a local rotation, which guarantees that 
the outcomes of subsequent local Pauli-z measurements on qubits A and B will be 

correlated in individual runs of the experiment. Such an operation requires that ψ of 
the form above is created by continuous joint homodyne monitoring and that the mea- 

surement record (or two-qubit state |ψ)) be communicated classically to the observer 

at qubit B, so that they may perform a local operation to transform |ψ) → |<I−). 

We may consider the statistics of the maximally concurrent states created by our 
homodyne measurement. Specifically, we look at an ensemble of states that suc- 

cessful trajectories initialized at |e e ) generate, in the first time step at which they 

attain C ≥ 0.999 (still with θ = 0 and ϑ= 90◦); we then confirm that A = 0 for all such 
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states and look at the distribution of the non-zero Bell basis amplitudes B, C, and E 

in the ensemble. The analysis in question is shown in Fig. 5 and highlights a substan- 
tial difference between the homodyne and photodetection cases. Recall that for the 

photodetection case, the concurrence appears in the form W+ or W− only. The 

homodyne measurement not only adds the possibility of having <I− appear, but, in 

fact, <I− is the single most likely state for a trajectory to reach as it attains 1; in 
Fig. 5, we clearly see that the histogrammed distributions (probability density) of state 

amplitudes are peaked about B 1 and C 0 E. However, a generic realization is 

not restricted to any one Bell state, or even a small subset of them; the distribution 
covers the entire space of normalized states for C, E 1, 1 and B 0. The proba- 

bility density within those possibilities has positive amplitude B and is symmetric in 

C and E, but no other constraints appear on the range of possible random   1 states 

that arise from this measurement. For further details about the dynamics leading to 
this distribution of states, see Appendix A. 

 

5.3. Upper Bound on Concurrence Generation 

We next demonstrate that there is a finite time before which a given degree of entan- 
glement may be generated by joint homodyne fluorescence detection, given the initial 
state e e . We may derive a bound on the fastest rise in entanglement by consider- 

ing the case of perfectly correlated outcomes for joint quadrature measurements on 
the emitted photons [recall Eq. (38a)], creating EPR-like correlations [87]. In other 

words, we consider the readouts r3 = 0 = r4, equivalent to the perfectly correlated 

and maximally symmetric outcomes X 1 + X 2 = 0 and P1 − P2 = 0 (still for θ = 0 
and ϑ =√90◦). In this case the state dynamics will be restricted purely to the subspace 

a|ee ) − 1 − a2|g g ) for a ∈ [0, 1], and we are effectively deriving the ideal trajec- 

tory that travels to <I− as quickly as possible. By choosing these particular values 

of the measurement record (which are smooth), the dynamics of the system can be 

reduced to an ordinary differential equation, rather√than a stochastic one. We find that 

while concurrence is increasing (i.e., while a > 
equation is 

1 − a2), the relevant differential 

Ċ = γ (C + 1) 
 
1 − C + 

✓
1 − C2

l 
, (53) 

which, for C0 = 0, admits the solution 
 

2eγ t 2 
C(t) = 

2 − e γ t (2 − e γ t ) 
. (54) 

This curve sets the bound on the speed at which concurrence is created from the 
initial state e e via our double homodyne measurement, until it hits its maximum 

at t T1 ln(2). After this point, the concurrence may fluctuate stochastically for an 

arbitrarily long time, taking on any value     0, 1 , as illustrated in Fig. 4(a). While 
we note that this particular best-case measurement record r3   0   r4, which bounds 

the fastest possible path to maximum concurrence, requires blind luck to acquire 
(we have no control over what measurement outcomes we get, in practice), simi- 
lar records, or records exhibiting qualitatively the same concurrence dynamics, do 
occur naturally in this system with relatively high probability; indeed, many trajec- 
tories which stay close to Eq. (54) and achieve a Bell state within t < T1 are visible 

in Fig. 4(a). Recent works have shown that feedback may be used to enforce a con- 
dition r3 0 r4 throughout the two-qubit evolution on average, which optimizes 

entanglement creation [19,110,111]. 
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5.4. Entanglement Preservation 

A final example, shown in Fig. 6, serves to illustrate the behavior of different types 
of correlations in response to our measurement; we choose each of the Bell states as 
initial two-qubit states and look at the evolution of the concurrence under homodyne 

θ    0 and ϑ    90◦ measurement. We find that they exhibit different average lifetimes, 

such that the Bell state <I+ whose correlation type runs against entangling dynamics 
of the measurement θ 0 and ϑ 90◦ decays on average at least twice as fast as 

any of the others. This is in contrast with the photodetection case, where this faster 

decay does not appear. Dynamics originating from the other three Bell states, under 

our homodyne scheme, have clear counterparts in the photodetection case, however, 

which are apparent from comparing Figs. 3 and 6. This again reinforces the notion that 
 

 Figure 5  
 

We plot one- and two-dimensional histograms describing the statistics with which dif- 
ferent combinations of the Bell basis amplitudes B, C, and E defined in Eq. (51) 

appear. Simulations are of the double homodyne measurement with θ    0 and 

ϑ 90◦. We use an ensemble of 100,000 states, each obtained from the first time 

step in which a quantum trajectory initialized at e e  reaches   0.999. The color 
bar denotes count density per bin in the two-dimensional histograms ( and *), 
while relative counts (r c ) per bin are plotted in the one-dimensional (marginal) his- 
tograms ( ). In the figures marked with an    and    , we plot using our Bell basis 

amplitudes B, C, and E; one-dimensional histograms are aligned with the two- 

dimensional histograms such that summing out a row or column of bins in the two-
dimensional plots would give the accompanying one-dimensional plot. We see 
that the distributions in C and E are symmetric and centered about 0 with their 

peak there. Normalization then demands that the single most likely state about 

which the distribution is peaked occurs at B = 1, i.e., the state which is most likely to 
occur when the concur√rence is maximized, under the given measurement settings, is 

|<I−) = (|e e ) − |g g ))/ 2. However, the maximally concurrent states that we obtain 
are generically superpositions of the Bell states Eq. (51), and while states with B 0 

are the least likely, the system does explore the full space of states for C, E 1, 1 

and B 0, 1 , which satisfy the normalization condition B2 C2 E2 1. The addi- 

tional density plot * in which we histogram q4 against q7 is significant in that it shows 
that q7 is never positive for the maximally concurrent states in the simulated sample; 
this indicates that A 0, as discussed in the main text, justifying its exclusion from 

the other plots. 
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our joint homodyne measurement exhibits some preferred type of correlations (as well 

as reinforcing the comments we have made about entanglement swapping connecting 

different types of measurements). Further discussion can be found in Appendix B. 

The solutions obtained analytically for the photodetection case in Fig. 3, and in the 

homodyne case Figs. 4 and 6(a)–6(c), are all solutions to the Eq. (48) derived by [31]. 

Note, however, that the solution in Fig. 6(c) is not a solution to Eq. (48) because the 

choice θ    0 and ϑ    90◦ is the least optimal choice of measurement settings given 

<I+ , and Eq. (48) assumes the optimal unraveling. The problem can be rotated in 
several ways; if we want to preserve, e.g., <I+ instead of <I− , we may change our 

measurement settings to θ      90◦ and ϑ    0 and, thereby, swap the behavior seen 

in Figs. 6(b) and 6(c). While our discussion above has focused on θ   0 and ϑ   90◦ 
for clarity, all the results we discuss there are conceptually correct for any choice 
satisfying ϑ θ 90◦, up to a corresponding rotation of all the amplitudes. Given a 
state 

|ψ) = a|ee ) + de iδ|g g ) + e iθ 
(
X|W+) + i Y|W−)

) 
, (55) 

 Figure 6  
 

We plot the concurrence decay from different Bell states, under our double homodyne 
measurement dynamics, using the optimal settings θ 0 and ϑ 90◦. In (a) the initial 

state is W+ ; its pair W− exhibits qualitatively the same concurrence dynamics and 

is shown in (b). Note that the concurrence decay from these states is the same as in 
the photodetection case on average [compare with Fig. 3(c), and the dotted red line 
¯  e −γt ]. In (c) the initial state is <I− ; as in the photodetection case [Fig. 3(b)], we 

see that the initial slope of the average concurrence decay is zero; this extends the 
concurrence lifetime somewhat on average, with the decay from simulation (solid 

blue) matching C¯ = e −γt (2 − e −γt ) (dotted red). The final simulation, plotted in 

(d), is initialized at the one Bell state <I+ that does not play a helpful role creating 

concurrence from our double homodyne measurement for θ 0 and ϑ   90◦. Its built-
in correlations are anathema to the type created by the measurement and lead to 

exponential decay as ¯ e −2γt (dotted red); 10,000 trajectories were simulated to 
compute the averages, and the envelope of 1 standard deviation around it. For 
further comments, see Section 5.4. 
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moderately more general than Eq. (51), assuming ϑ θ  90◦, and with a, d, X, Y all 

real, the optimal choice of measurement parameters is given by θ (δ π)/2. Such 
considerations are formally derived by [31] using the SSE. 

 
5.5. Summary of Pure State Results 

In summary, we find that the entangling double homodyne measurement Eq. (21) 
creates a set of dynamics in which the overall decay from e e     g g  is achieved by 

a process that exhibits correlation between different two-qubit basis states, at every 

step of the decay. For the measurement settings θ 0 and ϑ 90◦, with an initial 

amplitude 1 on e e , every Bell state except <I+ contributes constructively to the two-

qubit entanglement, as per Eq. (50). In this sense, the measurement exhibits some 
asymmetry, admitting only truncated manifestations of <I+ but allowing for 

completely coherent manifestations of the other Bell states. While the average entan- 

glement yields [Eq. (45)] are identical between photodetection and optimal homodyne 
detection, the measurements differ in virtually every other qualitative sense. Notably, 
jumps can occur at any time, such that some realizations of the photodetection process 
initialized at e e lead to immediate entanglement; our diffusive trajectories, however, 

are bounded by Eq. (54), such that no measurement record allows these trajectories to 
reach a Bell state before t   T1 ln(2)   0.69T1. Taken together, the discussion leading 

to this point, from concepts to numerics, constitutes a complete study of two-qubit 
entanglement generated via ideal measurements of spontaneously emitted photons. 

 

6. IMPACT OF MEASUREMENT INEFFICIENCY 

While it is conceptually useful to study the behavior of an idealized measurement 

process, completely lossless measurement devices do not exist in any laboratory of 

which we are yet aware. Consequently, it is of great practical importance that we con- 

sider how inefficient measurements affect the ideas presented above. We now extend 

our model to this case, again deriving some useful upper bounds on concurrence 

generation in the process. It will become apparent as we go that the case of inefficient 

measurement has a great deal to offer pedagogically, as well as practically. 
 

 Figure 7  
 

We sketch a modification of Fig. 1, which includes unbalanced beam splitters (purple) 

in the monitored channels, used to model measurement inefficiency. These unbal- 

anced beam splitters allow the signal to reach an (otherwise ideal) detector with 

probability η, but the signal may be lost with probability 1 η. See Eq. (56). The 

value of η 0, 1 then denotes the measurement efficiency, where η 1 recovers the 

ideal case of lossless measurement. 
 



Tutorial Vol. 13, No. 3 / September 2021 / Advances in Optics and Photonics 545 

 

 

− 

M 

= = 

M M 

= = 

= = = = 
| ) = = 

max 

| ) 

3 3

s 

3£ 4 4

s 

4£ 

1 2 3

s 
2 3£ 2 4

s 
2 4£ 

2 
2 3

s 
2 

3£ 
2 4

s 
2 

4£ 

 

A simple model for measurement inefficiency is shown in Fig. 7, which elaborates 

on Fig. 1; after modes 3 and 4 are mixed on the main beam splitter, we then imagine 

that they are split into a “signal” portion and “lost” portion (i.e., 3 and 4 are mixed 

with vacuum modes on unbalanced beam splitters). Algebraically, we express this 

according to 

â
†  
→ 

√
η3â

†
 + 

√
1 − η3â

†  
, â

†  
→ 

√
η4â

†
 + 

√
1 − η4â

†  
, (56) 

where η represents the efficiency of each measurement (a signal photon may be trans- 

mitted to the detector with probability η, or lost with probability 1 η). Finally, the 

surviving signal passes through phase plates, which effectively set the field quadra- 

ture that each homodyne device monitors. The overall transformation of the optical 

modes, from emission up to the detector, can then be summarized by the unitary 

transformations, 

 
 

â
†  
→ e iθ 

  
η3 

â
†

 + 

  
1 − η3 

â † 

 
 

+ e iϑ 

  
η4 

â
†
 + 

  
1 − η4 

â
†  
, (57a) 
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η4 

â
†
 — 
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â
†  

. (57b) 

 

The ideal case is recovered by the choice η3 1 η4 (complete information goes to 

the signal mode), while inefficient measurements have η3 < 1 and/or η4 < 1. A matrix 

η can be obtained by applying Eq. (57) within the matrix , defined in Eq. (14). 

A series of Kraus operators can then be derived from η, for different types of mea- 

surements, much as they were in Section 2; these will necessarily now depend on 

outcomes not only in the signal channels s but also in the lost channels £. The essential 

operational meaning of measurement inefficiency, and of the channels £ being “lost”, 

is that all outcomes that could have occurred in the lost channels must be traced out, 

leaving a modified state update equation that will tend to generate partially mixed 

states. In this sense, the inefficient measurements we are here considering form a case 

intermediate between the ideal conditional evolution [Eq. (17)] and the completely 

dissipative evolution [Eq. (4)] arising when no measurement is made at all. We will 

leave the algebraic details of this to Appendix D and proceed here to discuss the 

qualitative impact of measurement inefficiency in greater detail, based on numerical 

simulations. The comparable analysis for the one qubit case can be found in [18,19]. 

 
6.1. Inefficient Photodetection 

We simulate jump trajectories, from the initial state e e , for efficiencies η3  0.9 

η4, η3 0.75 η4, and η3 0.5 η4, and we plot the subsequent concurrence in 

Fig. 8. Generically, the accumulated loss of information over time, due to continuous 

inefficient measurement, causes the state of the system to lose purity. We see this 

manifested in two distinct features of the plots in Fig. 8. First, the shape of the curve 

Eq. (45) representing the average concurrence from the ideal case has effectively 

been preserved and is simply shrunk by an overall factor η (where η3 η  η4). 

Second, the concurrence that is generated in individual realizations no longer tops 

out at C = 1 but instead hits a ceiling Cη  (t). We may derive the latter bound and, 

thereby, straightforwardly quantify the cumulative effect of successive inefficient 

measurements on the two-qubit entanglement generation. 

The decay of the purity and maximum concurrence is determined by the no-click 

dynamics, initialized from W± (the state we infer is created from an immediate 

jump, before the losses due to accumulated inefficient measurements). A density 
matrix of the form 
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0 0 0 1 − 2x 

 = 2x |W±) W±| + (1 − 2x)|g g ) g g | (58) 

 

is then adequate derive the solutions Cη    (t). The concurrence of Eq. (58) is simply 

given by C = 2x . In the time-continuum limit, the dynamics inbetween the first click 

and a possible second, with η3 = η = η4, may be summarized by 

C˙ = η γ C2 − γ C. (59) 

For the initial condition x0 = 1 or C0 = 1, the solution is given by 
 

η 1 

Cmax(t) = 
(1 − η)eγt + η 

. (60) 

 

 Figure 8  
 

We plot the average concurrence (solid blue) and that of a dozen jump trajectories 

(multiple colors), obtained from performing inefficient photodetection on qubits 

initialized in e e . We use (a) η3    0.90    η4, (b) η3    0.75    η4, (c) η3     0.50    η4, 

and (d) η3     0.35    η4. We notate η3     η    η4 below. We observe that the dynamics 

of the average concurrence are similar to those in Fig. 3(a) or Fig. 4(a); although 

we have not formally derived an analytic expression for the average concurrence 

in the case η < 1, we observe that attenuating the ideal solution Eq. (45) according 

to ¯(t)   2ηe −γt (1   e −γt ) (shown in dotted red) leads to good agreement with the 

average from simulation (solid blue, and computed from an ensemble of 10,000 tra- 

jectories). We also see that the maximum concurrence attainable from a jump event 

decreases as a function of time, because the no-click dynamics of the system cause 

any entangled two-qubit states to lose purity when the measurement efficiency is 

imperfect. The analytic solution Eq. (60) for this maximal concurrence is superposed 

atop the simulation curves in dashed black and defines a tight upper bound on the 

maximum concurrence attainable at any time in this scenario. 
 

 
ρ = 
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This expression is found to be in good agreement with the maximum concurrence 

curves visible in the numerics from Fig. 8. The impact of measurement inefficiency 

is easily quantified from such an upper bound and is substantial after significant time 

evolution; for example, a jump at t 5T1, which would still generate a perfect Bell 

state for η 1, now generates < 0.1 even for a reasonably good measurement char- 

acterized by η 0.9. Qualitatively, this indicates that after this relatively long wait for 

the first click, the likelihood that the click is genuinely from the first emitted photon 

is low; the likelier option is that the measured photon was the second, while the first 

was lost and never recorded. Without the possibility of certainty about which photon 

was caught, the observer’s state is necessarily a statistical mixture of the two pos- 

sible options, that is, after longer waiting times t T1, heavily weighted toward the 
separable part g g g g , rather than the entangled part W± W± . This is a direct illus- 

tration of how imperfect information collection degrades an observer’s knowledge of 

the two-qubit correlations in an individual experimental run. 

 

6.2. Inefficient Homodyne Detection 

A similar analysis can be performed for the homodyne case. We again leave a discus- 

sion of the generalized state update expressions to Appendix D and summarize two 

main points that emerge from that analysis: The mixed states generated by inefficient 

homodyne detection are of a more complex form than those in the photodetection case 

[e.g., Eq. (58)], and the measurement signal in each channel is attenuated relative to 

the noise by a factor η, but is otherwise unchanged. Numerical simulations easily 

account for these features, and the evolution of the concurrence they give is plotted 

in Fig. 9. Several important features of those dynamics are then readily apparent. 

First, the upper bounds [Eq. (60)] we just derived in the photodetection case still 

apply but are no longer tight, meaning that the joint homodyne measurement here 

never outperforms the corresponding photodetection scheme in terms of concurrence 

generation. Second, this measurement’s ability to generate two-qubit concurrrence is 

eliminated entirely for η 50%, which is a substantial disadvantage compared with 

the photodetection case. Our homodyne measurement is, in this sense, substantially 

more sensitive to inefficiency than the corresponding photodetection protocol. This 

result is consistent with related analyses performed in the context of feedback control 

[110,111]. 

We are able to derive an upper bound on the entanglement creation in the same way 
we did for the pure state case. Although we are not able to get a closed-form expres- 
sion as we did with Eq. (54), the condition r3    0    r4 still has the same effect, and 

we are able to obtain curves from this concept using numerical methods in the case 
η3 η η4 (see Appendix F.1.2 for the computational details). For the initial density 

matrix e e  e e  , and θ   0 and ϑ  90◦, these bounds on the maximum entanglement 

and fastest rise to it are obtained by numerically integrating a system of three coupled 

differential equations. These numerical upper bounds apply until the concurrence hits 

its maximum and are shown in Fig. 9. This constitutes a straightforward characteri- 

zation of the impact of lossy measurements, allowing us to solve both the maximum 

possible concurrence arising from this measurement, as well as the time at which that 

maximum may be reached. 

 

7. DISCUSSION AND CONCLUSION 

We have presented a comprehensive and self-contained quantum trajectory analysis 

of entangling measurements based on continuous monitoring of two identical qubits 

via their mixed decay channel. Entanglement is widely understood to be a quantum 

information resource. Spontaneous emission is, in many contexts, an error channel 
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that impedes quantum information processing and/or destroys entanglement [98]; 

by monitoring this T1 channel, however, we see that this natural process can be used 
 

 Figure 9  
 

We plot the average concurrence (solid blue) and that of a dozen diffusive trajectories 

(various colors) obtained by simulating inefficient homodyne detection on qubits 

initialized in e e . An ensemble of 10,000 trajectories is used to compute the average 

concurrence and the envelope of 1 standard deviation around it. We show simula- 

tions for (a) η3    0.98    η4, (b)η3    0.95    η4, (c) η3    0.90    η4, (d) η3     0.75    η4, 

and (e) η3     0.60     η4. As in the ideal case, the trajectory defined by r3     0     r4 

[i.e., the generalization of Eq. (54) to η 1] sets a tight bound on the maximum attain- 

able entanglement and the fastest rise time to it (see the main text and Appendix F.1.2 

for details). This bound is plotted in dashed–dotted black in (a) through (e). In (f), 

we plot the maximum concurrence, as determined from the peak of the r3 0 r4 

trajectory, as a function of η. We see that for homodyne detection, no concurrence 

at all is generated for η 50%, in contrast with the equivalent photodetection case. 

The maximum homodyne concurrence yield decreases approximately linearly from 

the ideal, to max 0 at η 1 . We again plot the bound Eq. (60) we derived from the 

photodetection case in dashed black in (a) through (e); these are still correct as upper 

bounds, although they are no longer tight, further confirming that the homodyne mea- 

surement never yields more concurrence than photodetection for η < 1. While we do 
not derive an analytic expression for the average concurrence, we find that attenuating 

the ideal solution Eq. (45) according to ¯(t)   2(2η   1)e −γt (1   e −γt ) (shown in 
dotted red) leads to good agreement with the numerical average (shown in blue) in 
plots (a) through (e). 
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to our advantage instead. The device geometry we have used to do this, shown in 

Fig. 1, resembles that typically associated with performing a Bell state measurement. 

We have gone beyond the typical analysis of a Bell state measurement by consid- 

ering time-continuous measurements (i.e., SQTs). We have developed a consistent 

theoretical framework suitable for efficient numerical implementation in the device 

geometry of interest, allowing us to explore different measurement dynamics in 

detail. Our Kraus operators are motivated by a physically intuitive picture, highlight- 

ing the distinct roles of the qubit–field interaction [characterized by M, e.g., as in 

Eq. (16)] and eventual detection device (corresponding to ψ f :3,4 ) in making gener- 

alized joint measurements to infer coherent correlations between distant subsystems. 
Furthermore, our approach allows us to simulate SQTs more efficiently than via direct 
Euler integration of the SME, in the same spirit as in [73,79,80]. 

We have reviewed the major known results pertaining to the device shown in Fig. 1 

and expanded on them with our numerical modeling of the measurement-induced 

dynamics, including analysis of inefficient measurements and the derivation of useful 

bounds on the maximum amount of entanglement generated by different measure- 

ments. Specifically, we have shown that homodyne monitoring of quadratures 90◦ 
apart is the optimal quadrature measurement for entangling our two qubits in our 

context, consistent with other works that have considered such homodyne measure- 

ments [31,87–95]. That measurement scenario is often understood to be performing 

an entanglement swapping operation [94]; in our context, this manifests as taking 

correlations between individual qubits and their field modes created in the sponta- 

neous emission process and swapping such that we entangle the qubits with each 

other instead. The degree to which this double homodyne measurement can entangle 

the emitters is tunable, and it depends on the relative phase between the quadratures 

measured at each output. We are able to explain this tunability, and the success or 

failure of any of the fluorescence measurements we have considered to generate 

two-qubit entanglement, in terms of the erasure of information about which qubit 

originated any given signal. Such considerations arise in the device geometry we 

have considered even when a different qubit–field coupling is used as the basis of 

measurement [90]. We find that the average entanglement yield of the optimal double 

homodyne measurement is equivalent to that of the photodetection case (from the ini- 

tial state e e ), consistent with past works that have found the same equivalence from 

the standpoint of entanglement preservation [32]. Thus we are able to clearly explain 

our numerical results by invoking a number of conceptual elements present in the 

literature. Despite the equivalence of optimal photodetection and homodyne schemes 

on average, all details of the dynamics are markedly different. Photodetection behaves 

optimally regardless of measurement phase settings (as long as the mixing beam 

splitter is balanced, the which-path information remains indistinguished) and cre- 

ates Bell states when entanglement is generated. In contrast, even for optimal phase 

settings, homodyne detection generates both partially entangled states in some real- 

izations and a wide variety of maximally entangled states in its best realizations. 

We have considered the case of inefficient measurement and leveraged some of the 

conceptual connections we have made to the wider literature to derive bounds on the 

maximum entanglement generated by our measurements. A particularly important 

result, practically speaking, is that homodyne detection requires a minimum of 50% 

efficiency in order to generate any two-qubit entanglement (consistent with recent and 

closely related results leveraging the measurements of interest for feedback control 

[110,111]). 

We see many immediate opportunities to test and expand on our analysis. It is 

grounded in methods that are experimentally feasible on a variety of systems: Works 
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that consider or incorporate measurement devices with the geometry we have empha- 

sized include, e.g., [33,46–49,51,61,89,92,112–130]. The DLCZ (Duan, Lukin, 

Cirac, Zoller) [116] protocol, which uses similar principles to generate entanglement 

between atomic ensembles over distance, is especially widespread and has been 

developed in connection with quantum repeaters [131,132]. Quantum repeaters are a 

technology currently under development, which aims to use entanglement to counter- 

act photon losses which inhibit long-distance communication over quantum networks. 

The EPR-like (i.e., homodyne) measurements we discuss have also been applied to 

quantum repeaters [133–135] and discussed in the context of steering [93] and are of 

interest both for applications to quantum computing and quantum communication. 

A variety of related devices and schemes, which use different measurement channels 

or device geometries to generate entanglement, have also been proposed and/or real- 

ized [62,78,90,101,136–149]. Those alternatives that implement a quantum trajectory 

approach often rely on dispersive measurements [150–154] instead of continuous 

monitoring of fluorescence. 

We have emphasized the rich recent literature on SQTs of a decay channel [15–

31]; the scheme we have described could be viewed as scaling up these existing 

single-qubit experiments to two qubits. The majority of recent quantum trajectory 

experiments have been performed using superconducting qubits and/or microwave 

quantum optics [154,155]. While efficient photodetection is relatively well-

developed, e.g., for optical photons, effective photocounting in the microwave 

regime is still emerging and substantially more difficult [156–159], and it is con- 

sequently of practical interest to understand the behavior of alternative entangling 

measurements. The quadrature measurements we discuss offer such an alternative and 

require tools that are well-established on these circuit QED platforms (although the 

measurement efficiencies required for strong entanglement may still be challenging, 

in the near term). The types of measurements we have emphasized are possible on 

other platforms as well [94,160,161]. Scaling our theoretical methods to larger num- 

bers of qubits, as has been proposed elsewhere [33] using SME-based methods, also 

appears feasible. 

We have described a method by which entanglement between individual quantum 

systems may be created by the measurement process that tracks its formation. One 

does not need to stop there, however; given real-time measurement outcomes, an 

observer has the option to intervene in the system dynamics with further conditional 

operations in order to promote some desired behavior. In other words, advances in 

continuous quantum measurement are a prerequisite for feedback-based quantum 

control strategies [162], which continue to be an important avenue in contemporary 

research [163,164]. Feedback has been incorporated into quantum trajectory schemes, 

including from the measurement of a single qubit’s decay channel [22,27,30]. It has 

also been used to generate and/or preserve entanglement [165–177]. Such strate- 

gies are of interest in that they typically allow for entanglement generation and/or 

entanglement lifetimes exceeding those from the measurement dynamics alone. 

As of recently, feedback schemes based precisely on the kind of device and measure- 

ments we have emphasized above have been proposed [19,110,111]; these aim to 

increase the degree of two-qubit correlations on average and extend the lifetime of the 

entangled state, using local operations and classical communication (LOCC). This 

means that these schemes function based on continually sending the measurement 

record to observers located at each qubit, such that operations may be applied to each 

qubit conditioned on the real-time measurement outcomes. In experiments involving 

qubits that are far apart, there will necessarily be a fundamental delay time in applying 

feedback operations due to the time required to communicate classical measurement 
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outcomes to the locations of the individual emitters. Even if the qubits and their 

respective cavities are placed close together (e.g., in the same dilution refrigerator 

or on the same lab bench), feedback delay due to signal processing times can never 

be completely eliminated in experiments (see [110] for further discussion of these 

time scales in an experimental realization). In an ideal setup, however, in which these 

delay times are negligible compared to the qubit decay time scale and the measure- 

ment efficiency is perfect, the feedback protocols detailed in [19,110,111] allow for 

preservation of concurrence near 1 on average for arbitrary durations, using the mea- 

surements described above. Specifically, ideal feedback based on the joint homodyne 

detection we have described allows for deterministic generation of a Bell state, which 

is possible due to the incremental nature of diffusive trajectories (in contrast with 

jump trajectories). The diffusive entangling scheme we have discussed here exhibits 

more complicated behavior than the photodetection case. However, such advances in 

feedback schemes reinforce the motivation for considering other options and further 

demonstrate that the complexity of the homodyne scheme we have discussed can be 

both manageable and useful. 

 
 

APPENDIX A: ADDITIONAL SIMULATIONS OF PURE-STATE DIFFUSIVE 

DYNAMICS 

 

We here reconsider entanglement generation due to ideal homodyne detection, with 

θ  0 and ϑ 90◦ and the initial state e e , in greater detail. We turn our attention 

to the stochastic trajectories, in order to understand how individual realizations of 
the measurement process generate the class of states [Eq. (51)]. In Figs. 10 and 11 
we show trajectories according to their density matrix components and the ensemble 

density of SQTs. 

Several additional insights emerge from these figures. First, we can see that at the 
level of individual trajectories there are perfect correlations between the real parts of 
the coherences involved with amplitudes moving in and out of the eg and g e sub- 
space (coordinates q5 & q6 and q8 & q9, in the notation of Appendix E.2) and perfect 

anti-correlations in the imaginary parts of those coherences (q11 & q12 and q14 & q15). 
Note that the means of the signals represent combinations of precisely these terms. 

Reaching maximal entanglement requires for the coherences within the |e g ) and |g e ) 

subspace to be able to explore their full range [− 1 , 1 ] (we refer to elements described 
by coordinates q4 associated with C, and q10 associated with E). The central elements 

of Figs. 10 and 11 show that we are able to do this. Likewise, entanglement in the 
even-parity Bell subspace depends on the coherences between e e  and g g  being 

able to explore their whole range (coordinates q7 and q13). We see that the imaginary 
part of this coherence is never used by the measurement we consider now (q13 is zero 
for all time), while the real part is able to explore its full negative range [− 1 , 0], but 

not its full positive range. The range of the real part of the |e e ) g g | element is only 
able to access [0, 1 ] while the range [ 1 , 1 ] associated with fully manifesting the state 

4 4   2 

|<I+) appears forbidden. 

We infer that our homodyne measurement with θ 0 and ϑ   90◦ “prefers” generat- 

ing correlations of the type <I− as opposed to those of type <I+ [consistent with the 
arguments made in and around Eq. (50)]. One clear expression that contributes to this 

is the factors 1 in the red matrix element of Eq. (21), which move population directly 
from e e to g g . For futher comments in this vein, see appendix B. We can spot par- 

ticular realizations in Figs. 4 and 10, which conform especially well to the different 
options we see in the statistical discussion surrounding Fig. 5; the burgundy path in 
Figs. 4 and 10, for instance, is a prototypical path that maximizes by generating 

large B and low C and E . It is a good example of a “real” trajectory with behavior 

very close to the idealized one underlying the best-case bound derived in Eq. (54). By 
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contrast, the lavender-colored path exhibits the other extreme behavior, maintaining 

an unremarkable B and maximizing its concurrence by generating amplitude in C and 

E instead. 

Some of the points we make are clearer in contrast with a non-entangling case of 
the dynamics. We show trajectories and densities for the case θ 0 ϑ in Figs. 12 
and 13. Coherences associated with moving amplitude in and out of the eg , g e 
subspace appear correlated on aggregate, but are not at the level of individual trajec- 

tories. Furthermore, the coherences within the {|e e ), |g g )} (q7) and {|e g ), |g e )} (q4) 

 Figure 10  
 

We plot a dozen individual simulated SQTs initialized at e e , monitored according 
to our double homodyne detection scheme with θ 0 and ϑ 90◦; as discussed in the 

main text, these parameters are ideal for erasing which-path information and generat- 

ing two-qubit entanglement. The sampling of trajectories shown here is the same as 

those plotted in Fig. 4(a), with matched colors. They lead to the average concurrence 

in the ensemble peaking at       1 , with the best realizations reaching        1 at points 

in their evolution. The plots above are arranged similarly to the density matrix. The 

population is plotted down the diagonal, the real parts of the coherences are plotted 

in the upper triangular region, and the imaginary parts of the coherences are plotted 

in the lower triangular region (in inverse color). A key clarifying this layout and the 

colored plot markers is provided in Eq. (E15). The correlations between different 

elements of ρ, in individual realizations, are visible. For instance, the populations 

in eg   & g e   are perfectly correlated in all realizations. Similarly, the real parts of 

the coherence/transition elements from e e toward eg and g e ( & ) are per- fectly 

correlated, as are those transitioning from eg and g e toward g g  (  & ); the 

imaginary parts of these same elements are perfectly anti-correlated, i.e.,    & 

, and & form anti-correlated pairs. (Equivalently, q5 & q6 and q8 & q9, exhibit 
perfect correlations in all realizations, at all times. Likewise, q11 & q12 and q14 & 
q15, exhibit perfect anti-correlations in all realizations, at all times.) This indicates 
that we have a correlated and coherent link between e e and g g ; every possible 
transition of amplitude from e e toward g g exhibits internal correlations. That the 
measurement at hand generates entanglement between our two emitters is a reflection 
of this. We note the asymmetry in the |e e ) g g | element; the system clearly exhibits 

a preference for correlations of the type |<I−) = √1   (|e e ) − |g g )) over those of type 

|<I+) = √1   (|e e ) + |g g )). 
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subspaces, which are key to generating Bell states, are all restricted to a truncated 

range. Both of these features are consistent with our observation that no trajectory 

achieves any concurrence at any point in its evolution for these measurement settings. 

Only the real parts of the density matrix are utilized for θ 0   ϑ. In the Bell state 

basis notation of Eq. (49), this corresponds to having D be completely real instead of 

completely imaginary. We can consequently understand the entangling measurement 

θ 0 and ϑ 90◦ as allowing the readouts r3 and r4 to work cooperatively in gener- 

ating concurrence. By contrast, the non-entangling measurement θ    0    ϑ causes 

C and D to be forced into direct competition, destroying the possibility of generating 

concurrence [in contrast with the expression Eq. (50)]. 

 
 

APPENDIX B: ONE-STEP ENTANGLEMENT TESTS 
 

We define a “one-step test” for entanglement genesis, starting from the excited state 

e e    (1, 0, 0, 0). Effectively, we take one step from e e , which is separable (    0), 

with an idealized measurement (such that the state is still pure) and see how the con- 

currence behaves. We have already dealt with this problem both by several analytical 

arguments (which-path information, separability of the optical states) and numerical 

methods (longer-time simulations) in the main body of the text. The single step test we 
 

 Figure 11  
 

We plot the density of SQTs as a function of time, with the ensemble of 10,000 initial- 

ized from e e with θ 0 and ϑ 90◦. This gives the density profile of each matrix 

element, corresponding to the individual realizations plotted in Fig. 10. The layout 
follows Eq. (E15), with the populations down the diagonal (yellow and orange), the 
real parts of the coherence in the upper triangular region (yellow and green), and 

the imaginary parts of the coherences in the lower triangular region (inverse color). 

Correlations between the density matrix elements on aggregate are visible in this 

representation; the ability of the measurement to generate entanglement is, however, 

also captured by the fact that these correlations exist not just on aggregate, but also 

within individual realizations of the continuous measurement process, as described 

in Fig. 10. This becomes clearer through comparison with the same plots for the 

non-entangling measurements, e.g., as in Figs. 12 and 13. 
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consider now is simple enough to keep useful analytic expressions in play; while it is 

less general than the numerics already presented, some features of these simple argu- 

ments can help us understand what we see numerically and add to the analytic argu- 

ments we have already presented. 

If we heterodyne both outputs, our state update after one step goes like 

 1 −  
 

 (1− ) (α∗eiθ − β∗e iϑ)  
 

M̂ 
αβ |e e ) ∝  

  , (B1) 

 
 
 

such that we find 
 

C ∝ (1− ) | (α∗eiθ 

 (1    ) iθ iϑ 
2 

  2   2iθ 2   2iϑ 
2 

 

 

 

 

 

)2 − (β∗e iϑ)2 − (α∗e iθ − β∗e iϑ)(α∗e iθ + β∗e iϑ)| = 0. (B2) 
 

So we see again that in the heterodyne case, in which we always acquire information 
about the photon source, there is no possibility to get any entanglement from e e , 

independent of the choices of LO phases θ and ϑ. Simulations show that the situation 
does not improve as the system continues to evolve; see Appendix C. 

 

 Figure 12  
 

We plot a dozen simulated SQTs, initialized from e e and computed with θ  0   ϑ. 

As noted throughout the main text, this measurement scenario does not generate 
entanglement. Note the lack of clear (anti-)correlations in individual realizations of 
the measurement process, in contrast with the entangling case (see Fig. 9). Instead 
of getting clear correlations among the real parts of coherences according the mea- 
surement record r3, and anti-correlations in the imaginary parts of the coherences 

according to the measurement record r4, both measurement records send their 

uncorrelated noise to the real parts of the density matrix; this effectively generates 

a competition between W+ -type correlations and those of the W− -type, destroying 

entanglement. No trajectory plotted above exhibits any two-qubit concurrence at any 

point in its evolution. The layout follows Eq. (E15), reflecting the two-qubit density 

matrix, with populations down the diagonal, the real parts of the coherences in the 

upper triangular region, and the imaginary parts of the coherences plotted in the lower 

triangular region (in inverse color). 

2 
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Let us contrast this with the corresponding calculation in the homodyne case. 

We have 

  
1 −  

 (1 − )(e iθ X 3 − e iϑ X 4)  

M̂ 
34|e e ) ∝  √

 (1 − )(e iθ X 3 

 

+ e iϑ X 4) 

 

, (B3) 

 

 

where we note that both X 3 and X 4 are real numbers [as opposed to α∗ and β∗, which 

were complex; this allows for the cooperative behavior between different types of cor- 
relations, rather than competition, as described in and around Eq. (50)]. The concur- 

rence after one measurement step goes like 

 
C ∝ (1 − )|e 2iθ (X 2 − 1 ) − e 2 iϑ(X 2 − 1 ) − (e iθ X 3 − e iϑ X 4)(e i

θ X 3 + e iϑ X 4)| 
3 2 4 2 

= (1−  ) |e 2iϑ − e 2iθ |.  
(B4) 

 

 Figure 13  
 

We plot the density of simulated SQTs in the case of homodyne detection, with 

θ   0    ϑ. As discussed in the main text, this choice of quadrature measurements 

leads to the acquisition of which-path information and does not generate entangle- 

ment at any point in time, in any of the underlying SQTs (see Fig. 12). The plots are 

arranged to reflect the layout of the density matrix, with the populations down the 

diagonal (yellow and orange), the real parts of the coherences in the upper triangular 

region (corresponding to q4 through q9, in yellow and green), and the imaginary parts 

of the coherences in the lower triangular region (corresponding to q10 through q15, in 

inverse color). See Appendix E.2, and Eq. (E15) in particular, for details about this 

labeling scheme. Notice that many of the density matrix elements appear correlated 

on aggregate, but they are not in individual realizations (see Fig. 12), which spoils the 

possibility of entanglement. Furthermore, the coherences and are both truncated to 

half of their full range, indicating that Bell states are not represented in this ensemble 

with high fidelity. 
 

2 
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Notice that we now have     0 for θ     0    ϑ as above, but we have    > 0 (and with 
the greatest possible increase) for the cases that maximize the photon indistinguisha- 

bility, e.g., θ = 0 and ϑ= 90◦. 

The constant term in the Hermite polynomials [see Eq. (22c)] is very important 

for avoiding complete cancellation of terms in the concurrence. Furthermore, this 

actually leads to a potentially desirable property: Entanglement genesis in the first 

step does not depend at all on the measurement records and is, therefore, determin- 

istic. It has recently been shown that this property can be retained in subsequent 

steps as well, using suitable feedback control [110]. The appearance of the second 

order Hermite polynomials is connected to our beam splitter Eq. (15), and it per- 

tains to the matrix element that (at least in the photodetection case) is best ascribed 

to double/simultaneous emission events. Given the apparent importance of these 

terms in the concurrence generation, we infer that they are enforcing the source- 

indistinguishability requirement we have discussed at length (i.e., we see a clear 

connection between our assumption/requirement that our qubits emit indistinguish- 

able photons and subsequent possibility of entanglement genesis between the emitters 

by measurement). We reiterate that, e.g., [59–62] consider photon indistinguishability 

in more detail, in the context of setups pertinent to our own. 

It is possible to take a second step in the evolution and still obtain expressions that 
help us to understand the dynamics apparent from simulation. Consider, for θ = 0 and 

ϑ= 90◦, a sequence of two measurements 

 

√ 
1 − 2  

M̂   M̂ 
34|e e ) ∝  

 

 

 (X 3 + X 3
 − i X 4 − i X 4

 ) 
 + O( 2). (B5)

 
34  √ (X + X 3

 + i X 

4 

−2  

+ i X 4
 )  

 

We see the continued growth of correlations between eg and g e ; in the language of 
Eq. (49), the sequence of outcomes X 3 promote the growth of C across sequen- tial 

measurements, and the sequence of outcomes X 4 perform the same role for D or 

E. What is more striking, however, is the way amplitude appears in g g ; there are 

higher order (in ) corrections to this term 2 , which depend on the measurement 
outcomes, but what we essentially see to O( ) is that there is quasi-deterministic 
growth of correlations of the type B over a sequential pair of measurements. This 

helps to underscore what we mean when we say that the system “prefers” correla- 

tions of type <I− over <I+ and offers hints as to how the state <I− , which never 

plays a role in the photodetection scenario, actually ends up being the single most 
likely maximally concurrent state that can emerge from the homodyne scenario under 

our chosen measurement settings. It is also apparent, from Eqs. (B3) and (B5), that 

selecting X 3 0 X 4 provides an express route to the state <I− , as discussed in the 

arguments leading to Eq. (54). 

 
 

APPENDIX C: MIXING DIFFUSIVE AND JUMP DYNAMICS: ROLE OF 

INTERFERENCE 

This appendix aims to fulfill two aims: First, we describe our simulation procedures in 

slightly more detail than in the main text, illustrating the flexibility of our method by 

applying it to a situation that uses heterodyne detection at one output and photodetec- 

tion at another (see Fig. 14). Second, and more interestingly, we show that (assuming 

our qubits emit indistinguishable photons) correlations in the qubit state that create 

interference at the mixing beam splitter may select one detector or the other with 

3 
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complete certainty, thereby selecting a different type of measurement backaction. 

This example highlights the consequences of the interference described in Section 3.1 

and the ways it is reflected in our formalism and measurement statistics. 

The particular forms of the Kraus operators M̂ 
α j  we are now interested in (using θ = 

0 = ϑ) are 

 
1 − 0 0 0  

 

 

 
 

M̂ 
α0 = e −|α|2 /2  

2 
 

  (1− ) √  (C1) 

2 0 1 − 0  
  (α∗)2 α∗

✓ 
  

  

α∗
✓  1 

 

2 2 2 

 

for α304|M|0304) (no click at output 4), 

 
√0 0  0 0  

 

2 1 −  0 0 0 

0 1 −1 0 
 

for α314|M|0304) (one click at output 4), and finally 

 
M̂ 

α2 

−|α|2 /2    

= e 
2 

 

0 0 0 0 

0 0 0 0 

0 0 0 0 

— 2 0 0 0 

 

 
(C3) 

 

for α324   0304 (two clicks at output 4). These also form a proper POVM (verifi- 
able by summing over j   0, 1, 2 and integrating out d 2α). In the event that we turn 

on the photodetector, we update our state by 
 

ρ(t + dt) = 
M̂ 

α j 

( 

ρ(t)M̂ †
 

) 
 

whereas if the output of channel 4 is irretrievably lost (i.e., if the photodetector is 

turned off), the state update is given by 
 

 Figure 14  
 

We sketch an apparatus that employs heterodyne detection at output 3 and photode- 

tection at output 4. Trajectories behave purely diffusively conditioned on no photons 

exiting at output 4, but jumps may also occur unless interference effects prohibit 

a click event at port 4. Both beam splitters are assumed to be 50/50 (such that the 

cavities’ signals are mixed symmetrically, and the heterodyne detection is balanced). 
 

 

α j 

M̂ α1 = e −|α|2 /2 (C2) 

α j ρ(t)M̂ †
 

∗ 
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instead. 

ρ( + dt) = 

tr  ̂
j =0,1,2 

ρ(t)M̂ †
 

Heterodyning one port and discarding the other does not lead to entanglement genesis. 
The purity of the system, given by tr(ρ2), drops considerably on its way from e e to g 

g , a fact that substantially impedes the creation of entanglement on its own (i.e., see the 

discussion of inefficient measurements), even without the other problematic prop- 
erties of heterodyne detection with respect to generating concurrence [recall, e.g., the 
argument in and around Eq. (35)]. The purity recovers as the system decays since g g 

is technically a pure state. We show the purity in Fig. 15. 

We proceed to the case where the (ideal) photodetector in Fig. 14 is turned on, such 

that the click record at that port is available, and the two-qubit state update goes like 

Eq. (C4). The operation Eq. (C1), which describes the diffusive dynamics due to het- 

erodyning between click events, does nominally generate some correlations between 

eg and g e , according to the matrix elements highlighted in green, but does not gen- 

erate concurrence. We can again attribute this to the argument in and around Eq. (35), 

although many of the other points we have mentioned above apply as well. Any con- 

currence generated by this mixed detection scheme is generated by the click detector 

at port 4, not the diffusive dynamics from the heterodyne measurement at port 3. 

 

C.1. Simulation Procedures 

We describe our simulation procedures for the situation above, in the interests of 

completeness. The reader more interested in the behavior that arises from the present 

scheme should jump to the next sub-section. 

 

 Figure 15  
 

We initialize our two qubits in e e , for the system diagrammed in Fig. 14 with the 

photodetector turned off. This scenario is modeled by the state update rule Eq. (C5). 
We plot the state purity   (t)   tr(ρ2(t)) as a function of time, showing both the purity of 
individual quantum trajectories in gray, and the average purity over an ensemble of 
such trajectories in black. The purity is 1 at the start and end because both e e and g g 
are pure states, but the purity drops substantially during the dynamics moving between 
them, due to information being discarded at port 4 after the beam splitter. 

Trajectories do not reach the maximally mixed two-qubit state (P = 1/4), and some 

stay well above, such that the average purity does not drop below P = 1/2. We have 

γ = 1 MHz, such that times in microseconds are also in units of both qubits’ T1. 

α j 

α j 
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We describe how Eqs. (C1)–(C3) and state update Eq. (C4) are implemented numer- 

ically to simulate the stochastic trajectory dynamics, and we then show results for a 

few revealing initial states. The case here is in many ways more numerically com- 

plex than the cases in the main text, and many statements about the general strategy 

employed here apply across all of our simulations. As in the main text, we expand the 

denominator of the state update equation to approximate the probability distribution 

describing possible measurement outcomes at each step. This leads us to define , 

such that 

tr 
(
M̂ ρ(t)M̂ †

 

) 
≈ e C j +Gj dt+O(dt2 ). (C6) 

It turns out that when we do this kind of expansion, we will find some Gaussian terms 

with some additional state-dependent coefficients attached, i.e., we find 

e G0 dt = w0g 0, e C1 e G1 dt = w1g 1, and e C2 e G2 dt = w2g 2, (C7) 

where the g terms are Gaussians in r I and r Q [recall, e.g., Eq. (20)] with variance 

1/dt, and the remaining terms that survive the expansion are collected into the weight 

factors w. As in the case with photodetectors we considered earlier, the w j are state- 

dependent and are used to make a multinomial choice about whether (and how many 
times) the photodetector registers an event in a given time step. This then also deter- 
mines which Gaussian g j the heterodyne readout result is drawn from. Using the full 

set of available information to draw the measurement records is necessary to ensure 
that we do not create records that are inconsistent with one another [even if we were to 
suppose we have multiple observers with incomplete information, the records would 
still have to be generated on the basis of a “super observer’s” record(s), which account 
for all available measurement information]; see [19,178,179] for further comments in 
this vein. 

The particulars of the weights and Gaussians are described here, starting with the 

terms in the no-click case. We have 

G = − 1 
(
r — χ 

√ 
γ 
)2 

− 1 
(
r — χ 

√ 
γ 
)2 

− γ     + γ   
(
χ2 + χ2 

) 
, with (C8a) 

 

χI ≡ cos θ(q5 + q6 + q8 + q9) − sin θ(q11 + q12 + q13 + q15), (C8b) 

 
χQ ≡ − sin θ(q5 + q6 + q8 + q9) − cos θ(q11 + q12 + q14 + q15). (C8c) 

The coordinates q parameterizing the two-qubit density matrix are described in 

Appendix E.2, and w√e defined   in√Eq. (44d). We, thus, have Gaussians with variance 

1/dt and means χI γ/2 and χQ γ/2 for r I and r Q, respectively. The remaining 
terms are included to the weight factor used to determine the correct statistics for the 

no-click event, which is 

w0 = N exp 
[
−γ     + γ (χ2 + χ2 )

 
. (C9) 

 

The term    is a normalization for the click probabilities, used to make     j wj    1. 

The remaining Gaussians in r I and r Q, for the one-click and two-click terms, both 

have mean zero, and the same variance 1/dt. This indicates that in the event of a 

click, we know the photon went to port 4 and, therefore, did not go to the heterodyne 

detection at port 3; the heterodyne readouts then contain no signal in the requisite 

time step (there is no information at port 3 without the possibility of a photon having 

I Q 

α j 
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arrived there) and only pure noise from the LO. These conditions are key to enforcing 

that correlations between the optical modes are properly reflected in simulations 

(again, this is necesary to generate mutually consistent measurement records). The 

probabilites associated with these jump events are given by 

w = N 
γ dt ς 

exp 

  

− 
γ κ dt 

   

and (C10) 

 

dt2γ 2  ( √ √ √ ) 

 

where we have shorthanded some expressions, 

ς ≡ 3
√

2 + 3q1 + 
√

3q2 + 2
√

6q3 − 6q4, (C12a) 

 

 
 

 
for ease of notation. 

3 
κ ≡ √

2
 + 6q1 + 2

√
3q2 + 

√
6q3, (C12b) 

The simulation procedure in each time step can then be summarized as: 

 
1. Use the state-dependent w j as probabilities in a multinomial distribution; draw an 

outcome for the number of clicks at the detector at port 4 accordingly. 

2. Given the outcome at the click detector, draw r I and r Q from the appropriate 
Gaussian distributions, with variance 1/dt and state-dependent means, to simulate 
the heterodyne measurement at port 3. 

3. Choose the appropriate operator [Eqs. (C1)–(C3)], according to the jump out- 
come, put in the stochastic readouts r I and r Q, and then update the state with 

Eq. (C4). Repeat until desired evolution time is reached. 

 

The procedure for the codes in the main body of the text is quite similar (and is sim- 

pler than that shown here, as it is more straightforward to draw readouts all of one type 

than it is to combine diffusive and jump dynamics). We have here shown, however, 

that our methods generalize to cases in which we mix diffusive and jump trajectories. 

Few works in the quantum trajectories literature have studied the dynamics arising 

under simultaneous different types of continuous measurements (i.e., jumps and 

diffusion) at all [78,180,181]. 

 
C.2. Interference Effects 

We put the numerical strategies we just described to work. In Fig. 16, we plot the state 
evolution originating from W± [Eq. (E6b)]. We immediately see that one Bell state 

allows for trajectories that only experience diffusion ( W+ and sends all its output to 

the heterodyne detector at output 3), and the other allows only jumps ( W− and sends 
all its output to the photodetector at output 4). The pure states that generate these inter- 

ference conditions are, more generally, of the form 

 

|ψ) = N  

0 
 

 . (C13) 
 

 

It is apparent from simulation that the relevant measurement dynamics preserve 

the correlations and coherence in the |e g ) and |g e ) terms, even as the population 

24 

a 

w2 = N , (C11) 
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is shifted to g g over time by the natural decay process. Therefore, the conditions 

for complete interference do not only appear at the beginning of the simulation but 

are preserved for its duration once they are established. We also understand that the 

interference effect is naturally reproduced by the weight factors [Eqs. (C9)–(C11)]; 

we have applied them in the codes without adding any further constraints. We may, 

thus, appreciate an interesting feature of our model, which stems from the assumption 

of indistinguishable photons: We have a case where the phase of the entangled two- 

qubit state may select a detector output with certainty; if different detector types are 

used at the outputs, then completely different types of measurement backaction are 

effectively selected by interference. 

The concurrence in Fig. 16 decays on average at the rate γ at which the individual 
qubits relax, despite exhibiting very different trajectories for individual realizations. 
We also see that the concurrence among the diffusive trajectories originating from 

W+ does not decrease monotonically in individual realizations; although we can- 

not generate entanglement from simple separable states using heterodyne detection, 

certain trajectories do still exhibit partial decay and regrowth of concurrence. 

 
 

APPENDIX D: MORE ON MEASUREMENT INEFFICIENCY 
 

Recall from Fig. 7, and the main text, that measurement inefficiency is effectively 

modeled by imagining the signal to be diverted into a lost mode with some probabil- 

ity, rather than arriving at an ideal detector with certainty. In practice, no experimental 

detection scheme achieves perfect measurement efficiencies. In fact, a wider range of 

detector imperfections are commonplace (see, e.g., [130] for some details and char- 

acterization of the effect of such imperfections on similar entanglement schemes). 

The relevant optical transformation was summarized by Eq. (57) and allows us to get 

a matrix Mη from the M we defined in Eq. (14). 

 Figure 16  
 

We plot concurrence as a function of time, originating either from W+ (left) or W− 

(right) [Eq. (E6b)], in the setup of Fig. 14, which combines heterodyne detection at 
one port with photodetection at the other. The effect of the interference at the beam 

splitter created by the correlation or anti-correlation between eg and g e is clearly 
visible here, because determining the output port determines the type of measurement 

backaction; dynamics originating from W+ only interact with the heterodyne device, 

resulting in diffusive quantum trajectories of the two-qubit state, whereas only jump 

dynamics arise from |W−), since all of the output goes to the photodetector in that 

case. The average concurrence is in good quantitative agreement with ¯(t)  e −γt in 
both cases shown above, consistent with the photodetection case in Fig. 3(b) and 
the homodyne case of Fig. 6(a). No post-selection is used in the simulations above 

because the interference conditions for the states in question perfectly select one 

output or the other. 
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We have mentioned that our state update must be modified for the case of ineffi- 

cient detection by tracing out over possible outcomes in the “lost” modes that we 

do not have access to. For example, for inefficient photodetection with the outcome 

n3, n4      0, 0 at the signal ports (where n3 and n4 are a number of photons received in 

the requisite interval dt), we would have a group of Kraus operators, 

M̂ 
00n£n£  =  0s 0s n£n£|Mη|0000), (D1) 

 

and the state update equation ρ(t + dt) = 

M̂ 
0000ρM̂ †

 

tr  M̂ 
0000ρM̂ †

 

+M̂ 
0010ρM̂ †

 

+M̂ 
0010ρM̂ †

 

+M̂ 
0001ρM̂ †

 

+M̂ 
0001ρM̂ †

 

+M̂ 
0020ρM̂ †

 

+M̂ 
0020ρM̂ †

 

+M̂ 
0002ρM̂ †

 

+M̂ 
0002ρM̂ †

 

 

for ρ   ρ(t). For such an update with finite measurement efficiency, the basis in 

which we do the trace over the outcomes in the lost mode does not matter, as long as it 
represents a complete set of outcomes. By that token, inefficient homodyne detection 
is most straightforwardly modeled by an operator 

M̂ 
X n£n£  =  X 3 X 4n£n£|Mη|0000), (D3) 

 

where the signal modes are projected into a quadrature X 3 or X 4, as in the ideal case, 
but the lost modes are projected into the Fock basis. Such operators can be used with 

the state update ρ(t + dt) = 

M̂ 
X 00ρM̂ †

 

tr   M̂ 
X 00ρM̂ †

 

+ M̂ 
X 10ρM̂ †

 

+ M̂ 
X 10ρM̂ †

 

+ M̂ 
X 01ρM̂ †

 

+ M̂ 
X 01ρM̂ †

 

+ M̂ 
X 20ρM̂ †

 

+ M̂ 
X 20ρM̂ †

 

+ M̂ 
X 02ρM̂ †

 

+ M̂ 
X 02ρM̂ †

 

 

Summing over the lost modes in the discrete Fock basis is computationally simpler 

than integrating out another pair of continuous-valued homodyne (quadrature basis) 

outcomes, although the latter would also be correct. We continue into a more detailed 

discussion of each type of inefficient measurement. The comparable exploration of 

the one qubit case can be found in [18,19]. 

 
D.1. Methods for Inefficient Photodetection 

We now summarize all possible outcomes and Kraus operators used to model inef- 

ficient photodetection. All Kraus operators here are notated according to       s    s    £   £ , 
3   4   3   4 

where the n are outcomes in the Fock basis at their respective ports. The phases θ 

and ϑ in Eq. (15) may be set to zero when we monitor the system via photodetection, 

without loss of generality. 

When neither detector clicks, the following options are valid: 

M̂ 
0000  =  0000|Mη|0000), (D5a) 

M̂ 
0010  =  0010|Mη|0000), (D5b) 

M̂ 
0001  =  0001|Mη|0000), (D5c) 

M̂ 
0020  =  0020|Mη|0000), (D5d) 

) 

. ) 
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w00 = tr 

 
L 

M̂ 
j ρM̂ † 

  

= 1 −   (η3 + η4)  + √    (η4 − η3)q4 +  2 
(η2 + η2) , 

1000 1010 2 2 3 

3 4 

0100 0101 2 2 4 

M2000ρM2000 

3 (D12a) 

 

M̂ 
0002  =  0002|Mη|0000). (D5e) 

The first represents the ideal option, in which we registered no photons because 

there were, in fact, no photons emitted. The next operators, however, account for the 

possibility that one or two photons were emitted but were routed to one of the loss 
channels and were not measured. The probability of the outcome {ns , ns } = {0, 0} is 

3 4 

given by 
 
 

j 2 2 

j 
2 3 4 

(D6) 

where j indices the five operators in Eq. (D5), and we have defined      and   in 
Eq. (44d). 

If the detector at port 3 registers the arrival of a single photon, the following options 

are at play: 

M̂ 
1000  =  1000|Mη|0000), (D7a) 

M̂ 
1010  =  1010|Mη|0000). (D7b) 

(Either one photon was emitted, and we caught it, or two photons were emitted, in 

which case they both had to go to the same output under the assumption of photon 

indistinguishability, in this case 3, but the second photon was lost on account of 
η3 < 1.) The probability of the outcome {ns , ns } = {1, 0} is given by 

3 4 

w10 = tr 
(
M̂ 

1000ρM̂ † 
+ M̂ 

1010ρM̂ † 
) 

=   η3   +  √η3 q4 −  2η2 . (D8) 
 

Likewise, if the detector at port 4 registers a single photon, we have the operators 

M̂ 
0100  =  0100|Mη|0000), (D9a) 

M̂ 
0101  =  0101|Mη|0000), (D9b) 

and the probability of the outcome {ns , ns } = {0, 1} is given by 

w01 = tr 
(
M̂ 

0100ρM̂ † 
+ M̂ 

0101ρM̂ † 
) 

=   η4   −  √η4 q4 −  2η2 . (D10) 

 

If the detectors at port 3 or 4 register a double click, we know that we have received all 

of the photons, because it was not possible for more to be emitted in a single time step. 

This situation involves the operators 

M̂ 
2000  =  2000|Mη|0000), (D11a) 

or 

M̂ 
0200  =  0200|Mη|0000), (D11b) 

which are invoked with the probabilities 

( 
ˆ
 

ˆ † 
) 

 
 2η2 

 
 

 2 w20 = tr = 
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2 — 3 
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2 — 4 

3 4 

 [e 2iθ η3 (X 2 − 1 )−e 2iϑ η4 (X 2 − 1 )] 
√

 (
√

η3 e iθ X 3 +
√

η4 e iϑ X 4 ) 
√

 (
√

η3 e iθ X 3 −
√

η4 e iϑ X 4 ) 1 

√ 
π 

4 

 
2 

 

√ 
π 

4 

 
2 

 

 

 

or 

( 
ˆ ˆ † 

) 

 
 2η2 

 

 
respectively. 

w02 = tr M0200ρM0200       = 
4   , (D12b) 

2 

We can verify that we have exhausted the set of possible Kraus operators for the Fock 

basis that can arise from Mη, in that they form elements of a POVM, i.e., 

  
M̂ † 

M̂ 
j  = Î, (D13) 

j 

 

where the sum here is over all of the operators (D5), (D7), (D9), and (D11). The prob- 

abilities w for the five possible outcomes we have listed are also already properly nor- 

malized, in that they too sum to 1. 

 
D.2. Methods for Inefficient Homodyne Detection 

The same principles can be used to generate the corresponding model for inefficient 

homodyne detection. We project the output signal modes (corresponding to â
†    

and 

a † ) into a quadrature, as in the ideal case, and we will project the lost modes into the 

Fock basis as we just did for inefficient photodetection. A total of five Kraus operators 
arise from such an analysis, and they are 

 

ˆ e −(X 2 +X 2 )/2 

MX00 = X 3 X 400|Mη|0000) = √
π 

× 
 

1−    0  0 0 
√ 

√
 (1− )(

√
η3 e iθ X 3 −

√
η4 e iϑ X 4 )  1   0 0  (D14a) 

 √ √ i √ i √   
0 

 (1− )( η3 e θ X 3 + η4 e ϑ X 4 ) 
 

 

    

1 − 0  
 

 

M̂ 
X 10  =  X 3 X 410|Mη|0000) 

     (X 2  X 2 )/2 

 

−   +  

0 0 0 0  
 

 (1− ) (1 − η3) 0 0 0  

 
(D14b) 

 (1− ) (1 η ) 0 0 0 

  e iθ X 3
√

2η3(1 − η3) 
✓ (1 − η3) 

✓ (1 − η3) 0 
  

2 2 

 

M̂ 
X 01  =  X 3 X 401|Mη|0000) 

     (X 2  X 2 )/2 

 

−   +  

0 0 0 0  
 

— (1− ) (1 − η4) 0 0 0  

 (1− ) (1 η ) 0 0 0 

− e iϑ X 4
√

2η4(1 − η4) 
✓ (1 − η4) −

✓ (1 − η4) 0 
  

2 2 

 
 

M̂ 
X 20  =  X 3 X 420|Mη|0000)  

(D14c) 

2 4 2 3 

, 

, 

, 

= e 

= e  

0 0 0 0 

0 0 0 0 
0  
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(D14d) 
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Xj 

η 

− 

= = 
× 

3 4 
√

π
 

34 2 3 3 3 2 4 4 4 

+ γ   
(
η3χ2 + η4χ2

) 
− γ (η3 + η4)    + γ q4(η4 − η3) 

of variance 1/dt and mean γη3χ3(θ) and γη4χ4(ϑ), respectively. Comparing 

− √  

 

M̂ 
X 02  =  X 3 X 402|Mη|0000)  

e −(X 2 +X 2 )/2 
 

 

We reiterate that the state update is given, in terms of the above operators, by 

Eq. (D4). These operators again form a complete set, in that 
      

dX 3 dX 4  
  

M̂ †  
M̂ 

Xj  = Î, (D15) 
j 

 

where j indices all five operators in Eq. (D14). The statistics of the measurement rec- 
ord they imply are summarized by 

G = − 1 
(
r − 

√
γη χ 

)2 
− 1 

(
r − 

√
γη χ 

)2
 

 
 

2 3 4 2 2 

  γ 

√
 

 

+ √
2 
q7(η4 cos(2ϑ) − η3 cos(2θ)) + γ 2 q13(η4 cos ϑ sin ϑ η3 cos θ sin θ), 

(D16) 
 

which should be compared with Eq. (46a), and where χ3 and χ4 are still defined as 

in Eq. (46b). In summary then, inefficient homodyne detection may be simulated 

using Eq. (D4) and stochastic
√

readouts r3 and 
√
r4, drawn from Gaussian distributions 

to the ideal case, we can understand that we have the same noise, but the means χ3 

and χ4 (which set the signal content of the readout) are now attenuated by a factor 

η relative to the noise. Thus, inefficient measurements, which only partially collect 

the information the optical degree of freedom “knows” about the qubits, result in a 

worsened signal-to-noise ratio, along with some decoherence due to averaging over 

lost information. 

 

APPENDIX E: REVIEW OF TWO-QUBIT DENSITY MATRICES AND 

ENTANGLEMENT 
 

A two-qubit density matrix ρ can be any 4 4 matrix that satisfies the properties 

ρij ρj
∗

i and tr(ρ) 1, as demanded by quantum mechanics and normalization of 

probability densities. A subset of such density matrices describes separable sys- 
tems. We discuss two-qubit entanglement in Appedix E.1, and then go through some 
details of a general coordinate parameterization of the two-qubit density matrix in 

Appendix E.2. Inefficient measurements and mixed states are ubiquitous in laboratory 

situations, and we consequently use a density matrix rather than a pure state in many 

parts of the main text. 

 
E.1. Two-Qubit Entanglement and Concurrence 

A commonly accepted measure of entanglement between two qubits is concurrence 

[96]. The concurrence C of a two-qubit density matrix is given by 

C[ρ] = max{0, λ1 − λ2 − λ3 − λ4}, (E1) 

where the λi are the eigenvalues of the Hermitian matrix 

 

2 

(D14e) 
= 

 0 0 0  
 . 

0 0 0 0 

0 0 0 0 

0  

(1 − η4) 0 0 0 
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i 0 

2 2 2 2 

 

n 

2 2 

2 2 

 

R̂ = 
 √

ρ(σ̂y ⊗ σ̂y )ρ∗(σ̂y ⊗ σ̂y )
√

ρ (E2) 

listed in decreasing order. In practice, it is often easier to compute the eigenvalues of 

ρ(σ̂y ⊗ σ̂y )ρ∗(σ̂y ⊗ σ̂y ), which give λ2 instead. We have used the usual definition of 
the Pauli matrix, 

σ̂y = 

  
0 −i 

  

. (E3) 

 

The qubits described by ρ are said to be entangled if C > 0 and are unentangled (sepa- 

rable) when C = 0. 

Note that this simplifies nicely for the case of a pure two-qubit state, 

 ψ| = (a∗, b∗, c∗, d∗) , (E4) 

where we are still using a basis {|e e ), |e g ), |g e ), |g g )}. The concurrence reduces in this 

 

C = 2|ad − bc|. (E5) 

The concurrence C may range from 0 to 1, where C = 0 denotes a separable state, and 

C = 1 denotes a maximally entangled state, e.g., any of the standard Bell states, 

|<I±) ≡ √1   |e e ) ± √1   |g g ), (E6a) 

 
|W±) ≡ √1   |e g ) ± √1   |g e ). (E6b) 

 

If we instead express our generic two-qubit pure state in the Bell basis, 

|ψ) = A|<I+) + B|<I−) + C|W+) + D|W−), (E7) 

the concurrence reads 
 

C = |A − B − C + D |. (E8) 

The mapping between the two bases listed here is given by the unitary, 

1    
1 0   0 1   

U = √  1 0 0 −1  , (E9)
 

2 0 1 1 0 

0 1 −1 0 

such that, if |ψ) is in the standard {a, b, c, d} basis, U |ψ) is the same state expressed 

in the Bell basis {A, B, C, D}. 

E.2. Generalized Gell–Mann Matrices and Effective System Coordinates 

We here describe the coordinate parameterization of the two-qubit density matrix, 
which we use in the main text and throughout our simulations. It is always possible to 

decompose an n × n density matrix according to 

ρ = 
În  

+ q · r̂ . (E10) 

case to 
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  ˆ  
   −  

0 0 1 0 1 0 0 0 0 0 0 0 

      

      

    , 
i 0 0 0   , 

0 0 0 0 

      

 
  − 

2 0 i 0 0 
0 0 0 0 

2 0 0 0 0 

0 i 0 0 

 

 √
2  + q1 + √1   q2 + √1   q3 q5 − iq11 q6 − iq12 q7 − i q13  

4 6 3 
√ 

2  − √3   q3 

 
 

 

4 6 

(E14) 

 

Here  q  is  a  generalized  Bloch  vector,  and  r̂  is  the  vector  of  generalized  Gell– 
Mann matrices. There are n2 − 1 = dim(q) coordinates and matrices. In the 

two-dimensional  case,  q  represents  the  usual  Bloch  coordinates,  and  r̂  represents 

the Pauli matrices. Parameterizing a 4 4 density matrix requires 15 coordinates in 

the most general case. 

We adapt the matrices from [182] to define some coordinates for our two-qubit sys- 

tem, beginning with the three diagonal matrices, 

1    
1   0   0 0  

1    
1 0   0   0  

1  
1 0 0   0   

 ̂ 1 = √  0 −1 0 0  ,
  ̂ 2 = √ 0 1 0 0 , 

0 1 0 0 
 3 = √  . 

 

2 0 0 0 0 

0 0 0 0 
6 0 0 2 0 

0 0 0 0 
12 0 0 1 0 

0 0 0 −3 

(E11) 
Next we list the six symmetric matrices of the set, 

 
 ̂ 4  = √1

 

 
0 0 0 0  
  , 

 
 ̂ 5  = √1 

 
0 1 0 0  
  , 

 
 ̂ 6  = √1 

 
0 0 1 0  
  , 

2 0 1 0 0 

0 0 0 0 

 
0 0 0 1  

2 0 0 0 0 

0 0 0 0 

 
0 0 0 0  

2 1 0 0 0 

0 0 0 0 

 
0 0 0 0  

 

(E12) 

 ̂ 7  = √1
 

0 0 0 0 
,  ̂ 8  = √1 

0 0 0 1 
,  ̂ 9  = √1 

0 0 0 0 
. 

 

 

 

We conclude with the remaining six anti-symmetric matrices of the set, 

 
 ̂ 10  = √1

 

 
0 0 0 0  

 0 0 −i 0  ,
 

 
 ̂ 11  = √1 

 
0 −i 0 0   

 ̂ 12  = √1 
 
0 0 −i 0  

 

 
0 0 0 −i  

 
0 0 0  0   

 
0 0 0  0   

 ̂ 13  = √1
 

0 0 0 0 
,  ̂ 14  = √1  0 0 0 −i  ,

 
 ̂ 15  = √1 

0 0 0 0 
. 

 

(E13) 

Using Eq. (E10), we may write an arbitrary 4 × 4 density matrix in terms of the 15 

generalized Bloch coordinates q. This yields ρ = 

 
 

 4 

  1  3 
q5 + iq11 

6 
2  + √1   q2 + √1   q3 − q1 q4 − iq10 q8 − i q14  

.
 

√  4 3 6 √  
 q6 + iq12 q4 + iq10 2  + √1   q3 − √2   q2  q9 − iq15  

 

We see that the populations are described by coordinates 1–3 [corresponding to 

Eqs. (E11)] and that the coherences are described by the remaining coordinates, 

with real parts corresponding to Eq. (E12) and the imaginary parts to Eq. (E13). 

We can also codify this information visually, as it relates to the arrays of plots in 

Figs. 10–13, by 

      

 
 

2 0 0 0 0 

1 0 0 0 

2 0 0 0 0 

0 1 0 0 

2 0 0 0 1 

0 0 1 0 

2 0 0 0 0 

0 0 0 0 

2 i 0 0 0 
0 0 0 0 

2 0 0 0 0 

i 0 0 0 
 2 0 0 0 i 

0 0 i   0 

2 
q7 + iq13 q8 + iq14 q9 + iq15 

 

√ 
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= = 

4 i 

34 
3 4 

i 

 
    

 

 

(E15) 

 
In terms of the above coordinates, the purity of the state is described by 

 

P(ρ) = tr(ρ2) = 1 +  
    

q 2. (E16) 

APPENDIX F: MAPPING EQUATIONS OF MOTION FROM KRAUS 

OPERATORS TO THE SME 

Our expectation, based on the one qubit cases [17–19] and other continuous mea- 

surement schemes, is that the equations of motion derived from the stochastic master 

equation (SME) [Eq. (22)] can be taken as Itô Langevin equations, converted to their 

Stratonovich form, and will then be found to be identical to the equations of motion 

derived by expanding the state update with our Kraus operators to O(dt) (where the 

latter is performed without treating the readout variables in any special way, and using 

regular calculus). The Itô and Stratonovich conventions basically concern which 

Riemann sum is used to integrate a stochastic differential equation (SDE): While 

different Riemann sums will give equivalent results when integrating ordinary dif- 

ferential equations, they give different results when applied to diffusive stochastic 

equations, because the latter are non-differentiable at all time scales. The details of 

either convention, and the rules for converting between them, are well understood 

(see, e.g., [108]). We perform the requisite computations and conversions for our two- 

qubit homodyne detection and heterodyne detection models in turn; further pertinent 

details appear in, e.g., [19]. 

 
F.1. Homodyne Detection 

F.1.1. Ideal Case 

Let us start with our Kraus operator methods. We will use double homodyne detec- 

tion, in the entangling case θ 0 and ϑ 90◦. We may expand our operator [Eq. (21)] 

according to 
 

M̂ e X
2 /2+X 2 /2  ≈ Î + Ẑ d t + O(d t2), (F1) 

where we can eliminate the Gaussian pre-factor and any other constants that appear in 

every matrix element of the operator because they will cancel off from the state update 

normalization momentarily anyway. Then the state update can be approximated by 

(Î + Ẑ d t)ρ(t)(Î + Ẑ †d t) 
ρ(t + dt) ≈ 

tr
 
(
(Î +  ̂ ˆ ˆ†  

)
 

Zdt)ρ(t)(I + Z dt) 

≈ ρ + d t
(
Ẑ ρ + ρẐ †  − ρ tr

(
Ẑ ρ + ρẐ †

))
, (F2) 

which can then be rearranged according to ρ(t + d t) − ρ(t) ≈ d t ρ̇, such that 

ρ̇ ≈ Ẑ ρ + ρẐ †  − ρ tr 
(

Ẑ ρ + ρẐ †
) 

. (F3) 
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The non-trivial part of the Kraus operator, to O(dt), is 

 
−γ 0 0 0  

 
γ 
(r3 − i r4) −γ /2 0 0  

Ẑ ≡ 
 
  

γ 
(r3 + ir4) 0 −γ /2 0  

. (F4)
 

 
−γ 

γ 
(r3 + ir4)

 
γ 
(r3 − ir4) 0  

 

The equation of motion Eq. (F3) with Eq. (F4) is best represented as 15 coupled equa- 

tions in the coordinates q, obtained as q tr(r̂ ρ); for the sake of brevity, we do not 

list them out here. 

The SME Eq. (25) is derived in a similar spirit, using Itô calculus [9–11,13]. Recall 

that the corresponding Lindblad operators for the SME Eq. (47) are 

L̂  
3 = 

√ 
γ 

(
σ̂  A + σ̂  B 

) 
, L̂  

4 = i 
√ 

γ 
(
σ̂  A − σ̂  B 

) 
, (F5) 

which denote the observables in channels 3 and 4, which should be used in Eq. (25) 
with c 3, 4. We are able to obtain another 15-dimensional system of equations 

(represented in q) from this SME-derived expression for ρ, expressed in terms of the 
white noise terms ξ3   d W3/dt and ξ4   d W4/dt in channels 3 and 4, respectively. If the 

system of SDEs from the SME is a set of Itô equations, 

q̇ = a(q) + b3(q) ξ3 + b4(q) ξ4, (F6) 

then they can be converted to the corresponding Stratonovich form 

q̇ = A(q) + b3(q) ξ3 + b4(q) ξ4, (F7) 

according to the transformation [108] 

A = a − 1 (b3 · ∇)b3 − 1 (b4 · ∇)b4, (F8) 

where is here the vector derivative in all 15 coordinates q. Again without listing out 

the 15 equations or details of the transformation, we find for the example at hand that 

the Stratonovich version of the SME Eq. (F7) is exactly equivalent to the Eq. (F3), 

with the relationship 

r3 = 
√

γ(q5 + q6 + q8 + q9) + ξ3, (F9a) 

r4 = 
√

γ(−q11 + q12 + q14 − q15) + ξ4, (F9b) 

between the readouts and white noise [valid to O(dt)]. Thus, the two approaches we 

have described are equivalent, provided we account for the fact that we have carried 
each of them out using a different stochastic calculus. 

 
F.1.2. Inefficient Measurement 

We are able to repeat the same procedure for the case of η3 1   η4 and, thereby, 
check that our equations for inefficient measurement correctly translate to the SME 
as well. We verify that the correspondence between our Kraus operators (yielding a 
Stratonovich-like equation, expressed in terms of the records r3 and r4) and Itô SME 

(yielding an Itô equation expressed in terms of d W3 and d W4) works for the general 

homodyne case characterized by the SME operators, 

L̂  
3 = 

√ 
γ e iθ 

(
σ̂  A + σ̂  B 

) 
, L̂  

4 = 
√ 

γ e iϑ 
(
σ̂  A − σ̂  B 

) 
, (F10) 
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for any η3 0, 1 , η4   0, 1 , and any combination of θ and ϑ, corresponding to the 

most general update Eq. (D4) with Eq. (D14). The procedure is similar to that above, 

and the details are not repeated here (but more appear in [19]). 

Instead, we show some of the r3 = 0 = r4 equations (derived using regular cal- 
culus/using  the  Stratonovich  approach)  that  u√nderpin  the  results  of  Section  6.2. 
In  particular,  the  case  characterized  by  q1 = 2 q2,  q5 = q6,  q8√=  q9,  q11 = −q12, 

q13 = 0, and q14 = −q15 is especially useful. The condition q1 = 2q2 ensures that 
the elements eg eg and g e g e are identical. This leads us to define two special 
coordinates for this case, according to 

qa ≡ 1  + √1   q1 + √1   q2 + √1    q3, (F11a) 

 
qb ≡ 1  + √1   q2 + √1    q3 − √1   q1, (F11b) 

which, combined with q1 
√

2q2, set the diagonal terms of the density matrix to 
be defined only in terms of qa and qb. Specifically, qa is the population in e e , qb is 
the correlated population on both eg and g e , and 1 qa 2qb is the popula- tion 
on g g . We then list the system of nine differential equations that define the state 
dynamics under the condition r3 0 r4 (i.e., we list the Stratonovich-like dynamics 

corresponding to the first-order expansion of Eq. (D4), for the special case X 3 = 0 = 

X 4 and η3 = η = η4): 

q̇a = −2γ qa + ηγ 
√

2 qa q7 + 2ηγ qa (qa + qb), (F12a) 

q̇b = γ (qa (1 − η) − qb) + ηγ 
√

2 qbq7 + 2ηγ qb(qa + qb), (F12b) 

q˙4 = −γq4 + ηγ 
√

2 q4q7 + 2ηγq4(qa + qb), (F12c) 

q˙5 = 3 γq5 + ηγ 
√

2 q5q7 + 2ηγq5(qa + qb), (F12d) 

q˙7 = −γq7 + ηγ 
√

2(q 2 − qa ) + 2ηγq7(qa + qb),  (F12e) 

q˙8 = γq5 − 1 γq8 − 2ηγq5 + ηγ 
√

2 q8q7 + 2ηγq8(qa + qb),  (F12f) 

q˙10 = −γq10 + ηγ 
√

2 q10q7 + 2ηγq10(qa + qb), (F12g) 

q˙11 = − 3 γq11 + ηγ 
√

2 q11q7 + 2ηγq11(qa + qb), (F12h) 

q˙14 = −γq11 − 1 γq14 + 2ηγq11 + ηγ 
√

2 q14q7 + 2ηγq14(qa + qb). (F12i) 

This system of equations is somewhat messy, and these nine coordinates do not 

reduce nicely into a simple expression for the concurrence. We can, however, under- 

stand this system of equations as the generalized case of Eq. (53); by numerically 

integrating Eq. (F13) for the initial condition qa   1 and q    0 otherwise, we obtain 

the bounds on concurrence creation, e.g., as shown in Fig. 9. While the full set of 
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equations are needed for more general initial conditions, several equations may be 

eliminated for the particular initial conditions above, leaving only 

q̇a = −2γ qa + ηγ 
√

2 qa q7 + 2ηγ qa (qa + qb),   (F13a) 

q̇b = γ (qa (1 − η) − qb) + ηγ 
√

2 qbq7 + 2ηγ qb(qa + qb),  (F13b) 

q˙7 = −γq7 + ηγ 
√

2(q 2 − qa ) + 2ηγq7(qa + qb). (F13c) 

Note also that by integrating this system for the case η 1 , we find 0 for all time, 

demonstrating that the upper bound forces the concurrence yield down to zero for 

homodyne efficiencies below 50%, as shown in simulations and discussed in the main 

text. 

 
F.2. Heterodyne Detection 

We repeat the analysis above for the cases of interest involving heterodyne detection, 
again for the case θ 0 and ϑ 90◦ emphasized in the main text. Recall that the full 
operator is Eq. (19), which leads to an approximate form, 

 
−γ 0 0 0  

√
γ
 

2 

A √
γ , 

2  
0 

√
γ 

(r I − ir Q + ir X + rY ) 
√

γ 
(r I − ir Q − ir X − rY ) 0  

  

2 2 

 
 

which is defined according to 

(F14) 

 

M̂ e |α|
2 /2+|β|2 /2  ≈ Î + Â d t + O(d t 2). (F15) 

As above, we can then write some first-order state update rule, 

ρ̇ ≈ Â ρ + ρÂ †  − ρ tr 
(

Â ρ + ρÂ †
) 

, (F16) 

which uses the approximate measurement operator Â . 

The reado
√
uts have means 

√ 
γ  (q5 + q6 + q8 + q9) (fo√

r r I ), −
√ 

γ  (q11 + q12 + q14 + q15) 
2 2 

(for r Q), γ (−q11 + q12 + q14 − q15) (for r X ), and γ (−q5 + q6 + q8 − q9) (for rY ). 
This is emininently sensible as compared with the √homodyne case, as we have the 

signal portion of the readout attenuated by a factor 2, such that the signal-to-noise 

ratio of, e.g., r I is reduced compared to that of r3 on account of our having now split 

our attention between both (non-commuting) quadratures. We can, thus, infer the 
corresponding Lindblad operators, which are 

 
 

LX = i 
√

γ  
(
σˆ A − σˆ B 

) 
, LY = 

√
γ  

(
σˆ A − σˆ B 

) 
. 

 

As in the other cases, the Itô Eq. (25) and Stratonovich-like Eq. (F16) are equivalent, 

in that either one is derived exactly from the other by using r j   Lˆ 
j   Lˆ †   

ξ j and 
the appropriate transformation dictated by a consistent stochastic calculus [108]. 

Some of the figures in this paper also appear in Dr. Lewalle’s dissertation [19]. 

(F17) 
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