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Abstract: Optical 2D coherence spectroscopy was performed in dilute atomic vapors. The 2D spectra
revealed long-range dipole-dipole interaction between atoms at a mean separation up to 16 micrometers
and multi-atom correlation up to seven atoms.

Many body interaction and correlation in an atomic ensemble are fundamental in understanding collective and
emergent phenomena that cannot be understood by a simple extrapolation of the microscopic laws of a few particles.
Experimentally confirmed understanding of many body interaction and correlation in atoms is essential for many
problems in cold atoms/molecules, optical atomic clock, semiconductors, and photosynthesis.

Here, we present our study of many-body interaction and correlation in potassium (K) and rubidium (Rb) atomic
vapors by using optical 2D Coherent Spectroscopy (2DCS). Two-quantum 2DCS provides a sensitive and background-
free detection of dipole-dipole interaction in atomic vapors [1, 2]. The long-range interaction was detected at densities
of 4.81 x 10% cm™ and 8.40 x 10° cm™ for K and Rb, respectively, corresponding to a mean interatomic separation
of 15.8 um for K and 6.1 um for Rb [3]. We also extended the technique to multi-quantum 2DCS and observed multi-

atom Dicke states with scalable and deterministic number of atoms up to 7 atoms [4].
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Fig. 1. (a) Schematic of the collinear 2DCS setup based on AOMs. AOM: Acousto-Optic Modulator. Relevant energy levels of single atoms (solid
lines) and two atoms (dashed lines) for (b) potassium and (d) rubidium. Two-quantum 2D spectra of (c) a potassium vapor and (e) a rubidium vapor.
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A collinear implementation [5] of optical 2DCS based on acousto-optic modulators (AOMs) was used in our
experiment. As shown in Fig. 1(a), two nested Mach-Zehnder interferometers split a femtosecond pulse into four
pulses (A, B, C and D). Each pulse is phase modulated by an AOM at a slightly different frequency ({4, Qp, Q¢ and
Qp). The pulses arrive at the sample in a sequence and the time delays are controlled by three delay stages. The
generated fluorescence signal is recorded by a photodetector (DET) and a lock-in amplifier. A continuous wave (CW)
laser beam goes through the same optical path and the AOMs. The beating signals of the CW laser between different
arms provide reference frequencies for the lock-in detection. Different reference frequencies are used to extract the
nonlinear signal for different pulse sequences and phase-matching conditions. Multi-quantum coherences can be
generated by the pulse sequence and detected at the corresponding reference frequencies. The double-quantum signal
can be generated and detected at the reference frequency £, = Q4 + Qp — Q¢ — Qp, with each pulse acting once.
This reference frequency can be obtained from REF 3. The output of REF 3 includes all 6 beating frequencies between
any two beams of A, B, C, and D. The beating frequencies 1, — Q and Qg — Q) can be filtered out and mixed to
obtain {)5, by a digital signal processor. Similarly, the three-quantum signal can be generated and detected at the
reference frequency Qg3 = 20, + Qp — 20, — Qp, with pulses C and A4 each acting twice. In general, the reference
frequency for the n-quantum signal is Qg, = (n—1)Q, + Q5 — (n — 1)Q; — Q) and pulses C and A each act
multiple (n — 1) times. Theses reference frequencies can be obtained by digitally filtering and mixing the beating
frequencies provided by REF 3.

Using this setup, we performed two-quantum 2DCS on both K and Rb atomic vapors. Two-quantum coherence
can be created between the ground state and the doubly excited states, as shown in Fig. 1(b) and (d). The resulting two-



quantum 2D spectra are shown in Fig. 2(c) and (e) for K and Rb, respectively. It has been shown [1, 2] that two-
quantum 2D spectra reveal two-atom correlation and interaction. We were able to acquire two-quantum 2D spectra
from low-density atomic vapors in which the mean interatomic separation is 15.8 um or 3.0 X 10°a, for K and 6.1
um or 1.2 X 10%a, for Rb, where a, is the Bohr radius. This result confirms the long-range nature of dipole-dipole
interaction with an effective interaction range up to tens of um. The long-range interaction has implications in
experiments with optical lattices and atom-based quantum simulators since the interaction is not just limited to the
same or nearest sites but also can extend to the sites further away. The experiment in low-density atomic vapors shows
that the technique has a sufficient sensitivity for the number of atoms and density in a typical magneto-optical trap,
opening the possibilities of 2DCS studies in cold atoms and molecules.
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Fig. 2. (a) Experimental multi-quantum 2D spectra resulting from Dicke states of (a) two atoms, (b) three atoms, (c) four atoms, (d) five atoms, (e)
six atoms, and (f) seven atoms in a K vapor. Possible energy levels of multi-atom excited states in each case are shown on the top of 2D spectrum.

Two-quantum 2D spectroscopy can be extended to multi-quantum 2D spectroscopy in which the multi-quantum
coherence between the ground state and a high-lying energy state can be created and detected by a proper excitation
pulse sequence. The multi-quantum coherence can be associated with a collective state of multiple particles, providing
a tool to probe many-body correlations. When two-atom states are considered, the doubled excited states of two atoms
have three states 2D,, D; + D,, and 2D, and the resulting 2D spectrum is shown in Fig. 2(a),

Similarly, multi-quantum 2DCS can create and detect higher order quantum coherence associated with multi-atom
Dicke states. For three K atoms, the triply excited states have four energies, as shown in Fig. 2(b). The resulting three-
quantum 2D spectrum includes six peaks with three-quantum frequencies matching three-atom triply excited states, as
indicated by the horizontal dashed lines with corresponding labels. The emission frequency can be either D, and D,.
For the cases of more K atoms, the corresponding multi-quantum 2D spectra are shown in Fig. 2(c), (d), (e), and (f)
for Dicke states of four, five, six, and seven atoms, respectively. The n-atom excited states have n + 1 energies due to
possible combinations of # atoms each being in either D, or D, states. The spectra display a similar pattern as the ones
for two- and three-atom Dicke states. The multi-quantum frequencies in the vertical direction match energies of the
corresponding multi-atom excited states, while the emission frequencies are D, and D,. The spectra pattern in multi-
quantum 2D spectra is a direct result of n-atom Dicke states. The multi-quantum 2D spectra in Fig. 2 are the observation
of Dicke states consisting of a scalable and deterministic number of atoms up to seven. The Dicke states with a specific
number of atoms can be deterministically selected by using proper multi-quantum 2DCS, allowing possibilities to
study the dependence of many-body properties on the number of atoms.
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