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Abstract: The power method is commonly applied to compute the Perron vector of large adjacency

matrices. Blondel et al. [SIAM Rev. 46, 2004] investigated its performance when the adjacency matrix

has multiple eigenvalues of the same magnitude. It is well known that the Lanczos method typically

requires fewer iterations than the power method to determine eigenvectors with the desired accuracy.

However, the Lanczos method demands more computer storage, which may make it impractical to

apply to very large problems. The present paper adapts the analysis by Blondel et al. to the Lanczos

and restarted Lanczos methods. The restarted methods are found to yield fast convergence and to

require less computer storage than the Lanczos method. Computed examples illustrate the theory

presented. Applications of the Arnoldi method are also discussed.
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1. Introduction

Networks arise in many areas, such as social media, transportation, and chemistry;
see [1,2] for many examples. Networks can be represented by graphs G that are made
up of a set of vertices or nodes V = {vi}

n
i=1 and a set of edges E = {ei}

m
i=1, connecting the

nodes. Two distinct nodes, vi and vj, are said to be adjacent if there is an edge between them.
The analysis of graphs by mathematical and computational methods can provide valuable
information about the networks they model and is receiving considerable attention.

This paper considers networks that can be represented by simple unweighted graphs,
that is, no edge starts and ends at the same node, and there is at most one edge between
each pair of distinct nodes. Extension to weighted simple graphs, in which each edge
has a positive weight, is straightforward. A graph is said to be undirected if every edge
is a “two-way street”; a graph with at least one edge that is a “one-way street” is said
to be directed. A directed edge ek pointing from vertex vi to vertex vj can be identified
with the ordered pair (vi, vj); for an undirected edge, this pair is not ordered. A walk of
length k in a graph is a sequence of k + 1 vertices vi1 , vi2 , . . . , vik+1

and a sequence of k edges
ej1 , ej2 , . . . , ejk , not necessarily distinct, such that ejp

points from vip
to vip+1

in a directed
graph, or connects vip

to vip+1
in an undirected graph, for p = 1, 2, . . . , k. A path is a walk

in which all the nodes are distinct.
An unweighted simple graph G with n nodes can be represented by its adjacency

matrix A = [aij]
n
i,j=1 ∈ R

n×n, where aij = 1 when there is an edge from vertex vi to vertex

vj; otherwise, aij = 0. In particular, aii = 0 for all i. Undirected graphs are associated
with symmetric adjacency matrices, while the adjacency matrix for a directed graph is
non-symmetric. Typically, the number of edges, m, is much smaller than n2. This makes
the adjacency matrix A sparse. An undirected graph is said to be connected if there is a path
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connecting each pair of nodes. A directed graph is referred to as strongly connected if there is
a directed path from vi to vj and vice versa for every pair of distinct nodes. The adjacency
matrix A associated with an undirected graph G is irreducible if and only if G is connected.
Similarly, the adjacency matrix A associated with a directed graph G is irreducible if and
only if G is strongly connected.

A problem of considerable interest in network analysis is the determination of the
most important vertices of a network. The notion of centrality can be used to identify these
vertices. There are many centrality measures available, including degree centrality [1,2],
betweenness centrality [3], hub-and-authority centrality [4], and eigenvector centrality [5].

We are interested in investigating the performance of iterative methods for determin-
ing the eigenvector centrality of vertices belonging to certain structured graphs G with
many nodes n. The eigenvector centrality was introduced by Bonacich for quantifying the
influence a node has in a network [5], beyond its nearest neighbors, in terms of spectral
properties of the associated adjacency matrix. According to the Perron–Frobenius theorem,
the largest eigenvalue, ρ, which is known as the Perron root, of a nonnegative irreducible
matrix A, is unique and has a unique eigenvector w = [w1, w2, . . . , wn]T ∈ R

n (up to
scaling) with positive components wi. This vector is commonly referred to as the Perron
vector of A; see, for example, Meyer ([6] Section 8.3). For notational simplicity, we may
assume that w is scaled so that ‖w‖ = 1. Here and throughout this paper, ‖ · ‖ denotes the
Euclidean vector norm. The eigenvector centrality of the vertex vi is given by the entry wi

of the Perron vector w of the adjacency matrix A. A vertex vi is considered a central, that
is, important, vertex of the graph G if wi is the largest entry of w. This centrality measure
also takes into account the centralities of those nodes to which vi is connected [7].

Blondel et al. [8] investigated the performance of the power method when applied to
determining the Perron vector of a matrix of the form

M =

[
0 A

AT 0

]
∈ R

2n×2n, (1)

where A ∈ R
n×n is the adjacency matrix for a graph G with n nodes, and the superscript T

denotes transposition. M can be interpreted as the adjacency matrix of a bipartite graph
containing 2n vertices partitioned into two disjoint vertex subsets, whose connections are
described by A and occur only across, but not within, the two groups.

There are numerous methods for partitioning the vertex set of a bipartite graph G so
that its adjacency matrix is of the form (1); see [2,9,10] and references therein. The Perron
vector of the matrix (1) is used to determine the hub-and-authority centralities for the
vertices of G [2,4] and its components give similarity scores between graph nodes. These
scores were introduced by Blondel et al. [8]. There are several applications of similarity
scores. These applications lead to the construction of a self-similarity matrix associated
with a graph, which measures how vertices are similar to each other [8]; see [11] for an
application in archaeology of the similarity matrix associated with a bipartite graph and
for an algorithm for solving the seriation problem. The latter is a fundamental ordering
problem that aims at finding the best enumeration order of a set of units so that in the
resulting sequence, elements having higher similarity are placed close to each other.

Given an initial vector z0 ∈ R
2n with positive entries, the power method applied to

the matrix M generates the sequence of vectors

zk =
Mzk−1

‖Mzk−1‖2
, k = 1, 2, . . . . (2)

When applied to a real square matrix with a single largest eigenvalue of maximal
magnitude, the power method is known to determine a sequence of vectors that converge
to the span of the eigenvector associated with this eigenvalue for almost all initial vectors;
see, for example, Saad ([12] Section 4.1). The following result, which highlights the property
of the adjacency matrix of a bipartite graph of having a spectrum symmetric with respect
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to the origin ([13] Theorem 3.14), shows why the application of the power method to the
matrix (1) is not straightforward.

Proposition 1. The matrix (1) has distinct eigenvalues of the largest magnitude.

Proof. Partition the Perron vector x = [xT
1 , xT

2 ]
T ∈ R

2n of the matrix M defined by (1),
where xi ∈ R

n, i = 1, 2. Let λ denote the Perron root of M. Then, Mx = λx implies that

M

[
x1

−x2

]
= −λ

[
x1

−x2

]
.

Thus, the negative Perron root is also an eigenvalue of M.

The presence of more than one eigenvalue of the largest magnitude of M suggests
that the sequence of vectors, z1, z2, z3, . . ., might not converge to the Perron vector. Indeed,
Blondel et al. [8] show that both the limits

lim
k→∞

z2k and lim
k→∞

z2k−1 (3)

exist, but they might not be the same. The limits depend on the initial vector z0 for the
power iteration and none of the limits might be the Perron vector for M. Throughout
this paper, e = [1, 1, . . . , 1]T denotes the vector with all entries 1 of a suitable dimension.
Blondel at al. ([8] Theorem 2) show that when z0 = e/‖e‖, the limit on the left-hand side
of (3) is the Perron vector for M.

An advantage of the power method, when compared to other methods for computing
the Perron vector of a matrix with only nonnegative entries, is that only two vectors, zk

and Mzk, have to be stored simultaneously during the computations. The low storage
requirement may be important for very large matrices; however, convergence of the
power method can also be very slow when there is only one eigenvalue of the largest
magnitude. The rate of convergence decreases with the distance between the Perron root
and the magnitude of the second largest eigenvalue in modulus; see, for example, ([12]
Section 4.1). It is therefore interesting to investigate the convergence properties of methods
that converge faster, such as the Lanczos or restarted Lanczos methods, when applied to
matrices of the form (1) and generalizations thereof. It is the purpose of the present paper
to study the convergence of the Lanczos and restarted Lanczos methods when applied to
the computation of the Perron vector of matrices of the form (1) and some generalizations.
Our analysis is based on results by Blondel et al. [8]. We also discuss the computation
of the Perron vector of structured matrices, somewhat related to the matrix M, and by
application of the Arnoldi method to the submatrix A in (1). These particular matrices
represent graphs with a chained structure that refine the notion of bipartivity [14].

This paper is organized as follows: Section 2 introduces undirected chained graphs.
The adjacency matrix for this kind of graph has a staircase structure, which generalizes
the structure (1). Chained graphs have been shown to be bipartite in [14], which implies
that the eigenvalues of their associated adjacency matrices appear in ± pairs. Section 3
studies the performance of the Lanczos and restarted Lanczos methods when applied
to computing the Perron vector for these and other symmetric adjacency matrices. The
Arnoldi method and its application to estimating the Perron vector for a symmetric matrix
considered by Blondel et al. [8] are described in Section 4. A few computed examples are
presented in Section 5, and Section 6 contains concluding remarks.

2. Undirected Chained Graphs

This section describes ℓ-chained undirected graphs and the structure of their adjacency
matrices. These graphs, which are particular bipartite graphs, were introduced in [14] and
are defined as follows.
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Definition 1. An undirected graph G = {V , E} is said to be ℓi-chained with initial vertex vi if
the set of vertices can be subdivided into ℓi disjoint non-empty subsets

V = V1 ∪ V2 ∪ · · · ∪ Vℓi
,

such that vi ∈ V1, and all vertices in the set Vj, are adjacent only to vertices in the sets Vj−1 or
Vj+1 for j = 2, 3, . . . , ℓi − 1, where the chain length ℓi is the largest number of vertex subsets Vj

with this property. Moreover, the vertices in V1 and Vℓi
are adjacent only to vertices in V2 and

Vℓi−1, respectively. Vertex sets Vj with consecutive indices are said to be adjacent.

Chained graphs arise in various applications; see [8,14,15] and Section 5.
Consider an undirected ℓ-chained graph G = (V , E) with vertex set partitioning

V = V1 ∪ V2 ∪ · · · ∪ Vℓ. Let ni be the cardinality of the vertex subset Vi for i = 1, 2, . . . , ℓ.
Thus, the graph G has n = ∑

ℓ
i=1 ni nodes. Order the vertices vj of G so that the vertices

in Vi precede those in Vi+1 for i = 1, 2, . . . , ℓ − 1, and define the matrix Ai ∈ R
ni×ni+1

that describes the connections between the vertices in Vi and the vertices in Vi+1 for
i = 1, 2, . . . , ℓ − 1. Then, the adjacency matrix M ∈ R

n×n, associated with G, has the
staircase structure

M =




O A1

AT
1 O A2

AT
2

. . .
. . .

. . . O Aℓ−1

AT
ℓ−1 O




. (4)

Theorem 1 ([14]). An ℓ-chained graph is bipartite. Conversely, if a graph is bipartite, then the
graph is ℓ-chained for some ℓ ≥ 2.

From Theorem 1 it follows that, for a suitable permutation matrix P ∈ R
n×n, the

adjacency matrix (4) can be permuted to the form

PMPT =

[
O C

CT O

]
, (5)

with C ∈ R
no×ne , where

no =
⌊(ℓ+1)/2⌋

∑
i=1

n2i−1, ne =
⌊ℓ/2⌋

∑
i=1

n2i.

Here, ⌊α⌋ denotes the integer part of α ≥ 0. The structure (5) is the same as (1). It
follows from Proposition 1 that the adjacency matrix for an ℓ-chained undirected graph
has pairs of eigenvalues of the opposite sign, which include the Perron root.

Example 1. Consider the 3-chained graph with adjacency matrix

M =




O A O

AT O A

O AT O


 ∈ R

3n×3n, (6)

where A ∈ R
n×n. Then

M2 =




AAT O AA

O AT A + AAT O

AT AT O AT A


. (7)
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Introduce the permutation matrix

P =




In O O
O O In

O In O


,

where In ∈ R
n×n is the identity matrix. Then, the matrix C ∈ R

2n×n is defined by

PMPT =




O O A

O O AT

AT A O


 =

[
O C

CT O

]
.

It follows that the ± singular values of C are eigenvalues of M. This yields 2n of the eigenvalues
of M. The remaining n eigenvalues vanish. We will discuss the computation of the Perron vector of
matrices of the form (6), as well as of matrices of the form (4), in the following section.

3. The Lanczos and Restarted Lanczos Methods

This section discusses the application of the Lanczos and restarted Lanczos methods
to the computation of the Perron vector of an undirected connected graph. We first consider
the Lanczos method and subsequently turn to restarted variants.

The Lanczos method reduces a large symmetric matrix to a usually much smaller sym-
metric tridiagonal matrix by computing an orthogonal projection onto a Krylov subspace
of fairly low dimension. It is a commonly used method for determining approximations
of a few large eigenvalues and associated eigenvectors of a large symmetric matrix; see,
for example, [12] for a discussion of this method.

Consider an undirected connected graph G with associated adjacency matrix A ∈
R

n×n. Application of 1 ≤ k ≪ n steps of the Lanczos method to A with initial vector
v ∈ R

n\{0} yields, generically, the Lanczos decomposition

AQk = QkTk + βkqk+1eT
k , (8)

where the columns of the matrix Qk = [q1, q2, . . . , qk] ∈ R
n×k form an orthonormal basis

for the Krylov subspace,

Kk(A, v) = span{v, Av, A2v, . . . , Ak−1v}, k = 1, 2, . . . ,

with q1 = v/‖v‖. Throughout this paper, ek = [0, . . . , 0, 1, 0, . . . , 0]T denotes the kth axis
vector of the suitable dimension. Moreover,

Tk =




α1 β1

β1 α2 β2

. . .
. . .

. . .

βk−2 αk−1 βk−1

βk−1 αk



∈ R

k×k

is a symmetric tridiagonal matrix, the coefficient βk in (8) is positive, and the vector
qk+1 ∈ R

n satisfies QT
k qk+1 = 0 and ‖qk+1‖ = 1. We tacitly assume that the number of

steps k of the Lanczos method is small enough so that the decomposition (8) with the stated
properties exists. This is the generic situation.

Let ρk denote the largest eigenvalue of Tk, and let yk ∈ R
k be an associated unit

eigenvector. Then, ρk and Qkyk are commonly referred to as a Ritz value and a Ritz vector,
respectively, of A.

Theorem 2. Consider an undirected connected graph G with adjacency matrix M ∈ R
n×n. Then,

M is symmetric and nonnegative. Let ρ denote the Perron root of M and let w be the associated
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Perron vector. Apply k steps of the Lanczos method to M with initial vector e = [1, 1, . . . , 1]T ∈ R
n.

This produces the decompositions

MQk = QkTk + βkqk+1eT
k , k = 0, 1, . . . . (9)

Let ρk denote the largest eigenvalue of Tk with the associated Perron vector yk. Then, the Ritz
values ρk converge to the Perron root ρ of M and the Ritz vectors wk = Qkyk converge to w as k
increases. If the Lanczos method breaks down at iteration ℓ, then wℓ is the Perron vector.

Proof. The eigenvectors of M are stationary points of the Rayleigh quotient

r(x) =
xT Mx

xTx
, x ∈ R

n\{0},

and the eigenvalues of M are the values of r(x) at these stationary points. The Perron root
ρ is the maximum value of r(x). The largest eigenvalue of Tk is the maximum value ρk of
r(x) over the k-dimensional Krylov subspace Kk(M, e). It follows that ρk ≤ ρ.

Blondel et al. ([8] Theorem 2) show that, using the initial vector e/‖e‖, the sequence
z2k in (2) generated by the power method converges to the Perron vector w of M. The unit
vector z2k lives in K2k(M, e). Clearly,

zT
2k Mz2k ≤ ρ2k ≤ ρ. (10)

Since the Krylov subspaces Kj(M, e), j = 1, 2, . . . are nested, it follows that

ρ2k−2 ≤ ρ2k−1 ≤ ρ2k. (11)

It is a consequence of the mentioned result by Blondel et al. [8] that the Lanczos
method does not break down until the Perron vector has been determined. Assume, to
the contrary, that the Lanczos method breaks down at step k. Then, the relation (9) is
replaced by

MQk = QkTk,

which shows that the range of Qk forms an invariant subspace of M. This implies that
the vector Mzk, determined by the power method in the next step, lives in the range of
Qk. This would imply that the Perron root of M is the Perron root of Tk, and therefore the
Lanczos method determines the Perron root and Perron vector.

It follows from (10) that ρ2k converges to ρ and, due to (11), the sequence ρj converges

monotonically to ρ (from below) as j increases. Let yj ∈ R
j be the Perron vector of Tj.

Since Tj is an irreducible symmetric tridiagonal matrix, the unit vector yj is uniquely
determined. Then, the associated Ritz vectors wj = Qjyj converge to the Perron vector of
M as j increases. We remark that the Ritz vectors wj so obtained, j ≥ 1, may have small
negative entries. This is of no importance, since we are interested in determining the largest
component(s) of these vectors.

The iterations of the Lanczos method applied to M are terminated as soon as two
consecutive approximations wk−1 and wk of the Perron vector are close enough, that is, as
soon as

‖wk − wk−1‖ ≤ ǫ, (12)

for some user-specified (small) value of ǫ > 0. Note that

‖wk − wk−1‖ = ‖Qkyk − Qk−1yk−1‖ =

∥∥∥∥yk −

[
yk−1

0

]∥∥∥∥.
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Thus, it suffices to choose a k large enough so that

∥∥∥∥yk −

[
yk−1

0

]∥∥∥∥ ≤ ǫ.

The Lanczos iteration is described by Algorithm 1. The algorithm applies the Lanczos
method to a general real symmetric matrix M ∈ R

n×n. In Line 14 of the algorithm, the
symmetric tridiagonal matrix Tk−1 ∈ R

(k−1)×(k−1) is augmented by appending a row and
a column to obtain the new symmetric tridiagonal matrix Tk ∈ R

k×k.

Algorithm 1 Determine the Perron vector of the matrix M by the Lanczos method.

Require: Adjacency matrix M ∈ R
n×n and initial vector e = 1.

Ensure: Approximation w of the Perron vector of M.
1: β0 = 0, q0 = 0, q1 = e

‖e‖
, w0 = 0, k = 1

2: α1 = qT
1 Mq1

3: r = Mq1 − α1q1

4: β1 = ‖r‖
5: q2 = r/β1

6: T1 = α1

7: Q1 = q1, w1 = q1

8: while ‖wk − wk−1‖ > ǫ do
9: k = k + 1

10: αk = qT
k Mqk

11: r = Mqk − αkqk − βk−1qk−1

12: βk = ‖r‖
13: qk+1 = r/βk

14: Tk =

[
Tk−1 βk−1ek−1

βk−1eT
k−1 αk

]

15: Qk = [Qk−1 qk]
16: Compute the Perron vector yk of Tk

17: wk = Qkyk

18: end while
19: w = wk

The following example compares the results of finding the most important vertices of
each vertex subset of an undirected 4-chained graph by the power method and the Lanczos
method with initial vector e. In this comparison, we terminate the iterations with the power
method as soon as two consecutive approximations z2k and z2(k−1) of the Perron vector are
sufficiently close, that is, as soon as

‖z2k − z2(k−1)‖ ≤ ǫ. (13)

Example 2. This example uses the Citeseer Index data set downloaded on June 2007 from the
CiteseerX website [16]. The data set consists of a list of papers with some information such as
authors, journals, and institutions. We extracted an undirected 4-chained network from this data
set. It shows relations between the vertex subsets institutions, authors, papers and journals. The
number of vertices that represent institutions, authors, papers and journals are 20, 58, 26 and 21,
respectively. The power method and the Lanczos method are applied with the stopping criteria (13)
and (12), respectively, with ǫ = 10−4.

Both the power and Lanczos methods identify vertex v1 as the most important university,
vertices v21 and v22 as the most important authors, vertex v81 as the most important paper, and
vertex v108 as the most important journal. The power method terminates the iterations after step
364, while the Lanczos method stops at step 26. Thus, the Lanczos method requires the evaluation of
significantly fewer matrix–vector products with the matrix M than the power method to determine
the most important vertices of each vertex subset.
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Typically, the Lanczos method yields much faster convergence to the Perron vector of
a symmetric nonnegative matrix M than the power method. However, it has the drawback
of requiring storage space for the matrix Qk in (9). The need to store the matrix Qk may
make it difficult to apply the Lanczos method to compute the Perron vector of very large
adjacency matrices. We describe two standard approaches for circumventing this difficulty.
They restart the Lanczos iterations in different ways.

(i) Carry out the Lanczos iterations twice: First generate the tridiagonal matrix Tk for a
suitably chosen k (see below) and discard the columns of the matrix Qk that are not
required by the Lanczos method for determining the next column. Indeed, to compute
column qj+1 for j ≥ 2 only the columns qj and qj−1 are needed. Thus, the storage
demand is modest and bounded independently of the number of Lanczos steps k.
Having computed the Perron vector yk for Tk, we have to evaluate the corresponding
Ritz vector wk = Qkyk. This can be done by regenerating the columns of Qk. Thus, we
determine these columns by applying the recursion formula of the Lanczos method
again and discard the columns qj as soon as their contribution to the Ritz vector wk

have been evaluated. The inner products that determine the nontrivial entries of
Tk do not have to be recomputed. This approach of reducing the storage amount is
straightforward, but it doubles the number of matrix–vector product evaluations with
M. This method is described by Algorithm 2. The iterations are terminated similarly
as in Algorithm 1.

(ii) Restart the Lanczos method, that is, compute an approximation of the Perron vector
every k iteration, and use this approximation as a new initial vector when restarting
the Lanczos iterations. The vector e is used to initialize the very first k Lanczos
steps. The method is restarted until the stopping criterion is satisfied. The storage
requirement of this restarted Lanczos method is limited to essentially the matrix Qk,
independently of the number of iterations that are carried out. However, the rate of
convergence of computed approximations of the Perron vector may be slower than
for the un-restarted Lanczos method. This method is discussed in Theorem 3 below.

Example 3. We applied Algorithm 2 to the adjacency matrix of the 4-chained network described
in Example 2, with ǫ = 10−4. The stopping criterion was satisfied at step 20. The algorithm
determined the same vertices as the standard Lanczos method in Example 2. The main differences
between Algorithm 1 and Algorithm 2 are that the latter requires less computer storage, but more
matrix–vector product evaluations with M (40 vs. 26). The difference in the number of steps required
by Algorithms 1 and 2 depends in part on the different stopping criteria used. In Algorithm 1, the
iterations are terminated when two consecutive Ritz vectors are close enough, while Algorithm 2 is
terminated when two consecutive Ritz values are sufficiently close.

We turn to computing the Perron vector of M by the restarted Lanczos method
described in (ii). This method applies k steps of the Lanczos method to the matrix M
with initial vector e to determine the decomposition (9), and computes the Perron vector
y(1) ∈ R

k of the symmetric tridiagonal matrix Tk in this decomposition. We denote the
Perron root of Tk by ρ(1). Then, Qky(1) is the Ritz vector of M that best approximates
the Perron vector, and ρ(1) is the corresponding Ritz value. The computed Ritz vector
may have negative entries, while the Perron vector of M is known to only have strictly
positive entries. We therefore set all entries of Qky(1) that are smaller than a small δ > 0,
say δ = 10−8, to δ, and refer to the vector so obtained as ẑ(1).
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Algorithm 2 Determine the Perron vector of the matrix M by applying twice the Lanczos
recursions.

Require: Adjacency matrix M ∈ R
n×n and initial vector e = 1.

Ensure: Approximation w of the Perron vector of M.
1: β0 = 0, q1 = e/‖e‖, ρ0 = 0, k = 1
2: α1 = qT

1 Mq1

3: r = Mq1 − α1q1

4: β1 = ‖r‖
5: q0 = q1

6: q1 = r/β1

7: T1 = α1, ρ1 = α1

8: while |ρk − ρk−1| > ǫ do
9: k = k + 1

10: αk = qT
1 Mq1

11: r = Mq1 − αkq1 − βk−1q0

12: βk = ‖r‖
13: q0 = q1

14: q1 = r/βk

15: Tk =

[
Tk−1 βk−1ek−1

βk−1eT
k−1 αk

]

16: Compute the largest eigenvalue ρk of Tk

17: end while
18: Compute the Perron vector yk = [y

(1)
k , y

(2)
k , · · · , y

(k)
k ] of matrix Tk

19: q0 = 0, q1 = e/‖e‖

20: w = y
(1)
k q1

21: for i = 1, . . . , k − 1 do
22: r = Mq1 − αiq1 − βi−1q0

23: q0 = q1

24: q1 = r/βi

25: w = w + y
(i+1)
k q1

26: end for

The vector ẑ(1) is used to determine an improved approximation of the Perron vector
of M. Thus, we apply k steps of the Lanczos method to M with initial vector ẑ(1). This
gives a decomposition analogous to (9). We compute the Perron vector y(2) ∈ R

k and the
Perron root ρ(2) of the symmetric tridiagonal matrix in this decomposition. Proceeding
similarly as described above, we obtain a new approximation of the Perron vector of M.
We denote this approximation by ẑ(2). The latter vector is used as an initial vector for k
steps of the Lanczos method applied to M, which yields a new approximation, ẑ(3), of the
Perron vector and a new approximation ρ(3) of the Perron root of M. This approximate
Perron vector is computed, similarly, as ẑ(2). We determine approximate Perron vectors ẑ(i)

and Perron roots ρ(i) for i = 2, 3, . . ., until two consecutive Perron vector approximations
are sufficiently close, that is, until

‖ẑ(i) − ẑ(i−1)‖ ≤ ǫ, (14)

for a user-supplied tolerance ǫ > 0.
The following result shows that the vectors ẑ(i) converge to the Perron vector of M

when the number of Lanczos steps, k, used to determine ẑ(i) from ẑ(i−1) for i = 2, 3, . . ., is
large enough and the stopping criterion (14) is not applied.

Theorem 3. Let M ∈ R
n×n be the adjacency matrix of an undirected connected graph G , and let ρ

and w denote the Perron root and Perron vector of M, respectively. Apply the restarted Lanczos
method described above with initial vector e and without the stopping criterion (14). If the number
of Lanczos steps between restarts, k, is large enough, then the computed sequence ẑ(i), i = 1, 2, . . .,
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of approximations of the Perron vector converges to w as i increases. Similarly, the computed
sequence ρ(i) for i = 1, 2, . . ., of approximations of the Perron root ρ, converges to ρ as i increases.

Proof. Blondel et al. ([8] Theorem 2) show that, given a strictly positive initial vector, the
sequence z2k, k = 1, 2, . . ., in Equation (2) generated by the power method, converges to
the Perron vector of M. It follows that Theorem 2 also holds when the initial vector e is
replaced by any vector with all entries being strictly positive. In particular, Theorem 2
holds for all the initial vectors ẑ(i), i = 0, 1, 2, . . ., used in the restarted Lanczos method. Let
us set ẑ(0) = e.

The Ritz value ρ(i), determined by the restarted Lanczos method, satisfies

ρ(i) = max
x∈Kk(M,ẑ(i−1))

xT Mx

xTx
.

It follows that, unless ẑ(i−1) is a stationary point of the Rayleigh quotient, ρ(i) > ρ(i−1).
According to Theorem 2, the vector ẑ(i−1) can be a stationary point only if it is the Perron
vector. Thus, we may assume that ρ(i) > ρ(i−1).

The vector ẑ(i) used in the next restart is not the Ritz vector of M that corresponds
to the Rayleigh quotient ρ(i), because all entries smaller than some tiny δ > 0 in this Ritz
vector are set to δ. This means that the Rayleigh quotient

ρ
(i)
mod =

(ẑ(i−1))T Mẑ(i−1)

(ẑ(i−1))T ẑ(i−1)

may be smaller than ρ(i). We have to choose the number of Lanczos steps between restarts,

k, large enough so that ρ
(i)
mod is significantly larger than ρ(i−1) for every i. This secures the

convergence of the vectors ẑ(i) to the Perron vector w of M as i increases.

Example 4. We apply the restarted Lanczos method to the same adjacency matrix M as in
Example 2 to compute its Perron vector and to identify the most important vertices of the as-
sociated graph. We let ǫ = 10−4 in (14) and carry out k = 10 steps of the Lanczos method between
restarts. All entries smaller than δ = 10−8 in the Ritz vectors of M associated with the Perron roots
of consecutively generated symmetric tridiagonal matrices are set to δ. For the present example, the
restarted Lanczos method requires seven restarts, thus, 70 matrix–vector product evaluations are
carried out. The computational load is larger than for Algorithm 1, but the storage requirement of
the restarted method is smaller and is independent of the number of restarts necessary.

4. The Arnoldi Method

The Arnoldi method can be applied to compute approximations of a few eigenvalues
and associated eigenvectors of a large non-symmetric matrix A ∈ R

n×n. We will describe a
novel application to the computation of the Perron vector of a large symmetric matrix. A
thorough discussion of the Arnoldi method and its properties is provided by Saad ([12]
Chapter 6). Here, we only provide a brief outline.

The application of 1 ≤ k ≪ n steps of the Arnoldi method applied to a large matrix
A ∈ R

n×n with initial vector v ∈ R
n\{0} gives, generically, the Arnoldi decomposition

AQk = Qk Hk + hk+1,kqk+1eT
k , (15)

where

Hk =




h11 h12 h13 · · · h1k

h21 h22 h23 · · · h2k

h321 h33 · · · h3k

. . .
. . .

...
hk,k−1 hkk



∈ R

k×k
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is an upper Hessenberg matrix with positive subdiagonal entries, the matrix Qk ∈ R
n×k

has orthonormal columns, qk+1 ∈ R
n is a unit vector such that QT

k qk+1 = 0, and hk+1,k is a
nonnegative scalar. Each step of the Arnoldi method requires the evaluation of one matrix
vector product with A. The decomposition (15) exists, provided that the Arnoldi method,
outlined in Algorithm 3, does not break down because of a division by zero. This situation
is very rare; we therefore will not dwell on it further.

Let ρk denote the largest eigenvalue of Hk, and let yk ∈ R
k be an associated unit

eigenvector. Then, ρk and wk = Qkyk are the corresponding Ritz value and Ritz vector of A,
respectively. The iterations with the Arnoldi method are terminated when two consecutive
approximations of the Perron vector are sufficiently close, that is, when

‖wk − wk−1‖ ≤ ǫ

for some user-specified tolerance ǫ > 0. Algorithm 3 describes the Arnoldi method with
initial vector e.

Algorithm 3 Estimate the Perron vector of matrix A with the Arnoldi method with initial
vector e.

Require: Adjacency matrix A ∈ R
n×n and initial vector e = 1.

Ensure: Ritz vector wk of the adjacency matrix A.
1: q1 = e/‖e‖, w0 = 0, k = 1
2: h11 = qT

1 Aq1

3: r = Aq1 − h11q1

4: h21 = ‖r‖
5: q2 = r/h21

6: H1 = h11

7: Q1 = q1, w1 = q1

8: while ‖wk − wk−1‖ > ǫ do
9: k = k + 1

10: r = Aqk

11: for i = 1, 2, . . . , k do
12: hik = qT

i r
13: r = r − hikqi

14: end for
15: hk+1,k = ‖r‖
16: qk+1 = r/hk+1,k

17: Hk =

[
Hk−1 {hik}

k−1
i=1

hk,k−1eT
k−1 hk,k

]

18: Qk = [Qk−1 qk]
19: Compute the Perron vector yk of Hk

20: wk = Qkyk

21: end while
22: w = wk

Blondel et al. consider the computation of the Perron vector of the central block

C = AT A + AAT (16)

of the matrix (7), where the matrix A ∈ R
n×n may be non-symmetric; see [8] Theorem 6.

One approach is to apply the Lanczos method to C. Then, each iteration requires the
evaluation of two matrix–vector products with A and two with AT . We will compare this
approach to the application of k steps of the Arnoldi method to A.

The Arnoldi decomposition suggests the approximation A ≈ Qk HkQT
k , from which

we obtain
AT A + AAT ≈ Qk(HT

k Hk + Hk HT
k )Q

T
k . (17)
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Let ρk be the largest eigenvalue of HT
k Hk + Hk HT

k and let yk be the associated Perron
vector. Then, the vector wk = Qkyk provides an approximation of the Perron vector of the
matrix AT A + AAT . The main advantage of using this approximation, when compared
to the application of the Lanczos method to the matrix (16), is that the computation of
the approximation (17) only requires the evaluation of k matrix–vector products with A,
while the computation of k steps of the Lanczos method to the matrix (16) demands the
evaluation of 4k matrix–vector products with A or AT . For many matrices A, the right-hand
side of (17) gives an accurate approximation of the Perron vector for a few Arnoldi steps.
We provide an illustration below. However, the use of (17) is not always beneficial as the
next example shows.

Example 5. Let A ∈ R
n×n be a Jordan block with the eigenvalue zero. Then, A is an adjacency

matrix associated with a simple directed graph. The graph and the matrix are displayed in Figure 1.

v1 v2 vn−1 vn A =




0 1
0 1

0 1
. . .

. . .

0 1
0




.

Figure 1. A directed graph G and its adjacency matrix A.

The Perron root of A is 0, with Perron vector e1 = [1, 0, . . . , 0]T . When applying the Arnoldi
method to A with initial vector e, the k-dimensional Krylov subspace Kk(A, e) is spanned by the
first k vectors of

Kn(A, e) = span{e, Ae, A2e, . . . , An−1e} = span








1
1
...
1
1




,




1
1
...
1
0




, . . . ,




1
0
...
0
0








.

In particular, the Perron vector is not contained in the subspaces Kk(A, e) for k = 1, 2, . . . , n− 1.
This implies that one has to carry out n steps with the Arnoldi algorithm to determine an accurate
approximation of the Perron vector of A. For the present matrix A, Formula (17) requires n steps of
the Arnoldi algorithm applied to A to give an accurate approximation of a Perron vector of (16).

We turn to the spectral factorization of the matrix (16). This matrix is diagonal with eigenvalue
2 of multiplicity n − 2. The corresponding eigenvectors form the eigenspace

span{e2, e3, . . . , en−1}.

Example 6. Let A ∈ R
n×n represent the adjacency matrix of a directed circular graph. The

adjacency matrix and the associated graph are displayed in Figure 2.

v1

v2 v3

· · ·

vn−1vn

A =




0 1
0 1

0 1
. . .

. . .

0 1
1 0




.

Figure 2. A directed circular graph G and its adjacency matrix A.
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In this example, the matrix (16) is diagonal, with Perron root 2 of multiplicity n. In particular,
the vector e is a Perron vector. Application of one step of the Arnoldi algorithm to the the circulant
matrix A with initial vector e yields the eigenvector e. Thus, the Arnoldi algorithm performs well.

Example 7. Consider the up-shift matrix on the right-hand side of Figure 1 of order 1000.
By adding the perturbation γ = 10−3 to the entry (1000, 1), we obtain an adjacency matrix A that
represents a weighted directed circular graph. Thus, the graph is strongly connected. The associated
matrix (16) is diagonal with Perron root 2 with eigenspace span{e2, e3, . . . , en−1}. When applying
the Arnoldi algorithm to A with initial vector e, 1000 steps are required to approximate the Perron
vector. In this case, the Arnoldi algorithm performs poorly.

We conclude that the Arnoldi method may not provide useful approximations of
the Perron vector of certain non-symmetric adjacency matrices A in a reasonable number
of steps. The application of the Arnoldi method to A to compute the Perron vector of
the matrix (16) can be competitive with the application of the Lanczos method to the
latter matrix, but this is not guaranteed. The closer the adjacency matrix A is to the set
of symmetric matrices, the better the Arnoldi method, applied to A, can be expected
to perform.

5. Application to Real World Networks

In this section, we apply the iterative methods discussed in this paper to the computa-
tion of the Perron vector of large real-world networks, and compare the results obtained.

We start by analyzing a particular 3-chained network and seek to determine the most
important vertices of each index subset according to the eigenvector centrality. Some
social bookmarking services, such as Delicious, allow their users to put tags on web pages.
The relationship between users, web pages and tags, can be represented by a 3-chained
network [15]. A data set of Delicious bookmarks, which contains 105,000 bookmarks and
1867 users, is available at the Grouplens web site [17]. We selected data from January
2010 to February 2010 and constructed a 3-chained graph G with the three vertex subsets:
456 users, 4253 web pages, and 5962 tags. The total numbers of vertices and edges are
10,671 and 23,550 respectively. The 3-chained network is undirected and represented by
the adjacency matrix M ∈ R

10671×10671.
We used the power method, Lanczos iteration, and restarted the Lanczos iteration

to estimate the Perron vector of M and to find the most important vertices of each vertex
subset. Denote the computed approximations of the Perron vectors of M, obtained by
applying the methods mentioned, by sP, sL, and sRL, respectively. Let the initial vector be e

and the tolerance be 10−10 for all the methods. To estimate the accuracy of the methods, we
consider as exact the principal eigenvector sexact of M computed by the built-in function
eigs from MATLAB.

Before determining the most important vertices, we first check the accuracy of the
approximations of the Perron vector of M computed by the above mentioned methods.
We calculate the error, that is, the 2-norm of the difference between each computed ap-
proximation of the Perron vector and sexact. The errors of the estimated Perron vectors
are 0.3461 for the power method 3.22 × 10−5 for Lanczos iteration, and 6.69 × 10−8 for
restarted Lanczos iteration. From the errors, we observe that the Ritz vector obtained from
the restarted Lanczos method is the most accurate estimator. The Ritz vector from the
Lanczos algorithm is moderately accurate, while the vector found by the power method is
fairly different from the exact Perron vector sexact.

Let us now look at the performances of each method for finding the most important
vertices in the three subsets “users”, “web pages” and “tags”. The results determined
by the above methods and the number of iterations required are displayed in Table 1.
The most important vertices determined by sexact are displayed in the “Built-in” column.
All of the methods identify the vertices v142, v1368 and v4796 as the most important user,
web page and tag, respectively. The last row, “iterations”, shows that the standard Lanczos
method requires 17 matrix–vector product evaluations with A. For the restarted Lanczos,
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labeled ResLanc, 10 Lanczos steps are performed between each restart. Thus, it requires
in this case 30 matrix–vector products. The power method requires the largest number of
matrix–vector products. The rate of convergence of the approximation of the Perron vector
of M computed by the Lanczos method is faster than those of the other two methods. The
Ritz vector of the restarted Lanczos iteration converges more slowly but the computations
require less storage space.

Table 1. The most important vertices found by the methods discussed for each vertex set, and the

number of iterations required by each method.

Built-In Power Lanczos ResLanc10

“users” 142 142 142 142
“web pages” 1368 1368 1368 1368

“tags” 4796 4796 4796 4796
iterations 34 17 3

To better understand the numerical performance of the methods, we applied them to
six undirected networks of different sizes. They are listed, together with their number of
nodes, in the first column of Table 2:

autobahn describes the German highway system network; it is available at [18].
ndyeast models the protein interaction network for yeast. The data set was originally

included in the Notre Dame Networks Database and is available at [19].
power is a representation of the U.S.A. western states power grid; see [20]. It can be

found at [21].
geom is a weighted graph, extracted from the Computational Geometry Database

geombib by B. Jones (version 2002) and is available at [19]. The entry (i, j) of the
adjacency matrix is the number of papers coauthored by authors i and j.

internet is a snapshot of the structure of the Internet at the level of autonomous systems,
created by Mark Newman from data for 22 July 2006 [21].

facebook describes the friendship links of the New Orleans Facebook network resulting
from a particular snapshot. The dataset was studied in [22] and is available
at [23].

Table 2 displays the number of matrix–vector product evaluations carried out by the
methods considered to reach convergence. We also report the results obtained for the
delicious network for comparison. The label Lanczos2 denotes the results obtained by
Algorithm 2, that is, by applying the Lanczos recursion twice to save storage space. In
this case, the number of matrix–vector product evaluations is roughly twice the number
of iterations required by the standard algorithm (Algorithm 1) if the stopping criterion
is adjusted to produce the same accuracy in the approximation of the Perron vector. The
restarted Lanczos method (ResLanc) was executed with both ten and five iterations between
each restart, so the number of matrix–vector product evaluations is obtained by multiplying
the number of iterations by ten and five, respectively. For the other methods, the number of
matrix–vector product evaluations coincides with the number of iterations. Table 3 reports
the 2-norm errors for each method. The Perron vector returned by the function eigs of
MATLAB is considered the exact vector.

Table 2. Number of matrix–vector product evaluations required by the methods to reach convergence.

Network Size Power Lanczos Lanczos2 ResLanc10 ResLanc5

autobahn 1168 163 29 53 60 85
ndyeast 2114 1029 27 53 60 80
power 4941 49 18 35 30 35
geom 7343 19 11 23 20 20
delicious 10,671 35 17 33 30 30
internet 22,963 35 12 25 30 25
facebook 63,731 41 13 27 30 25
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Table 3. Errors produced by the methods with respect to the Perron vector computed by the eigs

function of MATLAB.

Network Size Power Lanczos Lanczos2 ResLanc10 ResLanc5

autobahn 1168 1.09× 10−3 7.62× 10−5 2.42× 10−4 9.60 × 10−6 7.46× 10−5

ndyeast 2114 1.47× 10−2 7.96× 10−5 7.96× 10−5 2.37 × 10−6 7.59× 10−5

power 4941 2.76× 10−4 3.66× 10−5 3.66× 10−5 9.77 × 10−8 8.18× 10−6

geom 7343 1.66× 10−5 6.53× 10−6 1.28× 10−6 2.60 × 10−10 5.10× 10−8

delicious 10,671 3.46× 10−1 3.22× 10−5 3.22× 10−5 6.73 × 10−8 5.42× 10−6

internet 22,963 6.77× 10−5 3.15× 10−5 8.97× 10−6 1.51 × 10−11 2.36× 10−7

facebook 63,731 9.74× 10−5 2.37× 10−5 6.86× 10−6 2.38 × 10−10 1.05× 10−6

We see that the power method requires more iterations than the Lanczos algorithm
(Algorithm 1) and delivers approximations of the Perron vector of worse accuracy. Ap-
plying the Lanczos method twice by Algorithm 2 saves storage but results in a heavier
computational load in order to produce the same accuracy of the computed approxima-
tion of the Perron vector. The restarted Lanczos approach has the remarkable feature of
requiring the same number of matrix products when it is executed, performing ten and five
iterations between consecutive restarts. This means that just a few iterations are sufficient
to guarantee convergence. The computer storage requirement is much smaller than for the
Lanczos method. The errors in the computed approximations of the Perron vector achieved
by the restarted Lanczos method are smaller than the errors obtained with the Lanczos
methods (Algorithms 1 and 2). Table 2 indicates that the restarted Lanczos method can
be competitive.

6. Conclusions

This paper compares the computational effort and storage requirements of the power
method, Lanczos method, and the restarted Lanczos method to determine the Perron vector
for a large symmetric adjacency matrix. The application of the Arnoldi iteration is also
considered. The power method yields quite a slow convergence, much slower than that of
the Lanczos method. However, due to its large storage requirement for large adjacency
matrices, the latter method is not practical to use for large-scale networks. Different ways of
restarting the Lanczos iterations are considered and found to combine faster convergence
than the power method with less storage requirement than the Lanczos method.
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