
AI Playground: Unreal Engine-based Data
Ablation Tool for Deep Learning

Mehdi Mousavi1r0000´0001´8948´8011s, Aashis Khanal1r0000´0002´0164´2465s, and
Rolando Estrada1r0000´0003´1607´2618s

Department of Computer Science, Georgia State University, Atlanta GA 30303, USA
{smousavi2,akhanal1}@student.gsu.com, restrada1@gsu.edu

Abstract. Machine learning requires data, but acquiring and labeling
real-world data is challenging, expensive, and time-consuming. More im-
portantly, it is nearly impossible to alter real data post-acquisition (e.g.,
change the illumination of a room), making it very difficult to measure
how specific properties of the data affect performance. In this paper, we
present AI Playground (AIP), an open-source, Unreal Engine-based tool
for generating and labeling virtual image data. With AIP, it is trivial to
capture the same image under different conditions (e.g., fidelity, light-
ing, etc.) and with different ground truths (e.g., depth or surface normal
values). AIP is easily extendable and can be used with or without code.
To validate our proposed tool, we generated eight datasets of otherwise
identical but varying lighting and fidelity conditions. We then trained
deep neural networks to predict (1) depth values, (2) surface normals,
or (3) object labels and assessed each network’s intra- and cross-dataset
performance. Among other insights, we verified that sensitivity to dif-
ferent settings is problem-dependent. We confirmed the findings of other
studies that segmentation models are very sensitive to fidelity, but we
also found that they are just as sensitive to lighting. In contrast, depth
and normal estimation models seem to be less sensitive to fidelity or light-
ing and more sensitive to the structure of the image. Finally, we tested
our trained depth-estimation networks on two real-world datasets and
obtained results comparable to training on real data alone, confirming
that our virtual environments are realistic enough for real-world tasks.

Keywords: Synthetic data · Deep learning · Virtual environment

1 Introduction

The remarkable success of deep learning in recent years would not have been pos-
sible without large, high-quality datasets [8]. Deep neural networks have thou-
sands or even millions of parameters, which require vast numbers of training
examples to tune. However, producing a high-quality dataset of real data is very
challenging. First, one has to acquire the raw data, an often laborious task. Sec-
ond, the training data must either be labeled manually—which is slow, subjective

ar
X

iv
:2

00
7.

06
15

3v
1

 [c
s.C

V
]

13
 Ju

l 2
02

0

2 M. Mousavi et al.

Fig. 1: Virtual environments: Sample screenshots from our annotated virtual
environments. From left to right: depth, surface normals, and semantic labels

and may require significant expertise—or with expensive, specialized equipment.
Finally, errors can occur in both the acquisition and labeling phases.

Real data also has an additional, more subtle limitation: it is very difficult
to control before acquisition and nearly impossible to change afterwards. For
instance, once an image has been taken, one cannot change its illumination from
day to night or replace one object for another1. The only way to achieve these
effects is by manipulating the source of the data before acquisition; however,
this approach requires a controlled environment and precise measurements. For
example, to change the color of a couch one would need to swap out two otherwise
identical couches and place them in the same, exact location. Aside from its
difficulty, this approach is not feasible for natural scenes or crowd-sourced data.

The above limitation makes it is very difficult to isolate the impact of indi-
vidual features on a system’s performance. For example, imagine that we want
to assess how an object’s texture affects our system’s ability to segment it. In
this case, we would need to compare our system’s output across different objects
and hope that the impact of other features, e.g., lighting or shape, cancels out
across the samples. As such, data ablation studies are rare in machine learning.
Most ablation analyses add/remove either (1) components of the model [10] or
(2) secondary features computed from the data [9]. The latter is close in spirit
to data ablation but is more limited, since secondary features are dependent on
the raw, unchangeable data.

To address this gap, we developed AI Playground, a user-friendly tool based
on the Unreal Engine (Epic Games, USA) [4] that supports data ablation studies
in computer vision.2 Our system allows researchers to easily capture synthetic
data from fully customizable virtual environments; this data can then be used
to train or test an AI system. Virtual data is free from acquisition errors or
labeling bias and is ideal for the data ablation studies discussed above, e.g., cap-
turing the same image under multiple lighting conditions. More importantly, as

1 Photo-manipulation techniques can be used to alter images, but their effects are
either non-specific (e.g., reducing brightness) or introduce unwanted artifacts. They
also require significant human effort.

2 Source code, documentation, supplementary images, and high-definition figures are
available on our GitHub page: https://git.io/JJkhQ

https://git.io/JJkhQ

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning 3

Fig. 2: AI Playground: Our tool has two main modules: the AIP Core within
UE4 and Probe, a Python module that communicates with the Core. Probe
receives instructions generated by the Command module, and saves its state in
its own dedicated memory. This allows changing settings inside the engine while
AIP is running. Manually changing components is also possible via the GUI.

our experiments confirm, today’s high-resolution computer graphics are realistic
enough to be used for training deep neural networks on real-world tasks.

As we detail in Sec. 3, AI Playground is an open-source UE project with
four main components: (1) a set of high-resolution environments; (2) multiple
ground-truth annotations (e.g., depth, surface normals, etc.); (3) built-in tools
for data ablation (e.g., for adjusting lighting, polygon resolution, etc.); and (4) a
user-friendly, graphical interface. Users can either run our system as a pre-built
application or import it as a regular UE project. In the latter case, users can
extend their local version of AIPlayground or copy parts of it (e.g., scripts) for
use in their own projects. It is easy to add custom environments or ground-truth
annotations without writing any code. And we provide sample code and the
necessary documentation to add new forms of data ablation to AIPlayground.
Figure 2 provides a flowchart of our tool.

To validate its usefulness, we used AIP to carry out a series of data abla-
tion studies. As detailed in Sec. 4, we trained and tested deep networks on (1)
monocular depth estimation, (2) surface normal estimation, and (3) semantic
segmentation. AIP allowed us to draw novel insights about feature importance
(Sec. 5), and we also confirmed that networks trained on depth estimation via
AI Playground achieve good performance on real-world datasets.

2 Related Work

Data-hungry models like DCNN (Deep Convolutional Neural Networks) have
generated newfound interest in virtual data [5, 6, 13]. One popular approach is
to use modded old video games (e.g., Atari games [11]). However, this approach
lacks customizability and photo-realism. This data cannot be customized to fit
a more specific problem and using old video games introduces a lack of photo-
realism that has been proven beneficial for virtual data [10, 18]. In contrast,
Veeravasarapu et al. [18] used probabilistic generative models to create random
environments in Blender (Blender Foundation, The Netherlands) [2]. However,

4 M. Mousavi et al.

these probabilistic models need to be manually adapted for each type of desired
environment. For example, the probabilistic model of an outdoor street scene
varies significantly from one of an interior environment. Also, while randomness
is useful for quickly creating novel environments, these environments may not
be faithful to reality. For example, a random probabilistic model might decide
to put a couch on a table, which never happens in the real world. Furthermore,
depending on hardware, rendering an image in Blender using ray-tracing can
take up to a minute or more; the same level of fidelity can be achieved in game
engines in real-time. As mentioned in [18], generating a Path-traced image in
Blender takes up to 9 minutes (547 seconds), and ray-tracing based rendering
for a single image can take 20 seconds or more.

In another study, researchers used 3D reconstruction to generate a photo-
realistic 3D scene that allows limited interaction such as walking around [15].
This method requires expensive equipment and complex calculations to generate
the pixel-wise ground-truth for tasks like depth estimation and surface normal
estimation. The generated ground-truth and 3D environment are subject to ar-
tifacts and estimation errors appearing as black spots in the images. Also, these
environments are extremely hard to expand as they require costly specialized
equipment for measurement.

The work most similar to our proposed system is UnrealCV—an Unreal En-
gine 4 (UE4) plugin that has been used in a number of research projects. Unre-
alCV provides an interface to communicate with the Unreal Engine for computer
vision and robotics research [19]. However, UnrealCV requires command-line-
based interaction and C++ coding. As such, it has a high barrier of entry and
can be discouraging for computer vision researchers who are unfamiliar with
game engines. It also lacks intuitive dials and knobs for dynamic interaction
with the environment. More importantly, it is not built for data ablation; any
systematic changes in fidelity, lighting, etc. have to be coded from scratch by
the researcher.

In contrast, our goal is to reduce the skill level need to obtain virtual pixel-
perfect data. Our approach is accessible, user-friendly, and has many intuitive
ways to interact with the environment. We use the high quality renderer in-
tegrated in Unreal Engine to produce lifelike synthetic images, and AIP does
not require any knowledge of UE4 programming. As we detail in the following
section, our companion Python module (Probe) communicates with the UE4
application to control the environment and take samples while keeping a record
of every step for image re-creation.

3 AIPlayground

AIPlayground is a UE4-based tool for data ablation studies in computer vision.
Unreal Engine is the engine of choice for video games with high-resolution, real-
time 3D graphics. It is free for both commercial and non-commercial use and its
source code is publicly available (though not fully open source). As illustrated
in Fig. 2, our system has four components: (1) high-resolution 3D environments;

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning 5

Fig. 3: Sample images captured by Probe. Left to right: Brown Room Day, Brown
Room Night, Blue Room Day, Blue Room Night (All high settings)

(2) multiple ground-truth annotations; (3) data ablation controls; and (4) a
user-friendly, graphical interface. As we discuss further below, we use Blueprint,
Unreal’s visual scripting language, for the ground-truth annotations and data
ablation controls. We use a separate Python interaction module—Probe—for
data collection, which is also publicly available.

3.1 Three-dimensional environments

In addition to being a game engine, Unreal Engine provides powerful tools for re-
alistic architectural visualization. As such, we developed two environments based
on UE4’s built-in ”Realistic Rendering” scene, dubbed Brown Room and Blue
Room in our experiments. Each environment has two general lighting profiles,
Day and Night, as illustrated in Fig. 3. To mimic existing real-world datasets,
the environments are static (i.e., no movement of the components aside from the
probe character). AIP currently uses static (i.e., baked) lighting to illuminate the
scene. Baking light-maps is a commonly used method to simulate high-fidelity
lighting on lower-capacity hardware. It uses ray-tracing to determine dark and
light spots in the scene and paints the textures on those areas to look accordingly.
The result is a very realistic environment that is rendered rapidly with little to
no extra computation required at run-time. This means AIP supports very high
frame-rates, which allow for fast data acquisition. We can switch between differ-
ent ground-truth annotations in fractions of a second without causing artifacts
such as blur, fuzziness on the edges, or motion-blur.

3.2 Ground-truth annotations

One of the main advantages of virtual environments is that obtaining ground-
truth annotations is trivial relative to real-world environments. Specifically, we
use Unreal Blueprint (an internal scripting language) to calculate the ground-
truth properties listed below. AIP includes Blueprint scripts for estimating depth,
surface normals, and object classes, and can be readily extended by adding addi-
tional scripts. We use post-processing shaders, called materials in UE4, to over-
lay these properties over the image, enabling pixel-perfect alignment between
the data and the ground-truth labels (see Fig. 1 for examples).

6 M. Mousavi et al.

Fig. 4: Depth estimation: AIP uses perspective projection (first row), which
is more accurate than orthographic projection (second row). The third column
uses color banding to highlight the differences between these two approaches.
The bottom rows show examples from the DIODE and NYUv2 datasets. Note
the lack of artifacts in the virtual ground truth.

Depth estimation: We calculate the normalized distance between each pixel
that belongs to a specific object and the camera. We set the real-life range of
depth to 10 meters, which covers the entire environment and does not clip be-
tween any corners of the room. We define the depth using perspective projection
relative to the viewer’s POV, which is significantly more accurate than ortho-
graphic methods. In perspective depth, each light ray is traced to the exact pixel
from the object its coming from; in orthographic depth, on the other hand, light-
rays are assumed to be coming from infinity (see Fig. 4). In real-world datasets,
e.g., NYUv2 [12] and DIODE [16], depth is registered based on orthographic
projection because of physical limitations in the sensor.

Surface normals: We estimate the normal vector w.r.t to each 3D surface, then
color each pixel to indicate the vector’s direction. We use 6 main colors to show
6 axis of direction (positive and negative xyz, as shown in Fig. 1).

Semantic segmentation: In UE4, it is easy to map visible pixels to their
corresponding 3D objects. Our Blueprint script uses this mapping to overlay
pixel-perfect semantic labels on the various objects in the scene (e.g., couch,
table, lamp, etc.).

3.3 Data ablation controls

Similar to the ground-truth, we use Blueprint to dynamically alter properties
of the environment. We can access and isolate specific properties in different

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning 7

Fig. 5: Fidelity Comparison: Left: Day(High Fidelity), Right: Night(High Fi-
delity). Each image snippet of Low Fidelity indicates the difference in Texture
resolution, Reflections quality, Render Scaling and Shadow quality. The amount
of change in each of these settings is customizable through AIP’s Core.

objects. For example, we can isolate metallic objects or rough surfaces with a
pixel-perfect binary ground truth. We can also change the fidelity of reflections,
lighting, mesh level of detail (LOD), render resolution (either localized to an
object or globally), anti-aliasing algorithms (or toggle on and off), or render
scaling. Figure 5 illustrates the same scene rendered under different fidelity set-
tings. Our scripts are reusable, in the sense that they do not require adaptation
to other environments and are also easily portable to other UE projects.

3.4 User interface

The AIP Core can be opened as a project in UE4, giving access to all its assets
and scripts. Alternatively, we provide a pre-compiled version which can be run as
an independent program. AIP has intuitive user menus and keyboard shortcuts.
Our Python Probe script uses the latter to collect data (see Sec. 4 for details).

Table 1: Scenarios used in experimentsa

Default Settings
Maps Lighting Fidelity Anti-Aliasing

Brown Room Day High Temporal AA

Brown Room Night High Temporal AA

Brown Room Day Low Temporal AA

Brown Room Night Low Temporal AA

Blue Room Day High Temporal AA

Blue Room Night High Temporal AA

Blue Room Day Low Temporal AA

Blue Room Night Low Temporal AA

Abstract Shapes Day High Temporal AA

Unlitb Brown Room N/A High Temporal AA

Unlit Blue Room N/A High Temporal AA
ashows settings used, not indicative of all settings available.bdiffuse shading.

4 Experiments and Results

We carried out multiple experiments to validate the usefulness of our proposed
system. Specifically, we tested AIP in two ways. First, we verified its viability

8 M. Mousavi et al.

Fig. 6: Sample results: Sample images, ground truth, and predictions for se-
mantic segmentation (first three columns), depth estimation (middle columns),
and surface normal estimation (last three columns). Figure best viewed onscreen.

as a data ablation tool. As we detail below, we captured the same images under
different fidelity and lighting settings (which we refer to as a scenario), then
trained deep neural networks on each scenario to assess the impact of the various
environmental features. We carried out both same- and cross-scenario testing
(e.g., a Brown/Day/High network on Brown/Night/High). Table 1 summarizes
the scenarios used. For each scenario, we tested our networks on (1) monocular
depth and (2) surface normal estimation, as well as (3) semantic segmentation.

Second, to validate that our virtual data is realistic enough, we tested net-
works trained with AIP on real-world depth-estimation datasets, achieving re-
sults comparable to training on real data alone. Below, we first detail our exper-
imental setup, then discuss each experiment.

4.1 Experimental Setup

Hardware: We conducted all our experiments in a Dell Precision 7920R server
with two Intel Xeon Silver 4110 CPUs, two GeForce GTX 1080 Ti graphics
cards, and 128 GBs of RAM.

Image acquisition: Our Probe script can control the viewpoint by simulating
keystrokes. It can move and look freely (yaw and pitch) in the environment.
Probe can also send specific commands and can gather images with high overlap
(in groups) or low overlap (completely random). Probe’s step size, look sensitiv-
ity, randomness of image acquisition (group capture), and number of images to
gather are all customizable and can be saved for reproduction across all different
scenarios. For our depth estimation experiments, we randomly collected 8265,
640ˆ480 synthetic color images. We collected the same images, by replicating
the same camera positions and rotations, across different lighting and fidelity
scenarios (Tbl. 2). We split these images into 80% for training, and 20% for
testing. Similarly, for semantic segmentation and surface normal estimation, we
gathered 3000 images for each scenario and split in the same ratio.

Deep neural networks: We used the encoder-decoder architecture, and loss
function from [12] for depth estimation, and an implementation of U-net [14] from
[7] for surface normal estimation and semantic segmentation. We use smooth L1
loss function for Surface Normal Estimation, and Cross-Entropy loss for segmen-
tation task. We use a mini-batch size of 16, learning rate of 0.001, and trained
for 51 epochs for all experiments.

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning 9

Table 2: Depth estimation: Data ablation test results. Metrics are threshold
accuracy (δi ă 1.25i), average relative error (REL), root mean squared error
(RMS), and average (log10) error. Arrows indicate if higher or lower values are
better. For space, we included only some of the conducted experiments; results
shown are indicative of the behavior of the trained models in other scenarios.
SC: Sanity Check. L: Change in Lighting. M: Change in Maps. F: Positive
Change in Fidelity
Training Scenario / Fidelity Test / Fidelity Goal δ1 Ò δ2 Ò δ3 Ò RELÓ RMSÓ log10Ó

Brown / Day / High Brown/ Day / High SC 0.7992 0.9113 0.9474 0.1426 0.0278 0.0740

Blue / Day / Low Blue / Day / Low SC 0.7609 0.8980 0.9278 0.1643 0.0366 0.0858

Brown / Night / High Brown / Night / High SC 0.8333 0.9248 0.9509 0.1327 0.0278 0.0689

Brown/ Day / Low Brown/ Day / Low SC 0.7719 0.8945 0.9388 0.1544 0.0289 0.0798

Brown/ Day / High Brown/ Night / High L 0.7616 0.8928 0.9315 0.1711 0.0398 0.0875

Brown/ Night / High Brown/ Day / High L 0.7366 0.8942 0.9420 0.1904 0.0351 0.0939

Blue / Day / Low Blue / Day / High F 0.7817 0.9062 0.9329 0.1587 0.0370 0.0822

Brown/ Day / Low Brown/ Day / High F 0.8010 0.9113 0.9475 0.1426 0.0273 0.0731

Brown/ Night / High Blue / Night / High M 0.5959 0.8632 0.9079 0.3415 0.0671 0.1193

Brown / Day / High Blue Day / High M 0.6420 0.8528 0.9223 0.2220 0.0433 0.1067

Table 3: Depth estimation: Results on real-world datasets.
Train / Fidelity Test δ1 Ò δ2 Ò δ3 Ò RELÓ RMSÓ log10Ó

Brown / Day / High NYUv2 0.3666 0.6012 0.7586 0.5044 0.2014 0.1938

Brown / Day / Low NYUv2 0.3720 0.6062 0.7627 0.5010 0.2010 0.1921

Brown / Night / High DIODE 0.3563 0.5948 0.7945 0.7659 3.6897 0.2148

Brown / Night / Low DIODE 0.3163 0.5647 0.7345 0.7743 3.7898 0.2149

Brown / Night / High DIODE - Filtered 0.6546 0.7725 0.8371 0.6608 2.9765 0.1458

Brown / Day / High NYUv2 - Filtered 0.5996 0.8405 0.9308 0.2835 0.1232 0.1054

DIODE/Indoor [17] DIODE/Indoor 0.4919 0.7159 0.8256 0.3306 1.6948 0.1775

NYUv2 [1] NYUv2 0.895 0.980 0.9960 0.1030 0.390 0.0430

NYUv2 [1] DIODE/Indoor 0.2869 0.5097 0.6730 0.6599 2.8854 0.2573

4.2 Monocular depth estimation experiments

Data ablation: Table 2 shows a representative sample of the data ablation
experiments we conducted using our depth ground truth. For these experiments,
we initialized our deep networks using the weights from a network trained on
NYUv2. For evaluation, we used the same metrics as those used in [3]: average
relative error (REL), root mean squared error (RMS), average log10 error, and
threshold accuracy (δi ă 1.25i for i “ r1, 2, 3s). As we discuss further in Sec. 5,
models trained in higher fidelity data generally tend to yield higher scores, even
on lower-fidelity scenarios.

Real-world validation: To demonstrate the transferability of learned features
from a synthetic dataset, we tested our best-performing models on the real-world
DIODE and NYUv2 datasets. In addition to the full test set, we also evaluated
our networks on a filtered subset that only contained scenes structurally similar
to our virtual environments, i.e., indoor scenes of a living room, with objects such
as couches, beds, TVs, etc. As Tbl. 3 shows, our high-fidelity trained model had
better threshold accuracy on DIODE than a model trained only on NYUv2 [17],

10 M. Mousavi et al.

Table 4: Surface normal estimation: Metrics are percentage of pixels that
differ by 11.5˝, 22.5˝, and 30˝ from the true normal, and mean and median
errors. Mean and median are higher than [20] because our loss function did not
implement hybrid measures to reduce them. This wasn’t necessary since our
ground-truth data does not suffer from the problem mentioned in [20].
SC: Sanity Check. L: Change in Lighting. M: Change in Maps. F: Positive
Change in Fidelity
Scenario / Fidelity Test / Fidelity Goal 11.5˝

Ò 22.5˝
Ò 30˝

Ò MeanÓ MedianÓ

Brown / Day / High Brown / Day / High SC 0.9014 0.9566 0.9727 24.4575 88.2878

Blue / Day / Low Blue / Day / Low SC 0.9274 0.9746 0.989 30.5607 94.9516

Blue / Night / High Blue / Night / High SC 0.865 0.9224 0.9401 28.2409 69.2181

Brown / Day / Low Brown / Day / Low SC 0.8883 0.9443 0.961 25.3718 81.4871

Brown / Day / High Brown / Night / High L 0.052145 0.2238 0.3464 106.70 121.26

Brown / Night / High Brown / Day / High L 0.050291 0.2135 0.4253 115.82 119.86

Blue / Day / Low Blue / Day / High F 0.195269 0.2683 0.3015 97.832 113.57

Brown / Day / Low Brown / Day / High F 0.028247 0.2102 0.368 109.14 118.08

confirming that the features learned on our environments are transferable to
real-world data. In addition, our model trained on Night lighting, high-fidelity
settings achieved 31% δ1 vs 28% δ1 of NYUv2 model — 59% δ2 vs 50% δ2
of NYUv2 model — 79.4% δ3 vs 67.3% of δ3 of NYUv2 model. These results
further confirm that our photo-realistic data can match and even exceed real-life
training. Furthermore, these models achieved a much higher score in our filtered
test set, suggesting that depth estimation is more sensitive to the structure of
the input image than to lighting or fidelity. We also believe our models would
have performed even better had DIODE used perspective depth (Fig. 4).

4.3 Surface normal estimation experiments

We carried out a similar set of data ablation experiments as above, but using
surface normal data as the ground truth. Here, we trained each model from
scratch, i.e., without pre-trained weights, and used the same evaluation metrics
as in [20]: mean (average L1 loss), median (average L2 loss), and percentage of
pixels that differ by 11.5˝, 22.5˝, and 30˝ relative to the true surface normal.
Surface normal estimation is a promising use case for AIP because it is very
challenging to capture surface normal information for real scenes. One needs
expensive equipment to measure the angles, and these sensors are extremely hard
to calibrate. As Tbl. 4 shows, we can successfully train deep networks using AIP
(see Fig. 6). Overall, surface normal models seem to be less sensitive to photo-
realistic features and higher fidelity settings compared to depth estimation or
segmentation. Models trained on high fidelity settings perform 2% better than
ones trained on low fidelity, a point we discuss further in Sec. 5.

4.4 Semantic segmentation experiments

Semantic segmentation involves assigning a class label to every pixel on the
image. The built-in environments in AIP have fifteen classes, all of which corre-

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning 11

Table 5: Semantic segmentation: Mean intersection over union (IOU) of all
classes for different scenarios. Higher values are better.
SC: Sanity Check. L: Change in Lighting. M: Change in Maps. F: Positive
Change in Fidelity

Scenario / Fidelity Test / Fidelity Goal Global IOUÒ

Brown / Day / High Brown / Day / High SC 0.8984

Blue / Day / Low Blue / Day / Low SC 0.4119

Blue / Night / High Blue / Night / High SC 0.8335

Brown / Day / Low Brown / Day / Low SC 0.4714

Brown / Day / High Brown / Night / High L 0.6932

Brown / Night / High Brown / Day / High L 0.6418

Blue / Day / Low Blue / Day / High F 0.3862

Brown / Day / Low Brown / Day / High F 0.4188

sponds to regular household objects, e.g., wall, couch, table, TV, plant, etc. We
use a label of other for miscellaneous items. As with the surface normals, we
trained different networks from scratch on each scenario. We used mean inter-
section over union (IOU) of all classes as our evaluation metric. As we can see in
Tbl. 5, model performance is directly linked to a scenario’s fidelity (see Fig. 6).
Semantic segmentation seems to depend heavily on the render scaling and res-
olution. At lower settings, borders of the objects are blurry, as is their texture.
This causes the model to label them as other since it cannot surely ascertain
their object class, thus lowering the global IOU (see Fig. 7 for an example).

5 Discussion

Below, we discuss some insights from our data ablation experiments that serve
as examples of the kind of analyses that AIP makes possible.

Sensitivity to lighting: Changes in lighting are a result of the environment, so
they cannot be ”fixed” by a better acquisition device. As such, a general-purpose
model should be robust to them. However, objects can appear in drastically
different ways under different lighting conditions, which did affect performance
across all experiments. More specifically, segmentation models are particularly
sensitive to differences in lighting. In Fig. 7 both models labeled the top part
of the TV as Wall since they have almost the same color. However, the model
trained on a Day setting was much less accurate on the Night image than its
counterpart, presumably because the Night setting is darker overall and has more
pronounced reflections. The opposite effect is visible in the reverse case (bottom
Fig. 7), where the reflection in the lamp confused the model because that level
of reflection from sunlight does not exist in the Night lighting.

Our surface normal models are also sensitive to changes in lighting. How-
ever, for depth estimation, performance drops only slightly when the lighting is
changed, suggesting that local contrast is less important for this problem.

The impact of fidelity on surface normals vs. segmentation: Semantic
segmentation is very sensitive to changes in fidelity. When objects are blurred

12 M. Mousavi et al.

Fig. 7: Semantic segmentation: (Image, Ground Truth, Prediction). Top: A
model trained on Brown Day High (DH) images segmenting a Brown Night High
(NH) image. Bottom: a model trained on Brown Night High tested on Brown
Day High. Note the impact of lighting on the final result.

due to lower rendering resolution and lower texture clarity, the model appears
to be indecisive about picking an object’s class in its border regions. As shown
in Fig. 6, we see that the model incorrectly classified border regions as Other.

In contrast, surface normal estimation is more robust to these kinds of
changes. This difference between these two problems highlights the importance
of using data ablation tools. Previous studies, e.g., [5,6,18], mainly focus on the
effects of fidelity on their segmentation experiments. Our findings with surface
normals, on the other hand, suggest that fidelity as a general feature of the
image might not be enough to draw conclusions about the quality of the data.
AIP’s tools allow us to study other aspects of data, such as texture, structure
complexity, lighting and more.

Perspective vs orthographic depth: Orthographic depth projection is when
light-rays coming to the camera are assumed to be coming from infinity. In
calculating the depth ground-truth, this simplification introduces errors to the
measurement. We have seen the effects of this assumption on the NYUv2 and
DIODE dataset (Fig. 4). Specifically, our models’ performance on DIODE was
lower in part due to them being trained on perspective depth, which is different
from the GT used in DIODE. Although orthographic measurements are currently
widely used, we argue that perspective depth, which AIP supports, is the correct
way to measure depth.

Impact of fidelity on depth estimation: Generally, the performance of mod-
els trained on higher fidelity settings are better than those trained in lower
fidelity settings (Table 2). However, one exception is when the lower fidelity set-
ting in training better matches the features of the target domain. In Tbl. 3, our
low fidelity model does slightly better on NYUv2 than the high-fidelity one. We
argue this is due to the blur present in NYUv2, which is also present in our
low fidelity settings training set due to its lower render settings, making them
visually similar. The DIODE dataset, on the other hand, is much more recent,
so the depth ground truth was measured with a more accurate sensor. Due to

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning 13

the lack of blur and fuzz on the ground-truth, we did not observe the same kind
of performance gain on this dataset.

6 Conclusion & Future work

In this work, we presented AI Playground, a data creation and ablation tool for
machine learning. Using AIP, we generated different image datasets and con-
ducted experiments that are nearly impossible with real data, thus demonstrat-
ing that AIP is a viable tool for data ablation studies in computer vision. We
also verified that our high-fidelity trained models can match or exceed the scores
achieved by training with real-data. As suggested by other studies [5,6,13,18], we
found that higher-fidelity data is linked to better performance in segmentation,
but we also found that sensitivity to scene structure, fidelity and lighting sce-
nario of training data varies from task to task. For example, our surface normal
and depth estimation models were not as sensitive to fidelity as our segmenta-
tion models were. AIP enables us to change individual features, e.g., quality of
shadows, quality of reflections, quality of lighting or resolution of textures, and
assess their impact on different models based on the current task. More gener-
ally, AIP can help researchers find sensitive points in their models and aid them
in creating high-quality data for training neural networks for a specific computer
vision task.

We are currently working to add more environments to AIP to widen its
usage range. These environments include more indoor scenes, outdoor scenes
and fully interactive environments allowing individual interaction with objects.
Additionally, we’ll be providing support for reinforcement learning studies and
real-time ray-tracing. There are still many other possible experiments that re-
main to be explored. For example, UE4 allows the fast change of lighting profile
by using HDRI maps. This opens the possibility of adding more specific lighting
scenarios like rainy, overcast and foggy. In our future updates, we’ll be adding
support to introduce intentional camera artifacts such as chromatic aberration,
penumbra, lens flares and distortions to help study the effects of using small sen-
sors in capturing data. This is especially useful in robotics since consumer-grade
robots rarely come with expensive capture equipment; fine-tuning training to
the exact specifications of the camera is a very exciting avenue for future work.
Furthermore, we are refining our ground-truth options, including removing tex-
ture and changing colors and properties of shaders. These enhancements will
enable us to manipulate the scene even further, e.g., changing the pattern in a
fabric or changing smoothness of a stone. We believe that AIP will open new
and exciting avenues in synthetic data and machine learning.

References

1. Alhashim, I., Wonka, P.: High quality monocular depth estimation via trans-
fer learning. arXiv e-prints abs/1812.11941, arXiv:1812.11941 (2018), https:

//arxiv.org/abs/1812.11941

https://arxiv.org/abs/1812.11941
https://arxiv.org/abs/1812.11941

14 M. Mousavi et al.

2. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam (2018), http://www.blender.
org

3. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image
using a multi-scale deep network. CoRR abs/1406.2283 (2014), http://arxiv.
org/abs/1406.2283

4. Epic Games: Unreal engine, https://www.unrealengine.com
5. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object

tracking analysis (2016)
6. Haltakov, V., Unger, C., Ilic, S.: Framework for generation of synthetic ground

truth data for driver assistance applications. In: GCPR (2013)
7. Khanal, A., Estrada, R.: Dynamic deep networks for retinal vessel segmentation.

CoRR abs/1903.07803 (2019), http://arxiv.org/abs/1903.07803
8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444

(May 2015). https://doi.org/10.1038/nature14539
9. Merrick, L.: Randomized Ablation Feature Importance. arXiv e-prints

arXiv:1910.00174 (Sep 2019)
10. Meyes, R., Lu, M., Waubert de Puiseau, C., Meisen, T.: Ablation Studies in Arti-

ficial Neural Networks. arXiv e-prints arXiv:1901.08644 (Jan 2019)
11. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M.: Playing Atari with Deep Reinforcement Learning. arXiv e-prints
arXiv:1312.5602 (Dec 2013)

12. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and sup-
port inference from rgbd images. In: ECCV (2012)

13. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from
computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) European
Conference on Computer Vision (ECCV). LNCS, vol. 9906, pp. 102–118. Springer
International Publishing (2016)

14. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAI (2015)

15. Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J.,
Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.: Habitat: A Platform for Em-
bodied AI Research. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (2019)

16. Vasiljevic, I., Kolkin, N., Zhang, S., Luo, R., Wang, H., Dai, F.Z., Daniele, A.F.,
Mostajabi, M., Basart, S., Walter, M.R., Shakhnarovich, G.: DIODE: A Dense
Indoor and Outdoor DEpth Dataset. CoRR abs/1908.00463 (2019), http://

arxiv.org/abs/1908.00463

17. Vasiljevic, I., Kolkin, N., Zhang, S., Luo, R., Wang, H., Dai, F.Z., Daniele, A.F.,
Mostajabi, M., Basart, S., Walter, M.R., Shakhnarovich, G.: Diode: A dense indoor
and outdoor depth dataset (2019)

18. Veeravasarapu, V., Rothkopf, C., Visvanathan, R.: Model-driven simulations for
computer vision. In: 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV). pp. 1063–1071 (2017)

19. Weichao Qiu, Fangwei Zhong, Y.Z.S.Q.Z.X.T.S.K.Y.W.A.Y.: Unrealcv: Virtual
worlds for computer vision. ACM Multimedia Open Source Software Competition
(2017)

20. Zeng, J., Tong, Y., Huang, Y., Yan, Q., Sun, W., Chen, J., Wang, Y.: Deep sur-
face normal estimation with hierarchical RGB-D fusion. CoRR abs/1904.03405
(2019), http://arxiv.org/abs/1904.03405

http://www.blender.org
http://www.blender.org
http://arxiv.org/abs/1406.2283
http://arxiv.org/abs/1406.2283
https://www.unrealengine.com
http://arxiv.org/abs/1903.07803
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1908.00463
http://arxiv.org/abs/1908.00463
http://arxiv.org/abs/1904.03405

	AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning

