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ABSTRACT

Spectral methods have emerged as a simple yet surprisingly
effective approach for extracting information from massive,
noisy and incomplete data. In a nutshell, spectral methods
refer to a collection of algorithms built upon the eigenvalues
(resp. singular values) and eigenvectors (resp. singular vec-
tors) of some properly designed matrices constructed from
data. A diverse array of applications have been found in
machine learning, imaging science, financial and economet-
ric modeling, and signal processing, including recommen-
dation systems, community detection, ranking, structured
matrix recovery, tensor data estimation, joint shape match-
ing, blind deconvolution, financial investments, risk man-
agements, treatment evaluations, causal inference, amongst
others. Due to their simplicity and effectiveness, spectral
methods are not only used as a stand-alone estimator, but
also frequently employed to facilitate other more sophisti-
cated algorithms to enhance performance.

While the studies of spectral methods can be traced back
to classical matrix perturbation theory and the method of
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moments, the past decade has witnessed tremendous theo-
retical advances in demystifying their efficacy through the
lens of statistical modeling, with the aid of concentration
inequalities and non-asymptotic random matrix theory. This
monograph aims to present a systematic, comprehensive, yet
accessible introduction to spectral methods from a modern
statistical perspective, highlighting their algorithmic impli-
cations in diverse large-scale applications. In particular, our
exposition gravitates around several central questions that
span various applications: how to characterize the sample
efficiency of spectral methods in reaching a target level of
statistical accuracy, and how to assess their stability in the
face of random noise, missing data, and adversarial corrup-
tions? In addition to conventional ¢5 perturbation analysis,
we present a systematic {o, and /3 o perturbation theory
for eigenspace and singular subspaces, which has only re-
cently become available owing to a powerful “leave-one-out”
analysis framework.
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1

Introduction

In contemporary science and engineering applications, the volume of
available data is growing at an enormous rate. The emergence of this
trend is due to recent technological advances that have enabled the
collection, transmission, storage and processing of data from every
corner of our life, in the forms of images, videos, network traffic, email
logs, electronic health records, genomic and genetic measurements, high-
frequency financial trades, grocery transactions, online exchanges, and
so on. In the meantime, modern applications often require reasonings
about an unprecedented scale of features or parameters of interest.
This gives rise to the pressing demand of developing low-complezity
algorithms that can effectively distill actionable insights from large-scale
and high-dimensional data. In addition to the curse of dimensionality,
the challenge is further compounded when the data in hand are noisy,
messy, and contain missing features.

Towards addressing the above challenges, spectral methods have
emerged as a simple yet surprisingly effective approach to informa-
tion extraction from massive and noisy data. In a nutshell, spectral
methods refer to a collection of algorithms built upon the eigenvectors
(resp. singular vectors) and eigenvalues (resp. singular values) of some

568



1.1. Motivating applications 569

properly designed matrices generated from data. Remarkably, spectral
methods lend themselves to a diverse array of applications in practice,
including community detection in networks (Newman, 2006; Abbe, 2017;
Rohe et al., 2011; McSherry, 2001), angular synchronization in cryo-
EM (Singer and Shkolnisky, 2011; Singer, 2011), joint image alignment
(Chen and Candes, 2018), clustering (Von Luxburg, 2007; Ng et al.,
2002), ranking (Negahban et al., 2016; Chen and Suh, 2015; Chen et al.,
2019b), dimensionality reduction (Belkin and Niyogi, 2003), low-rank
matrix estimation (Achlioptas and McSherry, 2007; Keshavan et al.,
2010), tensor estimation (Montanari and Sun, 2018; Cai et al., 2019a),
covariance and precision matrix estimation (Fan et al., 2013; Fan et al.,
2021b), shape reconstruction (Li and Hero, 2004), econometric and
financial modeling (Fan et al., 2021a), among others. Motivated by their
applicability to numerous real-world problems, this monograph seeks to
offer a unified and comprehensive treatment towards establishing the
theoretical underpinnings for spectral methods, particularly through a
statistical lens.

1.1 Motivating applications

At the heart of spectral methods is the idea that the eigenvectors or
singular vectors of certain data matrices reveal crucial information
pertaining to the targets of interest. We single out a few examples that
epitomize this idea.

Clustering. Clustering corresponds to the grouping of individuals
based on their mutual similarities, which constitutes a fundamental
task in unsupervised learning and spans numerous applications such
as image segmentation (e.g., grouping pixels based on the objects they
represent in an image) (Browet et al., 2011) and community detection
(e.g., grouping users on the basis of their social circles) (Fortunato and
Hric, 2016). For concreteness, let us take a look at a simple scenario
with n individuals such that: (1) there exists a latent partitioning that
divides all individuals into two groups, with the first n/2 individuals
belonging to the first group and the rest belonging to the second group
(without loss of generality); and (2) we observe pairwise similarity
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Figure 1.1: Spectral methods for clustering. We plot in (a) an ideal structure of the
adjacency matrix A in (1.1), and in (b) a noisy version which is a realization from
the stochastic block model, where A; ; is an independent Bernoulli variable with
mean % (resp. 17’6) if ¢ and j belong to the same group (resp. different groups). We
report in (c) the empirical success rate of the spectral method over 200 Monte Carlo
trials in correctly clustering n = 100 individuals as the mean difference § varies.

measurements generated based on their group memberships. Ideally, if
we know whether any two individuals belong to the same group or not,
then we can form an adjacency matrix A = [A; j]1<i j<n such that

1, if (4, ) belongs to th :
A — if (7, 7) belongs to the same group (1.1)
0, else.

As a key observation, this matrix A, as illustrated in Figure 1.1(a),
turns out to be a rank-2 matrix

T
A= 1”/2111/2

1 + 1|1 1
171/212/2 ] 2" [ ~Lnj2 { " " ]’
where 1,, represents an n-dimensional all-one vector. After subtracting
11,1 from A, the eigenvector uy = | l;zr/2 —12/2 ] of the remain-
ing component uncovers the underlying group structure; namely, all
positive entries of uy represent one group, with all negative entries of
ug reflecting another group. In reality, however, we typically only get
to collect imprecise information about whether two individuals belong
to the same group, thus resulting in a corrupted version of A (see
Figure 1.1(b)). Fortunately, the eigenvector (the one corresponding to

ug above) of the observed data matrix (with proper arrangement) might
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Figure 1.2: Ilustration of spectral clustering for 62 dolphins residing in Doubtful
Sound, New Zealand. (a) plots the spectrum of the Laplacian matrix of an undirected
social network of frequent associations, and (b) illustrates the two communities
recovered using the penultimate eigenvector of the Laplacian matrix. Data source:
Lusseau et al. (2003).

continue to be informative, as long as the noise level is not overly high.
To illustrate the practical applicability, we plot in Figure 1.1(c) the
numerical performance of this approach, which allows for perfect clus-
tering of all individuals for a wide range of noisy scenarios. Similar ideas
continue to fare well on the clustering of real data, where we illustrate in
Figure 1.2 that the penultimate eigenvector of a Laplacian matrix (also
known as the Fiedler vector) of an undirected social network reveals two
communities of 62 dolphins residing in Doubtful Sound, New Zealand.

Principal component analysis (PCA). PCA is arguably one of the
most commonly employed tools for data exploration and visualization.
Given a collection of data samples x1,--- ,x, € RP, PCA seeks to
identify a rank-r subspace that explains most of the variability of the
data. This is particularly well-grounded when, say, the sample vectors
{z;}1<i<n reside primarily within a common rank-r subspace—denoted
by U*. To extract out this principal subspace, it is instrumental to
examine the following sample covariance matrix

1 n
M= zuz.
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If all sample vectors approximately lie within U*, then one might be
able to infer U* by inspecting the rank-r leading eigenspace of M
(or its variants), provided that the signal-to-noise ratio exceeds some
reasonable level. This reflects the role of spectral methods in enabling
meaningful dimensionality reduction and factor analysis.

In practice, a key benefit of PCA is its ability to remove nuance
factors in, and extract out salient features from, each data point. As
an illustration, the first four images of Figure 1.3 are representative
ones sampled from a face dataset (Georghiades et al., 2001), which
correspond to faces of the same person under different illumination and
occlusion conditions. In contrast, the “eigenface” (Turk and Pentland,
1991) depicted in the last image of Figure 1.3 corresponds to the first
principal component (i.e., 7 = 1), which effectively removes the nuance
factors and highlights the feature of the face.

Figure 1.3: Illustration of the eigenface using the Cropped YaleB dataset (Georghi-
ades et al., 2001). The first four images are sampled from this dataset, representing
typical images taken under different illumination conditions with various occlusions.
The last one represents the eigenface (i.e., the first principal component) of this
dataset.

Matrix recovery in the face of missing data. A proliferation of big-
data applications has to deal with matrix estimation in the presence
of missing data, either due to the infeasibility to acquire complete
observations of a massive data matrix (Davenport and Romberg, 2016)
such as the Netflix problem in recommender systems (as users only
watch and rate a small fraction of movies), or because of the incentive
to accelerate computation by means of sub-sampling (Mahoney, 2016).
Imagine that we are asked to estimate a large matrix M™* = [M;]1<; j<n,
even though a dominant fraction of its entries are unseen. While in

general we cannot predict anything about the missing entries, reliable
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Figure 1.4: Spectral methods for matrix recovery with missing data, where (a) is
an illustration of missing data and (b) reports the empirical estimation errors of
spectral methods as the sampling rate p varies. Both the relative Euclidean error

LM —M* | IV~ M* | o Y .
Y A= are plotted (with M denoting

the matrix estimate and || - ||oc the entrywise o norm).

and the relative entrywise error

estimation might become possible if M* is known a priori to enjoy a
low-rank structure, as is the case in many applications like structure
from motion (Tomasi and Kanade, 1992) and sensor network localization
(Javanmard and Montanari, 2013). This low-rank assumption motivates
the use of spectral methods. More specifically, suppose the entries of M™*
are randomly sampled such that each entry is observed independently
with probability p € (0,1]. An unbiased estimate M = [M; j]1<; j<n of
M* can be readily obtained via rescaling and zero filling (also called
the inverse probability weighting method):
%Mi’jj, if the (i, j)-th entry is observed,

ij =
’ 0, else.

To capture the assumed low-rank structure of M™*, it is natural to
resort to the best rank-r approximation of M (with r the true rank of
M™), computable through the rank-r singular value decomposition of
M. Given its (trivial) success when p = 1, we expect the algorithm to
perform well when p is close to 1. The key question, however, is where
the algorithm stands if the vast majority of the entries is missing. While
we shall illuminate this in Chapters 3 and 4, Figure 1.4 provides some
immediate numerical assessment, which demonstrates the appealing
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performance of spectral methods—in terms of both Euclidean and
entrywise estimation errors—even when the missing rate is quite high.

Ranking from pairwise comparisons. Another important application
of spectral methods arises from the context of ranking, a task of central
importance in, say, web search and recommendation systems. In a
variety of scenarios, humans find it difficult to simultaneously rank
many items, but relatively easier to express pairwise preferences. This
gives rise to the problem of ranking based on pairwise comparisons.
More specifically, imagine we are given a collection of n items, and
wish to identify top-ranked items based on pairwise preferences (with
uncertainties in comparison outcomes) between observed pairs of items.
A classical statistical model proposed by Bradley and Terry (1952) and
Luce (2012) postulates the existence of a set of latent positive scores
{w}}1<i<n—each associated with an item—that determines the ranks
of these items. The outcome of the comparison between items 7 and j
is generated in a way that

*
P(i beats ) = w;j:w; 1<i,j<n.
As it turns out, the preference scores are closely related to the stationary
distribution of a Markov chain associated with the above probability
kernel, thus forming the basis of spectral ranking algorithms. To eluci-
date it in a little more detail, let us construct a probability transition
matrix P* = [Pifj]lﬁi,jﬁn with

1 w¥ ¢
3 AP .

—_ e — 1 Z

* n witw;’ 7 Js

L=2 s Py =

Clearly, it forms a probability transition matrix since each element is non-
negative and the entries in each row add up to one. It is straightforward
to verify that the score vector w* = [w}]1<;<, satisfies w*T = w*T P*,
namely w* is a left eigenvector of P* associated with eigenvalue one. A
candidate method then consists of (i) forming an unbiased estimate of
P* (which can be easily obtained using pairwise comparison outcomes),
(ii) computing its left eigenvector (in fact, the leading left eigenvector),
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and (iii) reporting the ranking result in accordance with the order of the
elements in this eigenvector. This spectral ranking scheme, which shares
similar spirit with the celebrated PageRank algorithm (Page et al.,
1999), exhibits intriguing performance when identifying the top-ranked
items, as showcased in the numerical experiments in Figure 1.5(b).

1.0
3 08
score separation : A
0.6
0.4
0.2

HH\HWHHHHHIHHmmnmmm ot

rank score separation : A

(a) (b)

: latent score

*
[

w?:

empirical success rate

Figure 1.5: Spectral methods for ranking from pairwise comparisons. (a) illustrates
the latent preference scores {w;} that govern the ranking of items. The empirical
success rates in correctly identifying the top-ranked item are plotted in (b) as A
varies, where A represents the separation between the score of the top item and that
of the second-ranked item.

A unified theme. In all preceding applications, the core ideas underly-
ing the development of spectral methods can be described in a unified
fashion:

1. Identify a key matrix M*—which is typically unobserved—whose
eigenvectors or singular vectors disclose the information being
sought after;

2. Construct a surrogate matrix M of M™* using the data samples
in hand, and compute the corresponding eigenvectors or singular
vectors of this surrogate matrix.

Viewed in this light, this monograph aims to identify key factors—e.g.,
certain spectral structure of M* as well as the size of the approximation
error M — M*—that exert main influences on the efficacy of the
resultant spectral methods.
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1.2 A modern statistical perspective

The idea of spectral methods can be traced back to early statistical
literature on methods of moments (e.g., Pearson (1894) and Hansen
(1982)), where one seeks to extract key parameters of the probability
distributions of interest by examining the empirical moments of data.
While classical matrix perturbation theory lays a sensible foundations
for the analysis of spectral methods (Stewart and Sun, 1990), the
theoretical understanding can be considerably enhanced through the
lens of statistical modeling—a way of thinking that has flourished in
the past decade. To the best of our knowledge, however, a systematic
and comprehensive introduction to the modern statistical foundation of
spectral methods, as well as an overview of recent advances, is previously
unavailable.

The current monograph aims to fill this gap by developing a coherent
and accessible treatment of spectral methods from a modern statistical
perspective. Highlighting algorithmic implications that inform practice,
our exposition gravitates around the following central questions: how
to characterize the sample efficiency of spectral methods in reaching a
prescribed accuracy level, and how to assess the stability of spectral
methods in the face of random noise, missing data, and adversarial cor-
ruptions? We underscore several distinguishing features of our treatment
compared to prior studies:

e In comparison to the worst-case performance guarantees derived
solely based on classical matrix perturbation theory, our statisti-
cal treatment emphasizes the benefit of harnessing the “typical”
behavior of data models, which offers key insights into how to
harvest performance gains by leveraging intrinsic properties of
data generating mechanisms.

o In contrast to classical asymptotic theory (Van der Vaart, 2000),
we adopt a non-asymptotic (or finite-sample) analysis framework
that draws on tools from recent developments of concentration
inequalities (Tropp, 2015) and high-dimensional statistics (Wain-
wright, 2019). This framework accommodates the scenario where
both the sample size and the number of features are enormous, and
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unveils a clearer and more complete picture about the interplay
and trade-off between salient model parameters.

Another unique feature of this monograph is a principled intro-
duction of fine-grained entrywise analysis (e.g., a theory studying £
eigenvector perturbation), which reflects cutting-edge research activities
in this area. This is particularly important when, for example, demon-
strating the feasibility of exact clustering or perfect ranking in the
aforementioned applications. In truth, an effective entrywise analysis
framework cannot be readily obtained from classical matrix analysis
alone, and has only recently become available owing to the emergence
of modern statistical toolboxes. In particular, we shall present a power-
ful framework, called leave-one-out analysis, that proves effective and
versatile for delivering fine-grained performance guarantees for spectral
methods in a variety of problems.

1.3 Organization

We now present a high-level overview of the structure of this monograph.

e Chapter 2 reviews the fundamentals of classical matrix pertur-
bation theory for spectral analysis, focusing on fs-type distances
measured by the spectral norm and the Frobenius norm. This
chapter covers the celebrated Davis-Kahan sin ® theorem for
eigenspace perturbation, the Wedin theorem for singular subspace
perturbation, and an extension to probability transition matrices,
laying the algebraic foundations for the remaining chapters.

o Chapter 3 explores the utility of £5 matrix perturbation theory
when paired with statistical tools, presenting a unified recipe
for statistical analysis empowered by non-asymptotic matrix tail
bounds. We develop spectral methods for a variety of statisti-
cal data science applications, and derive nearly tight theoretical
guarantees (up to logarithmic factors) based on this unified recipe.

e Chapter 4 develops fine-grained perturbation theory for spectral
analysis in terms of ¢, and /> o, metrics, based on a leave-one-out
analysis framework rooted in probability theory. Its effectiveness
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is demonstrated through concrete applications including commu-
nity recovery and matrix completion. This analysis framework
also enables a non-asymptotic distributional theory for spectral
methods, which paves the way for uncertainty quantification in
applications like noisy matrix completion.

e Chapter 5 concludes this monograph by identifying a few directions
that are worthy of future investigation.

While this monograph pursues a coherent and accessible treatment that
might appeal to a broad audience, it does not necessarily deliver the
sharpest possible results for the applications discussed herein in terms of
the logarithmic terms and/or pre-constants. The bibliographic notes at
the end of each chapter contain information about the state-of-the-art
theory for each application as a pointer to further readings.

1.4 What is not here and complementary readings

The topics presented in this monograph do not cover the tensor decompo-
sition methods studied in another recent strand of work (Anandkumar et
al., 2014). While such tensor-based methods are also sometimes referred
to as spectral methods, their primary focus is to invoke tensor decompo-
sition to learn latent variables, based on higher-order moments estimated
from data samples. We elect not to discuss this class of methods but
instead refer the interested reader to the recently published monograph
by Janzamin et al. (2019). Another monograph by Kannan and Vempala
(2009) provides an in-depth computational and algorithmic treatment of
spectral methods from the perspective of theoretical computer science.
The applications and results covered therein (e.g., fast matrix multi-
plication) complement the ones presented in the current monograph.
In addition, spectral methods have been frequently employed to initial-
ize nonconvex optimization algorithms. We will not elaborate on the
nonconvex optimization aspect here but instead recommend the reader
to the recent overview article by Chi et al. (2019). Finally, spectral
methods are widely adopted to estimate high-dimensional covariance
and precision matrices, and extract latent factors for econometric and
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statistical modeling. This topic alone has a huge literature, and we refer
the interested reader to Fan et al. (2020b) for in-depth discussions.

1.5 Notation

Before moving forward, let us introduce some notation that will be used
throughout this monograph.

First of all, we reserve boldfaced symbols for vectors, matrices
and tensors. For any matrix A, let 0;(A) (resp. \j(A)) represent its
j-th largest singular value (resp. eigenvalue). In particular, opax(A)
(resp. Amax(A)) stands for the largest singular value (resp. eigenvalue)
of A, while opin(A) (resp. Amin(A)) indicates the smallest singular
value (resp. eigenvalue) of A. We use AT to denote the transpose of
A, and let A;. and A.; indicate the i-th row and the i-th column of
A, respectively. We follow standard conventions by letting I,, be the
n X n identity matrix, 1,, the n-dimensional all-one vector, and 0,, the
n-dimensional all-zero vector; we shall often suppress the subscript as
long as it is clear from the context. The i-th standard basis vector is
denoted by e; throughout. The notation O™*" (r < n) represents the
set of all n x r orthonormal matrices (whose columns are orthonormal).
Moreover, we refer to [n] as the set {1,--- ,n}.

Next, we turn to vector and matrix norms. For any vector v, we
denote by [|v||2, [|v]l1 and [|v|eo its f2 norm, ¢; norm and ¢, norm,
respectively. For any matrix A = [4; jli<i<m,1<j<n, We let [|A]|, || A[lx,
|A|lp and ||Al|c represent respectively its spectral norm (i.e., the
largest singular value of A), its nuclear norm (i.e., the sum of singular
values of A), its Frobenius norm (i.e., |Allr == />, ; A7), and its
entrywise /oo norm (i.e., || Ao == max; ; |A; ;|). We also refer to || Al|2,00
as the l3 o norm of A, defined as ||Al|2,00 = max; ||A;.||2. Similarly,
we define the £, 2 norm of A as ||A|lx2 = ||AT||2,00- In addition, for
any matrices A = [Ai,j]lgigm,lgjgn and B = [Bi,j]lgigm,lgjgna the
inner product of A and B is defined as and denoted by (A, B) =
Elgigm,lgjgn AijBij; = TV(ATB)-

When it comes to diagonal matrices, we employ diag([01,602,- - ,6.])
to abbreviate the diagonal matrix with diagonal elements 61, - - - , 8,.. For
any diagonal matrix ® = diag([01,602, - ,0;]), we adopt the shorthand
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notation sin ® := diag([sin #1,sin fy, - -- ,sin,]); the notation sin? @,
cos ®, and cos? © is defined analogously.

Finally, this monograph makes heavy use of the following standard
notation: (1) f(n) = O (g(n)) or f(n) < g(n) means that there exists
a universal constant ¢ > 0 such that |f(n)| < ¢|g(n)| holds for all
sufficiently large n; (2) f(n) 2 g(n) means that there exists a universal
constant ¢ > 0 such that |f(n)| > c|g(n)| holds for all sufficiently large
n; (3) f(n) < g(n) means that there exist universal constants ¢y, co > 0
such that ¢1]|g(n)| < [f(n)] < c2|g(n)| holds for all sufficiently large
n; and (4) f(n) = o(g(n)) indicates that f(n)/g(n) — 0 as n — oc.
Additionally, we sometimes use f(n) > g(n) (resp. f(n) < g(n)) to
indicate that there exists some sufficiently large (resp. small) universal
constant ¢ > 0 such that [f(n)| > c|g(n)| (resp. |f(n)| < c|g(n)]).



2

Classical spectral analysis: £, perturbation theory

Characterizing the performance of spectral methods requires understand-
ing the perturbation of eigenspaces and/or that of singular subspaces.
Classical matrix perturbation theory (e.g., Stewart and Sun (1990))
offers elementary toolkits that prove effective for this purpose, which
we review in this chapter.

Setting the stage, consider a real-valued matrix M™* and its per-
turbed version as follows

M =M*+E, (2.1)

where EE = M — M™* denotes a real-valued perturbation or error matrix.
In statistical applications, M can be an observed or estimated data
matrix such as the sample covariance matrix, and M* is the target
matrix such as the population covariance matrix. This chapter primarily
aims to address the following questions by means of elementary linear
algebra:

1. For a symmetric matrix M*, how does the eigenspace change in
response to a symmetric perturbation matrix E?

2. For a general matrix M™*, how is the singular subspace affected
as a result of the perturbation matrix E?

581
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We shall also explore eigenvector perturbation for a special class of
asymmetric matrices: probability transition matrices.

2.1 Preliminaries: Basics of matrix analysis

We begin this chapter by gathering a few elementary materials in matrix
analysis that prove useful for our theoretical development. The readers
familiar with matrix analysis can proceed directly to Section 2.2.

Unitarily invariant norms. Among all matrix norms, the family of
unitarily invariant norms defined below is of central interest, which

subsumes as special cases the spectral norm || - || and the Frobenius
norm || - ||g.
Definition 2.1. A matrix norm ||-[| on R™*" is said to be unitarily

invariant if
Al = [UT AV

holds for any matrix A € R™*™ and any two square orthonormal

matrices U € O™*™ and V € O"*",

This class of matrix norms enjoys several useful properties, as sum-
marized in the following lemma. The proof can be found in Stewart and

Sun (1990, Theorem 3.9).

Lemma 2.1. For any unitarily invariant norm |||-||, one has
IABI| < [ All - 1Bl ABI| < [IBI[ - [| Al
IIABI|| = [|All owmin (B) ; I ABI[| = || Bl omin (A) -

Perturbation bounds for eigenvalues and singular values. Next, we
review classical perturbation bounds for eigenvalues of symmetric ma-
trices and for singular values of general matrices.

Lemma 2.2 (Weyl's inequality for eigenvalues). Let A, E € R™"™ be
two real symmetric matrices. For every 1 < i < n, the i-th largest
eigenvalues of A and A + E obey

[Ai (A) =X (A + E)| < |E. (2.2)
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Proof. See Equation (1.63) in Tao (2012). O

Lemma 2.3 (Weyl's inequality for singular values). Let A, E € R™*"
be two general matrices. Then for every 1 < ¢ < min{m,n}, the i-th
largest singular values of A and A + E obey

0i (A+ E) —oi (A)] < [|E].
Proof. See Exercise 1.3.22 in Tao (2012). O

An immediate implication of Lemma 2.2 (resp. Lemma 2.3) is that
the eigenvalues of a real symmetric matrix (resp. the singular values of
a general matrix) are stable vis-a-vis small perturbations.

2.2 Preliminaries: Distance and angles between subspaces

In order to develop perturbation theory for eigenspaces and singular sub-
spaces, we first need to delineate a metric that quantifies the proximity
of two subspaces in a meaningful way.

2.2.1 Setup and notation

Consider two r-dimensional subspaces U* and U in R", where 1 < r < n.
One can represent these two subspaces by two matrices U* € R™*"
and U € R™" whose columns form an orthonormal basis of * and
U, respectively. Here and throughout, we shall use U and its matrix
representation U interchangeably whenever it is clear from the context.

For the sake of convenience, we further introduce two n x (n —r)
matrices UT and U, such that [U*,U7] and [U,U|] are both n x
n orthonormal matrices. In other words, U] and U, represent the
orthogonal complement of U* and U, respectively.

2.2.2 Distance metrics and principal angles

Global rotational ambiguity. To measure the distance between the two
subspaces U and U*, a naive idea is to employ the “metric” ||U — U*||,
where |[|-|| is & certain norm of interest (e.g., the spectral norm or the
Frobenius norm). An immediate drawback arises, however, since this
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“metric” does not take into account the global rotational ambiguity—
namely, for any rotation matrix R € O"*", the columns of the matrix
U R also form a valid orthonormal basis of ¢/. This means that even when
the two subspaces U and U* coincide, one might still have ||U — U*|| #
0, depending on how we rotate these matrices.

Valid choices of distance and angles. The takeaway of the above
discussion is that any meaningful metric employed to measure the
proximity of two subspaces should account for the rotational ambiguity
properly. In what follows, we single out a few widely used metrics that
meet such a requirement.

1. Distance with optimal rotation. Given the global rotational am-
biguity, it is natural to first adjust the rotation matrix suitably
before computing the distance. One choice is to measure the
distance upon optimal rotation, namely,

disty.q (U, U*) = min ||[UR—U*||, 2.3
sty (U, U”) = min_| f (2:3)
where |[|-||| is a certain norm to be chosen (e.g., the spectral norm

or the Frobenius norm).

2. Distance between projection matrices. As an established fact, the
projection matrix onto a subspace U—given by UU "—is unique
and unaffected by how U is rotated (since UU' = URR'U"
for any rotation matrix R € O"*"). The rotational invariance of
the projection matrix motivates us to define the distance between
U and U* as follows

disty, . (U, U*) =[[UU" —U*U*T]], (2.4)

where, as usual, [||-|| is a certain matrix norm of interest, and the
subscript p stands for projection.

3. Geometric construction via principal angles. Let o1 > g9 > -+ >
o, > 0 be the singular values of U TU*, arranged in descending
order. Given that |[UTU*|| < |U||||U*|| = 1, all the singular
values {0;}/_; fall within the interval [0, 1]. Therefore, one can
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define the principal angles (or canonical angles) between the two
subspaces of interest as

0; := arccos (0;) forall 1 <i<r, (2.5)
which clearly satisfy
0<6; < <0, <m/2. (2.6)

To see why this definition makes sense, consider the simplest
example where » = 1. In this case, the principal angle 8, coincides
with the conventionally defined angle between two unit vectors U
and U*. Armed with these angles, one might measure the distance
between the subspaces U and U* through the following metric

diStsin,|||-\H (U7 U*) = ‘”Sin ®H|7 (27)
where |[||-|| is again some matrix norm to be selected, and
(91 sin 91
[CE= , sin@® := . (2.8)
0, sin 6,

With slight abuse of notation, we can define other diagonal ma-
trices such as cos ® analogously, where cos(-) is applied in an
entrywise manner to the diagonal elements of ®. Such matrices
will be useful for future discussions.

2.2.3 Intimate connections between the distance metrics

It turns out that the metrics (2.3), (2.4) and (2.7) introduced above are
tightly related, as we shall explain in this subsection. The proofs of all
the results in this subsection are deferred to Section 2.6.

To begin with, we take a look at the relation between dist, . (-, )
and distgn 1. (+, -), which is perhaps best illuminated by the following
lemma.

Lemma 2.4. Consider the settings of Section 2.2.1. If 2r < n, then the
singular values of UU T — U*U*" (including zeros) are given by

sin#,., sinf,., sin@,_1, sinf,._1, --- , sinfy, sinfy, 0,0, ---, 0.

2r n—2r
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In a nutshell, Lemma 2.4 establishes an explicit link between (a)
the difference of the projection matrices and (b) the principal angles
between the two subspaces of interest. This lemma and its analysis
unveil the following crucial equivalence relation under two of our favorite
norms—the spectral norm and the Frobenius norm; in light of this, we
might refer to these metrics as the sin ® distances from time to time.

Lemma 2.5. Consider the settings of Section 2.2.1, and recall the
definition of sin ® in (2.8). For any 1 < r < n, one has

jvUT -0 U T = s e = [UTUY| = [UTUE ] (2:99)

IV —UU || = |sin©|)p = |ULU*||p = |[U"UT]|. (2.9b)
Next, we move on to demonstrate the (near) equivalence of dist. (-, )
and dist, j.j(+, ) under the above-mentioned two norms.

Lemma 2.6. Under the settings of Section 2.2.1, for any 1 < r < n, one

has!

U - U < min [UR-U*| <V2|UU" - U0
e X7

1 T * Tk . * T * 7k
—=||\UU " —U"U < UR-U <||UU'" —-U*U .
ol e < min_ | e < I I

In words, dist).(+,-) and dist, . (-, -) are equivalent up to a factor
of v/2, when ||-||| is the spectral norm or the Frobenius norm.

2.2.4 The distance metrics of choice in this monograph

In conclusion, the following metrics, which are seemingly distinct at
first glance, are (nearly) equivalent in measuring the distance between
two subspaces U and U™:

) vt v

2) |[[sin®

3) ||[Uulur|| = luTuz]|

4)  min [|[UR-U"||
ReOTxr

1t is straightforward to verify that the upper bounds on both min reorxr [UR—
U*H and mingeorxr |[UR — U*|| . are attainable when U = [1,0] " and U* = [0,1] .
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when |[|-||| represents either the spectral norm or the Frobenius norm.
Viewed in this light, we shall mainly concentrate on the following metrics
throughout the rest of this monograph:

dist(U,U*) == min |[UR-U"||; (2.10a)
ReOrxr

distp (U, U") = i UR-U"|.. 2.10b

istp(U,U") == min_| g (2.10D)

2.3 Perturbation theory for eigenspaces

Armed with the above metrics for subspace distances, we are in a position
to identify key factors that affect the perturbation of eigenvectors and
eigenspaces.

2.3.1 Setup and notation

Let M* and M = M™* + E be two n X n real symmetric matrices. We
express the eigendecomposition of M* and M as follows

n T
M =3 N = | U UIHA* 0 HU* ]; (2.11)

. A O U’
— o) —
M = ;_1 Aiuiu; [ Uu U, } l 0 A, ] l Ul 1 . (2.12)

Here, {\;} (resp. {\}}) denote the eigenvalues of M (resp. M*), and
u; (resp. u}) stands for the eigenvector associated with the eigenvalue
Ai (resp. AY). Additionally, we take

U = [ul,' .. 7’“4"] c RnXT’ U, = [UT+17"' aun] c Rnx(n—ﬂj

A =diag([M, -, M), Ay =diag(Mrt1, -+ 5 \l)-

The matrices U*, U7, A*, and A’ are defined analogously.

2.3.2 A warm-up example

In general, the eigenvector /eigenspace of a real symmetric matrix might
change drastically even upon a small perturbation. To understand this,
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consider the following toy example borrowed from Hsu (2016):

1+e€ 0 I |1 e
0 1—6]’E_[6 el’M_[e 1]’

where 0 < € < 1 can be arbitrarily small. It is straightforward to check

M* =

that the leading eigenvectors of M* and M are given respectively by

N 1 1|1
ur=1, | and U1:ﬁ e

Consequently, we have

M=t and Jjwe] —ufulT|, =1, (213)

V2

which are both quite large regardless of the size of € or the size of the

[uru] — ujui

perturbation || E|.

On closer inspection, this “pathological” behavior comes up due to
the fact that perturbation size € is comparable to the eigengap of M™*
(namely, A\j(M*) — A\o(M*) = 2¢). This hints at the important role
played by the eigengap in influencing eigenspace perturbation.

2.3.3 The Davis-Kahan sin® theorem

At the core of classical eigenspace perturbation theory lies the landmark
result of Davis and Kahan (1970), which delivers powerful eigenspace
perturbation bounds in terms of the size of the perturbation matrix as
well as the associated eigengap. Here and throughout, for any symmetric
matrix A, we denote by eigenvalues(A) the set of eigenvalues of A.

Theorem 2.7 (Davis-Kahan's sin® theorem). Consider the settings in
Section 2.3.1. Assume that

eigenvalues(A™) C [a, ], (2.14a)
C

eigenvalues(A ) C (—oo,a — AJU [ + A, o) (2.14b)

for some quantities o, 5 € R and eigengap A > 0. Then one has

va|BU| _ valE|

dist *) < V2|sin@®f <
IS(U,U)_\[HSIH | < A A

(2.15a)
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Va|BU* |, _ vE|E
& |

distp (U, U*) < V2||sin ®|p < < (2.15b)

This conclusion remains valid if Assumption (2.14) is replaced by

eigenvalues(A™) C (—oo, a0 — AJ U [B + A, 0); (2.16a)

[, A]. (2.16b)

N 1N

eigenvalues(A )

Remark 2.1. In fact, Theorem 2.7 can be generalized to accommodate

any unitarily invariant norm |||-||, in the sense that
EU~
[lsin ®|| < w (2.17)

The proof of Theorem 2.7 and Remark 2.1 is quite elementary and
can be found in Section 2.3.4.

Remark 2.2. As we shall demonstrate in Chapter 4, the above bounds
that involve ||[EU™*| and || EU*||r are particularly useful when E ex-
hibits special structure (e.g., row sparsity or column sparsity).

Theorem 2.7 is commonly referred to as the Davis-Kahan sin®
theorem, given that it concerns the sin® distance between subspaces.
Both bounds scale linearly with the perturbation size, and are inversely
proportional to the eigengap A. Informally, if we view || E|| as the noise
size and interpret the eigengap as the “signal strength” (which dictates
how easy it is to distinguish the r eigenvalues of interest from the
remaining spectrum), then Theorem 2.7 asserts that the eigenspace
perturbation degrades gracefully as the signal-to-noise-ratio decreases.

The careful reader might notice that Theorem 2.7 stays silent on the
allowable size || E|| of the perturbation. Note, however, that a restriction
on ||E|| is somewhat hidden in Assumptions (2.14) and (2.16). When
the eigenvalues in A* (resp. A) and A% (resp. A ) are suitably ordered,
it is oftentimes more convenient to work with the following corollary,
which makes apparent the constraint on the size || E|| with regard to
the eigengap of M™.

Corollary 2.8. Consider the settings in Section 2.3.1. Suppose that
(ATf = (A5 = - = AT > ] 2 2 A and [M] = [A] >
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- > |\u] (i-e., the eigenvalues are sorted by their magnitudes). If
IE]l < (1 =1/v2)(I\7] = [X714 1), then

o BU| 2B
AR = Il T I = Il

2(|EU” 2 E
|)\7“| - |)\7’+1’ |)‘7"| - |Ar+1|

dist(U,U*) < V2||sin@®| < (2.18a)

distp (U, U*) < V2||sin®||p <
The proof of Corollary 2.8 is also given in Section 2.3.4.

2.3.4 Proof of the Davis-Kahan sin® theorem

Proof of Theorem 2.7. The proof proceeds by controlling the distance
metric [|[U] U*|||, where [|-|| denotes a unitarily invariant norm.

We start by proving the theorem under Assumption (2.14), and
claim that it suffices to consider the case where

a=-B<0. (2.19)

In fact, if this condition is violated, then one can employ a “centering”

trick by enforcing global offset to M* and M as follows
a+p a+p

5 I,, and M.=M — 5

It is straightforwardly seen that (a) M (resp. M) and M* (resp. M)
share the same eigenvectors; (b) the eigenvalues of M} (resp. M.)
associated with U™ (resp. U ) reside within [—v, ] (resp. (—o0, —y —
AlU[y+ A, 0)), where v = ﬁ_Ta > 0. Consequently, this reduces to a
scenario that resembles (2.19). In addition, we isolate two immediate

M =M~ I,.

consequences of Assumptions (2.14) and (2.19) that prove useful:
[A*| < B, and  owin(AL) > B +A, (2.20)

where we recall that opin(A ) is the minimal singular value of A .

Armed with the above spectral conditions, we are prepared to study
UIU *. This is controlled through the following identity (obtained by
the definition of eigenvectors):

U/ (M- M"U*=AUU" —U]U*A", (2.21)
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Let R:= (M — M*)U* = EU*. The triangle inequality then tells us
that
IULR|| > |A U U - [[ULU*A|
> omin(AD[ULU (|| = A% - [JUL U]
> (B+A-pllulvrf=afulo). (2.22)
Here, the middle line follows from Lemma 2.1 in Section 2.1, whereas
the last inequality arises from the properties (2.20). As a consequence,

ULR|| _ IR _ IEU~|

o 2 UTRI_ IRY

joToe < WLBl o WEL_ NEO7Y)

where the second inequality follows again from Lemma 2.1 and ||U || = 1.
When |||-||| is either the spectral norm or the Frobenius norm, combining

the preceding inequality with Lemmas 2.5-2.6 and the facts |[U*|| =1
and ||[U*||r = y/r immediately establishes the theorem for this case.
Next, we turn to the scenario where Assumption (2.16) is in effect;
it can be analyzed in a similar manner and hence we remark only on the
difference. Assuming (2.19) holds without loss of generality, we have

ALl < B, and Omin(A*) > B+ A. (2.23)
Applying the triangle inequality to (2.21) in a different way yields
IULR|| > [[UlU*A*||| - [|a ULU"|
> Guin(AIUTU| = AL |- U TU"|
> (B+A-pllulur = Alluiv,
a conclusion that coincides with (2.22). The rest of the proof is the
same as the one in the previous case.
Before concluding, we remark that H|UIU I = || sin®||| holds

for any unitarily invariant norm |||-|||; see Li (1998, Lemma 2.1). This
together with the above analysis leads to Remark 2.1.

Proof of Corollary 2.8. We first examine the spectral ranges of A |
and A*. Let A\;(M*) (resp. \i(M)) be the i-th largest eigenvalue of
M* (resp. M), sorted by their values (as opposed to their magnitudes).
Then Weyl’s inequality (cf. Lemma 2.2 in Section 2.1) asserts that

(Ai(M) = Ni(MP)| < |[E|, 1<i<n.
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Suppose that M* has 7 positive (resp. o = r —r1 negative) eigenvalues
whose magnitudes exceed |y ;|. Then for any i obeying 1 <i <7 or
1 > n — ro, the triangle inequality gives

N (M| > [M(M)] = [ E]| > [XF] = (1= 1/V2)(IX7] = [Ar])

> Aral + (1= 1/V2) (A = Aal) = Xl + (1B,
where the last inequality arises from our assumption on || E||. On the
contrary, if r; < ¢ < n — rg, then one has
N (M)] < [N | + (1B

As a consequence, there are exactly r (resp. n — r) eigenvalues of M
whose magnitudes exceed (resp. lie below) |A\x ;| + || E]||.
The above observation together with the ordering |A1| > || >
- > |\ | implies

eigenvalues(A ) C [ — [AT | = [|E[], [N ] + [ E]]]-
In addition, the assumption that |A}| > [A5] > --- > |A%] tells us that
eigenvalues(A*) C (— oo, —|Ax]] U [|Ax], 00).

Taking f = —a = |Ar| + [[E[l and A = [A] = [AL4] = [[E]] >
(A% = |A%41])/v2, we can invoke Theorem 2.7 under Assumption (2.16)
to establish the advertised results.

2.4 Perturbation theory for singular subspaces

There is no shortage of scenarios where the data matrices under con-
sideration are asymmetric or rectangular. In these cases, one is often
asked to study singular value decomposition (SVD) rather than eigen-
decomposition. Fortunately, the eigenspace perturbation theory can be
naturally extended to accommodate perturbation of singular subspaces.

2.4.1 Setup and notation

Let M* and M = M* + E be two matrices in R"*"2 (without loss of
generality, we assume ny < ng), whose SVDs are given respectively by

- e 1| ZF 0 0| VT
Zcr T=[u UL}[O st HVIJ;@M)
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M:iaiuiv; :{U UJ_]
=1

> 0 0 v
. 2.2
0 %, 0][Vj1 (2.25)

Here, 01 > --- > oy, (vesp. o > --- > oy, ) stand for the singular values
of M (resp. M*) arranged in descending order, u; (resp. u;) denotes
the left singular vector associated with the singular value o; (resp. o),
and v; (resp. v}) represents the right singular vector associated with o;
(resp. o7). In addition, we denote

3 = diag([o1, - ,0v]), ¥, =diag([ort1, -+, 0on)s
U:=[uy, - ,u,] € R Ul = [tupy1, ,Up,| € R”lx(nl*”),
V = [’01, - 7”7"] c ]Rn2><7“7 VvV, = [vr—i—l) L. 7”712] c R”zX(nzfr)‘

The matrices 3*, 3% ,U*, U7, V*, V[ are defined analogously.

2.4.2 Waedin’s sin® theorem

Wedin (1972) developed a perturbation bound for singular subspaces
that parallels the Davis-Kahan sin® theorem for eigenspaces. In what
follows, we present a version that is convenient for subsequent discussions
in this monograph.

Theorem 2.9 (Wedin's sin® theorem). Consider the settings in Sec-
tion 2.4.1. If || E| < oy — oy, 1, then one has

_ V2max {|ETUY|, | BV}
T -

- V2max {||ETU*|g, |[EV*|r}

max {dist(U, U*), dist(V, V*)}

H * H *
max {distyp (U, U™*), distp (V, V™) } ot — ot~ IE]
This theorem simultaneously controls the perturbation of left and
right singular subspaces. As a worthy note, both the interaction between
FE and U™, and that between E and V*, come into play in determining
the perturbation bounds. In particular, if | E|| < (1—1/v/2)(0} —0},4),
then one can apply Lemma 2.1 in Section 2.1 to obtain

2| E|

I
Oy 0r+1

max {dist(U,U"),dist(V,V*)} < , (2.26a)
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2 E
max {distp (U, U*), distp(V, V*)} < Uf_ 'L ”1, (2.26b)
r+

akin to the eigenspace perturbation bounds (2.18).

2.4.3 Proof of the Wedin sin® theorem

We now present a proof of the Wedin theorem. Similar to the proof of
the Davis-Kahan theorem, we start by bounding ||U ] U*|||, where ||-||
stands for any unitarily invariant norm. To this end, it is seen that

Ulur =U] (Urs v v
U] (M-E-Uz V) vt
U] (UsvT +U B V] - E-Uis v vis!
=, v/vyl U EvyEL (2.27)

Here, the first identity is valid as long as ¥* is invertible (which is
guaranteed since opin(X*) = oy > oy, + ||E|| > 0 under our as-
sumption), the second line follows from the identities M — E = M*
and M* = U*S*V*T + UIZ’iVj_*T, the third line holds since M =
Uzv' +U. T J_VI , whereas the last identity exploits the property

U/U=0, and V'V*=0

Applying the triangle inequality and Lemma 2.1 in Section 2.1 to the
identity (2.27) yields

OO < Bl VTV 1 T v
=g VIV o + 1BV
< r—i—l + HEH H|VTV*H| 4 0= U ”|EV*H| (2.28)
r r
Here, the second line uses the properties | Z*7!|| = 1/0% and |2, || =

or+1, while the last inequality follows from Weyl’s inequality o,4+1 <
or. 1+ E| (cf. Lemma 2.3 in Section 2.1). Repeating the same argument
yields

TU*||| o741 + || Bl

* *
oy fopo

vy <l loTos. 229
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To finish up, combine the inequalities (2.28) and (2.29) to obtain

max {|| ETO[, [| 2V*|[}

*
UT

max {[|[ULU*||, [V, V*|[} <

L T+ 1B

*
UT

max { [T L0, [V V13-

When | E| < o} — 0j,, we can rearrange terms to arrive at

max {[[[ 27 U], || EV|[}

max {|[|[U] U*||, ||V, V*||} <
UwToe L IvIvely < ===

The proof is then completed by invoking Lemmas 2.5 and 2.6.

2.5 Eigenvector perturbation for probability transition matrices

Thus far, our eigenvector perturbation analysis has been constrained
to the set of symmetric matrices. Note, however, that the utility of
eigenvectors is by no means confined to symmetric matrices. In fact,
eigenvector analysis plays a vital role in studying asymmetric matrices
as well, most notably the family of probability transition matrices
of Markov chains. This section explores how to extend eigenvector
perturbation theory to accommodate an important class of probability
transition matrices associated with reversible Markov chains.

2.5.1 Background, setup and notation

Before presenting the formulation, we remind the readers that a matrix
P € R™™ is a probability transition matrix if it is composed of non-
negative entries with each row summing to 1, which is used to describe
the state transition of a Markov chain over a set of n states. Of special
interest is the stationary distribution of P, denoted by a probability
vector = [m;]1<i<n, that satisfies

T >0, 177 =1, and ' P=m'. (2.30)

In words, the distribution 7 is invariant with respect to P. Clearly,
7 is the left eigenvector of P associated with eigenvalue 1, with the
corresponding right eigenvector given by 1. By the Gershgorin circle
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theorem (see, e.g., Olver et al. (2006)), the modulus of all eigenvalues
must be bounded by the maximum of the row sum, which is 1. Given
that 1 is an eigenvalue of P, the largest modulus of the eigenvalues of
P is precisely 1, and therefore 7 is the leading left eigenvector of P.
In addition, a Markov chain is said to be reversible when the following
detailed balance equations are satisfied:

Wipi,j = ijj,ia forall 1 <4,5 <n, (2.31)

where m = [m;]1<i<n is the stationary distribution obeying (2.30). It
will be seen in the proof of Theorem 2.10 that all eigenvalues of such a
matrix P are real. For readers who wish an introduction to the basics
of Markov chains, we recommend the monograph by Brémaud (2013).

In this section, we consider the probability transition matrix P* €
R™ ™ of a reversible Markov chain, as well as its perturbed version—also
in the form of a probability transition matrix:

P=P"+EcR""

The leading left eigenvectors of P* and P—or equivalently, the vectors
representing their stationary distributions—are denoted by 7* and r,
respectively. Here, we allow E to be fairly general, meaning that P
does not necessarily represent a reversible Markov chain. The question
is: how does the matrix E affect the perturbation @ — 7* of the leading
left eigenvector of interest?

Additionally, we find it helpful to introduce several notation fre-
quently used in the studies of Markov chains. Instead of operating
under the usual 5 norm, the stationary distribution 7 equips us with a
new set of norms. Specifically, for a strictly positive probability vector
™ = [mi]1<i<n, any vector = [z;]1<i<n and any matrix A, it is useful
to introduce the vector norm |||/ = y/>_; mz? and the corresponding
matrix norm [|Al|z = supjg, =1 [[AZ|x.

2.5.2 Perturbation of the leading eigenvector

Now we are ready to present the perturbation bound for the leading
left eigenvector of a probability transition matrix, a result originally

developed in Chen et al. (2019D).
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Theorem 2.10. Consider the settings in Section 2.5.1. Suppose that
P* represents a reversible Markov chain, whose stationary distribution
vector 7t* is strictly positive. Assume that

IE|,.. <1—max {\s(P*), —An(P*)}. (2.32)

Then one has

|77 — 7o < |~ Bl
™ 7 1 —max {\2(P*), - \(P*)} — | E| ..

The similarity between Theorem 2.10 and Corollary 2.8 is noteworthy.
Indeed, recalling that the largest eigenvalue of the probability transition
matrix P* is precisely 1, one might view 1 — max {\a(P*), =\, (P*)}
as the gap between the first and the second largest eigenvalues of P*
(in magnitude), akin to the eigengap |Ax| — A7, | in Corollary 2.8 (with
r = 1). In words, Theorem 2.10 guarantees that as long as the size of the
perturbation matrix FE is not too large, the perturbation of the leading
left eigenvector—or equivalently, the perturbation of the stationary
distribution of the associated Markov chain—is proportional to the
size of the noise when projected onto the direction 7*, as measured by
|7* T E||z+. As we shall demonstrate in Section 3.6, this perturbation
theory delivers powerful techniques for analyzing the ranking problem
described previously in Chapter 1.

Remark 2.3. Sensitivity and perturbation analyses for the steady-state
distributions of Markov chains have been studied in the literature; see,
e.g., Mitrophanov (2005), Liu (2012), Jiang et al. (2017), and Rudolf
and Schweizer (2018) and the references therein.

2.5.3 Proof of Theorem 2.10

Since v* and 7 denote respectively the leading left eigenvectors of P*
and P, namely,

o P*=x* T, and mn P=x',
the perturbation w — w* admits the following decomposition

TK'T—TF*T:TI'TP—TI'*TP*:(W—W*)TP—{—W*T(P—P*)
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—(r—m) (P=—P)+(r—7n*) P + 7 (P - P*
—(r—7") (P—P)+ (-7 (P =17+ 7" (P - P*).

Here, the last relation hinges upon the fact that 7 and 7v* are probability
vectors, and hence (w — )" 1 = 1—1 = 0. Apply the triangle inequality

with respect to the norm || - |+ to obtain
I = 7l < || (7 =) (P = P ||+ || (7 = )T (P = 10T) |
+ |7 (P~ PY) |,
< (1P = Pl + | P* = 1T ) 170 = 7| e
+ |77 (P - P,
where the last line relies on the definition of the matrix norm || - [|z+.

Rearranging terms, we are left with

|7 (P —P*) .
™
1P = Pl — || P — 17T

I — e < —

Tr*
with the proviso that |P — P*||z + ||P* — 17*" ||z~ < 1. The proof
would then be completed as long as one could justify that

[P — 17|, = max {\(P*), =\ (P¥)}. (2.33)

Proof of the identity (2.33). Let w* = [n}]1<i<n, and define a diagonal
matrix IT* = diag([#T,---,7}]) € R™"™. From the definition of the
norm || - ||z« (both the matrix version and the vector version), it is easily

seen that for any matrix A,

w1/2 N —1/2 02 \1/2
|| () A ) e

| Allpe = sup 1220 2
er0 [@lle or0 (T ],
)\ 1/2 w\—1/2
H(H )1 A<H ) ”H o 1/2 o —1/2
= sup 2 = )2 A@m) T (230)
070 lvll,
with || - || the usual spectral norm, where the last line replaces (1'[*)1/ z

with v. Consequently, we obtain

|P* — 17" || = || (1) (P* — 12T (IT%) /2|
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=[|8* - WI/Q(”TQ)THv

where we define §* = (H*)l/2 P~ (H*)71/2 and 7 5 = V77 li<i<n.
Several basic properties regarding S* are in order; see Brémaud (2013,
Chapter 6.2).

(a) Since P* represents a reversible Markov chain with stationary
distribution 7v*, the matrix S* is symmetric, whose eigenvalues
are real-valued. This can be verified by the detailed balance equa-
tions (2.31).

(b) Given that S* is obtained via a similarity transformation of P*,
we see that S* and P* share the same set of eigenvalues. This
can easily be verified from the definition of eigenvectors:

S*£ _ /\€ — P* (H*)_1/2£ -\ (H*)—I/Q E

(¢) In particular, A\;(S*) = A\ (P*) = 1, and ] ) is precisely the
eigenvector of S* associated with A\;(S*) = 1. Thus, from the
eigendecomposition of the symmetric matrix S*, it is easy to see
that the eigenvalues of S*—ﬂ'i‘/Q(ﬂ'f/Z)T are 0, A2(S™), -+, \p(S™).

Taking the preceding facts collectively, we reach

* (1) * *
8% — 7’?/2(7"1/2)TH = max {|A2(S), [An (S}
— max {A2(5"), ~An(5%)} 2 max {Aa(P*), — A, (PY)}.
Here, (i) relies on Property (c), while (ii) follows from Property (b).
This concludes the proof. ]

2.6 Appendix: Proofs of auxiliary lemmas in Section 2.2

2.6.1 Proof of Lemma 2.4

Given that singular values are unitarily invariant, it suffices to look at
the singular values of the following matrix

UT UTur o
. (2.

- ] u' —-vru" Ut U] =
UJ_
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Consequently, the singular values of UU " — U*U*" are composed of
those of U TUj_ and those of UIU* combined. It then boils down to
characterizing the spectrum of U'U* and U U™.

To pin down the singular values of U TUL we first turn attention
to the eigenvalues of UTUIUITU. Assuming that the SVD of UTU*
is given by XXY " (where X and Y are r x r orthonormal matrices,
and ¥ is diagonal), we can derive

v'viviy'v=v' (1, -vrv*" Y =U'U -U"U*U*"U
=I, - XX*X" = X(I, —cos’ @)X '
= X (sin?@)X . (2.36)
Here, the penultimate identity follows from our construction (cf. (2.5)),

where we define cos ® = diag([cos by, - ,cos0,]). Therefore, for any
1 <4 < r, the i-th largest singular value of U TUI obeys

oi(UTUL) = N(UTULULTU) = sin by,

which results from the ordering in (2.6). This means that, if r <n —r,
then the singular values of UTU? are precisely given by {sin6; }1<i<,.
Repeating this argument reveals that the singular values of UIU* are
also {siné; }1<i<, if r <n —r.

Combining the above observations thus completes the proof.

2.6.2 Proof of Lemma 2.5

A closer inspection of the proof of Lemma 2.4 (in particular, (2.36) and
the orthonormality of X) reveals that

[UTUt|| = /[UTUUTU| = /| X (sin? @) X T|| = |[sin ©)],

[UTU ||, = JTHUTUIUTU) = |/Tr(X (sin? ©) X T)

= \/Tr(XTX sin? @) = \/Tr sin? @) = || sin O||p,
where we have used the basic property Tr(AB) = Tr(BA). Similarly,

[UTU*| = [sin@],  and  [UTU"] = || sin®].

I
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Note that the above identities hold for all 1 < r < n. In addition, the
relation (2.35) tells us that

[UUT — U U = max {UTULL UTU s (237a)

1/2

louT - v = (JUTUt | + Ul (2.37b)

Putting the above identities together immediately establishes the ad-
vertised results.

2.6.3 Proof of Lemma 2.6

As before, suppose that the SVD of U 'U* is given by XXY ', where
X and Y are r X r orthonormal matrices whose columns contain the left
singular vectors and the right singular vectors of U ' U*, respectively,
and X € R™" = cos® is a diagonal matrix whose diagonal entries
correspond to the singular values of U T U*.

The spectral norm upper bound. We first observe that

IUXY T —U*?=||(UXY"T -U")"(UXY " -U")|
=2, - YX'U'U* - U"UXY |
=2, - YX' XY —YEX'XY'|
=2|Y(I, - )Y | =2|I, - =|. (2.38)
Here, the penultimate line relies on the singular value decomposition

U'U* = XXY ", while the two identities in the last line result from
the orthonormality of X and Y, respectively. In addition, note that

| I, — 2| = |[I, — cos ®| < || I, — cos® O||
= ||sin’ ©|| = || sin ©||*.
This taken together with (2.38) leads to

min [UR- U < [UXYT ~ U] < V3| sin@],
c TXTr

where the first inequality holds since X and Y are both orthonormal
matrices and hence XY T is also orthonormal.
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The spectral norm lower bound. On the other hand, we make the
observation that

min [UR-U*|*= min |(UR-U*T(UR-U")|
Reorxr REOT‘XT

:Rn,(loin |RTUTUR+U*TU*_RTUTU*_U*TURH

E TXT

= min |2, - R"XXY' - YEX'R|, (2.39)
REOT‘X’I‘

where the last relation holds since XXY ' is the SVD of UTU*. Con-
tinue the derivation to obtain

2.39) 2 min |21, - QTYT - YEQT||
QGOTXT

i
= min

olin [2Q'Q-Q'QTY 'Q-Q'Y=EQ'Q|
e TXT
= min |2, - XY 'Q-Q'YX
olin || Q-Q YX|
(i)
= min
OEOT‘XT‘

Here, (i) follows by setting @ = R'X (since both X and R are
orthonormal matrices), (ii) results from the unitary invariance of the
spectral norm, whereas (iii) holds by setting O = Y ' Q. Moreover,
recognizing that [|ZO|| < ||Z]-]|O|| < 1 (and hence 2I, —X0—-0TX >
0), one can obtain

2I, - $0 - 0'x|. (2.40)

min |2, - X0 - O'E| = min Apax (2L, — X0 -~ O'X)
Oeor=r 0cor=r

= min  max u'(2I, - X0 -0"%)u
OcO™" u:||lull2=1

= min  max (2- 2uTEOu)
0cO™*7 u:||lulj2=1

> min (2 2e, ZO0e,)

OGOTX’V‘

=2 —2cosf, max e:Oer
Oeorxr

> 2 — 2cos b, = 4sin*(6,/2). (2.41)

Here, the inequality follows by taking u to be e, (recall that by con-
struction, o, = cos @, > 0 is the smallest singular value of 3), and the
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penultimate line holds by combining the facts |e, Oe,| < [|O| =1 and
e, e, = 1. Putting (2.41) and (2.40) together yields

min |[UR— U*|| > \/4sin?(6,/2) = 2sin(6,/2) = ||2sin(©/2)]|

ReOrxr
> [[sin ©,

where we again use the inequality 2sin(6/2) > sin @ for all § € [0, 7/2].
Finally, invoking the relation ||sin®| = |[UU" — U*U*T|| (see
Lemma 2.5) establishes the claimed spectral norm bounds.

The Frobenius norm upper bound. Regarding the Frobenius norm
upper bound, one sees that

2 oTr(YXUTUY)

UXY" - Uz = U]} + [U*[|5

O oy x xSy ) Qor omr(x),  (2.42)
where (i) holds since U and U* are both n x r matrices with orthonor-
mal columns, and (ii) follows since XX = Y'Y = I (and hence
T(YXTXZY ) =Tr(YTYXTXZ) = Tr(X)). Furthermore,

2r — 2Tr (X HI)ZZ 1 — cosb;) <2Z 1—cos 0;)
=2[sin O} = [UUT - UT*T|,

where (iii) holds by construction (cf. (2.5)), and the last identity results
from Lemma 2.5. This taken collectively with (2.42) reveals that
min [UR-U*[; < [UXY' - U*|p < [[UU" - U U],
RcOTx"
where the first inequality holds since X and Y are both orthonormal
matrices and hence XY T is also orthonormal.

The Frobenius norm lower bound. With regards to the Frobenius
norm lower bound, it is seen that

. * 112 _ . 2 *[|12 *

Juin [UR-U*[g= min {|UR|}+|U*[} - 2URU")}
(i) Trrx
—2R$PXT{T—<R,U U >}
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(i) . . T
= 2Rg(191£1XT{r (R.XZYT)}, (2.43)
where (i) holds since |U||g = [[U*|lr = /7, and (ii) relies on the SVD

XYY" of UTU*. Continue the derivation to obtain

iii (iv)
(2.43) & 2 min_ {r—(Q.ecos®)} > 2 min {r=1Qlcos®].}

=2(r— ) cosby). (2.44)

Here, (iii) sets Q@ = X " RY and identifies 3 as cos ®, (iv) comes from
the elementary inequality (A, B) < ||A||||B||«, whereas the last line
follows since cos #; > 0. Additionally, it is easily seen that

(244) =2 (1 —cosb;) =4 sin®(6;/2)
) 1 N 2
> sin®6; = §HUUT -UU |5, (2.45)

where the penultimate relation follows from the elementary inequality
2sin(0/2) > sin @ (which holds for any 0 < 6 < 7/2), and the last line
invokes Lemma 2.5. Combining the inequalities (2.44) and (2.45), we
establish the claimed lower bound.

2.7 Notes

Additional resources on matrix perturbation theory. Matrix pertur-
bation theory is a firmly established topic that has been extensively
studied in the past several decades. Two classic books that offer in-
depth discussions of perturbation theory for eigenspaces and singular
subspaces are Stewart and Sun (1990) and Sun (1987). Other valuable
resources on this topic include Bhatia (2013) and Horn and Johnson
(2012). The exposition herein is largely influenced by the excellent lec-
ture notes by Montanari (2011) and Hsu (2016). In addition, the book
(Kato, 2013) offers a more abstract treatment of perturbation theory
from the viewpoint of linear operators. Several variants of the sin®
theorem amenable to statistical analysis are available in the statistics
literature as well (e.g., Yu et al. (2015), Vu and Lei (2013), Cai and
Zhang (2018), and Zhang et al. (2021)).
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Extensions. We point out several well-known extensions of the theo-
rems presented in this chapter. To begin with, the current exposition
restricts attention to the real case for simplicity, while in fact all results
herein generalize to the complex-valued case (Stewart and Sun, 1990).
In addition, Theorem 2.9 together with Lemma 2.6 reveals the existence
of two rotation matrices Ry and Ry obeying

V2max {|ETU*|p, | EV*||p}

URy —U*|lp, |[VRy — V*[lp} <
max {[URy — U*[le, |[VRy - V*|r} < e — ]

)

but falls short of illuminating the connection between Ry and Ry . An
extension derived in Dopico (2000) establishes a similar perturbation
bound even when Ry and Ry are taken to be the same rotation matrix.



3

Applications of £, perturbation theory
to data science

This chapter develops tailored spectral methods for several important
applications arising in statistics, machine learning and signal processing.
As it turns out, these methods are all variations of a common recipe:
extracting the information of interest from the eigenspace (resp. singu-
lar spaces) and eigenvalues (resp. singular values) of a certain matrix
M properly constructed from data. The inspiration stems from the
observation that: the corresponding quantities of M* = E[M|—when
properly constructed and under appropriate statistical models—might
faithfully reveal the information being sought after. The classical £
perturbation theory introduced in Chapter 2, when paired with modern
probabilistic tools reviewed in Section 3.1, uncovers appealing perfor-
mance of spectral methods in numerous applications by controlling
the size of the perturbation E := M — M?*. The vignettes in this
chapter provide ample evidence regarding the benefits of harnessing the
statistical nature of the acquired data.

3.1 Preliminaries: Matrix tail bounds

In order to invoke the sin® theorems (Theorems 2.7 and 2.9), an
important ingredient lies in developing a tight upper bound on the

606
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spectral norm ||E|| of the perturbation matrix E. This is where statis-
tical /probabilistic tools play a major role. Rather than presenting an
encyclopedia of probabilistic techniques (which can be gleaned from
Tropp (2015), Vershynin (2017), Boucheron et al. (2013), Wainwright
(2019), Tropp (2011), Raginsky and Sason (2013), and Howard et al.
(2020)), this monograph singles out only two useful matrix concentration
inequalities that suffice for the applications considered herein.

The (truncated) matrix Bernstein inequality

The first result is an extension of the celebrated matrix Bernstein
inequality (Oliveira, 2009; Tropp, 2012; Hopkins et al., 2016). This
is an elegant and convenient tail bound for the sum of independent
random matrices, resulting in effective performance guarantees for a
diverse array of statistical applications. We refer the interested reader
to Tropp (2015) for a highly accessible introduction of the classical
matrix Bernstein inequality, and Hopkins et al. (2016, Section A.2.2)
for a proof of the truncated variant stated in Theorem 3.1.

Theorem 3.1 (Truncated matrix Bernstein). Let {X;}i<i<m be a se-

quence of independent real random matrices with dimension nq X no.
Suppose that for all 1 < ¢ < m,

P{IX: —E[XG)| > L} < qo0 (3.1a)

[E[X:] —E[X1{ | Xsll < L} [ < (3.1b)

hold for some quantities 0 < gg < 1 and ¢; > 0. In addition, define the
matrix variance statistic v as

v = max{

Then for all ¢ > mgq;, one has

(g )2
P ( > t) < (n1 4 ng) exp (v +(tL(t (ill)ql/)2/3>+mq0.

)

> B[(X: ~ ELX)(X: ~ ELX))]

iE[(Xi ~E[X) (Xi - E[X)))] ||} (3.2)

=1

m

> (X —E[X])

=1
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Remark 3.1. Note that when the X’s are i.i.d. zero-mean random
matrices, the matrix variance statistic simplifies to

v =mmax {|E[X: X, [E[X] X }.

To make it more user-friendly, we record a straightforward conse-
quence of Theorem 3.1 as follows.

Corollary 3.2. Suppose the assumptions of Theorem 3.1 hold, and
set n := max{ni,na}. For any a > 2, with probability exceeding 1 —
2n~ %1 — mgp one has

m

> (Xi —E[Xi])

2
< V2avlogn + EaLlogn+mq1. (3.3)
i=1

In order to make effective use of the above results (particularly when
handling unbounded random matrices), it is advisable to take L as a
high-probability bound on || X; — E [X;] ||. The rationale is simple: by
properly truncating X; based on the level L, we end up with a bounded
sequence that is more convenient to work with while not deviating
much from the original sequence. In particular, if all || X; — E [X]] || are
bounded by a deterministic quantity which is set to be L, then both ¢g
and g1 vanish, thus eliminating the need of enforcing truncation. In this
case, Corollary 3.2 simplifies to a user-friendly version of the standard
matrix Bernstein inequality, which we record below for ease of reference.

Corollary 3.3 (Matrix Bernstein). Let { X;}1<i<m be a set of independent
real random matrices with dimension ny X ne. Suppose that

E[X;]=0, and |X;|| <L, for all 3. (3.4)

Set n = max{ni,no}, and recall the definition of variance statistic
in (3.2). For any a > 2, with probability exceeding 1 — 2n~%"! one has

m

2
ZXZ' < V2avlogn + ?aLlog n. (3.5)
i=1

By virtue of the above inequalities, the key to bounding |3, X||

largely lies in controlling the following two crucial quantities:

Vulogn and Llogn,

where the former depends on the number m of random matrices involved.
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Spectral norm of random matrices with independent entries

An important family of random matrices that merits special attention
comprises the ones with independent random entries, that is, matrices of
the form X = [X; j]i<; j<n with independent X; ;’s. While the spectral
norm of such a matrix can also be analyzed via matrix Bernstein (by
treating X as the sum of independent random matrices Xmeie}—), this
approach is typically loose in terms of the logarithmic factor. Motivated
by the abundance of such random matrices in practice, we record
below a strengthened non-asymptotic spectral norm bound, which is
of significant utility and is tighter than what matrix Bernstein has to
offer for this case.

Theorem 3.4. Consider a symmetric random matrix X = [X; j]i<i j<n
in R™*™ whose entries are independently generated and obey

E[XL]'] = O, and |Xi7j| < B, 1 < i,j <n. (36)
Define
._ 2
v = max Zj E[X;;]- (3.7)
Then there exists some universal constant ¢ > 0 such that for any ¢ > 0,
2
P{IX| > v +t} Snexp(—@). (3.8)

This result, which appeared in Bandeira and Van Handel (2016,
Remark 3.13), can be established via tighter control of the expected
spectral norm in conjunction with Talagrand’s concentration inequality.
Two remarks are in order.

e First, it is easy to see that the result extends to asymmetric
matrices with independent entries, using the standard “dilation
trick” (see, e.g., (Tropp, 2015, Section 2.1.17)). Specifically, for
an asymmetric random matrix X € R™*"2_let us introduce the
symmetric dilation S(X) of X:

S(X) = [ )?T )(f 1 e ]R(n1+ng)><(n1+n2)7
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which enjoys the desired symmetry and can be analyzed directly
using Theorem 3.4. The resulting bound on ||S(X)|| can be trans-
lated back to || X || via the elementary identity || X|| = ||S(X)]|.
For conciseness, we will occasionally apply Theorem 3.4 directly
to asymmetric matrices without invoking the dilation trick.

« As a useful corollary, if we know a priori that E[X?,] < ¢ for all
1 <1,7 <n, then Theorem 3.4 implies that

|X| < 4ov/n+eBy/logn (3.9)

with probability at least 1 — n~® for some constant ¢ > 0. To see
this, it suffices to set ¢ = v/9c and take t = By/9clogn in (3.8).

Remark 3.2. The inequality (3.9) continues to hold if we replace n=%

with n™* for any positive constant a > 0. Here and below, we often
-8

go with the artificial choice like n™° since it is small enough for our

purpose.

3.2 Low-rank matrix denoising

To catch a glimpse of the effectiveness of the approach we have intro-
duced, let us start by trying it out on a warm-up example: low-rank
matrix denoising.

3.2.1 Problem formulation and algorithm

Consider an unknown rank-r symmetric matrix M* € R™ "™ with
eigendecomposition M* = U*A*U* ", where the columns of U* € R"*"
are orthonormal, and A* € R™*" is a diagonal matrix containing the
nonzero eigenvalues {\;} of M*. Assume that |A}| > |A\5] > --- >
|A%] > 0. Suppose that we observe a noisy copy

M = M* + E,

where E = [E; j|i<i j<n is a symmetric noise matrix. It is assumed that
the entries {Ej ;};>; are independently generated obeying

Ei; N N(0,0%), 0> (3.10)
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The aim is to estimate the eigenspace U* from the data matrix M.
Despite its simplicity, this problem has been extensively studied in the
literature (Koltchinskii and Xia, 2016; Bao et al., 2021; Ding, 2020;
Xia, 2021; Li et al., 2021a). It also bears close relevance to the famous
angular /phase synchronization problem (Singer, 2011; Bandeira et al.,
2017).

In order to estimate the low-rank factors specified by U*, a natural
scheme is to resort to the rank-r leading eigenspace of the data matrix
M . More precisely, denote by A1, --- , A, the eigenvalues of M sorted
by their magnitudes, i.e.,

M| > [Ao] =0 > A, (3.11)
and let wy, ---, u, represent the associated eigenvectors. This spectral
method returns U = [uq,--- ,u,] € R"*" as an estimate of U*.

3.2.2 Performance guarantees

Statistical accuracy of the spectral estimate. We now examine the
accuracy of the above spectral estimate. Towards this, a key step lies in
bounding the spectral norm of the noise matrix E. We claim for the
moment that (which will be established in Section 3.2.3)

|E| < 50vn (3.12)

with probability at least 1 — O(n~8). Armed with this claim and the
fact Ay, ; = 0, we are in a situation where it is quite easy to see how
the Davis-Kahan theorem applies. According to Corollary 2.8, with
probability greater than 1 — O(n~%) one has

20E| 1
dist (U, U*) < |HA*|H < 0‘;‘/77 (3.13)

provided that the noise variance is sufficiently small obeying oy/n <
UV 3 50 that (| BJ| < (1 1/V2)IX;).

Tightness and optimality. The tightness of the statistical guaran-
tee (3.13) can be assessed when compared with the minimax lower
bound. For instance, it is well-known in the literature (e.g., Cheng et al.
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(2021, Theorem 3)) that: even for the case with = 1, one cannot hope
to achieve dist(U, U*) = o(ov/n/|A}|)—in a minimax sense—regardless
of the estimator U in use. Consequently, the spectral method turns out
to be orderwise statistically optimal for low-rank matrix denoising.

Additional useful results: eigenvalue and matrix estimation. Before
concluding, we record several immediate consequences of the above

analysis that will be useful later on. Specifically, assuming that o/n <

#\Aﬂ, we see from Weyl’s inequality (cf. Lemma 2.2) that

I\i| < |E|| <50vn,  foralli>r+1 (3.14)

with probability 1 — O(n~8).

We further remark on the Euclidean statistical accuracy when es-
timating the unknown matrix M™* using M = UAU", where A =
diag([A1,- -+, Ar]). It is seen from the triangle inequality that

[UAUT — 2| < M - M| 4 [UAUT - M|
= 1Bl + v ] < 2012 (3.15)

where the last inequality relies on (3.14). Since the rank of UAU T — M*
is at most 2r, with probability at least 1 — O(n~%) one has

[UAUT - M7, < VB [UAUT - M| < 2V% | B
< 100V 2nr. (3.16)

3.2.3 Proof of the inequality (3.12) on || E||

We plan to employ Theorem 3.4. Given that Gaussian entries are
unbounded, we introduce a truncated copy E = [E; j|i<i j<n defined as
follows

E;j = E;i;1{|Ei | < 50y/logn}, 1<i,j<n. (3.17)
Two properties are in place.
o It is readily seen from the property of Gaussian distributions that

P{E;; =Ei;} >1-n"", l<i,j<n,



3.3. Principal component analysis and factor models 613

which combined with the union bound leads to

P{E=E}>1-n"10 (3.18)

« Given that B := max;|E; ;| < 50v/logn, we can invoke Theo-
rem 3.4 (or more directly, (3.9)) to demonstrate that

|E|| < 40/n+ O(Blogn) < 50+v/n

for sufficiently large n, with probability exceeding 1 — O(n~%).
Here, we implicitly use the fact that E[E}j] < E[E})] = o°.

Combining the above two observations implies that
IE|| = || E|l < 50+v/n

with probability exceeding 1 — O(n~%), as claimed.

3.3 Principal component analysis and factor models

Principal component analysis (PCA) and factor models (Jolliffe, 1986;
Lawley and Maxwell, 1962; Fan et al., 2020b)—which serve as an
effective unsupervised learning tool for exploring and understanding
data—arise frequently in data-intensive applications in economics, fi-
nance, psychology, signal processing, speech, neuroscience, traffic data
analysis, among other things (Stock and Watson, 2002; McCrae and
John, 1992; Scharf, 1991; Chen et al., 2015a; Balzano et al., 2018; Fan
et al., 2021b). PCA and factor models not only allow for dimensionality
reduction, but also provide intermediate means for data visualization,
noise removal, anomaly detection, and other downstream tasks. In this
section, we investigate a simple, yet broadly applicable, factor model.

3.3.1 Problem formulation and assumptions

Dependence of high-dimensional measurements is a stylized feature in
data science. To model the dependence among observed high-dimensional
data, we assume that there are latent factors that drive the dependence,
with a loading matrix that describes how each component depends on
the latent factors and an idiosyncratic noise that captures the remaining
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part. To set the stage, imagine we have collected a set of n independent
sample vectors x; € RP, 1 <4 < n obeying

Here, f; € R" is a vector of latent factors, L* € RP*" represents a factor
loading matrix that is not known a priori, whereas 1; € R? stands for
additive random noise or the idiosyncratic part that cannot be explained
by the latent factor f;. Informally, the samples {x;} are, in some sense,
assumed to be approximately embedded in a low-dimensional subspace
encoded by the loading matrix L*, which describes how each component
of data x; depends on the factor f; and captures the inter-dependency
across different variables. In the language of PCA, the subspace spanned
by L* specifies the r principal components underlying this sequence of
data samples. A common goal thus amounts to estimating the subspace
spanned by the loading matrix L* and the latent factors {f;}. In the
PCA literature, the subspace represented by L* is commonly referred
to as the principal subspace.

In this monograph, we concentrate on the following tractable statis-
tical model for pedagogical reasons. See Fan et al. (2020b, Chapter 10)
for more general settings (including, say, heavy-tailed distributions and
non-isotropic noise covariance matrices).

Assumption 3.1. The vectors f; and n; (1 <1 < n) are all independently
generated according to
£ N0,L), and  m YA(0,0%T). (3.20)

Moreover, we assume without loss of generality that L* = U*(A*)Y/2,

where the columns of U* € RP*" are composed of orthonormal vectors,

and A* = diag([A}, - - , A}]) is an r-dimensional diagonal matrix obeying
Al > -+ > Ar > 0. Throughout this section, we denote by
K= A/ Ar

the condition number of the low-rank matrix L*L*" = U*A*U*".

3.3.2 Algorithm

As a starting point, it is readily seen under Assumption 3.1 that

x; ~N(0,M*)  with M* := UA*U*" + oI, (3.21)
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In brief, the covariance matrix M™* is a low-rank matrix superimposed
by a scaled identity matrix; for this reason, this model is also frequently
referred to as the spiked covariance model (Johnstone, 2001). The key
takeaway is that the top-r eigenspace of the covariance matrix M™* in
(3.21) coincides with the r-dimensional principal subspace being sought
after (i.e., the one spanned by L* or U*).

The above observation motivates a simple spectral algorithm, which
begins by computing a sample covariance matrix

1 n
M == T .22
2wl (3.22)

followed by computation of the rank-r eigendecomposition UAU " of M.
Here, A € R™*" is a diagonal matrix whose diagonal entries entail the r
largest eigenvalues A\; > --- > A\, of M, and U = [uy,--- ,u,] € RP*"
with w; representing the eigenvector of M associated with A;. The
spectral algorithm studied herein then returns U as the estimate for
the principal subspace U*.

Remark 3.3. In the presence of missing data or heteroskedastic noise
(meaning that the variance of the noise entries varies across different en-
tries), the second part of the covariance matrix M* (i.e., 02I, in (3.21))
might no longer be a scaled identity. Under such circumstances, one
might need to carefully adjust the diagonal entries of M in order for
the algorithm to succeed; see, e.g., Lounici (2014), Loh and Wainwright
(2012), Zhang et al. (2021), Cai et al. (2021a), Zhu et al. (2019), and
Yan et al. (2021). The reader might consult Section 3.9 for an intro-
duction to a commonly adopted diagonal deletion idea to address the
aforementioned issue.

3.3.3 Performance guarantees

This subsection develops statistical guarantees for the spectral method
described above by invoking the eigenspace perturbation theory in-
troduced previously. The first step is to establish a connection be-
tween the sample covariance M and the true covariance M*. Defining
F=[f1, -, fJ]eR™and Z = [m, - ,n,] € RP*™, one can easily
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compute that
M = %(L*F +Z)YL*'F+Z)' =M*+E, (3.23)
where M* is defined in (3.21), and
E = L*(%FFT - IT)L*T + %L*FZT + %ZFTL*T
+ (%ZZT —o’I,). (3.24)

To apply the Davis-Kahan theorem, we are in need of controlling
the size of the perturbation matrix E. This is achieved by the following
lemma, whose proof is deferred to Section 3.3.4.

Lemma 3.5. Consider the settings in Section 3.3.1. Suppose that n >
cr logg(n + p) for some sufficiently large constant ¢ > 0. Then with
probability exceeding 1 — O((n + p)~'?), one has

3
loos
’E” < (}\* / to / / O' p 0g2 7’L+p)>10gé(n+p)

With Lemma 3.5 in place, we are ready to present the following

theorem that controls the estimation error of the spectral algorithm.

Theorem 3.6. Consider the settmgs in Section 3.3.1. Suppose that

n > C(k?r+rlog?(n+p)+ /\*p + ()\*)2) log®(n+p) for some sufficiently
large constant C' > 0. Then with probability at least 1 — O((n + p)~10),
the following holds:

dist(U,U”) <\/F\/% )\*\/>+/-€\/7> log (n+p). (3.25)

Remark 3.4. The third term /(7 log(n + p))/n on the right-hand side
of (3.25) arises due to the randomness of {f;} but not that of {m;}. If
our goal is instead to estimate the eigenspace of L*(% S ffLT as
opposed to that of L*L* ", then this term can be erased.

To interpret what Theorem 3.6 conveys, we include a few remarks
in the sequel, focusing on the simple scenario where x = O(1). In

view of Remark 3.4, we shall ignore the term x+/(rlog(n + p))/n in the
discussion below.
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Linear vs. quadratic dependency on the noise level. In comparison
to the matrix denoising task (cf. Section 3.2.2) where dist(U, U*) scales
linearly with the noise level o (cf. (3.13)), the above performance
guarantees for PCA exhibit contrasting behavior in two different regimes
depending on the strength of the signal-to-noise ratio (SNR), measured
in terms of \*/o?:

o When the SNR is sufficiently large with \*/0? > 1, then the

plog(n+p) ) 1/2

dominant factor in (3.25) is the term o (257 , which scales

linearly with the noise level.

o When the SNR drops below the threshold \:/o? < 1, then the

term ‘;—fv%—which scales quadratically with the noise
level—enters the picture and becomes the dominant effect.

In truth, the quadratic term emerges since our spectral method operates
upon the sample covariance matrix, which inevitably contains second
moments of the noise components.

Tightness and optimality. Natural questions arise as to whether the
performance guarantees in Theorem 3.6 are tight, and whether the
statistical accuracy can be further improved by designing more intelli-
gent algorithms. These questions can be addressed by looking into the
fundamental statistical limits. As established in the literature (Zhang
et al., 2021; Cai et al., 2021a), one cannot hope to achieve

— o o?
dist(U,U™) = 0(\/)\7;\/34- )\;5\/5) (3.26)

in a minimax sense, regardless of the choice of the estimator U; see,

e.g., Zhang et al. (2021, Theorem 2) for a precise statement. Comparing
(3.26) with Theorem 3.6 reveals the near statistical optimality of the
spectral method (modulo some log factor), and confirms the tightness
of the eigenspace perturbation theory when applied to this problem.

Proof of Theorem 3.6. We first make the observation that

M(M*) > > N (M*) > N1 (MF) = -+ = N (M*) = 0% > 0,
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and A\ (M™) = A1 (M™) = AL
The Davis-Kahan sin® theorem (cf. Corollary 2.8) thus implies that: if
the perturbation size obeys ||E| < (1 — 1/v/2)\%, then one has
QHEH _ 2 E]
Ar(M*) — A1 (M) X

3
/ log3 (n +
NA*(A*,/ +o ,/ Upog (n p)>logé(n+p)
Y ,/@yi/e tog? (1 + p)
- no AV no AVn & L

Here, the penultimate inequality results from Lemma 3.5; the last line
is valid as long as n > (02/A\})plog®(n + p)—a condition that would
hold under the assumption of this theorem—so that the fourth term
is dominated by the second one in the parenthesis of the penultimate
line. Finally, it is immediately seen from Lemma 3.5 that the condition
|E| < (1 —1/4/2)A% would hold under the assumption of this theorem.

dist(U,U*) <

3.3.4 Proof of Lemma 3.5
We start by applying the triangle inequality to (3.24) as follows

Vel < P - 22|+ [z e

+ H%ZZT N (3.27)

In order to develop an upper bound on this quantity, one needs to control
the spectral norm of %FFT — I, %FZT, %ZFT and %ZZ—r — 02Ip.
All of these terms share similar randomness structure, namely, they are
all averages of independent zero-mean random matrices. As a result,
the truncated matrix Bernstein inequality in Corollary 3.2 becomes
applicable. In what follows, we shall only demonstrate how to control
the size of %FZ T the other terms can be bounded similarly.

Write FZT = " | fin,'. Since the entries of FZ T might be un-
bounded, we start by identifying an appropriate truncation level. From
standard properties about Gaussian distributions and the union bound,
it is straightforward to verify that

IP’{Hsz < 5+/log(n + p) and ||nZH < 50\/W} >1— (n+p)~ 1.
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One can further derive

IFimi || < 11 filllmilly, < vrp L fill lmil| o < 25y/Fpolog(n + p)

with probability greater than 1 — (n + p)~'%5. In other words, with the
choice L := 25,/rpolog(n + p) one has

P{lIfnl || > L} < (n+p) 7 = qo.

Additionally, the symmetry of Gaussian distributions implies

E[fm]] - E[fm] 1{|fm]] < L}] =0.

To invoke the truncated Bernstein inequality, it remains to determine
the variance statistic. Towards this end, letting B; = fmzT , We observe
that

E[B;B/ ]
E[B/ B;]

Elfin/ nifi'] =E[n/ m)E[fif)'] = po’L,,
Elnf! fim] = ELf f]E[nm ] = ro®L,

thus leading to

v = maX{H ZE[BlBZT]

, ‘ZE[BZTBJ } = npo?,

i
where we use the fact that » < p. Taking these bound together and
applying the truncated matrix Bernstein theorem (see Corollary 3.2)

demonstrate that if n > rlog3(n + p), one has

1 1 1
—|FZ"|| < —y/vlog(n + p) + —Llog(n + p)
n n n

I v/ 1
=0 plog(n +p) + Tpa logQ(n +p) <o piog(n +p) (3.28a)
\/ n n n

with probability at least 1 — O((n +p)~'%) —ngo =1 — O((n +p)~19).
Repeating the above analysis yields that: if n > rlog3(n + p), with
probability at least 1 — O((n + p) %) one has

rlog(n + p)
n

1 1 2plog?
H*ZZT_U2IPH§U2 [plog(n+p) | o'plog™(n+p) (3.28¢)
n n n

H%FFT ~Il < : (3.28D)
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Note that we do not get rid of the second term on the right-hand side
of (3.28¢) since we do not assume n > plog®(n + p).

Substituting the above results (3.28) into (3.27) and recognizing the
basic fact ||[L*|| = [U*(A*)Y?|| < ||[(A*)Y?|| = /A}, we conclude that

AF 2, logs
IE| < (A;\/?ﬂ,/lp +02\/ﬁ+ op Og2(”+p)> logZ (n + p).
n n n n

3.4 Graph clustering and community recovery

Next, we move on to a central problem that permeates data science
applications: clustering. An important formulation that falls under this
category is graph clustering or community recovery, which aims to cluster
individuals into different communities based on pairwise measurements
of their relationships, each of which reveals information about whether
or not two individuals belong to the same community (Abbe, 2017);
see Figure 3.1 for an illustration. There has been a recent explosion
of interest in this problem, due to its wide applicability in, say, social
network analysis (Azaouzi et al., 2019), image segmentation (Browet
et al., 2011), shape mapping in computer vision (Huang and Guibas,
2013), haplotype phasing in genome sequencing (Chen et al., 2016a),
to name just a few. This section explores the capability of spectral
methods in application to graph clustering; we will revisit the clustering
problem again in Section 3.5 for another common formulation.

Figure 3.1: Illustration of graph clustering and community recovery, where one
wishes to cluster all nodes into two communities based on the edges in the graph.
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3.4.1 Problem formulation and assumptions

In this section, we formulate the graph clustering problem via the
well-renowned stochastic block model (SBM) introduced in Holland et
al. (1983)—an idealized generative model that commonly serves as a
theoretical benchmark for evaluating community recovery algorithms.

Consider an undirected graph G = (V, ) that comprises n vertices,
where V and £ denote the vertex set and the edge set of G, respectively.
The n vertices, labelled by 1, --- ,n, exhibit community structures and
can be grouped into two non-overlapping communities of equal sizes.
Here and throughout, n is assumed to be an even number, so that each
community contains exactly n/2 vertices. To encode the community
memberships, we assign n binary-valued variables z} € {1, -1} (1 <
i < n) to the vertices in a way that

1, if vertex ¢ belongs to the 1st community,

—1, otherwise.

The SBM assumes that the set £ of (undirected) edges is generated
randomly based on the community memberships of the incident vertices.
To be precise, each pair (4, j) of vertices is connected by an edge indepen-
dently with probability p (resp. ¢) if ¢ and j belong to the same commu-
nity (resp. different communities). The resultant connectivity pattern is
represented by an adjacency matrix A = [A4; j]i1<i j<n € {0,1}"*", such
that for each pair (i, j),

A = 1, if (l,j)'E g, (3.29)

0, otherwise.

By convention, we take the diagonal entries to be A;; = 0 for all
1 <4 < n. As a remark, the matrix A is symmetric since G is an
undirected graph, with upper triangular elements being realizations of
independent Bernoulli random variables with mean either p (if two nodes
are in the same community) or ¢ (otherwise). In addition, it is assumed
throughout that p > ¢ > 0, implying that there are in expectation more
within-community edges than across-community edges.

Based on the adjacency matrix A generated by the SBM, the goal
is to identify the latent community memberships of the vertices. To
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phrase it in mathematical terms, the aim is to reconstruct the vector
x* = [z]]1<i<n € {1, —1}" modulo the global sign, namely, recovering
either &* or —x*. This is all one can hope for, as there is absolutely no
basis to distinguish the names of two groups.

3.4.2 Algorithm: spectral clustering

Now we describe a spectral method. To simplify presentation, it is
assumed without loss of generality that: 7 =1 for any 1 <1i < n/2,
and x7 = —1 for any ¢ > n/2.

A starting point for the algorithm design is to examine the mean of
the adjacency matrix, given as follows

_ pln/2lz/2 qln/2lq:/2
Eldl = [ aluplly vl | T

As revealed by the above calculation, the matrix constructed below

M=A- p?ﬂhl?f I (3.30)
exhibits an approximate rank-1 structure, in the sense that its mean
P—a| lup T T
M* =E[M]=—— " 1 -1 3.31
)= [_W][m e | 331

is a rank-1 matrix. The leading eigenvalue of M* and its associated
eigenvector are given respectively by

A= w, and w* = L [ Loy ] . (3.32)
2 \/ﬁ _]-n/2

Crucially, the eigenvector u* encapsulates the precise community struc-

ture we seek to recover: all positive entries of u* correspond to vertices

from one community, while the remaining ones form another community.

Inspired by the above calculation, a candidate spectral clustering al-

gorithm consists of eigendecomposition followed by entrywise rounding;:

1. Compute the leading eigenvector w of M (constructed in (3.30));
2. Compute the estimate & = [x;]1<i<y, such that for any 1 <1i <n,

1, if u; > 0,
v = sgn(ug) = 4 ;f Z 0 (3.33)
] 7 > U.
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In words, the community memberships are estimated in accordance
with the signs of the entries of the leading eigenvector of M, namely,
the entries with the same signs are declared to come from the same
cluster.

Remark 3.5. The above algorithm requires prior knowledge of the
parameters p and ¢ when constructing M . It is also feasible to develop
a “model-agnostic” alternative by, for instance, looking at the second
eigenvector of A (since the second eigenvector of E[A] turns out to be
precisely w*), which does not rely on prior information about p and
q at all; see, e.g., Abbe et al. (2020b) for details. Here, we adopt the
above model-dependent version primarily for convenience of exposition.

3.4.3 Performance guarantees: almost exact recovery

The spectral method enjoys appealing statistical guarantees for recover-
ing the community structure of the SBM, which can be readily obtained
by invoking the ¢y eigenvector perturbation theory. To demonstrate
this, we begin by developing an upper bound on the spectral norm
of the perturbation matrix £ := M — M™*, postponing the proof to
Section 3.4.4.

Lemma 3.7. Consider the settings in Section 3.4.1, and suppose that
np > logn. Then with probability at least 1 — O(n %), one has

IE|l S vnp- (3.34)

This spectral norm bound, in conjunction with the Davis-Kahan
sin® theorem, leads to the following theoretical support for the spectral
method introduced in Section 3.4.2.

Theorem 3.8. Consider the setting in Section 3.4.1, and suppose that

|
pz 2 and ﬁzo(pq» (3.35)

n

With probability exceeding 1 — O(n~%), the spectral method achieves

1 & 1 &
ﬁ; Hz; =27} =1-0(1), or E; Iz, =—af} =1-0(1).
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It is noteworthy that the metric

min {711121 1{xz; # a7}, :lzzl]l{x, # —x:}}

can be understood as the mis-clustering rate. In a nutshell, Theorem 3.8
asserts that with the assistance of simple rounding (i.e., the sgn(-)
operation), the spectral method allows for almost exact community
recovery—namely, correctly clustering all but a vanishing fraction of the
vertices—assuming satisfaction of Condition (3.35). Note that “almost
exact recovery” is also referred to as “weak consistency” in the literature
(Abbe, 2017).

Let us take a moment to interpret the recovery condition in (3.35).
The first requirement in Condition (3.35) ensures the presence of suffi-
ciently many edges in the observed graph, while still permits the graph
to be fairly sparse (with average vertex degrees as low as the order
of logn). The second requirement in Condition (3.35)—which imposes
a lower bound on the separation between the edge densities p and
g—guarantees that the within-community edges can be adequately dif-
ferentiated from across-community edges. As a more concrete example,
consider the scenario where p < (logn)/n (so that each vertex is only
expected to be incident to O(logn) edges). In this case, the second
requirement in Condition (3.35) can be translated into

p—q>+logn/n, if p < (logn) /n.

This indicates that the separation p — ¢ is allowed to be considerably
smaller than the edge densities, even in this low-edge-density regime.
In comparison, in another extreme case with p < 1 (so that each vertex
is likely to be connected with a constant fraction of other vertices), the
second requirement in Condition (3.35) reads

p—q>1/Vn, if p<1,

thereby allowing the edge density difference to be even y/n times smaller
than the edge densities themselves.

It is worth highlighting that the spectral method is not merely
capable of correctly clustering all but a diminishing fraction of vertices;
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in fact, it allows for simultaneous and exact recovery for all vertices
under slightly modified conditions. Establishing this stronger assertion
requires developing a significantly strengthened {..-based eigenvector
perturbation theory, which will be elucidated in Section 4.5. The discus-
sion about the statistical optimality of this spectral method is postponed
to Section 4.5 as well.

Proof of Theorem 3.8. It is readily seen from Lemma 3.7 that with
with probability at least 1 — O(n=%),
1 \n(p—2q) 1
Ell<(1- =)= — (1 - — )
1B < (1= )= = (1- )™
provided that Condition (3.35) holds. Here, \* is defined in (3.32).
Apply Corollary 2.8 to yield that with probability at least 1 — O(n=%),
| ANE| _ P
dist(u, u*) < < = o(1), 3.36
() < S S S o) (3.36)
where the last relation follows from Condition (3.35).
Assume, without loss of generality, that |[u — u*||2 = dist(u, u*).

We shall pay attention to the set
N = {i| |u; —uf] > 1/v/n}.

In view of the rounding procedure: for any 7 obeying z; # xJ, one
necessarily has sgn(u;) # sgn(u}), thus indicating that |u; — u}| >
|uf| = 1/+/n and hence i € N'. Combining the ¢ bound (3.36) and the
definition of A/, we can easily verify that

luw — w3

NI < “mF—=3" = o(n),
(1/v/n)?

which in turn leads to the advertised result

1 & 1 &
—E 1z x <7§ 1< |uy — ul] >
n — {xl 7& :Ez} ~n gt {|u1 U'L| -

5=

n

}: W—| =o(1).

3.4.4 Proof of Lemma 3.7

We intend to apply Theorem 3.4 to establish this lemma. First, observe
from the definition E = M — M* = A — E[A] that

|Big| < max|Ai | = 1.
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In addition, the variance of F; ; is upper bounded by

(i) (ii)

E[EZ]] = Var(4;;) < E[A%j] < max{p,q} = p
for any (i, j), where (i) follows since A; ; is a Bernoulli random variable
with mean either p or ¢, and (ii) is due to the assumption p > ¢q. The
bound (3.9) and the condition np 2 logn thus imply that

IE|| = || M —E[M]|| < /np + O(v/logn) < \/np (3.37)
with probability exceeding 1 — O(n~%).

3.5 Clustering in Gaussian mixture models

This section is also concerned with clustering, with the aim of grouping
unlabeled data points into a few clusters (so that the data within the
same cluster share similar characteristics). In contrast to the graph
clustering setting in Section 3.4 where only pairwise measurements
are available, this section assumes direct access to data samples for
each individual. Spectral methods—possibly with the aid of subsequent
refinement like k-means—continue to be remarkably effective for this
setting, achieving practical success in, say, image segmentation (Shi
and Malik, 2000), text separation (Reynolds and Rose, 1995), climate
modeling (Lin et al., 2017), and heterogeneity modeling in precision
medicine and marketing (Fan et al., 2014). Motivated by the empirical
successes, understanding the theoretical properties of spectral clustering
has garnered growing attention recently. In particular, Gaussian mixture
models emerge as a succinct model of attack, providing elegant yet
intuitive abstractions to pivotal quantities that dictate the feasibility of
spectral clustering.

3.5.1 Gaussian mixture models and assumptions

Model and goal. Imagine that we have collected n independent sam-
ples {x;}1<i<n, generated from a mixture of r spherical Gaussians with
respective centers 67,---,0> € RP. More precisely, for each sample
vector x; € RP, we assume the existence of a predetermined, yet a priori



3.5. Clustering in Gaussian mixture models 627

unknown, cluster membership variable £ € [r] such that

07 +m;, it =1,
x; = : : (3.38)
0y +m;, & =r,

where the noise vector m; ~ N(0, I) is independently generated across
the samples. In words, & indicates which Gaussian component a sample
is generated from. Clustering in this Gaussian mixture model can,
therefore, be posed as recovering the set of cluster membership variables
{& }1<i<n (modulo the global permutation ambiguity).

Assumptions. To simplify our exposition, we impose the following
assumptions throughout this section. As a worthy note, this assumption
is often non-essential and can be significantly relaxed, which we shall
remark on momentarily in Remark 3.8.

Assumption 3.2. The centers are independently generated obeying

AQ

o; " Nlo
1 N 72p

Ip), 1<i<r

for some parameter A > 0.

Under this assumption, standard Gaussian concentration inequalities
(Vershynin, 2017) tell us that, with high probability (for large p and

n = poly(p)),

* (|2 A2 * T gk 2
0] = (1 +o()5-,  [6;7 03] = o(2),
* *[2 %2 * |2 *T p*
67 — 631I, = (6715 + (1671, — 267765 = (1+ 0(1))A%

hold for any pair ¢ # j, where o(1) denotes a vanishingly small quantity
as p approaches infinity. The indication is that the parameter A reflects
(approximately) the separation between any pair of centers.

For simplicity of presentation, it is further assumed that there are
exactly n/r samples drawn from each of the r Gaussian components.
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Without loss of generality, we assume that
=1 if [ﬂ =1 (3.39)

for any 1 < i < n, where the ceiling function [x] represents the least
integer greater than or equal to the number x € R. In other words, the
first batch of n/r samples is drawn from the first Gaussian component,
the second batch comes from the second component, and so on. It is
worth pointing out that this assumed assignment information (3.39) is
unavailable when running the spectral clustering algorithm.

3.5.2 Algorithm and rationale

Motivation: spectral structure of the data matrix. In order to develop
a spectral clustering algorithm, it is instrumental to first examine the
spectral feature of the following data matrix
X = [mla"' >$n]:E[X]+[TIla ﬂ?n]- (340)
J— Z

Clearly, E[X] € RP*™ exhibits a rank-r structure:
E[X] = [ T, 07,05, 05, 0F, - 79;} :@*F*T’

s Yy

where we define
@* =[07,---,0;] e RP*" F* = " c R™*",

(3.41)

Similarly, the Gram matrix X | X also inherits this rank-r structure
in the following sense (albeit in the form of a “spiked” structure due to
the presence of noise):

E[X"X] =E[X]|'E[X]+E[Z2Z] = F**T@*F*" +pI,. (3.42)

Recognizing that F* encodes all the cluster membership information,
one is motivated to attempt information extraction from the rank-r
eigenspace of X " X, akin to the PCA algorithm introduced in Sec-
tion 3.3.2.
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Algorithm: spectral clustering followed by k-means. With the pre-
ceding spectral properties in mind, we are ready to present a spectral
clustering algorithm tailored to this Gaussian mixture model. Given
that the eigenspace of X T X might only approximate F* up to global
rotation, we include a follow-up k-means scheme (MacQueen, 1967) to
produce a valid clustering outcome based on the spectral estimate.

1. Compute the leading rank-r eigenspace U € R™" of X T X.

2. Compute Y = P(UU ") € R™*", where the operator P(-) projects
each column onto the unit sphere, i.e.,

z1 Zn
P(z) = | F ., E ]
2112 [EAP
for any matrix Z = [z1, -+ , zy). As will be discussed below, the
projection step is not necessary, and we can also simply take

Y =UU".

3. Let y; represent the i-th column of Y, and apply the k-means
algorithm (with k£ = r) to the vectors {y; }1<i<n to find the cluster
centers and cluster labels for all individuals; namely, we compute

n
E " 9;) ) = arg min Y — V¢, 2. (343
({ z}z_l { 1}1_1) El,m,éne[r},ﬂl,m,ﬂreR";H { £ ||2 ( )

The algorithm then returns {EZ as the clustering result. Inter-

}lgign
estingly, Step 1 bears similarity with the spectral algorithm for graph
clustering, since we essentially generate a pairwise similarity measure-

ment for each pair (4, j) using the inner product (x;, x;).

Remark 3.6. The k-means formulation (3.43)—which minimizes the
sum of squared distance between each data point and the center of its
associated cluster—is an integer program and intractable in general
(Aloise et al., 2009). Fortunately, computationally feasible solutions are
available either under sufficient minimum center separation or when
suitably initialized (Lloyd, 1982; Vempala and Wang, 2004; Lu and
Zhou, 2016; Peng and Wei, 2007; Awasthi et al., 2015; Mixon et al.,
2017; Iguchi et al., 2017). An in-depth account of this computational
aspect is beyond the scope of this monograph, and the interested reader
is referred to Li et al. (2020b) and LofHler et al. (2021) for details.
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Further explanations. We take a moment to explain why k-means is
applied to the columns of Y. Recall that the central object the spectral
algorithm seeks to approximate is the leading rank-r eigenspace of
F*©*T@*F*" (cf. (3.42)). For convenience, suppose we have the eigen-
decomposition @* ' @* = UQEQUGT , where Uy € O"™*" is orthonormal
and Xy € R™" is diagonal. This results in the decomposition

-

P”@”WYF“V:n.(¢TFﬁﬁ>EﬂvﬁP”U0 . (3.44)

r n n
—_———
=U*

Apparently, the matrix U* € R™" defined above has orthonormal
columns and, as a result, represents the eigenspace of F*@* @*F* .
The idea is that if the spectral estimate U approximates U* € R™*"
well, then the matrices /7 UU T and Y constructed above are hopefully
close to the following matrix

1n1
'Y*::v@fU*U*T: T - . (3.45)

n
121)
T or

313

slsH

As can be easily seen, the data points belonging to the same ground-truth
cluster are associated with identical columns in Y*; for instance, each of
the first n/r samples—which belongs to the first cluster—corresponds
to a column of Y* given by \/g [ 1’})” ] Therefore, clustering the
columns of Y via k-means is expected to unveil the underlying cluster
structure, provided that Y is sufficiently close to Y*. In summary,
spectral estimation (Steps 1-2) effectively leads to a new vector y; for
each point, which enjoys substantially enhanced signal-to-noise ratio
compared to x; and boosts the chance for k-means to succeed.

We shall also explain the projection operation enforced in Step 2
of the algorithm. Given that each column of Y* has unit /5 norm,
projecting each column of UU " onto the unit sphere ensures that no
column of Y has an abnormal size. Note, however, that this projection
step is non-essential and is introduced here primarily to simplify the
mathematical analysis. Spectral clustering is expected to succeed even
in the absence of such a projection step (Loffler et al., 2021).
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Remark 3.7. Another variation of spectral clustering is to directly
apply the k-means algorithm to cluster the rows of U (or some properly
rescaled version of them) (Loffler et al., 2021). To explain the rationale,
we note that under the assumption (3.39), U* necessarily consists of r
blocks of identical rows as follows:

1n/r”£|—
U* = \/? :
n : ’
1n/7“V7jr
where v ,--- ,v,] are the orthonormal rows of the matrix Uy (cf. (3.44)).

Consequently, clustering the rows of U™* reveals exactly the true cluster
assignments of all individuals. The idea of our spectral analysis below
applies to this method as well; we leave it to the reader as an exercise.

3.6.3 Performance guarantees

Now, we turn to characterizing the clustering performance of the above
spectral algorithm. We shall focus attention on the mis-clustering rate
as the performance metric. As the cluster labels in [r] can be arbitrar-
ily permuted, the mis-clustering rate associated with the labels {El}
returned by our algorithm is defined as

e (E1AGTD) = min 31 {0(8) 27},
i=1

where IT is the set of permutations of [r]. In words, this metric captures
the average number of mislabeled data points, after accounting for global
permutation. For notational convenience, we shall set M* := E[X " X]
and E := X "X — E[X T X] throughout this section.

The first step towards analyzing the statistical accuracy of the
spectral algorithm lies in developing a perturbation bound on |[UU T —
U*U*"||, where U* (cf. (3.44)) represents the leading rank-r eigenspace
of M*. This can be accomplished via the Davis-Kahan theorem, which
requires us to first control the size of the perturbation E.

Lemma 3.9. Consider the settings in Section 3.5.1, and suppose p 2
rlog®(n 4 p). Then with probability at least 1 — O((n 4 p)~10), one has

An+/log(n +
|| < A"V \g} D) o Juplog(n +p) + nlog(n + p).
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The proof of this lemma can be found in Section 3.5.4. Equipped with
the above perturbation bound, we are ready to present our statistical
guarantees for spectral clustering.

Theorem 3.10. Consider the setting and assumptions in Section 3.5.1,
and suppose that = O(1) and p > log® n. With probability at least 1 —
O(p~19), the mis-clustering rate of the spectral algorithm in Section 3.5.2
achieves

gmis({gi}a {f:}) = 0<1)7

with the proviso that

plog(n+p))1/4 — o(A),

log(n 4+ p) = o(A) and ( -

(3.46)

Before embarking on the proof of this theorem, we discuss briefly
the implications of this theorem. In order to ensure a vanishingly small
mis-clustering rate, it suffices for the center separation A to exceed

A > poly log(n + p), if p <n,
~ () *polylog(n + p), if p > n.

This separation condition matches the minimax lower bound up to some
logarithmic term (Cai and Zhang, 2018; Ndaoud, 2018). In particular,
in the high-dimensional case where p > n, the required separation
condition changes fairly gracefully with the aspect ratio p/n.

Remark 3.8. As alluded to previously, Assumption 3.2 can be signif-
icantly relaxed. For example, the Gaussianity assumption therein is
unnecessary; (almost) exact clustering is plausible once the minimum
center separation exceeds a certain threshold, regardless of how {6}
are generated. To achieve this generality, however, the algorithm might
need to be properly modified. Roughly speaking, in addition to U, it
is sensible to also exploit information contained in the eigenvalues of
X " X (which is crucial for, say, the scenario where all centers {6} are
perfectly aligned except for the scaling factors). We recommend the
readers to Loffler et al. (2021) for detailed discussions.
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Proof of Theorem 3.10. The proof consists of two steps: controlling
the perturbation |[UUT — U*U*"||r (and hence ||Y — Y*||r), and
demonstrating that the follow-up k-means performs well.

The first step is to control |[UU T —U*U*" ||, built upon Lemma 3.9
and a lower bound on the spectral gap of M*. Observe that

Ar (M) = At (M) = A (F*O T @ F*T) = 2\ (07T ©%),
T

where the last identity holds since F*F*T = 21, according to the
definition (3.41). This motivates us to look at the spectral property of
©*T®*. Given that ®* is composed of i.i.d. Gaussian entries (cf. As-
sumption 3.2), invoking the bound (3.28¢) with proper rescaling gives

[ 2 2
H@*T@*_E[@*TQ*]H §A2 < rl;gp + rloj p) S AT

10)

with probability exceeding 1 — O(p~19), provided that p > Corlog? p

for some sufficiently large constant Cy > 0. Further, it is self-evident
that E[©@*T@®*] = JA?I,. Weyl’s inequality (see Lemma 2.2) then
guarantees that
)\min(e*—r@*) Z )\min (E [@*T@*]) _ ||®*T®* _ ]E[@*Te*} ||
> A?/2 - A?/4 = NA%/4.

Combine the preceding inequalities to arrive at

n * T @y* nAQ
~— Amin Z — . 3.47
i (07707 = 1 (3.47)

By virtue of Lemma 3.9 and (3.47), if the following condition

A (M) = Ay (M) =

A > C] max { (W)IM, Vrlog(n + P)}

holds for some large enough constant C; > 0, then it is guaranteed
that | E|| < (1 —1/vV2)(Ar(M*) — A1 (M™*)). This in turn allows us
to invoke the Davis-Kahan theorem (namely, Corollary 2.8) to obtain

V2r | E|

0 ar =V O

U - 0o < 1
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with probability exceeding 1 — O(p~%), where the last line arises from
(3.47) and Lemma 3.9, and

Ay/rlog(n + p) + 14/ pilogslwrp) + rlog?(n + p)
€= )
A2

From the construction of Y and (3.45), one can propagate the bound

(3.48) to ||Y — Y*||r as follows:
2 (if)
< 4H\/ﬁ uUT -Y*
F r

‘P(ﬁUUT) —y*

= 47"HUUT ~UUT L < e (3.49)

2 @ 2
[y - vz 2 .

Here, the first identity (i) holds since the operator P is invariant to
global scaling. Regarding the inequality (ii), it follows from standard
inequality regarding Euclidean projection (e.g., Soltanolkotabi (2019,
Lemma 15)), which we postpone to the end of this proof.

The next step then amounts to translating the perturbation bound
(3.49) into clustering accuracy guarantees (after k-means is applied).
This is accomplished through the following key lemma, to be established
in Section 3.5.4.

Lemma 3.11. Suppose that the matrix Y obtained in the spectral
algorithm in Section 3.5.2 satisfies

Y — Y*|% < e2n, (3.50)

where € > 0 is a quantity obeying ¢ < c3r~* for some sufficiently small
constant c3 > 0. Then the mis-clustering rate obeys

bnis({€},{€7}) < 2re!/%,

As a consequence of Lemma 3.11, the mis-clustering rate is o(1) as
long as er* = o(1), a condition that is guaranteed under the assumptions
(3.46) and » = O(1). This establishes Theorem 3.10.

Proof of the inequality (ii) in (3.49). For any vector v residing in the
unit sphere and any other vector w, we have

IP(w) — wl]3 = ||P(w) — v+ v — w3
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= |P(w) = o[ + [lv — w3 + 2(P(w) — v,v — w)
> |[P(w) — o3 + [|P(w) — w3 + 2(P(w) — v,v — w),
where the last inequality follows since P denotes the projection onto the

unit sphere and v lies in the unit sphere. Cancelling out the common
term ||P(w) — w||3 and invoking Cauchy-Schwarz lead to

IP(w) = o3 < —2(P(w) —v,v —w) < 2|P(w) —vlf2f[v — wll2,
and therefore,
IP(w) —vll2 < 2[lw —vll, or [[P(w) - |3 < 4]lw - |3,

This inequality clearly extends to the matrix counterpart, thus estab-
lishing the claimed result. O

3.5.4 Proof of auxiliary lemmas
Proof of Lemma 3.9. To begin with, let us decompose E as follows

E=X"X-E[X'X]=(©F" +2) (0F' +2)-E[X'X]
=F0"'Z+Z'OF" +2"Z-pI,, (3.51)
where we have used the notation in (3.40) and (3.41), as well as the
identity (3.42). As it turns out, similar terms have already been con-

trolled in the proof for PCA (see Section 3.3.4). More precisely, the first
term in (3.51) obeys

|Fre T z| & \ﬂ\@”zu \f 2\ Jplog(n+ p)
_ Any/log(n +p)
T
with probability exceeding 1 — O((n + p)~19), provided that p >

rlog3(n + p). Here, the first relation (i) holds true since —F* contains
orthonormal columns and the spectral norm is unitarily invariant, while
(ii) invokes the high-probability bound (3.28a). When it comes to the
third term of (3.51), the bound (3.28¢) readily implies that

||ZTZ —pL,|| £ \/nplog(n + p) + nlog?(n + p)
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with probability at least 1 — O((n + p)~1?). Substituting the preceding
two bounds into (3.51) and applying the triangle inequality, we reach

|Bll < 2| F*©* 2| + 2" Z - pL|

An./1
<= ‘fﬁ””)+\/nplog(wp)mlogz(wp).

Proof of Lemma 3.11 (analysis for k-means). Given the class labels
{&}7-, the optimization of the cluster centers {i;};_; in the k-means
formulation (3.43) is achieved by the sample means of each cluster. Thus,
the k-means formulation (3.43) can be equivalently posed as solving

T 1 2
minimize i — = j 3.52
ez’ ZZIZ‘”’ il ZyJHQ (3.52)
=11i€( JjeC
where C = {C1,--- ,C,} represents the cluster assignment, and = denotes

the set of all r-partitions of [n] (i.e., r disjoint subsets whose union
equals [n]).

In order to tackle this formulation, a key ingredient of the proof lies
in the following deviation bound that allows one to replace y; with the
truth y7, as long as the cluster size is sufficiently large.

Claim 3.1. Consider any set & C [n] with cardinality csn for some
quantity cs > 0. Suppose that (3.50) holds with € < ¢2. Then one has

1 2
Sl g ul- x|

With Claim 3.1 in place, we are positioned to establish Lemma 3.11

2
) < 6csven.  (3.53)

1
y? - E Zy]*
jes

by contradiction; that is, we intend to demonstrate that any cluster
assignment that differs too much from the ground-truth clusters cannot
possibly be the k-means solution. In what follows, we denote by C} the
I-th ground-truth cluster (1 <1 <), and let {Cy,--- ,C,} represent the
minimizer of (3.52) whenever it is clear from the context.

Step 1: developing an upper bound on (3.52). To begin with, we derive
an upper bound on the optimal objective value of (3.52), which serves as
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a reference in assessing the (sub)-optimality of other cluster assignments.
By virtue of Claim 3.1 and the assumption |C}| = n/r, one has

’.ZJ yi \c*\ Z%H | < v
ieC

207
with the proviso that ¢ < 1/r2. Note that by construction, for the “ideal”
. 2 . .
fitting, one has 3%;cc- lyr — ﬁ Yjecr y7||; = 0. Using this fact and

*

| C* yj

summing the above inequality over all 1 <[ < r, we arrive at

\c*| Z yjH < 6y/zn. (3.54)

=1 iECl*

Consequently, due to the assumed optimality of C w.r.t. (3.52), replacing
{Cf}i_1 in (3.54) by {C;}]_; can only further improve the objective value:

1 2 1 2
yi— = >y < Yi — = O Ui
ICi] - 2 ICl| =, 2

JEC jECZ

< 6y/zn. (3.55)

1=11€C

Step 2: showing that no cluster can be too large. Suppose that there
exists a cluster C; (1 <1 <) that is too large in the sense that

(I1+co)n

G| >
.

(3.56)

for some quantity c. > 0. We would like to show that this is impossible
unless ¢, is small; in fact, in light of Claim 3.1, we need only to establish
a lower bound on the second term in (3.53) (with & = () so that it
leads to a contradiction with the upper bound (3.55). Towards this
end, we start with the elementary decomposition of the sum of squared
errors:

\C| Zyj <Z€ZCZ Hy:(H;> —lcil- H]C| Zyj

JeC
1
=16 (1~ g 2w,

), (3.57)
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where we have invoked the fact that ||y?||, = 1. It thus comes down to

Iy =

controlling || > ,ec, ¥} ||2 For notational convenience, for any 1 < 7 < r,
we set ny, = ‘CZ N Cﬂ (namely, the number of points in C; coming

from the 7-th ground-truth cluster), and let y(* ) represent the vector
associated with the 7-th cluster (namely, y?T) = yj for any j € Cr).
Armed with this set of notation, we can write
r 2
nyr * nyr * ZT:lan
il = | “TE
H Cil Z ! Z [ Z [ G2

(3.58)
Here, the penultimate identity holds since <ya.), y(*j)) = 0 for any 7 # j,
while the last relation relies on the fact that ||y(*T)||2 = 1. Using 0 <
n- <n/rand Y7 n ;= |, we have

(maXTnl,T)(Zr”l,T) < (n/r) - ‘Cl’ 1
|Cl‘2 - ‘Cl|2 1 + CE

(3.58) <

where the first inequality comes from the basic fact that |al|3 <
llal|o||@l]1 for any vector a, and the last relation arises from the assumed
cardinality constraint on C; (cf. (3.56)).

Substitution into (3.57) yields

Z ’ yz( |C | Z y] = |CZ|< - ;) > ng, (3.59)

1€Cy 1 + Ce
where the last inequality again arises from the assumption (3.56). This

in turn demonstrates that

1 2
yl_@zyjHQ_
_Z]yz |C‘
>ca;—6ﬁn>6\/5n,

where (3.60) results from Claim 3.1 when ¢ < 1/72, and the last inequal-
ity follows as long as 12/¢ < ¢./r. Comparing this with (3.55) leads to
contradiction with the optimality assumption of {C;}.

1 2
Yi— o7 DL Y
- 6'2\/&1 (3.60)

*
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Step 3: showing that no cluster can be too small. Suppose now that
there exists a cluster C; (1 < i < r) obeying

o)< Lmedr=ln

Then from the pigeonhole principle, one can find another cluster C;
(1 <1< r) with cardinality exceeding

cy| > M;
T

otherwise the total size obeys > _; |Cr| < M +(r— 1)@ <
n and {C;} is infeasible. The above condition on |C;| coincides with the
assumption (3.56) in Step 2, which, as a result of previous arguments,

cannot possibly hold. To conclude, for all 1 < ¢ < r, one necessarily has

(1—ce(r—1)n B (1- cer)n.

r

ICi| > (3.61)

Step 4: showing that each C; is mainly composed of points from a true
(and distinct) cluster. Suppose that there exists a cluster C; (1 <1 <)
whose dominant component obeys

max nyr < < (1—=2rc.)n/r,

where we recall that n;, = |C; N C}|. Under this assumption, we have
(max,n; ) (X, nir) < [(1=2rc)n/r]-|C| < 1—2rc

C1? B |Ci[? T l-re’
where the last inequality relies on the lower bound (3.61). Substitution
into (3.57) gives

Z ’ yi — |C ‘ Z y]
i€Cy

(3.58) <

1—2rc.\ O (1 —re)n TCe
cl(1- ) e,

>
1—17rc T 1—1rc

= c.n > 12y/en,

where (i) arises again from (3.61), and the last relation is valid once
ce > 12%. This taken collectively with the inequality (3.60) yields

1 2
— § > E - E —6
|CZ‘ = y]H2 = = ‘ Yi |C ‘ y] \/gn

I=11i€e
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> 6+y/en,
which, however, contradicts the upper bound (3.55). Consequently, the
dominant component in every cluster 1 <[ < r must obey

1213%(7‘ nyr > (1 —2reo)n/r. (3.62)

In particular, if 2rc. < 1/2, then maxi<;<, n;» > n/(2r). An immediate
consequence is that: the dominant components of the clusters {C;} must
come from distinct ground-truth clusters.

Step 5: putting all this together. Armed with the preceding bound (3.62)
and the remark thereafter, it is straightforward to verify the following
result on the mis-clustering rate:

T
lois ({6}, {€1)) <1 — 2121 WANISr<r I gy,

Finally, setting c. = £1/4 leads to the advertised result, provided that
e < cgr~* for some sufficiently small constant ¢z > 0.

Proof of Claim 3.1. Before proceeding, let us take a quick look at how
many columns of Y might deviate considerably from their counterparts
in Y*. To be precise, let us introduce the following set

Niarge = {i | lls — w7113 > e} (3.63)
Clearly, its cardinality is necessarily bounded above by

Y Y5 &2
’-/\[Iarge’ < HgHF < 5Tn =E&n. (364)

The starting point of the proof is the elementary identities
1 2
Yln g Xul-%
=Sl jes a3
2 1 2 .12 1 X
- Z lyilly = IS]- H@ Zysz - (Z i [l — 151 - H@ Zyj
i€S je€S = jes

1 *
“1s1- (| v

2
2

?*_L *
Y ng%
2
)

2 1 2
2 nggyj‘t)’ (3.65)
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where the last inequality follows from the fact that |y;|, = [|yF||, = 1.
To bound the right-hand side of (3.65), we make the observation that

1
<|5‘ Z Hyj—yg*‘HQ'i_E Z Hyj—yj*‘HQ

H;%(yg‘—yﬁ

FES\Niarge FESNNiarge
2 Mar e (
< \f ‘|Sg‘ \f+ < 3ye. (3.66)

Here, (i) holds true since any column outside Marge satisfies ||y; —yj*-H2 <
Ve, and any column coming from Nyge Obeys Hyj — y;HQ < HyjHQ +
|y7l, = 2; (ii) follows from (3.64) and the assumption |S| = ¢sn; and
the last inequality relies on the assumption e < c2. In addition,

1 1
g 2=Yil, S =1 3.67
I %yﬂ 2 = 8] JZS 71l (3.67a)

1 1
Hm%yﬂ”g = IS\% lysll, = 1. (3.67b)

Combining (3.66) and (3.67) and applying the triangle inequality, we
arrive at

1 2 1 * 2
HE Yjes yﬂ'Hg B HE 2jes Y|,

1 1 . 1 1
-l Sl I S by Sl + Iy S,

1 1 .
<3 Sul,- Iy S,

< 6ve. (3.68)

1 *
< ]mg(y] -9,

Finally, plugging in (3.68) into (3.65), we conclude that
1 2
Z yz’_@zyj‘t_ z' ‘Slzyj
1€S JjES
1 2 1
—\5!“ e 2 Yl e 2o Y
o
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< 6v/|S| = 6csv/en

as claimed, where the last relation holds true since |S| = ¢sn.

3.6 Ranking from pairwise comparisons

The ranking task—which seeks to identify a consistent ordering of
several items based on (partially) revealed preference information about
them—is encountered in numerous contexts including web search, crowd
sourcing, social choice, peer grading, and so on (Dwork et al., 2001;
Chen et al., 2013; Caplin and Nalebuff, 1991; Shah et al., 2013). Of
particular interest is the “preference-based” observation model, in which
we are only given relative comparisons of a few items (as opposed to
individual scores of them). In practice, comparison data of this kind
abound, partly because humans often find it easier to make a preference
over two or a couple of items than to assign specific ratings to many
individual ones. The emergence of crowdsourcing platforms such as
Amazon Mechanical Turk further widens the availability of comparison
data, where binary judgments over pairs of items are often solicited
from a pool of non-experts. In this section, we concentrate on pairwise
comparisons and explore the potential of spectral methods for the
ranking task.

3.6.1 The Bradley-Terry-Luce model and assumptions

To formulate the problem in a statistically sound manner, we introduce
a classical parametric model, called the Bradley-Terry-Luce (BTL)
model (Bradley and Terry, 1952; Ford Jr, 1957; Luce, 2012), to describe
the generating process of pairwise comparisons.

Latent preference scores. Imagine that there are n items to be ranked.
A key component of the BTL model is the assignment of a latent prefer-
ence score to each item; more concretely, the BTL model hypothesizes
on the existence of an unseen preference score vector

w* = [w},wy, - ,w*]T, (3.69)

n
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with w} > 0 assigned to the i-th item (1 <4 <n). The ranks of these

items are therefore determined exclusively by their (relative) preference

scores: an item with a larger score is ranked higher. Throughout this

section, we denote by x a sort of condition number as follows
maxj<i<n w;

K= — (3.70)

minlgign 'LU:
Pairwise comparisons. Equipped with the aforementioned score vector,
the BTL model posits that: the probability of an item winning a paired
comparison is determined entirely by the relative scores of the two items
involved. To be precise, when comparing every pair (i, j) of items, the
model assumes that
w*
P{item j is preferred over item i} = —L—, 3.71

{item j is p h pr—" (3.71)
asserting that an item assigned a higher preference score is more likely
to win. In this section, we assume access to a comparison between every
pair of items. To be precise, for each pair (i,75) (1 <i < j < n), we
observe an independent binary comparison outcome y; ; following the
BTL model (3.71):

1, with probability %,
yi,j = g J
0, otherwise,
where y; ; = 1 means item j beats item ¢ and y; ; = 0 otherwise. By
convention, we set y; ; = 1 — y;; for all i > j.

Goal. With the BTL parametric model in mind, a natural strategy is
to start by estimating the underlying scores {w}} based on the pairwise
comparisons in hand, followed by a ranking step performed in accordance
with the estimated scores. In this section, we shall focus on characterizing
the statistical accuracy of spectral methods in accomplishing the meta
task of preference score estimation, and will remark in passing on the
ranking step that follows. Obviously, from (3.71), we can only hope for
estimating {w;} up to some global scaling ambiguity.
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3.6.2 A spectral ranking algorithm

At first glance, the recipe we have introduced for designing spectral
methods seems to have no direct bearing on the BTL model. Somewhat
unexpectedly, a closer inspection unveils an intimate connection be-
tween the BTL model and a reversible Markov chain, whose stationary
distribution embodies crucial information about the score vector of
interest. This in turn lays a solid foundation for the spectral algorithm
described below, originally developed by Negahban et al. (2016).

The first step is to convert the pairwise comparison data {y; ;}iz;
into a probability transition matrix P = [P; ;]i<; j<n, in a way that

Lyii, if i # 7,

(3.72)
1- Zj;j;ﬁi %yi,j, otherwise.

(N

By construction of P, all of its entries are non-negative and the entries
in each row sum up to one, thus confirming that P is a probability
transition matrix. The spectral algorithm then computes the leading
left eigenvector 7 of P, returning it as the estimate for the underlying
score vector w*.

To make sense of the rationale behind this algorithm, it is helpful
to look at the mean P* = [P/j]i<i j<n = E[P], which obeys

*
1wy

==t ifi#£j
n w:4+wrs’ ?
i*j = @ ) J w* (3.73)
’ 1—-—=3.... —L~. otherwise.
n Z}J#l witwy?

Clearly, this matrix P* is a probability transition matrix as well. As
can be straightforwardly verified, the vector @w* = [}]1<i<p defined by

1
T 1w

Tr*

w* (3.74)
satisfies the following conditions:
o 7* is a probability vector (i.e., 7 > 0 for all ¢ and ) ; 7} = 1);

o 7* satisfies the detailed balance equations as follows:

m; Pr; = 7 Pry, for all (4, j).
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Classical Markov chain theory (Brémaud, 2013) thus tells us that P*
represents a reversible Markov chain, whose stationary distribution
is precisely given by 7* (this can easily be verified using the defini-
tion of the stationary distribution) and corresponds to the normalized
preference scores. As a consequence, we hold the intuition that: = is
close to w*—and hence w* up to some global scaling—as long as P
approximates P* reasonably well.

3.6.3 Performance guarantees

This subsection develops theoretical support for the above spectral
ranking algorithm, based on the eigenvector perturbation theory de-
veloped previously for probability transition matrices in Section 2.5.
For notational convenience, we shall use E :== P — P* to denote the
difference of the above two transition matrices of interest.

By virtue of Theorem 2.10, the perturbation of the stationary dis-
tribution of a reversible Markov chain P* is dictated by two important
quantities: (i) the spectral gap 1 —max {\a(P*), =\, (P*)}, and (ii) the
noise size || E||z+ (recall the definition of || - ||z« in Section 2.5.1). These
two quantities are controlled respectively via the following two lemmas,
whose proofs can be found in Section 3.6.4.

Lemma 3.12. Consider the settings and notation in Sections 3.6.1
and 3.6.2. It follows that

1
1 — max {\o(P*), =\, (P*)} > GYOR
where we recall the definition of  in (3.70).

Lemma 3.13. Consider the settings and notation in Sections 3.6.1 and
3.6.2, and recall that E := P — P*. With probability at least 1 —O(n~?%),

1
1Bl < VEIE| S /=2

Now we are well prepared to assess the quality of the spectral

estimate, as summarized below, whose proof is given at the end of this
subsection.
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Theorem 3.14. Consider the settings and algorithm in Sections 3.6.1
and 3.6.2. Suppose that n > Cx®logn for some sufficiently large con-
stant C' > 0. Then with probability exceeding 1 — O(n~8), one has

Hﬂ- — 7‘-*”2 < K,2'5 logn (3 75)
[l ™ n .

Given the construction (3.74) of 7*, this theorem implies the exis-

tence of a scalar z > 0 such that

o7 —w'lls _ 5 [logn
fwllz "V

holds with high probability. It is worth noting that one cannot possibly
retrieve the global scaling factor z, due to the invariance of the BTL
observation model under global scaling (cf. (3.71)).

To interpret the effectiveness of this theorem, consider, for example,
the case when k = O(1) (so that all the latent scores w} are about the
same order). Theorem 3.14 tells us that the relative estimation error of
7 is vanishing as the number n of items increases. As it turns out, this
statistical error rate (3.75) is near minimax-optimal up to a logarithmic
factor; see Negahban et al. (2016, Theorem 3). In fact, with a more
careful analysis, one can further eliminate this extra logn factor and
establish (orderwise) minimax optimality of this algorithm, as has been
done in Chen et al. (2019b, Theorem 5.2).

Caution needs to be exercised, however, that high score estimation
accuracy alone does not necessarily imply appealing ranking accuracy.
For instance, if the goal is to identify the top-K ranked items—a problem
commonly referred to as “top-K ranking” (Chen and Suh, 2015)—then
the ranking accuracy also relies heavily on the separation between
the score of the K-th ranked item and that of the (K + 1)-th ranked
item (namely, whether the set of top-K ranked items is sufficiently
distinguishable from the remaining ones). Fortunately, the spectral
ranking algorithm introduced in this section remains minimax optimal
when it comes to top-K ranking, through a refined /., perturbation
theory to be introduced in Chapter 4. The interested reader is referred
to Chen et al. (2019Db) for details.
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Proof of Theorem 3.14. Invoke Theorem 2.10 to see that

e — e < I Ell,.
T=T ||n* =
1= max {Aa(P*), =An (P*)} — || Bl
<4r?||=*TE| ., (3.76)
provided that
1 —max {\a(P*), =M\ (P*)} — | E|| . > 1/(4K2). (3.77)

From Lemma 3.12 and Lemma 3.13, we know that Condition (3.77)
holds true with probability at least 1 — O(n~%), with the proviso that
n > Ck®logn for some sufficiently large constant C' > 0.

Additionally, letting 7}, = min; 7 and 7}, = max; 7, we can
easily see from the definition of || - ||+ (i.e., |v]lzx = \/>; 7Fv? for any
vector v) that

(i) i 1
lollre < Vfax [0ll2, - and - lollz < —==v]lx,

min

which allows us to further obtain

1 42
77— 7*[ls < ———||7 — 7 ||ar £ ———||7" " E|lx < 46> E|2

min min

< Ax*?||E|| 72

Here, the first inequality comes from (ii), the second inequality is a
consequence of (3.76), whereas the third one results from (i). The
proof is then completed by applying the high-probability bound || E|| <

V/(logn)/n derived in Lemma 3.13. O

3.6.4 Proof of auxiliary lemmas

Before delving into the proof, we state a general comparison theorem,
which is attributed to Diaconis and Saloff-Coste (1993), that relates
the spectral gap of a reversible Markov chain with that of another
(possibly more tractable) reversible chain. We refer the interested reader
to Negahban et al. (2016, Lemma 6) for a proof of the following result.



648 Applications of {5 perturbation theory to data science

Lemma 3.15. Consider two reversible Markov chains over the state
space {1,2,--- ,n}. Let P and 7 (resp. P and 7r) denote the transition
matrix and the stationary distribution of the first (resp. second) chain.
In addition, set

i b

a:=min —>=, and  [:=max_—.
2¥] 7T7;_Pi7j v Ty

Then one has
1 —max{)\Q(li’),—An(lf)} >
1 —max {\2(P), =\, (P)} —

Armed with this comparison lemma, we are ready to present the
proof of Lemma 3.12.

Proof of Lemma 3.12. In order to control the spectral gap with the
aid of Lemma 3.15, we construct an auxiliary transition matrix

1
Q' =-11",
n

which clearly corresponds to a reversible Markov chain with stationary
distribution u* = (1/n) - 1. The eigengap of this newly constructed
reversible Markov chain is

1 —max {X2(Q"), —An(Q")} = 1,

since A2(Q*) = A\ (Q*) = 0. Therefore, we only need to bound a and S.
Recalling the construction of P* in (3.73), we can straightforwardly
check that

1 mmy
(P = —— " > o—min{], 7}
’ nm; +7Tj 2n

for every i # j, and in addition,

1wy 1 1
Py =il ) o >l Y | = o
’ — nw + w; —n n
Jiy#i J Jij#e

Combining the previous two inequalities, we obtain

1 1
min (77 P;) > 5~ min 77 = ~— max 77 >

i 2n 1<i<n ' 2nk 1<i<n © T 2n2k’
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where the last relation holds since max; 7} > 1 37, 7% = 1. This together
with the construction of Q* further leads to

* Dk
. i1, .
o = min ——, = n*min (miPr) = o
Lj U Qi,j 1,] k 2K

In regard to (3, it is seen that

*

f = max — = nmaxm; = nkminm; < K,
U ? 9

(2

where the final inequality follows since min; m; < % YT = % With the
preceding bounds on « and § in place, Lemma 3.15 informs us that

1 — max {\o(P*), =\ (P*)} Sy 1

1 —max {X2(Q%), —M(Q4)} ~ B T 2k%
This together with the aforementioned eigengap for Q* establishes the

advertised result.

Proof of Lemma 3.13. Let D :=diag(\/7], -, /7). We have seen
from the proof in Section 2.5.3 (cf. (2.34)) that

|Bllx- = IDED!| < D] |10~ = ¥ 2t | Bl = Vi Bl

where k is defined in (3.70). Therefore, it suffices to bound || E||.
By construction of P and P* (see (3.72) and (3.73)), we see that

L1
Eij=Fij— P = (v — Elyil) (3.78)

for any ¢ # j. In addition, for all 1 < i < n, it follows that

Bji=P;—Pi;=~) Ei= —% > (Wi —Elyig))-  (3.79)
JigFe Jij#
In view of these identities, we shall decompose the matrix F into three
parts: the upper triangular part (denoted by Epper), the diagonal part
(denoted by Egiag), and the lower triangular part (denoted by Eiower)-
Clearly, the triangle inequality gives

1E| < || Bupper|| + || Ediagl + [ Erowerl|- (3.80)
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In the sequel, we deal with these three terms separately.
Let us start with the diagonal part Egj,g. In view of the definition
of the spectral norm, we know that
| Ediag|| = max |E;;| = max ‘ Z E; jl,

1<i<n 1<i<n
JijFi

where the last relation arises from (3.79). Fix any 4, then it is easily seen
that >;.;; E;; is a sum of independent zero-mean random variables
{E;;}, which can be controlled via the Bernstein inequality. Specifically,
observe that

1
E; ;| = - Ely; ;|| < — =B
?ﬁiﬂ i.j gnja;;éx n}yz,] [y%J” . 1
and, in addition,
1
= Y E[E?)] = ZVar (yig) <

J:jF#i JigFi
where the last inequality follows since the variance of a Bernoulli random
variable is no larger than 1. Apply the Bernstein inequality (cf. Corol-
lary 3.3) and the union bound over 1 < i < n to demonstrate that

| Ediagll = nax ‘ Z E; ;| S Vwvilogn + Bylogn

Jij

/logn logn llogn

holds with probability at least 1 — O(n
We now move on to the upper trlangular part Eypper, whose entries

{E; ;}i<; are independent. Invoking Theorem 3.4 (see the remark about
asymmetric version right after Theorem 3.4) with the bounds on B;
and v established above, we arrive at

logn 1

1
| Eupper|| < v/v1 + Bilogn < \/;4_ - /2

n n

with probability at least 1 — O(n~8). Similar arguments lead to the
same upper bound on || Ejower|, which we omit for brevity.

Substituting the upper bounds on || Egiag||, [|[Eupper|| and || Eiower||
into (3.80), we immediately establish the desired bound.
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Figure 3.2: Illustration of phase retrieval and solving quadratic systems of
equations, where only the intensities of linear measurements are collected. Here,
A=lai, - ,an]",and |z|* = [|z1]%, -, |zm|?] " for any vector z = [zi]1<i<m.

3.7 Phase retrieval and solving quadratic systems of equations

Phase retrieval is a fundamental problem arising in numerous imaging
applications such as X-ray crystallography, diffraction imaging, and so
on (Fienup, 1982; Shechtman et al., 2015; Candes et al., 2013; Candes
et al., 2015a; Jaganathan et al., 2016). In physics, phase retrieval is
concerned with estimating a specimen by observing the intensities (or
squared modulus) of the diffracted waves scattered by the object without
knowing their phases. The advent of this problem is attributed to the
physical limitation that the optical sensors are unable to record the
phases of the diffracted waves. Put another way, in phase retrieval, we
only have access to measurements that are quadratic functions of the
object of interest, and aim at estimating the unknown object up to
global phase. This gives rise to the problem of solving quadratic systems
of equations, to be formulated below.

3.7.1 Problem formulation and assumptions

Suppose that we are interested in reconstructing an unknown signal x* €
R™, but only have access to a collection of m quadratic measurements
on the linear combinations of its entries as follows:

vi=(a/x*)?,  1<i<m, (3.81)
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where a; = [a;1,- - ,am]—r € R" is the design vector known a priori. See
Figure 3.2 for an illustration of this measurement model. The question
is: when can we hope to reconstruct «*, in an accurate and efficient
fashion, on the basis of these nonlinear equations?

As is well known, solving quadratic systems of equations is, in
general, NP hard.! Additional assumptions are therefore needed to
enable tractable recovery. Here, we adopt a Gaussian design model
commonly studied in the literature.

Assumption 3.3. The design vectors {a;}1<i<m are independently gen-
erated obeying a; "~ N(0, I,,).

3.7.2 Algorithm

The Gaussian design model (cf. Assumption 3.3) allows meaningful
estimation of the unknown object «* via the (by now) familiar spectral
method. Let us start by arranging the data into the following matrix

M= paal = LY aler ], e
mi3 M=

which can be viewed as a weighted sample covariance matrix of the
design vectors {a;}. The spectral method then estimates x* by

5
z = 31 uy, (3.83)

where u; (resp. A1 = A1(M)) indicates the leading eigenvector (resp.
eigenvalue) of the matrix M. This simple approach has been suggested
for phase retrieval since the work of Netrapalli et al. (2015).

To explain the rationale of this approach, it is instrumental to look
at the mean of M under Assumption 3.3. Specifically, simple calculation
(which we include at the end of this subsection) gives

M* = E[M] = E[(a] *)%a;a] | = 22*x*" + ||z*|3 I... (3.84)

i
It is self-evident that (a) the leading eigenvector of M* is precisely
given by +a*/||x*||2, and (b) the leading eigenvalue of M™* is given by

!See the reduction to the NP-hard stone problem in Chen and Candés (2017).
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3||z*||3 by (3.84). From now on, we shall set
ul :=xz"/|z"[2,  and 1= 3llz*I3, (3.85)

which implies * = y/A7/3u] and hence explains the estimator con-
structed in (3.83). The above argument further hints that: the spectral
estimate & converges to the ground truth +a* in the large-sample limit
with m — oo (so that M — E[M| = M™). The question, however, boils
down to where this algorithm stands in the more realistic finite-sample
scenario.

Remark 3.9. The expression (3.85) indicates that * = ||z*||2 u}. From
the law of large numbers, one expects

1 m
—> 4 — Ely] =E[(a'2)?] = [lz*[3,
mia
with probability approaching one. Thus, an alternative estimator is
. 1 m 1/2
T = (— Zi:l yi) Uuj. (3.86)

m

Derivation of (3.84). The (i, j)-th entry of E[M] is given by

2
E[M;;] = E[((a] «*) m*w*—r)j’k] =E[(ai127, + - +ai,nxf,n)2ai,jai,k]-
Expanding terms and using the moments of Gaussian variables yield
E[M; ] = E2a] ja7 pat jary] = 2a) oty if j # kK

x \2 * \ 2 * \2 * \2
E[M;;] = Elai;(27,)7] + > Elagia?;(25)7] =3(x,)" + > (27))
112 112

2
=2(7;)" + [l=*[3-

Putting these together leads to the expression (3.84).

3.7.3 Performance guarantees

Developing theoretical support for the aforementioned spectral method
hinges upon characterizing the proximity of A\; and A} and that of u;
and wuj, both of which rely largely on bounding M — M*. In what
follows, we start by controlling | M — M?*||, with the proof postponed
to Section 3.7.5.
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Lemma 3.16. Consider the settings in Section 3.7.1. There exist suffi-
ciently large constants ¢, C' > 0 such that if m > Cnlog® m, then with
probability at least 1 — O(m~'°) one has

1 3
IM — M*|| < e/ 2228

1
l* |3 < EH«’B*II%- (3.87)
Remark 3.10. The sample size requirement can be further relaxed to
m > Cnlogn with a more careful treatment (Candes et al., 2015a; Ma
et al., 2020). For the sake of conciseness, however, we do not strive to
shave the log factors here.

With the above bound in mind, we are ready to characterize the
statistical accuracy of the spectral method for phase retrieval.

Theorem 3.17. Suppose the assumptions of Lemma 3.16 hold, then
with probability at least 1 — O(m~10), the following holds

nlog®m

minf{(|lz — x*[lz, |z + @2} < 3¢ [E|PR

As can be seen from Theorem 3.17, when the number m of mea-
surements obeys m > nlog®m, the relative accuracy of the spectral
estimates (i.e., min{|lx —x*||2, || +x*|2}/||x*||2) becomes considerably
smaller than 1, thus indicating consistent estimation. This should be
contrasted with the minimax lower bounds derived in the literature
(Cai and Zhang, 2015; Eldar and Mendelson, 2014), which assert that
no estimator can achieve a vanishingly small relative estimation error
if m is orderwise smaller than n. All this corroborates the power of
spectral methods for solving the phase retrieval problem.

Proof of Theorem 3.17. Lemma 3.16 and Weyl’s inequality (see
Lemma 2.2) yield

nlog®m

A=A <M - M™|| <c lz*[3 < l=*3,  (3.88)

m
As a result, by using \f = 3||z*||3, we have

M = A = l2]f3 = 8]l )5 - (|23 = 2|23 (3.89)
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In addition, note that \j = A\ (M*) = 3||=*||3 and \;(M*) = ||=*||3 for
all i > 2. The bound (3.87) on M — M™* indicates that

IM = M| < (1= 1/V2) M (M) = Xa(M7)],

which allows one to invoke the Davis-Kahan sin @ theorem (cf. Corol-
lary 2.8) to obtain

_ 2| M — M™|| Inlog®m
< < 2\ ——. .
dist(uq,uy) < M) — (M) = c " (3.90)

Without loss of generality, we shall assume ||u; — uj||2 = dist(u1, u})

in the sequel.
Now we are ready to control our target quantity dist(x, x*). In view
of the definition (3.83) of «, one has

I =22 = [|y/X/3u — |2 2ui]
< (VA8 = et ll2) wi |, + l2*llallus - wille

nlog3m
<|\2a/3 = ] + 26 & Mz, (3.91)

m

Here, the second line applies the triangle inequality, and the last line
arises from the facts ||luill2 = 1 and (3.90). It then boils down to
controlling |/A1/3 — ||z*||2|, for which (3.88) and (3.89) prove useful.
A little algebra reveals that

1 |A =3z ]3] nlog®m
/3 = ||z*]2| = —= <c x*|2, (3.92
[/ = lletlle| = o e < o el (3:92)

where the last relation relies on the bounds (3.88) and (3.89).
Taking collectively (3.91) and (3.92) concludes the proof.

3.7.4 Extensions

The spectral algorithm described in Section 3.7.2, while enjoying ap-
pealing statistical guarantees, is improvable in multiple aspects. In this
subsection, we briefly discuss two central issues: sample efficiency and
robustness against outliers.
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Improving sample efficiency

Thus far, the spectral algorithm we have discussed requires the sample
size to exceed m > nlog® m. While this can be improved to m > nlogn
via tighter analysis (Candes et al., 2015a; Ma et al., 2020), it remains
suboptimal due to the presence of the log factor. What happens in
the sample-starved regime where the sample size m is on the same
order as the number n of unknowns? Is it possible to achieve the
information-theoretic sampling limit for this problem? As it turns out,
in order to attain the desired statistical accuracy in the sample-starved
regime, we have to modify the standard recipe by applying appropriate
preprocessing steps before forming the data matrix M, as we shall
explain momentarily.

Why is the algorithm in Section 3.7.2 suboptimal? Before introduc-
ing the improved spectral algorithm, we take a closer look at the lower
bound of the approximation error ||M — M™*|| for the sample-starved
regime. Clearly,

aj Ma, o~ (ajay)?® 1 9
M| = Z e = villasl
H = llasll;
holds for any 1 < j < m. Taking j = i* := arg max; y;, we obtain
) > (o2 (3.99)

Under the i.i.d. Gaussian design, {y;/| forms a collection of

|13 }1<z<m
i.i.d. x? random variables with 1 degree of freedom. Classical Gaussian
concentration results (Ferguson, 1996; Vershynin, 2017) tell us that

max ¢ = (2+o(1))[lz*3logm,  [laill3 = (1+o(1))n, 1<i<m

with probability approaching one as n grows, as long as m = poly(n).
Substitution into (3.93) implies that

nlogm

1M = (2 +0(1)) l* 13 > [l*13

once m < nlogm, which combined with (3.84) further yields
IM — M| > [ M| = | M| = |M]| = 3]|=*|5 > | M*].
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In other words, the deviation between M and M™* is not as well-
controlled as desired in the regime with m < nlogm, and hence classical
matrix perturbation theory (e.g., the Davis-Kahan theorem) does not
support the use of the spectral algorithm based on M in this case.

Spectral methods with data preprocessing. The above diagnosis
suggests a natural remedy: since the culprit lies in the large influence
max; y; has brought to bear on the leading eigenvector, it is advisable
to downweight the effect of any excessively large y;. This is precisely the
key idea behind the truncated spectral method proposed by Chen and
Candes (2017)—as well as other variations proposed thereafter—that
provably improves the sample efficiency of spectral methods.

More specifically, instead of using the matrix M constructed in
(3.82), we resort to a properly preprocessed data matrix

1 m
My = . Z T () aia, (3.94)
i=1
with 7 some preprocessing function, and produce, by (3.86), an estimate
1 m 1/2
or= (25" ) (5.

where w1 7 denotes the leading eigenvector of M. A few representative
examples of T are in order.

o mean-based truncation (Chen and Candes, 2017):

T =ylly<em), 5= w (39

i=1

where a1 > 0 is some sufficiently large constant;

o median-based truncation (Zhang et al., 2016; Zhang et al., 2018a):

T(y) = y]]-{y < a2ymed}7 Ymed = median( {yz} )7 (397)

where s > 0 is some sufficiently large constant;

e orthogonality promotion (Wang et al., 2018a; Duchi and Ruan,
2019)
T(y) = ]L{y > y(agm)}> (398)
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where y(1y) > y(2) > -+ > y(m) denote the order statistics of {y;},
and 0 < a3 < 1 is some properly chosen constant;

e optimal preprocessing (Mondelli and Montanari, 2019; Luo et al.,

2019):
_ y/y—1 —.fizm .
Tw) = y/7+2m/n—1 Y= Lz ¥ (3.99)

Remark 3.11. To be more precise, 7 (y) depends not only on y but also
some statistics about {y;} (e.g., empirical mean). Here, we suppress the
dependency on such additional statistics mainly to simplify notation.

In words, the first two choices discard any measurement y; that is too
large (compared to the order of either the empirical mean or empirical
median), the third one selects a subset of measurements that are most
aligned with the unknown signal and scales their contributions to a
measurement-invariant level, while the last one effectively behaves as a
shrinkage operator once y; rises above the empirical mean. The following
theorem—which was first established in Chen and Candes (2017) for the
version (3.96) and subsequently extended to other alternatives (Zhang et
al., 2016; Wang et al., 2018a; Lu and Li, 2020; Mondelli and Montanari,
2019; Luo et al., 2019)—confirms the effectiveness and importance of
proper preprocessing in enabling order-optimal sample complexity. The
interested reader is referred to these papers for the proofs.

Theorem 3.18. Consider the settings in Section 3.7. Fix any constant
€ > 0, and suppose m > con for some sufficiently large constant ¢y > 0
that is independent of n and m but possibly dependent on . Then the
spectral estimate (3.95) equipped with the above choices of T obeys

min{||z7 — |2, |z + 2"[|l2} < € [|@"[|

with probability at least 1 — O(n~2), provided that the parameters
aq, ag, a3 are suitably chosen in (3.96)—(3.98).

To demonstrate the practicability of preprocessing, we depict in
Figure 3.3 the numerical performance of the mean-truncated spectral
method (i.e., the choice (3.96)) in comparison to the vanilla version
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(c)

Figure 3.3: Numerical performance of spectral methods for phase retrieval under
coded diffraction patterns (see Candés et al. (2015a) for details) when m = 10n.
(a) the original image «* (which is 613, 760-dimensional); (b) the estimate of the
spectral method in Section 3.7.2; (¢) the estimate of the mean-truncated spectral
method (cf. (3.96)). There are in total 10 groups of measurements each of size
n; to generate each group of measurements, the entries of the signal x* are first
independently multiplied by random variables uniformly over {1, —1,4, —i}, followed
by an application of the discrete Fourier transform.
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described in Section 3.7.2. These numerical experiments corroborate the
clear advantage of proper preprocessing in the sample-starved regime.

Finally, we remark that in addition to order-wise statistical guaran-
tees, Lu and Li (2020) further pinned down sharp characterization of the
error bounds (including the pre-constants) in this sample-starved regime.
Leveraging such sharp analyses, Mondelli and Montanari (2019) identi-
fied the information-theoretic optimal choice (3.99), in the sense that it
leads to an estimate strictly better than a random guess (a.k.a. weak
recovery) whenever it is information-theoretically possible. Luo et al.
(2019) further showed that this choice is uniformly optimal, meaning
that it leads to the smallest principal angle between @7 and x* uniformly
over all sampling ratios when m is on the same order of n.

Robustness vis-a-vis adversarial outliers

Another practical consideration that merits special attention is that

the collected samples are sometimes susceptible to adversarial entries

(due to, say, sensor failures or malicious attacks). To formulate this in

more formal terms, consider the following modified measurement model

(Zhang et al., 2016; Hand, 2017; Hand and Voroninski, 2016):
(a’ZTm*)2’ ? ¢ Soutliera

Yi = 3.100
' arbitrary, 7 € Soutlier- ( )

Here, Soutier € {1,--- ,m} represents the unknown subset of indices
associated with outliers, which is of cardinality |Soutiier] = am for some
0 < a < 1. In particular, the measurements coming from Sqtjier might
be corrupted arbitrarily. The goal is to reliably estimate &* even when
the measurements are grossly corrupted.

Unfortunately, the vanilla spectral method presented in Section 3.7.2
might not function properly even in the presence of a single outlier; for
instance, if the magnitude of this outlier is excessively large, then the
leading eigenvector of M will be heavily biased by this outlier. As a
result, the spectral method needs to be properly adjusted in order to
combat the adverse effect of outliers.

To circumvent this issue, we first remind the readers of a classical
finding in robust statistics (Huber, 2004): the median statistic is often-
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times robust against adversarial outliers. Leveraging this finding to the
phase retrieval context, one might naturally employ the median of the
measurements {y; }1<i<m as a tool to help detect any excessively large
outlier. In fact, this is precisely the idea behind the median-truncated
scheme presented in (3.97), whose capability in dealing with outliers
has been established in Zhang et al. (2016) for phase retrieval and Li
et al. (2020c) for low-rank matrix recovery.

Theorem 3.19. Consider the measurement model in (3.100), and the
i.i.d. Gaussian design in Assumption 3.3. Fix any € > 0. There exist
some constants ¢y > 0 and 0 < ¢; < 1 such that if m > cgn and o < ¢4,
then the spectral estimate (3.95) equipped with (3.97) obeys

min{[|@r — @2, |27 + 7|2} < ellz”|2
with probability at least 1 — O(n~2).

In a nutshell, Theorem 3.19 reveals that a median-truncated spectral
method achieves consistent estimation even when a constant fraction
of the measurements are corrupted in an arbitrary manner. All this
is guaranteed to happen even when the number m of samples is on
the same order as n, thus further enhancing the resilience of spectral
methods in the presence of adversarial corruptions. The interested reader
is referred to Zhang et al. (2016) for the proof of this theorem.

3.7.5 Proof of auxiliary lemmas

Proof of Lemma 3.16. Given that {a;} is rotationally invariant, we
assume without loss of generality that £* = ey, where e; is the first
standard basis vector. Thus, our task can be translated into bounding

m m
M- M* = 1 Z {a%laia;r — (26161T + In)} = e Z (Bi - E[Bz‘}),
i mi3
where a; 1 denotes the first entry of the vector a;, and B; := a%laia;r .
In order to deal with the unboundedness of Gaussian random vari-
ables, we resort to the truncated matrix Bernstein inequality, which
requires us to first set a proper truncation level. In view of the Gaus-
sianity of a; and the union bound, one has ||a;|l« < 5y/logm for all
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1 < i < m with probability at least 1 —m~11?; on this event, one would
have

|Bill = laialaill; < nllai]|%, < 5*nlog” m. (3.101)

Therefore, taking L := 5*nlog? m leads to
P{IB.| = L} <m ™ = g

Further, truncating at this level does not incur much bias; to be precise,
we claim that (with the proof deferred to the end of this subsection)

a1 = [E[BA{|B] < L} ~E[B]]| < m™ (3.102)

The next step is to characterize the variance statistic. Towards this
end, it is first seen from the definition of B; that
2

E[(B; - E[B;))*] = E[B?] = E[a},|ai|;a:a ]. (3.103)

]

. : 2 : . .
As can be easily verified, E[afluaiH ,@ia; | is a diagonal matrix, whose

diagonal entries obey

2
(E[ailHangaia:])” = E[a?,lag,l Zj a?,j] = ZjE[a?,la?,zag,ﬂ Sn

for any 1 <[ < n, where the last relation follows from the property of
standard Gaussians. This taken together with (3.103) gives

V= HZE [(B; —E[B H < Zmax‘( “HaiH;aia’T])l,l’ < mn.

Invoking the truncated Bernstein inequality in Corollary 3.2 then yields:
with probability at least 1 — O(m™1%) — mgy = 1 — O(m™19), one has

|M — M*|| < \/Ulog +—logm+%

3
< nlogm+nlog m_’_i < nlog®m
~ m m m3 ™~V m

as desired, with the proviso that m > nlog®m.

Proof of the inequality (3.102). We begin by employing the relation
(3.101) to help modify the truncation event as follows:

o = |[E[BiI{||Bi]| < L} - E[Bil]|| = [[E[B:1{||Bi]| = L}]|
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< |E[BiL{nllaills, > L}]|| = [|E[Bi1{]laill« > L}]|.

where we define L = (L/n)/* = 5\/logm. It is easily seen that
E[B;1{||ai|l« > L}] is a diagonal matrix and, therefore,

o < mox |(E[Bi1{laill > I]), | £ maxEfa? a1 {flas]l > L]

(i)

< 05 maxE[(ad, + al) Ul = T} = Efedy Wil = T}
< Elaiy1{]aiy| > L}] + Elai; L{max;z [a;i ;| > L}], (3.104)

where (i) relies on the definition of B;, and (ii) comes from the AM-GM
inequality. With regards to the first term of (3.104), observe that
o] 25

[a,l {‘a,ly— V gm}] 5\/@\/%

<2/ = 2P{|a; 1| > 2.5v/10 <7
< 5\/W\/7r {laiql Viegm} <

e~ /24¢

for m sufficiently large, where we have used the fact that 546_52/ 2 <
e~/ for & > 5y/logm. Regarding the second term of (3.104), note
that

E{a?,ﬂ{ max |ai j| > ZH = E[a?‘yl]E[]l{ max |a; ;| > ZH
= 3p{ max |a; j| 2 5/logm} <m0,

where the first identity uses the independence between a; 1 and {a; ;} ;1.
Substituting the preceding bounds into (3.104) establishes (3.102). O

3.8 Matrix completion

A pressing challenge often encountered in data science applications
is estimation and learning in the face of missing data. To elucidate
how to tackle this challenge via spectral methods, we delve into the
renowned matrix completion problem in this section, followed by another
application called tensor completion in Section 3.9.
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Figure 3.4: Illustration of matrix completion, where each “v"” stands for an observed
entry and each “?” represents a missing entry.

Imagine that one observes a small subset of the entries in a large
unknown matrix and seeks to fill in all missing entries. An archetypal
example is collaborative filtering, where one aims to predict the users’
preferences on a collection of products based on partially revealed user-
product ratings. See Figure 3.4 for an illustration. The problem, often
referred to as matrix completion, is apparently ill-posed in general, as
there are (much) fewer measurements than the unknowns.

Fortunately, if the matrix of interest exhibits certain low-dimensional
structure, then reliable recovery becomes feasible. A commonly encoun-
tered example of this kind concerns the case when the target matrix
enjoys a low-rank structure. Again, take collaborative filtering for ex-
ample: the user-product rating matrix might be well explained by a
relatively small number of latent factors connecting users’ preferences
with products’ attributes, thus resulting in an approximately low-rank
matrix. Motivated by its fundamental importance, recent years have
witnessed a flurry of research activity in studying low-rank matrix
completion (Candés and Recht, 2009; Keshavan et al., 2010; Gross,
2011); see Chen and Chi (2018) and Davenport and Romberg (2016) for
overviews of recent developments. In the sequel, we present a simple yet
effective approach enabled by the spectral method, originally proposed
in Achlioptas and McSherry (2007) and Keshavan et al. (2010).
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3.8.1 Problem formulation and assumptions

Suppose that we are interested in estimating an n; x no rank-r matrix

M* = [M;

il1<i<ng 1<j<n, - Without loss of generality, we assume

ni S no.

Denote by M* = U*S*V*T the SVD of M*, where the columns of
U* € R™X" (resp. V* € R™*7) are the left (resp. right) singular vectors
of M*, and X* is a diagonal matrix whose diagonal entries are the
singular values of M*. We define the condition number of the matrix
M* to be k = o1(M*)/o,(M¥).

To capture the presence of missing data, we introduce an index subset
Q C [n1]x[ng], such that each entry M}, is observed if and only if (i, j) €
Q). The goal is to reconstruct the singular subspaces U* and V*, as well
as the full matrix M*, based on entries observed over the sampling set (2.

Random sampling. Apparently, not all sampling patterns admit reli-
able estimation. For instance, if ) contains only entries in the top half of
the matrix, then there is in general no hope to predict the bottom half
of the matrix. In order to allow for meaningful matrix completion, this
monograph focuses on a natural random observation model commonly
adopted in the literature, as formulated below.

Assumption 3.4 (Random sampling). Each entry of M* is observed
independently with probability 0 < p < 1, namely, each (7,j) € [n1] x
[n2] is included in € independently with probability p.

Under this model, we shall view the expected number of observed
entries—namely, pnins—as the sample size. In truth, as long as p is not
overly small, the number of observed entries is expected to concentrate
around its mean pnins.

Incoherence conditions. Caution needs to be exercised, however, that
the random sampling model alone does not guarantee effective recovery
of an arbitrary low-rank matrix M*. Consider, for example, the following
rank-1 matrix M* containing a single nonzero entry:
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If p = o(1), then with probability 1 —p = 1 —o(1), the sampling pattern
will fail to include the nonzero entry M7 ;, thus ruling out the possibility
of faithful matrix recovery. Consequently, one needs to make sure that
the sampling pattern does not suppress too much useful information.
Towards this end, the pioneering work Candes and Recht (2009) and
Candeés and Tao (2010) singled out an incoherence parameter that plays
a vital role.

Definition 3.1. The incoherence parameter p of the matrix M”* ¢
R™*72 ig defined as

_ {anU*H%,oo n2HV*H§,oo}
M= max .

r ’ r
Remark 3.12. Recognizing the following basic relation

T 1
L= U < U e < U7 = 1

and an analogous one for V*, we have 1 < u < max{ni,na}/r = na/r.

In words, a small p indicates that the energy of the singular vectors
is spread out across different elements, namely, the singular subspace
of M™ is not too “aligned” with any of the standard basis vectors,
thus ensuring that entrywise observations provide somewhat equalized
information about the full spectrum of M*. The following lemma
summarizes a few immediate consequences of this definition, with the
proof deferred to Section 3.8.4.

Lemma 3.20. Assume that M* € R™*"2 is y-incoherent. Then the

following relations hold
2,00 < \/pr/ng || M*]]; (3.105a)

1M |l200 < /o /ra [|DLF]]; | DT

M ||oo < pur|| M|/ /s (3.105b)
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Additional notation. We find it convenient to introduce a Euclidean
projection operator Pq : R™*"2 — R™1*"2 gych that

[Pa(A)],,; = {Ai’% it 5.5) € 9

0, else
for any matrix A = [A; ;] € R™*"2. With this notation in place, matrix
completion amounts to recovering M™* on the basis of Pq(M™*).

(3.106)

3.8.2 Algorithm

To apply the spectral method, the first step is to form a reasonable
approximation M of the unknown matrix M*. By virtue of the random
sampling model (cf. Assumption 3.4), a candidate approximation can
be obtained from the observed data matrix via inverse probability
weighting:

M = p~'Po(M*). (3.107)

The rationale is that M forms an unbiased estimate of the ground truth,
namely,

E[M] = M~,
where the expectation is taken over the randomness in €.

As a result, the proposed spectral method proceeds by computing
the rank-r SVD UZV' T of the matrix M constructed in (3.107), and
employing U € R™*" V € R™*" and UXV ' as estimates of U*, V*
and M™, respectively.

3.8.3 Performance guarantees

As before, whether the subspace U (resp. V) is close to U* (resp. V)
relies crucially on the size of the perturbation ||M — M*||. Therefore, we
begin by developing an upper bound on this quantity; the proof is based
on the matrix Bernstein inequality and is postponed to Section 3.8.4.

Lemma 3.21. Consider the settings in Section 3.8.1. Suppose that
nop > Curlogng for some constant C' > 0. Then with probability at
least 1 — O(ny %), the matrix M constructed in (3.107) obeys

I8 = 27 5 [ EEE
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With this perturbation bound in place, we are equipped to apply
Wedin’s sin ® theorem to obtain the following results. The condition on
the sample size in Theorem 3.22 is stronger than that in Lemma 3.21,
as we need to control the eigengap in the following theorem.

Theorem 3.22. Consider the settings in Section 3.8.1. Suppose that

nip > C1r%urlogng for some sufficiently large constant C; > 0. Then

with probability exceeding 1 — O(nj '°),

1
max {dist (U, U*) , dist (V, V") } < wy [F502
nip

Proof. As a direct consequence of Lemma 3.21, one has

urlogng 1
M = a5 [ M < (1= 5 )on(M0),

provided that nip > CmZ,ur logne for some large enough constant
C1 > 0. Apply Wedin’s theorem (cf. (2.26)) and Lemma 3.21 to obtain

2||M — M| < prlogno
or(M*) ™ nip

max {dist (U, U*), dist (V,V*) } <

as claimed. ]

As an important implication of Theorem 3.22, once the sample size
exceeds
pning > ﬁ2urn2 log no,

then the spectral estimate achieves consistent estimation in the sense
that
max {dist (U, U*), dist (V,V*) } = o(1).

Given that pning 2 unorlognsg is an information-theoretic sampling
requirement for reliable matrix completion when r = o(n;/logns)
(Candes and Tao, 2010), Theorem 3.22 confirms the near optimality of
spectral methods—in terms of the scaling with ni, no and p—when it
comes to consistent subspace estimation.

Before moving forward to the proof, we further characterize the
statistical accuracy of UXV " in estimating the unknown matrix M*.
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Accomplishing this only requires Lemma 3.21, without any need of the
singular subspace perturbation theory. This result will also come in
handy when we turn to discussing entrywise estimation accuracy in
Chapter 4.

Theorem 3.23. Consider the settings in Section 3.8.1. Suppose that
nap > Curlogng for some sufficiently large constant C' > 0. Then with
probability at least 1 — O(ny '°), one has

210

UV — MHjp < /22812 ).
nip

Proof. First, note
IUSVT - M*| < |USV — M| + | M — M*|| < 2|M — M"|,

where the first inequality comes from the triangle inequality, and the
second inequality follows from the fact that UX VT is the best rank-r
approximation to M, i.e.,

ISV -M| = min _[Z-M|<|M-M|.
Z:rank(Z)<r

Additionally, it is observed that UXV " — M* has rank at most 2r,
which implies

[USVT — M*||lp <V2r|[USVT — M*|| < 2V2r||M — M*|.

This combined with Lemma 3.21 immediately concludes the proof. [J

3.8.4 Proof of auxiliary lemmas
Proof of Lemma 3.20. First of all, the || - |20 norm of M* can be
upper bounded by
* LAt vadl * * * ur *
[M*||2,00 = [UE V" [l2,00 < U [l2,00 |27 V] < njHM I

Here, the first inequality arises from the elementary bounds || AB]|2,00 <
|All2,00|| Bl and ||[AB]|| < ||A| ||B]|, whereas the last relation uses
Definition 3.1, the orthonormality of V* and identifies ||X*|| with



670 Applications of {5 perturbation theory to data science

| M*||. The bound on ||[M*T ||z, can be derived analogously and is
omitted for brevity.
In addition, the matrix M* is elementwise bounded by

ur
IM*[|oo = [UEV T oo < [U*[l2,00[[V*[l2,00 2] < TMHM*H'

Here, the first inequality follows from the fact || AB || < || Al|2.00|| B
and the aforementioned one [|[AB|200 < ||A|l2,00||B]||, while the last
inequality again relies on Definition 3.1.

Proof of Lemma 3.21. Note that the matrix E = p~1Pq(M*) — M*
can be expressed as the sum of nins i.i.d. random matrices

*PQ(M* 21: i p~ 1oy — 1) M ee] .

i=17=1 —x. .
= Ri,g

Here, §; ; (which indicates whether the (7, j)-th entry is observed) follows
an independent Bernoulli distribution with parameter p, and e; stands
for the i-th standard basis vector of appropriate dimensions. It is easily
seen that for each (i, j),

1 ur
E[X;;|=0 d || Xl € = |M|oo £ ———||M*
X1 =0 and [ Xe| < 1M le < LMY,

where the last relation results from the entrywise upper bound (3.105b)

on M*. In order to apply the matrix Bernstein inequality (cf. Corol-
lary 3.3), we need to control the variance statistic

oom ma{] 5, B 0] [ 5, 2]

Regarding the first variance term, we have
T - 2 T, T
Zi,j E [Xi,sz',j] = ZJE [(P 105 — 1) (M])) eie] eje; }
1 _p T 1-— p < * (|2 T
= Z” ,j el = T Z ||Mi,-H2eiei
i=1

1 —p wr
TIIM*H%,OOIM = nTpHM*Hzfm-

IA
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Here, the first identity arises from the definition of Xj; ;, the second one
calculates the variance of Bernoulli random variables, and the last line
relies on the upper bound (3.105a). Similarly, the second term in the
variance statistic enjoys the following characterization:

B XX < M L.
Taking the above relations together and recalling that ny < ne give
e L
mp
With the above bounds in place, invoking matrix Bernstein (see
Corollary 3.3) reveals that: with probability at least 1 — O(n; '?),

HEH < \/NTHM*||210g712 + /LT‘HM*H logng - W“||M*||210gn2
- nip py/nin: np ’

where the last inequality is valid as long as nop 2 urlogns.

3.9 Tensor completion

Tensor data, which can be viewed as a higher-order generalization of
matrix data, are routinely used in science and engineering applications
to capture multi-way interactions across variables of interest (Kolda
and Bader, 2009; Sidiropoulos et al., 2017; Anandkumar et al., 2014).
Akin to matrix completion, the problem of tensor completion aims to
reconstruct a (structured) tensor when the vast majority of its entries are
unobserved, a task that spans a wide spectrum of applications including
visual data inpainting, harmonic retrieval, seismic data analysis, and so
on (Liu et al., 2012; Chen and Chi, 2014; Kreimer et al., 2013); see Fig.
3.5 for an illustration.

Apparently, this task cannot possibly be accomplished without
exploiting further structural assumptions on the tensor under considera-
tion. Inspired by the success of low-rank matrix completion, we explore
the case where the unknown tensor enjoys certain low-rank structure
(more specifically, low canonical-polyadic (CP) rank (Kolda and Bader,
2009)). For simplicity, we concentrate on order-three tensors (namely,
T = [T; ;) € R"*™2Xm) which already capture several fundamen-
tal challenges intrinsic to tensor estimation. In addition, we take the
dimensionality n1 = ne = nz = n for simplicity of presentation.
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missing data
—
G|

reconstruction

Figure 3.5: Illustration of tensor completion, where we observe partial entries of an
order-three tensor.

3.9.1 Problem formulation and assumptions

Notation. Before describing our models, we introduce several notation
that will be useful throughout. For any vectors a = [ai]i<i<n,b =
[bil1<i<n, € = [ci]i<i<n € R™, the tensor a®@b® c stands for an n xn xn
array whose (4, j, k)-th entry is given by a;b;c;. Additionally, we denote

a1b

by a®b:= [ ] the Kronecker product between a and b. For any

a;Lb
tensor T = [T; j kli<ijk<n € R™*" we say that A = [A;;] € R X1
is the mode-1 matricization of T', denoted by

A = unfold(T),
if A; (j—1yntk = Tijk for all (i,7,k) € [n] X [n] x [n].

Models and assumptions. Suppose the unknown order-three symmet-
ric tensor T* = [@fm]lgi,g‘,kgn is a superposition of r (r < n) rank-one
symmetric tensors:

'
T => w; ®w ®w; € RV, (3.108)
i=1
where {w} € R™} represents a set of latent tensor factors. What we have
available are incomplete observations of the entries of T. The observed
data can be succinctly encoded by an index subset Q C [n] x [n] x [n]
(called a sampling set) and a tensor T' = [T ; ]1<i jk<n as follows
T if (i,7,k) € Q,

Tk = 3.109
o0 0, else. ( )
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This subsection aims for an intermediate goal, namely, estimating the
subspace spanned by {w] }1<i<,, which often serves as a crucial initial
stage towards reliable completion of the whole tensor. The interested
reader is referred to Montanari and Sun (2018) and Cai et al. (2021b)
for subsequent stages of tensor completion algorithms.

Similar to the matrix completion counterpart, we explore a random
sampling pattern such that for all (4,7, k) € [n] x [n] x [n],

(i,5,k) € Q independently with probability p. (3.110)
In addition, we define for notational convenience that
. 3 . : .
v; = w3, Vinin = lrgilgr Vi, Vmax = 1II£1?§XT Vi, (3.111)

where v; reflects the size of the rank-1 component w; ® w; ® w;. The
condition number of T™* is then defined as k = Vmax/Vmin-
We shall also introduce several incoherence parameters as follows.

Definition 3.2. Define the incoherence parameters of T (cf. (3.108))
as

2
nl|lwi % n| (wy, wj)|
@1 = max ————=, and = max -——35—'—=.

iisr [lwf|3 i (w3 w3

(3.112)

Let us explain these parameters in words: small p; and ps reflect
that (i) the energy of each tensor factor w} is spread out across different
entries, and (ii) the factors {w}} are not too correlated with each other.
To simplify presentation, we set

p = max{pu1, p2}.

3.9.2 Algorithm

Unfortunately, it is notoriously difficult to exploit the low-rank structure—
and many other low-complexity structure—efficiently in the original
tensor space (Hillar and Lim, 2013). To circumvent this issue, a natural
strategy thus attempts to matricize the tensor data, followed by an ap-
plication of suitable low-rank matrix estimation algorithms. Specifically,
let us unfold the tensor T* into an n x n? matrix A* as follows

A* = unfold(T*) = 3w} (w} @ w}) ' € R, (3.113)
=1
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The resulting matrix A* inherits the low-rank structure, as it clearly
has rank at most r. We shall also matricize the observed data as

A := unfold(T). (3.114)

In order to estimate the subspace U* spanned by {w}}i<i<, (which
is the column space of A* as well), the spectral method studied here
resorts to the rescaled Gram matrix p 2AA". As a sanity check, if
there is absolutely no missing data (i.e., p = 1), then p72AAT reduces
to A*A* T, whose column space coincides with that of A*. Turning to
the scenario with missing data, a close inspection reveals that

;E[AAT] = A AT 4 (; — 1)7>diag (A*A*T), (3.115)
where Pgiag () denotes the Euclidean projection onto the set of matrices
with zero off-diagonal entries. This, however, makes apparent a severe
issue: in the highly subsampled regime (i.e., where p is small), the
diagonal components might be excessively large and non-identical, thus
destroying the low-rank structure in (3.115).

To mitigate their undesirable effects, it is advisable to properly
adjust the sizes of the diagonal entries (Montanari and Sun, 2018; Cai
et al., 2021a). As it turns out, a simple yet plausible scheme is diagonal
deletion, which exploits only the off-diagonal part as follows

1
M = Ppoff_diag (AAT). (3.116a)

Here, Poff_diag(-) stands for the operator that zeros out all diagonal
entries of a matrix. One can easily verify that, in expectation,

E[M] = A*A*" — Pying(A*A*T), (3.116b)
= M*

which stays quite close to the low-rank matrix M™* as long as the
diagonal entries of M* are small enough. The spectral method then
proceeds by calculating the top-r eigendecomposition UAU T of M and
returning U as the subspace estimate. Here, the columns of U € R™*"
are formed by the r leading eigenvectors of M, while A € R™*" is a
diagonal matrix containing the r leading eigenvalues.
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Remark 3.13. The diagonal deletion idea has been recommended not
just for tensor completion, but also for problems including but not
limited to bi-clustering (Florescu and Perkins, 2016), PCA with missing
data and/or heteroskedastic noise (Cai et al., 2021a; Abbe et al., 2020a),
and contextual community detection (Abbe et al., 2020a). Instead
of diagonal deletion, one might also consider properly rescaling the
diagonal entries based on the sampling mechanism; see, e.g., Montanari
and Sun (2018), Lounici (2014), Loh and Wainwright (2012), Zhang
et al. (2021), and Zhu et al. (2019).

3.9.3 Performance guarantees

The aforementioned spectral method can be analyzed by means of the
{5 perturbation theory as well. As usual, this requires first controlling
the size of E := M — M*, where M and M* are defined in (3.116a)
and (3.116b), respectively.

Lemma 3.24. Consider the settings in Section 3.9.1. There exists some
universal constant C' > 0 such that with probability at least 1 —O(n™"),

3/2 2
w*r/logn wrlogn  ur
|E| < C( oy Ay T ) 2 s (3.117)

3/2710g25
2

provided that p = £ ;11,, 5
some sufficiently small constant cg > 0.

and that umax{logn,r?k*} < cgn for

In order to apply the Davis-Kahan sin ©® theorem (cf. Corollary 2.8),
another step boils down to characterizing the eigengap of the matrix
M* = A*A*T of interest. Our result is this:

Lemma 3.25. Suppose that pr?s* < c3n for some sufficiently small
constant ¢ > 0. Then the i-th largest eigenvalue of A*A*T obeys

N(A*A T € /2,202, if1<i<ur
Ni(A*A*T) =0, if i > 7+ 1.
The preceding two lemmas, which will be established in Section 3.9.4,

readily lead to the following statistical guarantees for the spectral
method presented in Section 3.9.2.
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Theorem 3.26. Consider the settings in Section 3.9.1. Suppose that

131227 1og? n

ur2m4 logn < c4n and p > cs 373
n

(3.118)

hold for some small (resp. large) enough constant ¢4 > 0 (resp. c5 > 0).
Then with probability at least 1 — O(n~"), one has

3/2,.20 floon 2,4y 2
dist(U,U*) < = /;37;2pogn 4 B8 AT

Proof. In view of Lemmas 3.24-3.25, one would have |E| < (1 —
1/v2)\.(M*) under Condition (3.118). Corollary 2.8 combined with
Lemma 3.24 then tells us that, with probability at least 1 — O(n™"),

1*/2r/logn wrlogn | pr\. 2
diSt(U U*) < QHEH < ( n3/2p + nZp + po )Vmax
’ A (M) 2

min

as desired. O

Theorem 3.26 is noteworthy for its implication on the sample com-
plexity. To be precise, consider, for simplicity, the scenario where
r,p, & = O(1). In order to achieve consistent estimation in the sense
that dist(U,U*) = o(1), it suffices for the sample size—which sharply
concentrates around n3p under our model—to exceed

n®p > n®poly log(n).

The careful reader might immediately remark that this sample com-
plexity remains substantially higher than the information-theoretic limit,
the latter of which is nr = O(n) in this case since there are only nr
free parameters. It is worth noting, however, that all polynomial-time
algorithms developed in the literature for tensor completion require
a sample size at least exceeding the order of n3/2 (Barak and Moitra,
2016). This hints at the (potential) existence of a computational bar-
rier that prevents one from achieving the information-theoretic limit
efficiently. Viewed in this light, the spectral method presented herein
already achieves near-optimal sample complexity—when restricted to
computationally tractable algorithms—if the objective is consistent
subspace estimation.
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3.9.4 Proof of auxiliary lemmas
Proof of Lemma 3.24. Define the following zero-mean random matrix
Z=plA- A"
It is self-evident that
p2(AAT —E[AAT))=A*Z" + ZA*T + (2Z" -E[zZT]),

which implies that the identity holds for the off-diagonal part. By the
definitions (3.116a) and (3.116b), it follows from the triangle inequality
that
IM — M| < ||Paiag (A* A™7) || + 2| Pofr-aiag (A*Z ) |
+ | Pofrdiag(ZZ" —E[ZZT])]. (3.119)

In the sequel, we shall discuss how to control the three terms on the
right-hand side of (3.119) separately.

Step 1: bounding ||Pdiag(A*A*")||. It is straightforward to verify that

* A% * |2 *
| Paiag (A" A7) || = max [|A7 ||, = [|A

1<I<n

e (3.120)

It thus suffices to bound ||A*||2 o, which we shall discuss momentarily.

Step 2: bounding ||Pofr-diag(ZZ " — E[ZZ])||. Define a collection of
independent zero-mean random matrices as follows

Qi = Poft-ding (Z.:2.;), 1<i<n?

with which we can express
Posrdiog(ZZ —E[Z2Z7]) =Y (Qi—E[Qi]) =Y Qi (3.121)

Here the last relation uses the fact that Pofr.diag(E[ZZ']) = 3, E[Q;] =
0. Recognizing that the entries of Z.; are independently generated, one
can see from straightforward calculations that IE[QiQ;r | is a diagonal
matrix, whose diagonal entries satisfy

1-— 1—
(ElQQT]),, =ElZ] Y ElZ] = — F(41)" 3~ F(43)°
’ Gl Gii#l
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< U1 < SO,

for all 1 <[ < n. Taking into account all samples yields

n2

> (El@@ll),

1 o 9
y ;Z DlA2, < IIA*!|2,0J|A*||002
=1 ’ i=1

for any 1 < [ < n, which together with the diagonal structure of
E[QiQiT] leads to an upper bound on the variance statistic

A* 2 A* 2
vi= H;E[Qiaﬂuz(mﬁx(;(E[QiQ;Du)‘ | ||2,OO! [

p
In addition, we identify a suitable truncation level and claim that
P{lQill, > L} <207 = g0, (3.122a)
[E[Q{|Qi], < L}]|| < 4 2| A2, = a1, (3.122b)
where we define L i= 2(4,/282 (| A% _, + S22 4% )?. Armed with

these observations, the truncated matrix Bernstein inequality (see Corol-
lary 3.2) taken together with (3.121) reveals that

[Pott-diag (227 —E[ZZT])|| S Vvlogn + Llogn + n’q

2
< VIOBT e AT, B A 1Og”nA*n
P 2,00 00,2 00,2
(3.123)

with probability 1 —O(n~") —ngy = 1 —O(n~7), provided that p > n=>

Step 3: bounding || Pordiag(A*Z ")||. This term can be controlled in a
similar fashion as Hpoff_diag(ZZT —E[ZZT])|. We thus omit the details
and only state the result as follows:

logn
D

1Potrdiag(A*Z )| < [|A*]| o o[l A*]

log3n
4 g

* * . log
A2, 5 + 1A ool A% (3.124)
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holds with probability at least 1 — O(n~").

Step 4: To finish up, we are in need of bounding || A*|| 2, [[A*||2,00 and
|lA*|| oo, which is accomplished in the following lemma.

Lemma 3.27. Suppose that pr? < n. Then one has
,u\/ 27 Vmax 2ur
n )

3/2
welery,
Az, < Emex 4| HA*HQ,OOS = Vinax:

n3/2

Taking Lemma 3.27 collectively with (3.120), (3.123), (3.124) and
combining terms, we arrive at

002—

3/2p /1 2r]
(3.120) + (3.123) + (3.124) < (“ TVOBT L BT Og”+’”>u§m

n3/2p nZp

with probability at least 1 — O(n~7"), provided that plogn < n and

P2 “3/22;% This taken together with (3.119) concludes the proof.

Proof of the relation (3.122). We first make note of a connection between
Q; and Z.; as follows

1Qill < 12527 + |Paiag (2.5 2.) || < 21| Z.4]15, (3.125)

which motivates us to first control the size of Z.;. By construction,

cach entry Z;; can be written as Z;; = (%53',1 — 1)A where {0;;} is a

7500
collection of independent Bernoulli random variables with mean p. This

observation allows one to derive
1
B, = max |Z;] < *IIA*H
2 1—-p
v, =E[||Z.3] = Z yA*H
The matrix Bernstein inequality (see Corollary 3.3) then yields
1Z.i||, < 4+/v.logn + 6B logn

logn, ., 610gn N
< (1 SR ) = o
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with probability at least 1 — 2n~", which combined with (3.125) gives

P{Qil, > 282} <2n7". (3.127)

Recalling that E[Q;] = 0, one can derive
[E[Qa{lQil, <282 = [ElQ] - E[@{|Qil, > 282}

@)
= HE[QJ{H@HQ > 202]| < P{llQul, > 262} 2jar

(ii)

<l

Here, (i) relies on (3.125) and the fact ||Z ;|2 < p_1||Af"Z-||2 (by con-
struction), whereas (ii) results from the calculation in (3.126).

Proof of Lemma 3.25. Define the normalized tensor factors as
w; = w;/ [|[w]]l, (1<i<nr),

and it is convenient to introduce the following auxiliary matrices that
contain information about them:
W= [E,I(""’Eﬂv Wik = [ﬁi((g)ﬁ{v"'v@:@ﬁ:]'

Additionally, we introduce a diagonal matrix D* € R"*" whose diagonal
entries are given by

(D], = |lwly=vi, 1<i<nr

The matrices introduced above allow one to express A* = WD*WE;
and A*A*T as follows

A*A T =W DWW DWW (3.128)

Clearly, the rank of A*A*" is bounded above by r, and hence it suffices
to lower bound \;(A*A*T) when i < 7.

In order to characterize the spectrum of A*A*", we first look at
the eigenvalues of W W and W:;W:ft Write

7% o3k 7% | o7k

W' W' =I,+R,  and Wi Wiq=1I+Rix (3.129)
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for some residual matrices R, Ry € R™" (which are off-diagonal
matrices). By virtue of the definition (3.112), we immediately obtain

HR”oo < /,L/TL, and HRliftHoo < N/n7
thus indicating that
IR < 7[Rl <ry/u/n,  |[Rig| <r|Rigll < pr/n. (3.130)
Putting these together with (3.129) and invoking Weyl’s inequality give

max
K3

(W) — 1] < |[R|| < ry//n, (3.131)
which together with the assumption pr? < n further reveals that

W= AT < e s

We now return to study A*A*". In view of (3.128) and (3.129), one
can decompose A*A*" into the following two terms

A* AT =W (D*)’'W" + W DR DWW (3.133)
—_——
=G4 =Gz

Making use of the bounds (3.130) and (3.132) immediately leads to
|Gall < [WIPID*|* | Ril| < 4psr10n /-

Regarding G, it can be directly seen that the non-zero eigenvalues
of G4 coincide with those of D*WTWD*, where the latter can be
decomposed into

a5 vad

D*W" W’'D* = (D*)*> + D*RD".

As a result, for any 1 < i < r one can derive

N (Gh) = (D)) =

N(DW W DY) A (D))
m
< |D*RD"| < | D" 18] < r\[2
This taken together with the decomposition (3.133) leads to

max

Aprv?
n

N(ATAT) - X (Gh)| < )|Ge| <

)
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thus indicating that

(A A T) =\ (D))
{(G1) = X (D)) + [h(ArarT) = xi(Gy)|

B2 Aprvy Hop 2
< r\/;umax + % < 8max{\/; E}erax-

If 16 max{ %, [}rumax < v, then one has |\;(A*A*T) -\, ((D*)Q)‘ <
Viin/2. In addition, letting v(;y be the i-th largest element in {v;}1<i</,

we have )\Z-((D*)Q) = y(Qi) and hence arrive at

/2 < V rnln/2 < )‘ (A*A*T) () /2 < 2Vmax

mln l'Illn

for any 1 <i < r, as claimed.

Proof of Lemma 3.27. Define the following two matrices containing
information about the tensor factors:

W* = [wy, -, wi] € R™, (3.134a)
Wiy = [wi @ wi, - wi @ w)] e R (3.134D)

Given that W*TW* = [(w}, w? ) its diagonal part satisfies

1<4,5<r?

< 23

— “max*

deiag (W*TW*)

= Hdiag([sz‘*H;] 1§i§7‘)

In addition, the off-diagonal part of W*T W* satisfies

| >l wp)* < 53 ez 5]l

i#j wé]

[ ur? 9 [ ur?
< T m?X ||w:||2 = VI%I/;)X Ta

where the second inequality relies on the definition (3.112) of the inco-
herence parameter, and the last relation follows from the definition of
Vmax in (3.111). Consequently, if ur? < n, then

Poff—diag (W*T W*)

* 2 * * * * * *
[WHP = [W W < ||Paiag (W T W) | + || Potraiag (W*T W)

+|
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2
<23 423 [E <928 (3.135)
n

Repeating similar arguments also reveals that

Wikl < 203l (3.136)

max

Next, it is readily seen from the definition (3.112) that

(W[l < virmax ] oo < /25 max ot o = | /220308,

uf M\f
Wil o, < Vrmax [Jwi ][5, < max [[wf |5 = ==l

Combining these bounds with (3.135) and (3.136) immediately yields
p/2r
n

* * * T *
A 2 = W (Wikk) -~ W[ Wik,

)

H2oo > Vmax,

A* — lw~ * \ T < W™ * < HS/QT

H ||oo - ( Iift) _— H HZOO ” Iift”2,oo = n3/2 Vmax
T 2ur
A% = [ W), < I e I < 2

3.10 Notes

This section provides further pointers to the applications studied in this
chapter, and singles out a brief list of applications we have omitted.
Before proceeding, it is worth pointing out several important facts.
First, for many applications (e.g., phase retrieval, matrix and tensor
completion), the spectral method alone does not allow for perfect re-
construction of the unknowns even when it is information-theoretically
feasible to do so. Instead, the spectral method frequently serves as a
suitable initialization step for these applications, and its estimate can
often be further refined by means of nonconvex optimization algorithms
like gradient descent and alternating minimization; see Chi et al. (2019)
and Jain and Kar (2017) for overviews of recent advances. Second,
throughout this chapter, we have assumed that the underlying matrix is
exactly low-rank, and in addition the spectral methods deployed know
the correct rank. However, in reality, data matrices are rarely exactly
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low-rank. It is therefore of great importance to develop and analyze
methods that can handle such misspecified cases. When the reconstruc-
tion error of the matrix is considered, several methods are capable of
achieving graceful tradeoff between the estimation error and the approx-
imation error, without knowing the correct rank, e.g. e.g., Koltchinskii
et al. (2011), Chatterjee (2014), and Negahban and Wainwright (2011).
In addition, further discussions (e.g., convex relaxation approaches and
nonconvex landscape analysis) about several of these applications can
be found in Candes (2014), Wainwright (2019), Wright and Ma (2020),
and Zhang et al. (2020d).

PCA, factor models and covariance estimation. PCA and factor
models are among the most classic and extensively studied topics in
statistics (Anderson, 1962; Fan et al., 2020b; Wainwright, 2019). The
model considered in Section 3.3.1 has been studied by, for example,
Johnstone (2001), Paul (2007), Nadler (2008), Perry et al. (2018), Xie
et al. (2020), Wang and Fan (2017), Fan et al. (2018c), and Bao et al.
(2020) under the name of spiked covariance models, covering both the
finite-sample regime and high-dimensional asymptotics. A more recent
strand of work extended the theory to accommodate heteroskedas-
tic noise and missing data (including heterogeneous missing patterns)
(Lounici, 2014; Zhang et al., 2021; Cai et al., 2021a; Zhu et al., 2019),
as well as exponential family distributions (Liu et al., 2018). In addi-
tion to providing the distance control between the spectral estimate
and the true principle subspace, Koltchinskii and Lounici (2016) and
Fan et al. (2019b) also studied the bias of the spectral estimate under
various types of data distributions. It is clearly impossible to review
the enormous literature in a monograph of this length; the interested
reader is referred to the overview papers Johnstone and Paul (2018), Fan
et al. (2018a), Vaswani et al. (2018), and Balzano et al. (2018) and the
recent books Fan et al. (2020b) and Wainwright (2019) for overviews of
contemporary developments on this topic (with particular emphasis on
high-dimensional data). In addition, this monograph does not account
for the sparsity structure, or a superposition of low-rank and sparsity
structure, where are commonly imposed on either the covariance matrix
or the precision matrix (Johnstone and Lu, 2009; Ma, 2013; Vu and Lei,
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2012; Cai et al., 2013; Candes et al., 2011; Chandrasekaran et al., 2011;
Chandrasekaran et al., 2010). These additional structural assumptions
play a crucial role in further dimension reduction and are useful for,
say, learning graphical models, video surveillance in computer vision,
and portfolio allocation and risk managements in finance; see Fan et al.
(2020b), Vidal et al. (2016), Wainwright (2019), and Wright and Ma
(2020) for more detailed discussions.

Applications of PCA in statistical and econometric modeling. PCA
has been widely applied to estimate dimension-reduced spaces in multiple-
index models (Li, 1992; Duan and Li, 1991; Cook, 2007; Xia et al., 2002;
Li, 2018), and latent factors in econometric modeling (Forni et al., 2000;
Stock and Watson, 2002; Bai and Ng, 2002; Bai, 2003; Bai, 2009; Ahn
and Horenstein, 2013; Fan et al., 2015; Fan et al., 2016). For recent
reviews of this topic, we refer the readers to Stock and Watson (2016)
for dynamic factor models with applications to macroeconomics, to Bai
and Wang (2016) for time series and panel data models, to Fan et al.
(2021b) for robust factor models and large covariance estimation, and
to Fan et al. (2021a) for factor models and their broader applications to
econometric learning. In particular, factor models have been frequently
employed to adjust correlated covariates in high-dimensional model se-
lection, large-scale inference, predictions, treatment evaluations, among
others; see Fan et al. (2021b) and Fan et al. (2021a) and the references
therein.

Graph clustering and community recovery. Spectral methods—possibly
coupled with other subsequent refining schemes like k-means—are among
the most widely used algorithms for graph clustering (McSherry, 2001;
Rohe et al., 2011; Balakrishnan et al., 2011; Chaudhuri et al., 2012;
Fishkind et al., 2013; Sarkar and Bickel, 2015; Jin, 2015; Gao et al.,
2017; Zhang and Zhou, 2020; Newman, 2013; Chen and Hero, 2015;
Zhang et al., 2020c; Le and Levina, 2015; Jin, 2015; Le et al., 2018;
Chen et al., 2020c). While a large fraction of earlier papers required
the average vertex degree to be significantly larger than logn, Lei and
Rinaldo (2015) broadened the coverage of the theory by accommodating
sparse graphs with average degrees as low as O(logn). This, however,
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should be differentiated from the ultra-sparse regime with average de-
grees O(1); in this scenario, spectral methods based on vanilla adjacency
matrices no longer work, and more intelligent designs are needed to
effectively detect the communities (Coja-Oghlan, 2010; Massoulié, 2014;
Chin et al., 2015; Le et al., 2017). The theory available for spectral
clustering extends far beyond the two-community SBM presented herein,
examples including SBMs with growing communities (Rohe et al., 2011),
degree-corrected SBMs (Lei and Rinaldo, 2015; Lei and Zhu, 2014),
graphs with locality (Chen et al., 2016a), mixed membership models
Fan et al. (2019a) and Han et al. (2019), hyper-graphs (Ahn et al.,
2018; Michoel and Nachtergaele, 2012; Cole and Zhu, 2020), and di-
rected graphs (Wang et al., 2020). An abundance of other paradigms,
most notably convex relaxation, have also proved effective for clustering
(Jalali et al., 2011; Amini et al., 2013; Abbe et al., 2016; Hajek et al.,
2016; Cai and Li, 2015; Zhao et al., 2012; Li et al., 2021b; Zhang and
Zhou, 2020; Yuan and Qu, 2018; Fei and Chen, 2018a; Fei and Chen,
2019). We recommend the article Abbe (2017) for an overview of recent
developments.

Gaussian mixture models. The Gaussian mixture model is among the
most classic and convenient statistical models to capture the effect of
multi-modal and heterogeneous data (e.g., Pearson (1894), Titterington
et al. (1985), Xu and Jordan (1996), Dasgupta (1999), Hsu and Kakade
(2013), Kalai et al. (2010), Balakrishnan et al. (2017), Xu et al. (2016),
Jin et al. (2016b), Fei and Chen (2018b), Jin et al. (2017), Dan et
al. (2020), and Han et al. (2021)). Unlike parameter estimation (e.g.,
estimating the centers) that does not require center separation (Wu and
Yang, 2020), the feasibility of reliable clustering in Gaussian mixture
models is dictated by the minimum center separation (Lu and Zhou,
2016; Cai and Zhang, 2018; Ndaoud, 2018; Giraud and Verzelen, 2019;
Chen and Yang, 2020). While spectral methods naturally come into
mind for the clustering task and have been frequently applied in the
literature (Von Luxburg, 2007; Vempala and Wang, 2004; Kannan et al.,
2008; Kumar and Kannan, 2010; Awasthi and Sheffet, 2012), sharp
statistical analysis of spectral clustering (and its variants) has been
lacking until recently (Ndaoud, 2018; Loffler et al., 2021; Srivastava
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et al., 2019; Abbe et al., 2020a). While it might be tempting to impose a
minimum spectral gap requirement on the matrix ©* (cf. (3.41)) in order
to invoke the sin ® theorems, such a condition can be dropped as long
as an appropriate spectral clustering scheme is employed (Loffler et al.,
2021). Encouragingly, spectral clustering (with the aid of k-means) also
achieves information-theoretically optimal mis-clustering rate exponents
for a couple of scenarios (Loffler et al., 2021; Abbe et al., 2020a).

Ranking from pairwise comparisons. Deploying spectral methods to
address ranking tasks has a long history, dating back at least to Seeley
(1949). We refer the readers to Vigna (2016) for a historical account
of this subject. The specific instance of spectral methods introduced
here was due to Negahban et al. (2016), and has been subsequently
analyzed in multiple papers (Rajkumar and Agarwal, 2014; Chen and
Suh, 2015; Jang et al., 2016; Chen et al., 2020b). It bears close similarity
to the celebrated PageRank algorithm heavily used by Google (Page
et al., 1999). Negahban et al. (2016) developed the first /5 statistical
guarantees when estimating the underlying score vector, accounting for
missing data and general comparison graphs as well. The /5 guarantees
for random comparison graphs were further sharpened in Chen and
Suh (2015) (which closed the logarithmic gap). Note, however, that
the /5 score estimation error bounds alone typically do not imply
the ranking accuracy. Motivated by this inadequacy, Chen and Suh
(2015) directly studied the top-K ranking accuracy, by demonstrating
the optimality of spectral ranking followed by an iterative refinement
scheme. However, this left open another question regarding whether
the follow-up refinement step is necessary in achieving optimal ranking
accuracy. Jang et al. (2016) attempted to address this question by
establishing desired ranking accuracy of spectral methods when the
number of pairwise comparisons available is large. A complete picture
was subsequently obtained by Chen et al. (2019b), which proved the
optimality of spectral methods in top-K ranking all the way to the
sample-starved regime. Moving beyond exact top-K ranking, the recent
work Chen et al. (2020b) studied the capability (and limitations) of
spectral methods in handling partial recovery of the top-K ranked items.
Moving beyond the BTL model, there are also a number of other ranking
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models that have been extensively studied in the literature (e.g., the
Plackett-Luce model for multi-way comparisons (Hunter, 2004; Hajek
et al., 2014; Oh and Shah, 2014; Agarwal et al., 2018), the stochastically
transitive model (Shah et al., 2016; Shah et al., 2019)), which are beyond
the scope of the present monograph.

Phase retrieval. Netrapalli et al. (2015) proposed the first spectral
method (cf. Section 3.7.2) for phase retrieval, and established the per-
formance guarantees when the sample size exceeds m > nlog®n. The
theoretical support was then tightened by Candes et al. (2015a), al-
lowing the sample size to be as low as m =< nlogn. Similar theory was
provided for the random coded diffraction pattern model in Candes et al.
(2015a). Several variations and generalizations of the spectral method
have been further proposed to improve performance. The first order-wise
optimal spectral method for phase retrieval was proposed by Chen and
Candes (2017), based on the truncation idea. This method has multiple
variants (Zhang et al., 2016; Li et al., 2020c; Wang et al., 2018a), and
has been shown to be robust against noise and corruptions. The precise
asymptotic characterization of the spectral method was first obtained
in Lu and Li (2020). Based on this characterization, Mondelli and Mon-
tanari (2019) and Luo et al. (2019) later devised optimal designs of
spectral methods in phase retrieval when the sensing matrix follows the
Gaussian design, where its sensitivity to model mismatch was studied
in Monardo and Chi (2019). Ma et al. (2021b) and Dudeja et al. (2020)
explored similar questions when the sensing matrix is Haar distributed
(e.g., an isotropically random unitary matrix). The spectral method
presented herein has been used to seed a follow-up procedure that in
turn enhances estimation accuracy; see, e.g., Netrapalli et al. (2015),
Candes et al. (2015a), Sanghavi et al. (2017), Goldstein and Studer
(2018), Bahmani and Romberg (2017), Ma et al. (2020), Chandra et al.
(2019), Dhifallah et al. (2017), Qu et al. (2019), Zhang et al. (2017), Ma
et al. (2019), Tan and Vershynin (2019), Jeong and Giintiirk (2017), Cai
et al. (2019b), and Salehi et al. (2018a). An alternative to the spectral
method, based on a nullspace approach, has been proposed in Chen
et al. (2017). Fannjiang and Strohmer (2020) provided an extensive
discussion on initialization strategies for algorithmic phase retrieval,
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including but not limited to various forms of spectral methods. Sparse
phase retrieval is another important topic when the signal of interest is
assumed to be a sparse vector; we refer the interested reader to Li and
Voroninski (2013), Oymak et al. (2015), Chen et al. (2015b), Cai et al.
(2016), Wang et al. (2018b), Jagatap and Hegde (2019), Yang et al.
(2019), Soltanolkotabi (2019), Yang et al. (2016), Zhang et al. (2018b),
Salehi et al. (2018b), Shechtman et al. (2014), Yuan et al. (2019), and
Eldar and Mendelson (2014) and additional references cited therein.

Matrix completion. Regarding matrix completion, the spectral method
was originally proposed in Achlioptas and McSherry (2007) and Kesha-
van et al. (2010) to estimate (approximately) low-rank matrices in the
face of missing data and random corruptions. Similar to phase retrieval,
the estimate returned by the spectral method is employed as a suitable
initialization to enable fast convergence of nonconvex iterative proce-
dures; see, e.g., Keshavan et al. (2010), Keshavan et al. (2009), Jain
et al. (2013), Hardt (2014), Sun and Luo (2016), Chen and Wainwright
(2015), Zheng and Lafferty (2016), Boumal and Absil (2015), Wei et al.
(2016), Chen et al. (2020a), Ma et al. (2020), Zhang et al. (2018c), Jin
et al. (2016a), and Charisopoulos et al. (2021). Moreover, there are
several nuclear norm penalized estimators that also bear close relevance
to the spectral method, e.g., Koltchinskii et al. (2011). We also remark
in passing that there are other estimators that can effectively handle
the case when the underlying matrix is not exactly low-rank, including
but not limited to Universal Singular Value Thresholding (Chatterjee,
2014) and its soft-thresholded version (Koltchinskii et al., 2011). In
addition, while our discussion focuses on clean data and uniform random
sampling patterns, it is of great importance to study various noisy and
quantized scenarios (Keshavan et al., 2009; Candeés and Plan, 2010;
Cao and Xie, 2015; Klopp, 2014; Chen and Wainwright, 2015; McRae
and Davenport, 2021; Davenport et al., 2014; Ma et al., 2020; Zhang
et al., 2018d; Krahmer and Stoger, 2021), as well as non-uniform or
deterministic sampling patterns (Foucart et al., 2020; Negahban and
Wainwright, 2012; Shapiro et al., 2018).
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Tensor completion and estimation. Unfolding-based spectral meth-
ods have been frequently adopted to deal with various tensor estimation
problems including tensor PCA, tensor decomposition, tensor comple-
tion, and so on (Richard and Montanari, 2014; Montanari and Sun,
2018; Han et al., 2020; Zhang and Xia, 2018; Cai et al., 2021a; Cai et al.,
2021b; Xia and Yuan, 2019; Xia et al., 2021; Moitra and Wein, 2019;
Liu and Moitra, 2020; Zhang et al., 2020a; Xia et al., 2020; Tong et al.,
2021c). When it comes to tensor completion, the first near-optimal
{5 statistical analysis of spectral methods was due to Montanari and
Sun (2018), which was subsequently extended by Cai et al. (2021a) to
enable /3 o, error control. The readers interested in higher-order tensors
(beyond third-order tensors) can consult Montanari and Sun (2018) and
Richard and Montanari (2014). In addition, the theory and algorithm
presented herein focus attention on the regime where r < n, and fall
short of accommodating “over-complete” tensors when r rises above
n. Certain “contraction” tricks are needed in order to cope with the
over-complete regime; see Hopkins et al. (2016) and Montanari and Sun
(2018).

An extensive but non-exhaustive list of other applications. Finally,
the list of applications discussed in this monograph is clearly far from
comprehensive. Spectral methods have been successfully applied to a
plethora of other problems, including but not limited to the following
topics:

o matrix sensing: Tu et al. (2016), Zheng and Lafferty (2015), Ma
et al. (2021a), Chen et al. (2021a), Tong et al. (2021b), Tong et al.
(2021a), and Lee et al. (2017);

 phase synchronization and group synchronization: Singer (2011),
Abbe et al. (2020b), and Ling (2020);

o joint matching and map synchronization: Chen et al. (2014),
Pachauri et al. (2013), Shen et al. (2016), Bajaj et al. (2018), Sun
et al. (2018), Sun et al. (2019), Huang et al. (2019a), and Huang
et al. (2019b);
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covariance sketching and quadratic sensing: Li et al. (2021c),
Charisopoulos et al. (2021), Sanghavi et al. (2017), and Chi and
Fu (2017);

blind deconvolution and blind calibration: Li et al. (2019), Ma
et al. (2020), Huang and Hand (2018), Charisopoulos et al. (2019),
Chen et al. (2021d), Li et al. (2018), and Cambareri and Jacques
(2016);

blind demixing: Ling and Strohmer (2019) and Dong and Shi
(2018);

low-rank phase retrieval and phaseless PCA: Vaswani et al. (2017),
Nayer et al. (2019), and Vaswani (2020);

canonical correlation analysis (CCA): Cai and Zhang (2018) and
Ge et al. (2016);

sparse PCA: Amini and Wainwright (2008) and Johnstone and
Lu (2009);

mixed linear regression: Yi et al. (2014), Ghosh and Kannan
(2020), and Kwon et al. (2021);

finding hidden cliques: Alon et al. (1998);
joint image alignment: Chen and Candes (2018);

robust subspace recovery and robust PCA: Yi et al. (2016), Ne-
trapalli et al. (2014), Cherapanamjeri et al. (2017), Tong et al.
(2021b), Zhu et al. (2018), and Maunu et al. (2019);

contextual stochastic block models: Binkiewicz et al. (2017) and
Abbe et al. (2020a);

learning neural networks: Zhong et al. (2017) and Fu et al. (2020);
topic modeling: Ke and Wang (2017);

crowd sourcing: Ghosh et al. (2011), Dalvi et al. (2013), Karger
et al. (2013), Zhang et al. (2014), and Karger et al. (2014);

meta learning: Kong et al. (2020), Du et al. (2020), and Tripuraneni
et al. (2021);
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« subspace clustering: Eriksson et al. (2012) and Li and Gu (2021);

o state aggregation and compression of Markov chains: Zhang and
Wang (2020) and Duan et al. (2019);

o causal inference: Amjad et al. (2018);
o passive imaging: Lee et al. (2018).

For the sake of conciseness, we have chosen not to detail these applica-
tions, but instead recommend the interested reader to the above articles
and the references therein.



4

Fine-grained spectral analysis:
£~ and £, o, perturbation theory

In a growing number of applications, the fs-type distance between
subspaces, which is the central subject studied in Chapter 3, turns
out to be inadequate for performance characterization. Rather, what
would be of interest is the entrywise behavior of the eigenvector and
the matrix under consideration. This is especially important when
the individual entries of the eigenvector or the matrix of interest carry
pivotal operational meanings. For example, in a recommendation system,
one might be interested in controlling the prediction error of a user’s
preference on a specific product, which concerns a specific entry in a user-
product rating matrix; in sensor network localization, one might seek to
control the ranging error w.r.t. a pair of sensors, which corresponds to
entrywise prediction errors in a Euclidean distance matrix; and last but
not least, in community recovery, the entries of the leading eigenvector
of a certain data matrix might encode the community membership
associated with each individual (as explained in Section 3.4).

Tackling the preceding applications calls for development of fine-
grained spectral analysis beyond classical ¢5 perturbation theory. To be
more precise, consider once again the observation model

M=M*"+E

693
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previously studied in Chapter 2 (cf. (2.1)). The sort of fine-grained
theory being sought after gravitates around the following questions
concerned with ¢, and/or l o perturbation:

e For a symmetric matrix M™*, how to characterize the effect of E
on the ¢, perturbation of the leading eigenvector, or the #5 o
perturbation of the rank-r leading eigenspace?

e For a general matrix M*, how to pin down the /., perturbation of
the leading singular vector, or the /3 o, perturbation of the rank-r
leading singular subspace, in response to the perturbation E?

o How to assess the entrywise estimation error of the matrix estimate
produced by the spectral method, and how is it affected by E?

Unfortunately, a direct application of classical {5 perturbation theory
typically leads to overly crude bounds when coping with the above
questions. In particular, when the ¢ error is approximately evenly
distributed across entries, naively upper bounding the entrywise error
by the /5 error is often loose by an order-of-magnitude. In order to
conquer such limitations, this chapter introduces a modern suite of
techniques that delivers tight £, and ¢ o, error control by leveraging
the statistical nature of data models.

4.1 Leave-one-out analysis: An illustrative example

To paint a high-level picture of the core ideas empowering the {o, and
{3 o analysis, we find it helpful to first look at a pedagogical example
of rank-1 matrix denoising, a special case of the formulation introduced
in Section 3.2.1.

4.1.1 Setup and algorithm

Suppose that we observe a noisy copy of an unknown rank-1 matrix
M™* as follows

M = M*+E = Nu*u*" + E € R, (4.1)

where A* > 0 and u* € R” represent the largest eigenvalue of M*
and its associated eigenvector, respectively. We assume the Gaussian
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noise model as in Section 3.2.1, namely, E is a symmetric matrix whose
upper triangular part comprises of i.i.d. entries drawn from A/(0,02). In
addition, we remind the readers of the following incoherence parameter
o (cf. Definition 3.1):

w=nlu |2, (4.2)

which satisfies 1 < u < n in this rank-1 case; see Remark 3.12.

Letting A be the leading eigenvalue of M (i.e., A = A;(M)) and
u € R™ the associated eigenvector, the spectral method attempts to
estimate w* using w. In this section, we are particularly interested in
controlling the entrywise error, defined in terms of the /., distance
(modulo the global sign):

distoo (u, w*) = min {||u — v*||oc, [ + v || }- (4.3)

4.1.2 (¢, performance guarantees

While Section 3.2.2 delivers £y estimation guarantees for the spectral
estimate w, it falls short of characterizing the entrywise behavior—except
for the crude and highly suboptimal bound diste(u, u*) < dist(u, u*).
Encouragingly, this simple spectral method is provably accurate in an
entrywise fashion, as revealed by the following theorem.

Theorem 4.1. Consider the settings in Section 4.1.1. There exists some
sufficiently small constant ¢y > 0 such that if oy/n < ¢pA*, then

(Viogn + /1t)
)\*

disteo (u, u*) < g

(4.4)

holds with probability exceeding 1 — O(n~8).

In particular, if the incoherence parameter obeys u < logn (the case
where no entries of w* are significantly larger in magnitude than the
average magnitude), then our ¢, bound reads

V1
distoo (u, u*) < U}\ﬂ,
which is about \/n/logn times smaller than the ¢5 error bound (3.13),
that is, dist(u, u*) < U/{{E . This implies that the estimation errors of u

(4.5)

are dispersed more or less evenly across all entries—a message that is
previously unavailable from classical £o perturbation theory.
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1 3 . ] R
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H H EE
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eave one
. row/column out .... .

MO

Figure 4.1: Illustration of the leave-one-out auxiliary matrix M® | which removes
all the noise in the [-th row and the /-th column of M.

4.1.3 Key ingredient and intuition: Leave-one-out estimates

To facilitate entrywise analysis, a crucial ingredient lies in the introduc-
tion of a set of leave-one-out auxiliary estimates, detailed below.

Construction of leave-one-out estimates. For each 1 <[ < n, let us
construct an auxiliary matrix M® as follows

MO = Xy u T + EY, (4.6)

where the noise matrix E(®) is generated according to

E(l) o Ei,ja if 4 75 [ and j 75 l,

. 4.7
" 0, else. 4.7)

In words, M®) (resp. E(l)) is obtained by leaving out the randomness
in the I-th row/column of M (resp. E). The pattern of the leave-one-
out construction is illustrated in Figure 4.1. Let A®) and u() denote
respectively the leading eigenvalue and leading eigenvector of M®;
these leave-one-out estimates are introduced solely for analysis purpose.
It is important to recognize that by construction, M® (and hence u®)
is independent of the noise in the [-th row/column of E, a fact that
plays a pivotal role in controlling the perturbation of the I-th entry of

u*.
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Intuition. Before delving into the proof, let us first explain the rationale
at an intuitive level.

1. Given that u® is obtained by dropping only a tiny fraction of
the data, we expect ul) to be exceedingly close to u, i.e.,

ur tul) (4.8)

In words, u¥) forms a reliable surrogate of w, which motivates us
to analyze u") instead (if there are foreseeable benefits to do so).

2. The way we construct u(!) makes it particularly convenient to
analyze the behavior of the [-th entry, denoted by ul(l). More
specifically, given that ()\(l), u(l)) is an eigenpair of M O one has
(assuming for the moment that A(!) £ 0)

l 1 l 1 * A* *p 0k
u! = WMl(,.)u(l) - WML-“U) D\l Tul) (4.9)

~ +ul. (4.10)

Here, the first line follows since, by design, the I-th rows of M®)
and M* coincide (both of which are given by A*ufu*"), whereas
the second line holds as long as the size ¢ of the noise is sufficiently
small, so that ) /X* ~ 1 and w*Tu® ~ +1 according to the /5
perturbation theory.

Combining the above observations suggests that u; ~ :l:ul(l) ~ Fuy.

4.1.4 Leave-one-out analysis

Now we make rigorous the heuristic argument in the last subsection,
which relies heavily on careful statistical analysis.

Preparation: what we have learned from ¢5 perturbation theory

Let us start by collecting a few results derived from the ¢ perturbation
theory in Section 3.2 for handy reference. Experienced readers can
proceed directly to Step 1.

Specifically, suppose that oy/n < 1_157/‘/5)\*. Then with probability
at least 1 — O(n™%),

|E| < 50 IEV| < Bl < 50v/n  (4.11a)
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1 1
dist(u,u*) < Oi:/ﬁ dist(u®, u*) < Oi:/ﬁ (4.11b)
IA =X < 50vn IAD — X\ < B5ov/n (4.11c)
nax [\j(M)| < 50vn max |\(MWY)| < 50vn (4.11d)
J:j=2 J:j22

hold simultaneously for all 1 < [ < n. Here, the first line arises
from (3.12), and the remaining claims follow the same argument as
in the proof of Corollary 2.8. Consequently, there exist global signs
z,z1 € {1,—1} obeying |zu — u*||2 = dist(u,u*) < 100y/n/\* and
zu® — u*|]y = dist(u®, u*) < 100+/n/\*. To simplify presentation,
we shall assume
|lu — w*|| = dist(u, u*), (4.12a)
[ — ut||, = dist(u® uw*), 1<1<n (4.12b)
without loss of generality. As a simple yet useful byproduct: if 200/n <
A*, then Condition (4.12) necessarily implies

|w— u(l)H2 = dist(u,u(l)), 1<i<n. (4.13)
To see this, combine the triangle inequality and (4.11) to yield

200/n
)\*
which taken collectively with the fact |Juljz = |[u® |y = 1 gives

= uy <=, + [ul -], <

<1,

o+ w5 = 2fually + 205 ~ = w5 > 1> fu— w0,

This together with the definition (2.10a) of dist(-, ) validates (4.13).

Step 1: bounding the proximity of leave-one-out & true estimates

In this step, we seek to control the distance between the true estimate
w and the leave-one-out estimate u"). Suppose for the moment that

M - MO) < (1-1/v2) (A —max |\ (MD)]). (4.14)
iz

We can then invoke the Davis-Kahan theorem (cf. Corollary 2.8) and
the relation (4.13) to yield

2/(M ~ MOy _ 4)(M — MO0,
MO —max |A\; (M®)] ~ A* '
Jj=22

e — V], < (4.15)
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Here, the last inequality invokes (4.11) and 200/n < A* to obtain
A0 — max |; (MDY > (X\* = 50v/n) — 5o/ > X/2.  (4.16)
iz

A byproduct of this calculation is that A() is positive for all 1 <1 < n.

It thus remains to control the term ||(M — M®)u® ||y in (4.15), to-
wards which certain statistical independence proves crucial. Specifically,
we observe that (by construction of M)

(M — M(l))u(l) = elEl,.u(l) + ul(l) (E‘J — Euel),

where e; is the [-th standard basis vector, and Ej. (resp. E.;) denotes
the I-th row (resp. column) of E. By construction, u(®) is statistically
independent of E; ., thus indicating that

E u® ~ N(0,0%uD]2) = N(0,0?) (4.17)

conditioned on u(). Hence, with probability at least 1 —n =10,

‘Eh.u(l)] < 50+/logn, 1< <n. (4.18)

In addition, HE.}[ — El’lelHQ < HE~,l o < ||E| < 50\/ﬁ (cf. (4.11)).

Consequently,
[0~ MOyu]s < B |+ || B, - [uf”|
<sovlogn + By (|u] + [lw - w] )
< 50\/logn + 50v/nl|ulle + 5ov/nfu — U(l)H2~
Substitution into (4.15) yields
0|, < 200\/logn + 200\/ﬁHuA\*OO + 200 /nllu — uW|),

200+v/logn + 200+/n||u 1
< g = Vvl |oo+2||u

provided that 400y/n < A\*. Rearranging terms and taking the union
bound, we demonstrate that with probability at least 1 — O(n~%),

400+/logn + 400 /n||u| 1<l<n (4.19)
> ’ S

o~

fu(l)||27

= u], <
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Proof of the relation (4.14). Apply the triangle inequality to see that

IM - MY <M - M|+ M- MY = |E|+[EY
< 100y/n < X*/10.
Here, the equality arises from the definition of M and M ™, the penulti-

mate inequality uses (4.11), while the last inequality holds as long as
1000+y/n < A*. This together with (4.16) establishes (4.14). O

Step 2: analyzing leave-one-out estimates

We now turn attention to bounding the size of the [-th entry ugl) of ul®).
Since A) > 0, by (4.9), we have

ul(l) — = u;(;‘(l)u*Tu(l) . ’U,*Tu*>

* _ ()
_ UT(%U*T’U,([U + u*u*'l'( o _ u*).

The triangle inequality and the Cauchy-Schwarz inequality then give

*_ A0
)~ < Jup] X2 30 L O+ o] - e - — ]
o 100v/n o 100v/n
< ‘ul | A* + | u | ’ A*
SRLA (4.20)

Here, the second line holds due to Condition (4.11) and the fact |A()] >
A*/2; see (4.16).
Step 3: putting all pieces together
Putting (4.19) and (4.20) together, we arrive at
| —u*|| = max |y — uj| < max {!ul(l) —uf| + ||u— u(l)HZ}

QOa\fH | 400\/logn+>\400\/ﬁHuHool
*

(4.21)
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The above upper bound, however, involves the term |||/, which can
further be bounded by ||w*||co + ||t — w*|| 0o Substituting this into (4.21),
we have

- 400+/logn + 600/ || u*| o

1
Hu_u*Hoo — )\* +§||U_U*Hoo’

provided that 80c+/n < A*. Rearranging terms yields

800v/logn + 1200\/n ||[u*||s  800v/logn + 1200/u
A* B A ’
where the last identity results from the definition (4.2) of u.

[l
oo

4.2 {3 eigenspace perturbation under independent noise

The appealing entrywise behavior of the eigenvector estimator in Sec-
tion 4.1 hints at the promising performance of spectral methods for
broader contexts. In this section, we set out to develop a more gen-
eral framework about /> o, eigenspace perturbation that covers a wide
spectrum of scenarios.

4.2.1 Setup and notation

Ground truth. Consider a rank-r symmetric matrix M* € R™*" with
eigenvectors uj, - - ,uy and associated eigenvalues AJ,--- , A% obeying

XTI > A5 > - > || >0 and XN =---=X\,=0. (4.22)
We shall write the eigendecomposition M* = U*A*U*" as usual, where
A* = diag([M\1, -, Af]) and U* == [uf,- - ,u;] € R™". Denote the
condition number of M* as

k= ]/ IXL (4.23)
Akin to Definition 3.1, the incoherence parameter of M* is defined as
nllU* 2
= M, (4.24)
r

a parameter that captures how well the energy of U* is spread out
across all rows and that obeys (see Remark 3.12)

1<u<n/r (4.25)
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Observed data. What we observe is a corrupted version
M= M*+ E € R™", (4.26)

where FE is a symmetric noise matrix. We denote by {\;}1<i<, the set
of eigenvalues of M obeying

Al = ol = - = [Aal, (4.27)

and let u; be the eigenvector of M associated with A;. We shall introduce
the diagonal matrix A € R"™*" as A = diag([A\1,- -, Ar]).

Noise assumptions. This section aims to cover a fairly broad class of
scenarios of independent noise. In particular, the noise matrix considered
herein is assumed to satisfy the mild conditions listed below.

Assumption 4.1. The entries in the lower triangular part of E =
[Ei jl1<ij<n are independently generated obeying

E[Ei;] =0, E[E},]=:07;<0% |Ej|<B, forali>j. (4.28)

In particular, o2 is taken to be the smallest choice satisfying (4.28).
Further, it is assumed that

B
cp = —————=0(1). 4.29
> = o ttogm) - OW (429
We emphasize that both ¢ and B are quantities that are allowed
to scale with n. When p is not too large, Condition (4.29) allows the
maximum magnitude B of each noisy entry to be substantially larger
than the typical size o.

Goal and algorithm. We seek to estimate U* based on M. Towards
this, a simple spectral method computes the matrix U = [u, - ,u,| €
R™ " that comprises the top-r leading eigenvectors of M.

4.2.2 {3 and £ theoretical guarantees

The leave-one-out argument introduced before, when properly strength-
ened, enables powerful /3 o, performance guarantees for the spectral
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estimate U, which concern row-wise perturbation of the eigenspace. Be-
fore continuing, we remind the readers of the global rotation ambiguity,
namely, in general we cannot expect U to be close to U* unless suitable
global rotation is taken into account. In light of this, we introduce the
following notation that helps identify a proper rotation matrix.

Definition 4.1. For any matrix Z with SVD Z = UZZZVZT (where
Uz and Vz represent respectively the left and right singular matrices
of Z, and Xy is a diagonal matrix composed of the singular values),
define

sgn(Z) =UzV, (4.30)
to be the matrix sign function of Z.

Remark 4.1. The matrix sign function is commonly encountered when
aligning two matrices—classically known as the orthogonal Procrustes
problem (Schénemann, 1966). Consider any two matrices B,B € R™<"
with r < n. Among all rotation matrices, the one that best aligns B
with B is precisely sgn(ﬁB) (see, e.g., (Ma et al., 2020, Appendix
D.2.1)), namely,
sgn(B' B) = argmin |BO — B3
o] GOT‘XT

With this definition in place, we are ready to state an {5 o, theory
adapted from Abbe et al. (2020b). Compared to the original development
in Abbe et al. (2020b), the theorem and its proof provided herein are
more streamlined versions tailored to the current setting.

Theorem 4.2. Consider the settings and assumptions in Section 4.2.1.
Define H := U 'U*. With probability exceeding 1 — O(n~°), one has

< TRBT + o+/rlogn

[Usgn(H) -U*|, . < e , (4.31a)
[Usgn(H) — MU*(A*) ||,
< OR\/HT N a2\/rn logn + o B4/ ur log3 n (4.31D)
~N (A2)? ’ '

provided that oy/nlogn < ¢,|Ax| for some sufficiently small constant
cy > 0.
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The proof of this theorem can be found in Section 4.8. Note that
under the assumption in the theorem, the bound on the right-hand side
of (4.31b) is no larger than the one on the right-hand side of (4.31a).
In fact, (4.31b) could indeed be tighter than (4.31a) in some important
scenarios like community recovery (see Section 4.5).

The {5  perturbation theory in Theorem 4.2 accommodates a broad
family of noise matrices with independent entries. In the sequel, we take
a moment to interpret several key messages conveyed by this result.

De-localization of estimation errors. For simplicity, let us concentrate
on the case where u,x = O(1). Note that the Davis-Kahan theorem
introduced previously results in the following ¢» estimation guarantees
(to be detailed in Section 4.8.2)

distp(U, U*) < /r dist(U, U*) < TV

. 4.32
S ] 432

In comparison, the ¢5 o, bound derived in Theorem 4.2 simplifies to

< o+/rlogn

min |[UR - U*|| S

oo < [UsEN(H) = U,

(4.33)
under the condition p, x = O(1), which is about O(y/n/logn) times
smaller than the Euclidean error bound (4.32). This implies that the
estimation error of U is fairly de-localized and spread out across all
rows.

First-order approximation. Informally, Theorem 4.2 (and its analysis)
unveils the goodness of the first-order approximation

Usgn(H) ~ MU*(A*)™' = U* + EU*(A*)™! (4.34)

uniformly across all rows. An implication of Theorem 4.2 is that U
might be closer to the first-order approximation MU*(A*)~! than to
the ground truth U* (namely, the upper bound on the right-hand side of
(4.31b) is smaller than the bound on the right-hand side of (4.31a) under
the stated conditions). In principle, the linear term EU*(A*)~! can
be viewed as a correction term that helps improve the approximation
fidelity. As we shall see momentarily in Section 4.5, this subtle difference
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leads to sharper performance guarantees in applications like community
recovery.

Entrywise estimation errors. There is no shortage of applications
where one cares more about the fine-grained estimation accuracy of the
matrix rather than that of the low-rank factors. Fortunately, the /3 o
theory derived in Theorem 4.2 in turn enables entrywise performance
guarantees when estimating the matrix M*. This is summarized in the
following corollary, with the proof deferred to Section 4.9.

Corollary 4.3. Consider the settings and assumptions in Section 4.2.1,
and assume further that oky/nlogn < c¢1|Af| for some sufficiently small
constant ¢; > 0. Then with probability at least 1 — O(n™°), one has

logn
T 2
|[UAU " — M*|| < ow*pry m— (4.35)

Once again, it is instrumental to explain the result by specializing
it to the simpler regime where &, p1,7 = O(1). In this case, the finding
of Corollary 4.3 reduces to

|UAUT — M| < oy 8" (4.36)

n

In comparison, the Euclidean error of this spectral estimate satisfies
(which follows by combining (3.15) with (3.9) and (4.29))

[UAUT — M*||, < 2V2||E| S ov/n (4.37)

with high probability, which is on the order of n/y/logn times larger
than the entrywise error bound (4.36). In other words, the energy of
the estimation error of the unknown matrix is also dispersed more or
less across all matrix entries, a message that cannot be derived from
classical matrix perturbation theory alone.

Leave-one-out analysis. As alluded to previously, the proof of The-
orem 4.2 relies heavily upon the leave-one-out analysis framework to
decouple delicate statistical dependency. While the core idea bears close
resemblance to the exposition in Section 4.1.4, implementing this idea
rigorously for the general case requires considerably more effort. We
defer a complete proof to Section 4.8.
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4.3 {3 singular subspace perturbation under independent noise

The general theory presented in Section 4.2 applies only to symmetric
matrices. It is not uncommon, however, to encounter scenarios where
the matrix of interest M* is asymmetric. This motivates the need of
extending the /3 o, perturbation theory to accommodate more general
matrices, which is the main content of the current section.

4.3.1 Setup and notation

Ground truth. Consider an unknown rank-r matrix M* € R"1*"2,
Let M* = U*S*V*' represent the SVD of M*, where U* € R"1*"
(resp. V* € R™2*") entails the top-r left (resp. right) singular vectors of
M* and ¥* = diag([o], 03, - ,0}]) is formed by the (nonzero) singular
values of M*. We arrange the singular values {07} in descending order
(ie,0f>05>--->0r>0).

Key parameters. As usual, p stands for the incoherence parameter of
M™* (see Definition 3.1), and the condition number of the matrix M*
is defined as x = o} /o). Without loss of generality, it is assumed that

np < ng

and we set n = nj + no.

Observations and noise assumptions. Assume we have access to
corrupted observations of M™* as follows:

M = M* + E € R,

where E = [F; ;] stands for a noise or perturbation matrix. We impose
the following conditions on E, which is a natural adaptation of Assump-
tion 4.1 to the general case and covers a diverse array of scenarios.

Assumption 4.2. The entries of E are independently generated obeying
E[Ei;] =0, E[E},]<0® |E | <B foralli,j. (4.38)

Further, assume that

oy B — o(1). (4.39)

o/n/(alogn)
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Goal and algorithm. Again, we aim at estimating U* and V*, based
on the observation M, using a spectral method. Specifically, let

M=|U ULHEELHg” (4.40)

be the SVD of M, in which USV T is the rank-r SVD (i.e., the singular
values in ¥ := diag([o1, - ,0,]) are larger than those in 3 ). The
spectral method then deploys (U, V') as an estimate of (U*, V™).

4.3.2 {3 and £ theoretical guarantees

We now present a theorem that generalizes Theorem 4.2 and Corol-
lary 4.3 to accommodate general (asymmetric and possibly rectangular)
matrices. This can be accomplished via a standard “symmetric dilation”

trick; the details can be found in Section 4.10.

Theorem 4.4. Consider the settings and assumptions in Section 4.3.1,
and define Hyy .= U'U* and Hy := V' V*. With probability at least
1 — O(n=%), one has

max { [Usgn(Hp) — U*||s.00, [|Vsgn(Hv) = V|20 }
- o/r(ky/ 72+ /logn)

~

4.41
0_: ? ( )
provided that oy/nlogn < cjo) for some sufficiently small constant
c1 > 0. In addition, if cky/nlogn < cao} for some small enough constant
c2 > 0, then the following holds with probability at least 1 — O(n=°):

(ng/nl)logn‘

UV — M*|o < or’ur
ni

(4.42)
The messages conveyed in Theorem 4.4 largely parallel those in
Theorem 4.2 and Corollary 4.3. For simplicity, let us discuss the impli-
cations when k, pu,7 = O(1) and nj =< ng (i.e., the aspect ratio of the
matrix is ng/n; = O(1)). In this scenario, Theorem 4.4 implies that

o+/logn

*
UT

[Usgn(Hy) — U||2,00 + [Vsgn(Hy) = V{2,060 S

I
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N
IUSVT - M*||o < oy 222,
n

both of which bear close similarities to our previous observations (4.33)
and (4.36). Akin to our discussions in Section 4.2.2, these findings tell us
that the singular subspace estimation errors (resp. the matrix estimation
errors) are fairly spread out across all rows of the singular subspace
(resp. all entries of the matrix).

4.4 Application: Entrywise guarantees for matrix completion

To illustrate the utility of the fine-grained perturbation theory presented
in previous sections, let us revisit the problem of matrix completion
introduced in Section 3.8 and apply our refined theory.

As a recap, the spectral method proposed for matrix completion
proceeds by computing the best rank-r approximation UXV' T of the
rescaled data matrix M = p~1Pq(M*), where p is the probability of
each entry being observed, and Pq(-) denotes the Euclidean projection
onto the set of matrices supported on the sampling set 2. This time,
we seek to characterize the /5 o error when estimating the true singular
subspaces U* and V*, as well as the £, error when estimating the
unknown matrix M*, as stated below. As before, we set n := nq + no.
Theorem 4.5. Consider the settings and assumptions in Section 3.8.1,
and define Hy = U'U* and Hy = V' V*. Suppose that n; < ns
and nip > Ck*u?r?logn for some sufficiently large constant C' > 0.
Then with probability greater than 1 — O(n~?), we have

max{||[Usgn(Hy) — U*|[2,00: [|Vsgn(Hv) — V*|l2,00}

3,31
< /@%/7“ i L (4.43a)
nip

5 (logn
nip
Proof. Recall our notation E = M — M* = p~1Pq(M*) — M*. Tt is
straightforward to check that E satisfies Assumption 4.2 with
M* 2 M*
po M M
p p

IUSVT — M*||o < K2u?r |M*||.  (4.43b)

(4.44)
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In addition, from the relation B = cpo+/n1/(ulogn), it is seen that
¢, = O(1) holds as long as n1p 2 plogn. With these preparations in
place, the claims in Theorem 4.5 follow directly from Theorem 4.4 and
the bound (3.105b) on || M*||« (and hence on o). O

In what follows, we compare the /3 o, and /> performance guarantees
derived in the above theorem with those f5 guarantees presented in
Section 3.8.3; see Figure 1.4 in Section 1.1 for empirical performances.
For the sake of brevity, we shall concentrate on the case where u, k,r =

O(1).

o (oo singular space perturbation bounds. Comparing the {3
performance guarantee (4.43a) with Theorem 3.22, one sees that
the /3 o perturbation bounds could be an order of \/n; times
smaller than the /o counterpart, showcasing the de-localization
effect of the errors of the spectral estimates U and V.

o Entrywise matriz estimation bounds. Furthermore, the entrywise
error (4.43b) is about an order of n; times smaller than the
corresponding Euclidean error predicted in Theorem 3.23. This
indicates that no entry in the resulting matrix estimate suffers
from an error significantly higher than the average entrywise error.

4.5 Application: Exact community recovery

Another application that benefits remarkably from the fine-grained
eigenvector perturbation theory is community recovery. This section
reexplores the stochastic block model studied in Section 3.4, and develops
significantly enhanced theoretical support for spectral clustering.

4.5.1 Performance guarantees: Exact recovery

The focus of this section is simultaneous recovery of the community
memberships of all vertices, which is termed ezact recovery or strong
consistency in the community detection literature (Abbe, 2017). This
imposes a much stronger requirement than the weak consistency studied
in Section 3.4.3.
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For the sake of conciseness, the theorem below concentrates on
logn

n )
possible edge densities that allow for exact recovery. This is because, if
p < 987 then with high probability, one can find isolated vertices that

n

are not connected with any edge in the graph (Durrett, 2007); hence,
there will be absolutely no means to infer the community membership

the challenging regime where p, ¢ < corresponding to the lowest

of these isolated vertices. The theoretical guarantee is as follows.

Theorem 4.6. Fix any constant € > 0, and consider the setting of

alogn _ Blogn
n 9=

Section 3.4.1. Suppose p = and for some sufficiently

large constants o > 3 > 0.! In addition, assume that

logn

(VP—vD)’>2(1+¢) = (4.45)

With probability 1 — o(1), the spectral method in Section 3.4.2 yields

x;=u; foral1<i<n, or xz;=—x; foralll<i<n.

This theorem, which first appeared in Abbe et al. (2020b), identifies
a sufficient recovery condition in terms of the edge densities. The
result substantially strengthens the ¢s-based theory in Section 3.4.3,
uncovering the capability of the spectral method in achieving not merely
almost exact recovery in the average sense, but more appealingly, exact
community recovery that ensures correct labels of all vertices.

A natural question arises as to whether the recovery condition
(4.45) is improvable via more sophisticated algorithms. Answering this
question requires information-theoretic thinking, that is, how to char-
acterize a fundamental threshold—in terms of the difference of edge
densities—below which exact recovery is deemed infeasible. As has been
demonstrated in Abbe et al. (2016), Mossel et al. (2015), and Hajek et al.
(2016), no algorithm whatsoever is able to achieve exact community

recovery if
logn

(VP —va)* <2(1—e¢) (4.46)

for any constant € > (0. This fundamental lower bound, in conjunction

with Theorem 4.6, reveals a sharp phase transition behind the perfor-
mance of the spectral method. In particular, its optimality is guaranteed

'In the current proof, the constants «, 8 might depend on the fixed choice of .
Encouragingly, this restriction can be lifted; see Abbe et al. (2020b) for details.
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-8 -1.0

= jnformation-theoretic threshold

-0.8

-0.6

-0.0

Figure 4.2: Phase transition of spectral methods for exact community recovery.
Set n = 300, p = (alogn)/n, and ¢ = (blogn)/n. We vary a,b from 0 to 8 with an
equal space of 0.1. For each configuration of a > b, we conduct 100 Monte Carlo
trials and report the empirical success rate for recovering the entire community
structure correctly. The empirical phase transition occurs near the information-
theoretic threshold (see (4.46)).

all the way down to the information-theoretic threshold; see Figure 4.2
for numerical evidence.

Given that the above information-theoretic threshold is specified
in terms of (/p — \/5)2, the reader might naturally wonder what the
operational meaning of this quantity is. As it turns out, this metric is a
sort of distance measure between the two edge probability distributions
under consideration. In truth, in the setting of Theorem 4.6, this metric
is intimately related to the squared Hellinger distance between two
Bernoulli distributions.

Definition 4.2 (Squared Hellinger distance). Consider two distributions
P and Q over a finite alphabet ). The squared Hellinger distance
H2(P | Q) between P and Q is defined as follows

H(PIQ =53 L (JPw - Jew) . (an)

In particular, consider the squared Hellinger distance between two
Bernoulli distributions of interest Bern(p) and Bern(q), where we denote
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by Bern(p) the Bernoulli distribution with mean p. It is seen that (Chen
et al., 2016b)

H? (Bern(p), Bern(q)) := %(\/I) - \/5)2 + %(\/1 —p—1- q)2
= (1+o(1)5 (VB — V)"

when p = o(1) and ¢ = o(1).2 The phase transition phenomenon
identified in (4.45) and (4.46) can then be alternatively described as

1
spectral method works if H?*(Bern(p), Bern(q)) > (1 4 ¢) OTgLn
. e 142 logn
no algorithm works if H*(Bern(p), Bern(q)) < (1 —¢)
n

for an arbitrary small constant € > 0.

4.5.2 Proof of Theorem 4.6

We now turn to the proof of Theorem 4.6. Without loss of generality,
suppose that 27 =1 for all 1 <¢ <n/2 and 2} = —1 for all i > n/2, so
x_ 1| Lnpe
that u* = \/ﬁ[ S }
Recalling the matrix M given in (3.30) and its mean M* in (3.31),
one can immediately see that k = 4 = r = 1 for M* in this application.

Theorem 4.2 (cf. (4.31b)) readily implies the existence of some z €
{1, -1} such that

o%/nlogn +oB 10g3/2
Aty (A%)?

H u——M

(4.48)

with probability at least 1 — O(n~%). Additionally, it has already been
explained in Section 3.4 that

B=1, o¢®><max{pq}=p, and X =n(p—q)/2.

2To justify this approximation, the following calculation suffices:

Vi-g¢—/1-p= \/—Jﬂ/— = (1+o(1)) (VP—va) (VP+va) = o(vp—a).
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Substitution into (4.48) reveals that

o?y/nlogn . oB log3/2n

2N u — Mu*|| <o+

A+ A+
pvlogn _ /plog*’n
= C<\/ﬁ+ Vilp—a)  nlp—q) ) (4.49)

holds for some universal constant C' > 0. As a result, a crucial step boils
down to controlling Mwu* in an entrywise manner: each element is a
difference between two independent random binomial random variables
and is accomplished through the following lemma.

Lemma 4.7. Suppose that
2logn

2
oo = (VP — V@)~ = (1+¢) (4.50)
for some quantity € > 0. Let ¢ == % - ﬁ Then with proba-
nlog

q(1—p)

—¢/2_ one has

bility exceeding 1 —n
M, u* > ¢g forall I < g, and M; u* < —¢g forall [ > %

We now return to analyze the entrywise behavior of u. Note that

(2N > My .u* — |zX\wy — My .u*| for all I <n/2;
(2X)uy < My u* + |zX\uy — My .u*| for all I > n/2.

This together with (4.49), Lemma 4.7 and A* > 0 yields that if
elogn

1 pvlogn \/]510g3/2 n
2 > 4+ C(yp+ -
Vilog B4~ /i (v Valp—q)  nlp—q)

), (4.51)

then it follows that
zup >0 foralllglgg, and zu; <0 foralll>g,
thus guaranteeing exact community recovery once the rounding proce-
dure (based on the sign) is applied.
To finish up, it remains to validate Condition (4.51). Fixing £ > 0
to be a constant, we make the following observations.
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e From the assumptions € < 1 and p,q =< 10% (or a,f < 1), one
has
elogn elogn logn 1
= = > P+ —.
Vvnlog q(i gg Vv/nlog 7(1“/5(,1))0‘ Vvn vn
Turning to the term 2¥°5™  we observe that
Vn(p—q)

p(l—q) p—q p—q _ 2(a-p)
g = s i) Saamp S
N elogn S elogn f (4.52)

\flogp(1 9= 2yn a—-p3

q(1—p)
where in the last inequality of the first line we have used the
assumption p = o(1) and hence 1/(1—p) < 2. Given that ¢, o, f <
1, it is guaranteed that

ay/logn  py/logn

W52)> -5~ Valp—a)

/
We then move on to the term %. If a/f < 2and g >

2 2
20220 > 100220‘/ B , then one has g > % and hence

5Cy/alogn 5C/plog/?
Vala=8) — nlp—q)

In addition, if a/8 > 2, then it follows that

\/]310g3/2n ~ Yalogn < 2y/alogn _ 2logn (4.53)

np—q)  Vnla=p) = Vna Vna '’
where the inequality holds true since a — > o — /2 = «a/2.
Using the basic inequality logx < /x further leads to

elogn S elogn eflogn > 50\/1310g3/2
Vnlog 2574 _\/ﬁlogh ~ Vnv2a n(p —q)

(4.52) >

Here, the first inequality holds since p, ¢ = o(1) and hence L;g <2,
whereas the last relation relies on (4.53) and holds with the proviso

that 8 > 200C? /2.
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The above calculations taken collectively establish Condition (4.51)
under the assumptions of Theorem 4.6, thus concluding the proof.

Remark 4.2. It is worth pointing out that the bound (4.31a) in Theorem
4.2 is not sufficiently tight when establishing this result. Instead, one
needs to resort to the more refined bound (4.31b) in Theorem 4.2, which
allows us to sharpen the error bound by explicitly accounting for the
first-order error term (M — M™*)u*.

4.5.3 Proof of auxiliary lemmas

Before embarking on the proof of Lemma 4.7, we first record non-
asymptotic tail bounds concerning log-likelihood ratios and a sum of
Bernoulli random variables, which make apparent the role of the squared
Hellinger distance (Tsybakov, 2009).

Lemma 4.8. Consider two distributions P and @ over a finite alphabet
Y, and suppose that P(y) # 0 for all y € V. Generate an independent
sequence {y; }1<i<pn obeying y; ~ P. Then for any ¢ € R one has

& =neps —n|H(P[Q) -5 4.54
{2 %8 pioy = 6 Sew (—n[H(PIQ -3]). (459
where H?(P || Q) is the squared Hellinger distance between P and Q
defined in (4.47).

Lemma 4.9. Consider two sequences of independent random variables
z; ~ Bern(p), w; ~ Bern(q), 1<i<n,
and suppose that p > ¢. For any ¢ € R, it follows that
n
£, p(l—q) )
P —w;) < < —n|H: — 2log -~
{;(zz wﬁ_n{}_exp( n{ P4 9 qu(l—p)] ’

2
where H;q = (vP— 1) -

In what follows, we first establish Lemmas 4.8 and 4.9, and then
return to prove Lemma, 4.7.
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Proof of Lemma 4.8. Apply the Chernoff bound to yield

Q) Eyp [oxp (5 i1 loa £33 |
F {;log P(yi) = —nC} = exp(—n(/2) :
1/27\ "
o (Brr[(39)7])
T ew(nem) (4.55)

where (i) holds due to the i.i.d. assumption of the y;’s. In addition,
=155 (P + QW - 2y/Pwaw)
=153 (VP - )

=1-H(P[|Q) <exp (- H(P[Q)), (4.56)
where the second line follows since 3>, P(y) = >, Q(y) = 1, and

the last line uses the definition (4.47) and the elementary inequality
1 — z < exp(—=x). Substituting (4.56) into (4.55) concludes the proof.

Proof of Lemma 4.9. Set y; := z; — w;. The proof is built upon a
mapping between Y i ; y; and a certain log-likelihood ratio. Specifically,
let us introduce two distributions P and @ supported on {1,0,—1}:

p(1—q), ifx=1,
P(z) = 491 -p), if v =-1,
pg+(1—=p)(l—-gq), ifx=0,
q(1 —p), ifx=1,
Q(z) = {p(1 —q), if v =1,
pg+(1—-p)(1—gq), ifx=0.

Apparently, P (resp. @) corresponds to the distribution of y; (resp. —y;).
A key observation is that

Z log
i=1

n

Qyi)  1og 11— P) e P9
e —;{1{% = 1h1og L=+ 1y = ~1}lox B =4
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n 1 _
— 3 yilog u’
— p(1—q)

which relies on the fact that y; is supported on {1,0, —1}. Recognizing
that log 8 ;13 > 0 holds as long as p > ¢ (since ¢(1 —p) < p(1 —q)),
we can further derive

P{Zniyigns}zp{l imgfigg s}
i=1 1 i=1 1
§. pl—4q)
<exp( n[HA(P Q) = 3 1lo q(l_p>}),

where the last inequality comes from Lemma 4.8. From the constructions
of P and @ and the definition (4.47) of H2(P|| Q), it is easily seen that

H (P @) = (Ve —a) - WH’))_<¢p<1—g;q¢)q<1—p>>2

. -
T (W)

thus concluding the proof.

= (VP —va)",

Proof of Lemma 4.7. Let us start by looking at the first entry of
Mwu*. Tt is seen from the construction (3.30) that

M, v =A; u*— ]%(ITU*)I + puy > A u”, (4.57)

where we have used the fact that 1Tu* = 0 and u} > 0. The expression

* 1 1,2

u* = \/ﬁ{ B ] admits the following decomposition

/2
A’ = — Z” (Avi = At jing2), (4.58)
which can be controlled via Lemma 4.9.

Observe that A;; ~ Bern(p) for all 1 < i <n/2 and A;; ~ Bern(q)
otherwise. Using the definitions of z; and w; in Lemma 4.9, we obtain

P{Znh (Avs — Ay i) < %C - 1} < P{ZZ? (2 —w;) < T;C}
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nre S, p(l—q) 1
S exp <—2 |:Hp,l] - 5 10g m} S n1+5 (459)
for some 6 > 0, where the first inequality follows since 411 =0 <z +1
(so that Ay 1 — Ay /241 is stochastically dominated by 21 — wy), and
the last inequality holds as long as

szgq B glogp(l —q) > 2(1+49) logn7

1277 q(1-p) n

which we shall ensure at the end of the proof. Substituting (4.59) into
(4.58) and (4.57) yields

n¢ — 2 n¢ — 2 < 1
2\/’71 2\/’71}_711"‘5'

Repeating the preceding analysis for M; .u* with other I’s and taking

(4.60)

P {ML.’LL* S } § ]P’{AL.’LL* S

the union bound, we see that with probability at least 1 —n =9,
-2
My u* > ”5\/5 if 1 < n/2 (4.61a)
* nC —2 .
M, u* < — if l >n/2 (4.61b)

2y/n

hold simultaneously for all 1 <[ < n.
Finally, it remains to ensure satisfaction of (4.60). As it turns out,

if the condition (4.50) holds, then it suffices to take § < ¢/2 and

(= %. This completes the proof.
nlog q(1—p)

4.6 Distributional theory and uncertainty quantification

Thus far, we have demonstrated intriguing statistical performance of
estimators developed based on spectral methods. As one can anticipate,
the quality of a spectral estimator is largely affected by the imperfectness
of data generating mechanisms (e.g., noise corruption, missing data).
The uncertainty of the estimator due to these factors would inevitably
influence any subsequent decision making based on it. Viewed in this
light, it is recommended to accompany the estimator in hand with valid
measures of uncertainty (or “confidence”), in order to better inform
decision makers.
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Take the low-rank matrix estimation problem in Section 4.2.1 for
instance: an important uncertainty quantification task can be posed as
the construction of a valid confidence interval—based on the spectral
estimator—that is likely to cover an unseen entry of the matrix of
interest M™*. More precisely, for any location (i,j) and any target
coverage level 1 —a € (0,1) (e.g., 95%), we aim to identify a short

interval—denoted by CI}J_-O‘

P(M}; € CliS%) ~1—a, (4.62)

—Dbased on the spectral estimator such that

which essentially augments a point estimate into an interval that is guar-
anteed to cover the unknown with the pre-specified target probability.
Note that the problem of constructing a valid confidence interval falls
within the realm of statistical inference in the statistics literature, which
constitutes an important step beyond statistical estimation. Accom-
plishing this task in high dimension often calls for a refined statistical
reasoning toolbox that offers quantitative distributional characteriza-
tions of the estimator.

4.6.1 Entrywise distributional guarantees

As a natural starting point to build confidence intervals, we seek to
develop comprehensive understanding about the distribution of the
spectral estimator. In general, obtaining a non-asymptotic yet tractable
distributional characterization of a nonconvex estimator like the spectral
method could be remarkably challenging. Fortunately, the o, and ¢ o
perturbation theory introduced previously (e.g., Theorem 4.2) allows
one to make progress for some important scenarios.

Let us revisit the setting in Section 4.2.1, and consider the following
estimator of the unknown low-rank matrix M™*:

M = [M;] —UAU", (4.63)
obtained via the spectral method. The aim is to develop tractable
distributional guarantees for each entry of M — M™*.

1<ij<n

Towards this end, we first examine whether our previous results
shed light on certain distributional properties of M — M™*. Informally,
Theorem 4.2 (in particular, (4.31b)) reveals that

1

Usgn(H) ~ MU*(A*)"' = U* + EU*(A*) . (4.64)
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Assuming tightness of this first-order approximation, one further derives

UAU" — M* & Usgn(H)A* (Usgn(H)) " — U*A*U*"

Y (Usgn(H) — UN)A*U*T + U*A* (Usgn(H) — U*)"

Y Bur (A AU FUAT(BUR (AN DT
= EU'U"" +U'U*"E, (4.65)

where (i) holds as long as sgn(H)A*sgn(H)" ~ A (which has already
been illuminated in the analysis of Corollary 4.3 and will be solidi-
fied momentarily), (ii) is obtained by dropping the higher-order term
(Usgn(H) — U*)A*(Usgn(H) - U*) "
imation (4.64).

Given that (4.65) is a linear map of the noise matrix E, this essen-
tially forms a first-order approximation of M , which in turn enables
a tractable distributional theory for M. Observe that each entry of
the matrix in (4.65) is a weighted superposition of the independent
zero-mean entries of E. Equipped with this observation, some variant
of the central limit theorem suggests that each entry of M — M~ is

, and (iii) relies upon the approx-

approximately zero-mean Gaussian, as formalized by the theorem below.
For notational convenience, we shall define a projection matrix

P* =[P, =UU*", (4.66)

w] 1<i,j<n

and impose a lower bound requirement on the noise variance:

ol < 01»27]- < o2, 1<id,j<n. (4.67)

min

Theorem 4.10. Suppose that the assumptions of Theorem 4.2 hold. For
any 1 <14,5 < mn, set

o — 2 gilplf]? + 2 PiTIQUl%j T 20i27jpzfipjfj’ iti#J, (4.68)
YA, o P if i = j.
Assume that o/omin = O(1), and that
2 2
LI+ [ULI3 | Boeutrtiontn | otiratlogn o

oz T o O
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Then the estimator (4.63) obeys

sup |P (M\” - M} <z v;j) - @(z)‘ =o(1),

z€R ’

where ®(-) represents the cumulative density function (CDF) of the
standard Gaussian distribution.

The proof of this theorem is postponed to Section 4.11. In a nutshell,
Theorem 4.10 tells us that M is a nearly unbiased estimator of the truth
M, as long as the signal strength—as captured by [|U[|2 and U7 |2
when estimating the (i, j)-th entry—is sufficiently large (cf. (4.69)). The
resulting estimation error in each entry is well approximated by a zero-
mean Gaussian random variable, whose variance can be determined in a
tractable fashion. As can be easily verified, the variance vy ; is precisely
the variance of the (4, j)-th entry of EU*U*T + U*U* " E (as singled
out in (4.65)). The above distributional theory is non-asymptotic, which
lends itself well to high-dimensional applications.

4.6.2 Inference and uncertainty quantification

The Gaussian approximation unveiled in Theorem 4.10, which is dictated
by a single parameter v} ;, paves the way for statistical inference and
uncertainty quantification tailored to this model. In order to construct
a valid confidence interval for each entry of M™*, everything boils down

to identifying an estimator that approximates the variance parameter
T
In view of the variance characterization (4.68), computing vy Te-

v} -, ideally in a data-driven yet faithful manner.

quires information about both the noise variances {Uz j}lém‘én and
the projection matrix P* (cf. (4.66)). However, estimating the noise
variances is in general statistically infeasible, given that we only have

access to a single observation (i.e., M; ;) related to each individual vari-
i
equivalently the average of these individual variances, whose stochastic

ance o2 ;- Fortunately, the variance v} ; involves only the summation or

errors will be averaged out. This leads us to the following surrogate

5 Yity BB + Xl P B + 2B PP, i #

= L (470)
437 Ezzpsza if 1 = j,

Uz ?j -
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which is clearly an unbiased estimator of v7;. Given the statistical
*

independence of {E; ;};>;, we can expect to have v; j ~ v,

owing to
the concentration of measure.

However, the above surrogate v; ; remains practically incomputable,
due to the absence of knowledge about both E and P*. To address this

issue, we propose the following plug-in estimator:

N {Zln_1 Ezzlﬁlzj + 25 ﬁzzlEZQJ + QEiQ’jﬁmﬁj’j’ iti # 3, (4.71)

,U’LJ = = 3 ep - .

45 Ez'Q,lPl?iv ifi =74,

where E = [Ei,j]lgi,jgn and P = [f’7;7j]19,j§n stand for estimators of

E and P*, respectively. In particular, we employ the following specific
estimators of ¥ and P*, again adopting the plug-in strategy:

E=M-UAU", (4.72a)
P=UUT, (4.72D)

where U and A are, as usual, computed via eigendecomposition of M.
For a prescribed coverage level 1 —a (with 0 < av < 1), we construct the
following confidence interval for the (4, j)-th entry of M*, motivated by
the Gaussian approximation in Theorem 4.10:

QT = [Miy £ 071 (1 — a/2)y/5i5 ). (4.73)

Here and throughout, for any b > 0, we let [a +-b] abbreviate the interval
[a — b,a + b], and we use ®~1(-) to represent the inverse CDF of the
standard Gaussian distribution.

As encouraging news, the above construction of entrywise confidence
intervals is provably valid with high probability, as revealed by the
following theorem. The proof is postponed to Section 4.12.

Theorem 4.11. Consider the settings and assumptions in Section 4.2.1,
and suppose that o/omm = O(1), k*ur?logn < n and oky/nlogn <
|Ax|. Consider any 1 < 4,5 < n, and assume that

HUJ*H; + HUZ*HZ > Br**r?login  oplrrdlog®n
(Lo Y ond? IAslvn

(4.74)
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For any fixed coverage level 1 —a € (0, 1), the confidence interval Clild_-o‘
constructed in (4.73) obeys

P(M;; € Cli;*) =1—a+o(1). (4.75)

Theorem 4.11 confirms that the confidence interval proposed above
meets the prescribed coverage requirement, provided that the associated
signal strength is not too low (see (4.74)). In addition to its statistical
validity, the proposed procedure enjoys several features that make it
practically appealing:

e Adaptive to unknown noise levels and distributions. The above
inference procedure is fully data-driven, which does not require
prior knowledge about the noise levels or noise distributions. As
alluded to previously, it is in general impossible to estimate the
noise variance in each entry, and hence a data-driven yet valid
approach is of critical value.

o Adaptive to heteroskedastic noise. Our statistical guarantees hold
without relying on homogeneity of noise components. In other
words, this inference procedure automatically accommodates het-
eroskedastic noise, a scenario where the variance of the noise
components might vary across different locations.

Careful readers might remark that Theorem 4.11 is concerned with
statistical inference for a single entry. Interestingly, the distributional
theory presented in Section 4.6.1 (see also Lemma 4.18 in the proof of
Theorem 4.10) might also be instrumental in pursuing simultaneous
inference, namely, the problem of constructing a confidence region that
simultaneously accounts for more than one unknown entries. We omit
such an extension for the sake of conciseness.

4.7 Application: Confidence intervals for matrix completion

As an illustration of the applicability of the inference procedure described
in Section 4.6.2, we develop concrete consequences of Theorem 4.11 in
application to noisy matrix completion—an extension of the formulation
in Section 3.8 to noisy settings.
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Model: noisy matrix completion. Suppose that we are asked to re-
construct a symmetric rank-r matrix M* = [M;:j]lgk,lgn € R™ "™ with
eigendecomposition M* = U*A*U*T. We only get to acquire noisy
observations of a subset of the entries of M™*; more precisely, there

exists a sampling set 2 C [n] x [n] such that we observe
MG+ Mk if (k,1) € Q. (4.76)
Here, {ni; | K > [} denotes independent Gaussian noise obeying

iid.
Ml = Mk ~ N (0, 0727), k>1. (4.77)

As before, we focus on the random sampling model such that each
location (k, 1) with k& > [ is included in the sampling set  independently
with probability p. Further, assume that M* has eigenvalues obeying
(4.22), condition number x (cf. (4.23)), and incoherence parameter p
(cf. (4.24)). Can we build a confidence interval for each entry M;;, on
the basis of the output of the spectral method?

Computing entrywise confidence intervals. In order to apply the
inference procedure in Section 4.6.2, it suffices to determine the data
matrix M = [M; j]l1<i j<n, which can be selected as usual. Specifically,
a possible inference procedure proceeds as follows:

e Set M such that for any 1 <i,5 <mn,

o %(M;j +mij), if (i,7) € Q, (4.78)
2,7 .
0, else,
which clearly obeys E[M] = M*.
« Compute the estimate M (cf. (4.63)) via the spectral method.

o For a given coverage level 1 — « and a given pair (7, j), construct
the confidence interval CI};O‘ according to (4.73), with auxiliary
parameters provided in (4.71) and (4.72).
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Performance guarantees and implications. When specialized to noisy
matrix completion, our inference theory in Theorem 4.11 leads to the
following statistical guarantees.

Theorem 4.12. Consider the noisy matrix completion setting in this

maxk’l|M£‘l . ( )
) minkJ ‘M;,ll - ?

1
np > k'rlogn and anmln oen <S AL (4.79)
p

Consider any 1 < 14,5 < n, and assume that

section. Suppose that xk*u?r?logn < n

HUg*Hi + ||Uz*||§ > M27“2li4 10g3n Uy,,u27"/<3 log3n

> (4.80)
(Lo n\/np [ Xx[y/np
For any fixed coverage level 1 — a € (0, 1), the confidence interval Cli{;o‘

constructed in (4.73) obeys
P(M;; € Cli;*) =1—a+o(1). (4.81)

In order to help interpret the applicable range of Theorem 4.12, let
us focus on the simple scenario with &, p, 7 < 1 to simplify discussion.

 First of all, Condition (4.79) can be simplified as

1
np = logn and Jm/n ;gn < AL

The first condition on the sampling size coincides with the funda-

mental requirement even if the goal is merely to enable reliable
estimation (Candes and Tao, 2010), whereas the second condi-
tion on the signal-to-noise ratio is also necessary—up to some
log factor—to ensure an estimation quality better than that of a
random guess (Cai et al., 2021a, Theorem 3.3).

o Next, we move on to interpret the other condition (4.80) imposed
in our theory, which simplifies to

HU;H§ + HU:H§ N log3n oy log3n

[Load] nynp - |Aily/np
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Let us consider the most challenging case where np 2 polylogn
and am/"p"lz:& < |AY| (for some sufficiently large poly-log

factor). In such a case, the above condition only requires

2 2
o2+ ol . o

HU*Hi ~ npolylogn’

indicating that the associated signal power [|U* |3 + |UZ |3 is
allowed to be much smaller than the average signal power across
all rows (which can be captured by ||[U*||%/n).

In a nutshell, the validity of our inference procedure is ensured for
broad settings. Additionally, we have conducted a series of numerical
experiments to examine the entrywise distributions of M. As illustrated
in Figure 4.3, the normalized estimation error (@i,j)_l/Q(]\/Ziyj — M) is
close in distribution to a standard Gaussian random variable, which
corroborates our theory on the confidence interval construction.

Before concluding, we would like to remark that: while the distri-
butional theory for spectral methods allows for valid construction of
confidence intervals for an unseen entry, it is oftentimes not among the
most effective statistical inference procedures that one can put forward.
There exist other alternatives that are provably more efficient, including
but not limited to inference procedures based on convex relaxation and
nonconvex optimization (Chen et al., 2019¢; Xia and Yuan, 2021), and
the ones based on more refined spectral methods (Yan et al., 2021;
Chernozhukov et al., 2021).

Proof of Theorem 4.12.  Given that 7 j is a Gaussian random variable
and hence possibly unbounded, we find it convenient to introduce a
truncated version as follows

i = i 1{|nij| < Boyv/logn},  1<i,j<n.

and

M= 5 (ME; + 1), i (i,) € Q,
,L’] O

else.
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Figure 4.3: Entrywise numerical distribution for noisy matrix completion. We
generate M* = U*U*" with U* being a random orthonormal matrix, and analyze
the behavior of Z; 2 = (?1,2)70'5(]\//.\/1,2 — M7 ), where M is defined in (4.63) and
v; ; is defined in (4.71). The results are reported for 500 Monte Carlo trials when
p=0.3, n=1000, o;, = 10, and r = 3. (a) Histogram of the empirical distribution
of Z1,2; (b) Q-Q (quantile-quantile) plot of Zi 2 vs. the standard normal distribution.

Repeating the analysis in Section 3.2.3, we can show that
P{M = M} =P{n; = ;;,¥i,j € [n]} > 1—=n""7,

meaning that M and M are equivalent with high probability. As a result,
we shall concentrate on validating the confidence interval computed
based on M in the subsequent analysis. Before proceeding, we record
several key properties about 7; ; as follows:

Eliij] =0, Elf;]=1—-o0(1))oy, |ii| <50,logn.  (4.82)

The proof follows by invoking Theorem 4.11, as long as the conditions
required therein are satisfied. To begin with, the associated variance
parameters are given by

~ 2
o2 =B [(M; — M)’
1— 1_\?
= pE l(ppM,fj + pm,y’> 1 +(1—p) (M)

2
(1 p)(

2 1 1.9 2
» Mi)" + ];E [Ui,j} + (1= p) (M)
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1 — 1—-o0(1
e ]
p p
thus leading to
1- 1-o(1)
2 2 * 2
O = mljnaJ Tmljn (M} ) +Tan,
1- 1 1
o? —maXJQJ THM*H?,O—{— ol )03].
’]

Apparently, 02 /02 = O(1) holds true under the assumptions of The-
orem 4.12. In addition, the random variables {M;; — M;;} are all
bounded obeying

B _ P <
= T
7 \/TPHM*Hoo"’ﬁC’n p

Moving to the condition oky/nlogn < |Ax| in Theorem 4.12, it can
be guaranteed if

1— 1 I
1Mooy | LIBT3 gy [TIOBR e
p p

maxy | |Mkl

1 M~ 51
|M; ; M*|<7‘M H_ 74| < (1-p)l Hoo‘}'o'n\/m:
b
These bounds readily imply that
(1=p)|[|M*||oc+0y\/5logn
B logn

(4.83)

Given the assumption i V] = = 0(1), one has
1 NG R/T
1Moo = M < Y = S s

As a consequence, the condition ory/nlogn < |Af| can be ensured under
Condition (4.79).

It remains to certify Condition (4.74). By virtue of the above calcu-
lations of o and B as well as the property (4.83), it is easily seen that
Condition (4.74) is valid as long as the following holds:

U5+ U5

5l k21212 log?/? VI = p||M*||oop®rr3log® n
R A NING
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anu2rn3 log3n
(Arlymp
Taking this together with the relation (4.84), we can demonstrate

straightforwardly that Condition (4.74) is guaranteed to hold as long
as Condition (4.80) is satisfied. This completes the proof.

4.8 Appendix A: Proof of Theorem 4.2

To simplify notation, we assume throughout the proof that A7 > 0,
namely,

PSR ) (4.85)

The challenge of the proof arises due to the complicated statistical
dependency between M and U, and the leave-one-out analysis paves a
plausible path to decouple the dependency.

4.8.1 Construction of leave-one-out auxiliary estimates

As elucidated in the rank-1 matrix denoising example in Section 4.1,

the key to enabling fine-grained analysis is to seek assistance from a

collection of leave-one-out estimates. Akin to Section 4.1.3, for each 1 <
. . !

[ < n, we construct two auxiliary matrices M® and E® = [El( J) 1 <ij<n

as follows:

Ez"j, lf7,7é l andj;é l,

4.86
0, else, ( )

MO = M+ EO, E@:{

which are generated by simply discarding all random noise incurred in
the [-th column/row of the data matrix. In addition, let )\gl), Sy 7({)

be the eigenvalues of M® sorted by
A= A 2 = D), (4.87)

and denote by u') the eigenvector of M associated with )\Z(l). The

i
leave-one-out spectral estimates U and A®) are, therefore, given by

U = [ u®d] e R AD = diag([AP, -+, AD]). (4.88)
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We emphasize again that the main advantage of introducing the
leave-one-out estimate U stems from its statistical independence from
the [-th row of M, which substantially simplifies the analysis for the
[-th row of the estimate. In principle, our analysis employs the leave-
one-out estimates to help decouple delicate statistical dependency in a
row-by-row fashion. Another crucial aspect of the analysis lies in the
exploitation of the proximity of all these auxiliary estimates, a feature
that is enabled by the “stability” of the spectral method.

4.8.2 Preliminary facts

Before embarking on the /o and /3 o, analyses, we gather a couple
of useful facts, whose proofs are postponed to Section 4.8.4. In what
follows, © (resp. 6(1)) denotes a diagonal matrix whose diagonal entries
are the principal angles between U (resp. U(Z)) and U*. In addition,
we find it helpful to introduce the following matrices

H=U'U* and HY =UOTy* (4.89)

which turn out to be close to being orthonormal.

The first set of results follows from the statistical nature of the
perturbation matrix E (cf. Assumption 4.1), which is immediately
available from the matrix tail bounds.

Lemma 4.13. Consider the setting in Section 4.2. There is some constant
c2 > 0 such that with probability at least 1 — O(n™7),

max | EV|| < | B < eao v/ (4.90)
Moreover, for any fixed matrix A € R™*? with d < n, one has
[EAll2,00 < 40+/logn [|Allp + (6B logn)|| All2,00- (4.91)
Remark 4.3. In view of (4.91), with probability at least 1 — 2n=?,

IEU"||2,00 < 40 +/logn [|U||r + (6B logn)[U" 2,00

1 2
= 4ax/rlogn+63\/w = (44 6cp)oy/Tlogn, (4.92)
n

which relies on the definition (4.24) and the definition of ¢, in (4.29).
As a result,
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IO, < [MAU, 4B

||2,00 ||2,00

< JEEIN ]+ (4 + 6ep)o/rlogn, (4.93)
n
which follows from the fact M*U* = U*A* (so that |M*U*||2.00 <
U]l A = Vr /[ AT]).

With the size of the perturbations (i.c., |[EV|| and || E||) under
control, the #» perturbation theory established in Chapter 2 leads to

HZ&

the following set of conclusions.

Lemma 4.14. Suppose that cooy/n < (1—1/+/2)\%, where ¢z is the same
constant as in Lemma 4.13. Then with probability at least 1 — O(n™"),

one has
2 2
dist(U,U*) < 02;‘/5, dist (U, U*) < 62;\/7‘, (4.94a)
V2 V2
|sin®| < 221 [sin@D| < 2TY=0 0 (4.94b)
A AT
: * _ () *
lrgjaécTM]] >\ — oo/, lrgjaécr A= A% coov/n,  (4.94c)
max |\j| < caov/n, max |)\§-Z)| < coovn (4.94d)
J:3>r jig>r
hold simultaneously for all 1 <[ < n. In addition,
2co0+/
|UH - U*|lp < =55 (4.94e)

with probability exceeding 1 — 2n75.

Remark 4.4. Lemmas 4.13 and 4.14 allow us to bound the eigengap
and perturbation size as follows

NO| =AY | > M — oo/ — caov/n > AL/2, (4.95a)
IM - MO < M- M|+ M- M| = |E|+|EY
< 2c0v/n < (1= 1/V2) (MO = N24)), (4.95b)

which are valid as long as 20ca0v/n < Ax. These will prove useful when
bounding the approximation error of U using UW®.
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Another collection of results is concerned with H and H®.

Lemma 4.15. Suppose that the assumptions of Lemma 4.14 hold. With
probability at least 1 — O(n~"),

IH™ <2, H(H“))*lu <2, (4.96a)

2
202n0
2

|H — sgn(H)| < 1HY — sgn(HY)|| < (4.96b)

hold simultaneously for all 1<l <n.

Remark 4.5. As a consequence of (4.96) and Proposition 2.1, one has
Al = [[AHH || < [|AH|||H Y| <2 AH|.,  (4.97)
Al < [JAEO || | (EO) )| < 2| AHO)| (4.97b)

for any matrix A. Here, ||A|| could either be the Frobenius norm or
the £3,00 norm || - ||2,00-

4.8.3 Leave-one-out analysis

Now we move on to the main part of the analysis, which is further
decomposed into four steps.

Step 1: decomposing the £3 . estimation error of U

By virtue of the proximity of H and sgn(H ) unveiled in Lemma 4.15, we
are allowed to employ U H as a surrogate for Usgn(H ), which is more
convenient to work with. As it turns out, the discrepancy between U H
and the first-order approximation MU*(A*)~!, and the discrepancy
between U H and the truth, can be bounded by three important terms,
as asserted below. The proof is built upon elementary algebra and basic
{5 perturbation bounds in Section 4.8.2, and is deferred to Section 4.8.4.

Lemma 4.16. Suppose that 2co0/n < Ar for some sufficiently large
constant ¢y > 0. Then with probability at least 1 — O(n~7"), one has

|[UH — MU*(A*) 7|, <& + &, (4.98)
HUH — U*H2 <& +E+ &3, (4.98b)
where & QHM(UI{\T U200 , & —4”MI{/*\!§§°°HE”7 and &3 = 7HEU;¥”2’°°.
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Lemma 4.16 leaves us with three important terms to deal with. The
term &1 is most complicated as it involves the product of two random
matrices, whereas £ and &3 can be controlled straightforwardly through
our preliminary facts in Section 4.8.2. Specifically, the term & can be
bounded by combining (4.93) with the bound (4.90) on E to obtain

e < deako/ur N 4eo(4 + 6cp)o?y/rnlogn
2 ~ .

4.99
7 (o 9
Regarding the term &3, the inequality (4.92) readily gives
4 Vrl
g, < UFOc)ovrlogn (4.100)

< ¥

Turning to controlling the remaining term &1, a closer inspection,
however, reveals substantial challenges, due to the complicated statistical
dependency between M and U. To further complicate matters, the term
&1—as we shall demonstrate momentarily—depend on some intrinsic
properties of interest about U (e.g., [UH — U*||2,« ), which might lead
to circular reasoning if not handled properly. In order to circumvent
this issue, we intend to establish the following relation

&L <& +p|lUH-U" (4.101)

HZ,OO
for some quantity &1 > 0 that does not involve |[UH —U*||2, o as well
as some contraction factor 0 < p; < 1/2. Assuming the relation (4.101)
holds for the moment, we have the following useful claim (the proof is
straightforward and again postponed to Section 4.8.4).

Lemma 4.17. If Conditions (4.98) and (4.101) hold with 0 < p; < 1/2,
then we have

|[UH U, <2(11+ &+ &), (4.102a)
|[UH — MU*(A*) HQ,OO <2(&11 + &+ p1&3), (4.102b)

4cio?, /urn

|Usgn(H) — <41 +E+E)+ (4.102c)

H27oo

(A2
* * -1
[Usgn(H) — MU*(A*) ||,
8c3o’n 4cio?, rn
<3611 +38 + (201 + (f\f) )& % (4.102d)
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Remark 4.6. When &; is the dominant term, the bound (4.102b) might
be stronger than (4.102a) if p; is small.

With this lemma in mind, everything boils down to (i) establishing
the relation (4.101) and (ii) deriving a tight bound on &; i, which
form the main content of the rest of the proof. In light of the triangle
inequality

IMUH -U*)|, < [EUH -U")|,, +[|M"(UH - U],

we dedicate the next two steps to bounding [|[E(UH — U*)||2,0 and
|M*(UH — U")||2,00 respectively.

Step 2: bounding | E(UH — U*)||2,c via leave-one-out analysis

To obtain tight row-wise control of E(UH —U*), one needs to carefully
decouple the statistical dependency between E and U, which is where
the leave-one-out idea comes into play.

Step 2.1: a convenient decomposition. We start by invoking the
triangle inequality to decompose the target quantity as follows

IE(UH - U")|, ., =max|E.(UH - U],

< max {||El,-(U(l)H(l) ~U)|,+ | E.(UH — U(l)H(l))HQ}
< m?X{HEl,.(U(l)HU) U*)H + | E||{UH - U H }
(4.103)

In words, when controlling the I-th row of E(UH — U*), we attempt
to employ UW H® as a surrogate of U H. The benefits to be harvested
from this decomposition are:

o The statistical independence between E;. and U OH® allows for
convenient upper bounds on || E;.(UVH® — U*) 1%

e UH and UYH® are expected to be exceedingly close, so that the
discrepancy incurred by replacing U H with U® H® is negligible.

In what follows, we flesh out the proof details.



4.8. Appendix A: Proof of Theorem 4.2

735
Step 2.2: the proximity of UH and UMW H®, Given that
lvH -UYHY|, =|vvTUr - UuYUu U,
<|ou’ vV o
=|lvuT -UvYUOT|,, (4.104)

it boils down to bounding [|[UU T —UWUOT||p. Under simple conditions

on the eigengap and the perturbation size (see (4.95) in Remark 4.4),
the Davis-Kahan theorem (cf. Corollary 2.8) yields

2[(M — MWUW®W
|)‘7" ’ B |/\T+1
4l[(M — MOYUW

It remains to develop an upper bound on |[(M — M®YU®||. The
way we construct M) (see Section 4.8.1) allows us to express

(M~ MUY = B, U + (B — Ee)e/ UY.
This together with the triangle inequality and the fact (4.97) gives
|1 = MU0, < [BLOO,+ B = Buser], |00
< |0V, + 2| E| UV HD,
< |V, +2|E|[UH],, +2|E||[UH - UYHY|.
Substitution into (4.104) and (4.105) gives

|t —uOHO, < juUT ~oOUT,
§ 4| B, UO,

+8||B|l[UH]|,  + 8| E|| [UH - UOHO||
A :

As long as ||E||/A; < 1/16, one can further rearrange terms to obtain

8||E, . UW||, + 16| E| |[UH

In addition, the fact (4.97) combined with the triangle inequality yields

B U, < B UOHO, < |EB.WOYHY - U, + | B0,
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which taken collectively with (4.106) reveals that
_ 16| E,. (UVH®D — U*)
< ¥
+|El|lvH - U
)\*

T

Iy

jvH - U HO,

+ | ElU*

16{]| B, U*

2,00}

I, 2,0

. (4.107)

Step 2.3: bounding || E;.(UYH® —U*)||5. Recognizing that Ej . is
statistically independent of U® (since U® is computed without using
E, ), we invoke Lemma 4.13 (more precisely, we use the proof of this
lemma) to demonstrate that with probability exceeding 1 — 2n =9,

1B, UV HY —U)|,
< 40/logn |[UYVHY — U*||p + (6Blogn)|[ UV HY — U* |20
< 4o/logn |[UH —U*||p + (6Blogn)|[UH — U* |2,
+ (10Blogn)|UH — UV HY || (4.108)

holds simultaneously for all 1 <[ < n, where the last line results from
the triangle inequality and the fact 40+/logn + 6B logn < 10B logn.

Step 2.4: combining the above bounds. The careful reader would
immediately remark that the inequalities (4.107) and (4.108) are con-
voluted, both of which involve the terms || E;.(UYH® — U*)||5 and
|UH —UWYHY||p. Fortunately, one can substitute (4.108) into (4.107)
to produce a cleaner bound. By doing so and exploiting the condition
320Blogn < A\X, we rearrange terms to reach

32| E, U™, + 32||E|| |U*
[UH -UYHY|, < 1. 07, v IO, 00
1280+/Iogn|UH — U*||, + (32c20/n + 192Blogn)|[UH — U*||, _
+ K
)\*

T

where we have also used the upper bound on ||E|| derived in (4.94).
Meanwhile, plugging the above inequality into (4.108) yields

320B logn
< =2

B 0OH ~ ), < 20

(1B, U, + [ BT ]l,,.)

)
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+50+/logn [UH — U*|g + (7TBlogn)|UH — U*||2.00, (4.109)

provided that max{o\/n, Blogn} < c3\* for some small constant cs.
Substituting the preceding two bounds into (4.103) and combining
terms reveal the existence of some constant ¢4 > 0 such that

|IBEUH -U)|,
<ap+ai +c(oyn+ Blogn)|[UH — U*||2,00 (4.110)

provided that max{c/n, Blogn} < c3\: for some constant ¢z > 0
small enough, where

= Beo bl (| BU|,  + | BI| |[U*

Qq -
ay = 60+/logn |[UH — U*||p.

Before continuing, note that we are already well-equipped to bound

ly.00): (4.111)

||2,oo

the above two quantities. First, ag can be bounded by
32¢co0+/n + 320Blogn
g < Y
T

: (40\/rlogn+GB,/Mlogn+620,/ur), (4.112)
n

where we have used the bounds concerning E from Lemma 4.13 as well
as the definition (4.24). Regarding vy, it is seen from (4.94e) that

< 12¢202y/rnlogn
—_— A: .

(4.113)

Step 3: bounding | M*(UH — U")||2,00

We make the key observation that
|M*(UH — U* = |U*A*U*T (UH - U*)

< |u*

HQoo
Al [o*T (UH - U")|

Maoe

H2,oo
= JE A JuuT — o Ut TR (4114)
n
Here, the last identity holds true due to the following observation

HU*T(UH o U*)H — HU*TUUTU* o U*TU*H — HU*TUUTU* o IH
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=[|Y(cos? @)Y —I|| = ||cos?’ © — I

= |sin?©| = ||sin ®|],
where we denote by X (cos ®)Y T the SVD of U'TU*, with X and Y
being orthonormal matrices and ® the diagonal matrix consisting of

the principal angles between U and U* (see the definition in (2.5)).
The above bounds combined with (4.94b) indicate that

* * * Hur . 2
IM*(UH - 1), < [Ny~ [[sin©]

R T )
< SGRo TR Q3. (4.115)
AT

Step 4: putting all pieces together

Combining the bounds (4.110) and (4.115) in Steps 2-3 and using the
definition of &£ (see Lemma 4.16) give

_AEWH -Un)|,  +2[M(UH - U,

1< =
<&1+pl|[UH — U||z00, (4.116)
where
2 2 Bl
&1 = (0 +;i1 +az) and pp = 64(0\/5;*— ogn). (4.117)

This matches precisely the relation hypothesized in (4.101). In particular,
one has 0 < p < 1/2 as long as 4c4(oy/n + Blogn) < Af, which holds
whenever ov/nlogn < ¢, \r for a sufficiently small ¢, > 0 in view of
our assumption on B (cf. (4.29)).

Recall that &1, &, &3, ap, a1, az and p; have been controlled
in (4.117), (4.99), (4.100), (4.112), (4.113), (4.115) and (4.117), re-
spectively. In addition, recall our assumption (4.29) and suppose that
ov/n < ¢\ for some sufficiently small constant ¢, > 0. With these
bounds and assumptions in mind, invoking Lemma 4.17 and combining
terms immediately conclude the proof.
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Remark 4.7. We shall also make note of an immediate consequence of
the above argument as follows

oK/ uT + o/ logn

H2OO ~ )\*

|UH - U* (4.118)

which will prove useful for deriving other important results.

4.8.4 Proof of auxiliary lemmas

Proof of Lemma 4.13. Under Assumption 4.1, Theorem 3.4 (in par-
ticular (3.9)) reveals the existence of some constant ca > 0 such that

max | B0 < ||| < a0/

holds with probability exceeding 1 — O(n~").
When it comes to EA, we proceed by viewing its [-th row E; A as
a sum of independent random vectors as follows

El,-A = Zj El’jAj’. = Zj Zjs

which can be controlled by the matrix Bernstein inequality. Specifically,
it is seen from Assumption 4.1 that

U:Z |ZJH <‘72Z |AJ»

L = max 125]l2 = max Bl || Z;

= o?|| Al

Al =

Invoke the matrix Bernstein inequality (cf. Corollary 3.3) and take the
union bound to demonstrate that: with probability exceeding 1 — 2n =9,

|E,. A, < 4\/vlogn + 6Llogn < 4o+/logn || Al|r + (6Blogn)|| Al|2,xc

holds simultaneously for all 1 <[ < n, thus concluding the proof.

Proof of Lemma 4.14. Lemma 4.13 tells us that

max [ V| < || Bl < exov/n (4.119)
holds with probability exceeding 1 — O(n~7"). Repeating the argument
in the proof of Corollary 2.8 reveals that

1S O\ > 0\ _ )
112?%{r|)\]‘ = )‘r ||E||7 112?2( |)‘ | = >‘r ||E Ha (4120&)
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max [A;] < || ]| max [A\| < | ED], (4.120D)
J:g> J:>r

which taken together with (4.119) validates (4.94c)-(4.94d).

Regarding (4.94a) and (4.94b), apply Corollary 2.8 to reach
2| E| < 2c90

AT

as long as | E|| < cooy/n < (1—1/+/2)\%, where we have used A5, = 0.
The bound on dist(U®, U*) follows from the same argument.

Additionally, regarding U H — U* we can derive

IUH - U*|r = [UU'U* - U*U*"U*||p
<|lUUT -UuUtT| U |

dist(U,U*) < V2| sin®| <

(4.121)

. 2c904\/TN
= [|sin®]| [U*]lp < =202, (4122)
T

where the last line arises from Lemma 2.5, (4.94b), and ||U*||r = /7.

Proof of Lemma 4.15. We shall only prove the result for H; the proof
for H" follows from identical arguments and is hence omitted.

From our discussion in Section 2.2.2, one can express the SVD of
H=U"U*as H= X(cos®)Y ", where the columns of X (resp. Y)
are the left (resp. right) singular vectors of H, and © is a diagonal
matrix composed of the principal angles between U and U*. In light of
this and the definition (4.30), we can establish (4.96b) as follows

|H —sgn(H)|| = | X(cos® — )Y || = [T — cos B
|I — cos® ®|| = || sin ©|?
< 2c20°n
CHEE
where the middle line holds since 1 — cosf < 1 — cos? 6, and the last
line follows from (4.94b).
Coming back to the claim (4.96a), it suffices to justify that omin (H) >

1/2. Recognizing that sgn(H) = XY ", we see that all singular values
of sgn(H) equal 1. Thus, Weyl’s inequality together with (4.123) gives

IN

(4.123)

2c30°n

O'min(H) > amin(sgn(H)) — HH — sgn(H)H >1— ()\;5) %7
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with the proviso that 2ceov/n < A7

Proof of Lemma 4.16. We start by connecting U H A* more explicitly
with MU* as follows (the invertibility of A can be deduced from
(4.94¢))

UHA* =UAA'HA* = MUAT'U'U*A*, (4.124)

which relies on the definition (4.89) and the eigendecomposition MU =
UA. In addition, the eigendecomposition M*U* = U*A* gives

U'U'AN=U"M*U*=U"MU* -U"EU*
=AU'U*-UTEU", (4.125)
which taken collectively with (4.124) demonstrates that
UHA* = MUA'AU'U* — MUA'U"EU*
= MUH - MUA'UTEU*
=MU*+M(UH - U*) - MUA'U"EU*.
Consequently, the difference between U HA* and M U™ obeys
|UHA* - MU, < |M(UH - U")
+||[MUAT'UT EU*

HQ,OO
[, (4.126)

Regarding the second term in (4.126), one can deduce that
HMUA*lUTEU*HZOO
< MU, JAT - Ol 2] - lT|
0 2|MU], | Ell @ 4MUH], | E|
X - X

—

IN

@) 4| MUH - U, NEl 4[MU, [ 2]

< = + v

(iv) . 4|mu], B

< |M({UH-U )HQ,OO e . (4.127)
Here, (i) follows from the facts |U|| = [[U*|| = 1 and |A| > Af —

c20v/n > Ar/2 (see Lemma 4.14), (ii) holds due to (4.97), (iii) invokes
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the triangle inequality, whereas (iv) holds true provided that 4| E| < AX.
Combine (4.126) and (4.127) to reach

4 MU, | £l
HQ,OO A; ’

|[UHA* - MU*|, <2|M{UH -U")
which together with the fact that ||[(A*)~!|| = 1/A* and the elementary
relation || A||2,00 = [|AA*(A*) 72,00 < [|AA*]|2,00||(A*)7Y]| yields the
desired claim (4.98a).

When it comes to the second claim (4.98b), combining (4.98a) with

the triangle inequality

* * * * -1
IWH U, = [UH = M*U*(A") |,
* * -1 * * -1
< HUH— MU (A ) Hzpo + HEU (A ) H2,oo
<|[UH = MU*(A) |, + | BU [0 /N

immediately establishes the advertised bound. Here the last relation
again arises from the elementary inequality ||AB]|2,00 < || Al2,00|/B]-

Proof of Lemma 4.17. First of all, taking Condition (4.101) collec-
tively with (4.98b) and rearranging terms yield (4.102a):

1
|UH -U*|, <1 o —— (11 +E+E) <2(E1,1 + &+ &), (4.128)

where the last inequality follows from p < 1/2. Substituting (4.101) and

(4.102a) into (4.98a) then gives (4.102b):
JUH — MU*(A*) 7, < &1+ 201(E11 + &+ E3) + &

<2811 + 282 + 2p1&3, (4.129)

HQ,oo

where once again we use the assumption that p < 1/2. In addition, the
following observation connects UH with Usgn(H ):

IUH — Usgn(H)|l, ., < IUll2.00 [ H — sgn(H)|

)||2,oo
(2 20%02”” || (2) 4c3o’n
= o Ve = g2

(iif) 4020 n

O

- |UH - U*

Iy o = (4.130)
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where (i) results from (4.96b), (ii) relies on (4.97a), and (iii) comes from
the triangle inequality U H ||2,00 < ||[UH —U*||2,00 + ||[U*||2,00 and the
definition (4.24).

The preceding bound together with the triangle inequality gives
(4.102¢):

|Usgn(H) —U*||, , < [[UH - U"||, , + |UH — Usgn(H)],

4cto’n N 4co®n [ur
< 27 e
<(1+ SoE S)UH-U,  + L Vo
430 N
< 4(51,1 + &+ 53) + Z(A*);,

where the last inequality holds as long as 4030271 < ()\’;)Q. Additionally,
the inequalities (4.129) and (4.130) further allow us to deduce (4.102d):

|Usgn(H) — MU (A%,

< |UH - MU*(A) |, + [UH — Usgn(H)||
8c2o?n 4c202. /urn
<2811+ 28+ 2p1E3 + (c/\*) (10 + &+ &) + 2()\*)5
8c2a3n 4ct02, /urn
<3&1+3&8% + (2p1 + (if) )53 2()\*)5

Here, the penultimate line combines (4.102a), (4.102b) and (4.130),
while the last inequality relies on the assumption 8c3o?n < (\X)2.

4.9 Appendix B: Proof of Corollary 4.3

Moving on to the proof of Corollary 4.3, we start by pointing out the
main issue that deserves particular attention. Roughly speaking, we
have learned from Theorem 4.2 (and its analysis) that U* ~ U H under
mild conditions, which naturally suggests that

M*=U*ANU"" ~UHAH'U".

As a result, in order to enable M* ~ UAU ", one would need to ensure
HA*H'" =~ A.
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The above argument, while highly informal, reveals the core idea
underlying the proof. Our proof is based upon the following observation

[UAUT —UAU*" || < |[UA-HAH)U'|

=71
+|[UHAH'UT —UAUT|_, (4.131)
=72
which leaves us with two terms to cope with.
Step 1: bounding v
Regarding ~; defined in (4.131), it is seen that
4
N <O A~ HAHT|| < 25 A-HAHT|. (4132)
’ n

In the last relation, we have exploited the fact that
Uy, = [Usen(H)|, o < [U]]5 o + [Usen(H) = U,
< 24/ pr/n, (4.133)
where the last inequality relies on (4.31a) and the assumption o+/n(k +
Vlogn) < ey Ar for some sufficiently small constant ¢; > 0.

It then boils down to bounding ||A — HA*H T||. Towards this, it is
seen from the identity (4.125) and the definition H = U TU* that

HA*H" - A=AHH'" -U"EU*H" — A,
which together with the triangle inequality reveals that
|[HA*H" —A| < |A(HH" - I)| + |UTEU*H"|.  (4.134)

The rest of this step is devoted to controlling the above two terms.
With regards to the first term on the right-hand side of (4.134), we
make the observation that
2c30%n
(A2
where, as usual, ® denotes a diagonal matrix composed of the prin-
cipal angles between U and U™, and the last inequality results from

|HH" ~ 1| = | cos’ © — I|| = ||sin® ©]| <
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Lemma 4.14. This combined with Weyl’s inequality and Lemma 4.14

leads to

|AHHT — )| < |A| |HHT — 1| < (|A*] + | B]) |[HET — 1|
2c30°n _ Ac3ko®n
(AD* = A

< (I\] + c20v/n) (4.135)

provided that cooy/n < X5 < |A}.

When it comes to the second term on the right-hand side of (4.134),
let us introduce an orthonormal matrix R = arg mingeorxr [|[UQ—-U™||,
which helps us derive

[UTBUH| < [UTBUY| - |RTUTBU”|
< |UTBU |+ |(UR - U") BUY|
< |{U*TEU*| + | E| dist(U,U"). (4.136)
Here, the first inequality holds since ||H|| = [|[U TU*| < 1, while the

last line follows since ||[U*|| = 1 and |[UR — U*|| = dist(U,U*). In
addition, we claim that with probability at least 1 — 2n~"7,

|U*T EU*|| < (6 + 12¢p)0+/r logn. (4.137)

If this claim were valid, then one could continue the derivation (4.136)

and invoke Lemma 4.14 to demonstrate that

2c202n
¥

To finish up, substituting (4.135) and (4.138) into (4.134) yields

[UTEUH"|| < (6 + 12cp)0+/rlogn + (4.138)

T 6c3ro’n
|[HA*H' — Al < 5t (6 4 12¢p)o+/Tlogn, (4.139)
which combined with (4.132) leads to
2 /r3 1
m < ? ;ﬂr y IAVT 08T (4.140)
x n

Step 2: bounding -

Before proceeding, we recall from (4.118) that

< ok/ur + oy/rlogn < Um//;\ilogn
T

||2,00 ~ )\* ~
T

|UH - U*

(4.141)
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Recognizing the basic decomposition
Y= |[UHAH'UT —UAU*T|| = || A1+ Al + A

with A) == (UH —U*)A*U*" and Ay = (UH —U*)A*(UH -U*)T,
we can control each of these terms separately. Firstly, observe that

A1, < IUH = U200 Ul [|A*]
< | /K‘Um/urlognvgﬁ . logn
~ 1 n )\¢ - /’l’ n 9

where we have made use of (4.141). Similarly,

o’k2prlogn

(Ap)”

|42l < IUH — U5 oo [[A*] < [A]

o?k3urlogn 9 logn
= ————=— < gKr"ur )
AX n

provided that ory/nlogn < Ax. Consequently,

h
12 <2 A + [ Az S oxPpr oin-

Step 3: putting all this together

Combining the above bounds, we demonstrate that

[UAUT —U*AU*T || <71+ 72

1 2 Vrl 1
< or?ur osn + H'Li\?;g + THTVIOBT or2ur ﬂ, (4.142)
' n * n \ n

provided that oy/n < M. This concludes the proof of Corollary 4.3, as
long as the claim (4.137) can be validated.

Proof of the claim (4.137)

Let us start by expressing U*" EU* as a sum of independent random
matrices as follows

UTEU = Y EG{(UL) UL+ (U) UL = Y 2y

1,j:12] 1,J:12]
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From the elementary inequality (A+ A"T)2 <2AA"T +2AT A, we have

AT A\ Trrs T AT’
E[Z] :302{([5,) Uj. + (U;) [Q,}{([Q,) U;. + (U7) [Q,}

2 T % (12 T
<20{Jup ) o+ o ) o),

)

thus indicating that

o= || X EiZ2)| < 20| S I ) O
§,j:i>j i=1j=1

= 22U 3| X ) U

)

= 2027’HU*TU*H = 20°%r.

In addition, each matrix Z; ; can be bounded in size by
Hr
max || Zi,]| < 2max | Ey;| max U [|,|UF [, < 2B7 - = L,

where we have used the definition of the incoherence parameter p. Apply
the matrix Bernstein inequality (see Corollary 3.3) to reach

|U*T EU*|| < 4\/vlogn + 6Llogn < o+/32rlogn + 123&2‘5"
< (6 + 12¢p)o/7Tlogn

with probability exceeding 1 — 2n~". Here, the last line holds since

1 1 /
BMT ogn < cpo 1n LHTOgT cpoy/Tlogn Br < cpo/rlogn,
n \ plogn n

n

which relies on the assumption (4.29) and the basic fact u < n/r.

4.10 Appendix C: Proof of Theorem 4.4

A symmetrization trick. As alluded to previously, the proof is built
on a “symmetric dilation” trick that helps symmetrize a general matrix.
We start with the following definition.

Definition 4.3 (Symmetric dilation). For any matrix A € R™*"2_ its
symmetric dilation S(A) € R(M+m2)x(m1+n2) 5 defined to be
0 A
=[5 4]
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Apart from the symmetry of S(A), which is immediate from its
definition, the main benefit of the symmetric dilation lies in the corre-
spondence between the eigendecomposition of S(A) and the singular
value decomposition of A. More specifically, let UXV T be the SVD of
A. Then one has the following eigendecomposition for S(A):

i
S(A):\}ilg _%1{? _02].\}5[3 _0;/1 L (4.143)

Here, the columns of % [ vV v ] are orthonormal and represent

the eigenvectors of S(A), whereas { P } contains all (non-zero)
eigenvalues of S(A).

Utilizing this “symmetric dilation” trick, we can translate the obser-
vation model M = M* + E into the following equivalent form

S(M) = S(M*) + S(E),

which is in line with the symmetric observation model stated in (4.26).

Verifying conditions. To invoke the general theory in Section 4.2, one
is required to first examine the spectral properties of S(M*) and S(M),
as well as the assumptions on the noise part S(E).

Recall that M* = U*X*V*"| which together with the relation
(4.143) reveals that: (i) S(M™) has rank 2r and condition number &; (ii)
the nonzero eigenvalues of S(M™*) and the corresponding eigenvectors
are reflected respectively in the matrices

* * *
Kk::lxo _;*1 and ﬁk::\}ilg* _U‘_/*] (4.144)

Similarly, given that the SVD of M is M =UXV ' + U, X, V", we
see that the 2r-leading eigenvalues of S(M) and the corresponding
eigenvectors are represented respectively by the matrices

A:_[E 0] and U:_llv U].

0 -% 2|V v
Further, the incoherence parameter i of S(M™) (cf. (4.24)) obeys
(4 ng) (i) (n1+n2)
= U o = g max {||U*13 oo | V3,0 }

2r 2r
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W (m+no) p i (m+no)
~ min{ny,no} 2 2nq
Here, the relation (i) is based on the definition (4.144), the inequality

(ii) follows from the incoherence of M* (cf. Definition 3.1), while the
last one (iii) holds under the assumption n; < na.

(4.145)

When it comes to the “symmetrized” noise part, it is straightfor-
ward to verify that under Assumption 4.2, the matrix S(F) satisfies
Assumption 4.1 with precisely the quantities o, B and c.

£2,~ and £, guarantees. With the above preparations in place, apply
Theorem 4.2 (more specifically (4.118)) to demonstrate that

< TRV + ov/rlogn

ITT T - U200

< Jm/ngw“/nl*—{— U\/rlogn, (4.146)
O-T

where the last relation follows from (4.145). Further, note that

CUU U =G vEy -V, —(VEy -V |
where Hyy == U'U* and Hy = V 'V*. Combining this with the
upper bound (4.146) then yields

ok\/nopr/ny + oy/rlogn
o '

max {||{UHy —U~||2.00; [VHy=V"|2,00} S

We can then repeat the same analysis as in the proof of Lemma 4.17 to
connect |UHy —U*||2,00 (resp. ||V Hy — V*||2.0) with [|[Usgn(Hy ) —
U*||2,00 (resp. ||[Vsgn(Hy) — V*||2,o), and obtain the desired bound
n (4.41); the details are omitted here for the sake of conciseness.

We now proceed to the second claim (4.42). Towards this, invoke
Corollary 4.3 and the inequality (4.145) to obtain

o 1
IUAT" —S(M*)|| S ov’p ,/ s ,/”;’f”.
1

This in conjunction with the following observations

UAU' =s(UuzvT)
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ISW=VT) - S(MY)||, = [UZVT = M|

immediately establishes the second claim.

4.11 Appendix D: Proof of Theorem 4.10

As before (see (4.85)), we assume throughout the proof that A% > 0 for
the purpose of simplifying notation.

4.11.1 Proof outline

We now outline the proof of our distributional guarantees in Theo-
rem 4.10. The first step consists of justifying the heuristic first-order
approximation in (4.65). This is stated in the lemma below, with the
proof deferred to Section 4.11.2.

Lemma 4.18 (First-order approximation). Suppose that the assumptions
of Theorem 4.2 hold. Then with probability at least 1 — O(n?), one
can write

Usgn(H) — U* = EU*(A*) ' + ¥, (4.147a)
=z
M- M*=EUU""+U U "E+® (4.147b)
=W

for some matrices ¥ and ® obeying

2 2
o%ky/ urnlog” n 2 2]
| g < VAR08 B ROV 0 [RITIOBT (g ysa)

o7 o Ve
2,02 3
H‘I’Hoo < o ,ur/;c\*logn n O'/i/L\/:; logn. (4.148h)

Remark 4.8. In addition to quantifying the goodness of the approxima-
tion (4.147b), Lemma 4.18 also delivers a more refined characterization
for the first-order approximation Usgn(H) — U* ~ EU*(A*)f1 in
comparison to Theorem 4.2. As it turns out, this result (4.147a) also
assists in performing statistical inference on the low-rank factors U™*.
The interested reader is referred to Yan et al. (2021) for details.
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In turn, Lemma 4.18 motivates one to pin down the distribution of
the matrix W in (4.147b). This can be accomplished by invoking the
Berry-Esseen Theorem (e.g., Chen et al. (2010, Theorem 3.7)), which
gives rise to the following distributional characterization. The proof of
this lemma can be found in Section 4.11.3.

Lemma 4.19 (Gaussian approximation). Suppose that the assumptions
of Theorem 4.2 hold, and that

2
U + U7,
(L2 O Tinin(A1)?

2
2 > B22i2r2log?n o*plretlog® n

(4.149)

Let W = EU*U*" + U*U*"E. For any 1 < i,j < n, one has
sup |P (Ww < z, /”Zj) — @(z)‘ = o(1), (4.150a)

z€R
@] =o(\/v5;) (4.150D)

where v} ; is defined in (4.68), and ®(-) denotes the CDF of the standard
Gaussian distribution.

To finish up, invoke Lemma 4.18 and (4.150b) to yield
Mm‘ — MZ:]- = Wi’j + (5¢, /U;:j with 5(]5 = 0(1).
A little algebra further gives
[P (M — My < 2 Jo7;) = @(2)| = [P (Wi < (2= 65) ,Jo1;) = 0(2)]
<[P (Wiy < (2= 05)Ju1;) = ®(z = 8g)| +@(2 = 6y) — @(2)]
< o(1) + 85 = o(1),

where the last line invokes Lemma 4.19 and the fact that |®(u) —®(v)| <
|lu — v| for any uw,v € R. This completes the proof of Theorem 4.10,
as long as Lemmas 4.18 and 4.19 can be established. The rest of this
section is thus devoted to proving Lemmas 4.18 and 4.19.

4.11.2 Proof of Lemma 4.18

Before proceeding to the proof, we make note of several preliminary
facts that are all direct consequences of the analysis of Theorem 4.2
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and Corollary 4.3. The proof of these preliminary results can be found
in Section 4.11.4.

Lemma 4.20. With probability exceeding 1 — O(n~?), one can write
UAsgn(H) = MU™ + Aq, (4.151a)
sgn(H)A*sgn(H)" = A+ A, (4.151D)
for some matrices A; and As obeying

2 / 1 2
A, . S 7rymnee (4.152a)

Ax ’

r

Kon
A < + o+/rlogn. (4.152b)

We are now ready to embark on the proof of Lemma 4.18. In order
to analyze the behavior of Usgn(H), we first point out the following
decomposition:

Usgn(H)A* = UAsgn(H) + U (sgn(H)A* — Asgn(H))
= MU* + Ay + U (sgn(H)A*sgn(H)" — A)sgn(H)
= MU*+ EU* + A, +UAysgn(H)
=UAN"+EU"+ A, +UAysgn(H),
where the second and the third identities result from Lemma 4.20
(cf. (4.151)). The key point of this decomposition is to establish a
connection between Usgn(H)A* and U*A* + EU*, with the assistance

of the matrices A; and As studied in Lemma 4.20. A little algebra
then yields

Usgn(H) —U* = EU*(A*) "' + A (A*) ' + UAysgn(H)(A*) .

=7 = v

(4.153)

In view of Lemma 4.20, the residual matrix ¥ obeys

1200 < [ Al AT+ U, ol Al lsen(ED | (A7)

1 1 Jpr
SEHAlHZ,m_‘_F Al

r
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2 2
o oy prn log? n ItV 0\/1““2)17"%” (4.154)
n

AT POEAPT

T s

as claimed.
The next step lies in analyzing the matrix estimator M = UAU .
Towards this, we make the observation that

M- M*=UAU" - M*

=U(sgn(H)A*sgn(H) "\ UT —UAU" — M*

= U+ Z+OAN U +Z+9) —UAU" —UANU*T

=ZNUT +UNZT + @

= EU'U*" +U*U*"E + @, (4.155)
where the second line relies on Lemma 4.20 (cf. (4.151b)), the third
identity makes use of (4.153), and the residual matrix ® is defined as

& = WA*(Usgn(H)) +U*A*® T+ ZA* (Usgn(H)-U*) —UAU .

(4.156)
In addition, it is seen from (4.92) that
=1 1 N oy/rlogn
|2l < |BU*(A) ", < o BU, 5 EER (a15)
Consequently, one can deduce that
|@]l.. < IA I {IZ15.0c + 1 21120 [Usen () — U, .}
A1 ]a00 ([T, o0 + 1T l2.00) + U113 | Ao
| o?rlogn  ovrlogn oky/purlogn
S M :
)? v v
iy [ ot o g
Vo (A5)? M2V n

A
< o?urk?logn N ok 13 logn
~ ¥ n )
where the second inequality follows from (4.154), (4.157), (4.133), The-
orem 4.2, and Lemma 4.20.

2
+ il {’w o —i—ax/rlogn}
n
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4.11.3 Proof of Lemma 4.19

In what follows, we shall only focus on the case with i # j. The case
with ¢ = j can be analyzed in an analogous manner; we omit it for
the sake of brevity. Before proceeding to the proof, we make note of a
couple of basic facts about P* that will prove useful. The first property
asserts that, for any 1 < j <mn,

* * * T * * * * T
P Z (v I, = |U* (W) ||, = Up.urTur (U}

= HU* Iy = Py (4.158)

The second property is concerned with the term || P*||oo:

.
1P |loo = U0 oo < [U*[300 < &5,

HZ,OO =

(4.159)

where the last inequality follows from the incoherence assumption.
In view of the definition (4.66) of P*, we can express W = EP* +
P*E, which reveals that

Wij= > EyuPly+ Y PLEBij+ Eij(P+ Pfj). (4.160)
l:1#£j l: 14
In other words, W; ; can be viewed as a weighted sum of independent
random variables {F;; | | # j}U{E;; | | # i} U{E;;}. To pin down
the distribution of W; ;, we resort to a non-asymptotic version of the
celebrated Berry-Esseen Theorem; see Chen et al. (2010, Theorem 3.7)
for a proof using Stein’s method.

Theorem 4.21 (The Berry-Esseen bound). Let &1, ..., &, be independent
zero-mean random variables satisfying >°1 ; Var(§;) = v. Then the
quantity S = % Yo & satisfies

sup [P (S <z)—®(2)| <107, where v = Z ‘3&2

2€R — v3/
According to the Berry-Esseen bound (cf. Theorem 4.21), proving the
approximate Gaussianity of W; ; boils down to characterizing the second
and the third moments of these random variables under consideration.
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Let us start with the variance statistics. Given that {E;; | i > j}
are independently generated, we can straightforwardly see that

vig= D0 oublS + Y Piiot; ol (Pl + Pry)
112 I i

= Var(Wm). (4161)

We now develop a lower bound on this variance term. Given that P* > 0,
one has P7;, P¥; > 0, which combined with (4.158) reveals that

n n
oh{ZFﬁ+Zﬁﬁ}=ﬁmmum@+wmﬁ} (4.162)
=1 =1

Next, we move on to bound the third moments. Utilizing the inde-
pendence of {E;; | ¢ > j} once again gives

_ Zui® B TIPS + S [Pl B B ] + E[|B |1 Pr + Pyl
(vi,j)3/2
< 2P | 5wl e+ Y piR(eR) B[P+ By
(vi;) 1 i
2B|P*|oc , _ 2B|P*|w
T e VT T R (4.163)
(,U;:j)3/2 "] (v;:j)l/Q

where we have used the assumption that |E; ;| < B, and the last line
arises from the expression (4.161). Substituting (4.159) and (4.162) into
(4.163) and invoking the elementary identity |[U*||% = r, we arrive at

2Bpur _ QBH\/FHU*HF
— P) 2
0w/ [ULI + |ULIE nowmny/ UL + U

provided that Condition (4.149) holds.

With the above calculations in place, invoking Theorem 4.21 imme-
diately leads to

ZEHIQP(W” \/>) ’<10’7—0()

as claimed in (4.150a).

= o(1),

I;
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Finally, we turn to proving the bound (4.150b). By virtue of Lemma
4.18 and (4.162), we know that

&l < d?urk?logn  okp/r3logn
@], g Thrloan | omn/y
T

112 % |12 *
=0 (O'min\/’|Uj7.H2 + |’Ui,~H2) < 0(\/;0‘)’

with the proviso that

2,102 1o/ 2 3
\/HUJ*H; n ||UZ*H§ > ourk”log®“n n okuVr3logn

UminA: OminT
2 2103/2
ofuy/re*log”*n  okurlogn
= ( — + : )HU*HF. (4.164)
OminAj OminM

Recognizing the trivial bound o2 = max; ; IE[EZ2 ;< B2, we know that
Condition (4.164) holds as long as

UL o + UL, o otiiretiogtn | Biyirtlotn o
oA Y ok () o

which is precisely Condition (4.149). This concludes the proof of Lemma
4.19.

4.11.4 Proof of Lemma 4.20

To begin with, let us begin by proving (4.152a). From the definition of
the quantity & (see Lemma 4.16), we have
|M(UH - U*>H2,oo =N&1/2
< (a0 + a1 + a2) + (ov/n+ Blogn) ([UH - U*|,

ok prlogn

< (ap + a1 + az) + (o/n + Blogn) v

o2ky/prnlog? n

—~ 5

X

where the first inequality comes from (4.116) and (4.117), the second
inequality is a consequence of Theorem 4.2, and the last line relies on
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our previous bounds on ag, a1, g (see (4.112), (4.113) and (4.115)) and
holds as long as B < o+/n/(ulogn). Additionally, from the elementary
identity MUH = UAH, we obtain

|UAsgn(H) - MUH]||, = |UAsgn(H) ~-UAH|, __
< U, [[Al [|sen(H) - H]

2 H/O'Q rn
Sy EN S =
n ) X

where the last line results from Lemma 4.15, the fact (4.133), and the
following inequality

IAIL< IA%[F+ 1Bl < [A] + O(ov/n) < 2|A]]. (4.166)

Taking together the above bounds and applying the triangle inequality
immediately establish (4.152a).

Next, we turn to the proof of the bound (4.152b). Note that it has
been shown in (4.139) that

xrrT H02n
|HA*H'" — Al < e + o+/rlogn.

T

In addition, the triangle inequality leads to
|sgn(H)A*sgn(H)" — HA*H ' ||
< ||sgn(H)A* (sgn(H) — H) || + ||(sen(H) — H)A*H |
< (lsen(H)|[ + [|1E])) [[A*[|[|lsen(H) — H]|
< 2|A]| [|sgn(H) — H]|

02n I<LU2TL

S Ny =

ot oM
where the third line follows since ||sgn(H)|| = 1 and | H| < |U|||U*|| =
1, and the last inequality comes from (4.123). Combining the above
two results and invoking the triangle inequality lead to the advertised
bound (4.152b).

I

4.12 Appendix E: Proof of Theorem 4.11

With the distributional guarantees in Theorem 4.10 in place, the only
remaining task boils down to verifying the statistical accuracy of the
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variance estimator v; ;. This can be achieved via the following lemma,
whose proof is provided in Section 4.12.1.

Lemma 4.22. Suppose that the assumptions of Theorem 4.2 hold. In
addition, assume that x*u?r?logn < n, o/n < |N5|/k and

Bor?p?r?logn  o3ku’r?logn

x |2 |12 >
HU]7'H2 + HUL.HQ ~ O'?ninng/z 0'12nm|>\’;’\/ﬁ . (4167)
With probability exceeding 1 — O(n~?), one has
i — vi;| = o(vl;)- (4.168)

Lemma 4.22 essentially enables us to express

iy = (14 )%,  with ¢ = o(1).

As a consequence, we can further demonstrate that
[P (M € lly®) = (1= )| = [P (Mg = MZ| < zapp/is) = (1= a)

= [P (1M — M5 < 1+ G)zagaJor) — (1= )
< ‘(b((l + Cv)za/2) - (I)( - (1 + CU)ZQ/Z) - (1 - a)‘ + 0(1)
< @(za/2) — <I>( — Za/g) —(1— a)| +2 |<I>((1 + Cy)za/g) — (I)(Za/g)’ +0o(1)
< 2Cvzac/2 = 0(1),
where the first inequality follows from Theorem 4.10 and 2,5 :=
®~1(1 — a/2), the second inequality applies the triangle inequality, and
the validity of the last line can be seen from the basic fact |®(u)—®(v)| <
lu —vl.
When oy, < o, Condition (4.167) simplifies to

- i k*pcrlogn  okp’rlogn

|U5 115 + U5 o Br2u?rd 2r1
ol o AV

We still need to ensure that Condition (4.69) is satisfied. It is seen that

(4.169)

B2k2p2r?log®n  o?plretlogin _ Br*p?r?log?n  oplridlog®n
72 O YT ow Nve
which holds if oky/n S |N5| and B < oy/n. As a result, if Condi-

tion (4.74) holds, then both (4.169) and (4.69) are satisfied. This finishes
the proof, as long as Lemma 4.22 can be established.
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4.12.1 Proof for Lemma 4.22

As before, we shall only present the proof for the case with i # j for the
sake of conciseness. In order to justify the goodness of the estimator v ;,
we find it convenient to first look at the surrogate estimator introduced
in (4.70), i.e.,

n n
Uig = D BUPIT + ) PB4 2B PP, (4.170)
=1 =1

In the sequel, our proof consists of two main steps:

*

o Show that the surrogate v; j is a reliable estimate of the truth v},

~
namely, v; j ~ v} ;.

e Show that the estimator in use and the surrogate estimator are
sufficiently close, namely, v; ; = v; ;.

Step 1: show that v; ; = v;j

Firstly, the fact that the Ej; ;’s are zero-mean random variables immedi-

ately reveals that v;; is an unbiased estimate of v; ;, that s,

E[i;] = vf;.

Secondly, given that the F; ;’s are statistically independent, we intend
to invoke the Bernstein inequality to control the difference v; ; — vy, =
;j — E[0;;]. To do so, one first calculates that

Lo = max {max E? P2, max E} . P}
l k) 7] l b2

(P (P o+ P | < 4B P

and

Vo= ) Var(E}) Pl + ) Var(ER) P + Var(EZ)) (P + Pry)*

115 114
n n
S Y E[ELIRG + Y E[E| P + [ PP
=1 =1

< 5P {ZE[Ezl]a?j £ BRIP4 E[Empzipjfj}
=1 =1
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azB2uP*uzo{z +§: }
< 2B P2,

where the last line follows from (4.158). Invoking the Bernstein inequality
(cf. Corollary 3.3) reveals that with probability exceeding 1 — O(n=9),

03,5 — 0| = 05y — E[vi5]| £ /Vologn + Lologn

< oB\/||P*|3, logn + B2||P*||3, log n
< oBp3/?r3/2\/logn n pr? B2 logn

< —7 - (4.171)

where the last inequality results from (4.159).

Step 2: show that v; ; = v; ;

In order to accomplish this, we are in need of controlling the difference
between E;; (resp. P} ) and E; ; (resp. P; ;). To this end, apply the
entrywise estimation guarantees in Corollary 4.3 to yield

|E~E|,=|(M-UAUT) — (M - M")|

1
= |lUAU" —- M| S O‘H%M““ﬂ, (4.172)
n
and as a result,

- - lo
B[, < Bl + 1B~ Bl <B+or’ury in =B, (4.173)

provided that B > ox2ury/1%% (which is trivially satisfied if x2yur /1% <
1). Moving on to the error term P, ; — Pf;, we observe that
|P- P = uUT -UrUrT|

< ||(Usgn(H) — U*)U*THOo + ||[Usgn(H)(Usgn(H) — U*)THOo

< |[Usgn(H) ~ U, {|U*]l,., + |Usen(H)], . }

< [Usgn(H) = U, o {10 ]y o0 + [T, } -
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Taking this together with the bound (4.31a) in Theorem 4.2, the inco-
herence assumption, and the inequality (4.133), we arrive at

N . (or\/pr + ov/rlogn) [ur
|- pr| < TVEE X o= (4.174)

This taken together with (4.159) indicates that
Il <P+ 1P = P,

< pro, (or\/pur + oy/rlogn) [ur _ b (4.175)
n n

A7 n’

with the proviso that ov/n < |Af|/k and oy/nlogn < |AX].
Armed with the preceding bounds, we are now positioned to control

V;,j — U;,j. From the definition of v; ; and v} ;, we recognize that

1,59
n N R n
[0 = igl < |2 (BB — BB )|+ |30 (PLEY - PEL)
=1 =1
=] =l
+2 ‘Eﬁjﬁi7i13 — E2,P5PL, (4.176)

=3

leaving us with three terms to cope with. Regarding the first term oy
on the right-hand side of (4.176), it can be easily verified that

n n
< Z(E?,lpl?j_ i2,lpl?j> + Z( ZlPlJ - zlPl,J)
=1 =1
n n
(e | B2, — E2|) P2, + (max B2, - P2 ) S 2
=1 =1

|E]oo + |1 Bl ) | E — E| Py,

IN

—

i

<

=

+ (1P ]loo + |1 Pllc) |1 P = P I E?
(i) logn proy pr (ory/ur +oy/rlogn) [pur
V' n

< B .
or2pr - - ] o

Here, (i) makes use of (4.158) (with P* replaced by P), whereas
(ii) holds true due to (4.172), (4.173), (4.159), (4.174), (4.175), and
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Lemma 4.13. The second term ap on the right-hand side of (4.176) can
be bounded in the same manner and we omit it here for brevity. When
it comes to the last term a3 on the right-hand side of (4.176), one has

D D * x
PiiPj; — PP}

2 2
az < ‘Eu — B

D . D 2
Pi,in,j’ + B

= - )
<IE - {18, + 1B} 1P
+ B[P - P {HP*H + Pl §
< orZur llogn LB (ory/pr +oy/rlogn) [ur pr

B noon

< Bow2ur LM (ok\/pr —’F)\if’\/rlog n) [ur o?n,
n
\/ x

where the penultimate inequality is a consequence of (4.172), (4.173),
(4.159), (4.174) and (4.175), and the last line holds true as long as
pr < n (cf. (4.25)) and B < oy/n. Combining the above inequalities
allows one to reach

05, — Vij| < o1+ as+az

< Bor?ur logn pr n W OR/T + o+/rlogn aro o
V' n

n o n | A% n
_ Bor?p2r3/logn  o®kpr? + o322y /logn
S v

with probability at least 1 — O(n=9).

Step 3: combining the above bounds
Putting together the results in the previous steps, we can readily derive
B = vig| < [0ig — viy] + [Big — i

< <0Bu3/27“3/2\/10gn n ulr?B? logn)

n3/2 n2
N Bor?u?r?\/logn N o3kp2r? + o® 322\ flogn
n3/2 [Arlv/n
_ Bor?p2r?y/logn n a3kpur?/logn (4.177)

n3/? MV
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where the last relation is guaranteed as long as B < o4/n/logn. Con-
sequently, if Condition (4.167) holds, then it follows from (4.177) and
the lower bound (4.162) that

1
logn

*

[0i.5 — Vil S Vi)

thus concluding the proof.

4.13 Notes

Leave-one-out analysis. The core idea of leave-one-out analysis, which
drops a small amount of randomness to decouple complicated statistical
dependency, is deeply rooted in the probability and statistics literature.
For instance, an idea of this kind was invoked by Stein (1972) to help
establish normal approximation, was paired with the Stieltjes transform
to establish the limiting spectral law of random matrices (see, e.g.,
(Tao, 2012, Section 2.4.3)), and bears some resemblance to the cavity
method in statistical physics (Mezard and Montanari, 2009). When it
comes to statistical estimation, a prominent series of work that unveiled
the striking effectiveness of leave-one-out analysis was El Karoui et al.
(2013) and El Karoui (2018), which characterized rigorously the sharp
statistical performance (including pre-constants) of M-estimators in
high dimension (i.e., a challenging regime where the number of samples
is comparable to the number of unknown parameters). The deep analysis
framework developed in these papers inspired much of the follow-up
work presented in this chapter. Particularly worth mentioning are:
(1) Zhong and Boumal (2018): which was the first to determine the
entrywise behavior of the generalized projected power method; (2) Abbe
et al. (2020b) and Chen et al. (2019b): which extended the leave-one-out
analysis idea to establish entrywise eigenvector perturbation; and (3)
Ma et al. (2020) and Chen et al. (2019a): which characterized tight
convergence guarantees for nonconvex optimization algorithms with the
aid of leave-one-out ideas. For readers’ reference, we list below several
topics for which leave-one-out analyses prove useful:

¢ Maximum likelihood estimation and M-estimation: El Karoui et al.

(2013), El Karoui (2018), Lei et al. (2018), Sur et al. (2019), Sur
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and Candes (2019), Chen et al. (2019b), and Chen et al. (2020b);

 spectral methods: Chen et al. (2019b), Abbe et al. (2020b), Ma
et al. (2020), Cai et al. (2021a), Lei (2019), Abbe et al. (2020a),
Ling (2020), and Chen et al. (2020b);

» mnonconvex optimization for statistical estimation: Ma et al. (2020),
Chen et al. (2019a), Li et al. (2021c), Chen et al. (2020a), Cai
et al. (2019a), Dong and Shi (2018), Chen et al. (2021d), and
Wang et al. (2021b);

o semidefinite relaxation for low-rank matrix factorization: Zhong
and Boumal (2018), Ding and Chen (2020), Chen et al. (2020d),
Chen et al. (2021c), and Chen et al. (2021d);

e uncertainty quantification and confidence intervals: Javanmard
and Montanari (2018), Chen et al. (2019¢), Cai et al. (2020), and
Yan et al. (2021);

o cross validation: Xu et al. (2019);

o reinforcement learning: Agarwal et al. (2020), Li et al. (2020a),
Pananjady and Wainwright (2020), Zhang et al. (2020b), Cui and
Yang (2021), and Wang et al. (2021a).

£~ and {3 o, perturbation theory. The /,, and /2 o, perturbation
theory for eigenspace and singular subspaces have been investigated
in the literature (Fan et al., 2018b; Cape et al., 2019; Eldridge et al.,
2018), but only scatteredly until very recently. A modern and systematic
framework was established recently, empowered by the leave-one-out
analysis idea. Its efficacy and tightness were first demonstrated by
Abbe et al. (2020b) in a setting that subsumes the one presented
herein (with applications to SBMs, phase synchronization and matrix
completion), and by Chen et al. (2019b) in an asymmetric setting
(with application to top-K ranking). The theoretical framework has
subsequently been extended in several aspects. For instance, (1) Cai
et al. (2021a) investigated the “unbalanced” scenario where the column
dimension far exceeds the row dimension of the matrix, resulting in
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near-optimal fine-grained guarantees for PCA, bi-clustering and tensor
completion; (2) Lei (2019) expanded the setting by accounting for
more flexible noise distributions (including the ones exhibiting certain
dependency structure), leading to tight guarantees for, e.g., spectral
clustering with more than two communities, and hierarchical clustering;
(3) Abbe et al. (2020a) explored a more general £, perturbation theory
that subsumes the ¢, perturbation theory as special cases. Another
plausible approach to study £, eigenvector perturbation is to analyze
instead the dynamics of an iterative procedure (e.g., the power method)
that converges to the leading eigenvector (Zhong and Boumal, 2018),
again using the leave-one-out ideas. This iterative approach offers a
perspective complementary to the analysis framework presented herein,
while at the same time playing a pivotal role when studying nonconvex
optimization algorithms (see Chi et al. (2019)). Moving beyond the leave-
one-out analysis framework, £, and /3 , eigenspace perturbation theory
has been derived via other powerful tools as well, e.g., the Neumann
trick (Eldridge et al., 2018; Chen et al., 2021b; Cheng et al., 2021), the
Procrustes analysis (Cape et al., 2019), and more specialized techniques
tailored to Gaussian ensembles (Koltchinskii and Xia, 2016; Koltchinskii
and Lounici, 2016; Koltchinskii et al., 2020). Perturbations of linear
forms and bilinear forms of eigenvectors have also been investigated in
the literature (Koltchinskii and Xia, 2016; Koltchinskii and Lounici, 2016;
Chen et al., 2021b; Cheng et al., 2021; Fan et al., 2020a; Koltchinskii et
al., 2020), which are beyond the scope of this work. Finally, distributional
theory and uncertainty quantification for spectral methods, which have
been recently studied by Xia (2021), Cheng et al. (2021), Fan et al.
(2020a), Yan et al. (2021), and Agterberg et al. (2021), are still in
their infancy. The results presented in Section 4.6 follow the analysis
framework developed in Yan et al. (2021).



5

Concluding remarks and open problems

This monograph offered a coherent statistical treatment for spectral
methods, resulting in appealing theoretical guarantees for a wide spec-
trum of data science applications ranging from structured signal recon-
struction and factor analysis to clustering and ranking. The important
role of statistical thinking cannot be overstated. As has been illumi-
nated, the suite of modern statistical techniques not merely empowers
classical /9 perturbation theory by delivering tight Euclidean error
bounds, but also enables fine-grained ¢, and /3 o, performance guaran-
tees that cannot be derived from classical matrix perturbation theory
alone. We highlighted a unified recipe that underlies our application-
driven analyses, which will be readily applicable to tackle many other
problems.

The vignettes presented herein only reflect the tip of an iceberg
regarding the capability of spectral methods. There are multiple aspects
about spectral methods that remain inadequately explored and are
worthy of future investigation. We conclude this monograph by pointing
out a few of them.

e Precise performance characterization. The analysis herein falls
short of pinpointing a precise trade-off curve between the statistical
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accuracy and sample complexity of spectral methods, and might
even be off by some logarithmic factor. For algorithms that exhibit
order-wise equivalent behavior, comparing their performances
requires finer statistical characterization, ideally with sharp pre-
constants.

Handling dependency structure. Thus far, the o and f3 o pertur-
bation theory we have presented is restricted to the case where the
entries of the data samples are independently generated. There is
no shortage of applications where the data samples might exhibit
across-entry dependency, examples including blind deconvolution
(Ahmed et al., 2013) and phase retrieval with coded diffraction
patterns (Candes et al., 2015b; Gross et al., 2017). Handling such
scenarios might require ideas beyond the current leave-one-out
framework.

Functional estimation. In many decision making applications,
what ultimately matters might not be full information about an
eigenvector of a matrix, but rather, some deterministic functions
(e.g., certain linear functionals or polynomials) about the entries
of this eigenvector. However, naive “plug-in” estimators—namely,
estimating the eigenvector first and plugging it into the target
functional-—might suffer from significant estimation bias, even
in the case of a linear functional. A systematic bias-correction
paradigm is therefore needed to enable optimal functional estima-
tion.

Small eigengaps. All theory presented in this monograph imposes
a stringent requirement on the associated eigengap, that is, it
needs to exceed the spectral norm of a noise or perturbation
matrix. While this eigengap criterion might be unavoidable in
generic matrix perturbation theory (which takes a worst-case
perspective), there is often no statistical lower bound that rules out
the possibility of reliable eigenspace estimation when the eigengap
drops below the perturbation size. It would be of fundamental
importance to understand how a small eigengap impacts the
efficacy of spectral methods under various statistical models.
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Concluding remarks and open problems

Weak and sparse factors. As mentioned previously, low-rank matri-
ces often admit factor-model interpretations. In many applications,
one has to deal with weak factors, on which only a small fraction
of the variables have non-negligible loadings. This gives rise to
sparse patterns on the loading matrix or the eigenvectors of the
covariance matrix. To utilize such a sparsity structure, a simple
method is to apply marginal screening techniques (Fan and Lv,
2008; Fan and Fan, 2008). Examples of this kind include super-
vised PCA (Bair et al., 2006), PCA on “targeted predictors” (Bai
and Ng, 2008), and sparse PCA (Zou et al., 2006; Johnstone and
Lu, 2009; Ma, 2013). It remains to develop a more systematic and
unified theory concerning how to efficiently exploit such special
structures in low-rank factorizations, taking into account both
statistical and computational considerations.

Heterogeneous missing patterns. When it comes to missing data,
the theory presented herein adopts a uniform sampling model
where every entry is independently observed with the same prob-
ability. In practice, however, one might encounter non-uniform
sampling mechanisms, where the sampling probabilities are non-
identical across different entries. How to develop an effective
spectral method to automatically account for heterogeneous ob-
servation patterns, ideally without knowing the detailed sampling
probabilities a priori?

Confidence regions and hypothesis testing for individual eigenvec-
tors. Given the output of a spectral method, one might be asked
to produce valid confidence regions for an unknown individual
eigenvector of interest, a task that has not been fully resolved by
the existing literature. Another closely related task is hypothesis
testing for individual eigenvectors: given two random samples,
how to develop viable statistical tests regarding whether these two
samples are associated with the same individual eigenvectors or
not. An even more challenging task is concerned with performing
efficient statistical inference on some deterministic functions of
an individual eigenvector, which remains largely unknown.
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