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Abstract

Populations along steep environmental gradients are subject to differentiating selection that can 
result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, 
where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is 
strong enough to influence functional differentiation of subpopulations differing by a few hundred 
meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 
271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations 
for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). 
For each species, we described population genetic structure across the complex geography of 
the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele 
frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation 
to elevation. Although the 2 species exhibited contrasting population genetic structures, we found 
signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation 
associations included candidate genes previously discovered for high-elevation adaptation as well 
as others not previously identified, with cellular functions related to hypoxia response, energy 
metabolism, and immune function, among others. Despite the homogenizing effects of gene flow 
and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific 
cellular function even within elevation range-restricted montane populations. Consequently, our 
results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such 
as the Andes, may effectively make them “taller” biogeographic barriers.
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Steep gradients in environmental conditions create opportun-
ities for local adaptation via a balance between locus-specific 
(e.g., natural selection) and genome-wide (e.g., gene flow, genetic 
drift) population genetic processes. In general, selection acts on 
specific regions of the genome, while demographic processes af-
fect the genome uniformly (Lewontin and Krakauer 1973). Two 
important population processes—1) migration rate quantified 
by gene flow and 2)  genetic drift–influence whether potentially 
adaptive alleles are lost or maintained in populations (Lenormand 
2002; Yeaman and Whitlock 2011; Blanquart et al. 2012). Locally 
adapted populations should maintain alleles that confer fitness 
advantages through positive selection (Savolainen et  al. 2013). 
The genetic composition of populations generally becomes more 
homogeneous with increasing gene flow, such that adaptive alleles 
are swamped out by the influx of alleles from other populations 
(Lenormand 2002). Adaptive alleles can also be lost by chance in 
small populations due to genetic drift. However, if the strength 
of natural selection overcomes the effects of migration and drift 
(migration-drift-selection balance), genetic differentiation can ac-
cumulate, resulting in signatures of locus-specific local adapta-
tion (Yeaman and Whitlock 2011; Blanquart et al. 2012). Local 
adaptation can be measured as clinal variation in the frequency of 
single nucleotide polymorphisms (SNPs) in genes with biochem-
ical or physiological functions related to adaptation to ecological 
conditions of the gradient.

Besides creating opportunity for local adaptation, the phys-
ical features of landscapes shape spatial population genetic vari-
ation (Weir 2009; Turchetto-Zolet et  al. 2013). The Andes are 
outstanding in their rich species diversity and topographical com-
plexity (Chapman 1926; Fjeldså et  al. 1999; Fjeldså et  al. 2012). 
For Andean animal populations, lowland barriers include rivers and 
arid inter-mountain valleys, while the high-elevation ridges reduce 
dispersal above tree-line (Weir 2009; Turchetto-Zolet et al. 2013). 
In the tropics, mountains are thought to be particularly strong bar-
riers because they both physically impede dispersal and limit move-
ment of tropical species that have evolved narrow physiological 
tolerances to temperature extremes (Janzen 1967; Ruggiero and 
Hawkins 2008; Fjeldså et al. 2012). Specifically, spatial population 
genetic variation in Andean vertebrate species has been influenced 
by the high Andean ridge and a few key inter-mountain valleys, 
including the Marañón, Huallaga, and Apurímac river valleys 
in Peru (Cracraft 1985; Benham et  al. 2015; Hosner et  al. 2015; 
Benham and Witt 2016; Winger 2017; Hazzi et  al. 2018; Prieto-
Torres et al. 2018). While there is abundant evidence that topog-
raphy promotes genetic isolation and population structure, the 
interplay of evolutionary processes driving this separation remain 
unclear.

It is challenging to disentangle the genetic processes resulting 
in spatial genetic variation without accounting for both the gen-
etic structure of populations across their geographic range and po-
tential for local adaptation. Targeted high-throughput sequencing 
methods provide cost-effective ways to obtain genome-wide sam-
ples for many individuals to evaluate whether present genetic dif-
ferentiation was shaped by genome-wide population processes 
(migration or drift) and/or locus-specific processes (natural selec-
tion) (Luikart et al. 2003). A targeted approach can help distinguish 
highly homogeneous regions of the genome within a population 
from others that are distinct due to local adaptation to particular 
environmental conditions (Luikart et al. 2003; Chapman et al. 2013; 
Hämälä et al. 2018; Herman et al. 2018). Even in wide-ranging spe-
cies with high dispersal ability and consequently greater potential for 

homogenization of the gene pool, there is evidence for locus-specific 
local adaptation resulting from an equilibrium between migration 
and natural selection (Cheviron and Brumfield 2009; Galen et  al. 
2015; Graham et al. 2018).

Species that occur along elevational gradients face variable envir-
onmental and physiological extremes along the gradient, including 
lower oxygen availability (hypobaric hypoxia), greater exposure to 
UV radiation, more intense desiccation, and lower ambient tem-
perature. For example, the partial pressure of oxygen declines by 
approximately 10% for every 1000 m increase in elevation and 
this is critical for small endotherms, like hummingbirds, that sus-
tain high metabolic rates. This makes oxygen uptake difficult and 
causes a corresponding reduction in arterial blood oxygen satur-
ation. Evidence of a strong gradient in natural selection and conse-
quent local adaptation along elevational gradients could explain the 
origin and maintenance of narrow elevational ranges themselves. In 
the past decade, numerous studies have investigated the genetic basis 
of physiological and biochemical responses to elevation for a variety 
of taxa across the world’s mountains (Storz et al. 2009; McCracken 
et al. 2010; Muñoz-Fuentes et al. 2013; Projecto-Garcia et al. 2013; 
Galen et al. 2015; Natarajan et al. 2016). There is also a growing list 
of candidate genes involved in the hypoxia response, DNA or cell 
damage, and energy metabolism, among other functions (Yi et  al. 
2010; Simonson et al. 2012; Huerta-Sánchez et al. 2013; Yanhua Qu 
et al. 2013; Qu et al. 2015; Zhang et al. 2016; Graham et al. 2018; 
Lim et al. 2019). Most studies, however, have focused on comparing 
species or populations at elevation extremes rather than along the 
gradient.

Here, we tested for local genetic adaptation to elevation within 
the elevational ranges of 2 Andean hummingbird species (family 
Trochilidae) that are montane specialists: the violet-throated 
starfrontlet (Coeligena violifer) and the sparkling violetear (Colibri 
coruscans). Both Coe. violifer and Col. coruscans diverged from their 
sister species ~5 Ma, when the Peruvian Andes had attained most of 
their current height (Gregory-Wodzicki 2000; Hoorn et  al. 2010; 
McGuire et al. 2014). Thanks to differences in their geographic dis-
tribution and habitat requirements, they may have evolved to high-
land conditions via different genetic mechanisms. Coe. violifer is 
more restricted to high-elevation edges or clearings in cloud and elfin 
forest habitats between 2500–3900 m (Schulenberg et al. 2007; del 
Hoyo et al. 2020). In Peru, there are 3 subspecies defined by plumage 
differences: Coe. v.  dichroura in northern and central Peru, Coe. 
v. albicaudata in the Apurímac drainage region, and Coe. v. osculans 
in southeast Peru (Schuchmann and Zuchner 1997) (Supplementary 
Figure S1a). In contrast, Col. coruscans is found in both natural and 
urban landscapes, typically from ~2000 to 4500 m, but occasionally 
as low as sea-level (Schulenberg et al. 2007; Züchner et al. 2020) 
(Supplementary Figure S1b). There is only one subspecies, Col. 
c. coruscans, in Peru.

Using targeted exon capture sequencing, we generated a dataset 
of coding sequences sampled across the hummingbird genome, 
including genes previously implicated in elevation-related adap-
tation. With this population genomic dataset, we characterized 
population genetic structure and gene flow, and evaluated SNP fre-
quencies for trends with elevation. Genetic associations between 
SNPs and elevation, particularly in previously identified candidate 
genes and for both species, would provide strong evidence for paral-
lels in local adaptation and potentially explain how elevation ranges 
are themselves maintained. The absence of clinal genetic variation 
with elevation could indicate gene flow or genetic drift dilutes or 
removes beneficial alleles from the population.

230� Journal of Heredity, 2021, Vol. 112, No. 3
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/article/112/3/229/6149964 by guest on 24 M
ay 2021

http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esab008#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esab008#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esab008#supplementary-data


Materials and Methods

Study System
Our study included 62 Coe. violifer and 101 Col. coruscans spe-
cimens sampled from the Peruvian Andes, encompassing the ele-
vational range for both (Figure 1). Coe. violifer individuals were 
sampled from elevations of 2000 to 4000 m, while Col. coruscans 
individuals were sampled from 1800 to 4200 m. Tissue samples were 
collected at sites across Peru under an approved Animal Use Protocol 
from the University of New Mexico Institutional Animal Care and 
Use Committee (Protocol number 08UNM033-TR-100117; Animal 
Welfare Assurance number A4023-01) and under permits from 
the management authority of Peru (76-2006-INRENA-IFFS-DCB, 
087-2007-INRENA-IFFS-DCB, 135-2009-AG-DGFFS-DGEFFS, 
0377-2010-AG-DGFFS-DGEFFS, 0199-2012-AG-DGFFS-DGEFFS, 
and 006-2013-MINAGRI-DGFFS/DGEFFS). Complete specimen 
data are available via the ARCTOS online database (Supplementary 
Table S1).

Probe Design
We used probes designed by NimbleGen for the exon capture ex-
periment (NimbleGen SeqCap EZ kit; Roche, Pleasanton, CA). We 
selected exons for capture using the Anna’s hummingbird (Calypte 
anna) genome (Gilbert et al. 2014). The genome-wide sample of tar-
geted exons was expected to comprise markers neutral with respect 
to elevation, thereby allowing for analysis of population genetic 
structure. To maximize probe hybridization efficiency, we filtered 
exons by length and GC content. We limited exon lengths to 150–
600bp, as shorter loci will have insufficient probe coverage and SNPs 
on longer loci are effectively linked and counted as a single marker. 
Probe hybridization efficiency is reduced when GC content is too 
low or too high, so we retained exons with 35–70% GC content (Bi 
et al. 2012). We ran RepeatMasker to remove sequences containing 
low complexity and short repeats using the abblast search engine 
and chicken as the DNA reference (Smit et al. 2015). Exon sequences 
with N’s were also removed as they lower the probability that probes 
will hybridize to target DNA. From this filtered set of sequences, we 
chose the longest coding sequence per protein-coding gene in the Cal. 
anna genome (n = 16 000 annotated genes). As a result, the probe 

design included a genome-wide sample of 12 230 exon sequences. 
To increase enrichment uniformity and coverage of the targets, we 
added a flanking region of 100bp to the start of each exon.

We targeted 271 genes listed in the high-elevation adaptation lit-
erature to ensure they were included in the dataset (Supplementary 
Table S2). These candidate genes were identified from a range of 
highland vertebrate taxa (e.g., mammals, birds, amphibians, fish) 
and have an array of functions potentially related to elevation adap-
tation, including response to hypoxia, metabolism of carbohydrates 
and lipids, inflammation and immune response, and roles in cellular 
respiration. When available, sequences for 40 candidate genes were 
extracted from transcriptomes generated for the 2 study species to 
improve probe specificity (Lim et al. 2019). The remaining 231 can-
didate gene sequences were extracted from the Anna’s hummingbird 
reference genome (Gilbert et al. 2014). We also included 2 mitochon-
drial genes (COX1, COX3) in the probe design. Since mitochondrial 
DNA is more abundant than nuclear DNA, the proportion of probes 
for mitochondrial to nuclear genes was reduced by Nimblegen to 
achieve consistent coverage of all targets (1:72).

Exon Capture
Genomic DNA was extracted from liver tissue for 134 individuals 
using the Zymo Genomic DNA Tissue MiniPrep for Solid Tissue kit 
(Zymo, Irvine, CA). We also included DNA extractions from the 
Museum of Southwestern Biology for 29 individuals, bringing the 
total to 163 individuals. The DNA quality of these extractions was 
assessed prior to inclusion in our study. Extractions were diluted in 
1xTE prior to DNA fragmentation. Extractions were sonicated with 
the Bioruptor until the DNA was in the 250–400bp range with very 
few fragments exceeding 600bp. For DNA library preparation, we 
followed the Meyer and Kircher (2010) protocol and used unique 
dual indexes. To reduce PCR bias, we combined products from 2 
sets of indexing PCR reactions for each sample. Libraries were then 
pooled in groups of 48 for the exon capture procedure.

For the capture experiment, we followed the NimbleGen SeqCap 
EZ protocol. We used 1.1μg of DNA from the pooled genomic li-
braries and chicken COT DNA (1:10 COT to library) to block 
nonspecific hybridization in the capture reaction. We verified that the 
capture reaction DNA fragment size range was between 150-500bp 

Figure 1.  Specimen localities plotted on an elevation map with major waterways and range maps for (a) Coe. violifer subspecies and (b) Col. coruscans.
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by comparing pre- and post-capture DNA Bioanalyzer traces. We 
also compared qPCR results for 6 positive (exon sequence targeted) 
and 6 negative (exon sequence not targeted) control primers between 
pre- and post-capture reactions. Finally, post-capture enrichment li-
braries derived from each hybridization were quantified and com-
bined for sequencing. To minimize bias from different sequencing 
lanes and to maximize sequence coverage, the pooled capture reac-
tion was split equally across 2 lanes on an Illumina HiSeq 4000 with 
150bp paired-end sequencing.

Bioinformatics
After raw sequence reads were de-multiplexed, we used a 
custom-designed pipeline to filter reads, build species-specific ref-
erence assemblies, align reads to the assemblies, evaluate align-
ment quality, and call SNPs for population genetic analyses. We 
used Trimmomatic v 0.36 (Bolger et  al. 2014) to remove adapter 
sequences and low-quality reads shorter than 36bp; SuperDeduper 
to remove PCR duplicates (https://ibest.github.io/HTStream/#hts_
SuperDeduper); and alignment to the Escherichia coli genome with 
Bowtie2 to remove potential bacterial contamination sequences 
(Langmead and Salzberg 2012). Overlapping paired-end reads were 
merged with Flash v1.2.11 (Magoč and Salzberg 2011). We created 
de novo species-specific assemblies as references for mapping reads, 
rather than mapping to the Cal. anna genome. We chose this species-
specific reference approach to maximize the percentage of aligned 
reads for downstream analysis, even though it meant we could not 
directly compare gene sequences for the 2 species because assembly 
length and number of exons captured differed per species. Efforts to 
generate a hybrid de novo assembly with sequences from both spe-
cies failed to increase the percentage of aligned reads (~40–50%) to 
an acceptable threshold (>60%).

To build the species-specific references, we chose six individuals 
per species that had the most exon capture data and generated de 
novo assemblies with SPAdes using default k-mer sizes (Bankevich 
et  al. 2012). The SPAdes assemblies were combined to make one 
reference assembly per species. We mapped unique reads to the 
species-specific references with NovoAlign (http://www.novocraft.
com/products/novoalign/), added read groups with Picard v2.1.1 
(http://broadinstitute.github.io/picard/), and realigned reads around 
indels with GATK v3.6 (McKenna et al. 2010). After alignment, we 
evaluated the data with the following statistics: number of raw, fil-
tered, and mapped nucleotides; percentage of reads retained after 
sequence quality filtering; percentage of reads aligned to exon target 
region (specificity), percentage of exon targeted regions covered by 
at least one read (sensitivity), average read coverage, variation in 
read coverage, and percentage of nucleotide sites retained at mul-
tiple read coverage depths (2×, 5×, 10×, 20×) (Supplementary Table 
S4). We used SAMtools/bcftools v1.3.1 (Li et al. 2009) to generate 
raw variant call format (VCF) files containing all possible variant 
and non-variant sites. We filtered these sites with SNPcleaner v.225 
(Bi et al. 2013) to remove loci with too much missing data prior to 
downstream analyses. For this site filtering step, we retained sites for 
which at least 70% of the samples had a minimum of 3× coverage to 
reduce the effects of missing data. We also removed sites that were 
within 10bp of indels, were not biallelic, or had excessive heterozy-
gosity (removed sites with P-value < 0.0001).

For calculating allele frequency, genotype likelihood estima-
tion, and genotype calling, we used the analysis of next-generation 
sequencing data package, ANGSD (Korneliussen et al. 2014). ANGSD 
incorporates uncertainty from base calling and alignment errors into 

genotype likelihoods with posterior probabilities for genotype calls, 
which is especially useful for low-to-medium coverage sequencing 
datasets. The scripts for our pipeline and downstream analyses are 
available at https://github.com/marisalim/HbirdSeqCap and https://
github.com/CGRL-QB3-UCBerkeley/seqCapture.

Population Genetic Structure
We estimated 2 measures of within-locality diversity: the proportion 
of segregating sites (Watterson’s theta, θ W) (Watterson 1975) and 
nucleotide diversity (θ π) (Nei 1987). For each species, individuals 
were divided into geographic clusters based on specimen localities 
(Figure 1, Supplementary Table S1; referred to as sites A-M in Figure 
2 and text). For average θ W and θ π, we used ANGSD to generate per 
locality site frequency spectra (with respect to minor allele; folded) 
and custom scripts to calculate these statistics.

We conducted several analyses to assess genetic structure be-
tween populations: PCA, test for relatedness, test for admixture, and 
between-locality differentiation. PCA results help detect potential 
outlier samples, which may exaggerate downstream measures of gen-
etic differentiation between samples. For PCA analysis, we computed 
a genotype covariance matrix based on genotype likelihoods with 
ngsCovar from the ngsTools package (Fumagalli et al. 2014). The in-
clusion of closely related individuals can bias analyses that estimate 
population genetic structure, as family groups are likely to cluster 
together, forming their own “population” (Anderson and Dunham 
2008). To determine whether our samples included closely related 
individuals, we estimated the coefficient of relatedness (θ; siblings: θ 
> 0.50, half-siblings: θ > 0.25) with NgsRelate using genotype like-
lihoods from ANGSD (Korneliussen and Moltke 2015). To test for 
admixture, we used NgsAdmix, which relies on genotype likelihoods 
(Skotte et al. 2013). For each species, we tested an estimated number 
of subpopulations (K) from 1 to 5 with 10 iterations each.

We calculated FST and Dxy as 2 independent measures of genetic 
differentiation between populations based on geographic locality be-
cause each is subject to calculation biases depending on levels of 
current (FST) or ancestral sequence variation (Dxy) (Cruickshank 
and Hahn 2014). FST = 0 indicates complete mixing and FST = 1 in-
dicates complete isolation between populations. Dxy measures gen-
etic sequence divergence between populations and indicates whether 
populations are more or less diverse compared to each other. These 
measures of genetic differentiation between localities served as inde-
pendent estimations of population genetic structure for comparison 
to PCA and admixture results, which have no a priori population 
assignment. FST was calculated in ANGSD from the shared site fre-
quency spectra for each pairwise combination of localities (2dSFS; 
(Korneliussen et  al. 2014). For Dxy, we identified variant and in-
variant sites for each locality with ANGSD and calculated Dxy 
with a custom script (https://github.com/CGRL-QB3-UCBerkeley/
seqCapture/blob/master/scripts/popStats.pl). We compared spatial 
genetic variation to species and subspecies range boundaries with 
IUCN Red List maps (IUCN 2016).

Isolation by Distance
To incorporate information about the geography and distribution 
of study species in the Peruvian Andes with the population genetic 
structure patterns, we tested for isolation by distance. We calculated 
geographic distance in 2 ways. First, we calculated pairwise geo-
desic distances, which measure the shortest distance along a curved 
path as opposed to a straight line Euclidean distance using the R 
package Imap (Wallace 2012). Second, we calculated cost distances 
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between individuals weighted by species distribution using the R 
package gdistance (van Etten 2017), and species distribution models 
for each species (Fajardo et al. 2014). Paths through regions with 
lower species suitability cost more than regions where the species 
is predicted to occur. We compared the 2 geographic distances to 
the pairwise distance between genotypes using genetic distances cal-
culated from genotype likelihoods in ngsDist (Korneliussen et  al. 
2014; Vieira et al. 2016). We conducted Mantel tests with 10 000 
permutations to estimate the correlation between genetic and geo-
graphic distances.

To visualize isolation by distance patterns on a map, we used the 
Estimated Effective Migration Surfaces (EEMS) method (Petkova 
et al. 2016). EEMS uses a stepping-stone model to estimate migra-
tion rates along every edge of a user-defined grid of subpopulations 
(demes) and interpolates across the region of interest. These maps 
provide a means to test for, and identify, barriers to gene flow without 
prior knowledge of landscape or geography. Since migration rates 
from unsampled regions of the map are interpolated from regions 
with samples, we focus our interpretation on results in sampled 
areas. This method uses the same pairwise genetic distance matrix as 
calculated above for the isolation by distance analysis. We ran EEMS 
with 100 demes, 4 × 106 MCMC iterations, and 106 burn-in iter-
ations sampled every 9999 iterations. We checked for convergence 
by looking for stationarity in MCMC chain trace plots. Following 
Petkova et al. (2016), we adjusted proposal variance values on mi-
gration and diversity rate parameters to achieve proposal acceptance 
rates between ~20–30%.

Latent Factor Mixed Models
For selection test analyses, genotype calls (as opposed to genotype 
likelihoods) are required to determine which allele each individual 
carries at SNPs associated with an environmental variable. We used 
ANGSD to call genotypes (Korneliussen et  al. 2014). Genotype 
calling is sensitive to errors from nucleotide base assignment and 
alignment. Therefore, we conducted sensitivity analyses for a com-
bination of several SNP filter thresholds to maximize the number 
of SNPs retained for genotype calling. We used the “hetBias_pval” 
filter to minimize over-calling heterozygote genotypes, measured as 
deviations from Hardy-Weinberg equilibrium (test: default/not used, 
10–3, 10–4). “SNP_pval” filters out polymorphic sites that may re-
sult from sequencing error (test: 10–3, 10–4, 10–5, 10–6). Finally, we 
tested different posterior distribution thresholds for calling a geno-
type with the “postCutOff” filter (test: 0.75, 0.85, and 0.95). After 
assessing broad parameter behavior, we conducted a reduced sensi-
tivity analysis of the filters for the study species. Next, we filtered the 
genotype call dataset to remove all SNPs with minor allele frequen-
cies below 5%, since rare variants are unlikely to be associated with 
an environmental variable.

We tested for associations between SNPs and elevation using 
the genotype call dataset with the Latent Factor Mixed Models 
(LFMM) program (v1.5) (Frichot et al. 2013). We tested other out-
lier approaches, but these methods resulted in either too many false 
positives (PCAdapt), skewed FST distributions for genetically struc-
tured populations (OutFLANK), or low statistical power (Pearson’s 
correlation). LFMM is statistically robust and infers both the gene-
environment association, as well as the underlying population struc-
ture from the data, which is modeled with unobserved latent factors 
(K). LFMM can be used to test for associations between environ-
mental measures and allele frequency inputs.

To calculate allele frequencies, we grouped samples into bins 
based on the elevation at which they were collected and their gen-
etic population assignment (Supplementary Table S1). We tested in-
crements of 400 m for Coe. violifer and 300 m or 400 m for Col. 
coruscans. These increments were chosen to spread individuals as 
evenly as possible across bins. Fourteen Coe. violifer samples were 
dropped from analysis to ensure bins did not mix samples from 
genetically distant populations (Supplementary Table S1). Bins 
were standardized by the mean and standard deviation elevation 
for all individuals per species. We used discrete elevation bins in-
stead of continuous elevation values in order to calculate allele 
frequencies from genotype calls for individuals in each bin as fol-

lows: sum of genotypes
total number of genotypes ∗ 2� We tested parameter sensi-

tivity with allele frequency inputs and set the latent factor to K = 1, 
2, or 3 with 5 iterations per test. Per author recommendation, the 
allele frequency mode works better for lower latent factor values 
(E. Frichot, personal communication). Each iteration was sampled 
250 000 times with 25 000 burn-in cycles from the Gibbs Sampler 
algorithm. Z-score outputs from the 5 iterations were combined fol-
lowing LFMM documentation protocol. To control for confounding 
effects on the number of significant SNPs identified by LFMM, we 
followed author guidelines by evaluating the effect of different gen-
omic inflation factor (λ) thresholds on P-value distributions. The 
P-value distributions are expected to be flat with a peak at 0 and λ 
close to 1. LFMM authors recommend choosing the latent factor K 
based on P-value distributions for λ values, rather than genetic struc-
ture methods. For the final LFMM results, we used the R package 
“qvalue” to control the false discovery rate at the 0.05 level (Storey 
2015). We calculated a Pearson’s correlation coefficient to quantify 
the proportion of significant SNPs with positive (r > 0) or negative 
(r < 0) clinal shifts with elevation.

Clinal SNP Analysis
For the LFMM SNPs with significant associations to elevation (clinal 
SNPs), we next extracted gene and Gene Ontology (GO) biological 
process information and compared the results between our study 
species. To extract GO terms, we conducted a statistical test for 
overrepresented biological process GO categories in the sets of genes 
with clinal SNPs for each species from the Panther database (Mi 
et al. 2019). There were 3 sets of genes with clinal SNPs: 1) shared 
by both species, 2) only Coe. violifer, and 3) only Col. coruscans. For 
Panther’s overrepresentation test tool, we selected Fisher’s Exact test 
with false discovery rate correction (P < 0.05).

Results

Bioinformatics
By using a de novo assembly approach, ~70–88% of reads mapped 
to species-specific references; in contrast, only ~30% of reads 
mapped to the Cal. anna genome. The de novo assemblies produced 
11 843 gene contigs (assembly size: 17.2Mb) for Coe. violifer and 
11 815 gene contigs (assembly size: 19.1Mb) for Col. coruscans. All 
of the targeted candidate genes from previous studies were captured. 
Additional Illumina sequence quality statistics are summarized in 
Supplementary Table S3. On average, 74% of reads were aligned 
to a targeted region (specificity) and 99.47% of the targeted regions 
had at least 1X coverage (sensitivity). At least 92.19% of nucleotide 
sites had 20X coverage. Further exon capture experiment statistics 
are in Supplementary Table S4.
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The final dataset for downstream population genetic analyses in-
cluded 156 individuals: 59 Coe. violifer and 97 Col. coruscans. We 
removed one sample per pair of closely related Coe. violifer individ-
uals that had θ > 0.25 (n = 3; average θ = 0.32) and 4 Col. coruscans 
samples that were extreme outliers in initial PCA analyses based on 
component scores (Supplementary Table S5).

Population Genetic Structure
The relative genetic diversity within localities was comparable for 
θ W and θ π for both species (Supplementary Table S6). For Coe. 
violifer, within-locality diversity was highest for the samples near 
the Huallaga River (B) (θ W  =  3.21  × 10−3, θ π  =  3.09  × 10−3) and 
lowest for samples near the Marañón River (A) (θ W = 1.87 × 10−3, 
θ π = 2.03 × 10−3). There was little variation in within-locality genetic 
diversity at all Col. coruscans localities (θ W = 1.01 × 10−2 - 1.25 × 
10−2, θ π = 8.51 × 10−3 - 8.70 × 10−3).

The PCA and admixture analyses (K  =  3) identified 3 distinct 
genetic clusters for Coe. violifer (PC1: 12.2%; PC2: 3.2%; PC3: 
2.9%; Figure 2a), however the groupings differed slightly. The ad-
mixture results match the PC1  × PC3 groups, while PC1  × PC2 
groups the samples south of the Huallaga River (B, C) in one cluster 
separate from those near the Marañón River (A). The FST results 
support the PC1 × PC2 results, as there is gene flow between sam-
ples south of the Huallaga River (B, C) (FST = 6.20 × 10−2), while the 
Dxy results show very similar values for all 3 northern localities (A, 
B, C) (Dxy = 5.60 × 10−2 - 5.80 × 10−2) (Supplementary Table S7). 
PC1 × PC2 grouped southern samples (D, E, F) together and Dxy 
was similar (Dxy = 5.40 × 10−3 - 5.60 × 10−3). In contrast, samples 
east of the Apurímac River (E) were distinct in admixture and PC1 × 
PC3 assignment, and gene flow was lower between them (E) and 
nearby localities (D: FST = 0.11; F: FST = 0.12). These analyses col-
lectively support a primary divide between northern (A, B, C) and 
southern (D, E, F) localities. Based on subspecies range maps, this 
divide roughly matches the distribution break of Coe. v. dichroura in 
the north from the 2 in the south (Supplementary Figure S1a), how-
ever genetic differentiation between Coe. v.  albicaudata and Coe. 
v. osculans was unclear: none of the genetic structure patterns match 
the distribution of samples based on subspecies range maps.

Our sampling for Col. coruscans was distributed across the en-
tire length of Peru and, surprisingly, there was no apparent popu-
lation structure (Figure 2b). In contrast to the Coe. violifer PCA, 
the first 2 principal components explained very little of the vari-
ation (PC1: 1.72%; PC2: 1.19%) and therefore support a lack of 
population genetic structure (Figure 2b). Along PC1, the apparent 
3 vertical bands were not explained by variation in sampling con-
ditions (locality, elevation, season), sex, or sequencing design or 
quality (Supplementary Figure S2). Thus, the “pattern” may not be 
real as the proportion of variance explained by PC1 was quite small 
(1.72%). Furthermore, the admixture analysis with the lowest max-
imum likelihood score was K = 1 and between-locality genetic dif-
ferentiation was low for all pairwise comparisons (FST = 1.41 × 10−2 
- 4.39 × 10−2 and Dxy = 1.52 × 10−2 - 1.55 × 10−2) (Supplementary 
Table S8). Together, these analyses support a single large popula-
tion with high gene flow throughout the range in Peru. However, 
gene flow across the sampled range may not be random. For illus-
tration only, we show K = 2 admixture results in Figure 2b, which 
suggests slight divisions in population assignment pointing to gene 
flow around the high Andes in northern Peru linking populations on 
the Western and Eastern Cordilleras.

Isolation by Distance
Based on Mantel test results for both species, the geodesic distance 
and cost distance showed similar trends with genetic distance 
(Supplementary Figure S3). The role of isolation by distance was 
evident for Coe. violifer (r  =  0.75, P  <  0.01; r  =  70, P  <  0.01) 
(Supplementary Figure S3a). In contrast, there was no isolation by 
distance between Col. coruscans individuals (r  =  0.05, P  =  0.15; 
r = 0.03, P = 0.23) (Supplementary Figure S3b).

EEMS analysis maps showed regions of high and low migration 
between localities. For Coe. violifer, the primary region of low mi-
gration splits the northern (A, B, C) from the southern (D, E, F) lo-
calities (Figure 2a). There was slightly lower migration between the 
most northern samples (A) and the others. The estimated region of 
low effective migration was striking for Col. coruscans and likely 
corresponds to the high ridge of the Peruvian Andes, echoing sup-
port for nonrandom movement (Figure 2b). The EEMS map esti-
mated higher migration rates around the Andes with a possible route 
in the Marañón river depression to connect the Western and Eastern 
Cordilleras.

Latent Factor Mixed Models
The final parameters for calling genotypes from all captured genes 
excluded the “hetBias_pval” filter, as it was too stringent. The 
“postCutOff” filter was the least sensitive parameter, so we chose 
the more conservative value (0.95). Smaller values of “SNP_pval” re-
moved too many SNPs, so we set it to 10−3. With these parameters, we 
obtained 198 092 SNPs for Coe. violifer and 690 274 SNPs for Col. 
coruscans (Supplementary Table S9). After filtering out rare variants, 
we retained 91 127 SNPs for Coe. violifer and 215 694 SNPs for 
Col. coruscans for analysis with LFMM (Supplementary Table S10). 
We had to remove hemoglobin markers (HBB and HBE1) from the 
analysis, as alleles were difficult to resolve between members of this 
gene family. These genes of interest should be pursued in future study 
but require refined sequencing to accurately differentiate SNPs from 
gene duplicate sequences.

After running LFMM, we evaluated the resulting number of stat-
istically significant SNPs associated with elevation by examining 
P-value frequency distribution shape for several inflation factor (λ) 
values (Supplementary Table S11, Supplementary Figure S4). For 
both species, the P-value frequency distributions for λ > 1 shifted 
up, indicating too few SNPs detected (false negatives). The distri-
butions for λ < 1 shifted down slightly, indicating too many SNPs 
were detected (false positives). Thus, we chose the SNP results from 
λ = 1 and K = 2 to define clinal SNPs for final analysis. We used the 
elevation bins spaced every 400 m for the final analysis of both spe-
cies datasets.

Clinal SNP Analysis
In total, we identified 3495 SNPs (3.84%) on 1903 genes for Coe. 
violifer and 3962 SNPs (1.84%) on 2137 genes for Col. coruscans 
that exhibited significant elevational clines from LFMM analysis 
(Supplementary Table S11). A  set of 567 genes had clinal SNPs 
for both species. For Coe. violifer, 1980 SNPs had positive trends 
(average r  =  0.79  ± 0.12) and 1515 SNPs had negative trends 
(average r = −0.67 ± 0.19). For Col. coruscans, 1674 SNPs had posi-
tive trends (average r = 0.80 ± 0.11) and 2288 SNPs had negative 
trends (average r = −0.76 ± 0.12). The distribution of Pearson cor-
relation coefficients for these trends are shown in Supplementary 
Figure S5.
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The full list of candidate and novel genes with clinal SNPs re-
covered in our study is available in Supplementary Table S12. 
The Panther overrepresentation test did not isolate statistically 

significant overrepresented GO biological process categories, how-
ever the analysis did serve to characterize the categories represented 
in our dataset, many of which relate to findings in the high-elevation 

Figure 2.  Three types of genetic structure plots each for (a) Coe. violifer (n = 59) and (b) Col. coruscans (n = 97). For reference, the point or horizontal line colors 
refer to sample groups used to calculate FST and Dxy (see online version for group colors). The PCA plots show the percentage of variation explained by principal 
components. The estimated effective migration surface maps show log migration rate in geographic space overlaid on a map of Peru (black = higher gene flow, 
white = lower gene flow). The vertical bars of the admixture plots show the proportion of individuals assigned to K = 3 populations (black, light gray, white) for 
Coe. violifer and, shown for illustration purposes only, K = 2 populations (black, white) for Col. coruscans.
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literature (Figure 3, Supplementary Table S13). While it is difficult 
to draw further conclusions about the exact mechanisms connecting 
these functions to elevation adaptation, we examined 1) how the GO 
categories compared between our 2 study species and 2)  whether 
genes with clinal SNPs have been previously identified in the high-
elevation adaptation literature.

For a broader investigation of the GO categories, we compared the 
number of genes per GO category between the sets of unique genes 
per species or shared by both (Figure 3). Across all sets, the majority of 
genes function in metabolism and cellular processes, though numbers 
vary. For example, 257 metabolic-related genes were shared by both 
species, while there were 1216 and 2242 different metabolic-related 
genes for Coe. violifer and Col. coruscans, respectively. There were 
similar patterns for other gene functions, illustrating the redundancy 
of function across different genes with clinal SNPs in these highland 
species. There were some differences in the number or presence of 
genes for other categories. For example, 24 muscle-related genes were 
shared by both species, while Coe. violifer had 41 and Col. coruscans 
had 7 different muscle-related genes. There were 16 immune response-
related genes shared by both species, while Coe. violifer had 326 and 
Col. coruscans had 54 different immune response-related genes. Two 
categories, embryo development and regulation of response to oxida-
tive stress, were only present for Coe. violifer, highlighting that genetic 
adaptation to elevation is complex and impacts both repeated and 
unique gene functions for different species.

Of the genes with clinal SNPs, 154 genes for Coe. violifer, 166 
genes for Col. coruscans, and 116 shared by both species are candi-
date genes in high-elevation literature (Supplementary Table S12). 
The proportion of clinal SNPs in candidate (Coe. violifer: 0.77%, 
Col. coruscans: 0.34%) and in other genes (Coe. violifer: 3.1%, Col. 
coruscans: 1.5%) was comparable between species. For example, we 
identified clinal SNPs on ASH2L, WNT7B, and EPAS1 in the Coe. 
violifer analysis (Supplementary Figure S6a). ASH2L plays a role in 
DNA repair and response to radiation (Tibetan highland chicken: 
Zhang et al. 2016). WNT7B regulates hypoxia-induced development 
of vascular network in the lungs and heart, and is involved in oxygen 
homeostasis (Tibetan ground tit: Yanhua Qu et  al. 2013). EPAS1 
(HIF2α), a component of the hypoxia-inducible factor pathway 
that regulates changing oxygen levels, has been studied extensively 
in the elevation adaptation literature for human populations (Beall 
et  al. 2010; Yi et  al. 2010) and identified for other highland spe-
cies (Wang et al. 2014; Zhang et al. 2014; Graham and McCracken 
2019), including Andean hummingbirds (Lim et al. 2019). For Col. 
coruscans examples, we identified clinal SNPs in SENP1 and COX1 
(Supplementary Figure S6b). SENP1 is associated with chronic 
mountain sickness (Andean human populations: Zhou et al. 2013). 
COX1 plays an important role in the production of ATP during 
respiratory electron transport and oxidative phosphorylation (bar-
headed goose: Scott et  al. 2011; polar bears: Welch et  al. 2014). 
SMURF2 and RYR2 were among the shared candidate genes with 

Figure 3.  The bar plots show the number of genes categorized per simplified Gene Ontology (GO) biological process (y-axis log10 scaled). Each column of plots 
represents a different and unique set of genes for which clinal SNPs were identified as significantly associated with elevation by LFMM. The columns differ by 
whether clinal SNPs occur on (a) the same genes for both highland species, or different genes for (b) Col. coruscans only or (c) Coe. violifer only. The full list of 
genes and their associated GO biological process (level 6) category is available in Supplementary Table S13.
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clinal SNPs for both species (Supplementary Figure S6). SMURF2 
plays a role in the vascular inflammatory response of endothelial 
cells in hypoxic conditions (highland Ethiopian human populations: 
Huerta-Sánchez et  al. 2013). RYR2 is involved in cardiac muscle 
contraction (snub-nosed monkey: Yu et  al. 2016; Qinghai-Tibet 
Plateau gray wolf: Zhang et  al. 2014). While the examples above 
represent a small snapshot, the presence of any clinal SNPs on candi-
date genes again highlights their likely importance for high-elevation 
adaptation across taxa (Supplementary Table S12).

Discussion

Migration, genetic drift, and natural selection determine the fate of 
beneficial alleles in populations, but resulting patterns can be in-
distinct. By quantifying population genetic demography, we could 
present a more nuanced interpretation of clinal variation in SNPs 
detected across elevational gradients in the Peruvian Andes for 2 
highland hummingbird species. Since population genetic structure 
patterns differed between the 2 study species, the presence of gen-
etic clines from LFMM analysis suggests putatively adaptive alleles 
are maintained in different ways. As these genetic clines encompass 
elevation changes of a few hundred meters, our genome-wide sur-
veys highlight how natural selection along gradients makes trop-
ical mountains “taller” by promoting local adaptation. In addition 
to finding clinal SNPs on previously identified candidate genes, we 
detected clinal SNPs on genes novel to our study with functions 
potentially relevant to responding to high-elevation conditions. 
Concordant with previous research, including our own, these results 
point to natural selection and repeated evolution on genes, especially 
in their cellular functions, instead of specific point substitutions 
(Arendt and Reznick 2008; Natarajan et al. 2016; Lim et al. 2019).

Our analysis of the genetic structure for Coe. violifer revealed 
geographically structured populations, isolation by distance, and 
some gene flow. Previous research on the evolutionary history 
of the Coe. violifer subspecies suggested diversification occurred 
from north to south in Peru based on the disjointed distribution of 
plumage color differences (Remsen 1984; Schuchmann and Zuchner 
1997). Our results suggest the subspecies are not only phenotypically 
different (Schuchmann and Zuchner 1997), but Coe. v. dichroura is 
also genetically distinct from the southern subspecies (Figure 2a, 
Supplementary Figure S1a). The PCA and admixture results dif-
fered slightly in how individuals were assigned to genetic clusters, 
but there was consensus on the division between northern and 
southern localities approximately divided by the Apurímac drainage 
region (Figure 2a). There is a transition in vegetation from dry forest 
in the west to humid, montane forest in the east in the Apurímac 
River valley, a prominent barrier to dispersal for other avian species 
(Hosner et al. 2015; Benham and Witt 2016). The distribution mis-
match of phenotypic and genotypic variation for Coe. v. albicaudata 
and Coe. v. osculans has been observed for other Coeligena species 
(Parra 2008) and other phenotypic traits (e.g., Benham and Witt 
2016), suggesting these subspecies have not diverged genetically 
yet as ecological pressures rather than geographic ones influence 
plumage evolution (Winger 2017).

In contrast, the widespread geographic distribution, broad 
habitat requirements, and degree of gene flow show that Col. 
coruscans has few dispersal limitations. Without exception, all ana-
lyses identified a single, large panmictic population. Col. coruscans 
is one of the few well-documented neotropical hummingbird species 
with some migratory subpopulations for which migration includes 

elevational shifts. The extensive gene flow we observed may reflect 
the inclusion of migratory individuals during the non-breeding or 
migration seasons (only 12 of 97 specimens were sampled during 
the core breeding season), but nonetheless illustrate the distances 
Col. coruscans individuals are capable of traversing. In addition, the 
θ W and θ π values were higher for Col. coruscans compared to Coe. 
violifer. Higher proportions of segregating sites and nucleotide di-
versity could result from large effective population size during the 
evolutionary history of the species, or recent population expansion 
(Fuchs et al. 2017). Despite the lack of population genetic structure, 
the Estimated Effective Migration Surface map indicated that move-
ment was reduced across the high Andean ridge. Birds appear more 
likely to cross the Andes in the lower elevation Marañón river de-
pression region compared to the Central Andes which start south of 
the depression (Figure 2b). This pattern of movement could explain 
the PCA and admixture results where northern and eastern individ-
uals (e.g., G, K) were slightly more genetically similar compared to 
specimens collected in southwestern localities (e.g., M).

Given the population genetic structure of these species, several 
lines of evidence support our interpretation that clinal SNPs relate to 
local adaptation to elevation. First, migration-drift-selection balance 
and local adaptation along elevational gradients have been observed 
for other Andean bird species, such as the rufous-collared sparrow 
(Cheviron and Brumfield 2009), house wren (Galen et  al. 2015), 
and speckled teal (Graham et al. 2018). Genes with clinal SNPs in 
our study have similar functions to those in these studies. Andean 
avian research has also shown that genetic differentiation can re-
sult in morphological clines along broad (e.g., torrent ducks across 
the entire Andean mountain chain; Gutiérrez-Pinto et al. 2014) and 
narrow elevation gradients (e.g., wedge-billed woodcreepers along 
a 1500 m elevational gradient in Ecuador; Milá et al. 2009), sug-
gesting that different migration-drift-selection dynamics can result 
in local adaptation.

Second, clinal SNPs were found for both hummingbird species 
despite demographic and ecological differences. These patterns illus-
trate that natural selection can shape locus-specific variation, even 
as gene flow and genetic drift shape genome-wide population genetic 
variation. Given their genetic structure and reduced levels of gene 
flow, clinal variation in Coe. violifer populations could have arisen 
from the addition of new genetic material via small amounts of gene 
flow between populations. Simulation studies have demonstrated 
that drift and moderate migration rates decrease the potential for 
adaptation, with migration adding new variants to the population, 
counteracting the loss of diversity from drift (Blanquart et al. 2012). 
This migration-drift balance implies genetic variation at adaptive 
loci could subsequently be maintained in a given population by low 
gene flow with little influence from drift. In contrast, high migration 
rates can homogenize genetic differentiation (Blanquart et al. 2012). 
The widespread distribution and lack of population subdivision in 
Col. coruscans suggests the observed locus-specific clinal variation is 
maintained by selection strong enough to supersede the homogen-
izing effect of gene flow. In both cases, the presence of clinal SNPs 
provides evidence that local adaptation can maintain higher genetic 
variation at specific SNPs, independent of genome-wide population 
genetic processes.

Finally, we found similar categories of cellular gene function 
across all sets of genes with clinal SNPs (Figure 3). Some of the 
strongest evidence for adaptation across global highland taxa re-
lies on identifying selection for the same biochemical pathway, 
gene, or amino acid substitution (Rosenblum et al. 2014; Bailey 
et al. 2015; Lim et al. 2019). Our results suggest that redundancy 
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in cellular gene function allows for multiple mechanisms to 
underlie genetic adaptation to high elevation. For example, there 
were strong clines in SNP allele frequencies in genes with cel-
lular functions that could be related to high-elevation conditions 
stressors, including hypoxia response, energy metabolism, and 
immune response. For both Coe. violifer and Col. coruscans, pre-
viously identified candidate genes, and those novel to our study, 
shared these key functions (Figure 3, Supplementary Table S13). 
Still, the lack of complete overlap in candidate genes with signifi-
cant SNP-elevation associations between our hummingbird spe-
cies, as well as the presence of the many candidate genes novel 
to our study reinforce prior findings that there are many ways 
to adapt (Arendt and Reznick 2008; Natarajan et al. 2016; Lim 
et al. 2019) and much more to discover about the mechanisms of 
genetic adaptation.

Our study shows natural selection can operate in similar ways 
despite differences in demographic history. Population structure re-
sulting from isolation across valleys has been found for many species 
(Weir 2009; Turchetto-Zolet et al. 2013; Winger 2017). Our find-
ings provide genome-wide evidence connecting turnover in environ-
mental conditions of a few hundred meters in elevation to shifts in 
potentially adaptive allele frequencies. That narrow niche tolerance 
in tropical species effectively makes mountains “taller” in the tropics 
is a longstanding hypothesis for explaining the extraordinary bio-
diversity of the tropical Andes (Janzen 1967; Fjeldså et  al. 2012). 
By controlling for drift and migration to identify signals of natural 
selection, our results reveal more localized putative adaptations to 
environmental conditions along altitudinal gradients than previ-
ously suspected. The parallels in genes with clinal SNPs between 
Coe. violifer and Col. coruscans, despite their unique population 
dynamics, reinforces evidence for strong selective gradients with 
elevation adaptation to the ecological conditions of the Andes. The 
presence of elevation-associated SNPs points to local adaptation as a 
likely mechanism making tropical mountains “taller” as elevational 
gradients have structured variation across hundreds of genes despite 
migration.

Future research is needed to investigate whether and how many 
elevation-associated SNPs identified here confer fitness advantages. 
Additional research may also be directed at the role of small-effect 
loci, as well as features of genome architecture that could explain 
regions of SNP abundance, such as linked loci or mutation hotspots 
(e.g., Galen et al. 2015). Our results reflect the complexity of tracing 
the genetic underpinnings of adaptation and reveal predominantly 
repeated selection for cellular functions rather than specific genetic 
markers. These results may further shed light on how narrow ele-
vational ranges are maintained in hummingbirds, and likely other 
montane taxa distributed within sharply defined elevational limits.

Supplementary Material

Supplementary material can be found at Journal of Heredity online.
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