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Abstract

Populations along steep environmental gradients are subject to differentiating selection that can
result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems,
where species are often restricted to narrow ranges of elevation, itis unclear whether the selection is
strong enough to influence functional differentiation of subpopulations differing by a few hundred
meters in elevation. We used targeted capture of 12 501 exons from across the genome, including
271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations
for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101).
For each species, we described population genetic structure across the complex geography of
the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele
frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation
to elevation. Although the 2 species exhibited contrasting population genetic structures, we found
signatures of clinal genetic variation with shifts in elevation in both.The genes with SNP-elevation
associations included candidate genes previously discovered for high-elevation adaptation as well
as others not previously identified, with cellular functions related to hypoxia response, energy
metabolism, and immune function, among others. Despite the homogenizing effects of gene flow
and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific
cellular function even within elevation range-restricted montane populations. Consequently, our
results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such
as the Andes, may effectively make them “taller” biogeographic barriers.
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Steep gradients in environmental conditions create opportun-
ities for local adaptation via a balance between locus-specific
(e.g., natural selection) and genome-wide (e.g., gene flow, genetic
drift) population genetic processes. In general, selection acts on
specific regions of the genome, while demographic processes af-
fect the genome uniformly (Lewontin and Krakauer 1973). Two
important population processes—1) migration rate quantified
by gene flow and 2) genetic drift-influence whether potentially
adaptive alleles are lost or maintained in populations (Lenormand
2002; Yeaman and Whitlock 2011; Blanquart et al. 2012). Locally
adapted populations should maintain alleles that confer fitness
advantages through positive selection (Savolainen et al. 2013).
The genetic composition of populations generally becomes more
homogeneous with increasing gene flow, such that adaptive alleles
are swamped out by the influx of alleles from other populations
(Lenormand 2002). Adaptive alleles can also be lost by chance in
small populations due to genetic drift. However, if the strength
of natural selection overcomes the effects of migration and drift
(migration-drift-selection balance), genetic differentiation can ac-
cumulate, resulting in signatures of locus-specific local adapta-
tion (Yeaman and Whitlock 2011; Blanquart et al. 2012). Local
adaptation can be measured as clinal variation in the frequency of
single nucleotide polymorphisms (SNPs) in genes with biochem-
ical or physiological functions related to adaptation to ecological
conditions of the gradient.

Besides creating opportunity for local adaptation, the phys-
ical features of landscapes shape spatial population genetic vari-
ation (Weir 2009; Turchetto-Zolet et al. 2013). The Andes are
outstanding in their rich species diversity and topographical com-
plexity (Chapman 1926; Fjeldsd et al. 1999; Fjeldsa et al. 2012).
For Andean animal populations, lowland barriers include rivers and
arid inter-mountain valleys, while the high-elevation ridges reduce
dispersal above tree-line (Weir 2009; Turchetto-Zolet et al. 2013).
In the tropics, mountains are thought to be particularly strong bar-
riers because they both physically impede dispersal and limit move-
ment of tropical species that have evolved narrow physiological
tolerances to temperature extremes (Janzen 1967; Ruggiero and
Hawkins 2008; Fjeldsa et al. 2012). Specifically, spatial population
genetic variation in Andean vertebrate species has been influenced
by the high Andean ridge and a few key inter-mountain valleys,
including the Marafién, Huallaga, and Apurimac river valleys
in Peru (Cracraft 1985; Benham et al. 2015; Hosner et al. 2015;
Benham and Witt 2016; Winger 2017; Hazzi et al. 2018; Prieto-
Torres et al. 2018). While there is abundant evidence that topog-
raphy promotes genetic isolation and population structure, the
interplay of evolutionary processes driving this separation remain
unclear.

It is challenging to disentangle the genetic processes resulting
in spatial genetic variation without accounting for both the gen-
etic structure of populations across their geographic range and po-
tential for local adaptation. Targeted high-throughput sequencing
methods provide cost-effective ways to obtain genome-wide sam-
ples for many individuals to evaluate whether present genetic dif-
ferentiation was shaped by genome-wide population processes
(migration or drift) and/or locus-specific processes (natural selec-
tion) (Luikart et al. 2003). A targeted approach can help distinguish
highly homogeneous regions of the genome within a population
from others that are distinct due to local adaptation to particular
environmental conditions (Luikart et al. 2003; Chapman et al. 2013;
Himaili et al. 2018; Herman et al. 2018). Even in wide-ranging spe-
cies with high dispersal ability and consequently greater potential for

homogenization of the gene pool, there is evidence for locus-specific
local adaptation resulting from an equilibrium between migration
and natural selection (Cheviron and Brumfield 2009; Galen et al.
2015; Graham et al. 2018).

Species that occur along elevational gradients face variable envir-
onmental and physiological extremes along the gradient, including
lower oxygen availability (hypobaric hypoxia), greater exposure to
UV radiation, more intense desiccation, and lower ambient tem-
perature. For example, the partial pressure of oxygen declines by
approximately 10% for every 1000 m increase in elevation and
this is critical for small endotherms, like hummingbirds, that sus-
tain high metabolic rates. This makes oxygen uptake difficult and
causes a corresponding reduction in arterial blood oxygen satur-
ation. Evidence of a strong gradient in natural selection and conse-
quent local adaptation along elevational gradients could explain the
origin and maintenance of narrow elevational ranges themselves. In
the past decade, numerous studies have investigated the genetic basis
of physiological and biochemical responses to elevation for a variety
of taxa across the world’s mountains (Storz et al. 2009; McCracken
et al. 2010; Mufioz-Fuentes et al. 2013; Projecto-Garcia et al. 2013;
Galen et al. 2015; Natarajan et al. 2016). There is also a growing list
of candidate genes involved in the hypoxia response, DNA or cell
damage, and energy metabolism, among other functions (Yi et al.
2010; Simonson et al. 2012; Huerta-Sénchez et al. 2013; Yanhua Qu
et al. 2013; Qu et al. 2015; Zhang et al. 2016; Graham et al. 2018;
Lim et al. 2019). Most studies, however, have focused on comparing
species or populations at elevation extremes rather than along the
gradient.

Here, we tested for local genetic adaptation to elevation within
the elevational ranges of 2 Andean hummingbird species (family
Trochilidae) that are montane specialists: the violet-throated
starfrontlet (Coeligena violifer) and the sparkling violetear (Colibri
coruscans). Both Coe. violifer and Col. coruscans diverged from their
sister species ~5 Ma, when the Peruvian Andes had attained most of
their current height (Gregory-Wodzicki 2000; Hoorn et al. 2010;
McGuire et al. 2014). Thanks to differences in their geographic dis-
tribution and habitat requirements, they may have evolved to high-
land conditions via different genetic mechanisms. Coe. violifer is
more restricted to high-elevation edges or clearings in cloud and elfin
forest habitats between 2500-3900 m (Schulenberg et al. 2007; del
Hoyo et al. 2020). In Peru, there are 3 subspecies defined by plumage
differences: Coe. v. dichroura in northern and central Peru, Coe.
v. albicaudata in the Apurimac drainage region, and Coe. v. osculans
in southeast Peru (Schuchmann and Zuchner 1997) (Supplementary
Figure S1a). In contrast, Col. coruscans is found in both natural and
urban landscapes, typically from ~2000 to 4500 m, but occasionally
as low as sea-level (Schulenberg et al. 2007; Ziichner et al. 2020)
(Supplementary Figure S1b). There is only one subspecies, Col.
¢. coruscans, in Peru.

Using targeted exon capture sequencing, we generated a dataset
of coding sequences sampled across the hummingbird genome,
including genes previously implicated in elevation-related adap-
tation. With this population genomic dataset, we characterized
population genetic structure and gene flow, and evaluated SNP fre-
quencies for trends with elevation. Genetic associations between
SNPs and elevation, particularly in previously identified candidate
genes and for both species, would provide strong evidence for paral-
lels in local adaptation and potentially explain how elevation ranges
are themselves maintained. The absence of clinal genetic variation
with elevation could indicate gene flow or genetic drift dilutes or
removes beneficial alleles from the population.
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Materials and Methods

Study System

Our study included 62 Coe. violifer and 101 Col. coruscans spe-
cimens sampled from the Peruvian Andes, encompassing the ele-
vational range for both (Figure 1). Coe. violifer individuals were
sampled from elevations of 2000 to 4000 m, while Col. coruscans
individuals were sampled from 1800 to 4200 m. Tissue samples were
collected at sites across Peru under an approved Animal Use Protocol
from the University of New Mexico Institutional Animal Care and
Use Committee (Protocol number 08UNMO033-TR-100117; Animal
Welfare Assurance number A4023-01) and under permits from
the management authority of Peru (76-2006-INRENA-IFFS-DCB,
087-2007-INRENA-IFFS-DCB, 135-2009-AG-DGFFS-DGEFFS,
0377-2010-AG-DGFFS-DGEFFS, 0199-2012-AG-DGFFS-DGEFEFS,
and 006-2013-MINAGRI-DGFFS/DGEFFS). Complete specimen
data are available via the ARCTOS online database (Supplementary
Table S1).

Probe Design

We used probes designed by NimbleGen for the exon capture ex-
periment (NimbleGen SeqCap EZ kit; Roche, Pleasanton, CA). We
selected exons for capture using the Anna’s hummingbird (Calypze
anna) genome (Gilbert et al. 2014). The genome-wide sample of tar-
geted exons was expected to comprise markers neutral with respect
to elevation, thereby allowing for analysis of population genetic
structure. To maximize probe hybridization efficiency, we filtered
exons by length and GC content. We limited exon lengths to 150—
600bp, as shorter loci will have insufficient probe coverage and SNPs
on longer loci are effectively linked and counted as a single marker.
Probe hybridization efficiency is reduced when GC content is too
low or too high, so we retained exons with 35-70% GC content (Bi
et al. 2012). We ran RepeatMasker to remove sequences containing
low complexity and short repeats using the abblast search engine
and chicken as the DNA reference (Smit et al. 2015). Exon sequences
with N’s were also removed as they lower the probability that probes
will hybridize to target DNA. From this filtered set of sequences, we
chose the longest coding sequence per protein-coding gene in the Cal.
anna genome (n = 16 000 annotated genes). As a result, the probe
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design included a genome-wide sample of 12 230 exon sequences.
To increase enrichment uniformity and coverage of the targets, we
added a flanking region of 100bp to the start of each exon.

We targeted 271 genes listed in the high-elevation adaptation lit-
erature to ensure they were included in the dataset (Supplementary
Table S2). These candidate genes were identified from a range of
highland vertebrate taxa (e.g., mammals, birds, amphibians, fish)
and have an array of functions potentially related to elevation adap-
tation, including response to hypoxia, metabolism of carbohydrates
and lipids, inflammation and immune response, and roles in cellular
respiration. When available, sequences for 40 candidate genes were
extracted from transcriptomes generated for the 2 study species to
improve probe specificity (Lim et al. 2019). The remaining 231 can-
didate gene sequences were extracted from the Anna’s hummingbird
reference genome (Gilbert et al. 2014). We also included 2 mitochon-
drial genes (COX1, COX3) in the probe design. Since mitochondrial
DNA is more abundant than nuclear DNA, the proportion of probes
for mitochondrial to nuclear genes was reduced by Nimblegen to
achieve consistent coverage of all targets (1:72).

Exon Capture

Genomic DNA was extracted from liver tissue for 134 individuals
using the Zymo Genomic DNA Tissue MiniPrep for Solid Tissue kit
(Zymo, Irvine, CA). We also included DNA extractions from the
Museum of Southwestern Biology for 29 individuals, bringing the
total to 163 individuals. The DNA quality of these extractions was
assessed prior to inclusion in our study. Extractions were diluted in
1xTE prior to DNA fragmentation. Extractions were sonicated with
the Bioruptor until the DNA was in the 250-400bp range with very
few fragments exceeding 600bp. For DNA library preparation, we
followed the Meyer and Kircher (2010) protocol and used unique
dual indexes. To reduce PCR bias, we combined products from 2
sets of indexing PCR reactions for each sample. Libraries were then
pooled in groups of 48 for the exon capture procedure.

For the capture experiment, we followed the NimbleGen SeqCap
EZ protocol. We used 1.1pg of DNA from the pooled genomic li-
braries and chicken COT DNA (1:10 COT to library) to block
nonspecific hybridization in the capture reaction. We verified that the
capture reaction DNA fragment size range was between 150-500bp
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Figure 1. Specimen localities plotted on an elevation map with major waterways and range maps for (a) Coe. violifer subspecies and (b) Col. coruscans.
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by comparing pre- and post-capture DNA Bioanalyzer traces. We
also compared qPCR results for 6 positive (exon sequence targeted)
and 6 negative (exon sequence not targeted) control primers between
pre- and post-capture reactions. Finally, post-capture enrichment li-
braries derived from each hybridization were quantified and com-
bined for sequencing. To minimize bias from different sequencing
lanes and to maximize sequence coverage, the pooled capture reac-
tion was split equally across 2 lanes on an Illumina HiSeq 4000 with
150bp paired-end sequencing.

Bioinformatics

After raw sequence reads were de-multiplexed, we used a
custom-designed pipeline to filter reads, build species-specific ref-
erence assemblies, align reads to the assemblies, evaluate align-
ment quality, and call SNPs for population genetic analyses. We
used Trimmomatic v 0.36 (Bolger et al. 2014) to remove adapter
sequences and low-quality reads shorter than 36bp; SuperDeduper
to remove PCR duplicates (https://ibest.github.io/HTStream/#hts_
SuperDeduper); and alignment to the Escherichia coli genome with
Bowtie2 to remove potential bacterial contamination sequences
(Langmead and Salzberg 2012). Overlapping paired-end reads were
merged with Flash v1.2.11 (Mago¢ and Salzberg 2011). We created
de novo species-specific assemblies as references for mapping reads,
rather than mapping to the Cal. anna genome. We chose this species-
specific reference approach to maximize the percentage of aligned
reads for downstream analysis, even though it meant we could not
directly compare gene sequences for the 2 species because assembly
length and number of exons captured differed per species. Efforts to
generate a hybrid de novo assembly with sequences from both spe-
cies failed to increase the percentage of aligned reads (~40-50%) to
an acceptable threshold (>60%).

To build the species-specific references, we chose six individuals
per species that had the most exon capture data and generated de
novo assemblies with SPAdes using default k-mer sizes (Bankevich
et al. 2012). The SPAdes assemblies were combined to make one
reference assembly per species. We mapped unique reads to the
species-specific references with NovoAlign (http://www.novocraft.
com/products/novoalign/), added read groups with Picard v2.1.1
(http://broadinstitute.github.io/picard/), and realigned reads around
indels with GATK v3.6 (McKenna et al. 2010). After alignment, we
evaluated the data with the following statistics: number of raw, fil-
tered, and mapped nucleotides; percentage of reads retained after
sequence quality filtering; percentage of reads aligned to exon target
region (specificity), percentage of exon targeted regions covered by
at least one read (sensitivity), average read coverage, variation in
read coverage, and percentage of nucleotide sites retained at mul-
tiple read coverage depths (2x, 5x, 10x, 20x) (Supplementary Table
S4). We used SAMtools/beftools v1.3.1 (Li et al. 2009) to generate
raw variant call format (VCF) files containing all possible variant
and non-variant sites. We filtered these sites with SNPcleaner v.225
(Bi et al. 2013) to remove loci with too much missing data prior to
downstream analyses. For this site filtering step, we retained sites for
which at least 70% of the samples had a minimum of 3x coverage to
reduce the effects of missing data. We also removed sites that were
within 10bp of indels, were not biallelic, or had excessive heterozy-
gosity (removed sites with P-value < 0.0001).

For calculating allele frequency, genotype likelihood estima-
tion, and genotype calling, we used the analysis of next-generation
sequencing data package, ANGSD (Korneliussen etal.2014). ANGSD
incorporates uncertainty from base calling and alignment errors into

genotype likelihoods with posterior probabilities for genotype calls,
which is especially useful for low-to-medium coverage sequencing
datasets. The scripts for our pipeline and downstream analyses are
available at https://github.com/marisalim/HbirdSeqCap and https://
github.com/CGRL-QB3-UCBerkeley/seqCapture.

Population Genetic Structure

We estimated 2 measures of within-locality diversity: the proportion
of segregating sites (Watterson’s theta, 0,,) (Watterson 1975) and
nucleotide diversity (0 ) (Nei 1987). For each species, individuals
were divided into geographic clusters based on specimen localities
(Figure 1, Supplementary Table S1; referred to as sites A-M in Figure
2 and text). For average 0, and 0_, we used ANGSD to generate per
locality site frequency spectra (with respect to minor allele; folded)
and custom scripts to calculate these statistics.

We conducted several analyses to assess genetic structure be-
tween populations: PCA, test for relatedness, test for admixture, and
between-locality differentiation. PCA results help detect potential
outlier samples, which may exaggerate downstream measures of gen-
etic differentiation between samples. For PCA analysis, we computed
a genotype covariance matrix based on genotype likelihoods with
ngsCovar from the ngsTools package (Fumagalli et al. 2014). The in-
clusion of closely related individuals can bias analyses that estimate
population genetic structure, as family groups are likely to cluster
together, forming their own “population” (Anderson and Dunham
2008). To determine whether our samples included closely related
individuals, we estimated the coefficient of relatedness (0; siblings: 6
> 0.50, half-siblings: 6 > 0.25) with NgsRelate using genotype like-
lihoods from ANGSD (Korneliussen and Moltke 2015). To test for
admixture, we used NgsAdmix, which relies on genotype likelihoods
(Skotte et al. 2013). For each species, we tested an estimated number
of subpopulations (K) from 1 to 5 with 10 iterations each.

We calculated F; and Dxy as 2 independent measures of genetic
differentiation between populations based on geographic locality be-
cause each is subject to calculation biases depending on levels of
sr) or ancestral sequence variation (Dxy) (Cruickshank
and Hahn 2014). F = 0 indicates complete mixing and F, = 1 in-

current (F

dicates complete isolation between populations. Dxy measures gen-
etic sequence divergence between populations and indicates whether
populations are more or less diverse compared to each other. These
measures of genetic differentiation between localities served as inde-
pendent estimations of population genetic structure for comparison
to PCA and admixture results, which have no a priori population
assignment. F. was calculated in ANGSD from the shared site fre-
quency spectra for each pairwise combination of localities (2dSFS;
(Korneliussen et al. 2014). For Dxy, we identified variant and in-
variant sites for each locality with ANGSD and calculated Dxy
with a custom script (https://github.com/CGRL-QB3-UCBerkeley/
seqCapture/blob/master/scripts/popStats.pl). We compared spatial
genetic variation to species and subspecies range boundaries with
IUCN Red List maps (IUCN 2016).

Isolation by Distance

To incorporate information about the geography and distribution
of study species in the Peruvian Andes with the population genetic
structure patterns, we tested for isolation by distance. We calculated
geographic distance in 2 ways. First, we calculated pairwise geo-
desic distances, which measure the shortest distance along a curved
path as opposed to a straight line Euclidean distance using the R
package Imap (Wallace 2012). Second, we calculated cost distances
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between individuals weighted by species distribution using the R
package gdistance (van Etten 2017), and species distribution models
for each species (Fajardo et al. 2014). Paths through regions with
lower species suitability cost more than regions where the species
is predicted to occur. We compared the 2 geographic distances to
the pairwise distance between genotypes using genetic distances cal-
culated from genotype likelihoods in ngsDist (Korneliussen et al.
2014; Vieira et al. 2016). We conducted Mantel tests with 10 000
permutations to estimate the correlation between genetic and geo-
graphic distances.

To visualize isolation by distance patterns on a map, we used the
Estimated Effective Migration Surfaces (EEMS) method (Petkova
et al. 2016). EEMS uses a stepping-stone model to estimate migra-
tion rates along every edge of a user-defined grid of subpopulations
(demes) and interpolates across the region of interest. These maps
provide a means to test for, and identify, barriers to gene flow without
prior knowledge of landscape or geography. Since migration rates
from unsampled regions of the map are interpolated from regions
with samples, we focus our interpretation on results in sampled
areas. This method uses the same pairwise genetic distance matrix as
calculated above for the isolation by distance analysis. We ran EEMS
with 100 demes, 4 x 10° MCMC iterations, and 10° burn-in iter-
ations sampled every 9999 iterations. We checked for convergence
by looking for stationarity in MCMC chain trace plots. Following
Petkova et al. (2016), we adjusted proposal variance values on mi-
gration and diversity rate parameters to achieve proposal acceptance
rates between ~20-30%.

Latent Factor Mixed Models

For selection test analyses, genotype calls (as opposed to genotype
likelihoods) are required to determine which allele each individual
carries at SNPs associated with an environmental variable. We used
ANGSD to call genotypes (Korneliussen et al. 2014). Genotype
calling is sensitive to errors from nucleotide base assignment and
alignment. Therefore, we conducted sensitivity analyses for a com-
bination of several SNP filter thresholds to maximize the number
of SNPs retained for genotype calling. We used the “hetBias_pval”
filter to minimize over-calling heterozygote genotypes, measured as
deviations from Hardy-Weinberg equilibrium (test: default/not used,
1073, 10). “SNP_pval” filters out polymorphic sites that may re-
sult from sequencing error (test: 103, 10, 10~%, 10°). Finally, we
tested different posterior distribution thresholds for calling a geno-
type with the “postCutOff” filter (test: 0.75, 0.85, and 0.95). After
assessing broad parameter behavior, we conducted a reduced sensi-
tivity analysis of the filters for the study species. Next, we filtered the
genotype call dataset to remove all SNPs with minor allele frequen-
cies below 5%, since rare variants are unlikely to be associated with
an environmental variable.

We tested for associations between SNPs and elevation using
the genotype call dataset with the Latent Factor Mixed Models
(LFMM) program (v1.5) (Frichot et al. 2013). We tested other out-
lier approaches, but these methods resulted in either too many false
positives (PCAdapt), skewed F distributions for genetically struc-
tured populations (OutFLANK), or low statistical power (Pearson’s
correlation). LFMM is statistically robust and infers both the gene-
environment association, as well as the underlying population struc-
ture from the data, which is modeled with unobserved latent factors
(K). LFMM can be used to test for associations between environ-
mental measures and allele frequency inputs.

To calculate allele frequencies, we grouped samples into bins
based on the elevation at which they were collected and their gen-
etic population assignment (Supplementary Table S1). We tested in-
crements of 400 m for Coe. violifer and 300 m or 400 m for Col.
coruscans. These increments were chosen to spread individuals as
evenly as possible across bins. Fourteen Coe. violifer samples were
dropped from analysis to ensure bins did not mix samples from
genetically distant populations (Supplementary Table S1). Bins
were standardized by the mean and standard deviation elevation
for all individuals per species. We used discrete elevation bins in-
stead of continuous elevation values in order to calculate allele
frequencies from genotype calls for individuals in each bin as fol-

sum _ of genotypes
total number of genotypes *

lows: 5 We tested parameter sensi-
tivity with allele frequency inputs and set the latent factor to K = 1,
2, or 3 with 5 iterations per test. Per author recommendation, the
allele frequency mode works better for lower latent factor values
(E. Frichot, personal communication). Each iteration was sampled
250 000 times with 25 000 burn-in cycles from the Gibbs Sampler
algorithm. Z-score outputs from the 5 iterations were combined fol-
lowing LFMM documentation protocol. To control for confounding
effects on the number of significant SNPs identified by LFMM, we
followed author guidelines by evaluating the effect of different gen-
omic inflation factor (L) thresholds on P-value distributions. The
P-value distributions are expected to be flat with a peak at 0 and A
close to 1. LFMM authors recommend choosing the latent factor K
based on P-value distributions for A values, rather than genetic struc-
ture methods. For the final LFMM results, we used the R package
“qvalue” to control the false discovery rate at the 0.05 level (Storey
2015). We calculated a Pearson’s correlation coefficient to quantify
the proportion of significant SNPs with positive (r > 0) or negative
(r < 0) clinal shifts with elevation.

Clinal SNP Analysis

For the LFMM SNPs with significant associations to elevation (clinal
SNPs), we next extracted gene and Gene Ontology (GO) biological
process information and compared the results between our study
species. To extract GO terms, we conducted a statistical test for
overrepresented biological process GO categories in the sets of genes
with clinal SNPs for each species from the Panther database (Mi
et al. 2019). There were 3 sets of genes with clinal SNPs: 1) shared
by both species, 2) only Coe. violifer, and 3) only Col. coruscans. For
Panther’s overrepresentation test tool, we selected Fisher’s Exact test
with false discovery rate correction (P < 0.05).

Results

Bioinformatics

By using a de novo assembly approach, ~70-88% of reads mapped
to species-specific references; in contrast, only ~30% of reads
mapped to the Cal. anna genome. The de novo assemblies produced
11 843 gene contigs (assembly size: 17.2Mb) for Coe. violifer and
11 815 gene contigs (assembly size: 19.1Mb) for Col. coruscans. All
of the targeted candidate genes from previous studies were captured.
Additional Tllumina sequence quality statistics are summarized in
Supplementary Table S3. On average, 74% of reads were aligned
to a targeted region (specificity) and 99.47% of the targeted regions
had at least 1X coverage (sensitivity). At least 92.19% of nucleotide
sites had 20X coverage. Further exon capture experiment statistics
are in Supplementary Table S4.
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The final dataset for downstream population genetic analyses in-
cluded 156 individuals: 59 Coe. violifer and 97 Col. coruscans. We
removed one sample per pair of closely related Coe. violifer individ-
uals that had 6 > 0.25 (n = 3; average 0 = 0.32) and 4 Col. coruscans
samples that were extreme outliers in initial PCA analyses based on
component scores (Supplementary Table S5).

Population Genetic Structure

The relative genetic diversity within localities was comparable for
0 and 0_ for both species (Supplementary Table S6). For Coe.
violifer, within-locality diversity was highest for the samples near
the Huallaga River (B) (0, = 3.21 x 107, 6 = 3.09 x 10) and
lowest for samples near the Marafion River (A) (0, = 1.87 x 107,
0_=2.03 x 10-*). There was little variation in within-locality genetic
diversity at all Col. coruscans localities (0, = 1.01 x 102 - 1.25 x
102,0 = 8.51 x 102 - 8.70 x 10°9).

The PCA and admixture analyses (K = 3) identified 3 distinct
genetic clusters for Coe. violifer (PC1: 12.2%; PC2: 3.2%; PC3:
2.9%; Figure 2a), however the groupings differed slightly. The ad-
mixture results match the PC1 x PC3 groups, while PC1 x PC2
groups the samples south of the Huallaga River (B, C) in one cluster
separate from those near the Marafién River (A). The F_, results
support the PC1 x PC2 results, as there is gene flow between sam-
ples south of the Huallaga River (B, C) (F,, = 6.20 x 10-?), while the
Dxy results show very similar values for all 3 northern localities (A,
B, C) (Dxy = 5.60 x 102 - 5.80 x 10-2) (Supplementary Table S7).
PC1 x PC2 grouped southern samples (D, E, F) together and Dxy
was similar (Dxy = 5.40 x 1073 - 5.60 x 1073). In contrast, samples
east of the Apurimac River (E) were distinct in admixture and PC1 x
PC3 assignment, and gene flow was lower between them (E) and
nearby localities (D: Fg, = 0.11; F: Fg = 0.12). These analyses col-
lectively support a primary divide between northern (A, B, C) and
southern (D, E, F) localities. Based on subspecies range maps, this
divide roughly matches the distribution break of Coe. v. dichroura in
the north from the 2 in the south (Supplementary Figure S1a), how-
ever genetic differentiation between Coe. v. albicaudata and Coe.
v. osculans was unclear: none of the genetic structure patterns match
the distribution of samples based on subspecies range maps.

Our sampling for Col. coruscans was distributed across the en-
tire length of Peru and, surprisingly, there was no apparent popu-
lation structure (Figure 2b). In contrast to the Coe. violifer PCA,
the first 2 principal components explained very little of the vari-
ation (PC1: 1.72%; PC2: 1.19%) and therefore support a lack of
population genetic structure (Figure 2b). Along PC1, the apparent
3 vertical bands were not explained by variation in sampling con-
ditions (locality, elevation, season), sex, or sequencing design or
quality (Supplementary Figure S2). Thus, the “pattern” may not be
real as the proportion of variance explained by PC1 was quite small
(1.72%). Furthermore, the admixture analysis with the lowest max-
imum likelihood score was K = 1 and between-locality genetic dif-
ferentiation was low for all pairwise comparisons (Fg, = 1.41 x 10~
-4.39 x 102 and Dxy = 1.52 x 102 - 1.55 x 102) (Supplementary
Table S8). Together, these analyses support a single large popula-
tion with high gene flow throughout the range in Peru. However,
gene flow across the sampled range may not be random. For illus-
tration only, we show K = 2 admixture results in Figure 2b, which
suggests slight divisions in population assignment pointing to gene
flow around the high Andes in northern Peru linking populations on
the Western and Eastern Cordilleras.

Isolation by Distance

Based on Mantel test results for both species, the geodesic distance
and cost distance showed similar trends with genetic distance
(Supplementary Figure S3). The role of isolation by distance was
evident for Coe. violifer (r = 0.75, P < 0.01; » = 70, P < 0.01)
(Supplementary Figure S3a). In contrast, there was no isolation by
distance between Col. coruscans individuals (r = 0.05, P = 0.15;
7=0.03, P = 0.23) (Supplementary Figure S3b).

EEMS analysis maps showed regions of high and low migration
between localities. For Coe. violifer, the primary region of low mi-
gration splits the northern (A, B, C) from the southern (D, E, F) lo-
calities (Figure 2a). There was slightly lower migration between the
most northern samples (A) and the others. The estimated region of
low effective migration was striking for Col. coruscans and likely
corresponds to the high ridge of the Peruvian Andes, echoing sup-
port for nonrandom movement (Figure 2b). The EEMS map esti-
mated higher migration rates around the Andes with a possible route
in the Marafi6n river depression to connect the Western and Eastern
Cordilleras.

Latent Factor Mixed Models

The final parameters for calling genotypes from all captured genes
excluded the “hetBias_pval” filter, as it was too stringent. The
“postCutOff” filter was the least sensitive parameter, so we chose
the more conservative value (0.95). Smaller values of “SNP_pval” re-
moved too many SNPs, so we set it to 10-3. With these parameters, we
obtained 198 092 SNPs for Coe. violifer and 690 274 SNPs for Col.
coruscans (Supplementary Table S9). After filtering out rare variants,
we retained 91 127 SNPs for Coe. violifer and 215 694 SNPs for
Col. coruscans for analysis with LFMM (Supplementary Table $10).
We had to remove hemoglobin markers (HBB and HBE1) from the
analysis, as alleles were difficult to resolve between members of this
gene family. These genes of interest should be pursued in future study
but require refined sequencing to accurately differentiate SNPs from
gene duplicate sequences.

After running LFMM, we evaluated the resulting number of stat-
istically significant SNPs associated with elevation by examining
P-value frequency distribution shape for several inflation factor (A)
values (Supplementary Table S11, Supplementary Figure S4). For
both species, the P-value frequency distributions for A > 1 shifted
up, indicating too few SNPs detected (false negatives). The distri-
butions for & < 1 shifted down slightly, indicating too many SNPs
were detected (false positives). Thus, we chose the SNP results from
L =1and K = 2 to define clinal SNPs for final analysis. We used the
elevation bins spaced every 400 m for the final analysis of both spe-
cies datasets.

Clinal SNP Analysis

In total, we identified 3495 SNPs (3.84%) on 1903 genes for Coe.
violifer and 3962 SNPs (1.84%) on 2137 genes for Col. coruscans
that exhibited significant elevational clines from LFMM analysis
(Supplementary Table S11). A set of 567 genes had clinal SNPs
for both species. For Coe. violifer, 1980 SNPs had positive trends
(average r = 0.79 = 0.12) and 1515 SNPs had negative trends
(average r = -0.67 = 0.19). For Col. coruscans, 1674 SNPs had posi-
tive trends (average = 0.80 = 0.11) and 2288 SNPs had negative
trends (average r = =0.76 = 0.12). The distribution of Pearson cor-
relation coefficients for these trends are shown in Supplementary
Figure SS.
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Figure 2. Three types of genetic structure plots each for (a) Coe. violifer (n=59) and (b) Col. coruscans (n = 97). For reference, the point or horizontal line colors
refer to sample groups used to calculate Fg and Dxy (see online version for group colors). The PCA plots show the percentage of variation explained by principal
components. The estimated effective migration surface maps show log migration rate in geographic space overlaid on a map of Peru (black = higher gene flow,
white = lower gene flow). The vertical bars of the admixture plots show the proportion of individuals assigned to K= 3 populations (black, light gray, white) for
Coe. violifer and, shown for illustration purposes only, K= 2 populations (black, white) for Col. coruscans.

The full list of candidate and novel genes with clinal SNPs re- significant overrepresented GO biological process categories, how-
covered in our study is available in Supplementary Table S12. ever the analysis did serve to characterize the categories represented
The Panther overrepresentation test did not isolate statistically in our dataset, many of which relate to findings in the high-elevation
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literature (Figure 3, Supplementary Table S13). While it is difficult
to draw further conclusions about the exact mechanisms connecting
these functions to elevation adaptation, we examined 1) how the GO
categories compared between our 2 study species and 2) whether
genes with clinal SNPs have been previously identified in the high-
elevation adaptation literature.

For a broader investigation of the GO categories, we compared the
number of genes per GO category between the sets of unique genes
per species or shared by both (Figure 3). Across all sets, the majority of
genes function in metabolism and cellular processes, though numbers
vary. For example, 257 metabolic-related genes were shared by both
species, while there were 1216 and 2242 different metabolic-related
genes for Coe. violifer and Col. coruscans, respectively. There were
similar patterns for other gene functions, illustrating the redundancy
of function across different genes with clinal SNPs in these highland
species. There were some differences in the number or presence of
genes for other categories. For example, 24 muscle-related genes were
shared by both species, while Coe. violifer had 41 and Col. coruscans
had 7 different muscle-related genes. There were 16 immune response-
related genes shared by both species, while Coe. violifer had 326 and
Col. coruscans had 54 different immune response-related genes. Two
categories, embryo development and regulation of response to oxida-
tive stress, were only present for Coe. violifer, highlighting that genetic
adaptation to elevation is complex and impacts both repeated and
unique gene functions for different species.
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Of the genes with clinal SNPs, 154 genes for Coe. violifer, 166
genes for Col. coruscans, and 116 shared by both species are candi-
date genes in high-elevation literature (Supplementary Table S12).
The proportion of clinal SNPs in candidate (Coe. violifer: 0.77%,
Col. coruscans: 0.34%) and in other genes (Coe. violifer: 3.1%, Col.
coruscans: 1.5%) was comparable between species. For example, we
identified clinal SNPs on ASH2IL., WNT7B, and EPASI in the Coe.
violifer analysis (Supplementary Figure S6a). ASH2L plays a role in
DNA repair and response to radiation (Tibetan highland chicken:
Zhang et al. 2016). WNT7B regulates hypoxia-induced development
of vascular network in the lungs and heart, and is involved in oxygen
homeostasis (Tibetan ground tit: Yanhua Qu et al. 2013). EPAS1
(HIF2a), a component of the hypoxia-inducible factor pathway
that regulates changing oxygen levels, has been studied extensively
in the elevation adaptation literature for human populations (Beall
et al. 2010; Yi et al. 2010) and identified for other highland spe-
cies (Wang et al. 2014; Zhang et al. 2014; Graham and McCracken
2019), including Andean hummingbirds (Lim et al. 2019). For Col.
coruscans examples, we identified clinal SNPs in SENP1 and COX1
(Supplementary Figure S6b). SENP1 is associated with chronic
mountain sickness (Andean human populations: Zhou et al. 2013).
COX1 plays an important role in the production of ATP during
respiratory electron transport and oxidative phosphorylation (bar-
headed goose: Scott et al. 2011; polar bears: Welch et al. 2014).
SMURF2 and RYR2 were among the shared candidate genes with
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Figure 3. The bar plots show the number of genes categorized per simplified Gene Ontology (GO) biological process (y-axis log10 scaled). Each column of plots
represents a different and unique set of genes for which clinal SNPs were identified as significantly associated with elevation by LFMM. The columns differ by
whether clinal SNPs occur on (a) the same genes for both highland species, or different genes for (b) Col. coruscans only or (¢) Coe. violifer only.The full list of

genes and their associated GO biological process (level 6) category is available in

Supplementary Table S13.
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clinal SNPs for both species (Supplementary Figure S6). SMURF2
plays a role in the vascular inflammatory response of endothelial
cells in hypoxic conditions (highland Ethiopian human populations:
Huerta-Sanchez et al. 2013). RYR2 is involved in cardiac muscle
contraction (snub-nosed monkey: Yu et al. 2016; Qinghai-Tibet
Plateau gray wolf: Zhang et al. 2014). While the examples above
represent a small snapshot, the presence of any clinal SNPs on candi-
date genes again highlights their likely importance for high-elevation
adaptation across taxa (Supplementary Table $12).

Discussion

Migration, genetic drift, and natural selection determine the fate of
beneficial alleles in populations, but resulting patterns can be in-
distinct. By quantifying population genetic demography, we could
present a more nuanced interpretation of clinal variation in SNPs
detected across elevational gradients in the Peruvian Andes for 2
highland hummingbird species. Since population genetic structure
patterns differed between the 2 study species, the presence of gen-
etic clines from LFMM analysis suggests putatively adaptive alleles
are maintained in different ways. As these genetic clines encompass
elevation changes of a few hundred meters, our genome-wide sur-
veys highlight how natural selection along gradients makes trop-
ical mountains “taller” by promoting local adaptation. In addition
to finding clinal SNPs on previously identified candidate genes, we
detected clinal SNPs on genes novel to our study with functions
potentially relevant to responding to high-elevation conditions.
Concordant with previous research, including our own, these results
point to natural selection and repeated evolution on genes, especially
in their cellular functions, instead of specific point substitutions
(Arendt and Reznick 2008; Natarajan et al. 2016; Lim et al. 2019).

Our analysis of the genetic structure for Coe. violifer revealed
geographically structured populations, isolation by distance, and
some gene flow. Previous research on the evolutionary history
of the Coe. violifer subspecies suggested diversification occurred
from north to south in Peru based on the disjointed distribution of
plumage color differences (Remsen 1984; Schuchmann and Zuchner
1997). Our results suggest the subspecies are not only phenotypically
different (Schuchmann and Zuchner 1997), but Coe. v. dichroura is
also genetically distinct from the southern subspecies (Figure 2a,
Supplementary Figure S1a). The PCA and admixture results dif-
fered slightly in how individuals were assigned to genetic clusters,
but there was consensus on the division between northern and
southern localities approximately divided by the Apurimac drainage
region (Figure 2a). There is a transition in vegetation from dry forest
in the west to humid, montane forest in the east in the Apurimac
River valley, a prominent barrier to dispersal for other avian species
(Hosner et al. 2015; Benham and Witt 2016). The distribution mis-
match of phenotypic and genotypic variation for Coe. v. albicaudata
and Coe. v. osculans has been observed for other Coeligena species
(Parra 2008) and other phenotypic traits (e.g., Benham and Witt
2016), suggesting these subspecies have not diverged genetically
yet as ecological pressures rather than geographic ones influence
plumage evolution (Winger 2017).

In contrast, the widespread geographic distribution, broad
habitat requirements, and degree of gene flow show that Col.
coruscans has few dispersal limitations. Without exception, all ana-
lyses identified a single, large panmictic population. Col. coruscans
is one of the few well-documented neotropical hummingbird species
with some migratory subpopulations for which migration includes

elevational shifts. The extensive gene flow we observed may reflect
the inclusion of migratory individuals during the non-breeding or
migration seasons (only 12 of 97 specimens were sampled during
the core breeding season), but nonetheless illustrate the distances
Col. coruscans individuals are capable of traversing. In addition, the
0 and 0_ values were higher for Col. coruscans compared to Coe.
violifer. Higher proportions of segregating sites and nucleotide di-
versity could result from large effective population size during the
evolutionary history of the species, or recent population expansion
(Fuchs et al. 2017). Despite the lack of population genetic structure,
the Estimated Effective Migration Surface map indicated that move-
ment was reduced across the high Andean ridge. Birds appear more
likely to cross the Andes in the lower elevation Marafion river de-
pression region compared to the Central Andes which start south of
the depression (Figure 2b). This pattern of movement could explain
the PCA and admixture results where northern and eastern individ-
uals (e.g., G, K) were slightly more genetically similar compared to
specimens collected in southwestern localities (e.g., M).

Given the population genetic structure of these species, several
lines of evidence support our interpretation that clinal SNPs relate to
local adaptation to elevation. First, migration-drift-selection balance
and local adaptation along elevational gradients have been observed
for other Andean bird species, such as the rufous-collared sparrow
(Cheviron and Brumfield 2009), house wren (Galen et al. 2015),
and speckled teal (Graham et al. 2018). Genes with clinal SNPs in
our study have similar functions to those in these studies. Andean
avian research has also shown that genetic differentiation can re-
sult in morphological clines along broad (e.g., torrent ducks across
the entire Andean mountain chain; Gutiérrez-Pinto et al. 2014) and
narrow elevation gradients (e.g., wedge-billed woodcreepers along
a 1500 m elevational gradient in Ecuador; Mila et al. 2009), sug-
gesting that different migration-drift-selection dynamics can result
in local adaptation.

Second, clinal SNPs were found for both hummingbird species
despite demographic and ecological differences. These patterns illus-
trate that natural selection can shape locus-specific variation, even
as gene flow and genetic drift shape genome-wide population genetic
variation. Given their genetic structure and reduced levels of gene
flow, clinal variation in Coe. violifer populations could have arisen
from the addition of new genetic material via small amounts of gene
flow between populations. Simulation studies have demonstrated
that drift and moderate migration rates decrease the potential for
adaptation, with migration adding new variants to the population,
counteracting the loss of diversity from drift (Blanquart et al. 2012).
This migration-drift balance implies genetic variation at adaptive
loci could subsequently be maintained in a given population by low
gene flow with little influence from drift. In contrast, high migration
rates can homogenize genetic differentiation (Blanquart et al. 2012).
The widespread distribution and lack of population subdivision in
Col. coruscans suggests the observed locus-specific clinal variation is
maintained by selection strong enough to supersede the homogen-
izing effect of gene flow. In both cases, the presence of clinal SNPs
provides evidence that local adaptation can maintain higher genetic
variation at specific SNPs, independent of genome-wide population
genetic processes.

Finally, we found similar categories of cellular gene function
across all sets of genes with clinal SNPs (Figure 3). Some of the
strongest evidence for adaptation across global highland taxa re-
lies on identifying selection for the same biochemical pathway,
gene, or amino acid substitution (Rosenblum et al. 2014; Bailey
et al. 2015; Lim et al. 2019). Our results suggest that redundancy
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in cellular gene function allows for multiple mechanisms to
underlie genetic adaptation to high elevation. For example, there
were strong clines in SNP allele frequencies in genes with cel-
lular functions that could be related to high-elevation conditions
stressors, including hypoxia response, energy metabolism, and
immune response. For both Coe. violifer and Col. coruscans, pre-
viously identified candidate genes, and those novel to our study,
shared these key functions (Figure 3, Supplementary Table $13).
Still, the lack of complete overlap in candidate genes with signifi-
cant SNP-elevation associations between our hummingbird spe-
cies, as well as the presence of the many candidate genes novel
to our study reinforce prior findings that there are many ways
to adapt (Arendt and Reznick 2008; Natarajan et al. 2016; Lim
et al. 2019) and much more to discover about the mechanisms of
genetic adaptation.

Our study shows natural selection can operate in similar ways
despite differences in demographic history. Population structure re-
sulting from isolation across valleys has been found for many species
(Weir 2009; Turchetto-Zolet et al. 2013; Winger 2017). Our find-
ings provide genome-wide evidence connecting turnover in environ-
mental conditions of a few hundred meters in elevation to shifts in
potentially adaptive allele frequencies. That narrow niche tolerance
in tropical species effectively makes mountains “taller” in the tropics
is a longstanding hypothesis for explaining the extraordinary bio-
diversity of the tropical Andes (Janzen 1967; Fjeldsd et al. 2012).
By controlling for drift and migration to identify signals of natural
selection, our results reveal more localized putative adaptations to
environmental conditions along altitudinal gradients than previ-
ously suspected. The parallels in genes with clinal SNPs between
Coe. violifer and Col. coruscans, despite their unique population
dynamics, reinforces evidence for strong selective gradients with
elevation adaptation to the ecological conditions of the Andes. The
presence of elevation-associated SNPs points to local adaptation as a
likely mechanism making tropical mountains “taller” as elevational
gradients have structured variation across hundreds of genes despite
migration.

Future research is needed to investigate whether and how many
elevation-associated SNPs identified here confer fitness advantages.
Additional research may also be directed at the role of small-effect
loci, as well as features of genome architecture that could explain
regions of SNP abundance, such as linked loci or mutation hotspots
(e.g., Galen et al. 2015). Our results reflect the complexity of tracing
the genetic underpinnings of adaptation and reveal predominantly
repeated selection for cellular functions rather than specific genetic
markers. These results may further shed light on how narrow ele-
vational ranges are maintained in hummingbirds, and likely other
montane taxa distributed within sharply defined elevational limits.

Supplementary Material

Supplementary material can be found at Journal of Heredity online.
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