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Abstract The emerging field of plasmonics can lead to
enhanced light-matter interactions at extremely nanoscale
regions. Plasmonic (metallic) devices promise to efficiently control
both classical and quantum properties of light. Plasmonic
waveguides are usually used to excite confined electromagnetic
modes at the nanoscale that can strongly interact with matter. The
analysis of these nanowaveguides exhibits similarities with their
low frequency microwave counterparts. In this article, we review
ways to study plasmonic nanostructures coupled to quantum
optical emitters from a classical electromagnetic perspective.
These quantum emitters are mainly used to generate single-photon
quantum light that can be employed as a quantum bit or “qubit’’
in the envisioned quantum information technologies. We
demonstrate different ways to enhance a diverse range of quantum
electrodynamic phenomena based on plasmonic configurations by
using the classical dyadic tensor Green’s function formalism.
More specifically, spontaneous emission and superradiance are
analyzed by using the Green’s function-based field quantization.
The exciting new field of quantum plasmonics will lead to a
plethora of novel optical devices for communications and
computing applications operating in the quantum realm, such as
efficient single-photon sources, quantum sensors, and compact on-
chip nanophotonic circuits.

Index Terms Quantum electrodynamics, Green’s function,
superradiance, spontaneous emission, waveguide, plasmonics

[. INTRODUCTION

Light can couple to metal electrons along a metal-dielectric
interface to form a surface wave. This wave is based on the
collective electron oscillation and is called surface plasmon
polariton (SPP) [1]-[3]. It is characterized by intense
electromagnetic fields confined in a subwavelength region that
decay quickly away from the interface. Due to their unique
properties, SPPs have found a broad range of applications in
various areas of science, including light harvesting, energy
transfer, biochemical sensing, medical science, and high-
resolution imaging [4]-[7]. Surface plasmon waves can also
serve as an additional energy decay channel for quantum optical
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emitters located at their near field, leading to more efficient
generation of quantum light or, equivalently, single-photon
stream radiation [8]-[11]. They promise to open new routes
towards the manipulation and boosting of several inherently
weak quantum electrodynamic phenomena [12], [13].

Quantum electrodynamics is the study of quantized optical
radiation and its statistical properties and interaction with
materials [14]. It is mainly dedicated to the generation,
manipulation, control, and entanglement of photons that are
envisioned to serve as quantum bits or “qubits’’ in quantum
information processes. Photons are ideal carriers of information
because they are fast, robust, and capable of long-distance
travel. They can also have different polarization states
providing an additional degree of freedom in the efficient
transfer of information and its computation. Integrated optical
components operating with photons based on plasmonic
(metallic) nanostructures are expected to have a compact
footprint with nanometer dimensions combined with extremely
low power consumption. The ultrafast and coherent nature of
plasmonic-based light-matter interactions promises to
overcome the quantum decoherence problem [15] that consists
the major concern towards the practical application of several
important quantum technologies.

The electrodynamics of dissipative (lossy) media, such as
metals at optical frequencies, can be described by the widely
used in electromagnetic engineering Green’s tensor formalism
which satisfies Maxwell’s equations [16], [17]. The Green’s
function is a 3-by-3 dyadic tensor quantity that characterizes the
impulse response of an electromagnetic system, where each
column of the tensor is the induced electric field produced by
an electric dipole polarized along the corresponding coordinate
system axis. The quantization of the radiation field is based on
the classical Green’s function representation of the vector
potential, identifying the external sources as noise that are
usually associated with the loss of the dissipative medium [18]—
[22].

In the quantum realm, spontaneous decay is generated by
both vacuum fluctuations of the field and radiation reaction.
This quantity can be drastically modified by shaping the
material properties of the surrounding environment and the
resulted phenomenon is called Purcell effect [23]-[25]. For
example, plasmonic waveguides or nanoantennas can
efficiently tailor the spontaneous emission properties of an
emitter with respect to free space due to their ability to improve
photon collection efficiencies [26]-[29]. The relevant quantity



here is the local density of states (LDOS), a proportionality
constant that characterizes the light-matter interaction strength
and the modification in the resulting emission rates.

Even though many coherent light-matter interaction
processes, such as spontaneous decay, are essentially non-
classical, thus requiring a full quantum description, the media
the quantum emitter is coupled to can be rigorously
incorporated into the quantum formalism through the classical
Green’s function G [24], [30]. Indeed, the entire information
required to characterize several quantum electrodynamic
processes can be encapsulated in the classical electromagnetic
Green’s function formalism [31]. More specifically, G
imaginary part can describe the LDOS [32], resulting in the
spontaneous emission rate calculation [27], [33], while G real
part is capable to describe the photonic Lamb shift, a resonant
frequency shift effect caused by the coupling of the emitter’s
bound electrons to vacuum modes [34], [35]. Furthermore, the
two-point Green’s function (also called mutual density of states)
hold the information of the signal’s propagation response from
an emitting to a detection point [36]-[38].

All these quantum optical quantities are directly
correspondent to the classical electromagnetic theory widely
used by the electromagnetic engineering community [39].
Therefore, the emerging field of quantum plasmonics has
attracted and will continue to attract considerable interest in the
electromagnetics and quantum optics research communities
[40]-[43]. The existing development of plasmonic
nanostructures has been found to considerably boost many
fundamental quantum electrodynamic phenomena mainly
based on dipole-dipole interactions, such as van der Waals
forces and vacuum friction [44], Forster energy transfer [19],
[45], individual or collective spontaneous emission [46]-[48],
and quantum information protocols like the realization of
quantum phase gates [17], [49] and quantum entanglement
[501-[53].

II. DYADIC GREEN’S FUNCTION

A. Derivation of dyadic Green'’s function

To determine the dyadic Green’s function of the electric field,
we start with the wave equation in a homogeneous medium:

VxVxE(r)—k’E(r)=iou,uj(r), (1)
where j(r) is an arbitrary current source distribution that can be
viewed as a superposition of multiple point current sources. We
replace the source term j(r) in Eq. (1) by the Dirac-delta
function representing a point source §(r — r’) and define for
each direction a corresponding Green function. For example,
Eq. (1) becomes in the x- direction:

V xV x Gy (r,r')—/’czaX (r.r')=8(r—r)n., (2)
where nx represents the unit vector along the x-direction and
8(r — r') is the Dirac-delta function representing a single point
current source. As can be seen by Eq. (2), the Green’s function
is the induced field resulted from a delta function excitation.
Similarly, we can formulate other two equations for a point
source polarized along the remaining y-direction and z-
direction. After accounting for all orientations, we can express
the general electric dyadic Green’s function as:

VxVxG(r,r')-k*G(r,r')=15(r-r'), (3)
where I denotes the unit dyadic and G is a dyadic Green’s
tensor whose ith column represents the electric field because of
an arbitrary source polarized along the ith direction. It is worth
mentioning that, in quantum optics, sometimes different
constants are introduced on the right-hand side of Eq. (2) by
convention, leading to different constant coefficients in the
dyadic Green’s function shown in Eq. (3). However, the electric
field remains the same in both notations.

As shown in Fig. 1, once we know the dyadic Green’s
function G of the electromagnetic system under study, we can
find the electric field by the integration of the product of Green’s
function G and source term j(r) over a volume ¥ and using the
wave equation (1):

E(r)= iwyOIVG(r,r'),u(r’)j(r')dV', &)
where r represents the position of the evaluated field point and
r designates the location of the point source (see Fig. 1).
However, we know that the general solution of the
inhomogeneous wave equation (1) consists of a homogeneous
solution (j(r) = 0) and a specific inhomogeneous solution
given by Eq. (4). Therefore, we need to add the homogeneous
solution Eg in Eq. (4) and the resulted general electric field
solution will have the final form:

E(r)=E, +ia)ﬂojVa(r,r')y(r')j(r’)dV’, (5)
while the corresponding magnetic field will be:
H(r)=H,+ [ [VxG(r.,r)]j(r)dV", (©)

where Eg and Hy are the electric and magnetic fields in the
absence of the current j. The above two equations are called

volume-integral equations [24]. They are very important in
electromagnetic field theory because they form the basis of
various widely used theoretical and numerical modeling
techniques, such as the method of moments and the coupled
dipole method [1], [3]. Note that the following two relations are
always valid for Green’s functions applied to reciprocal
systems:
E*(r,r',a)):a(r,r’,—a)), @
a(r’,r, w)= a(r,r’, ),
where G(r,r', w) represents the classical Green’s function
when the field propagates from a dipole source r' to r.
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Fig. 1. Illustration of the dyadic Green’s function G(r, '), where the electric
field E(r) in one arbitrary point can be determined through the integration of
G(r,r") and a distributed source. Reproduced from [24].

B. Electric and magnetic fields computed by Green’s function

We compute first the electromagnetic fields induced by an
electric dipole source embedded inside a homogeneous, local,
linear, and isotropic medium. The current density j in the wave
equation (1) can be regarded as an oscillating electric dipole
located at the charge current center ry:

i(r)=—iowpS(r-r,), (8)
where p is the electrical dipole moment of the dipole source.
Therefore, after introducing the dipole current density of Eq. (8)
into the volume-integral equations (5)-(6) and assuming that all
the electromagnetic fields are produced from the electric dipole
source (i.e., Eg = Hy = 0), we get the simplified relations:

E(r)= a)z,u,uoa(r,ro)p,

H(r)= —ia)[V xa(r,ro )}p
Hence, the fields introduced by any arbitrarily polarized dipole
source p placed at ry can be determined by the dyadic Green

function G(r, r,). For example, the Green function in free space
(vacuum) can be derived by using Eq. (3) and is equal to:
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where R =r—r, and R ® R is the outer product of the distance

vector R . The imaginary part of the vacuum dyadic Green’s
function at the dipole source point r = 1, is Im[G° (1, Ty, ®)] =
k/6m, representing purely radiative losses, since free space is
lossless. The real part of the dyadic Green’s function (i.e.,
Re[G°(ry, 1y, ®)]) is infinite at the same point, because of the
divergent nature of the homogeneous Green’s function in
vacuum.

In the general case of inhomogeneous and lossy media, the
dyadic Green’s function, i.e. the solution of Eq. (3), can be
represented as [30], [54]:

- ——hom —sc

G(r,r,0)=G  (r,r,,0)+G (r,r, o), (11)
where the first term GP™(r, ry, w) is the analytically known
expression in homogeneous and infinite media (for example,

free-space G°(r, ry, w) with expression given by Eq. (10), while
the second term GS¢(r, 1, ) accounts the contribution from the
radiative process of scattering due to the inhomogeneous
scenarios, such as plasmonic waveguides, nanoparticles or other
nanostructures [17], [30], [34].

III. QUANTUM PHENOMENA ANALYZED BY GREEN’S FUNCTION

The quantization scheme [18] of the dyadic Green function-
based electric field can be employed to analyze a diverse range
of quantum electrodynamic phenomena, such as spontaneous
emission, collective spontaneous emission or superradiance, and
other effects based on coherent dipole-dipole interactions of
quantum dipole emitters coupled to any electromagnetic system.
One of the remarkable properties of the dyadic Green’s function
is that it can be directly related to the LDOS, the spontaneous
decay rate and the Lamb shift, as well as the spectrum of a
quantum emitter observed at a detector. This scheme is widely
used in the literature because it is semi-classical, simple to
implement, and was found to accurately describe the response
of quantum emitters when they are coupled to a dispersive and
lossy environment. In quantum optics, the quantum emitters are
always surrounded by an omnipresent fluctuating
electromagnetic field, also known as vacuum state fluctuations
(more details can be found in a relevant review paper [14]). This
field is always there and fluctuates, even when the surrounding
space is in its lowest energy state, called vacuum state, where no
photons are present, and no light can be detected. These vacuum
state fluctuations lead an emitter to decay “spontaneously” to a
lower state, an effect also known as spontaneous emission [55].
The quantum emitter can be excited optically from the ground
to the excited state leading to a spontaneous single-photon
emission [56]. One of the most widely used electric field
quantization approaches is based on the Green’s functions
Langevin local quantization [14], [57], which is extremely
useful for calculating the lifetime and Purcell factor by adopting
the Fermi’s golden rule [24]. The quantum operator of the
electromagnetic field in the presence of the plasmonic reservoir
by using the Schrodinger equation approach is given by [13],
[17]:

A . fi T 6()2 ’ ~ ' 2 (! ’
E@r) =i fﬂ—go}[da)c—zj‘,llm(g(r,a)))G(r,r,a))f(r,a))dr,

(12)
where f (r,a)) is the bosonic field operator that plays the role

of the local annihilation operator of the field excitation.
Moreover, g(r',a)) is the complex permittivity of the

surrounding space. Although the spontaneous emission process
is in principle a non-classical procedure and requires the
quantum operator description to compute its quantities, the
coupling between emitter and medium can be rigorously
characterized by the dyadic Green function formalism. Under
the point-dipole approximation [58], which assumes that the
quantum emitter can be modelled as a point dipole source, the
local density of states (LDOS) of the electromagnetic modes is
directly proportional to the imaginary part of the corresponding
Green’s function, and the resulted individual spontanecous decay
rate can be computed by [24], [59]:
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p(ro,a)o):%[np -Im{a(ro,ro,a)o)}-np], (14)

where p(1y, g)is the LDOS of the two-level system depending
only on the position ry of the dipole source, ny, is an unit vector
directed to the electrical dipole moment p (p = [p|n,, ), i is
the reduced Planck’s constant, and w, is the atomic transition
frequency of the quantum emitter. The spontaneous decay
definition given by Eq. (13) is based on Fermi’s golden rule
which is valid in the weak coupling regime [12], [13], [24].
While the strong coupling analysis requires more sophisticated
approaches involving the solution of time-dependent equations
of motion [57], [60]. Note that the total spontaneous decay rate
for plasmonic (lossy) systems needs to be divided into radiative
¥r and nonradiative ¥y, contributions [59]: ¥sp, = ¥y + Vn,. The
radiative and nonradiative rates characterize the radiation and
dissipation, respectively, processes of the generated photons by
a quantum emitter. The ratio between the radiative decay y,. and
the total decay ¥, + ¥y, is defined by the quantum efficiency QY
of radiative decay (also known as quantum yield):

oy=2r -7 (15)
Vo o VTV

Hence, the quantum efficiency provides a metric of the radiation
performance of a plasmonic system combined with a quantum
emitter, similar to the antenna efficiency metric widely used in
microwave frequencies [39]. More details about how to enhance
the spontaneous emission with plasmonic structures are
provided later in Section V.A of this review paper. Note that by
inserting the dyadic Green’s function in free space with
expression (10) into Eq. (14), the well-known value of an
emitter’s LDOS in free space can be derived to be [24]:

2
o,
and the spontaneous decay rate in free space is equal to:
3 2
1L (17
Y 3mehe

Apart from LDOS, which can be used to compute the
spontaneous decay rate of a single isolated quantum emitter, the
non-local density of states (NLDOS) can also be calculated to
evaluate the resultant density of states caused by interference
phenomena and coherent dipole-dipole interactions between two
emitters. The total collective spontaneous emission rate can be
computed by the NLDOS as [36], [50]:

71-,-:(2w02/50h02)1m[p:'G(ri’rj’wo)'pj]- (18)
For emitter i, p; represents the complex conjugate of the
electrical dipole moment. Equation (18) is a more general
version of Eq. (13), since it provides a more convenient way to
calculate the emission decay caused by both self-interactions
(7i) and mutual-interactions (y; j), where y;; is also known as
the spontaneous decay rate given before by expression (13). As

an example, y;, represents the collective contributions to the
emission decay originating from the interference of emitter 1

placed at position r; with emitter 2 placed at position 7. These
mutual interactions are used to compute the effect of collective
spontaneous emission or superradiance, as it will be
demonstrated later in Section V.B of this review paper.

On a relevant context, the discovery [61] and explanation [62]
of the vacuum Lamb shift lies at the foundation of modern
quantum electrodynamics. The Lamb shift g;; is manifested as a
resonant frequency shift in the emitter’s atomic transition
frequency caused by the coupling of its bound electrons to the
surrounding vacuum state fluctuations [34]. The Lamb shift
induced by a homogeneous medium can be incorporated in the
definition of the emitter’s resonant frequency. It is calculated by
using the scattering or real part of the Green’s function given by
the formula [34]:

g, =(o /e’ )Relp; -G(r.r.0,)p,].  (19)
Hence, g, represents the photonic Lamb shift due to the self-
interaction of each quantum emitter (qubit) with the
environment. Note that this coherent quantity is proportional to
the real part of the dyadic Green’s function and is different

compared to the decay rates y presented before, which are
mainly based on incoherent processes. The coherent dipole-

dipole interactions are characterized by g, » @& property

analogous to the real part of the Green function The g;;
coefficient represents the coupling between emitters placed in
spatial points r; and r; and can compute other interesting
coherent emitter interaction processes, such as the Forster
resonance energy transfer and quantum entanglement [53]. The
dyadic Green function _G(ri,rj,wo) satisfies the classical

Maxwell’s equations, as was shown in Section II [24].
Therefore, both Egs. (18) and (19) can be calculated either
analytically [17] or numerically [30] through solving classical
Maxwell’s equations. From the computational
electromagnetics viewpoint, various numerical methods exist to
calculate the Green’s function in the case of inhomogeneous
environment. Differential-equation-based methods [63], such
as finite difference [64] and finite element [65], can be
implemented but require to precisely discretize the scatterers
and background, resulting in a large computational domain [66].
Integral-equation-based methods [67], such as the surface
integral equation technique, also known as boundary element
method, only discretize the scatterers and, thus, do not require
any additional domain truncation or absorbing boundary
conditions to achieve more accurate results [68]. In the case of
numerical modeling, the derived by full-wave simulations
electric fields can be used to calculate both real and imaginary
parts of the dyadic Green’s function by using Egs. (9).

IV. QUANTUM EMITTERS

As structures become smaller and smaller and reach
nanoscale dimensions, their quantum behavior becomes
apparent. The discrete nature of atomic states dominates in
resonant light-matter interactions at the nanoscale. In atoms,
molecules, and nanoparticles, these resonant interactions occur
when the photon’s energy matches the energy difference
between their electronic energy levels. Due to the resonant
character of these interactions, various quantum emitters can be



approximated as effective two-level atomic systems where only
two electric energy levels are considered whose energy
difference is near the radiating photon energy. Two-level
emitters can be used as photonic qubits, which are the main
building blocks of quantum optical technologies. They consist
an ideal system for the exploration of quantum optical
phenomena in solid state physics [24], especially when used as
indistinguishable single photon sources due to their on-demand
and high-rate single photon generation capabilities [69]. The
indistinguishability of these solid-state emitters is largely
limited by dephasing that can be mitigated by using an optical
cavity in both photonic and plasmonic systems [15], [70], [71].

Mainly, three types of quantum emitters exist: i) fluorescent
organic dye molecules, ii) semiconductor quantum dots, and iii)
impurity centers (a.k.a., color centers) in wide-bandgap
semiconductors, such as diamond. In the following, we present
a brief overview of these different quantum emitter types.

A. Fluorescent organic dye molecules

The lowest-energy electronic transition of an organic dye
molecule occurs between the highest occupied and lowest
unoccupied excited state molecular orbitals [72]. The radiative
relaxation between these orbitals is called fluorescence and is
one of the most widely used radiative process. Fluorescent
molecules have two decay contributions to their spontaneous
emission process: i) radiative (i.e., fluorescence) and ii) non-
radiative (through quenching or dissipation to heat) decay.
Figure 2 schematically demonstrates the different processes and
energy-level diagrams of an organic molecule, where the solid
and dotted arrows represent radiative and non-radiative
processes, respectively [72]. Since the electron is usually excited
to a vibrational state, the fluorescence emission is redshifted to
a lower energy level than the excitation (i.e., Stokes shift). In the
case of organic dye molecules, the radiative decay dominates
compared to nonradiative effects (such as quenching or
dissipation), and the radiative lifetime is typically on the order
of nanoseconds [24]. Aromatic or conjugated organic molecules
exhibit particularly efficient fluorescence and are usually named
as fluorophores (or dye molecules).
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Fig. 2. Energy level diagram showing fluorescence and other nonradiative
relaxation processes in an organic dye molecule. Reproduced from [72].

B. Semiconductor quantum dots

Semiconductor crystallites are more widely known as quantum
dots (QDs). They have nanoscale sizes with a radius
approximately equal to their excitons’ Bohr radius, which is the
distance of an electron-hole pair. Their radius can be on the order
of few to 10 nm mainly due to the small effective mass of their
electrons and holes. Hence, notable quantum confinement can
be achieved in QDs at length scales 10-100 times larger
compared to other typical molecules [24]. As shown in Fig. 3,
QDs have many remarkable quantum characteristics that
distinguish them from bulk semiconductors, such as size and
surface effects, strong quantum confinement, and macroscopic
quantum tunneling. These effects lead to a splitting in energy
levels from continuous (bulk semiconductor) to discrete (QDs),
as depicted in Fig. 3. In the limit of extremely small dimensions,
electron and hole pairs in QDs can be represented by a particle-
in-a-box intuitive model, leading to a discrete energy level that
can shift into higher energies as the box dimensions become
smaller. Therefore, the energy level gap can easily be tuned by
adjusting the crystal’s size, which, subsequently, leads to the
efficient control of the absorption and luminescence spectra. For
instance, in the case of CdSe/ZnS QDs, a continuous change in
the emission color is achieved just by decreasing the QD size
[73]. In addition, the quantum efficiency of their radiative decay
is rather high, mainly due to the strong confinement of both
electrons and holes in a nanometer volume, making QDs

extremely interesting for optoelectronic applications [74].
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Fig. 3. Energy levels of several semiconductor nanostructures with different
dimensionalities. Reproduced from [75].

C. Color centers

The third class of quantum emitters is the most recently
investigated and is composed of fluorescent defect centers in
wide-bandgap semiconductors. For instance, diamond offers the
largest bandgap (5.5 eV) of all known materials and hosts more
than a hundred known luminescent defect centers. As shown in
Fig. 4(a), the prominent impurity-related defect center in
diamond is the nitrogen-vacancy (NV) center, which consists of
a substitutional nitrogen atom (N) and a vacancy (V) at a
nearest-neighbor lattice position. Such NV centers can form
naturally during diamond growth or artificially using a variety
of implantation and annealing techniques [24]. The NV center
contains two unbounded -electrons originating from the
substitutional nitrogen. In addition, there are three more
unbounded carbon electrons, where two of them form a quasi-
bond and one remains unbounded. Therefore, the NV center can



efficiently trap an additional electron, which turns into the
negative NV~ center as opposed to the neutral NV° center.
Figure 4(b) shows a simplistic energy-level diagram of the NV—
center, where the NV center is treated as a three-level
electronic system having a ground |g), excited |e), and
intermediate |s) state. The main transition (|g) to |e)) exhibits a
zero phonon line at 637 nm combined with vibrational side
bands in the range of 630-800 nm [76]. The radiative lifetime is
around 13 ns for NV centers in bulk diamond and around 25 ns
for NV centers in nanodiamond due to their different refractive
index [24]. Very recently, color centers have also been explored
in ultrathin 2D materials with wide band gaps, such as hexagonal
boron nitride (hBN) [77]. These 2D materials consist another
exciting new quantum emitter platform that can be easily
embedded in photonic structures [78].
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Fig. 4. NV center in diamond. (a) Schematic of the NV center in a diamond
lattice showing the substitutional nitrogen atom (N) and the vacancy (V). (b)
Energy level diagram of NV center, where mg = 0, £1 represents the number
of allowable spin states. Reproduced from [79].

V. PLASMONIC QUANTUM ELECTRODYNAMICS

As discussed in the previous Section III, the dyadic Green’s
function, widely used to solve classical electromagnetic
problems, can also be utilized to model various quantum
electrodynamic effects. In the following, we present how several
quantum electromagnetics phenomena will be boosted mainly
by plasmonic nanowaveguides and their analysis by making use
of the Green-function formalism presented before.

A. Spontaneous emission rate enhancement

The major drawbacks of the presented in Section IV quantum
light emitters are their relatively long radiative lifetimes
(around 10 ns) and non-directional radiation. These lead to slow
light generation response accompanied by weak fluorescence
power. Hence, the intrinsic optical properties of quantum
emitters cannot satisfy several demands of nanophotonic
quantum optical devices [80], such as ultrafast light-emitting
diodes, plasmonic nanolasers, and single-photon sources. In
1946, Purcell demonstrated that the spontaneous emission
decay of a quantum source is not an intrinsic property but can
be largely modified when the emitter is located inside a cavity
due to the inhomogeneity induced by its interaction with the
surrounding environment [23]. Therefore, many photonic
resonance cavity systems, such as nanocavities [26], photonic
crystals [81], nanostars [82], [83], plasmonic waveguides [34]
and nanoantennas [69], [84], [85], were successfully used to
enhance the spontaneous decay rate with the goal to achieve

ultrafast operation comparable to high-speed optical networks.
As an example, Fig. 5(a) shows the fluorescence emission of a
single molecule as a function of its distance to a gold
nanoparticle [58]. Metallic nanoparticles or films usually
exploit the large LDOS at their SPP resonance frequency to
achieve strong emission enhancement. However, this resonant
enhancement is in turn restricted by the narrow bandwidth and
high ohmic losses at the plasmonic resonance frequency mainly
leading to detrimental nonradiative decay effects. As shown in
Fig. 5(a), by varying the distance between the molecule and
plasmonic nanoparticle, a continuous transition from
fluorescence enhancement to fluorescence quenching was
observed due to competing effects between the increased
excitation rate and the nonradiative energy loss.
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Fig. 5. (a) Total spontaneous emission (dashed) and radiative rate (solid)
enhancement as a function of emitter-spherical gold nanoparticle separation
distance. (b) Plasmon radiation rate (solid) and total nonradiative rate (dashed)
of an emitter placed on top of a silver nanowire waveguide with different
separation distance. (c¢) Spontaneous emission enhancement versus the
wavelength for a metal-dielectric-metal parallel plate waveguide (dark solid
line) and a metal-dielectric planar interface (gray solid line). (d) Map of
computed spontaneous decay enhancement for a gap plasmon nanocavity
loaded with an emitter. Figures reproduced from: a [58]; b [86]; ¢ [87]; and d
[69].

In addition to the many studies of simple metallic
nanoparticles, there have been several recent investigations on
spontaneous emission in plasmonic waveguide and nanocavity
systems. For instance, it was demonstrated that the spontaneous
emission of a single emitter in the vicinity of a plasmonic
nanowire can be enhanced at the surface plasmon resonance,
enabling various quantum optical applications [17], [86]-[89].
Figure 5(b) shows the plasmonic radiative enhancement and
total nonradiative rate for an emitter located on the top of a
plasmonic cylindrical nanowire. The total spontaneous decay
rate consists of radiative and nonradiative decay rates. Note that
60-fold or even higher enhancement in the emitter spontaneous
emission was achieved as the distance between the emitter and
nanowire was decreased [86]. The emission enhancement of a
point-like dipolar emitter was also investigated in a variety of



plasmonic waveguide systems with arbitrary shapes [86]. To
achieve an even tighter confinement of the plasmon waveguide
modes, metal-dielectric-metal parallel plate waveguide
structures were also explored [87]. As shown in Fig. 5(c),
compared to a single metal-dielectric planar interface, there was
stronger broadband nonresonant enhancement for an emitter
placed inside the parallel plate plasmonic waveguide. Finally,
Fig. 5(d) demonstrates that the spontaneous emission
enhancement can approach very high values (4000) in the case
of emitters coupled to the ultrathin metallic gap between a silver
nanocube and a gold substrate [69].

Next, we consider an alternative design of an orthogonal
plasmonic waveguide array operating near the cutoff frequency.
One unit cell of the plasmonic waveguide geometry is shown in
Figs. 6(a)-(b). The plasmonic grating consists of periodic slits
with dimensions: width w = 200 nm, height # = 40 nm, and
length / =500 nm. These periodic nanowaveguides are made of
silver (Ag) and are filled with a dielectric material (for example,
glass). Each unit cell period is selected to be equal toa = b =
400nm. Quantum emitters, such as QDs or fluorescence dyes,
are embedded inside the waveguide channels. The waveguide
width is designed to achieve the cutoff frequency of the
dominant quasi-TE;y mode along the nanochannel at f =
295THz, where the real part of the wave number becomes zero
(Re(B) = 0) [90]. At this cutoff frequency (f ~ 295THz), the
plasmonic grating can be replaced by an effective epsilon-near-
zero (ENZ) material, as depicted in Fig. 6(c). Moreover, due to
the inverse relation between guided wave number [ and
impedance Z, the corresponding characteristic impedance Z is
also very large at the ENZ cutoff, resulting in anomalous
impedance  matching that produces counterintuitive
transmission accompanied by almost infinite phase velocity and
uniform field distributions inside the nanochannels [91], [92].
Figure 6(d) shows a uniformly enhanced electric field in the
orthogonal nanochannel’s yz-cut at the ENZ frequency (f =
295THz) , indicating that largely enhanced coherent
interactions between different emitters can be achieved when
placed inside this ENZ plasmonic system.

Assuming operation in the weak coupling (Markov
approximation) regime, a single quantum emitter embedded
inside the channel is regarded as a two-level dipole source
satisfying the electric point-dipole approximation [58]. The
emission frequency of the emitter is chosen to be almost equal
to the ENZ cutoff frequency. The orientation of its dipole
moment is along z-axis in order to guarantee the maximum
coupling with the waveguide. Full-wave 3D simulations are
used to calculate the Green’s function (Eq. (9)) and, as a result,
the spontaneous decay rate and LDOS given by Egs. (13) and
(14), respectively. Based on these calculations, Fig. 6(e) plots
the computed normalized spontaneous emission rate g,/ Vsp
distribution at the ENZ resonance by changing the location of
the emitter on a 4x50 grid inside the waveguide channel, where
ysop corresponds to the free-space spontaneous emission given
before by Eq. (17). Note that the spontaneous emission can
reach high values up to 200 compared to an emitter placed in
free space and shows a uniform distribution.

However, as was mentioned before, in metallic systems, the
total spontaneous decay rate needs to be divided into radiative
and nonradiative contributions [59]: Vsp = ¥ + ¥Vnr . The
nonradiative decay rate y,, can be evaluated with numerical
full-wave simulation by integrating the absorbed power of the
metallic parts [59]. The calculated total spontaneous decay rate
and nonradiative rate result in the computation of the quantum
efficiency QY, defined before by Eq. (15), which reflects the
radiative emission efficiency, similar to the radiation efficiency
of an RF antenna [39]. The development of future integrated
quantum photonic circuitry will require efficient coupling
between quantum emitters and nanophotonic materials. The
QY distribution is computed and shown in Fig. 6(f) and is found
to have very high and constant values close to 0.7. Such large
and uniform spontaneous emission rate enhancement and
quantum efficiency makes the ENZ plasmonic waveguides
excellent candidates for boosting the efficiency of various
quantum electrodynamic effects [34], [48], [53]. Finally, it is
worth mentioning that the aforementioned spontaneous
emission effect for several quantum emitters is obtained in the
weak coupling regime, where the currently used Markov
approximation is valid. In the weak coupling regime, losses
dominate, and the emission spectrum is directly related to the
field confinement inside the plasmonic waveguide. On the
contrary, in the strong coupling regime, the coupling
outperforms the losses and the Markov approximation of
spontaneous emission is expected to break down [12]. In this
case, a double peak emerges in the emission spectrum because
of the strong emitter-resonator interference. Strong coupling
based on quantum emitters is one of the current hot topics in
quantum plasmonics [43], where researchers strive to achieve
the strong coupling regime by using plasmonic resonators [93].
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Fig. 6. (a-b) Unit cell geometry of an ENZ orthogonal plasmonic waveguide
array. (c) The waveguide’s effective permittivity €.5; has a near-zero real part
at the cutoff frequency. (d) Electric field enhancement distribution of ENZ
plasmonic waveguides at the ENZ frequency. (e) Normalized spontaneous



decay rate g,/ ys(]’u and (f) quantum efficiency QY distributions of one emitter
placed inside the ENZ plasmonic waveguide. Reproduced from [48].

B. Superradiance

Superradiance is a fundamental quantum optical
phenomenon relevant to the collective photon emission process
by many similar quantum optical emitters. This process was first
predicted by Robert Dicke [94] in 1954 in the context of
collective spontancous emission and reinforcement of
correlations between initially independent atoms or molecules.
As shown in Fig. 7(a), in a dilute atomic system, the photon
emission by each atom can be considered as an independent
spontaneous transition over the characteristic time 7. In this
case, the emission obeys an exponential decay law and the
radiation pattern is essentially omnidirectional. The radiation
intensity becomes proportional to the number of atoms N .
However, these features are notably different when the atomic
ensemble becomes dense enough. When the wavelength of light
is much greater than the separation of the emitting atoms, as
depicted in Fig. 7(b), the atomic ensemble starts to radiate
directional photons with much faster and stronger emission
compared to independent atoms. This collective emission effect
is called “superradiance” [95]. Essentially, this phenomenon is
due to the indiscernibility of atoms with respect to the photon
emission, which results in constructive interference in the
photon emission by the ensemble. The collective radiation of
superradiant light behaves as a high intensity pulse with rate
proportional to N2 and short emission duration () on the order
of 7y/N, which is demonstrated in Fig. 7(b). The counterpart of
this enhanced radiation mechanism is called subradiance, a
destructive interference process leading to a reduced decay rate
from a collection of quantum emitters [96].
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Fig. 7. Comparison between the general characteristics of ordinary spontaneous
emission (fluorescence) and superradiance. (a) Ordinary spontaneous emission
is essentially omnidirectional in space with exponential decaying intensity. (b)
Superradiance is directional in space with an emission occurring in a short burst
with duration 7,~7,/N. Reproduced from [95].
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Several recent papers exist where researchers propose to
achieve superradiance effects and enhance the collective
coupling and emission of quantum emitters by using plasmonic
nanostructures [36], [48], [97]-{99]. The sub-diffraction
confinement associated with plasmonic resonances can be
utilized not only to enhance the coupling between a single
quantum emitter and the SPP mode, but also to enhance
interactions between several quantum emitters, leading to

superradiant and subradiant collective emission states [41]. For
instance, a collective radiative behavior of N emitters near a
metal interface was theoretically analyzed in [98]. It was found
that the phenomena of superradiance and surface plasmons can
be combined to amplify the emitted radiation intensity S to
become S = N2, which is much higher compared to the single
emitter’s radiation intensity S, in free space. Furthermore, many
emerging 2D plasmonic waveguide systems were used to study
the quantum superradiant effect [36], [47], [48]. Figure 8(a)
shows a metallic wedge plasmonic waveguide interacting with
two quantum emitters. This interaction includes radiated
photons by surface plasmons, and nonradiative excitations
(heating) induced in the metal. In this instance, the total decay
rate based on the NLDOS can be calculated by Eq. (18). Then a
normalized decay rate y is defined by the total decay rate of two
interacting emitters divided by the sum of each single emitter
decay rate in the same environment, and expressed as following:
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Fig. 8. (a) Schematic and field distribution of a plasmonic wedge waveguide
loaded with two quantum emitters. (b) Normalized decay factor y of two
identical emitters as a function of inter-emitter separation distance d shown in
(a). This plot indicates that both superradiant and subradiant states can be
achieved by this system. (c¢) Normalized decay factor y versus the inter-emitter
distance d at the ENZ resonance of the plasmonic waveguide (black line) and
free space (blue line). (d) Normalized decay factor distribution (y) of 100
emitters uniformly embedded inside the ENZ plasmonic waveguide shown
before in Fig. 6(a). Each position on the 4x25 grid corresponds to one emitter.
Figures reproduced from: a, b [36]; ¢, d [48].

Figure 8(b) shows the normalized decay factor y
numerically calculated as a function of inter-emitter spacing
distance d . When y >1(y <1) the system exhibits
superradiant (subradiant) response. It can be seen from Fig. 8(b)
that the plasmonic-mediated interaction can efficiently couple to
two emitters, enabling the emergence of superradiant and
subradiant collective states and leading to substantially modified
decay rates [36]. Moreover, recent results demonstrated that
both superradiant and subradiant radiation can be realized by
using metallic core-shell nanoparticles or plasmonic gratings of
paired silver nanostrips coated with dye molecules [99].



However, ideally, this collective coupling will need to be
independent of the emitters’ locations. A major challenge will
be to simultaneously maximize emitters’ coupling efficiency
into photonic modes and increase their collective spontaneous
emission. For example, in the scenario shown in Fig. 8(a), the
cooperative behavior of two emitters (superradiance) is very
sensitive to their spatial locations in the metallic waveguide
system, as it is proven in Fig. 8(b). This directly limits the
potential applications of superradiance achieved by plasmonic
structures, particularly in the practical scenario of several
quantum emitters randomly dispersed along these plasmonic
channels.

Recently, it was derived that the superradiance effect can be
significantly boosted in ENZ environments compared to
conventional materials [47], [100]. This is mainly due to the fact
that the ENZ response extends the effective wavelength along
the ENZ structure, such that all the emitters feel the same
coherent and homogeneous field distribution, as was shown
before in Fig. 6(d). For instance, we consider two quantum
emitters embedded in the ENZ plasmonic waveguide shown in
Fig. 6(a). The normalized total decay factor y is computed by
using the Eq. (20) and the corresponding results are plotted in
Fig. 8(c) as a function of the inter-emitter distance d, where the
dashed green line represents the location of the channel’s end.
Both emitters are assumed to operate at the same frequency
close to the ENZ resonance. Interestingly, pure superradiant
emission with y = 2 is achieved from the emitters inside the
waveguide that is independent of the inter-emitter distance along
the entire channel. However, the dipole-dipole interactions
diminish drastically for emitters placed in free space (blue curve
in Fig. 8(c)) and the superradiant effect (y > 1) is only achieved
when the inter-emitter distance is a few nanometers [101]. More
importantly, a collection of multiple identical quantum emitters
can be incorporated inside the ENZ waveguide, resulting in a
significant boosting of the superradiance emission. Figure 8(d)
demonstrates the collective distribution of the normalized decay
factor y when 100 identical emitters with the same frequency
(ENZ resonance) are embedded in the waveguide. Note that the
distribution of y is uniform with values very close to 100 along
the entire nanochannel, indicating that all emitters
constructively interact with each other leading to superradiant
response that is independent to the emitters’ locations.
Therefore, a random arrangement of quantum emitters will
exhibit superradiance when ENZ plasmonic waveguides are
used, a very advantageous and unique feature that is expected to
be very suitable in the practical implementation of
superradiance. In addition, apart from the superradiant emission
effect, many other widely investigated quantum optical coherent
emitter interaction processes, such as the Forster resonance
energy transfer and quantum entanglement will occur, when the
distance between quantum emitters is very small [53]. These
effects are related to the real part of the Green’s function and can
be computed by using Eq. (19). Hence, ENZ mediated
superradiance promises to have various applications ranging
from quantum entanglement to quantum memory and
communication systems on a chip. It will also lead to the design
of efficient quantum optical memories [102], low-threshold
nanolasers [103], coherent thermal sources [104], [105], and
ultrasensitive optical sensors [97].

VI. CONCLUSIONS

In this article, we have reviewed several important aspects
relevant to the emerging field of quantum plasmonics [40]. This
new research area has attracted and will continue to attract
considerable interest among the electromagnetics and quantum
optics communities. The existing development of various
plasmonic nanostructures, especially ENZ and other plasmonic
waveguides, was demonstrated to considerably enhance many
fundamental quantum electrodynamic phenomena, mainly
based on dipole-dipole interactions. The role of the classical
Green’s function formalism in quantum electrodynamics has
been analyzed and applied to model a diverse range of quantum
optical phenomena. The presented plasmonic waveguide
designs are expected to lead to a plethora of new nanophotonic
quantum optical technologies and devices, such as ultrafast
light-emitting diodes, low power plasmonic nanolasers, and
single and/or entangled photon sources.
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