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Semidefinite Programming for Community
Detection With Side Information

Mohammad Esmaeili

Abstract—This paper produces an efficient semidefinite
programming (SDP) solution for community detection that
incorporates non-graph data, which in this context is known as
side information. SDP is an efficient solution for standard
community detection on graphs. We formulate a semi-definite
relaxation for the maximum likelihood estimation of node labels,
subject to observing both graph and non-graph data. This
formulation is distinct from the SDP solution of standard
community detection, but maintains its desirable properties. We
calculate the exact recovery threshold for three types of non-
graph information, which in this paper are called side
information: partially revealed labels, noisy labels, as well as
multiple observations (features) per node with arbitrary but
finite cardinality. We find that SDP has the same exact recovery
threshold in the presence of side information as maximum
likelihood with side information. Thus, the methods developed
herein are computationally efficient as well as asymptotically
accurate for the solution of community detection in the presence
of side information. Simulations show that the asymptotic results
of this paper can also shed light on the performance of SDP for
graphs of modest size.

Index Terms—Community Detection, SDP, Stochastic Block
Model, Censored Block Model, Side Information.

I. INTRODUCTION

ETECTING communities (or clusters) in graphs is a fun-

damental problem that has many applications, such as find-
ing like-minded people in social networks [1], and improving
recommendation systems [2]. Community detection is affiliated
with various problems in network science such as network struc-
ture reconstruction [3], networks with dynamic interactions [4],
and complex networks [5]. Random graph models [6], [7] are
frequently used in the analysis of community detection, promi-
nent examples of which include the stochastic block model [7]-
[9] and the censored block model [10], [11]. In the context of
these models, community detection recovers latent node labels
(communities) by observing the edges of a graph.
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Community detection utilizes several metrics for residual error
as the size of the graph grows: correlated recovery [12]-[15]
(recovering the hidden community better than random guessing),
weak recovery [16]-[18] (the fraction of misclassified labels in
the graph vanishes with probability converging to one), and exact
recovery [9], [19], [20] (all nodes are classified correctly with
high probability). Recovery techniques include spectral meth-
ods [9], [21], belief propagation [22], and SDP relaxation [23].

Semidefinite programming is a computationally efficient con-
vex optimization technique that has shown its utility in solving
signal processing problems [24], [25]. In the context of commu-
nity detection, SDP was introduced in [26], where it was used
for solving a minimum bisection problem, obtaining a sufficient
condition that is not optimal. In [27], a SDP relaxation was con-
sidered for a maximum bisection problem. For the binary sym-
metric stochastic block model, [28] showed that the SDP
relaxation of maximum likelihood can achieve the optimal exact
recovery threshold with high probability. These results were
later extended to more general models in [29]. Also, [30] showed
the power of SDP for solving a community detection problem in
graphs with a secondary latent variable for each node.

Community detection on graphs has been widely studied in
part because the graph structure is amenable to analysis and
admits efficient algorithms. In practice, however, the available
information for inference is often not purely graphical. For
instance, in a citation network, beside the names of authors, there
are some additional non-graph information such as keywords
and abstract that can be used and improve the performance of
community detection algorithms. For illustration, consider pub-
lic-domain libraries such as Citeseer and Pubmed. Citation net-
works in these libraries have been the subject of several
community detection studies, which can be augmented by incor-
porating individual (non-graph) attributes of the documents that
affect the likelihood of community memberships.

The non-graph data assisting in the solution of graph problems
is called side information. In [31], [32], the effect of side infor-
mation on the phase transition of the exact recovery was studied
for the binary symmetric stochastic block model. In [33]-[35],
the effect of side information was studied on the phase transition
of the weak and exact recovery as well as the phase transition of
belief propagation in the single community stochastic block
model. The impact of side information on the performance of
belief propagation was further studied in [34], [36].

The contribution of this paper is the analysis of the impact of
side information on SDP solutions for community detection.
More specifically, we study the behavior of the SDP detection
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threshold under the exact recovery metric. We consider graphs
following the binary censored block model and the binary sym-
metric stochastic block model. We begin with the development
of SDP for partially-revealed labels and noisy labels, which are
easier to grasp and visualize. This builds intuition for the more
general setting, in which we study side information with multiple
features per node, each of which is a random variable with arbi-
trary but finite cardinality. The former results also facilitate the
understanding and interpretation of the latter. Most categories of
side information give rise to a complete quadratic form in the
likelihood function, which presents challenges in the analysis of
their semidefinite programming relaxation. Overcoming these
challenges is one of the main technical contributions of the pres-
ent work.

Simulation results show that the thresholds calculated in
this paper can also shed light on the understanding of the
behavior of SDP in graphs of modest size.

Notation: Matrices and vectors are denoted by capital letters,
and their elements with small letters. I is the identity matrix and
J the all-one matrix. S > 0 indicates a positive semidefinite
matrix and S > 0 a matrix with non-negative entries. ||.S|] is the
spectral norm, Ao (.S) the second smallest eigenvalue (for a sym-
metric matrix), and (-,-) is the inner product. We abbreviate
[n] £{1,...,n}. Probabilities are denoted by IP(-) and random
variables with Bernoulli and Binomial distribution are indicated
by Bern(p) and Binom(n, p), respectively.

II. SYSTEM MODEL

This paper analyzes community detection in the presence of
a graph observation as well as individual node attributes. The
graphs in this paper follow the binary stochastic block model
and the censored block model, and side information is in the
form of either partially revealed labels, noisy labels, or an
alphabet other than the labels.

This paper considers a fully connected regime, guaranteeing
that exact recovery is possible. Throughout this paper, the
graph adjacency matrix is denoted by GG. Node labels are inde-
pendent and identically distributed across n, with labels +1
and —1. The vector of node labels is denoted by X, and a cor-
responding vector of side information is denoted by Y. The
log-likelihood of the graph and side information is

logP(G,Y|X) = logP(G|X) + log P(Y|X),
i.e., G and Y are independent given X.

A. Binary Censored Block Model

The model consists of an Erds-Rényi graph with n nodes
and edge probability p = a% for a fixed @ > 0. The nodes
belong to two communities represented by the binary node
labels, which are latent. The entries G;; € {—1,0,1} of the
weighted adjacency matrix of the graph have a distribution
that depends on the community labels x; and x; as follows:

when z; = x;

when z; # z;

Gii ~ {p(l — &84 +pts_1 + (1 —p)dy
ij p(l - 5)871 +p53+1 + (1 _p>80
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where § is Dirac delta function and £ € [0, %] is a constant. Fur-
ther, G = 0 and G'; = G;. For all j > 4, the edges Gj; are
mutually independent conditioned on the node labels. The
log-likelihood of G is

1
log P(G|X) = 1TIXTGX +Cy, (1)

where T7 £ log ( %) and (Y is a deterministic scalar.

B. Binary Symmetric Stochastic Block Model
In this model, if nodes 7, j belong to the same community,

G, ; ~ Bern(p), otherwise G;; ~ Bern(q) with

logn
p=a )
n

(= blogn7
n

and a > b > 0. Then the log-likelihood of G is

1
log P(G|X) = ZTIXTGX + Cy, )

where T} 2 log (fl’ 8 _Z%) and C, is a deterministic scalar.

C. Side Information: Partially Revealed Labels

Partially-revealed side information vector Y consists of ele-
ments that with probability 1 — € are equal to the true label
and with probability e take value 0, i.e., are erased.

Conditioned on each node label, the corresponding side
information is assumed independent from other labels and
from the graph edges. Thus, the log-likelihood of Y is

— €

log P(Y|X) = Y'Ylog (17) + nlog (e). 3)

D. Side Information: Noisy Labels

Noisy-label side information vector Y consists of elements
that with probability 1 — « agree with the true label (y; = x7)
and with probability « are erroneous (y; = —x;), where o €
(0,0.5). Then the log-likelihood of Y is

1
log P(Y|X) = 5 B2X"Y + T g +nloga, )
where T, £ log (1:29).

E. Side Information: Multiple Variables & Larger Alphabets

In this model, we disengage the cardinality of side informa-
tion alphabet from the node latent variable, and also allow for
more side information random variables per node. This is
motivated by practical conditions where the available non-
graph information may be different from the node latent vari-
able, and there may be multiple types of side information with
varying utility for the inference.

Formally, v; j is the random variable representing feature k
at node ¢. Each feature has cardinality M}, that is finite and
fixed across the graph. We group these variables into a vector
y; of dimension K, representing side information for node i,
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and group the vectors into a matrix Y representing all side
information for the graph.’

Without loss of generality, the alphabet of each feature k& is
the set of integers {1,..., My}. The posterior probability of
the features are denoted by

ai oy 2Py = mylz; = 1),
=P

\ >

(yir = mglz; = —1),

—,my,

where my, indexes the alphabet of feature k. Then the log-like-
lihood of Y is

logP(Y|X) = ZlogP yilzi)
1 K My
mk
5 ZZ Z ]lytk rr1k10g< he >
=1 k=1 mp=1 —,my
1 K M
k k
+ 5 1y, ,=m,log (“+,mk0‘—,mk)v
i=1 k=1 my=1

where 1 is the indicator function. Define

KM,
Ui = Z Z ]]-{yzk mk}log(

k=1 my=1

+,my; )
—,my

and Y 2 [§1, o, - . ., g}n]T. Then the log-likelihood of Y is

log P(Y|X) = %XTY + Cs, 5)

for some constant C5. In the remainder of this paper, side
information thus defined is referred to as general side
information.

III. DETECTION VIA SDP

For organizational convenience, the main results of the
paper are concentrated in this section.

For the formulation of SDP, we utilize the additional varia-
bles Z 2 XXT and W 2 YY7T. Also, let Z* 2 X* X*T

A. Censored Block Model With Partially Revealed Labels

Combining (1) and (3), the maximum likelihood detector is
X =argmax X'GX
X

subject to z; € {£1}, i€ [n]
XTy =yTty, (6)

where the constraint X”Y = YTY ensures that detected val-
ues agree with available side information. This is a non-con-
vex problem, therefore we consider a convex relaxation [19],
[37]. Replacing z; € {£1} with Z; = 1, and XY = +YTY
with (Z, W) = (YTY)?,

"If vectors y; have unequal dimension, matrix ¥ will accommodate the
largest vector, producing vacant entries that are defaulted to zero.

1959
Z =argmax (Z,G)
z
subject to  Z = XXT
Zi=1, i€ [7’7;]
(Z,W) = (YY) %

By relaxing the rank-one constraint introduced via Z, we
obtain the following SDP relaxation:

~

Z =argmax (Z,G)

z
subject to Z >0
Zii = 17 xS [n}
(Z,W) = (YTY)" @®)

Let B2 lim,, o — 25,

Theorem 1: Under the binary censored block model and
partially revealed labels, if

a(y/1—€= VO +8 > 1,

then the SDP estimator is asymptotically optimal,
P(Z=2")>1-o0(1).
Proof: See Appendix A. u
Theorem 2: Under the binary censored block model and
partially revealed labels, if

a(vl_g_\/E)QJFﬁ < 1,

then for any sequence of estimators Z,, ]P’(Zl =7Z")—0as
n — 00.
Proof: See Appendix B. u

ie.,

B. Censored Block Model With Noisy Labels

Combining (1) and (4), the maximum likelihood detector is
X =argmax ) X"GX + 2, X"Y
X

subject to x; € {£1}, i€ [n]. )

Then (9) is equivalent to

Z =argmax T)(G, Z) + 2, X"Y

7.X
subject to Z = XX7
Relaxing the rank-one constraint, using
1 X7
Z—-XX" '~ -
=0& { X 7z ] =0,



1960

yields the SDP relaxation of (10):
7 =argmax T1(G, Z) + 2L, XTY

Z.X
XT

7
Zii = ]-7

1
subject to [ } =0
X

i€ n]. (11)

A 13 T2 .
Let £ lim,_. Togrn where B > 0. Also, for convenience
define

a, Y B 1-9w+h)
”(“’ﬁ):“_iU_leg(W)’

where y 2 \/ﬂ2 +4£(1 — &)a?T?.
Theorem 3: Under the binary censored block model and
noisy labels, if

n(a,B) >1 when0<8 < aTi(1—2¢)
B>1 when 8 > aTy(1 — 2¢)

then the SDP estimator is asymptotically optimal, i.e.,
P(Z=2")>1—-o0(1).
Proof: See Appendix C. [ |
Theorem 4: Under the binary censored block model and
noisy labels, if

n(a,B) <1 when0<8 < aTi(1—2¢)
p <1 when 8 > aTy(1 — 2¢)

then for any sequence of estimators Zl, IP’(ZL =7Z")—0as
n — oo.
Proof: See Appendix D. [ |

C. Censored Block Model With General Side Information

Combining (1) and (5), the SDP relaxation is
Z =argmax T)(G, Z) +2X"Y
ZX
XT
Z
Zy =1,

1
subject to [ } =0
X

i € [n). (12)

The log-likelihoods and the log-likelihood-ratio of side infor-
mation, combined over all features, are as follows:

k
a+~mkt
% )
—,my,

o

K
filn) & Z log
k=1
K
fa(n) & Z log aﬁﬁmk,
=1

K
fas(n) & Z log O‘k—:,m,p
=1

Two exponential orders will feature prominently in the follow-
ing results and proofs:
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s fi(n)
'Bl = nlggo ]ogn ’
go (). ()
T oo logn ’

Although the definition of g varies in the context of different
models, its role remains the same. In each case, § is a parame-
ter representing the asymptotic quality of side information.”

Theorem 5: Under the binary censored block model and
general side information, if

{ﬂ(aa |f1]) + B > 1 when |B] < aTi(1 — 2€)
B +8 > 1 when || > aTi(1 — 2¢)

then the SDP estimator is asymptotically optimal, i.e.,
P(Z = Z*) > 1—o(1).
Proof: See Appendix E. [ ]
Theorem 6: Under the binary censored block model and
general side information, if

n(a,[i]) +B <1 when [B| < aTi(1 - 2¢)
B +B8 <1 when [8,| > aTi(1 — 2¢)

then for any sequence of estimators Zy, P(Zl =7")—0.
Proof: See Appendix F. u

D. Stochastic Block Model With Partially Revealed Labels

Similar to the binary censored block model with partially
revealed labels, by combining (2) and (3), the SDP relaxation
is

~

7Z =argmax (Z, Q)

zZ
subject to Z >0
Zi=1, 1€ [TL]
0.2)=0

(Z,W)=(TY)?, (13)

where the constraint (J, Z) = 0 arises from two equal-sized
communities.

Theorem 7: Under the binary symmetric stochastic block
model and partially revealed labels, if

(f— \/Z)2+2/3 > 2,

then the SDP estimator is asymptotically optimal, i.e.,
P(Z=27")>1-o0(1).
Proof: See Appendix G. u
Remark 1: The converse is given by [31, Theorem 3].

E. Stochastic Block Model With Noisy Labels
Similar to the binary censored block model with noisy

labels, by combining (2) and (4), the SDP relaxation is

2 In each case, f is proportional to the exponential order of the likelihood
function.
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Z =argmax Ty(G, Z) + 21, X"Y

ZX
i 1 X7
subject to =0
X 7
{(J.2) =0. (14)

For convenience let

potb B v B y+8
n(a’b’ﬁ)_T+§_ﬁ+2_T110g(y—ﬂ)’

where y 2 1/ 8% + abT?.

Theorem 8: Under the binary symmetric stochastic block
model and noisy label side information, if

n(a,b,B) > 1 when 0<p < 2(a—0)
B> 1 when g > (a —b)

then the SDP estimator is asymptotically optimal, i.e.,
P(Z=27")>1-o0(1).
Proof: See Appendix H. u
Remark 2: The converse is given by [31, Theorem 2].

F. Stochastic Block Model With General Side Information

Similar to the binary censored block model with general
side information, by combining (2) and (5), the SDP relaxation
is

Z =argmax Ty(G, Z) +2X"Y
Z.X

. { 1 XT}
subject to =0
X Z
Zi=1, i€ [n]
{(J,2)=0. (15)

Theorem 9: Under the binary symmetric stochastic block
model and general side information, if

n(a,b,|B) + B > 1 when || < T %2
Al +6>1 when |8, > T3

then the SDP estimator is asymptotically optimal, i.e.,
P(Z=27")>1-o0(1).
Proof: See Appendix I. u
Remark 3: The converse is given by [31, Theorem 5].

IV. NUMERICAL RESULTS

This section produces numerical simulations that shed light
on the domain of applicability of the asymptotic results
obtained earlier in the paper’.

3 The code is available online at https:/github.com/mohammadesmaeili/
Community-Detection-by-SDP
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TABLE I
SDP WITH PARTIALLY REVEALED LABELS
a b 13 B n Error Probability
301 0.2 100 4.1 %1072
301 0.2 200 3.1x 1072
301 0.2 300 2.5 x 1072
301 0.2 400 2.2 x 1072
301 0.2 500 1.9 x 102
301 0.8 100 5.0 x 10~%
301 0.8 200 3.2x 1074
301 0.8 300 1.6 x 10~4
301 0.8 400 1.2 x 10~4
301 - 0.8 500 9.3 x 1072
1 - 02 03 100 4.1 x 1072
1 02 03 200 2.9 x 1072
1 02 03 300 2.2 x 1072
1 02 03 400 1.9 x 10—2
1 02 03 500 1.7 x 1072
1 0.2 1 100 1.1 x 1073
1 02 1 200 4.2 x107%
1 02 1 300 2.7 x 1074
1 02 1 400 2.1x107%
1 02 1 500 1.5 x 1074

Table I shows the misclassification error probability of the
SDP estimators (8) and (13) with partially revealed side infor-
mation. Under the binary stochastic block model with a = 3
and b = 1, when the side information = 0.8, error probabil-
ity diminishes with n as predicted by earlier asymptotic
results. For these parameters, = 1.1 > 1, and exact recov-
ery is possible based on the theoretical results. When g = 0.2,
then 7 = 0.5 < 1 which does not fall in the asymptotic per-
fect recovery regime, the misclassification error probability is
much higher. Under the binary censored block model with a =
1 and £ = 0.2, when the side information 8 = 1, error proba-
bility diminishes with n. For these values, n = 1.2 > 1, and
exact recovery is possible based on the theoretical results.
When g = 0.3, the misclassification error probability is much
higher. For this value of 8, n = 0.5 < 1 which means exact
recovery is not asymptotically possible.

Table II shows the misclassification error probability of the
SDP estimators (11) and (14) with noisy labels side informa-
tion. Under the stochastic block model witha =4 and b =1,
when the side information g =1, then n = 1.1 > 1 and the
error probability diminishes with n as predicted by earlier the-
oretical results. When g = 0.2, then n = 0.6 < 1 which does
not fall in the asymptotic perfect recovery regime. For this
case the misclassification error is much higher. Under the cen-
sored block model with a =4 and £ = 0.25, when the side
information § = 1.1, then n = 1.2 > 1 and the error probabil-
ity diminishes with n. When g=0.1, then n=0.6 < 1
which means that exact recovery is not possible asymptoti-
cally. For this value of 8 and a finite n, the misclassification
error is not negligible.

For comparison, Table IIT shows the misclassification error
probability of the SDP estimator without side information, i.e.,
B = 0. Under the binary stochastic block model, when a = 3
(a = 4)and b = 1, it is seen that the error probability increases
in comparison with the corresponding error probability in
Table I (Table II) where side information is available. Also,
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TABLE II
SDP WITH NOISY LABELS
a b 13 53 n Error Probability
4 1 - 0.2 100 2.0 x 10~2
4 1 - 0.2 200 1.5 x 10~2
4 1 - 0.2 300 1.3 x 1072
4 1 - 0.2 400 1.1 x 10—2
4 1 - 0.2 500 1.0 x 10—2
4 1 - 1 100 1.1 x 1073
4 1 - 1 200 7.4 x 1074
4 1 - 1 300 3.0 x 1072
4 1 - 1 400 2.7 x 1075
4 1 - 1 500 2.2 x 1075
4 - 025 01 100 2.9 x 1072
4 - 025 01 200 1.8 x 10—2
4 - 025 0.1 300 1.4 x 10—2
4 - 025 01 400 1.2 x 1072
4 - 025 0.1 500 1.0 x 10—2
4 - 025 1.1 100 2.7 x 1073
4 - 025 1.1 200 1.0 x 1073
4 - 025 1.1 300 6.2 x 1074
4 - 025 1.1 400 4.1 x 104
4 - 025 1.1 500 3.3x107%

TABLE III
SDP WITHOUT SIDE INFORMATION

a b I3 n Error Probability
301 - 100 1.4 x 1071
301 - 200 1.2 x 1071
301 - 300 1.1 x 1071
301 - 400 9.8 x 1072
301 - 500 9.1 x 10~2
4 1 - 100 2.3 x 1072
4 1 - 200 1.7 x 102
4 1 - 300 1.6 x 102
4 1 - 400 1.3 x 102
4 1 - 500 1.2 x 1072
1 - 02 100 2.9 x 1071
1 - 02 200 2.5 x 1071
1 - 02 300 2.2 x 1071
1 - 02 400 2.1x 101
1 - 02 500 1.9 x 1071
4 - 025 100 3.0 x 10~2
4 - 025 200 1.9 x 10—2
4 - 025 300 1.5 x 10~2
4 - 025 400 1.2 x 10~2
4 - 025 500 1.1 x 10~2

under the binary censored block model, when a =1 and £ =
0.2 (a =4 and £ = 0.25), it is seen that the error probability
increases in comparison with the corresponding error proba-
bility in Table I (Table IT) where side information is available.

Using standard arguments form numerical linear algebra,
the computational complexity of the algorithms in this paper
are on the order O(mn? + m?n?), where n is the number of
nodes in the graph, and m is a small constant, typically
between 2 to 4, indicating assumptions of the problem that
manifest as constraints in the optimization.

V. CONCLUSION

This paper calculated the exact recovery threshold for commu-
nity detection under SDP with several types of side information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 2, APRIL-JUNE 2021

Among other insights, our results indicate that in the presence of
side information, the exact recovery threshold for SDP and for
maximum likelihood detection remain identical. We anticipate
that models and methods of this paper may be further extended to
better match the statistics of real-world graph data.

APPENDIX A
PROOF OF THEOREM 1

We begin by stating sufficient conditions for the optimum
solution of (8) matching the true labels X™.

Lemma 1: For the optimization problem (8), consider the
Lagrange multipliers

w, D" =diag(d;), S
If we have
S*=D"+uwW -G,
S =0,
X (S*) >0
S*X* =0,
then (u*, D*, S*) is the dual optimal solution and Z=xxT

is the unique primal optimal solution of (8).
Proof: The Lagrangian of (8) is given by

L(Z,5,D,u)=(G,Z)+(S,Z) — (D, Z - 1)

—u(W,2) = (YTY)?),

where S = 0, D = diag(d;), and n € R are Lagrange multi-
pliers. For any Z that satisfies the constraints in (8),

(G, Z) < L(Z,S8%, D", ")
= (D", 1)+ (YTY)’

= (D", Z) + 0 (YY)

+ (YY)’
9,27,

where (a) holds because (S*, Z) > 0, (b) holds because Z;; =

1foralli € [n], and (c) holds because (S*, Z*) = X*T§*X* =

0 and (W, Z*) = (YTY)?. Therefore, Z* is a primal optimal

solution. Now, we~will establish the uniqueness of the optimal

solution. Assume Z is another primal optimal solution. Then
(§.2) = (D = G+ w'W, 2)

= (D", 2) (G, 2Z) + u* (W, Z)

a

(D", Z7) =

=
=

(G.Z7) + w (W, Z7)

D' — G+ W, 2%

S* 7" =

where (a) holds because (W, Z*) = (W, Z) = (YTY)*, (G, Z*) =
(G,Z), and Z}; = Z; =1 for all i € [n]. Since Z > 0 and
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S* = 0 while its second smallest eigenvalue A\y(S*) is positive,
7 must be a multlple of Z*. Also, since Z” = 7} =1 for all
i € [n], wehave Z = Z*. u
We now show that S* = D* + u*W — G satisfies other
conditions in Lemma 1 with probability 1 — o(1). Let

n n
d; = E Gijriz; — p E YilYiT;T; -
J=1 J=1

Then D*X* = GX* — u*WX* and based on the definition of
S* in Lemma 1, S* satisfies the condition S* X* = 0. It remains
to show that S* = 0 and A\5(S*) > 0 with probability 1 — o(1).
In other words, we need to show that

(16)

IP( inf VISV > 0) >1—o(1), (17)
VIX*[[V]=1

where V' is a vector of length n. Since for the binary censored
block model

E[G] = p(1 - 20)(X* X" 1), (18)

it follows that for any V such that VI X* = 0 and | V]| = 1,
VISV =VIDV + wvIwv - vI(G - E[G]))V
+ p(1 —2¢).

Lemma 2: [29, Thoerem 9] For any ¢ > 0, there exists
¢ > 0 such that for any n > 1, |G — E[G]|| < /Iogn with
probability at least 1 — n~°.

Lemma 3: [38, Lemma 3]

T L—e _ Lo
]P’(V WVZ\/logn)g\/man .

Since VI'D*V > min,c,)d; and V(G —E[G]))V < |G — E
[G]]], applying Lemmas 2 and 3 implies that with probability
1-o0(1),

VISV > minged; + (1" — ¢)\/logn + p(1 — 2€). (19)

Lemma 4: Consider a sequence of i.i.d. random variables

{S1,...,S,} with distribution p(l —&)841 + p&d—1 + (1 —
p)8o. Let U ~ Binom(n — 1,1 —¢€), u* < 0, and é§ = 101§zgo7;n~
Then
n—1
(S5 3) cwmvreve
i=1
n—1
P(Zsz _ /L*U < 6+/L*> < en[logEJro(l)].
i=1
Proof: 1t follows from Chernoff bound L

It can be shown that )7 | Gjja; ]
bution to 7' S; in Lemma 4. Then

“in (16) is equal in distri-

1963

P(d; <4§) = <ZGU$3: <8>

+ P(Z Gija;xy — W' Z; <8+ u) (1-¢)
=1
< en WISV ) 4 (1 _ ¢
(11::;; a(y/1 \/_ +o(1 >logn
where Z; ~ Binom(n — 1,1 —€) and (1

ishes as n — oo. Recall that 82 lim,, o, —
Then

)en(log e+o(1))

— €)€n<10g6+0(1)) van-
08¢ “\where 8 > 0.

logn

P(d:« < 8) < n—ﬁ—a(\/l—g_\/g)%ka(l).

Using the union bound,

logn
* “loglogn ) —
When B+ a(vT—¢— &) > 1, minyed; > %2 holds
with probability 1 — o(1). Combining this result with (19), if
B+ a(y/T—E&—+/&)? > 1, then with probability 1 — o(1),

(u* = )/logn +p(1 —2¢) >

which concludes Theorem 1.

P (mlnze[n]d ni=p=aly/1=E= /O o()

VIS > logn
log log n

APPENDIX B
PROOF OF THEOREM 2

Since the prior distribution of X* is uniform, among all esti-
mators, the maximum likelihood estimator minimizes the aver-
age error probability. Therefore, it suffices to show that with
high probability the maximum likelihood estimator fails. Let

Fé{ ~ min ZGW:E;‘:U:‘ < —1}.

ZE[H],yi:O

Then P(ML Fails) > P(F). If we show that P(F) — 1, the
maximum likelihood estimator fails. Let H denote the set of
first [-"5-] nodes and e(i, H) denote the number of edges

log . .
between node 7 and nodes in the set H. Then

n
mm E G”xx < min g Gijxix;
I G

1€ H,y;=0 =

n],y;=0 =1

min
zeH Yi=

Z Gmx z; + max

i, H
Jcme i€H,y;=0 (17 )’

Define the events

(>

B e(i,H>sa—1},

L D Girjai < = }

max
i€H,y;=0

Ey2< min
i€ H,y;= jeme
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Notice that F' D E; N Es. Hence, to show that the maximum
likelihood estimator fails, it suffices to show that P(E;) — 1
and P(E,) — 1.

Lemma 5: [39, Lemma 5] When S ~ Binom(n, p), for any
r>1,P(S > rnp) < (§)"e .

Since e(i, H) ~ Binom(|H|,a 1“5 =), it follows from Lemma 5
that

P(e(i, H) > 6 — 1,5; = 0)

logn

2 It
€ log n — logn e Le_log" < en 2o,
— \ aeloglogn ae -

Using the union bound, P(E;) > 1 — en~'*°(), Thus, P(E;)
— 1.

Lemma 6: [29, Lemma 8] Consider a sequence of i.i.d. ran-
dom variables {Si,...,S,,} with distribution p(1 — £)8§1 +
p&€8_1 + (1 — p)dy, where m —n = o(n). Let f(n) = log’ign.
Then

IP’( / S, < _f(n)> > n—V 1*5*\/2)2+o(1).
i=1

Using Lemma 6 and since {_ . Gijzjz}};cpy are mutu-
ally independent,

P(Ey) =1-]] [1 — IP’( D Gty < =8,y = 0)]

ieH jEH®

|H]
Since B = lim,, ., — 12, it follows from (20) that
IP(EQ) >1-— |:1 — niﬂfa’(\/ 1*5*\/E)Q+0(1):| IH]

using 1+ z < e”. From (21), if a(v/T—&— \/E)2 +B <1,
then P(E;) — 1. Therefore, P(F') — 1 and Theorem 2 follows.

APPENDIX C
PROOF OF THEOREM 3

We begin by deriving sufficient conditions for the SDP esti-
mator to produce the true labels X*.

Lemma 7: For the optimization problem (11), consider the
Lagrange multipliers

5 T
D' = diag(d)), S° 2 [SA S ]

Sp S¢
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If we have

S =Ty X",
Sy = —TvY,

S, =D - T\G,
ST =0,

A2 (S5%) >0,
S*[LX*T]T -0

then (D*, %) is the dual optimal solution and Z = X*X*7 is
the unique primal optimal solution of (11).
Proof: Define

NERP.C
e[t 4]

The Lagrangian of (11) is given by
L(Z,X,S,D) =T1(G,Z) + 21,(Y, X) + (S, H) — (D, Z — 1),

where S = 0 and D = diag(d;) are Lagrange multipliers. For
any Z that satisfies the constraints in (11),

(@)
TG, Z) + 2To(Y, X) < L(Z,X,S*,D")
— (D) + 5,
(b) * % * *
= (D", Z") — (Sp.X")
= (S5 + T1G, Z*) — (Sh, X*)
Y 116,27 — 285, X7)

D 1(@,27) + 2T (Y, X,

where (a) holds because (S*, H) > 0, (b) holds because Z;; =
1 for all i € [n] and S% = —S3] X*, (c) holds because Sj; =
—S5X*, and (d) holds because S}, = —T5Y". Therefore, Z" =

X*X*T is a primal optimal solution. Now, assume Z is
another optimal solution.

(8", H)y = S% +2(S4, X) + (D" — TG, Z)

W S 4 2(S5, XY + (D, 2°) — TG, Z7)
= (S, H") =0

where (a) holds because (G, Z*) = (G, Z), Z; = Z; = 1 for
all i € [n], and (S, X*) = (S, X). Since H = 0 and S* = 0
while its second smallest eigenvalue \»(S*) is positive, H
must be a multiple of H*. Also, since Z~ii = Z) =1foralli €
[n], we have H = H*. u
We now show that S* defined by 5%, S3, and S{ satisfies
other conditions in Lemma 7 with probability 1 — o(1). Let

d =11 Gijaj + Tayia]. @2
j=1
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Then D*X* = T1\GX* + T,Y and based on the definitions of
S%, Sk, and S¢, in Lemma 7, S* satisfies the condition S*1,
X*T1" = 0. It remains to show that $* = 0 and A\,(S*) > 0

with probability 1 — o(1). In other words, we need to show
that

P( inf VH¢V>0)21—00L (23)
VALY [Vi|=1
where V is a vector of length n + 1. Let V 2 [v, U”]", where v

[ul,uQ,...,un]T. For any V such that
=0and ||V| = 1, we have

is a scalar and U £

VT, x*T)"

VISV = 4?8y — 2TnUTY + UTD'U — TVUTGU

>(1 =) | mind; ~ TG~ BGI + Tup(1 26|
n(l—v?)

ol

where the last inequality holds because

+ {TQYTX* — 2T —Tip(1 - 25)} )

U'D*'U > (1 —v*) mind},

i€[n]
U(G - E[GDU < (1-*)[IG - E[G]]

wUTY < July/n(1 —0?).

Lemma 8: Under the noisy label side information with
noise parameter «,

P(ixjyz < \/ﬁlogn> < e"(l"g (2\/M)+0<1))-
=1

Proof: 1Tt follows from Chernoff bound. L
Using Lemma 8, it can be shown that with probability con-
verging to one, » ' ; x}y; > y/nlogn. Thus,

n(l—v?)
0]

asn — oo. Applying Lemma 2,

v? [Tg\/ﬁlogn — 215 = Tip(1 — 25)} >0

VISV > (1 —%) (m[lr]ld —Tid\/logn + Tip(1 — 2§)>
€N
(25)
Lemma 9: Consider a sequence f(n), and for each n a

sequence of i.i.d. random variables {57, ..., S, } with distribu-
tion P18 + pad_1 + (1 — p1 — pa)dp, where the parameters of

1965

the distribution depend on n via p; = p; %", and p, = p, 10% L

for some positive constants p;, po. We assume m(n) —n =

o(n), where in the sequel the dependence of m on n is implicit.

f(n)
logn *

Define w £ lim,, .o
P1 — P2s

For sufficiently large n, when o <

(26)

(£
i=1

< f(n)> < n—n*+o(1),

and when w > p; — ps,

(S
=1

— 7" +4log (2L and y* = /o? +4py py.
Proof: Inequality (26) is derived by applying Chernoff

bound. Equality (27) is obtained by a sandwich argument on

the probability: an upper bound derived via Chernoff bound,

and a lower bound from [31, Lemma 15]. |
It follows from (22) that

> f(n)> =n "ol 27)

where n* = p; + p

P(d; <) = (ZGux*x*< _T2>(1—a)
T
—HP(ZGW via; < 2F 2) o

1

where 7% | Gijzja} is equal in distribution to SlSiin
Lemma 9 with p; = p(1 — &) and py = p&.

Recall that B2 lim,,_. h%"n, where 8 > 0. First, we bound
min;ep,d; under the condition 0 < g < aT(1 — 2¢). It fol-
lows from Lemma 9 that

(ZGM <t ) < ot

1

1

Mo roll) (1 _ ) 4 (@) B ol

P(d: < 8) <n~
—n(a.p)+o(1).

Using the union bound,

P| mind; > _logm_ > 1 — pln@ph)rol)
ic[n] loglogn ) —
When n(a, 8) > 1, it follows min;c|, d; > log’i o with proba-

bility 1 — o(1). Thus, as long as n(a, ﬂ) > 1, we can replace
mind} in (25) with log,ofogn and obtain, with probability 1 —
o(1):
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V%qu—&ml%”

— Ty \/logn + Typ(1 — 2{))

loglogn
>0,

which concludes the first part of Theorem 3.
We now bound min;c,jd; under the condition g > aTi(1
—2¢). It follows from Lemma 9 that

Gyt < D ~n(a.p)o(D)
P(Zaijxixj < T > <n" ,
7=1
P(ZGU%?‘%; S
J=1

Then
P(d{s < 5) < nfn(a.ﬂ)ﬁLo(l) _|_n7/3+o(1)7

where o = n~#to), Using the union bound,

P(mlll d* > 5) 2 1 _ (nlfrl((l-ﬂ)+0(1> + nl*ﬂ"rﬂ(l)).

i€[n]

Lemma 10: If B > 1,thenn(a,B) > 1
Proof: Define ¥(a, B) £n(a, B) — B. It can be shown that

Y¥(a,B) is a convex function in B. At the optimal g%, log
(7(1_5)<V*+ﬁ*)) = 2T7. Then

Er*=p")
na )~ pa-L. (28)
) T1
It can be shown that at the optimal 8",
V'EB 1§ 41 - §a’T?
vi-g < -8y
Then y* = B* 4+ 2&aT and (28) is written as
ﬂ*
n(a, ) — ﬂ>a—2§a—i- (29)

. This implies that
B=

Also, it can be shown that at 8*, y*
B* = (1 —2¢)aT). Substituting in (29) leads to n(a, B) —

0, which implies that n(a, 8) > 1 when g > 1.
When g > 1, using Lemma 10, it follows min,cp,d; >
logn

Tosioer With probability 1 — o(1). Substituting in (25), if 8 >
1, with probability 1 — o(1) we obtain:

—Tid\/logn + Tip(1 — 25))

1
vIsy >(1—v%) _osn
loglogn

>0,

which concludes the second part of Theorem 3.
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APPENDIX D
PROOF OF THEOREM 4

Since the prior distribution of X™ is uniform, among all esti-
mators, the maximum likelihood estimator minimizes the
average error probability. Therefore, we only need to show
that with high probability the maximum likelihood estimator
fails. Let

Fa {?61[1;]1 (T1 ZGWU —|—T2x;-‘yi> < —Tl}.

Then P(ML Fails) > P(F). Let H denote the set of first
log’_gnj nodes and e(i, H) denote the number of edges between
node ¢ and nodes in the set H C [n]. It can be shown that

min (T1 Z G”x T+ Tgx:yl)

i€[n] p=m
<min (T1 Y Gija; + Tﬂfyz')
JE€ln]
<t (T1 ]; Gijaja; + Tﬂ?fyi) +max (i, H).
Define
E1é{max e(i, H) < 5_T1},
icH

E2 £ { I;Iélél <T1 Z G“x;‘xf + Tg:(:fyL) < —8}

JjeH¢
Notice that F' D E; N E, and it suffices to show P(E;) — 1
and P(E5) — 1 to prove that the maximum likelihood estima-
tor fails. Since e(i, H) ~ Binom(|H|,a=2%), from Lemma 5,

P(6<i7H) > s — Tl)

logn
log“n Tllogn - loglogne—ﬁ < 2ol
~ \ aelog logn ae -
Using the union bound, P(FE;) > 1 — n~ 1),
Let
é {TI Z Gmx + Tngy, S —8},
jeH®
¥ % ) + T2
Eolé{ Z‘szx]% S Tl };
jeH¢
. §—Ty
E1aé{ Z Gijaja; < T }
jeH®
Then
P(E) =1~ [[[1-PmE)] 21— [1-pm@)"
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where (a) holds because {11} ;cye Gijzjz] + 1oxiyitiey
are mutually independent.

First, we bound P(E») under the condition 0 < 8 < a7} (1
—2¢). Using Lemma 9, P(E,) > n~"@A)+F+o() and P(E,_,)
> @+ Tt follows from (30) that

(a)

(E2) >1- [1 _ n—n(a,ﬁ)+o(1)] 1]

(zb) 1— exp(_7,L1777(11,/_‘3)+0(1))7

where (a) holds because a = n~#+°() and (b) is due to 1 +
x < €. Therefore, if n(a,B) < 1, then P(E;) — 1 and the
first part of Theorem 4 follows.

We now bound P(E5) under the condition 8 > a7} (1 — 2¢).
Reorganizing (30),

P(Eb) =1 - [(1—«)P(Ef_,) +oP(E)™, (31
where
%k -8+ T2
— IP( Z Gijxjxi 2 T1 ) s
jeH®
c * % -0 — T2
I E )
jeH®
Also, Zjerf Gijriz; is equal in distribution to Z A1 S; in

Lemma 9, where p=
n~—(ap)+B+o(1)

p(1 = &) and py = p. Then P(E;) <
and P(EY_,) < 1.1t follows from (31) that

|H|
P(Ey) >1— {(1 — ) 4 an MaP Al }

Wy (1 nfelt) ot ot ol

(é) 1 — e (1n (e BBl

i

where (a) holds because o = n~#+°(1) and (b) is due to 1 +
x < e*. Therefore, since B < n(a, B), if B < 1, then P(Ey)
— 1 and the second part of Theorem 4 follows.

APPENDIX E
PROOF OF THEOREM 5

We begin by deriving sufficient conditions for the SDP esti-
mator to produce the true labels X*.

Lemma 11: The sufficient conditions of Lemma 7 apply to
the general side information SDP (12) by replacing S7) =
YTX*and S = —

Proof: The proof is similar to the proof of Lemma 7. |

It suffices to show that S*, defined via its components 57,
S%, and S7, satisfies other conditions in Lemma 11 with prob-
ability 1 — o(1). Let

—1

Then D*X* =T,GX*+Y and based on the definitions
of 5%, Sg, and S¢ in Lemma 11, S* satisfies the condition

1967

S*(L, X*T]T = 0. It remains to show that (23) holds, i.e.,
S* > 0and X\2(S*) > 0 with probability 1 — o(1). Let

<Ol]i mk)
log i’

ak
where k € {1,2,. 7} and my € {1,2,..., Mg}. For any
V such that V7|1 X*T = 0and [|V| = 1, we have

Ymaz = K nax ; (33)

VISV =S, —20U"Y + UT'D'U - TIUTGU

> (1) mind; ~ 711G~ BIGI| + Tip(1 - 20)
n(l—v?)

0]

’U2 |:}7TX* - 2ymam - Tlp(l - 25):| , (34

where the last inequality holds in a manner similar to (24) with
the difference that in the present case

WUTY < [0 Ymaz /(1 — v2).

Lemma 12:

]P’(Zx:zlk > ﬁlogn) >1—o0(1),
=1

For feature k of general side information,

where

My, k
+,m
Zig 2 Z ]'{Ul\ mk}log(a k)'

mp=1 M
Proof: For feature k, let

1, .. .
8’2 /nlogn, p; & EHZ € [n]:yir=J}H,

where j € {1,..., M;} and ), p; = 1. Then
n M,
P(foz% < 8') < ZIP’(ZQU zigp < 8)
=1 i€A

Applying Chernoff bound yields

P( Z Tz < 8') < e"Writell),

where

V. 2 pjlog (2\/oz’i,jozk,jIP’(x;‘ =1)P(z} = —1)).

Since ¥, ; < O for any values of o ; and o” ;, we have

M,

(Zx Zik > 8) >1 —Z nWejto)) — 1 — o(1).
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Therefore, with probability 1 — o(1), 1", z}z;; > \/nlogn
and Lemma 12 follows. |
Using Lemmas 2 and 12,

VISV >(1 — %) <m[11]1 d; — Ty \/logn + Tip(1 — 2§)>
1€n
(35)

It can be shown that " =1 Gijxix m (32) is equal in distribu-

tion to Y /", ' S; in Lemma 9, where pr=p(1—¢) and py =
p€. Then
My My My
P(d; <8)=>_ Y ... ) P(m,...mg), (36)
mi=1mo=1 my=1
where
n—1 _fl )
P(my,....mg) 2P(z; = 1)e2™ ZS <207
n—1
8
4Pz = (Zs< + filn )>

First, we bound min;c,d; under the condition [B;| <
aTi (1 — 2¢). It follows from Lemma 9 that

n—1
P S; < m < pMaspr)+o(1)
— Tl - )

1
n—1
IP( S; < w> < papr)=Brto(l)
== =

Notice that

max(fg(n),fs(”)).

logn

BE lim —

n—oo

B — —p,

When B, >0, nmnm%: —B and lim, .

—B. Then L

P(df <§) < n @) =pro(1)

—pand lim,_.., 2% = g, — B.

When B <0, lim,, o0 f3(.n) = logn

logn
Then

P(df < 8) < n @) +BL—p+o(1) — o —n(a|pi])—p+o(1

Using the union bound,

P mind' > 98" ) 51 _ plonelsid-pron
iel] '~ loglogmn
When n(a, |]) + B > 1, it follows that min;c,d; >

holds with probability 1 — o(1). Substituting into (35), if
n(a,|B]) + B > 1, then with probability 1 — o(1),
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1
VTS*Vz(l—UQ)( osn —Tlc’\/logn—l—Tlp(l—Zg))

loglogn
>0,

which concludes the first part of Theorem 5.
We now bound min;ep,d; under the condition [B;|>

aTy(1 — 2€). When g, > 0, lim,, ..o 222 = — B and lim,, ., 50

logn logn
= —pB; — B. Then
P(d; <8) < nPro) 4 —F=Fito(l)
When B, < 0, lim,_.« {ogjf = —pand lim,_.~ % =B, — B
Then

P(d; <8) < p PrAITo) | —Fto(l)

Using the union bound,

P ( mind; >
i€ln]

When |B,|+ B8 > 1, with probability 1 —o(1), we have
min;e,d; > lofign Substituting into (35), if 8| +8 > 1,

then with probability 1 — o(1),

logn

108N ) o g _ - IBil-Bre(l)
loglogn / —

logn

T Qi >(1 — 2 e
VSTV 2(1-v )(loglogn

—Tid\/logn + Tip(1 — 2§)>

>0,

which concludes the second part of Theorem 5.
APPENDIX F
PROOF OF THEOREM 6

Similar to the proof of Theorem 4, let

Fra { m[lI]l <T1 Z GZJLL';LL': + !,Cj:ljl> < —T1 }
i€n -
J=1

Then P(ML Fails) > P(F') and if we show that P(F) — 1, the
maximum likelihood estimator fails. Let H be the set of first
7| nodes and e(i, H) denote the number of edges between
ﬁe ¢ and other nodes in the set H. It can be shown that

min <T1 ZGZ]:L’ x; + y7>

i€[n]
]6 n
(15 G+
jeln]

Srlrégl (Tl jEZHC GL]x x; +a; yl> + max;ey e(i, H).

<min
i€H
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Let

Elé{max e(i, H) §8—T1},

ieH

E2 2 { m%l <T1 Z G“J?
jeH®
Notice that F' D F; N Es. Then the maximum likelihood esti-
mator fails if we show that P(F;) — 1 and P(E,) — 1. Since
e(i, H) ~ Binom(|H|, 1"?’") from Lemma 5,

P(E(LH) > 8 — Tl)
logn

log“n Tllogn NGglogn 4
e Tlogn < n
~ \ aclog logn ae -

—24o0(1) )

Using the union bound, P(E;) > 1 — n~ 1+,

Let
{T1 Z Gljx x + iy < 6},
jeH®
5=
E+ é{ Z G’L,x;xf < w },
jEH* h
—8+ fi(n) }
E_2 G; x <
1] =~
Define
P(my,...,mg) 2Pz = 1)e?™WP(E,)
+ Pz} = —1)eBWP(E).
Then
P(Ey) =1- [[11 - P(&E)] 21— [1-p(E)"
i€H
A My |H|
=1- 1—2 Z ml,..., K) 5

mp=1 mp=1
where (a) holds because {1} e Gijz;x] + 27§}y are
mutually independent.

First, we bound P(E») under the condition |B;| < aTj(1—
2¢). Using Lemma 9, P(E,) > n @A)+ and P(E_) >

@B +B1+o(1)  When By >0, lim, o {g((rn) — B and
hmnﬂoo {Sg;,) = _ﬁl _ ﬁ Then
P(E,) =1- [1 — n*ﬂ(a‘ﬂ1)fﬂ+o(1)} |H]
>1- exp(—nlfﬂ(a,ﬁl)*mo(l))’
using 1 +x <e". When B; <0, lim, . {Ogn — _B and

fa(n)
hmnﬂoo ﬂ 1

Tog — B. Then

1969

|H|
P(E,) =1 — {1 — n*"(awﬁ1)+ﬂ17ﬂ+o(1)]

Zl—exp( —1(a,|B1])—B+o(1 )

using 1 + = < e® and n(a, B1) — By = n(a,|B,|). Therefore, if
n(a,|Bi|) + B < 1, then P(E,) — 1 and the first part of Theo-
rem 6 follows.

We now bound P(F>) under the condition || > aT}(1—
2€). When B, >0, lim, . 2% = —8 and lim, ., 3% =

logn logn
—B, — B. Using Lemma 9, P(E,) > n~"@f)+e() and P(E_)
>1—o0(1). Then
- _ _ |H]|
P(Ey) >1— [1 _ pMapr)=pro(1) _ ) —B1—p+o(l )}
>1— exp(_nlfﬂ(ﬂwﬂﬂffﬁo(l) _ n1*ﬁ1*ﬂ+0(1))7
using 1 +:1: <e®. When B; < 0, lim, {Oén = —pB and
lim,, o 22 10g7) ﬁ1 B. Usmg Lemma 9, P(E,) > 1 —o(1)
and P(E_) > n-"(@lfiD+e() Then
ol _ o]
P(E) =1— [1 _ pPr=Bro(l) _ —n(alpi])—B+ol >}
>1-— exp(_nuﬂl—mo(n _ nl—n(a,mn)—mo(l))’
using 1 4+ 2 < e”. Therefore, since || < n(a,|B;]), if |B;] +

B < 1, then P(Ey) — 1 and the second part of Theorem 6
follows.

APPENDIX G
PROOF OF THEOREM 7

We begin by deriving sufficient conditions for the solution
of SDP (13) to match the true labels.
Lemma 13: For the optimization problem (13), consider the
Lagrange multipliers
N, D= diag(d), S
If we have
S =D+ XNJ+u'W -G, 5 =0, (5 > 0,5X" =0,

then (\*, u*, D*,S*) is the dual optimal solution and 7=
X*X*T is the unique primal optimal solution of (13).

Proof: The proof is similar to the proof of Lemma 1. The
Lagrangian of (13) is given by

(G, 2) +
- >‘<Jv Z>

where S > 0, D = diag(d;), A\, u are Lagrange multipliers.
Since (J,Z) =0, for any Z that satisfies the constraints
in (13), it can be shown that (G, Z) < (G, Z*). Also, similar
to the proof of Lemma 1, it can be shown that the optimum
solution is unique. [ |

(5,2) = (D, Z-10)
—u(W,2) = (YTY)?),

L(Z,5,D,\, ) =



1970

It suffices to show that S* = D* + X*J 4+ u*W — G satis-
fies other conditions in Lemma 13 with probability 1 — o(1).
Let

(37

Z Gux £C - /’L* Zyly]xjxj
Jj=1
Then D*X* = GX* — w*WX* and based on the definition of
S* in Lemma 13, S* satisfies the condition S*X* =0. It
remains to show that (17) holds, i.e., S* = 0 and A\»(S*) > 0
with probability 1 — o(1). Under the binary stochastic block
model,

- e +
E[G] :Z%X XT+}¥]pr.

(38)

It follows that for any V such that VZ X* = 0 and | V]| = 1,
PHaN -
; )V IV +p

—VI(G -E[G)V + w VIWV.

VISV =VID'V + (3 -

Let \* > 224 Since VI D*V > minye,d; and VI (G — E[G])
V<& -E[G]],

visv > r_n[iI]l d: +p—||G - E[GQ]|| + w VIWV.
€n

Lemma 14: [28, Thoerem 5] For any ¢ > 0, there exists
¢ > 0 such that for any n > 1, |G — E[G]|| < ¢v/logn with
probability at least 1 — n~°.

Also, it can be shown that Lemma 3 holds here. Choose
u* < 0, then in view of Lemmas 14 and 3, with probability
1—o0(1),

vIisv > m[lr]l d; +p+(u" —)y/logn. (39)
€N,
Lemma 15: When 8 = %" then
og logn
P(df <) < en HVaVE toll) 4 (1—¢€)e"
Proof: Tt follows from Chernoff bound. |
Recall that B2 lim, ., — 11§§7€z’ where B> 0. It follows
from Lemma 15 that
P(d < 8) < n 3Va- VB =pro(l
Then using the union bound,
—H(vVa—Vh)*—p+o(1

1
p<mmd; Zﬂ) >1-
i€ln] loglogn
When (y/a—vb)* +28 > 2, it follows that minc,d; >
log’i g holds with probability 1 — o(1). Combining this result
with (39), if (v/a — v/b)* + 28 > 2, then with probability 1 —
o(1),
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lo
VTS*VEﬁ—I—p—l—(M* —)y/logn > 0,

which completes the proof of Theorem 7.

APPENDIX H
PROOF OF THEOREM 8

We begin by deriving sufficient conditions for the solution
of SDP (14) to match the true labels.

Lemma 16: For the optimization problem (14), consider the
Lagrange multipliers

. S Sy
* * * * A A B
A, Df =diag(d;), S*£& |:S*B s, ]

If we have

St =Ty X",

Sy = —TrY,

St = D"+ \'J - T\G
S* =0,

Xa2(S) > 0
S, x 1" =0,

then (A\*, D*, S*) is the dual optimal solution and Z = X* X*7
is the unique primal optimal solution of (14).

Proof: The proof is similar to the proof of Lemma 7. The
Lagrangian of (14) is given by

L(Z,X,S,D,\) =Ti{(G, Z) + To(Y, X) + (S, H)

—(D,Z-1) =X, 2),

where S > 0, D = diag(d;), and A € R are Lagrange multi-
pliers. Since (J, Z*) =0, for any Z that satisfies the con-
straints in (14), it can be shown that T1(G, Z) + T»(Y, X)
<Ti(G,Z*) +To(Y, X*). Also, the uniqueness of optimum
solution is proved similarly. u

We now show that S* defined by S%, S3, and S
satisfies the remaining conditions in Lemma 16 with probabil-
ity 1 — o(1). Let

J=1

x; + Toyx).

Then D*X* = T1GX* + T5Y and based on the definitions of
S%, Sk, and S§ in Lemma 16, S* satisfies the condition S*[1,
X*T]T = 0. It remains to show that (23) holds, i.e., S* >0
and X\2(S*) > 0 with probability 1 — o(1).

For any V such that VZ[1, X*"]" =0 and ||V] = 1, we
have
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VISV =28 — 20 UTY + UTD'U — UTGU
>(1 =) min d: ~ 141G ~ B(G)| + T
€n

n(l—1v?) 1
0]

pP—q
2 } (1)

+ 2 {YTX* — 2T,

where the last inequality holds in a manner similar to (24).
Using Lemma 8,

VTSV > (1- v2) (m[n]ldf —Ticd\/logn + Tlp). (42)
€N

Lemma 17: Consider a sequence f(n), and for each n, let
Sy ~ Binom(j — 1 p) and S5 ~ Binom(%,q), where p =

al"i”, and q—bOgL" for some a>b > 0. Deﬁne wl

lim,, . 1’; ;7)’ For sufficiently large n, when o < 43°
P(S; — Sy < f(n)) <n 7o),
where n* = %2 — y* — 2log (4) + 2log (" ) and y* = Vw? + ab.

Proof: 1t follows from Chernoff bound L
It follows from (40) that

- T
P(df < §8) = (E Gljx*x*g 2)(1—0{)
en 0+
—HP’(E Gijx; jg T )a,

is equal in distribution to S| —

where 77, Gijaja] Sy in
Lemma 17.

Recall that B £ lim,, .., —2 10 —, where 8 > 0. First, we bound
min;e(,d; under the condmon 0<B< o 5 (a — b). It follows

from Lemma 17 that

(ZGU@“:ﬂ?; < — I ) < @b p)ro(l)

1

(Zij*m* < i+ T2> < pab.p)+p+o(1)
Uiy = = .

1

J

Then
P(d; < §) < pnabprol),
Using the union bound,

P (mln jdi > logn

ieln)@; =2 17> > 1 — pln@bp)told)
oglogn

When n(a,b, ) > 1, it follows that min,ep,d; > log’ﬁ)g" holds
with probability 1 — o(1). Substituting 1nto (42), if n(a,b,
B) > 1, then with probability 1 — o(1),

1971

1
VISV > (1-1?) (logolgo;z — Ty \/logn + T1p> > 0,

which concludes the first part of Theorem 8.
We now bound min;cj,d; under the condition B >
T21 (a — b). It follows from Lemma 17 that

<Z Gijx; :r g T2> < ponlabroll)

1

eox 04T
(ZGU,JS 0 )gl.

1

Then

P(dr < 5) < n—ﬂ(a~baﬁ)+0(1)(1 _ Ot) T
—n(a.b,8)+o(1) + n*ﬂﬂ’(l),

where o = n~#+°(1), Using the union bound,

P(mm di > 8> > 1 — pl@bftol) _ pl=pro(l)

i€[n]

Lemma 18:
> 1.

When B > 1, using Lemma 18, it follows that min,cp,d; >
198" _ olds with probability 1 — o(1). Substituting into (42),

loglogn
if B > 1, then with probability 1 — o(1),

[31, Lemma 8] When B > 1, then 5(a,b, B)

1
VTS*V2(1—u2)( A —Tlc'\/logn—FTlp) >0,

loglogn
which concludes the second part of Theorem 8.

APPENDIX I
PROOF OF THEOREM 9

We begin by deriving sufficient conditions for the solution
of SDP (14) to match the true labels.

Lemma 19: The sufficient conditions of Lemma 16 apply to
the general side information SDP (15) by replacing S =
YTX*and Sj = —Y.

Proof: The proof is similar to the proof of Lemma 16. H

It suffices to show that S* defined by 57, S, and S{; satis-
fies other conditions in Lemma 19 with probability 1 — o(1).
Let

=1

Then D*X* = T1GX* +Y and based on the definitions of
S%, Sg, and S§ in Lemma 19, S* satisfies the condition
$*[1, X*T)" = 0. It remains to show that (23) holds, i.e., S* =
0 and A2(S*) > 0 with probability 1 — o(1). For any V such
that V7 [1, X*7]" = 0 and | V|| = 1, we have



1972

VISV =428y — 20U'Y + U D'U - WUTGU

(@) ,
> (1 —v")| mind; —

i€[n]

T||G - E[G]| + T1p}

- n(l —? -
+ ’UZ |:YTX* _ Qy'ma(y (|,U| ) _ Tlp 5 Q:|

=

= (1—%) [mlnd*

i€[n]

TG — E[G)| +T1p],

where (a) holds in a manner similar to (24) and (41), and (b)
holds by applying Lemma 12. Then using Lemma 14,

VISV > (1 —v?) <m1nd — T \/logn + T1p> (44)

i€[n]

It can be shown that ) 7| Gjjxja; in (43) is equal in distri-
bution to S7; — S5 in Lemma 17. Then

My My My

%

P(d; <) E E E P(mq,...,mg),
m1=1mo=1 my=1

where
P(my,...,mg) 2Pz} = 1)ef2<">19>(51 -85, <

: 3+ fi(n)
fs(n)p _g, <INV
)e (Sl SQ S T1

b= 40)

Ty

+P(zf = -1

First, we bound min,c,d; under the condition |8 <
h 5 (a — b). It follows from Lemma 17 that

P(&—& <%11(">> <

]p<51 5 < w> < (b BBy ol1)
<) <

*W(a;b:ﬁl>+0(1),

Notice that

max(fg(n),fs(”)).

BE lim —
n=o00 logn
When ,31 Z 0, hm77,~>oo % = _ﬂ and hm”"oo {;g(;”:l) =
—p; — B. Then

]P,(dz« § 6) § n*ﬂ(avbvﬂl)*fpro(l)_

When g, < 0, lim,, . {‘( n —

Then

—pB and hmTHoo log =B, - B

n(a.b,pr)+B1—p+o(1) — —nlab|Br])=p+o(1)

P(d; <8)<n~
Using the union bound,

P ( mind; > logn

i€[n]

> 1 — plon@blBil)=p+o(1)
loglogn ) —
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When n(a,b,|p]) +p8 > 1, it follows that minp,d; >
lolgf’f';) g’n holds with probability 1 — o(1). Substituting into (44),
if n(a,b,|B,|) + B > 1, then with probability 1 — o(1),

VISV > (1 —1)2)< logn —Tlc'\/logn—}—Tlp) > 0,

loglogn

which concludes the first part of Theorem 9.

We now bound min;ep,d; under the condition [B;|>
D(a—b). When g, > 0, lim, o 2% = —f and lim,,_. 2 =
—,31 B. Then

P(d: <8) < L axdt)) + nBBrto(l)

When 8, < 0, lim, o {0;,'3 = —p and lim,,_,,, 2% log” =B, - B.
Then

P(df <§) < pBrhitrol) | —pro(l)

Using the union bound,

P| mind; > loi > 1 — plolBil=p+o(1)
icl] '~ loglogn / —
When |8,|+ B > 1, it follows that min;c(,d} > log)i = holds

with probability 1 — o(1). Substituting into (44), if |8,| + B8 >
1, then with probability 1 — o(1),

1
VISV > (1 - 02)< osn c'\/logn+T1p> > 0,

loglogn B
which concludes the second part of Theorem 9.
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