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Abstract—This paper produces an efficient semidefinite
programming (SDP) solution for community detection that
incorporates non-graph data, which in this context is known as
side information. SDP is an efficient solution for standard
community detection on graphs. We formulate a semi-definite
relaxation for the maximum likelihood estimation of node labels,
subject to observing both graph and non-graph data. This
formulation is distinct from the SDP solution of standard
community detection, but maintains its desirable properties. We
calculate the exact recovery threshold for three types of non-
graph information, which in this paper are called side
information: partially revealed labels, noisy labels, as well as
multiple observations (features) per node with arbitrary but
finite cardinality. We find that SDP has the same exact recovery
threshold in the presence of side information as maximum
likelihood with side information. Thus, the methods developed
herein are computationally efficient as well as asymptotically
accurate for the solution of community detection in the presence
of side information. Simulations show that the asymptotic results
of this paper can also shed light on the performance of SDP for
graphs of modest size.

Index Terms—Community Detection, SDP, Stochastic Block
Model, Censored Block Model, Side Information.

I. INTRODUCTION

DETECTING communities (or clusters) in graphs is a fun-

damental problem that has many applications, such as find-

ing like-minded people in social networks [1], and improving

recommendation systems [2]. Community detection is affiliated

with various problems in network science such as network struc-

ture reconstruction [3], networks with dynamic interactions [4],

and complex networks [5]. Random graph models [6], [7] are

frequently used in the analysis of community detection, promi-

nent examples of which include the stochastic block model [7]–

[9] and the censored block model [10], [11]. In the context of

these models, community detection recovers latent node labels

(communities) by observing the edges of a graph.

Community detection utilizes several metrics for residual error

as the size of the graph grows: correlated recovery [12]–[15]

(recovering the hidden community better than random guessing),

weak recovery [16]–[18] (the fraction of misclassified labels in

the graph vanishes with probability converging to one), and exact

recovery [9], [19], [20] (all nodes are classified correctly with

high probability). Recovery techniques include spectral meth-

ods [9], [21], belief propagation [22], and SDP relaxation [23].

Semidefinite programming is a computationally efficient con-

vex optimization technique that has shown its utility in solving

signal processing problems [24], [25]. In the context of commu-

nity detection, SDP was introduced in [26], where it was used

for solving a minimum bisection problem, obtaining a sufficient

condition that is not optimal. In [27], a SDP relaxation was con-

sidered for a maximum bisection problem. For the binary sym-

metric stochastic block model, [28] showed that the SDP

relaxation of maximum likelihood can achieve the optimal exact

recovery threshold with high probability. These results were

later extended tomore general models in [29]. Also, [30] showed

the power of SDP for solving a community detection problem in

graphs with a secondary latent variable for each node.

Community detection on graphs has been widely studied in

part because the graph structure is amenable to analysis and

admits efficient algorithms. In practice, however, the available

information for inference is often not purely graphical. For

instance, in a citation network, beside the names of authors, there

are some additional non-graph information such as keywords

and abstract that can be used and improve the performance of

community detection algorithms. For illustration, consider pub-

lic-domain libraries such as Citeseer and Pubmed. Citation net-

works in these libraries have been the subject of several

community detection studies, which can be augmented by incor-

porating individual (non-graph) attributes of the documents that

affect the likelihood of communitymemberships.

The non-graph data assisting in the solution of graph problems

is called side information. In [31], [32], the effect of side infor-

mation on the phase transition of the exact recovery was studied

for the binary symmetric stochastic block model. In [33]–[35],

the effect of side information was studied on the phase transition

of the weak and exact recovery as well as the phase transition of

belief propagation in the single community stochastic block

model. The impact of side information on the performance of

belief propagation was further studied in [34], [36].

The contribution of this paper is the analysis of the impact of

side information on SDP solutions for community detection.

More specifically, we study the behavior of the SDP detection
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threshold under the exact recovery metric. We consider graphs

following the binary censored block model and the binary sym-

metric stochastic block model. We begin with the development

of SDP for partially-revealed labels and noisy labels, which are

easier to grasp and visualize. This builds intuition for the more

general setting, in whichwe study side informationwithmultiple

features per node, each of which is a random variable with arbi-

trary but finite cardinality. The former results also facilitate the

understanding and interpretation of the latter. Most categories of

side information give rise to a complete quadratic form in the

likelihood function, which presents challenges in the analysis of

their semidefinite programming relaxation. Overcoming these

challenges is one of the main technical contributions of the pres-

ent work.

Simulation results show that the thresholds calculated in

this paper can also shed light on the understanding of the

behavior of SDP in graphs of modest size.

Notation: Matrices and vectors are denoted by capital letters,

and their elements with small letters. I is the identity matrix and

J the all-one matrix. S � 0 indicates a positive semidefinite

matrix and S � 0 a matrix with non-negative entries. jjSjj is the
spectral norm, �2ðSÞ the second smallest eigenvalue (for a sym-

metric matrix), and h�; �i is the inner product. We abbreviate

½n� , f1; . . . ; ng. Probabilities are denoted by Pð�Þ and random

variables with Bernoulli and Binomial distribution are indicated

byBernðpÞ andBinomðn; pÞ, respectively.

II. SYSTEM MODEL

This paper analyzes community detection in the presence of

a graph observation as well as individual node attributes. The

graphs in this paper follow the binary stochastic block model

and the censored block model, and side information is in the

form of either partially revealed labels, noisy labels, or an

alphabet other than the labels.

This paper considers a fully connected regime, guaranteeing

that exact recovery is possible. Throughout this paper, the

graph adjacency matrix is denoted by G. Node labels are inde-

pendent and identically distributed across n, with labels þ1
and �1. The vector of node labels is denoted by X, and a cor-

responding vector of side information is denoted by Y . The

log-likelihood of the graph and side information is

logPðG; Y jXÞ ¼ logPðGjXÞ þ logPðY jXÞ;

i.e., G and Y are independent givenX.

A. Binary Censored Block Model

The model consists of an Erdo��s-R�enyi graph with n nodes

and edge probability p ¼ a logn
n for a fixed a > 0. The nodes

belong to two communities represented by the binary node

labels, which are latent. The entries Gij 2 f�1; 0; 1g of the

weighted adjacency matrix of the graph have a distribution

that depends on the community labels xi and xj as follows:

Gij � pð1� �Þdþ1 þ p�d�1 þ ð1� pÞd0 when xi ¼ xj

pð1� �Þd�1 þ p�dþ1 þ ð1� pÞd0 when xi 6¼ xj

�

where d is Dirac delta function and � 2 ½0; 12� is a constant. Fur-
ther, Gii ¼ 0 and Gij ¼ Gji. For all j > i, the edges Gij are

mutually independent conditioned on the node labels. The

log-likelihood of G is

logPðGjXÞ ¼ 1

4
T1X

TGX þ C1; (1)

where T1 , log

�
1��
�

�
and C1 is a deterministic scalar.

B. Binary Symmetric Stochastic Block Model

In this model, if nodes i; j belong to the same community,

Gi;j � BernðpÞ, otherwise Gij � BernðqÞ with

p ¼ a
logn

n
; q ¼ b

logn

n
;

and a � b > 0. Then the log-likelihood of G is

logPðGjXÞ ¼ 1

4
T1X

TGX þ C2; (2)

where T1 , log

�
pð1�qÞ
qð1�pÞ

�
and C2 is a deterministic scalar.

C. Side Information: Partially Revealed Labels

Partially-revealed side information vector Y consists of ele-

ments that with probability 1� � are equal to the true label

and with probability � take value 0, i.e., are erased.
Conditioned on each node label, the corresponding side

information is assumed independent from other labels and

from the graph edges. Thus, the log-likelihood of Y is

logPðY jXÞ ¼ Y TY log

�
1� �

�

�
þ nlog ð�Þ: (3)

D. Side Information: Noisy Labels

Noisy-label side information vector Y consists of elements

that with probability 1� a agree with the true label (yi ¼ x�
i )

and with probability a are erroneous (yi ¼ �x�
i ), where a 2

ð0; 0:5Þ. Then the log-likelihood of Y is

logPðY jXÞ ¼ 1

2
T2X

TY þ T2
n

2
þ nloga; (4)

where T2 , log ð1�a
a
Þ.

E. Side Information: Multiple Variables & Larger Alphabets

In this model, we disengage the cardinality of side informa-

tion alphabet from the node latent variable, and also allow for

more side information random variables per node. This is

motivated by practical conditions where the available non-

graph information may be different from the node latent vari-

able, and there may be multiple types of side information with

varying utility for the inference.

Formally, yi;k is the random variable representing feature k
at node i. Each feature has cardinality Mk that is finite and

fixed across the graph. We group these variables into a vector

yi of dimension K, representing side information for node i,
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and group the vectors into a matrix Y representing all side

information for the graph.1

Without loss of generality, the alphabet of each feature k is

the set of integers f1; . . . ;Mkg. The posterior probability of

the features are denoted by

ak
þ;mk

, Pðyi;k ¼ mkjxi ¼ 1Þ;
ak
�;mk

, Pðyi;k ¼ mkjxi ¼ �1Þ;

where mk indexes the alphabet of feature k. Then the log-like-
lihood of Y is

logPðY jXÞ ¼
Xn
i¼1

logPðyijxiÞ

¼ 1

2

Xn
i¼1

xi

XK
k¼1

XMk

mk¼1

1yi;k¼mk
log

�
ak
þ;mk

ak�;mk

�

þ 1

2

Xn
i¼1

XK
k¼1

XMk

mk¼1

1yi;k¼mk
log ðak

þ;mk
ak
�;mk

Þ;

where 1 is the indicator function. Define

~yi ,
XK
k¼1

XMk

mk¼1

1fyi;k¼mkglog
�
ak
þ;mk

ak�;mk

�
;

and ~Y , ½~y1; ~y2; . . . ; ~yn�T . Then the log-likelihood of Y is

logPðY jXÞ ¼ 1

2
XT ~Y þ C3; (5)

for some constant C3. In the remainder of this paper, side

information thus defined is referred to as general side

information.

III. DETECTION VIA SDP

For organizational convenience, the main results of the

paper are concentrated in this section.

For the formulation of SDP, we utilize the additional varia-

bles Z , XXT andW , YY T . Also, let Z� , X�X�T .

A. Censored Block Model With Partially Revealed Labels

Combining (1) and (3), the maximum likelihood detector is

X̂ ¼ argmax
X

XTGX

subject to xi 2 f	1g; i 2 ½n�
XTY ¼ Y TY; (6)

where the constraint XTY ¼ Y TY ensures that detected val-

ues agree with available side information. This is a non-con-

vex problem, therefore we consider a convex relaxation [19],

[37]. Replacing xi 2 f	1g with Zii ¼ 1, and XTY ¼ 	Y TY
with hZ;Wi ¼ ðY TY Þ2,

bZ ¼ argmax
Z

hZ;Gi

subject to Z ¼ XXT

Zii ¼ 1; i 2 ½n�
hZ;W i ¼ ðY TY Þ2: (7)

By relaxing the rank-one constraint introduced via Z, we

obtain the following SDP relaxation:

bZ ¼ argmax
Z

hZ;Gi

subject to Z � 0

Zii ¼ 1; i 2 ½n�
hZ;W i ¼ ðY TY Þ2: (8)

Let b , limn!1 � log �
logn , where b � 0.

Theorem 1: Under the binary censored block model and

partially revealed labels, if

að
ffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�

ffiffiffi
�

p
Þ2 þ b > 1;

then the SDP estimator is asymptotically optimal, i.e.,

Pð bZ ¼ Z�Þ � 1� oð1Þ.
Proof: See Appendix A. &

Theorem 2: Under the binary censored block model and

partially revealed labels, if

að
ffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�

ffiffiffi
�

p
Þ2 þ b < 1;

then for any sequence of estimators bZn, Pð bZn ¼ Z�Þ ! 0 as

n ! 1.

Proof: See Appendix B. &

B. Censored Block Model With Noisy Labels

Combining (1) and (4), the maximum likelihood detector is

X̂ ¼ argmax
X

T1X
TGX þ 2T2X

TY

subject to xi 2 f	1g; i 2 ½n�: (9)

Then (9) is equivalent to

bZ ¼ argmax
Z;X

T1hG;Zi þ 2T2X
TY

subject to Z ¼ XXT

Zii ¼ 1; i 2 ½n�: (10)

Relaxing the rank-one constraint, using

Z �XXT � 0 , 1 XT

X Z

� �
� 0;1 If vectors yi have unequal dimension, matrix Y will accommodate the

largest vector, producing vacant entries that are defaulted to zero.
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yields the SDP relaxation of (10):

bZ ¼ argmax
Z;X

T1hG;Zi þ 2T2X
TY

subject to
1 XT

X Z

� �
� 0

Zii ¼ 1; i 2 ½n�: (11)

Let b , limn!1
T2
logn , where b � 0. Also, for convenience

define

hða;bÞ , a� g

T1
þ b

2T1
log

 
ð1� �Þðg þ bÞ

�ðg � bÞ

!
;

where g ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4�ð1� �Þa2T 2

1

q
.

Theorem 3: Under the binary censored block model and

noisy labels, if

hða;bÞ > 1 when 0 
 b < aT1ð1� 2�Þ
b > 1 when b � aT1ð1� 2�Þ

�
then the SDP estimator is asymptotically optimal, i.e.,

Pð bZ ¼ Z�Þ � 1� oð1Þ.
Proof: See Appendix C. &

Theorem 4: Under the binary censored block model and

noisy labels, if

hða;bÞ < 1 when 0 
 b < aT1ð1� 2�Þ
b < 1 when b � aT1ð1� 2�Þ

�
then for any sequence of estimators bZn, Pð bZn ¼ Z�Þ ! 0 as

n ! 1.

Proof: See Appendix D. &

C. Censored Block Model With General Side Information

Combining (1) and (5), the SDP relaxation is

bZ ¼ argmax
Z;X

T1hG;Zi þ 2XT ~Y

subject to
1 XT

X Z

� �
� 0

Zii ¼ 1; i 2 ½n�: (12)

The log-likelihoods and the log-likelihood-ratio of side infor-

mation, combined over all features, are as follows:

f1ðnÞ ,
XK
k¼1

log
ak
þ;mk

ak�;mk

;

f2ðnÞ ,
XK
k¼1

logak
þ;mk

;

f3ðnÞ ,
XK
k¼1

logak
�;mk

:

Two exponential orders will feature prominently in the follow-

ing results and proofs:

b1 , lim
n!1

f1ðnÞ
logn

;

b , lim
n!1�maxðf2ðnÞ; f3ðnÞÞ

logn
:

Although the definition of b varies in the context of different

models, its role remains the same. In each case, b is a parame-

ter representing the asymptotic quality of side information.2

Theorem 5: Under the binary censored block model and

general side information, if

hða; jb1jÞ þ b > 1 when jb1j 
 aT1ð1� 2�Þ
jb1j þ b > 1 when jb1j > aT1ð1� 2�Þ

�
then the SDP estimator is asymptotically optimal, i.e.,

Pð bZ ¼ Z�Þ � 1� oð1Þ.
Proof: See Appendix E. &

Theorem 6: Under the binary censored block model and

general side information, if

hða; jb1jÞ þ b < 1 when jb1j 
 aT1ð1� 2�Þ
jb1j þ b < 1 when jb1j > aT1ð1� 2�Þ

�
then for any sequence of estimators bZn, Pð bZn ¼ Z�Þ ! 0.
Proof: See Appendix F. &

D. Stochastic Block Model With Partially Revealed Labels

Similar to the binary censored block model with partially

revealed labels, by combining (2) and (3), the SDP relaxation

is

bZ ¼ argmax
Z

hZ;Gi

subject to Z � 0

Zii ¼ 1; i 2 ½n�
hJ; Zi ¼ 0

hZ;Wi ¼ ðY TY Þ2; (13)

where the constraint hJ; Zi ¼ 0 arises from two equal-sized

communities.

Theorem 7: Under the binary symmetric stochastic block

model and partially revealed labels, if

ffiffiffi
a

p �
ffiffiffi
b

p� 	2
þ2b > 2;

then the SDP estimator is asymptotically optimal, i.e.,

Pð bZ ¼ Z�Þ � 1� oð1Þ.
Proof: See Appendix G. &

Remark 1: The converse is given by [31, Theorem 3].

E. Stochastic Block Model With Noisy Labels

Similar to the binary censored block model with noisy

labels, by combining (2) and (4), the SDP relaxation is

2 In each case, b is proportional to the exponential order of the likelihood
function.
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bZ ¼ argmax
Z;X

T1hG;Zi þ 2T2X
TY

subject to
1 XT

X Z

� �
� 0

Zii ¼ 1; i 2 ½n�
hJ; Zi ¼ 0: (14)

For convenience let

hða; b;bÞ , aþ b

2
þ b

2
� g

T1
þ b

2T1
log

�
g þ b

g � b

�
;

where g ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ abT 2

1

q
.

Theorem 8: Under the binary symmetric stochastic block

model and noisy label side information, if

hða; b; bÞ > 1 when 0 
 b < T1
2 ða� bÞ

b > 1 when b � T1
2 ða� bÞ

(

then the SDP estimator is asymptotically optimal, i.e.,

Pð bZ ¼ Z�Þ � 1� oð1Þ.
Proof: See Appendix H. &

Remark 2: The converse is given by [31, Theorem 2].

F. Stochastic Block Model With General Side Information

Similar to the binary censored block model with general

side information, by combining (2) and (5), the SDP relaxation

is

bZ ¼ argmax
Z;X

T1hG;Zi þ 2XT ~Y

subject to
1 XT

X Z

� �
� 0

Zii ¼ 1; i 2 ½n�
hJ; Zi ¼ 0: (15)

Theorem 9: Under the binary symmetric stochastic block

model and general side information, if

hða; b; jb1jÞ þ b > 1 when jb1j 
 T1
ða�bÞ
2

jb1j þ b > 1 when jb1j > T1
ða�bÞ
2

(

then the SDP estimator is asymptotically optimal, i.e.,

Pð bZ ¼ Z�Þ � 1� oð1Þ.
Proof: See Appendix I. &

Remark 3: The converse is given by [31, Theorem 5].

IV. NUMERICAL RESULTS

This section produces numerical simulations that shed light

on the domain of applicability of the asymptotic results

obtained earlier in the paper3.

Table I shows the misclassification error probability of the

SDP estimators (8) and (13) with partially revealed side infor-

mation. Under the binary stochastic block model with a ¼ 3
and b ¼ 1, when the side information b ¼ 0:8, error probabil-
ity diminishes with n as predicted by earlier asymptotic

results. For these parameters, h ¼ 1:1 > 1, and exact recov-

ery is possible based on the theoretical results. When b ¼ 0:2,
then h ¼ 0:5 < 1 which does not fall in the asymptotic per-

fect recovery regime, the misclassification error probability is

much higher. Under the binary censored block model with a ¼
1 and � ¼ 0:2, when the side information b ¼ 1, error proba-
bility diminishes with n. For these values, h ¼ 1:2 > 1, and
exact recovery is possible based on the theoretical results.

When b ¼ 0:3, the misclassification error probability is much

higher. For this value of b, h ¼ 0:5 < 1 which means exact

recovery is not asymptotically possible.

Table II shows the misclassification error probability of the

SDP estimators (11) and (14) with noisy labels side informa-

tion. Under the stochastic block model with a ¼ 4 and b ¼ 1,
when the side information b ¼ 1, then h ¼ 1:1 > 1 and the

error probability diminishes with n as predicted by earlier the-

oretical results. When b ¼ 0:2, then h ¼ 0:6 < 1 which does

not fall in the asymptotic perfect recovery regime. For this

case the misclassification error is much higher. Under the cen-

sored block model with a ¼ 4 and � ¼ 0:25, when the side

information b ¼ 1:1, then h ¼ 1:2 > 1 and the error probabil-
ity diminishes with n. When b ¼ 0:1, then h ¼ 0:6 < 1
which means that exact recovery is not possible asymptoti-

cally. For this value of b and a finite n, the misclassification

error is not negligible.

For comparison, Table III shows the misclassification error

probability of the SDP estimator without side information, i.e.,

b ¼ 0. Under the binary stochastic block model, when a ¼ 3
(a ¼ 4) and b ¼ 1, it is seen that the error probability increases
in comparison with the corresponding error probability in

Table I (Table II) where side information is available. Also,

TABLE I
SDP WITH PARTIALLY REVEALED LABELS

3 The code is available online at https://github.com/mohammadesmaeili/
Community-Detection-by-SDP
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under the binary censored block model, when a ¼ 1 and � ¼
0:2 (a ¼ 4 and � ¼ 0:25), it is seen that the error probability

increases in comparison with the corresponding error proba-

bility in Table I (Table II) where side information is available.

Using standard arguments form numerical linear algebra,

the computational complexity of the algorithms in this paper

are on the order Oðmn3 þm2n2Þ, where n is the number of

nodes in the graph, and m is a small constant, typically

between 2 to 4, indicating assumptions of the problem that

manifest as constraints in the optimization.

V. CONCLUSION

This paper calculated the exact recovery threshold for commu-

nity detection under SDP with several types of side information.

Among other insights, our results indicate that in the presence of

side information, the exact recovery threshold for SDP and for

maximum likelihood detection remain identical. We anticipate

that models and methods of this paper may be further extended to

better match the statistics of real-world graph data.

APPENDIX A

PROOF OF THEOREM 1

We begin by stating sufficient conditions for the optimum

solution of (8) matching the true labelsX�.
Lemma 1: For the optimization problem (8), consider the

Lagrange multipliers

m�; D� ¼ diagðd�i Þ; S�:

If we have

S� ¼ D� þ m�W �G;

S� � 0;

�2ðS�Þ > 0;

S�X� ¼ 0;

then ðm�; D�; S�Þ is the dual optimal solution and bZ ¼ X�X�T

is the unique primal optimal solution of (8).

Proof: The Lagrangian of (8) is given by

LðZ; S;D;mÞ ¼ hG;Zi þ hS; Zi � hD;Z � Ii
� mðhW;Zi � ðY TY Þ2Þ;

where S � 0, D ¼ diagðdiÞ, and m 2 R are Lagrange multi-

pliers. For any Z that satisfies the constraints in (8),

hG;Zi 

ðaÞ

LðZ; S�; D�;m�Þ
¼ hD�; Ii þ m�ðY TY Þ2

¼ðbÞ hD�; Z�i þ m�ðY TY Þ2
¼ hGþ S� � m�W;Z�i
þ m�ðY TY Þ2

¼ðcÞ hG;Z�i;
where ðaÞ holds because hS�; Zi � 0, ðbÞ holds because Zii ¼
1 for all i 2 ½n�, and ðcÞ holds because hS�; Z�i ¼ X�TS�X� ¼
0 and hW;Z�i ¼ ðY TY Þ2. Therefore, Z� is a primal optimal

solution. Now, we will establish the uniqueness of the optimal

solution. Assume ~Z is another primal optimal solution. Then

hS�; ~Zi ¼ hD� �Gþ m�W; ~Zi
¼ hD�; ~Zi � hG; ~Zi þ m�hW; ~Zi
¼ðaÞ hD�; Z�i � hG;Z�i þ m�hW;Z�i
¼ hD� �Gþ m�W;Z�i
¼ hS�; Z�i ¼ 0;

where ðaÞ holds because hW;Z�i ¼ hW; ~Zi ¼ ðY TY Þ2, hG;Z�i ¼
hG; ~Zi, and Z�

ii ¼ ~Zii ¼ 1 for all i 2 ½n�. Since ~Z � 0 and

TABLE II
SDP WITH NOISY LABELS

TABLE III
SDP WITHOUT SIDE INFORMATION
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S� � 0 while its second smallest eigenvalue �2ðS�Þ is positive,
~Z must be a multiple of Z�. Also, since ~Zii ¼ Z�

ii ¼ 1 for all

i 2 ½n�, we have ~Z ¼ Z�. &

We now show that S� ¼ D� þ m�W �G satisfies other

conditions in Lemma 1 with probability 1� oð1Þ. Let

d�i ¼
Xn
j¼1

Gijx
�
jx

�
i � m�Xn

j¼1

yiyjx
�
jx

�
i : (16)

Then D�X� ¼ GX� � m�WX� and based on the definition of

S� in Lemma 1, S� satisfies the condition S�X� ¼ 0. It remains

to show that S� � 0 and �2ðS�Þ > 0 with probability 1� oð1Þ.
In other words, we need to show that

P

�
inf

V?X�;kV k¼1
V TS�V > 0

�
� 1� oð1Þ; (17)

where V is a vector of length n. Since for the binary censored

block model

E½G� ¼ pð1� 2�ÞðX�X�T � IÞ; (18)

it follows that for any V such that V TX� ¼ 0 and kV k ¼ 1,

V TS�V ¼ V TD�V þ m�V TWV � V T ðG� E½G�ÞV
þ pð1� 2�Þ:

Lemma 2: [29, Thoerem 9] For any c > 0, there exists

c0 > 0 such that for any n � 1, kG� E½G�k 
 c0
ffiffiffiffiffiffiffiffiffiffi
logn

p
with

probability at least 1� n�c.

Lemma 3: [38, Lemma 3]

P V TWV �
ffiffiffiffiffiffiffiffiffiffi
logn

p� 	

 1� �ffiffiffiffiffiffiffiffiffiffi

logn
p ¼ n�1

2þoð1Þ:

Since V TD�V � mini2½n�d�i and V T ðG� E½G�ÞV 
 kG� E

½G�k, applying Lemmas 2 and 3 implies that with probability

1� oð1Þ,

V TS�V � mini2½n�d�i þ ðm� � c0Þ
ffiffiffiffiffiffiffiffiffiffi
logn

p
þ pð1� 2�Þ: (19)

Lemma 4: Consider a sequence of i.i.d. random variables

fS1; . . . ; Smg with distribution pð1� �Þdþ1 þ p�d�1 þ ð1�
pÞd0. Let U � Binomðn� 1; 1� �Þ, m� < 0, and d ¼ logn

log logn .

Then

P

 Xn�1

i¼1

Si 
 d

!

 n�að

ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ;

P

 Xn�1

i¼1

Si � m�U 
 dþ m�
!


 �n½log �þoð1Þ�:

Proof: It follows from Chernoff bound. &

It can be shown that
Pn

j¼1 Gijx
�
i x

�
j in (16) is equal in distri-

bution to
Pn�1

i¼1 Si in Lemma 4. Then

Pðd�i 
 dÞ ¼ P

 Xn
j¼1

Gijx
�
i x

�
j 
 d

!
�

þ P

 Xn
j¼1

Gijx
�
i x

�
j � m�Zi 
 dþ m�

!
ð1� �Þ


 �n�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ þ ð1� �Þ�n log �þoð1Þð Þ

¼ e
log �
logn

�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ

� 	
logn

;

where Zi � Binomðn� 1; 1� �Þ and ð1� �Þ�nðlog �þoð1ÞÞ van-
ishes as n ! 1. Recall that b , limn!1 � log �

logn , where b � 0.
Then

Pðd�i 
 dÞ 
 n�b�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ:

Using the union bound,

P

�
mini2½n�d�i �

logn

log logn

�
� 1� n1�b�að

ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ:

When bþ að ffiffiffiffiffiffiffiffiffiffiffi
1� �

p � ffiffiffi
�

p Þ2 > 1, mini2½n�d�i � logn
log logn holds

with probability 1� oð1Þ. Combining this result with (19), if

bþ að ffiffiffiffiffiffiffiffiffiffiffi
1� �

p � ffiffiffi
�

p Þ2 > 1, then with probability 1� oð1Þ,

V TS�V � logn

log logn
þ ðm� � c0Þ

ffiffiffiffiffiffiffiffiffiffi
logn

p
þ pð1� 2�Þ > 0;

which concludes Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Since the prior distribution of X� is uniform, among all esti-

mators, the maximum likelihood estimator minimizes the aver-

age error probability. Therefore, it suffices to show that with

high probability the maximum likelihood estimator fails. Let

F ,
�

min
i2½n�;yi¼0

Xn
j¼1

Gijx
�
jx

�
i 
 �1



:

Then PðML FailsÞ � PðF Þ. If we show that PðFÞ ! 1, the
maximum likelihood estimator fails. Let H denote the set of

first b n
log 2n

c nodes and eði; HÞ denote the number of edges

between node i and nodes in the setH. Then

min
i2½n�;yi¼0

Xn
j¼1

Gijx
�
jx

�
i 
 min

i2H;yi¼0

Xn
j¼1

Gijx
�
jx

�
i


 min
i2H;yi¼0

X
j2Hc

Gijx
�
jx

�
i þ max

i2H;yi¼0
eði; HÞ;

Define the events

E1 ,
�

max
i2H;yi¼0

eði; HÞ 
 d� 1



;

E2 ,

(
min

i2H;yi¼0

X
j2Hc

Gijx
�
jx

�
i 
 �d

)
:
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Notice that F � E1 \ E2. Hence, to show that the maximum

likelihood estimator fails, it suffices to show that PðE1Þ ! 1
and PðE2Þ ! 1.
Lemma 5: [39, Lemma 5] When S � Binomðn; pÞ, for any

r � 1, PðS � rnpÞ 
 ðerÞrnpe�np.

Since eði;HÞ � BinomðjHj; a logn
n Þ, it follows fromLemma 5

that

P eði;HÞ � d� 1; yi ¼ 0ð Þ


 �

�
log 2n

aelog logn
� logn

ae

�1� logn
log logn

e
� a
logn 
 �n�2þoð1Þ:

Using the union bound, PðE1Þ � 1� �n�1þoð1Þ. Thus, PðE1Þ
! 1.
Lemma 6: [29, Lemma 8] Consider a sequence of i.i.d. ran-

dom variables fS1; . . . ; Smg with distribution pð1� �Þdþ1 þ
p�d�1 þ ð1� pÞd0, where m� n ¼ oðnÞ. Let fðnÞ ¼ logn

log logn .

Then

P

 Xm
i¼1

Si 
 �fðnÞ
!

� n�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ:

Using Lemma 6 and since fPj2Hc Gijx
�
jx

�
i gi2H are mutu-

ally independent,

PðE2Þ ¼ 1�
Y
i2H

"
1� P

�X
j2Hc

Gijx
�
jx

�
i 
 �d; yi ¼ 0

�#

� 1� 1� �n�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ

h ijHj
: (20)

Since b ¼ limn!1 � log �
logn , it follows from (20) that

PðE2Þ � 1� 1� n�b�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ

h ijHj

� 1� exp �n1�b�að
ffiffiffiffiffiffi
1��

p
�
ffiffi
�

p
Þ2þoð1Þ

� 	
; (21)

using 1þ x 
 ex. From (21), if að ffiffiffiffiffiffiffiffiffiffiffi
1� �

p � ffiffiffi
�

p Þ2 þ b < 1,
then PðE2Þ ! 1. Therefore, PðF Þ ! 1 and Theorem 2 follows.

APPENDIX C

PROOF OF THEOREM 3

We begin by deriving sufficient conditions for the SDP esti-

mator to produce the true labelsX�.
Lemma 7: For the optimization problem (11), consider the

Lagrange multipliers

D� ¼ diagðd�i Þ; S� , S�
A S�T

B

S�
B S�

C

� �
:

If we have

S�
A ¼ T2Y

TX�;
S�
B ¼ �T2Y;

S�
C ¼ D� � T1G;

S� � 0;

�2ðS�Þ > 0;

S�½1; X�T �T ¼ 0

then ðD�; S�Þ is the dual optimal solution and bZ ¼ X�X�T is

the unique primal optimal solution of (11).

Proof: Define

H , 1 XT

X Z

� �
:

The Lagrangian of (11) is given by

LðZ;X; S;DÞ ¼ T1hG;Zi þ 2T2hY;Xi þ hS;Hi � hD;Z � Ii;

where S � 0 and D ¼ diagðdiÞ are Lagrange multipliers. For

any Z that satisfies the constraints in (11),

T1hG;Zi þ 2T2hY;Xi 

ðaÞ

LðZ;X; S�; D�Þ
¼ hD�; Ii þ S�

A

¼ðbÞ hD�; Z�i � hS�
B;X

�i
¼ hS�

C þ T1G;Z�i � hS�
B;X

�i
¼ðcÞ T1hG;Z�i � 2hS�

B;X
�i

¼ðdÞ T1hG;Z�i þ 2T2hY;X�i;

where ðaÞ holds because hS�; Hi � 0, ðbÞ holds because Zii ¼
1 for all i 2 ½n� and S�

A ¼ �S�T
B X�, ðcÞ holds because S�

B ¼
�S�

CX
�, and ðdÞ holds because S�

B ¼ �T2Y . Therefore, Z� ¼
X�X�T is a primal optimal solution. Now, assume ~Z is

another optimal solution.

hS�; ~Hi ¼ S�
A þ 2hS�

B;
~Xi þ hD� � T1G; ~Zi

¼ðaÞ S�
A þ 2hS�

B;X
�i þ hD�; Z�i � T1hG;Z�i

¼ hS�; H�i ¼ 0

where ðaÞ holds because hG;Z�i ¼ hG; ~Zi, Z�
ii ¼ ~Zii ¼ 1 for

all i 2 ½n�, and hS�
B;X

�i ¼ hS�
B;

~Xi. Since ~H � 0 and S� � 0
while its second smallest eigenvalue �2ðS�Þ is positive, ~H
must be a multiple of H�. Also, since ~Zii ¼ Z�

ii ¼ 1 for all i 2
½n�, we have ~H ¼ H�. &

We now show that S� defined by S�
A, S

�
B, and S�

C satisfies

other conditions in Lemma 7 with probability 1� oð1Þ. Let

d�i ¼ T1

Xn
j¼1

Gijx
�
jx

�
i þ T2yix

�
i : (22)
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Then D�X� ¼ T1GX� þ T2Y and based on the definitions of

S�
A, S

�
B, and S�

C in Lemma 7, S� satisfies the condition S�½1;
X�T �T ¼ 0. It remains to show that S� � 0 and �2ðS�Þ > 0
with probability 1� oð1Þ. In other words, we need to show

that

P

�
inf

V?½1;X�T �T ;kV k¼1
V TS�V > 0

�
� 1� oð1Þ; (23)

where V is a vector of length nþ 1. Let V , ½v; UT �T , where v
is a scalar and U , ½u1; u2; . . . ; un�T . For any V such that

V T ½1; X�T �T ¼ 0 and kV k ¼ 1, we have

V TS�V ¼ v2S�
A � 2T2vU

TY þ UTD�U � T1U
TGU

�ð1� v2Þ
�
min
i2½n�

d�i � T1kG� E½G�k þ T1pð1� 2�Þ
�

þ v2
�
T2Y

TX� � 2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þp
jvj � T1pð1� 2�Þ

�
;

(24)

where the last inequality holds because

UTD�U � ð1� v2Þmin
i2½n�

d�i ;

UT ðG� E½G�ÞU 
 ð1� v2ÞkG� E½G�k;

vUTY 
 jvj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þ

p
:

Lemma 8: Under the noisy label side information with

noise parameter a,

P

 Xn
i¼1

x�
i yi 


ffiffiffi
n

p
logn

!

 en log 2

ffiffiffiffiffiffiffiffiffiffiffi
að1�aÞ

p� �
þoð1Þ

� �
:

Proof: It follows from Chernoff bound. &

Using Lemma 8, it can be shown that with probability con-

verging to one,
Pn

i¼1 x
�
i yi �

ffiffiffi
n

p
logn. Thus,

v2
�
T2

ffiffiffi
n

p
logn� 2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þp
jvj � T1pð1� 2�Þ

�
� 0;

as n ! 1. Applying Lemma 2,

V TS�V � ð1� v2Þ min
i2½n�

d�i � T1c
0 ffiffiffiffiffiffiffiffiffiffi

logn
p

þ T1pð1� 2�Þ
� �

:

(25)

Lemma 9: Consider a sequence fðnÞ, and for each n a

sequence of i.i.d. random variables fS1; . . . ; Smg with distribu-

tion p1dþ1 þ p2d�1 þ ð1� p1 � p2Þd0, where the parameters of

the distribution depend on n via p1 ¼ r1
logn
n , and p2 ¼ r2

logn
n

for some positive constants r1; r2. We assume mðnÞ � n ¼
oðnÞ, where in the sequel the dependence ofm on n is implicit.

Define v , limn!1
fðnÞ
logn . For sufficiently large n, when v <

r1 � r2,

P

 Xm
i¼1

Si 
 fðnÞ
!


 n�h�þoð1Þ; (26)

and when v > r1 � r2,

P

 Xm
i¼1

Si � fðnÞ
!

¼ n�h�þoð1Þ; (27)

where h� ¼ r1 þ r2 � g� þ v
2 log ðr2ðg

�þvÞ
r1ðg��vÞÞ and g� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4r1r2

p
.

Proof: Inequality (26) is derived by applying Chernoff

bound. Equality (27) is obtained by a sandwich argument on

the probability: an upper bound derived via Chernoff bound,

and a lower bound from [31, Lemma 15]. &

It follows from (22) that

Pðd�i 
 dÞ ¼ P

 Xn
j¼1

Gijx
�
i x

�
j 


d� T2

T1

!
ð1� aÞ

þ P

 Xn
j¼1

Gijx
�
i x

�
j 


dþ T2

T1

!
a;

where
Pn

j¼1 Gijx
�
i x

�
j is equal in distribution to

Pn�1
i¼1 Si in

Lemma 9 with p1 ¼ pð1� �Þ and p2 ¼ p�.

Recall that b , limn!1
T2
logn , where b � 0. First, we bound

mini2½n�d�i under the condition 0 
 b < aT1ð1� 2�Þ. It fol-
lows from Lemma 9 that

P

 Xn
j¼1

Gijx
�
i x

�
j 


d� T2

T1

!

 n�hða;bÞþoð1Þ;

P

 Xn
j¼1

Gijx
�
i x

�
j 


dþ T2

T1

!

 n�hða;bÞþbþoð1Þ:

Then

Pðd�i 
 dÞ 
 n�hða;bÞþoð1Þð1� aÞ þ n�hða;bÞþbþoð1Þa

¼ n�hða;bÞþoð1Þ:

Using the union bound,

P

�
min
i2½n�

d�i �
logn

log logn

�
� 1� n1�hða;bÞþoð1Þ:

When hða;bÞ > 1, it follows mini2½n�d�i � logn
log logn with proba-

bility 1� oð1Þ. Thus, as long as hða; bÞ > 1, we can replace

mind�i in (25) with logn
log logn and obtain, with probability 1�

oð1Þ:
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V TS�V �ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1pð1� 2�Þ

�
> 0;

which concludes the first part of Theorem 3.

We now bound mini2½n�d�i under the condition b > aT1ð1
�2�Þ. It follows from Lemma 9 that

P

 Xn
j¼1

Gijx
�
i x

�
j 


d� T2

T1

!

 n�hða;bÞþoð1Þ;

P

 Xn
j¼1

Gijx
�
i x

�
j 


dþ T2

T1

!

 1:

Then

Pðd�i 
 dÞ 
 n�hða;bÞþoð1Þ þ n�bþoð1Þ;

where a ¼ n�bþoð1Þ. Using the union bound,

P min
i2½n�

d�i � d

� �
� 1� n1�hða;bÞþoð1Þ þ n1�bþoð1Þ

� 	
:

Lemma 10: If b > 1, then hða; bÞ > 1.
Proof: Define cða;bÞ , hða; bÞ � b. It can be shown that

cða;bÞ is a convex function in b. At the optimal b�, log

ðð1��Þðg�þb�Þ
�ðg��b�Þ Þ ¼ 2T1. Then

hða;bÞ � b � a� g�

T1
: (28)

It can be shown that at the optimal b�,

g� þ b�

g� � b� ¼
1� �

�
¼ 4�ð1� �Þa2T 2

1

ðg� � b�Þ2 :

Then g� ¼ b� þ 2�aT1 and (28) is written as

hða; bÞ � b � a� 2�a� b�

T1
: (29)

Also, it can be shown that at b�, g� ¼ b�
1�2� . This implies that

b� ¼ ð1� 2�ÞaT1. Substituting in (29) leads to hða;bÞ � b �
0, which implies that hða; bÞ > 1 when b > 1. &

When b > 1, using Lemma 10, it follows mini2½n�d�i �
logn

log logn with probability 1� oð1Þ. Substituting in (25), if b >
1, with probability 1� oð1Þ we obtain:

V TS�V �ð1� v2Þ logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1pð1� 2�Þ

� �
> 0;

which concludes the second part of Theorem 3.

APPENDIX D

PROOF OF THEOREM 4

Since the prior distribution ofX� is uniform, among all esti-

mators, the maximum likelihood estimator minimizes the

average error probability. Therefore, we only need to show

that with high probability the maximum likelihood estimator

fails. Let

F ,

(
min
i2½n�

�
T1

Xn
j¼1

Gijx
�
jx

�
i þ T2x

�
i yi

�

 �T1

)
:

Then PðML FailsÞ � PðF Þ. Let H denote the set of first

b n
log 2n

c nodes and eði; HÞ denote the number of edges between

node i and nodes in the setH � ½n�. It can be shown that

min
i2½n�

�
T1

X
j2½n�

Gijx
�
jx

�
i þ T2x

�
i yi

�


min
i2H

�
T1

X
j2½n�

Gijx
�
jx

�
i þ T2x

�
i yi

�


min
i2H

�
T1

X
j2Hc

Gijx
�
jx

�
i þ T2x

�
i yi

�
þmax

i2H
eði;HÞ:

Define

E1 ,
�
max
i2H

eði; HÞ 
 d� T1



;

E2 ,
�
min
i2H

�
T1

X
j2Hc

Gijx
�
jx

�
i þ T2x

�
i yi

�

 �d



:

Notice that F � E1 \ E2 and it suffices to show PðE1Þ ! 1
and PðE2Þ ! 1 to prove that the maximum likelihood estima-
tor fails. Since eði; HÞ � BinomðjHj; a logn

n Þ, from Lemma 5,

Pðeði;HÞ � d� T1Þ



�

log 2n

aelog logn
� T1logn

ae

�T1� logn
log logn

e
� a
logn 
 n�2þoð1Þ:

Using the union bound, PðE1Þ � 1� n�1þoð1Þ.
Let

E ,
�
T1

X
j2Hc

Gijx
�
jx

�
i þ T2x

�
i yi 
 �d



;

Ea ,
�X

j2Hc

Gijx
�
jx

�
i 


�dþ T2

T1



;

E1�a ,
�X

j2Hc

Gijx
�
jx

�
i 


�d� T2

T1



:

Then

PðE2Þ ¼ 1�
Y
i2H

½1� PðEÞ� ¼ðaÞ 1� ½1� PðEÞ�jHj

¼ 1� ½1� aPðEaÞ � ð1� aÞPðE1�aÞ�jHj; (30)

1966 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 2, APRIL-JUNE 2021



where ðaÞ holds because fT1

P
j2Hc Gijx

�
jx

�
i þ T2x

�
i yigi2H

are mutually independent.

First, we bound PðE2Þ under the condition 0 
 b < aT1ð1
�2�Þ. Using Lemma 9, PðEaÞ � n�hða;bÞþbþoð1Þ and PðE1�aÞ
� n�hða;bÞþoð1Þ. It follows from (30) that

PðE2Þ �
ðaÞ

1� 1� n�hða;bÞþoð1Þ
h ijHj

�
ðbÞ

1� exp �n1�hða;bÞþoð1Þ
� 	

;

where ðaÞ holds because a ¼ n�bþoð1Þ and ðbÞ is due to 1þ
x 
 ex. Therefore, if hða; bÞ < 1, then PðE2Þ ! 1 and the

first part of Theorem 4 follows.

We now bound PðE2Þ under the condition b � aT1ð1� 2�Þ.
Reorganizing (30),

PðE2Þ ¼ 1� ½ð1� aÞPðEc
1�aÞ þ aPðEc

aÞ�jHj; (31)

where

PðEc
aÞ ¼ P

�X
j2Hc

Gijx
�
jx

�
i �

�dþ T2

T1

�
;

PðEc
1�aÞ ¼ P

�X
j2Hc

Gijx
�
jx

�
i �

�d� T2

T1

�
:

Also,
P

j2Hc Gijx
�
i x

�
j is equal in distribution to

PjHcj�1
i¼1 Si in

Lemma 9, where p1 ¼ pð1� �Þ and p2 ¼ p�. Then PðEc
aÞ 


n�hða;bÞþbþoð1Þ and PðEc
1�aÞ 
 1. It follows from (31) that

PðE2Þ � 1� ð1� aÞ þ an�hða;bÞþbþoð1Þ
h ijHj

¼ðaÞ 1� 1� n�bþoð1Þ þ n�hða;bÞþoð1Þ
h ijHj

�
ðbÞ

1� e�n1�bþoð1Þ 1�n�hða;bÞþbþoð1Þð Þ;
where ðaÞ holds because a ¼ n�bþoð1Þ and ðbÞ is due to 1þ
x < ex. Therefore, since b 
 hða; bÞ, if b < 1, then PðE2Þ
! 1 and the second part of Theorem 4 follows.

APPENDIX E

PROOF OF THEOREM 5

We begin by deriving sufficient conditions for the SDP esti-

mator to produce the true labels X�.
Lemma 11: The sufficient conditions of Lemma 7 apply to

the general side information SDP (12) by replacing S�
A ¼

~Y TX� and S�
B ¼ � ~Y .

Proof: The proof is similar to the proof of Lemma 7. &

It suffices to show that S�, defined via its components S�
A,

S�
B, and S�

C , satisfies other conditions in Lemma 11 with prob-

ability 1� oð1Þ. Let

d�i ¼ T1

Xn
j¼1

Gijx
�
jx

�
i þ ~yix

�
i : (32)

Then D�X� ¼ T1GX� þ ~Y and based on the definitions

of S�
A, S

�
B, and S�

C in Lemma 11, S� satisfies the condition

S�½1; X�T �T ¼ 0. It remains to show that (23) holds, i.e.,

S� � 0 and �2ðS�Þ > 0 with probability 1� oð1Þ. Let

ymax , Kmax
k;mk





log�ak
þ;mk

ak�;mk

�



; (33)

where k 2 f1; 2; . . . ; Kg and mk 2 f1; 2; . . . ;MKg. For any
V such that V T ½1; X�T �T ¼ 0 and kV k ¼ 1, we have

V TS�V ¼ v2S�
A � 2vUT ~Y þ UTD�U � T1U

TGU

� ð1� v2Þ
�
min
i2½n�

d�i � T1kG� E½G�k þ T1pð1� 2�Þ
�

þ v2
�
~Y TX� � 2ymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þp
jvj � T1pð1� 2�Þ

�
; (34)

where the last inequality holds in a manner similar to (24) with

the difference that in the present case

vUT ~Y 
 jvjymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þ

p
:

Lemma 12: For feature k of general side information,

P

 Xn
i¼1

x�
i zi;k �

ffiffiffi
n

p
logn

!
� 1� oð1Þ;

where

zi;k ,
XMk

mk¼1

1fyi;k¼mkglog
�
ak
þ;mk

ak�;mk

�
:

Proof: For feature k, let

d0 ,
ffiffiffi
n

p
logn; rj ,

1

n
jfi 2 ½n� : yi;k ¼ jgj;

where j 2 f1; . . . ;Mkg and
P

j rj ¼ 1. Then

P

 Xn
i¼1

x�
i zi;k 
 d0

!


XMk

j¼1

P

 X
i2Aj

x�
i zi;k 
 d0

!
:

Applying Chernoff bound yields

P

 X
i2Aj

x�
i zi;k 
 d0

!

 enðck;jþoð1ÞÞ;

where

ck;j , rjlog

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak
þ;ja

k
�;jPðx�

i ¼ 1ÞPðx�
i ¼ �1Þ

q �
:

Since ck;j < 0 for any values of ak
þ;j and a

k
�;j, we have

P

 Xn
i¼1

x�
i zi;k � d0

!
� 1�

XMk

j¼1

enðck;jþoð1ÞÞ ¼ 1� oð1Þ:
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Therefore, with probability 1� oð1Þ, Pn
i¼1 x

�
i zi;k �

ffiffiffi
n

p
logn

and Lemma 12 follows. &

Using Lemmas 2 and 12,

V TS�V �ð1� v2Þ min
i2½n�

d�i � T1c
0 ffiffiffiffiffiffiffiffiffiffi

logn
p

þ T1pð1� 2�Þ
� �

:

(35)

It can be shown that
Pn

j¼1 Gijx
�
i x

�
j in (32) is equal in distribu-

tion to
Pn�1

i¼1 Si in Lemma 9, where p1 ¼ pð1� �Þ and p2 ¼
p�. Then

Pðd�i 
 dÞ ¼
XM1

m1¼1

XM2

m2¼1

. . .
XMK

mK¼1

P ðm1; . . .;mKÞ; (36)

where

P ðm1; . . .;mKÞ , Pðxi ¼ 1Þef2ðnÞP
 Xn�1

i¼1

Si 
 d� f1ðnÞ
T1

!

þ Pðxi ¼ �1Þef3ðnÞP
 Xn�1

i¼1

Si 
 dþ f1ðnÞ
T1

!
:

First, we bound mini2½n�d�i under the condition jb1j 

aT1ð1� 2�Þ. It follows from Lemma 9 that

P

 Xn�1

i¼1

Si 
 d� f1ðnÞ
T1

!

 n�hða;b1Þþoð1Þ;

P

 Xn�1

i¼1

Si 
 dþ f1ðnÞ
T1

!

 n�hða;b1Þ�b1þoð1Þ:

Notice that

b , lim
n!1�maxðf2ðnÞ; f3ðnÞÞ

logn
:

When b1 � 0, limn!1
f2ðnÞ
logn ¼ �b and limn!1

f3ðnÞ
logn ¼ �b1

�b. Then

Pðd�i 
 dÞ 
 n�hða;b1Þ�bþoð1Þ:

When b1 < 0, limn!1
f3ðnÞ
logn ¼ �b and limn!1

f2ðnÞ
logn ¼ b1 � b.

Then

Pðd�i 
 dÞ 
 n�hða;b1Þþb1�bþoð1Þ ¼ n�hða;jb1jÞ�bþoð1Þ:

Using the union bound,

P

�
min
i2½n�

d�i �
logn

log logn

�
� 1� n1�hða;jb1jÞ�bþoð1Þ:

When hða; jb1jÞ þ b > 1, it follows that mini2½n�d�i � logn
log logn

holds with probability 1� oð1Þ. Substituting into (35), if

hða; jb1jÞ þ b > 1, then with probability 1� oð1Þ,

V TS�V �ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1pð1� 2�Þ

�
> 0;

which concludes the first part of Theorem 5.
We now bound mini2½n�d�i under the condition jb1j �

aT1ð1� 2�Þ. When b1 � 0, limn!1
f2ðnÞ
logn ¼ �b and limn!1

f3ðnÞ
logn

¼ �b1 � b. Then

Pðd�i 
 dÞ 
 n�bþoð1Þ þ n�b�b1þoð1Þ:

When b1 < 0, limn!1
f3ðnÞ
logn ¼ �b and limn!1

f2ðnÞ
logn ¼ b1 � b.

Then

Pðd�i 
 dÞ 
 n�bþb1þoð1Þ þ n�bþoð1Þ:

Using the union bound,

P

�
min
i2½n�

d�i �
logn

log logn

�
� 1� n1�jb1j�bþoð1Þ:

When jb1j þ b > 1, with probability 1� oð1Þ, we have

mini2½n�d�i � logn
log logn . Substituting into (35), if jb1j þ b > 1,

then with probability 1� oð1Þ,

V TS�V �ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1pð1� 2�Þ

�
> 0;

which concludes the second part of Theorem 5.

APPENDIX F

PROOF OF THEOREM 6

Similar to the proof of Theorem 4, let

F ,

(
min
i2½n�

 
T1

Xn
j¼1

Gijx
�
jx

�
i þ x�

i ~yi

!

 �T1

)
:

Then PðML FailsÞ � PðF Þ and if we show that PðFÞ ! 1, the
maximum likelihood estimator fails. Let H be the set of first

b n
log 2n

c nodes and eði; HÞ denote the number of edges between

node i and other nodes in the set H. It can be shown that

min
i2½n�

 
T1

X
j2½n�

Gijx
�
jx

�
i þ x�

i ~yi

!


min
i2H

 
T1

X
j2½n�

Gijx
�
jx

�
i þ x�

i ~yi

!


min
i2H

 
T1

X
j2Hc

Gijx
�
jx

�
i þ x�

i ~yi

!
þmaxi2H eði; HÞ:
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Let

E1 ,

(
max
i2H

eði; HÞ 
 d� T1

)
;

E2 ,

(
min
i2H

 
T1

X
j2Hc

Gijx
�
jx

�
i þ x�

i ~yi

!

 �d

)
:

Notice that F � E1 \ E2. Then the maximum likelihood esti-

mator fails if we show that PðE1Þ ! 1 and PðE2Þ ! 1. Since
eði; HÞ � BinomðjHj; a logn

n Þ, from Lemma 5,

Pðeði;HÞ � d� T1Þ



�

log 2n

aelog logn
� T1logn

ae

�T1� logn
log logn

e
� a
logn 
 n�2þoð1Þ:

Using the union bound, PðE1Þ � 1� n�1þoð1Þ.
Let

E ,

(
T1

X
j2Hc

Gijx
�
jx

�
i þ x�

i ~yi 
 �d

)
;

Eþ ,

(X
j2Hc

Gijx
�
jx

�
i 


�d� f1ðnÞ
T1

)
;

E� ,

(X
j2Hc

Gijx
�
jx

�
i 


�dþ f1ðnÞ
T1

)
:

Define

P ðm1; . . .;mKÞ , Pðx�
i ¼ 1Þef2ðnÞPðEþÞ

þ Pðx�
i ¼ �1Þef3ðnÞPðE�Þ:

Then

PðE2Þ ¼ 1�
Y
i2H

½1� PðEÞ� ¼ðaÞ 1� ½1� PðEÞ�jHj

¼ 1�
"
1�

XM1

m1¼1

� � �
XMK

mK¼1

P ðm1; . . .;mKÞ
#jHj

;

where ðaÞ holds because fT1

P
j2Hc Gijx

�
jx

�
i þ x�

i ~yigi2H are

mutually independent.

First, we bound PðE2Þ under the condition jb1j 
 aT1ð1�
2�Þ. Using Lemma 9, PðEþÞ � n�hða;b1Þþoð1Þ and PðE�Þ �
n�hða;b1Þþb1þoð1Þ. When b1 � 0, limn!1

f2ðnÞ
logn ¼ �b and

limn!1
f3ðnÞ
logn ¼ �b1 � b. Then

PðE2Þ ¼ 1� 1� n�hða;b1Þ�bþoð1Þ
h ijHj

� 1� exp �n1�hða;b1Þ�bþoð1Þ
� 	

;

using 1þ x 
 ex. When b1 < 0, limn!1
f3ðnÞ
logn ¼ �b and

limn!1
f2ðnÞ
logn ¼ b1 � b. Then

PðE2Þ ¼ 1� 1� n�hða;b1Þþb1�bþoð1Þ
h ijHj

� 1� exp �n1�hða;jb1jÞ�bþoð1Þ
� 	

;

using 1þ x 
 ex and hða;b1Þ � b1 ¼ hða; jb1jÞ. Therefore, if
hða; jb1jÞ þ b < 1, then PðE2Þ ! 1 and the first part of Theo-
rem 6 follows.

We now bound PðE2Þ under the condition jb1j � aT1ð1�
2�Þ. When b1 � 0, limn!1

f2ðnÞ
logn ¼ �b and limn!1

f3ðnÞ
logn ¼

�b1 � b. Using Lemma 9, PðEþÞ � n�hða;b1Þþoð1Þ and PðE�Þ
� 1� oð1Þ. Then

PðE2Þ � 1� 1� n�hða;b1Þ�bþoð1Þ � n�b1�bþoð1Þ
h ijHj

� 1� exp �n1�hða;b1Þ�bþoð1Þ � n1�b1�bþoð1Þ
� 	

;

using 1þ x 
 ex. When b1 < 0, limn!1
f3ðnÞ
logn ¼ �b and

limn!1
f2ðnÞ
logn ¼ b1 � b. Using Lemma 9, PðEþÞ � 1� oð1Þ

and PðE�Þ � n�hða;jb1jÞþoð1Þ. Then

PðE2Þ ¼ 1� 1� nb1�bþoð1Þ � n�hða;jb1jÞ�bþoð1Þ
h ijHj

� 1� exp �n1þb1�bþoð1Þ � n1�hða;jb1jÞ�bþoð1Þ
� 	

;

using 1þ x 
 ex. Therefore, since jb1j 
 hða; jb1jÞ, if jb1j þ
b < 1, then PðE2Þ ! 1 and the second part of Theorem 6

follows.

APPENDIX G

PROOF OF THEOREM 7

We begin by deriving sufficient conditions for the solution

of SDP (13) to match the true labels.

Lemma 13: For the optimization problem (13), consider the

Lagrange multipliers

��; m�; D� ¼ diagðd�i Þ; S�:

If we have

S� ¼ D� þ ��Jþ m�W �G;S� � 0; �2ðS�Þ > 0; S�X� ¼ 0;

then ð��;m�; D�; S�Þ is the dual optimal solution and bZ ¼
X�X�T is the unique primal optimal solution of (13).

Proof: The proof is similar to the proof of Lemma 1. The

Lagrangian of (13) is given by

LðZ; S;D; �;mÞ ¼ hG;Zi þ hS; Zi � hD;Z � Ii
� �hJ; Zi � mðhW;Zi � ðY TY Þ2Þ;

where S � 0, D ¼ diagðdiÞ, �;m are Lagrange multipliers.

Since hJ; Zi ¼ 0, for any Z that satisfies the constraints

in (13), it can be shown that hG;Zi 
 hG;Z�i. Also, similar

to the proof of Lemma 1, it can be shown that the optimum

solution is unique. &
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It suffices to show that S� ¼ D� þ ��Jþ m�W �G satis-

fies other conditions in Lemma 13 with probability 1� oð1Þ.
Let

d�i ¼
Xn
j¼1

Gijx
�
jx

�
i � m�Xn

j¼1

yiyjx
�
jx

�
i : (37)

Then D�X� ¼ GX� � m�WX� and based on the definition of

S� in Lemma 13, S� satisfies the condition S�X� ¼ 0. It

remains to show that (17) holds, i.e., S� � 0 and �2ðS�Þ > 0
with probability 1� oð1Þ. Under the binary stochastic block

model,

E½G� ¼ p� q

2
X�X�T þ pþ q

2
J� pI: (38)

It follows that for any V such that V TX� ¼ 0 and kV k ¼ 1,

V TS�V ¼ V TD�V þ
�
�� � pþ q

2

	
V �JV þ p

� V T ðG� E½G�ÞV þ m�V TWV:

Let �� � pþq
2 . Since V TD�V � mini2½n�d�i and V T ðG� E½G�Þ

V 
 kG� E½G�k,

V TS�V � min
i2½n�

d�i þ p� kG� E½G�k þ m�V TWV:

Lemma 14: [28, Thoerem 5] For any c > 0, there exists

c0 > 0 such that for any n � 1, kG� E½G�k 
 c0
ffiffiffiffiffiffiffiffiffiffi
logn

p
with

probability at least 1� n�c.

Also, it can be shown that Lemma 3 holds here. Choose

m� < 0, then in view of Lemmas 14 and 3, with probability

1� oð1Þ,

V TS�V � min
i2½n�

d�i þ pþ ðm� � c0Þ
ffiffiffiffiffiffiffiffiffiffi
logn

p
: (39)

Lemma 15: When d ¼ logn
log logn , then

Pðd�i 
 dÞ 
 �n�1
2ð
ffiffi
a

p � ffiffi
b

p Þ2þoð1Þ þ ð1� �Þ�n:

Proof: It follows from Chernoff bound. &

Recall that b , limn!1 � log �
logn , where b � 0. It follows

from Lemma 15 that

Pðd�i 
 dÞ 
 n�1
2ð
ffiffi
a

p � ffiffi
b

p Þ2�bþoð1Þ:

Then using the union bound,

P

�
min
i2½n�

d�i �
logn

log logn

�
� 1� n1�1

2ð
ffiffi
a

p � ffiffi
b

p Þ2�bþoð1Þ:

When ð ffiffiffi
a

p � ffiffiffi
b

p Þ2 þ 2b > 2, it follows that mini2½n�d�i �
logn

log logn holds with probability 1� oð1Þ. Combining this result

with (39), if ð ffiffiffi
a

p � ffiffiffi
b

p Þ2 þ 2b > 2, then with probability 1�
oð1Þ,

V TS�V � logn

log logn
þ pþ ðm� � c0Þ

ffiffiffiffiffiffiffiffiffiffi
logn

p
> 0;

which completes the proof of Theorem 7.

APPENDIX H

PROOF OF THEOREM 8

We begin by deriving sufficient conditions for the solution

of SDP (14) to match the true labels.

Lemma 16: For the optimization problem (14), consider the

Lagrange multipliers

��; D� ¼ diagðd�i Þ; S� , S�
A S�T

B

S�
B S�

C

� �
:

If we have

S�
A ¼ T2Y

TX�;
S�
B ¼ �T2Y;

S�
C ¼ D� þ ��J� T1G;

S� � 0;

�2ðS�Þ > 0;

S�½1; X�T �T ¼ 0;

then ð��; D�; S�Þ is the dual optimal solution and bZ ¼ X�X�T

is the unique primal optimal solution of (14).

Proof: The proof is similar to the proof of Lemma 7. The

Lagrangian of (14) is given by

LðZ;X; S;D; �Þ ¼ T1hG;Zi þ T2hY;Xi þ hS;Hi
� hD;Z � Ii � �hJ; Zi;

where S � 0, D ¼ diagðdiÞ, and � 2 R are Lagrange multi-

pliers. Since hJ; Z�i ¼ 0, for any Z that satisfies the con-

straints in (14), it can be shown that T1hG;Zi þ T2hY;Xi

 T1hG;Z�i þ T2hY;X�i. Also, the uniqueness of optimum

solution is proved similarly. &

We now show that S� defined by S�
A, S�

B, and S�
C

satisfies the remaining conditions in Lemma 16 with probabil-

ity 1� oð1Þ. Let

d�i ¼ T1

Xn
j¼1

Gijx
�
jx

�
i þ T2yix

�
i : (40)

Then D�X� ¼ T1GX� þ T2Y and based on the definitions of

S�
A, S

�
B, and S�

C in Lemma 16, S� satisfies the condition S�½1;
X�T �T ¼ 0. It remains to show that (23) holds, i.e., S� � 0

and �2ðS�Þ > 0 with probability 1� oð1Þ.
For any V such that V T ½1; X�T �T ¼ 0 and kV k ¼ 1, we

have
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V TS�V ¼ v2S�
A � 2vT2U

TY þ UTD�U � T1U
TGU

�ð1� v2Þ
�
min
i2½n�

d�i � T1kG� E½G�k þ T1p

�
þ v2

�
Y TX� � 2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þp
jvj � T1

p� q

2

�
; (41)

where the last inequality holds in a manner similar to (24).

Using Lemma 8,

V TS�V � ð1� v2Þ
�
min
i2½n�

d�i � T1c
0 ffiffiffiffiffiffiffiffiffiffi

logn
p

þ T1p

�
: (42)

Lemma 17: Consider a sequence fðnÞ, and for each n, let
S1 � Binomðn2 � 1; pÞ and S2 � Binomðn2 ; qÞ, where p ¼
a logn

n , and q ¼ b logn
n for some a � b > 0. Define v ,

limn!1
fðnÞ
logn . For sufficiently large n, when v < a�b

2 ,

P S1 � S2 
 fðnÞð Þ 
 n�h�þoð1Þ;

where h� ¼ aþb
2 � g� � v

2 log ðabÞ þ v
2 log ðg

�þv
g��v

Þ and g� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ ab

p
.

Proof: It follows from Chernoff bound. &

It follows from (40) that

Pðd�i 
 dÞ ¼ P

 Xn
j¼1

Gijx
�
i x

�
j 


d� T2

T1

!
ð1� aÞ

þ P

 Xn
j¼1

Gijx
�
i x

�
j 


dþ T2

T1

!
a;

where
Pn

j¼1 Gijx
�
i x

�
j is equal in distribution to S1 � S2 in

Lemma 17.

Recall that b , limn!1
T2
logn , where b � 0. First, we bound

mini2½n�d�i under the condition 0 
 b < T1
2 ða� bÞ. It follows

from Lemma 17 that

P

 Xn
j¼1

Gijx
�
i x

�
j 


d� T2

T1

!

 n�hða;b;bÞþoð1Þ;

P

 Xn
j¼1

Gijx
�
i x

�
j 


dþ T2

T1

!

 n�hða;b;bÞþbþoð1Þ:

Then

Pðd�i 
 dÞ 
 n�hða;b;bÞþoð1Þ:

Using the union bound,

P

�
mini2½n�d�i �

logn

log logn

�
� 1� n1�hða;b;bÞþoð1Þ:

When hða; b;bÞ > 1, it follows that mini2½n�d�i � logn
log logn holds

with probability 1� oð1Þ. Substituting into (42), if hða; b;
bÞ > 1, then with probability 1� oð1Þ,

V TS�V � ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1p

�
> 0;

which concludes the first part of Theorem 8.

We now bound mini2½n�d�i under the condition b >
T1
2 ða� bÞ. It follows from Lemma 17 that

P

�Xn
j¼1

Gijx
�
i x

�
j 


d� T2

T1

�

 n�hða;b;bÞþoð1Þ;

P

�Xn
j¼1

Gijx
�
i x

�
j 


dþ T2

T1

�

 1:

Then

Pðd�i 
 dÞ 
 n�hða;b;bÞþoð1Þð1� aÞ þ a

¼ n�hða;b;bÞþoð1Þ þ n�bþoð1Þ;

where a ¼ n�bþoð1Þ. Using the union bound,

P

�
min
i2½n�

d�i � d

�
� 1� n1�hða;b;bÞþoð1Þ � n1�bþoð1Þ:

Lemma 18: [31, Lemma 8] When b > 1, then hða; b;bÞ
> 1.
When b > 1, using Lemma 18, it follows that mini2½n�d�i �

logn
log logn holds with probability 1� oð1Þ. Substituting into (42),

if b > 1, then with probability 1� oð1Þ,

V TS�V � ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1p

�
> 0;

which concludes the second part of Theorem 8.

APPENDIX I

PROOF OF THEOREM 9

We begin by deriving sufficient conditions for the solution

of SDP (14) to match the true labels.

Lemma 19: The sufficient conditions of Lemma 16 apply to

the general side information SDP (15) by replacing S�
A ¼

~Y TX� and S�
B ¼ � ~Y .

Proof: The proof is similar to the proof of Lemma 16. &

It suffices to show that S� defined by S�
A, S

�
B, and S�

C satis-

fies other conditions in Lemma 19 with probability 1� oð1Þ.
Let

d�i ¼ T1

Xn
j¼1

Gijx
�
jx

�
i þ ~yix

�
i : (43)

Then D�X� ¼ T1GX� þ ~Y and based on the definitions of

S�
A, S�

B, and S�
C in Lemma 19, S� satisfies the condition

S�½1; X�T �T ¼ 0. It remains to show that (23) holds, i.e., S� �
0 and �2ðS�Þ > 0 with probability 1� oð1Þ. For any V such

that V T ½1; X�T �T ¼ 0 and kV k ¼ 1, we have
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V TS�V ¼ v2S�
A � 2vT2U

TY þ UTD�U � T1U
TGU

�
ðaÞ

ð1� v2Þ
�
min
i2½n�

d�i � T1kG� E½G�k þ T1p

�
þ v2

�
~Y TX� � 2ymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� v2Þp
jvj � T1

p� q

2

�
¼ðbÞ ð1� v2Þ

�
min
i2½n�

d�i � T1kG� E½G�k þ T1p

�
;

where ðaÞ holds in a manner similar to (24) and (41), and ðbÞ
holds by applying Lemma 12. Then using Lemma 14,

V TS�V � ð1� v2Þ
�
min
i2½n�

d�i � T1c
0 ffiffiffiffiffiffiffiffiffiffi

logn
p

þ T1p

�
: (44)

It can be shown that
Pn

j¼1 Gijx
�
i x

�
j in (43) is equal in distri-

bution to S1 � S2 in Lemma 17. Then

Pðd�i 
 dÞ ¼
XM1

m1¼1

XM2

m2¼1

. . .
XMK

mK¼1

P ðm1; . . .;mKÞ;

where

P ðm1; . . .;mKÞ , Pðx�
i ¼ 1Þef2ðnÞP

�
S1 � S2 
 d� f1ðnÞ

T1

�
þ Pðx�

i ¼ �1Þef3ðnÞP
�
S1 � S2 
 dþ f1ðnÞ

T1

�
:

First, we bound mini2½n�d�i under the condition jb1j 

T1
2 ða� bÞ. It follows from Lemma 17 that

P

�
S1 � S2 
 d� f1ðnÞ

T1

�

 n�hða;b;b1Þþoð1Þ;

P

�
S1 � S2 
 dþ f1ðnÞ

T1

�

 n�hða;b;b1Þþb1þoð1Þ:

Notice that

b , lim
n!1�maxðf2ðnÞ; f3ðnÞÞ

logn
:

When b1 � 0, limn!1
f2ðnÞ
logn ¼ �b and limn!1

f3ðnÞ
logn ¼

�b1 � b. Then

Pðd�i 
 dÞ 
 n�hða;b;b1Þ�bþoð1Þ:

When b1 < 0, limn!1
f3ðnÞ
logn ¼ �b and limn!1

f2ðnÞ
logn ¼ b1 � b.

Then

Pðd�i 
 dÞ 
 n�hða;b;b1Þþb1�bþoð1Þ ¼ n�hða;b;jb1jÞ�bþoð1Þ:

Using the union bound,

P

�
min
i2½n�

d�i �
logn

log logn

�
� 1� n1�hða;b;jb1jÞ�bþoð1Þ:

When hða; b; jb1jÞ þ b > 1, it follows that mini2½n�d�i �
logn

log logn holds with probability 1� oð1Þ. Substituting into (44),

if hða; b; jb1jÞ þ b > 1, then with probability 1� oð1Þ,

V TS�V � ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1p

�
> 0;

which concludes the first part of Theorem 9.

We now bound mini2½n�d�i under the condition jb1j �
T1
2 ða� bÞ. When b1 > 0, limn!1

f2ðnÞ
logn ¼ �b and limn!1

f3ðnÞ
logn ¼

�b1 � b. Then

Pðd�i 
 dÞ 
 n�bþoð1Þ þ n�b�b1þoð1Þ:

When b1 < 0, limn!1
f3ðnÞ
logn ¼ �b and limn!1

f2ðnÞ
logn ¼ b1 � b.

Then

Pðd�i 
 dÞ 
 n�bþb1þoð1Þ þ n�bþoð1Þ:

Using the union bound,

P

�
min
i2½n�

d�i �
logn

log logn

�
� 1� n1�jb1j�bþoð1Þ:

When jb1j þ b > 1, it follows that mini2½n�d�i � logn
log logn holds

with probability 1� oð1Þ. Substituting into (44), if jb1j þ b >

1, then with probability 1� oð1Þ,

V TS�V � ð1� v2Þ
�

logn

log logn
� T1c

0 ffiffiffiffiffiffiffiffiffiffi
logn

p
þ T1p

�
> 0;

which concludes the second part of Theorem 9.
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