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Abstract—Index modulation emits information through the
index of the activated component of a vector signal as well as the
value of the activated component. Indexing could occur across
antennas, subcarriers, or other degrees of freedom. When index
modulation is applied to antennas, it is known as spatial mod-
ulation. Earlier bounds or estimates for the spectral efficiency
of spatial modulation have been too loose for determining the
parameters of coding and modulation, which are important in
practice. Furthermore, the best bounds formerly available did
not effectively elucidate the relationship of spatial modulation
capacity with SIMO and MIMO capacity at low- and high-SNR.
The present work develops novel, tighter bounds on the spectral
efficiency of spatial modulation. Specifically, for a 4× 2 antenna
configuration at 8 bits/s/Hz, our results are 2dB tighter than the
best bounds available in the literature.

I. INTRODUCTION

Index modulation conveys information by selecting a subset
of elements of a transmit vector such as antennas, subcarriers,
etc., in addition to the information conveyed through the values
of the selected elements [1], [2]. Spatial modulation is the
most popular index modulation technique in which one out
of nt available antennas is activated per channel use, and a
modulation symbol is transmitted from the active antenna [3],
[4]. Both the index of the active antenna and the transmitted
symbol carry information. Spatial modulation is driven by the
idea of utilizing the available multi-antenna channel while
limiting complexity. Spatial modulation has low transmitter
hardware complexity by requiring only one transmit RF chain.
Also, spatial modulation receivers are fairly simple since
multi-antenna interference is absent. Spatial modulation has
been studied extensively in the literature. For a recent survey,
see [5] and the references therein.

Knowledge of spectral efficiency is necessary for the design
of modulation and coding. The work in [6] shows via simula-
tions that spatial modulation with a single receive antenna can
achieve higher capacity compared to SISO, but it does not
provide closed-form capacity or bounds. The works in [7],
[8], [9], [10] derive approximations or bounds on capacity of
spatial modulation, but the results are not sufficiently tight
for determining parameters of modulation and coding. The
work in [11] states that the capacity of spatial modulation is
equal to the number of receive antennas times the capacity
of AWGN channel [11, Eq. (30)], which on the face of it
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Fig. 1. Schematic diagram of 2× 1 spatial modulation.

violates the MIMO bound on the degrees of freedom of the
2× nr channels, for large nr.

The difficulty in calculating the spectral efficiency for
spatial modulation is due to the character of its signaling:
the signal transmitted from each antenna is effectively the
product of two information-carrying variables, one choosing
the antenna index and the other representing the signal emitted
from the chosen antenna. Thus far, lower bounds or approxi-
mations have either directly calculated the mutual information
by approximating the statistics of the spatial modulation
transmissions [9], or have used the chain rule [7].

Our lower bound also utilizes a chain rule. The distinction of
our lower bound is that its calculation does not employ further
conditioning or approximation of the chain rule terms; its
only departure from optimality is due to choosing a codebook
distribution which has not been proven optimal.

In contrast, [7] further bounds the information term for the
antenna index, which weakens their inner bound. The work
in [9] uses a Gaussian mixture model for the transmit signals
and bounds its entropy. The resulting lower bound does not
provide insight into the relationship of spatial modulation
with MIMO and SIMO capacity, and under-performs SIMO
capacity at low-SNR. At high-SNR, the lower bound of [9]
has been the best available, but is significantly improved by
the present work. For example, for a 4×2 spatial modulation,
at 8 bits/s/Hz, our bound is 2 dB tighter than [9].

Our outer bounds are a combination of the MIMO bound
and a genie-aided SIMO bound.

This paper is organized as follows. In Section II, bounds
on the capacity of 2 × 1 spatial modulation are derived. In
Section III, the capacity bounds are extended to nt×nr spatial
modulation. Simulation results and comparisons with previous
works are presented in Section IV. Section V concludes the
paper.
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II. CAPACITY OF 2× 1 SPATIAL MODULATION

Consider a 2 × 1 spatial modulation system shown in
Fig. 1, in which information is conveyed through the index
of the active antenna (captured by the variable v) and the
symbol transmitted from the active antenna (denoted by z).
The received signal is given by

y = g1zv + g2z(1− v) + w (1)

=

{
g1z + w if v = 1

g2z + w if v = 0
(2)

where w obeys CN (0, σ2), g1, g2 obey CN (0, 1), and g1, g2, w
are independent of each other and of the inputs. An average
transmit power constraint of σ2

z is assumed on z. We do not
assume z and v are independent. v is a Bernoulli random
variable characterized with P(v = 1) = p, and we define the
signal-to-noise ratio parameter ρ , σ2

z

σ2 . We denote by h(·)
the entropy of a (continuous or discrete) random variable. We
denote by CSISO the capacity of SISO fading channel. We
begin with the following elementary, but useful result.

Proposition 1. (2×1 spatial modulation - SISO lower bound)
The capacity of 2 × 1 spatial modulation is lower bounded

by the capacity of SISO fading channel.

CSM ≥ CSISO. (3)

Proof. This is a simple outcome of SISO being a special case
of 2×1 spatial modulation (when spatial modulation elects to
send no information via the index). Therefore, the capacity of
spatial modulation is no less than SISO capacity.

Remark 1. It can be shown that the SISO lower bound is
tight at low SNR, i.e., CSM

CSISO
−→
ρ→0

1, using a simple sandwich

argument: MISO capacity upper bounds the spatial modulation
capacity, and MISO capacity tends to SISO capacity at low
SNR (assuming CSIR but no CSIT) [12].1

We now derive an upper bound on the capacity of spatial
modulation.

Proposition 2. (2×1 spatial modulation - Genie-aided upper
bound) The capacity of 2× 1 spatial modulation satisfies the
upper bound

CSM ≤ CSISO + 1 (4)

Proof. We have

I(v, z; y|g1, g2) = I(z; y|v, g1, g2) + I(v; y|g1, g2). (5)

The first term is equivalent to the mutual information across
a SISO channel with CSIR.

I(z; y|v, g1, g2) =pI(z; y|v = 1, g1, g2)+

(1− p)I(z; y|v = 0, g1, g2)

=p I(x1; y|g1) + (1− p) I(x2; y|g2)

=I(x1; y|g1) (by symmetry) (6)

1The tightness of the SISO lower bound can also be shown from first
principles, but the sandwich argument is more compact and is presented here
for brevity.

Now consider the second term in (5)

I(v; y|g1, g2) = h(v|g1, g2)− h(v|y, g1, g2)

= h(v)− h(v|y, g1, g2), (7)

where the last equality is due to the independence of channel
gains from input values. Combining Eqs. (5), (6), and (7)

I(v, z; y|g1, g2) = I(x1; y|g1) + h(v)− h(v|y, g1, g2) (8)

It then follows that

CSM = max
p(v,z)

I(v, z; y|g1, g2)

= max
p(v,z)

[
I(x1; y|g1) + h(v)− h(v|y, g1, g2)

]
≤ max
p(v,z)

[
I(x1; y|g1) + h(v)

]
≤ max
p(v,z)

I(x1; y|g1) + max
p(v,z)

h(v)

= CSISO + 1

We refer to the above upper bound as the Genie-aided
upper bound since the bound can be achieved when the index
information is revealed for free at the receiver.
Remark 2. Since CSISO = Θ(log ρ), the ratio of lower and
upper bounds goes to one in high-SNR limit. Also, another ob-
vious upper bound on the capacity of 2×1 spatial modulation
is the capacity of 2× 1 MISO since 2× 1 spatial modulation
is a special case of 2× 1 MISO when the transmitter decides
to activate one of the antennas in each transmission interval.

We now offer a Lemma that provides insight into the
behavior of index modulation decoding at high SNR.

Lemma 1.
h(v|z, y, g1, g2)

ρ→∞−→ 0 (9)

Proof. Let ε, ε′ > 0 be arbitrary positive constants. Consider
g1 and g2 such that |g1−g2| > ε. Then, there exists 0 < δ < 1
such that

P(|g1 − g2| > ε) = 1− δ. (10)

Now, consider z =
√
ρ ·z′, where z′ ∼ CN (0, 1). We consider

a receiver strategy where we throw away the symbols with
|z′| < ε′. There exists 0 < δ′ < 1 such that

P(|z′| ≥ ε′) = 1− δ′. (11)

The 2× 1 spatial modulation system model can be written as

y = (g1 − g2)vz + g2z + w. (12)

It can be seen that, conditioned on y, z, g1, and g2, the
effective SNR for the detection of v is bounded below by:{

ε2ε′2ρ w.p. (1− δ)(1− δ′)
0 w.p. δ + δ′ − δδ′ , δ′′

We now argue in reverse by assigning arbitrary small values
for δ, δ′ and hence for δ′′. This induces fixed values for ε, ε′

through Eqs. (10), (11). For these fixed values, we can increase
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ρ sufficiently to make ε2ε′2ρ as large as desired. Under
these conditions, via symbol-by-symbol detection, the symbols
with a positive SNR lower bound will be correctly detected
(because their SNR is made arbitrarily high as ρ → ∞).
Therefore the overall probability of error is limited to the
symbols that did not have a positive SNR guarantee, i.e.

P(v̂ 6= v) ≤ δ′′ (13)

and as mentioned earlier, we can make δ′′ as small as desired.
By data processing inequality:

h(v|y, z, g1, g2) ≤ h(v|v̂(y, z, g1, g2)), (14)

where v̂(y, z, g1, g2) is the estimate of v. By Fano’s inequality

h(v|v̂(y, z, g1, g2)) ≤ H(P(v̂ 6= v)) + P(v̂ 6= v) log2(|χ| − 1)

= H(P(v̂ 6= v)), (15)

where the equality follows since |χ| = 2. Due to the continuity
of H(·), Eq. (13) implies H(P(v̂ 6= v)) < δ′′′ for a positive
δ′′′ that can be made arbitrarily small. This, together with (14)
and (15) completes the proof.

Remark 3. Lemma 1 implies that in spatial modulation, at
high-SNR, decoding of z implies the decoding of the index
v. This says that in the high-SNR regime, arbitrarily long
sequences of antenna indices can be recovered at the receiver
with negligible error, as long as the rate of the codebook
z is sufficiently low. This exposes the tension between the
recovery of antenna indices on the one hand, and the rate for
the codebook z on the other hand, in the high-SNR regime.

III. CAPACITY OF nt × nr SPATIAL MODULATION

Consider a multi-antenna system with nt transmit and nr
receive antennas. The nt × nr spatial modulation activates
a single transmit antenna in a channel use and transmits a
symbol from the activated antenna. The system model for nt×
nr spatial modulation can be written as

y =

(
nt∑
i=1

givi

)
z + w, (16)

where gi is the channel gain vector from ith transmit antenna
to nr receive antennas, vi is the antenna activation variable for
ith antenna such that only one of the vis is one and remaining
(nt − 1) vis are zeros, and w is nr × 1 noise vector with its
entries being i.i.d CN (0, σ2). The system model in (16) can
be written as

y = Gvz + w, (17)

where G = [g1 g2 · · · gnt
] and v = [v1 v2 · · · vnt

]T such
that v ∈ {ei, i = 1, . . . , nt} with ei being nt× 1 vector with
its ith entry being 1 and other entries being 0s. We define
pi , P(v = ei) as the probability of activating ith antenna.
Let x = vz = [x1x2 . . . xnt ]

T denote the nt × 1 transmit
vector. We denote by CSIMO the capacity of SIMO fading
channel. With this, we have the following propositions on the
capacity of nt × nr spatial modulation.

Proposition 3. (Spatial modulation - SIMO lower bound) The
capacity of nt × nr spatial modulation is lower bounded by
the capacity of 1× nr SIMO fading channel.

CSM ≥ CSIMO (18)

Proof. The proof follows from the fact that SIMO is a special
case of spatial modulation when it emits no information
through the index. Therefore, the capacity of nt × nr spatial
modulation is no less than the capacity of the SIMO fading
channel with the same number of receive antennas.

Proposition 4. (Spatial modulation - Genie-aided upper
bound) The capacity of nt × nr spatial modulation satisfies
the upper bound

CSM ≤ CSIMO + log2 nt. (19)

Proof. We have

I(v, z;y|G) = I(z;y|v,G) + I(v;y|G). (20)

The first term is equivalent to the mutual information of a
SIMO channel with CSIR.

I(z;y|v,G) =

nt∑
i=1

piI(z;y|v = ei,G)

=

nt∑
i=1

piI(xi;y|G)

= I(x1;y|G) (by symmetry) (21)

Now consider the second term in (20)

I(v;y|G) = h(v|G)− h(v|y,G).

= h(v)− h(v|y,G), (22)

where the last equality follows from the independence of
channel and inputs. Combining Eqs. (20), (21), (22)

I(v, z;y|G) = I(x1;y|G) + h(v)− h(v|y,G) (23)

It then follows that

CSM = max
p(v,z)

I(v, z;y|G)

= max
p(v,z)

[
I(x1;y|G) + h(v)− h(v|y,G)

]
≤ max
p(v,z)

[
I(x1;y|G) + h(v)

]
≤ max
p(v,z)

I(x1;y|G) + max
p(v,z)

h(v)

= CSIMO + log2 nt.

Remark 4. Using similar arguments as before, it can be shown
that the lower bound in Proposition 3 is tight at low-SNR.
Also, the ratio of lower and upper bounds goes to one at
high-SNR. Also, another obvious upper bound on the capacity
of spatial modulation is the capacity of the MIMO system
using the same number of transmit and receive antennas, i.e.,
CSM ≤ CMIMO.
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We now present a tighter lower bound on the capacity of
spatial modulation.

Proposition 5. (Spatial modulation - Independence lower
bound) The capacity of nt × nr spatial modulation is lower
bounded as follows:

CSM ≥ CSIMO + log2 nt−

Ey,G

[
nt∑
i=1

log2

nt∑
j=1

√
|Σi|
|Σj | exp

(
1
2y

H(Σ−1
i − Σ−1

j )y

)
nt∑
j=1

√
|Σi|
|Σj | exp

(
1
2y

H(Σ−1
i − Σ−1

j )y

) ]
,

(24)

where Σi = gig
H
i σ

2
z + σ2Inr .

Proof. We have

I(v, z;y|G) = I(z;y|v,G) + I(v;y|G)

Therefore,

CSM = max
p(v,z)

I(v, z;y|G) ≥ I(z;y|v,G) + I(v;y|G).

To evaluate the right-hand side,2 consider the signalling where
v and z are independent, z ∼ CN (0, σ2

z), and v is selected
uniformly. As seen before, when z ∼ CN (0, σ2

z), the mutual
information I(z;y|v,G) = CSIMO and the above inequality
becomes

CSM ≥ CSIMO + I(v;y|G)

= CSIMO + h(v|G)− h(v|y,G)

= CSIMO + log2 nt − h(v|y,G). (25)

Now, we have

h(v|y,G) = Ey,G

[
−
nt∑
i=1

p(v = ei|y,G) log2 p(v = ei|y,G)

]
,

(26)
where

p(v = ei|y,G) =
p(y|v = ei,G)p(v = ei|G)

nt∑
j=1

p(y|v = ej ,G)p(v = ej |G)

.

From the system model of nt×nr spatial modulation, we have

E(y|v = ei,G) = giE(z) + E(w) = 0

and

Cov(y|v = ei,G) = gig
H
i E(|z|2) + σ2Inr

= gig
H
i σ

2
z + σ2Inr , Σi.

Therefore,

p(y|v = ei,G) =
1√

(2π)nr |Σi|
exp

(
− 1

2
yHΣ−1

i y

)
,

2So that any maximization of individual terms on the right hand side does
not compromise the inequality, all mutual information terms on the right are
calculated according to one and the same distribution.
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Fig. 2. Capacity bounds for 8× 8 spatial modulation.

and hence

p(v = ei|y,G) =

1√
|Σi|

exp

(
− 1

2y
HΣ−1

i y

)
nt∑
j=1

1√
|Σj |

exp

(
− 1

2y
HΣ−1

j y

)
=

1
nt∑
j=1

√
|Σi|
|Σj | exp

(
1
2y

H(Σ−1
i − Σ−1

j )y

) .
Using this expression in (26) and substituting the resulting
expression in (25) proves the proposition.

IV. SIMULATIONS

Figure 2 shows the upper and lower bounds on the capacity
of 8×8 spatial modulation derived in the previous section. The
capacity of 8 × 8 MIMO is also shown in the figure. Firstly,
it can be seen that the independence lower bound meets the
genie-aided upper bound at high-SNR, which illustrates the
tightness of the derived bounds. Next, it can be seen that
although 8 × 8 spatial modulation may achieve a capacity
greater than 1× 8 SIMO, its capacity falls significantly below
the 8 × 8 MIMO capacity at high-SNR. This observation
suggests that spatial modulation should be considered when
there is a strict hardware constraint that allows using only one
RF chain. Using spatial modulation when there is no such
hardware constraint is spectrally inefficient.

Figure 3 compares the capacity results of the present paper
with those of [7] and [8]. The bounds in [7] are shown as
Rajashekar-Hari-Hanzo lower and upper bounds. The capacity
approximations in [8] using the Taylor series are shown as
Henarejos-Neira order 2 and 4 approximations. It can be seen
from Fig. 3 that, while the upper bound in [7] is identical
with our genie-aided upper bound, the lower bound is weaker
compared to our independence lower bound at all SNR values.
For example, at 8 bits/s/Hz, our lower bound is 5 dB tighter
than the lower bound in [7]. It can also be observed that the
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Fig. 3. Comparing bounds of the present paper with the bounds in [7] and
approximations in [8] for 4× 4 spatial modulation.
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Fig. 4. Comparing bounds of the present paper with the bounds in [9] for
4× 2 spatial modulation.

approximations of [8] are weaker compared to the bounds of
the present paper.

Figure 4 compares the capacity bounds of the present paper
with the bounds in [9] for 4 × 2 spatial modulation. The
bounds in [9] are shown as Ibrahim-Kim-Love upper and lower
bounds. It can be seen that the upper bound of [9] is identical
with our genie-aided upper bound. However, the lower bound
of [9] is weaker than our independence lower bound. For
example, at 8 bits/s/Hz, our lower bound is 2 dB tighter than
the lower bound bound in [9].

V. CONCLUSIONS

We analyzed the capacity of spatial modulation from first
principles and derived upper and lower bounds on the capacity.
We showed that the single-transmit-antenna lower bound is
tight at low-SNR. We also showed that the bounds derived
in this paper are tighter than the previous bounds or approx-
imations in the literature. Our results revealed that at high-
SNR, the information carried by the index is bounded by
a constant log nt, while the SISO/SIMO capacity grows as
log SNR, therefore asymptotically, the ratio of spatial modula-
tion capacity to SISO/SIMO capacity is one. Our results also
revealed that the capacity loss in spatial modulation compared
to MIMO can be significant at high-SNR.
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