
IMA Journal of Applied Mathematics (2021) 00, 1–29
https://doi.org/10.1093/imamat/hxab023
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We study the structure of stationary patterns in bistable lattice dynamical systems posed on rings
with a symmetric coupling structure in the regime of small coupling strength. We show that sparse
coupling (for instance, nearest-neighbour or next-nearest-neighbour coupling) and all-to-all coupling
lead to significantly different solution branches. In particular, sparse coupling leads to snaking branches
with many saddle-node bifurcations, while all-to-all coupling leads to branches with six saddle nodes,
regardless of the size of the number of nodes in the graph.

1. Introduction

In this paper, we study the structure of stationary patterns in bistable lattice systems. More precisely, we
take a ring of N ≥ 3 identical nodes and consider the lattice dynamical system

u̇n = d(∆mU)n + f (un,µ), 1 ≤ n ≤ N, U = (u1, u2 . . . , uN) ∈ R
N (1.1)

on this ring for small coupling strength 0 < d ≪ 1, where f (u,µ) is a bistable non-linearity, and
the coupling operator ∆m denotes the symmetric m-nearest-neighbour connections on the ring that we
describe in more detail below. We refer to Fig. 1 for an illustration of typical non-linearities and the
coupling structures we consider in this paper. Throughout this paper, we will use the notation U =
(u1, u2 . . . , uN) ∈ R

N and will always take all indices in the set {1, . . . ,N}moduloN so that, for instance,
uN+1 = u1 and u−1 = uN . With these conventions, the coupling operator in the case m = 1 is the usual
discrete diffusive (nearest-neighbour) operator

(∆1U)n = un+1 + un−1 − 2un,

the case m = 2 results in the next-nearest-neighbour coupling

(∆2U)n = un+2 + un+1 + un−1 + un−2 − 4un,
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2 M. TIAN ET AL.

Fig. 1. The left panel illustrates the zero set {(u,µ) : f (u,µ) = 0} of a typical bistable nonlinearity f (u,µ) with two stable states
at u = 0 and u = u+(µ) and an unstable state at u = u−(µ). The three rightmost panels contain graphs that consist of N = 6
identical nodes with (from left to right) nearest neighbour, next-nearest neighbour, and all-to-all coupling, respectively.

and the general case is given by

(∆mU)n =
{

−(2m+ 1)un +
∑m

j=−m un+j, 1 ≤ m < ⌊N2 ⌋
−Nun +

∑N
j=1 uj, m = ⌊N2 ⌋.

We refer to the case m = ⌊N2 ⌋ as all-to-all coupling as each element on the ring is connected to all other
elements.

Our goal is to understand how the arrangement of stationary patterns in the (u,µ) configuration
space depends on the interaction length m of the coupling on the ring. Steady states of (1.1) correspond
to solutions to the system

F(U,µ, d) = 0 (1.2)

where

F : RN × R × R −→ R
N , (U,µ, d) 7−→ F(U,µ, d), F(U,µ, d)n = d(∆mU)n + f (un,µ).

We focus on the case 0 < d ≪ 1, which allows us to exploit the anti-continuum limit d = 0 when
the system (1.2) is uncoupled. Setting d = 0 and choosing µ ∈ (0, 1), we select the solution of (1.2)
for which u1 lies on the upper stable branch u = u+(µ) and the remaining nodes uj with j 6= 1 lie
on the lower stable branch u = 0 of the zero set of f (u,µ); see Figure 1 for an illustration of the
zero set of f (u,µ). We are then interested in describing the connected component of the solution set
{(U,µ, d) : F(U,µ, d) = 0} that this solution belongs to and understand how this connected component
changes as the interaction range m varies.

For m = 1 and each fixed value of 0 < d ≪ 1, we will show that solutions are arranged in a
“snaking” pattern (see Figure 2(i)): starting with a configuration where one node is set to u+(µ) and
all other nodes are set to zero, we show that the solution branch exhibits fold bifurcations at which
the number of nodes that are close to u+(µ) increases until all nodes are equal to u+(µ). Snaking has
first been conjectured in Pomeau (1986) for spatially extended systems modelled by partial differential
equations (PDEs) on the real line and was first investigated rigorously in the seminal work Woods &
Champneys (1999); see also (Coullet et al., 2000) for related work. Since then, snaking for PDEs in
one and two space dimensions has been analysed extensively, and we refer, for instance, to (Avitabile
et al., 2010; Beck et al., 2009; Burke & Knobloch, 2006, 2007; Chapman & Kozyreff, 2009; Kozyreff
& Chapman, 2006; Lloyd et al., 2008) and the reviews (Dawes, 2010; Knobloch, 2015). Many of
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SNAKING BIFURCATIONS ON RING LATTICES 3

Fig. 2. Different bifurcation curves depending on the number of symmetric connections over a six element ring. (i) Nearest-
neighbour connections lead to a typical snaking bifurcation diagram, as is proven in Theorem 1, (ii) Next-nearest-neighbour
connections on a six element ring introduce a further symmetry for which the elements indexed by 2,3,5,6 bifurcate together near
µ = 0, as proven in Theorem 2. (iii) In the case of all-to-all coupling, the system is invariant with respect to any permutation of
the nodes on the ring and so the bifurcation curves form a small closed curve that bifurcates from the homogeneous state (dotted
curve) near the origin, as proven in Theorem 4. Squares marking the end of the curves in panels (i) and (ii) represent the set of
exceptional bifurcations which are not proven in this work.

these investigations were motivated by the observation of snaking patterns in experiments and models,
including in ferrofluids Groves et al. (2017); Lloyd et al. (2015); Richer & Barashenkov (2005), optical
systems Chong et al. (2009); Firth et al. (2007); Gomila et al. (2007), and vegetation models Meron
(2018), to name but a few. Similarly complex bifurcation structures of localized solutions have also
been observed in spatially discrete systems posed on integer lattices in Chong et al. (2009); Chong &
Pelinovsky (2011); Kusdiantara & Susanto (2017, 2019); McCullen & Wagenknecht (2016); Papangelo
et al. (2017); Taylor & Dawes (2010); Yulin & Champneys (2011, 2010) and were explained in part
by Bramburger (2020); Bramburger & Sandstede (2020a,b). While the latter works have explained the
bifurcation structure of localized solutions on ‘regular’ graphs, such as the integer lattices, little is known
about how graph structure and connection topology influence the connections of localized solutions in
parameter space.

Motivated by these previous investigations, we explore here the role of different finite interaction
lengths and the effect of boundaries on snaking patterns in lattice systems. Focusing on ring lattices
allows us to address these questions together. We will provide analytical results for two distinct coupling
regimes, namely sparse coupling (with nearest-neighbour and next-nearest-neighbour coupling) and all-
to-all coupling. We will prove that the resulting bifurcation curves differ significantly as illustrated in
Fig. 2: sparse coupling leads to snaking curves with many fold bifurcations (the number will increase as
the number of nodes, N, increases), while all-to-all coupling will always result in a curve with six saddle
nodes and two symmetry-breaking bifurcations near µ = 0 and µ = 1 from the branch of equilibria
at which all nodes are equal to the unstable state u−(µ). We also provide illustrative examples in the
case of almost all-to-all coupling where additional symmetries in the system result in entirely unique
bifurcation curves that would be difficult to predict. We conjecture that sparse coupling will lead to
snaking curves that exhibit ⌊N2 ⌋ saddle nodes for each m with 1 ≤ m ≤ ⌊N2 ⌋ − 2 (thus excluding almost
all-to-all coupling).
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4 M. TIAN ET AL.

Fig. 3. Action of the flip κ on odd and even element rings. On the left is a ring of N = 5 elements, for which the flip leaves only
the element at index 1 fixed, while the right presents a ring of N = 6 elements, for which the flip leaves the elements at index 1
and 4 fixed.

2. Main results

Recall that we are interested in the solution structure of the system

u̇n = d(∆mU)n + f (un,µ), 1 ≤ n ≤ N. (2.1)

First, note that system (2.1) is equivariant with respect to the dihedral symmetry group DN , generated
by the actions

ζ(u1, u2, . . . , uN) = (u2, . . . , uN , u1)

κ(u1, u2, u3, . . . , uN−1, uN) = (u1, uN , uN−1, . . . , u3, u2),
(2.2)

which define rotations and flips of the ring, respectively. Clearly, ζN = 1 and κ2 = 1, where we use 1
to denote the identity element that acts trivially on vectors in R

N . Our interest in what follows will lie
in solutions of (2.1) that are invariant with respect to the action of κ . Notice that the action of κ on rings
with N even leaves exactly two elements fixed, while when N is odd only the element at index 1 is fixed.
We refer the reader to Fig. 3 for a demonstration of these two cases with N = 5, 6. Finally, in the case of
all-to-all coupling, system (2.1) is equivariant with respect to the symmetric group SN of permutations
on N elements, which is a strictly larger class of symmetries than those for all other classes of coupling
functions considered in this work.

Here, the function f is assumed to be bistable, satisfying the same properties as in Bramburger &
Sandstede (2020a). We summarize these properties in the following hypothesis; see also Fig. 1.

Hypothesis 1 The function f : R × R → R is smooth and satisfies the following.
(i) The function f is odd in u so that f (−u,µ) = −f (u,µ) for all (u,µ).

(ii) The set of roots of f (u,µ) is as shown in the left panel of Fig. 1. In particular, for each µ ∈ (0, 1),
the function f (u,µ) has exactly three nonnegative zeros, namely u = 0 and u = u±(µ) with
0 < u−(µ) < u+(µ), and these satisfy fu(0,µ), fu(u+(µ),µ) < 0 < fu(u−(µ),µ).

(iii) At µ = 0, the zeros u = 0 and u = ±u−(µ) collide in a generic subcritical pitchfork bifurcation.

(iv) At µ = 1, the zeros u = u±(µ) collide in a generic saddle-node bifurcation at u = 1.
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SNAKING BIFURCATIONS ON RING LATTICES 5

Our assumption (iv) that the saddle-node bifurcation at µ = 1 occurs at u = 1 is for convenience
only as this can always be achieved through an appropriate change of variables. We also note that all of
our analysis can be applied to bistable functions for which the bifurcation at µ = 0 or µ = 1 is instead a
transcritical bifurcation, as was shown to be true in Bramburger & Sandstede (2020a). To precisely state
our results, we instead focus on functions satisfying Hypothesis 1 with the prototypical example being
the cubic-quintic non-linearity

f (u,µ) = −µu+ 2u3 − u5. (2.3)

This type of non-linearity appears naturally from the study of optical solitons in cubic-quintic
nonlinear Schrödinger lattices (Chong et al., 2009; Chong & Pelinovsky, 2011) and it serves as a simple
solid example for analysis that gives rise to snaking localized patterns. Throughout this section, we
detail our results on localized pattern formation in the lattice system (2.1) with functions f satisfying
Hypothesis 1 based on the value ofm. In the statement of our proofs, we will adopt the notation Bδ(X) to
denote an open set of all points within distance δ > 0 from the set X. All proofs will be left to Section 3.

2.1 Sparse coupling

We begin with the case of ‘sparse’ coupling, i.e. m ≪ ⌊N/2⌋. In particular, we will focus on the cases of
m = 1, 2 to show that localized solutions grow around the ring in the form of a snaking bifurcation curve
with the region of activation growing symmetrically around the ring as one ascends the diagram, as is
illustrated in panel (i) of Fig. 2. Since we are interested in solutions which are invariant with respect to
the action of κ , we can restrict our attention to the index set

I =
{

1 ≤ n ≤
⌊

N
2

⌋

+ 1
}

(2.4)

for any fixed N ≥ 2. Indeed, an element U ∈ R
N satisfying κU = U is uniquely identified by elements

with indices belonging to I. The reader is referred to Fig. 3, where we see that when N = 5, we have
I = {1, 2, 3} and the elements at indices 4, 5 are identical to those at 3, 2, respectively. Similarly, from
Fig. 3, when N = 6 we have I = {1, 2, 3, 4} and the elements at indices 5, 6 are identical to those at 3, 2,
respectively.

Hypothesis 1 implies that any non-negative solution of (1.2) with d = 0 must have un ∈ {0, u±(µ)}
when µ ∈ [0, 1]. We use k to specify nodes that are activated at u+(µ). Then, for each 0 ≤ µ ≤ 1 and
k ∈ I, we define the elements Ū(k)(µ) = {ū(k)

n (µ)}n∈I and V̄(k)(µ) = {v̄(k)n (µ)}n∈I by

ū(k)
n (µ) =

{

u+(µ) 1 ≤ n ≤ k
0 n > k

(2.5)

and

v̄(k)n (µ) =











u+(µ) 1 ≤ n < k
u−(µ) n = k
0 n > k

(2.6)
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6 M. TIAN ET AL.

Fig. 4. The bifurcation diagram on a ring with (N,m) = (8, 3) for small d > 0. The number of neighbour connections induces
an added symmetry, thus leading to the above bifurcation diagram which bears little resemblance to that of the case (N,m) =
(8, 1), (8, 2) featured in Theorem 1. Squares marking the end of the curve represent the set of exceptional bifurcations, continued
from E , which are not proven in this work.

for all n ∈ I and µ ∈ [0, 1]. Notice that when k = ⌊N/2⌋ + 1, we have that Ū(k) is a uniform state with
all entries given by u+(µ). From the discussion above, we have that these elements can be extended to
κ-invariant solutions of (1.2) by having un for n /∈ I be defined by the relation κU = U.

The elements (2.5) and (2.6) are pairwise distinct when µ ∈ (0, 1), but Hypothesis 1 gives that
limµ→0+ u−(µ) = 0 and limµ→1− u−(µ) = u+(1), and so the patterns (2.5) and (2.6) satisfy

Ū(k−1)(0) = V̄(k)(0), k = 2, . . . ,
⌊

N
2

⌋

+ 1

Ū(k)(1) = V̄(k)(1), k = 1, . . . ,
⌊

N
2

⌋
(2.7)

at the parameter boundaries µ = 0, 1. We can therefore define the connected set

Γsparse :=
⋃

k∈I

⋃

0≤µ≤1
{(Ū(k)(µ),µ), (V̄(k)(µ),µ)} ⊂ R

N × [0, 1], (2.8)
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SNAKING BIFURCATIONS ON RING LATTICES 7

which represents the union of the curves traced out for µ ∈ [0, 1] by the patterns (2.5) and (2.6) of (1.2)
when d = 0. We will also define the exceptional set E , given by

E := {V̄(1)(0)} ∪ {V̄(⌊ N2 ⌋+1)(1)}, (2.9)

representing the endpoints of the curve Γsparse. We present the following theorem, for which Fig. 2(i)
provides an illustration of the results for (N,m) = (6, 1). The proofs for m = 1 are left to Section 3.1
and m = 2 are left to Section 3.2.

Theorem 1 Assume that f satisfies Hypothesis 1. If N ≥ 4 and m = 1 or N ≥ 7 and m = 2, then
for each δ∗ > 0, there exists d∗ > 0 such that for each 0 < d < d∗ the set Bδ∗(Γsparse) \ B2δ∗(E)

contains a unique, non-empty, continuous branch of κ-symmetric solutions of the steady-state system
(1.2). Furthermore, this branch is smooth and C1-close to Γsparse for each d, depends smoothly on d, and
its limit as d → 0+ is contained in Γsparse.

2.2 Almost all-to-all coupling

Notice that in the statement of Theorem 1, we were required to take N ≥ 7 when m = 2 to obtain the
snaking bifurcation curves of localized solutions similar to those with m = 1. This is because when N
is even and m = ⌊N2 ⌋ − 1, new symmetries are introduced into the model. This has the effect that the
resulting bifurcation diagram is markedly different than the usual snaking diagram for sparse coupling,
while also being distinct from the fully symmetric case of all-to-all coupling covered in the following
subsection. It appears that many of these bifurcations curves must be understood on a case-by-case
basis for varying N, and so instead of attempting to exhaustively document all of these cases, we opt
to illustrate with two specific examples. The cases detailed here will take N = 6, 8, representing the
smallest ring sizes where these atypical bifurcation diagrams can be observed.

Let us begin with N = 6. Much of the bifurcation structure in the case when (N,m) = (6, 2) is
similar to that of the case when N ≥ 7 and m = 2, with the following exception: the connection from the
continued solutions of Ū(1)(µ) to V̄(2)(µ), defined in (2.5) and (2.6), respectively, near (d,µ) = (0, 0)
is not present. This connection is replaced by a connection from the continued solutions of Ū(1)(µ) to
the branch continued from the solution W̄(23)(µ), given by

w̄(23)
n =











u+(µ) n = 1
u−(µ) n = 2, 3
0 n = 4

(2.10)

for each µ ∈ [0, 1]. Since the solution W̄(23)(µ) satisfies

lim
µ→0+

W̄(23)(µ) = Ū(1)(0) and lim
µ→1−

W̄(23)(µ) = Ū(3)(1),

we may define the connected set

Γ6,2 :=
⋃

0≤µ≤1
{(V̄(1),µ), (Ū(1),µ), (W̄(23),µ), (Ū(3),µ), (V̄(4),µ)} ⊂ R

6 × [0, 1]. (2.11)

Using again E defined in (2.9), this leads to the following theorem whose results are presented visually
in Fig. 2(ii). The proof is left to Section 3.3.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxab023/6311546 by Brow

n U
niversity user on 09 August 2021



8 M. TIAN ET AL.

Fig. 5. We illustrate the solution branch for symmetric all-to-all coupling and the different patterns along the branch. The dotted
curve corresponds to the branch of SN -symmetric equilibria at which all nodes are equal to the unstable state u−(µ).

Theorem 2 Assume that f satisfies Hypothesis 1 and that (N,m) = (6, 2). Then, for each δ∗ > 0,
there exists d∗ > 0 such that for each 0 < d < d∗ the set Bδ∗(Γ6,2) \ B2δ∗(E) contains a non-empty,
continuous branch of κ-symmetric solutions of the steady-state system (1.2). Furthermore, this branch
is smooth and C1-close to Γ6,2 for each d, depends smoothly on d, and its limit as d → 0+ is contained
in Γ6,2.

Turning now to the case (N,m) = (8, 3), we are required to define two more patterns which
correspond to κ-invariant solutions of (1.2) with d = 0. Consider the elements W̄(24)

± (µ) and W(3)
− (µ),

given by

w̄(24)
±,n (µ) =











u+(µ) n = 1
u±(µ) n = 2, 4
0 n = 3, 5

(2.12)

and

w̄(3)
−,n(µ) =











u+(µ) n = 1, 2, 4
u−(µ) n = 3
0 n = 5,

(2.13)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxab023/6311546 by Brow

n U
niversity user on 09 August 2021



SNAKING BIFURCATIONS ON RING LATTICES 9

Fig. 6. Atypical bifurcations near µ = 0 for N = 6, 8 and m = ⌊N/2⌋ − 1. Panel (i) contains an illustration of the proof of
Lemma 3.6. Panels (ii) and (iii) illustrate the bifurcations near µ = 0 when N = 8, as presented in Lemmas 3.8 and 3.10. In all
images, black circles represent elements continued from u+(µ) into d > 0, shaded grey circles are continued from u−(µ) and
white circles are continued from 0. Connections are represented by lines connecting the circles.

respectively, for each µ ∈ [0, 1]. Here, the values in the superscript detail which terms are at u−(µ)

when the subscript is −, while the element W̄(24)
+ (µ) connects the two elements with − subscripts. We

refer the reader to panels (ii) and (iii) of Fig. 6 below for visual depictions of these elements extended
by κ symmetry to the entire ring. Notice that we have the following connections:

lim
µ→0+

W̄(24)
− (µ) = lim

µ→0+
Ū(1)(µ)

lim
µ→1−

W̄(24)
+ (µ) = lim

µ→1−
W̄(24)

− (µ)

lim
µ→0+

W̄(3)
− (µ)= lim

µ→0+
W̄(24)

+ (µ)

lim
µ→1−

W̄(3)
− (µ) = lim

µ→1−
Ū(4)(µ).

(2.14)

These connections allow one to define the connected set

Γ8,3 :=
⋃

0≤µ≤1
{(V̄(1),µ), (Ū(1),µ), (W̄(24)

− ,µ), (W̄(24)
+ ,µ), (W̄(3)

− ,µ), (Ū(4),µ), (V̄(5),µ)} ⊂ R
8 × [0, 1].

(2.15)

This leads to the following theorem whose results are represented visually in Fig. 4. The proof is again
left to Section 3.3.

Theorem 3 Assume that f satisfies Hypothesis 1 and that (N,m) = (8, 3). Then, for each δ∗ > 0,
there exists d∗ > 0 such that for each 0 < d < d∗ the set Bδ∗(Γ8,3) \ B2δ∗(E) contains a non-empty,
continuous branch of κ-symmetric solutions of the steady-state system (1.2). Furthermore, this branch
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10 M. TIAN ET AL.

is smooth and C1-close to Γ8,3 for each d, depends smoothly on d, and its limit as d → 0+ is contained
in Γ8,3.

2.3 All-to-all coupling

Let us now consider the case of all-to-all coupling, i.e. m = ⌊N2 ⌋. In this case, (1.2) becomes

d
N

∑

j=1
(uj − un) + f (un,µ) = 0, (2.16)

so that every element is coupled to every other element, thus representing a complete graph with
N vertices. The symmetry group associated with (2.16) is therefore given by the group SN of all
permutations of the vectors U = (u1, u2, . . . , uN) ∈ R

N , which is larger than the dihedral group DN . For
each k = 1, . . . , ⌊N/2⌋, we will construct solutions whose first k elements are identical and whose last
N − k elements are identical: such solutions admit the isotropy group Sk × SN−k, defined by the set of
all permutations of the first k elements of a vector in RN together with all permutations of the last N− k
elements of the vector. Note that the fixed point space of Sk × SN−k in RN is the 2D space of all vectors
whose first k elements are identical and whose last N − k elements are identical.

Generic symmetry-breaking bifurcations from homogeneous equilibria with isotropy group SN to
equilibria with isotropy Sk × SN−k were investigated in Elmhirst (2004) and Dias & Rodrigues (2006)
in the context of sympathic speciation (see, for instance, Stewart et al., 2003and Golubitsky & Stewart
(2015) for further background). Genericity requires in particular that the linearization at a homogeneous
equilibrium at the bifurcation point has a zero eigenvalue in precisely one of the two complementary
SN-invariant subspaces given by {U ∈ R

N : u1 = . . . = uN} and {U ∈ R
N : u1 + . . . + uN = 0} but

not in both simultaneously; see (Elmhirst, 2004, Section 2). Unfortunately, the bifurcations occurring in
(2.16) at (d,µ) = (0, 0) and (d,µ) = (0, 1) are not generic as the zero eigenvalue has multiplicity N,
and we therefore need to analyse the resulting bifurcations occurring in (2.16) here.

For each k = 1, . . . , ⌊N/2⌋ and each 0 ≤ µ ≤ 1, we define the Sk×SN−k-invariant vectors Ā
(k)
± (µ) =

{ā(k)
±,n(µ)}, B̄(k)(µ) = {b̄(k)

n (µ)}, C̄(k)
± (µ) = {c̄(k)±,n(µ)} and D̄(k)(µ) = {d̄(k)

n (µ)} by

ā(k)
±,n(µ) =

{

u±(µ) 1 ≤ n ≤ k
0 n > k

(2.17)

b̄(k)
n (µ) =

{

u+(µ) 1 ≤ n ≤ k
u−(µ) n > k

(2.18)

c̄(k)±,n(µ) =
{

0 1 ≤ n ≤ k
u±(µ) n > k

(2.19)

and

d̄(k)
n (µ) =

{

u−(µ) 1 ≤ n ≤ k
u+(µ) n > k;

(2.20)
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SNAKING BIFURCATIONS ON RING LATTICES 11

see Fig. 5 for an illustration. From Hypothesis 1, we have that for any k, the vectors (2.17)–(2.20) are
Sk × SN−k-invariant solutions of (1.2) when d = 0. Furthermore, we have the following connections:

lim
µ→0+

Ā(k)
− (µ)= lim

µ→0+
C̄(k)

− (µ)

lim
µ→1−

Ā(k)
− (µ) = lim

µ→1−
Ā(k)

+ (µ)

lim
µ→0+

Ā(k)
+ (µ) = lim

µ→0+
B̄(k)(µ)

lim
µ→1−

B̄(k)(µ) = lim
µ→1−

D̄(k)(µ)

lim
µ→0+

C̄(k)
+ (µ) = lim

µ→0+
D̄(k)(µ)

lim
µ→1−

C̄(k)
− (µ) = lim

µ→1−
C̄(k)

+ (µ)

(2.21)

for each k. We therefore introduce the connected curve

Γ k
all :=

⋃

0≤µ≤1
{(Ā(k)

± (µ),µ), (B̄(k)(µ),µ), (C̄(k)
± (µ),µ), (D̄(k)(µ),µ)} ⊂ R

N × [0, 1], (2.22)

for each k = 1, . . . , ⌊N/2⌋. We present the following result, whose proof is left to Section 3.4.

Theorem 4 Assume that f satisfies Hypothesis 1. For each k = 1, . . . , ⌊N/2⌋ and δ∗ > 0, there exists
d∗ > 0 such that for each 0 < d < d∗ the set Bδ∗(Γ

k
all) contains two unique, distinct, non-empty

and continuous branches of Sk × SN−k-symmetric solutions of the steady-state system (2.16), which
emerge from and terminate at the homogeneous branch of solutions to (1.2) given by un = u−(µ) for
n = 1, . . . ,N at µ = Nd

2 +O(d2) and µ = 1−(Nd2 )2+O(d3), respectively. Furthermore, these branches
are smooth and C1-close to Γ k

all for each d, depends smoothly on d, and its limit as d → 0+ is contained
in Γ k

all.

We note that the results of Theorem 4 do not include an exceptional set, meaning that the theorem
completely characterizes the entire bifurcation curve of localized solutions in the presence of all-to-all
coupling. We refer to Fig. 5 for an illustration of the result with a ring of N = 6 elements. Interestingly,
we see that this curve of solutions does not originate at the origin (U,µ) = (0, 0) in R

N × [0, 1] when
0 < d ≪ 1, but instead bifurcates from the homogeneous branch of solutions at a positive value of µ.
For more details on this bifurcation from the homogeneous branch, we refer the reader to Lemma 3.14
below.

3. Proofs

In this section, we will prove the various theorems from the previous section detailing the existence and
bifurcation structure of steady-state solutions to (2.1). As discussed in the introduction, we can define
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12 M. TIAN ET AL.

the function

F : R
N × R × R −→ R

N , (U,µ, d) 7−→ F(U,µ, d), F(U,µ, d)n := d(∆mU)n + f (un,µ),
(3.1)

to see that the steady-state system

d(∆mU)n + f (un,µ) = 0 (3.2)

corresponding to (2.1) is given by F(U,µ, d) = 0. Note that F is smooth in its arguments, and upon
taking d = 0, solving F(U,µ, 0) = 0 with µ ∈ (0, 1) reduces to taking un ∈ {0,±u±(µ)} for each
n = 1, . . .N per Hypothesis 1.

From the assumption on the non-degeneracy of the roots of f , it follows that for µ belonging
to any compact interval of (0, 1) these solutions may be continued regularly into d > 0 using the
implicit function theorem. The challenge is therefore to understand the cases where µ is close to
zero or one. In these cases, the Jacobian of F at d = 0 will have a null space of dimension at least
one, and Lyapunov–Schmidt reduction allows us to reduce the equation F(U,µ, d) = 0 to a reduced
equation Fc(Uc,µ, d) = 0 defined on the null space. As we will see below, the reduced equation
Fc(Uc,µ, d) = 0 is, to leading order, quasihomogeneous, and we now explain what this means and how
it helps us in our analysis. Given exponents a1, a2, a3 ≥ 1, and focusing for ease of notation on the case
where µ is close to zero, we introduce the coordinate transformation (Uc,µ, d) = (νa1Ũc, νa2µ̃, νa3 d̃),
where 0 ≤ ν ≪ 1 and (Ũc, µ̃, d̃) now lies on the unit sphere. This change of coordinates is invertible
away from the origin (Uc,µ, d) = 0 or, alternatively, for ν > 0. The key is that for an appropriate choice
of a1, a2, a3, there is a constant b ≥ 1 so that

F
c(νa1Ũc, νa2µ̃, νa3 d̃) = νb

(

F
c(Ũc, µ̃, d̃) + O(ν)

)

, |(Ũc, µ̃, d̃)| = 1.

Hence, all zeros of Fc(Uc,µ, d) must lie near zeros of Fc(Ũc, µ̃, d̃), and we can therefore focus on the
desingularized equation Fc(Ũc, µ̃, d̃) = 0 with arguments on the unit sphere: if the set of zeros of the
desingularized equation consists entirely of regular zeros and generically unfolded bifurcations, then it
persists robustly for 0 < ν ≪ 1, and no additional roots can appear for ν > 0. In practice, we will use
a directional blowup in our proofs below by setting d̃ = 1 or µ̃ = 1 and will not consider the other
directional blowups that together parametrize the entire sphere as they do not contribute additional
solutions. We refer to (Kuehn, 2015, Section 7) for references and additional details on geometric
blowup.

Throughout the proofs, we will make use of the following. Through two independent µ-dependent
coordinate transformations of the u variable near (u,µ) = (0, 0) and (u+(0), 0), respectively, we can
bring the Taylor expansion of f (u,µ) at (0, 0) into the form

f (u,µ) = −µu+ u3 + O(µ2u+ µu3 + u5) (3.3)

and achieve that u+(0) = 1. Using a similar change of coordinates near (u,µ) = (1, 1), we can bring
the Taylor expansion of f (u,µ) at (1, 1) into the form

f (u,µ) = f (1+ ǔ, 1− µ̌) = µ̌ − ǔ2 − bµ̌ǔ+ O(µ̌2 + µ̌ǔ2 + ǔ3), (3.4)

for some constant b. These changes of coordinates will greatly simplify the analysis in what follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxab023/6311546 by Brow

n U
niversity user on 09 August 2021



SNAKING BIFURCATIONS ON RING LATTICES 13

3.1 Nearest-neighbour coupling

Throughout this section, we will consider N ≥ 4 and take m = 1, representing nearest-neighbour
connections in the system (1.1). In this subsection, we prove Theorem 1 with m = 1, while the case of
m = 2 is left to the following subsection. Per the discussion at the beginning of this section, we need
only continue the connections in Γsparse \ E near µ = 0, 1. We begin with the following lemma which
continues the patterns near µ = 0.

Lemma 3.1 Fix m = 1 and 2 ≤ k ≤ ⌊N2 ⌋ + 1, then the following is true for (3.2). There are constants
d1,µ1 > 0 and a smooth function µl : [0, d1] → [0,µ1] such that for each d ∈ (0, d1], there is
a pair of κ-symmetric solutions Ul(µ, d) and Vl(µ, d) of (3.2) that bifurcate at a fold bifurcation at
µ = µl(d) and exist for all µ ∈ [µl(d),µ1]. These solutions are smooth in (µ, d), and for each fixed
µ, we have Ul(µ, d) → Ū(k−1)(µ) and Vl(µ, d) → V̄(k)(µ) as d → 0+. The function µl(d) satisfies
µl(d) = 3

3√2
d
2
3 + O(d).

Proof. We will fix k ∈ {2, . . . , ⌊N2 ⌋ + 1} and construct symmetric solutions of (3.2) near the pattern

Ū(k)(0) = V̄(k)(0) =
{

1 n < k
0 otherwise

for (µ, d) near zero. We reduce patterns to the index set I, defined in (2.4), using the aforementioned κ

symmetry. To solve F(U,µ, d) = 0, we note that F(Ū(k)(0), 0, 0) = 0 and that the linearization of F is
given by

(FU(Ū(k)(0), 0, 0)v)n =
{

fu(1, 0)vn n < k
0 n ≥ k.

Writing U+ := U|n<k and Uc := U|n≥k, and using that fu(1, 0) 6= 0, we can apply the implicit function
theorem to conclude that F(U,µ, d) = 0 restricted to the index set 1 ≤ n < k has a unique solution
U+(uc,µ, d) ∈ R

k−1 for each Uc ∈ R
⌊ N2 ⌋−k+1 and (µ, d) near zero. Furthermore, this solution depends

smoothly on its arguments, and so we have

U+(Uc,µ, d) = 1+ O(|µ| + |d|‖Uc‖). (3.5)

To solve (3.2) for the indices n ≥ k, we introduce the scaling

µ = ν2, d = ν3d̃, un = νn−k+1ũn, (3.6)

for n ≥ k with |ν| ≪ 1. Substituting these expressions into (3.2) for each n ≥ k, we see that (3.2)
restricted to the index set I \ I+ becomes

n = k : 0 = ν3(d̃ − ũk + ũ3k) + O(ν4)

n > k : 0 = νn−k+3(d̃ũn−1 − ũn) + O(νn−k+4),
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14 M. TIAN ET AL.

where we recall that we have introduced a change of variable to bring the system to the normal form
(3.3). Upon dividing by the leading factors in ν, we arrive at the system

n = k : 0 = d̃ − ũk + ũ3k + O(ν)

n > k : 0 = d̃ũn−1 − ũn + O(ν)
(3.7)

for which we can see that at the index n = k a fold bifurcation takes place at (ũk, d̃, ν) = ( 1√
3
, 2
3
√
3
, 0).

Extending this fold bifurcation to the full system for the indices n ≥ k into ν > 0 now follows as in the
proof of (Bramburger & Sandstede, 2020a, Lemma 3.2). As this method underpins many of the proofs
that follow, we will include the details to complete this proof.

First, by setting ν = 0, we can parametrize the fold bifurcation at index n = k by

(ũk, d̃)(s) = (s, s(1− s2)), s ∈ [0, 1].

Notice that this parametrization connects (0, 0) to (1, 0) as s increases through the interval [0, 1].
Furthermore, the fold bifurcation takes place when s = 1√

3
, giving d̃sn = 2

3
√
3
. Continuing with ν = 0,

the remaining n > k indices in (3.7) can be written as the matrix equation

(−I + d̃(s)Z)Ũn>k = d̃(s)ũk(s)ê1,

where I denotes the identity matrix, Z is a matrix with ones along the diagonal above the main diagonal
and zeros elsewhere, Ũn>k is the vector of ũn with n > k and ê1 is the vector with 1 in its first entry
and zeros elsewhere. Since ‖Z‖ ≤ 1 and d̃(s) ∈

[

0, 2
3
√
3

]

for all s ∈ [0, 1], it follows that the matrix

(−1 + d̃(s)Z) is invertible for all s ∈ [0, 1]. Therefore, for each s ∈ [0, 1], we can uniquely solve for
Ũn>k in terms of (ũk, d̃)(s) which parametrize the fold bifurcation. This extends the fold bifurcation into
the indices n > k for ν = 0.

The persistence of the fold bifurcation at ν = 0 into 0 < ν ≪ 1 can first be obtained by writing
the right-hand side of (3.7) compactly as G(Ũc, d̃, ν). Note that the branch constructed above, denoted
(Ũc, d̃)(s) satisfies G(Ũc(s), d̃(s), 0) = 0 and the derivative G

(Ũc,d̃)(Ũ
c(s), d̃(s), 0) has full rank for all

s ∈ [0, 1]. We can therefore apply the implicit function theorem and use persistence results for fold
bifurcations to conclude that the branch persists for sufficiently small ν > 0. Moreover, the unique fold
bifurcation takes place at d̃ = d̃sn(ν) with d̃sn(0) = 2

3
√
3
. This completes the proof of the lemma. �

We now turn to the continuation when µ = 1. Recall that from (3.4), we have that upon changing
coordinates we can bring the Taylor expansion of f (u,µ) about (1, 1) into the form

f (u,µ) = f (1+ ǔ, 1− µ̌) = µ̌ − ǔ2 − bµ̌ǔ+ O(µ̌2 + µ̌ǔ2 + ǔ4).

This leads to the following result which continues the connections in Γ near µ = 1 and completes the
proof of Theorem 1 when m = 1.

Lemma 3.2 Fix m = 1 and 1 ≤ k ≤ ⌊N2 ⌋, then the following is true for (3.2). There exist constants
d2,µ2 > 0 and a smooth function µr : [0, d2] → [µ2, 1] such that for each fixed d ∈ (0, d2], there
is a pair of κ-symmetric solutions Ur(µ, d) and Vr(µ, d) of (3.2) that bifurcate at a fold bifurcation at
µ = µr(d) and exist for all µ ∈ [µ2,µr(d)]. These solutions are smooth in (µ, d), and for each fixed
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SNAKING BIFURCATIONS ON RING LATTICES 15

µ, we have Ur(µ, d) → Ū(k)(µ) and Vr(µ, d) → V̄(k)(µ) as d → 0+. The function µr(d) is given by
µr(d) = 1− d + O(d

3
2 ).

Proof. We again restrict to the index set I and extend the solutions by symmetry to n ≥ ⌊N/2⌋ + 2. As
the branch passes near µ = 1, the cell uk changes from u−(µ) to u+(µ), while the remaining cells stay
near 0 or u+(µ). We have that F(Ū(k)(1), 1, 0) = 0 and that the linearization of F about this solution is
given by

(FU(Ū(k)(1), 1, 0)v)n =
{

fu(0, 1)vn n > k
0 n ≤ k.

Writing U0 := U|n>k and Uc := U|n≤k, and using that fu(0, 1) 6= 0, we can apply the implicit
function theorem to find that F(U,µ, d) = 0 restricted to the index set n > k has a unique solution
U0(Uc,µ, d) ∈ ℓ∞(I|n>k) for each Uc ∈ R

k and (µ, d) near (1, 0). This solution depends smoothly on
its arguments, and in particular, has the expansion

U0(Uc,µ, d) = O(|µ − 1| + |d||Uc|). (3.8)

To solve (3.2) on the index set n ≤ k, we introduce the scaling

µ = 1− ν2, d = ν2d̃, un = 1+ νũn,

where 1 ≤ n ≤ k and |ν| ≪ 1. Expanding F(U,µ, d) = 0 restricted to the index set n ∈ {1, . . . , k} in
powers of ν and dividing by the leading factor in ν, we arrive at the finite system

n = k : 0 = −d̃ + 1− ũ2k + O(ν)

n < k : 0 = 1− ũ2n + O(ν),
(3.9)

where we used (3.8) to simplify the equation with n = k using the connection to the element at index
n = k + 1. We now see that at the index n = k, a fold bifurcation takes place at (ũk, d̃, ν) = (0, 1, 0).
Extending this fold bifurcation to the full system on the indices n ≥ k and into ν > 0 follows as in the
previous lemma and is omitted. This completes the proof of the lemma. �

3.2 Next-nearest-neighbour coupling

In this subsection, we provide analogous results to the nearest-neighbour bifurcation branches, but
with m = 2, representing next-nearest-neighbour connections. The results of this subsection therefore
complete the proof of Theorem 1 with m = 2. We will consider N ≥ 7, since N = 4, 5 and m = 2
represent all-to-all connections, and N = 6 with m = 2 has an extra symmetry that can be exploited, as
presented in Theorem 2. We present the following result, analogous to Lemma 3.1 above.

Lemma 3.3 Fix m = 2 and 3 ≤ k ≤ ⌊N2 ⌋ + 1, then the following is true for (3.2). There are constants
d1,µ1 > 0 and a smooth function µl : [0, d1] → [0,µ1] such that for each d ∈ (0, d1], there is
a pair of κ-symmetric solutions Ul(µ, d) and Vl(µ, d) of (3.2) that bifurcate at a fold bifurcation at
µ = µl(d) and exist for all µ ∈ [µl(d),µ1]. These solutions are smooth in (µ, d), and for each fixed
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16 M. TIAN ET AL.

µ, we have Ul(µ, d) → Ū(k−1)(µ) and Vl(µ, d) → V̄(k)(µ) as d → 0+. The function µl(d) satisfies
µl(d) = 3d

2
3 + O(d).

Proof. Fix m = 2 and 3 ≤ k ≤ ⌊N2 ⌋ + 1. Then, following as in Lemma 3.1 to continue the elements
with n < k into d > 0 near µ = 0 using the implicit function theorem. We again get the asymptotic
expansion (3.5), and for the indices with n ≥ k, we introduce the scaling

µ = ν2, d = ν3d̃, un = ν⌊ n−k2 ⌋+1ũn. (3.10)

That is, uk = νũk, uk+1 = νũk+1, uk+2 = ν2ũk+2, uk+3 = ν2ũk+3 and so on. Putting these rescaled
variables into (3.2), expanding in powers of ν, and dividing off the leading power in ν brings us to the
equations, analogous to (3.7),

n = k : 0 = 2d̃ − ũk + ũ3k + O(ν)

n = k + 1 : 0 = d̃ − ũk+1 + ũ3k+1 + O(ν)

n ≥ k + 2 : 0 = d̃ũn−2 + d̃ũn−1 − ũn + O(ν),
(3.11)

where we have used the fact that at index n = k we are connected to the elements at index k − 1, k − 2,
both of which are equal to 1 at (µ, d) = (0, 0). Similarly, since m = 2, the element at index n = k+ 1 is
only connected to one element (at n = k − 1) that is equal to 1 at (µ, d) = (0, 0). The proof is now the
same as that of Lemma 3.1. �

Let us now finish the case of bifurcations near µ = 0 by considering the case k = 2. We present the
following result.

Lemma 3.4 Fix m = k = 2, then the following is true for (3.2). There are constants d1,µ1 > 0 and
a smooth function µl : [0, d1] → [0,µ1] such that for each d ∈ (0, d1], there is a pair of κ-symmetric
solutions Ul(µ, d) and Vl(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µl(d) and exist for
all µ ∈ [µl(d),µ1]. These solutions are smooth in (µ, d), and for each fixed µ, we have Ul(µ, d) →
Ū(1)(µ) and Vl(µ, d) → V̄(2)(µ) as d → 0+. The function µl(d) satisfies µl(d) = 3

3√2
d
2
3 + O(d).

Proof. Following as in the proof of Lemma 3.3 up to (3.11), we now arrive at the equations

n = 2 : 0 = d̃ − ũ2 + ũ32 + ν(ũ3 − 3ũ2) + O(ν2)

n = 3 : 0 = d̃ − ũ3 + ũ33 + ν(ũ2 − 4ũ3) + O(ν2)

n ≥ 4 : 0 = d̃ũn−2 + d̃ũn−1 − ũn + O(ν),
(3.12)

where now, since m = 2, we have that the elements at indices n = 2, 3 are both connected to the single
element at n = 1 that equals 1 at (µ, d) = (0, 0). Note that the equations at indices n = 2, 3 agree at the
lowest order in ν, but differ atO(ν). This comes from the symmetry imposed by our assumption that the
solution is invariant with respect to the action of κ , which enforces that uN = u2 and thus eliminating
one of the connections at n = 2. In contrast, we have exactly four self-interactions at index n = 3 in
(3.12) at order ν since the element at index n = 3 has no neighbours that have a symmetric restriction
imposed on them. From here, the proof now follows as in (Bramburger & Sandstede, 2020a, Lemma
3.3), but we include the details to keep this manuscript self-contained.
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SNAKING BIFURCATIONS ON RING LATTICES 17

Let us introduce the new variables (d0, v2, v3), given by

d̃ = 2
3
√
3

+ νd0, ũ2 = 1√
3

+ ν
1
2 v2, ũ3 = 1√

3
+ ν

1
2 v3,

so that (3.12) becomes

n = 2 : 0 = d0 +
√
3v22 − 4

27 + O(ν
1
2 )

n = 3 : 0 = d0 +
√
3v23 − 2

9 + O(ν
1
2 )

n = 4 : 0 = 4
9 − ũ4 + O(ν

1
2 )

n = 5 : 0 = 2
9 + 2

3
√
3
ũ4 − ũ5 + O(ν

1
2 )

n ≥ 6 : 0 = 2
3
√
3
ũn−2 + 2

3
√
3
ũn−1 − ũn + O(ν)

after dividing off the leading factor of ν in the equations for n = 2, 3. The equations for indices n ≥ 4
can be solved uniquely for all bounded (d0, v2, v3) and sufficiently small ν > 0, and therefore, we focus
exclusively on the equations for the indices n = 2, 3. Setting ν = 0, we find that a fold bifurcation
takes place in the equation at index n = 2 at (d0, v2) = ( 4

27 , 0). Furthermore, we can solve the equation
at n = 3 uniquely for v3 for (d0, v2, ν) in a neighbourhood of this fold bifurcation, leaving only the
equation at n = 2. Then, as in the proof of Lemma 3.1, the fold bifurcation at n = 2 with ν = 0 can be
shown to persist into 0 < ν ≪ 1, thus concluding the proof of the lemma. �

We now turn to the continuation when µ = 1, which will similarly follow the proof of Lemma 3.2.

Lemma 3.5 Fix m = 2 and 1 ≤ k ≤ ⌊N2 ⌋, then the following is true for (3.2). There exist constants
d2,µ2 > 0 and a smooth function µr : [0, d2] → [µ2, 1] such that each fixed d ∈ (0, d2], there is
a pair of κ-symmetric solutions Ur(µ, d) and Vr(µ, d) of (3.2) that bifurcate at a fold bifurcation at
µ = µr(d) and exist for all µ ∈ [µ2,µr(d)]. These solutions are smooth in (µ, d), and for each fixed
µ, we have Ur(µ, d) → Ū(k)(µ) and Vr(µ, d) → V̄(k)(µ) as d → 0+. The function µr(d) is given by
µr(d) = 1− 2d + O(d

3
2 ).

Proof. This proof is almost the same as that of Lemma 3.2 with (3.9) replaced by

n = k : 0 = −2d̃ + 1− ũ2k + O(ν)

n = k − 1 : 0 = −d̃ + 1− ũ2k−1 + O(ν)

n ≤ k − 2 : 0 = 1− ũ2n + O(ν).
(3.13)

The subsequent analysis proceeds in the same way as Lemma 3.2. �

3.3 Almost all-to-all coupling

Let us begin with the proof of Theorem 2, which features (N,m) = (6, 2). With the exception of the
connections involving curves continued from W̄(23)(µ), the analysis is the same as in the proof of
Theorem 1. Hence, we will focus exclusively on the connections involving W̄(23)(µ). There is only
one such connection near µ = 0, which is illustrated for small d > 0 in Fig. 6(i). We prove this with the
following lemma.
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18 M. TIAN ET AL.

Lemma 3.6 Fix (N,m) = (6, 2), then the following is true for (3.2). There are constants d1,µ1 > 0 and
a smooth function µl : [0, d1] → [0,µ1] such that for each d ∈ (0, d1], there is a pair of κ-symmetric
solutions Ul(µ, d) and Vl(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µl(d) and exist for
all µ ∈ [µl(d),µ1]. These solutions are smooth in (µ, d), and for each fixed µ, we have Ul(µ, d) →
Ū(1)(µ) and Vl(µ, d) → W̄(23)(µ) as d → 0+. The function µl(d) satisfies µl(d) = 3

3√2
d
2
3 + O(d).

Proof. This proof is handled in exactly the same way as the other proofs for bifurcations near µ = 0,
and so we will only seek to highlight why we have a different connection when N = 6 and m = 2.
Using the implicit function theorem, we can solve (3.2) at the index n = 1 in a neighbourhood of
(d,µ) = (0, 0) to get

u1 = u1(U
c,µ, d) = 1+ O(|µ| + |d||Uc|),

where Uc = (u2, u3, u4) since we have imposed u5 = u3 and u6 = u2 by symmetry. It then remains to
solve (3.2) for the indices associated with Uc, i.e. n = 2, 3, 4. Specifically, we are required to solve

d(u1 + u3 + u4 − 3u2) + f (u2,µ) = 0,

d(u1 + u2 + u4 − 3u3) + f (u3,µ) = 0,

2d(u2 + u3 − 2u4) + f (u4,µ) = 0,

(3.14)

where we have simplified the equations using the symmetric restrictions u5 = u3 and u6 = u2. One
can see that the resulting equations are invariant with respect to the action (u2, u3) 7→ (u3, u2), and
therefore, we may restrict ourselves to the symmetric subspace that has u2 = u3. Upon imposing this
restriction, we may then proceed as in the previous proofs to obtain the desired result. �

Near µ = 1, we find that the branch continued from W̄(23)(µ) connects to Ū(3)(µ), summarized in
the following lemma and illustrated in Fig. 7(i). The lemma is stated without proof since it is identical
to the previous lemmas.

Lemma 3.7 Fix (N,m) = (6, 2), then the following is true for (3.2). There exist constants d2,µ2 > 0
and a smooth function µr : [0, d2] → [µ2, 1] such that for each fixed d ∈ (0, d2], there is a pair of
κ-symmetric solutions Ur(µ, d) and Vr(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µr(d)
and exist for all µ ∈ [µ2,µr(d)]. These solutions are smooth in (µ, d), and for each fixed µ, we have
Ur(µ, d) → Ū(3)(µ) and Vr(µ, d) → W̄(23)(µ) as d → 0+. The function µr(d) is given by µr(d) =
1− 2d + O(d

3
2 ).

Turning now to the case of (N,m) = (8, 3), we remark that much of the analysis is similar. Recall
that the set Γ8,3 is characterized by following along solution branches at d = 0 given by the following
sequence:

V̄(1)(µ) → Ū(1)(µ) → W̄(24)
− (µ) → W̄(24)

+ (µ) → W̄(3)
− (µ) → Ū(4)(µ) → V̄(4)(µ).

The connections between Ū and V̄ elements are handled as in the proof of Theorem 1, while the
connections between any of the W̄ elements are summarized in the following lemmas. We refer the
reader to Fig. 6 for illustrations of the connections near µ = 0 and to Fig. 7 for illustrations near µ = 1.
The lemmas are listed according to the order of the sequence above, while the proofs are omitted since
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SNAKING BIFURCATIONS ON RING LATTICES 19

Fig. 7. Atypical bifurcations near µ = 1 for N = 6, 8 and m = ⌊N/2⌋ − 1. Panel (i) contains an illustration of the proof of
Lemma 3.7. Panels (ii) and (iii) illustrate the bifurcations near µ = 1 when N = 8, as presented in Lemmas 3.9 and 3.11. Shading
and connections are the same as in Fig. 6.

they are similar to much of the work performed in this section. Together, these results complete the
proof of Theorem 3.

Lemma 3.8 Fix (N,m) = (8, 3), then the following is true for (3.2). There are constants d1,µ1 > 0 and
a smooth function µl : [0, d1] → [0,µ1] such that for each d ∈ (0, d1], there is a pair of κ-symmetric
solutions Ul(µ, d) and Vl(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µl(d) and exist for
all µ ∈ [µl(d),µ1]. These solutions are smooth in (µ, d), and for each fixed µ, we have Ul(µ, d) →
Ū(1)(µ) and Vl(µ, d) → W̄(24)

− (µ) as d → 0+. The function µl(d) satisfies µl(d) = 3
3√2
d
2
3 + O(d).

Lemma 3.9 Fix (N,m) = (8, 3), then the following is true for (3.2). There exist constants d2,µ2 > 0
and a smooth function µr : [0, d2] → [µ2, 1] such that for each fixed d ∈ (0, d2], there is a pair of
κ-symmetric solutions Ur(µ, d) and Vr(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µr(d)
and exist for all µ ∈ [µ2,µr(d)]. These solutions are smooth in (µ, d), and for each fixed µ, we have
Ur(µ, d) → W̄(24)

− (µ) and Vr(µ, d) → W̄(24)
+ (µ) as d → 0+. The function µr(d) is given by µr(d) =

1− 2d + O(d
3
2 ).

Lemma 3.10 Fix (N,m) = (8, 3), then the following is true for (3.2). There are constants d1,µ1 > 0
and a smooth functionµl : [0, d1] → [0,µ1] such that for each d ∈ (0, d1], there is a pair of κ-symmetric
solutions Ul(µ, d) and Vl(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µl(d) and exist for
all µ ∈ [µl(d),µ1]. These solutions are smooth in (µ, d), and for each fixed µ, we have Ul(µ, d) →
W̄(23)

+ (µ) and Vl(µ, d) → W̄(3)
− (µ) as d → 0+. The function µl(d) satisfies µl(d) = 3

3√2
d
2
3 + O(d).

Lemma 3.11 Fix (N,m) = (8, 3), then the following is true for (3.2). There exist constants d2,µ2 > 0
and a smooth function µr : [0, d2] → [µ2, 1] such that for each fixed d ∈ (0, d2], there is a pair of
κ-symmetric solutions Ur(µ, d) and Vr(µ, d) of (3.2) that bifurcate at a fold bifurcation at µ = µr(d)
and exist for all µ ∈ [µ2,µr(d)]. These solutions are smooth in (µ, d), and for each fixed µ, we have

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article/doi/10.1093/im

am
at/hxab023/6311546 by Brow

n U
niversity user on 09 August 2021



20 M. TIAN ET AL.

Ur(µ, d) → W̄(3)
− (µ) and Vr(µ, d) → Ū(4)(µ) as d → 0+. The function µr(d) is given by µr(d) =

1− 2d + O(d
3
2 ).

3.4 All-to-all coupling

Let us now consider the case of all-to-all coupling. That is, m = ⌊N2 ⌋, and so every element is connected
to all other elements. Then, our interest in Sk × SN−k-invariant solutions means that the system (2.16)
reduces to solving the two equations

d(N − k)(v2 − v1) + f (v1,µ) = 0, (3.15a){

dk(v1 − v2) + f (v2,µ) = 0, (3.15b)

where v1 denotes the values of the vector in RN at the first k indices and v2 the values of the last N − k.
As stated at the beginning of this section, we clearly have that for µ belonging to any compact interval
of [0, 1], we can continue a solution of (3.1) at d = 0 with un ∈ {0, u±(µ)} for all n = 2, . . . ,N regularly
into d > 0 with the implicit function theorem. Moreover, from the form of (3.15), we may restrict F to a
Sk × SN−k-invariant subspace to guarantee that solutions which are Sk × SN−k-invariant at d = 0 persist
into d > 0 with the same symmetry. Hence, to prove Theorem 4, we again need only check continuation
into d > 0 of the connections between the elements Ā(k)

± (µ), B̄(k)(µ), C̄(k)
± (µ) and D̄(k)(µ) near µ = 0, 1

(see Fig. 5 for visual demonstration).
We begin with the following lemma which details the continuation into d > 0 of the connections

between Ā(k)
+ (µ) and B̄(k)(µ), and C̄(k)

+ (µ) and D̄(k)(µ), near µ = 0.

Lemma 3.12 For any N ≥ 2 and k = 1, . . . , ⌊N/2⌋, the following is true for (3.2).
1. There are constants dab,µab > 0 and a smooth function µl : [0, dab] → [0,µab] such that for

each d ∈ (0, dab], there is a pair of Sk × SN−k-symmetric solutions Uab(µ, d) and Vab(µ, d)
of (3.2) that bifurcate at a fold bifurcation at µ = µl(d) and exist for all µ ∈ [µl(d),µab].
These solutions are smooth in (µ, d), and for each fixed µ, we have Uab(µ, d) → Ā(k)

+ (µ) and

Vab(µ, d) → B̄(k)(µ) as d → 0+. The function µl(d) satisfies µl(d) = 3 3
√

k2
4 d

2
3 + O(d).

2. There are constants dcd,µcd > 0 and a smooth function µl : [0, dcd] → [0,µcd] such that for
each d ∈ (0, dcd], there is a pair of Sk × SN−k-symmetric solutions Ucd(µ, d) and Vcd(µ, d)
of (3.2) that bifurcate at a fold bifurcation at µ = µl(d) and exist for all µ ∈ [µl(d),µcd].
These solutions are smooth in (µ, d), and for each fixed µ, we have Ucd(µ, d) → C̄(k)

+ (µ) and

Vcd(µ, d) → D̄(k)(µ) as d → 0+. The function µl(d) satisfies µl(d) = 3 3
√

(N−k)2
4 d

2
3 + O(d).

Proof. We will only prove the first case in the lemma since the second can simply be obtained by
exchanging v1 and v2 in (3.15) in what follows. In this notation, the functions Ā(k)

± (µ) and B̄(k)(µ)

correspond to solutions of (3.15) with d = 0 as well as (v1, v2) = (u±(µ), 0) and (u+(µ), u−(µ)),
respectively, for all µ ∈ [0, 1]. For convenience, we will denote

F1(v1, v2,µ, d) = d(N − k)(v2 − v1) + f (v1,µ)

F2(v1, v2,µ, d) = dk(v1 − v2) + f (v2,µ)
(3.16)
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SNAKING BIFURCATIONS ON RING LATTICES 21

to emphasize the connection of the system (3.15) with the function F that we defined in (3.1).
Importantly, solutions of F1 = F2 = 0 represent Sk × SN−k-invariant steady-state solutions of (3.1).

In the present scenario, we recall that u+(0) = 1 and restrict ourselves to a neighbourhood of the
solution (v1, v2,µ, d) = (1, 0, 0, 0) to (3.15). From the previous discussion, this represents a Sk × SN−k-
invariant neighbourhood of the solution (U,µ, d) = (Ā(k)

+ (0), 0, 0) to F in (3.1). Then, since

∂F1
∂v1

(1, 0, 0, 0) = fu(1, 0) 6= 0, (3.17)

the implicit function theorem guarantees the existence of a unique smooth function v∗1(v2,µ, d)
satisfying v∗1(0, 0, 0) = 1 and F1(v∗1(v2,µ, d), v2,µ, d) = 0 for all (v2,µ, d) in a neighbourhood of
(0, 0, 0). Hence, the Taylor series of v∗1(v2,µ, d) about (v2,µ, d) = (0, 0, 0) is given by

v∗1(v2,µ, d) = 1+ O(|µ| + |d| + |v2||d|). (3.18)

The analysis now reduces to solving F2(v1, v2,µ, d) = 0 with v1 = v∗1(v2,µ, d) in a neighbourhood of
(v2,µ, d) = (0, 0, 0).

As in the previous lemmas of this section, let us introduce the rescaled variables

µ = ν2, d = ν3d̃, v2 = νṽ2, (3.19)

for |ν| ≪ 1, so that (3.18) becomes

v∗1(v2,µ, d) = 1+ O(ν2). (3.20)

Then, putting v1 = v∗1(v2,µ, d) into F2 and expanding using (3.18) and (3.3) give

F2(v
∗
1(v2,µ, d), v2,µ, d) = ν3(kd̃ − ṽ2 + ṽ32) + O(ν4). (3.21)

Hence, solving F2(v∗1(v2,µ, d), v2,µ, d) = 0 is equivalent to solving

0 = kd̃ − ṽ2 + ṽ32 + O(ν) (3.22)

after dividing off ν3. It is therefore clear that the above expression experiences a fold bifurcation at

(ṽ2, d̃, ν) =
(

3

√

k
2
,

2
3
√
3k
, 0

)

, (3.23)

for which we may follow as in the proofs of the previous lemmas to demonstrate the persistence of this
fold into sufficiently small ν > 0. This completes the proof. �

Let us now turn to the bifurcation near µ = 1. The following lemma details the persistence of the
connections between Ā(k)

− (µ) and Ā(k)
+ (µ) and C̄(k)

− (µ) and C̄(k)
+ (µ) into d > 0.
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22 M. TIAN ET AL.

Lemma 3.13 For any N ≥ 2 and k = 1, . . . , ⌊N/2⌋, the following is true for (3.2).
1. There exist constants daa,µaa > 0 and a smooth function µr : [0, daa] → [µaa, 1] such that for

each fixed d ∈ (0, daa], there is a pair of Sk×SN−k-symmetric solutions Uaa(µ, d) and Vaa(µ, d)
of (3.2) that bifurcate at a fold bifurcation at µ = µr(d) and exist for all µ ∈ [µaa,µr(d)].
These solutions are smooth in (µ, d), and for each fixed µ, we have Uaa(µ, d) → Ā(k)

− (µ) and
Vaa(µ, d) → Ā(k)

+ (µ) as d → 0+. The function µr(d) satisfies µr(d) = 1− (N − k)d + O(d
3
2 ).

2. There exist constants dcc,µcc > 0 and a smooth function µr : [0, dcc] → [µcc, 1] such that for
each fixed d ∈ (0, dcc], there is a pair of Sk × SN−k-symmetric solutions Ucc(µ, d) and Vcc(µ, d)
of (3.2) that bifurcate at a fold bifurcation at µ = µr(d) and exist for all µ ∈ [µcc,µr(d)].
These solutions are smooth in (µ, d), and for each fixed µ, we have Ucc(µ, d) → C̄(k)

− (µ) and
Vcc(µ, d) → C̄(k)

+ (µ) as d → 0+. The function µr(d) satisfies µr(d) = 1− kd + O(d
3
2 ).

Proof. Since we are interested in Sk × SN−k-invariant solutions of (3.2), we may again proceed as
in the proof of Lemma 3.12 and reduce to solving the equations (3.15). As in Lemma 3.12, we will
only prove the first statement since the second follows from simply interchanging v1 and v2 in what
follows. The difference is that now we focus a neighbourhood of the solution (v1, v2,µ, d) = (1, 0, 1, 0),
corresponding to a Sk × SN−k-invariant neighbourhood of the solution (U,µ, d) = (Ā(k)

± (1), 1, 0) of
(3.2). Since we have

∂F2
∂v2

(1, 0, 1, 0) = fu(0, 1) 6= 0, (3.24)

we may apply the implicit function theorem to obtain a smooth function v∗2(v1,µ, d) defined in a
neighbourhood of (v1,µ, d) = (1, 1, 0) satisfying v∗2(1, 1, 0) = 0 and F2(v1, v∗2(v1,µ, d),µ, d) = 0.
Solving

F1(v1, v
∗
2(v1,µ, d),µ, d) = 0 (3.25)

in a neighbourhood of (v1,µ, d) = (1, 1, 0) then proceeds as in the lemmas of the previous subsections
and is therefore omitted. �

Next, we investigate the patterns Ā(k)
− (µ) and C̄(k)

− (µ) near µ = 0 for 0 < d ≪ 1 and prove that they
disappear through a collision with the branch of SN-symmetric equilibria at which v1 = v2 = u−(µ).
We state this lemma for the system (3.15) and refer to the left panel in Fig. 8 for an illustration of the
bifurcation diagram.

Lemma 3.14 For each N ≥ 2, k = 1, . . . , ⌊N/2⌋, and ǫ > 0, there is a constant δ > 0 with the
following property. There is a unique branch of positive Sk × SN−k-symmetric equilibria of (3.2) near
(u,µ) = (0, 0), and this branch is smooth and given by

(v1, v2, d,µ)(φ, s) =
(

s cosφ, s sinφ,
(cosφ + sinφ) cosφ sinφ

k cosφ + (N − k) sinφ
s2

+O(s4),
k cos3 φ + (N − k) sin3 φ

k cosφ + (N − k) sinφ
s2 + O(s4)

)
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SNAKING BIFURCATIONS ON RING LATTICES 23

Fig. 8. We illustrate the bifurcation diagrams of Sk × SN−k-symmetric solutions for all-to-all coupling for fixed 0 < d ≪ 1
and 1 ≤ k ≤ ⌊N/2⌋ outlined in Lemma 3.14 for µ near zero (left panel) and in Lemma 3.15 for µ near one (right panel). The
dotted curve corresponds to the family of SN -symmetric equilibria (where v1 = v2), and the solid curve reflects the branch of
Sk × SN−k-symmetric solutions (with v1 6= v2), which bifurcates from the branch of SN -symmetric solutions in a symmetry-
breaking bifurcation and also undergoes a fold bifurcation; arrows indicate the direction of increasing φ (left) and s (right) that
parametrize these branches.

for ǫ < φ < π
2 −ǫ and 0 ≤ s < δ. Furthermore, the branch can also be parametrized smoothly by (d,φ)

via

s = k cosφ + (N − k) sinφ

(cosφ + sinφ) cosφ sinφ
d + O(d2).

It bifurcates at µ = µsb(d) = Nd
2 + O(d2) from the SN-symmetric branch v1 = v2 = u−(µ) (this

bifurcation point is the same for each k), and it undergoes a unique fold bifurcation at µ = µfd(d) for
some 0 < φ ≤ π

4 with 0 < µfd(d) ≤ µsb(d). As φ → 0 and φ → π
2 , the parameter d approaches zero,

and the equilibria (v1, v2) approach Ā
(k)
− (µ(0, s)) and C̄(k)

− (µ(π
2 , s)), respectively.

Proof. Recall that we need to solve the system (3.15) given by

d(N − k)(v2 − v1) + f (v1,µ) = 0, (3.26a){

dk(v1 − v2) + f (v2,µ) = 0, (3.26b)

where v1 denotes the values of the vector in RN at the first k indices and v2 the values of the last N − k
indices. Recall also that

f (u,µ) = −µu+ u3 + O(µ2u+ µu3 + u5).

First, when u = v1 = v2, equation (3.26) reduces to f (u,µ) = 0 which admits the solution branch
(u,µ) = (u−(s),µh(s)) for 0 ≤ s ≪ 1 with u−(0) = µh(0) = 0 and µh(s) > 0 for s > 0. Next, we
subtract the two equations in (3.26) to obtain

dN(v2 − v1) + f (v1,µ) − f (v2,µ) = 0. (3.27)
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24 M. TIAN ET AL.

Defining v = (v1, v2) and

g(v1, v2,µ) :=
∫ 1

0
fu(v2 + τ(v1 − v2),µ) dτ = −µ + v21 + v1v2 + v22 + O(µ2 + |v|4),

we can write (3.27) as

dN(v2 − v1) + f (v1,µ) − f (v2,µ) = dN(v2 − v1) + (v1 − v2)g(v1, v2,µ) = 0.

Since we already analysed the case v1 = v2, we can divide by v1 − v2 to arrive at

− dN + g(v1, v2,µ) = −dN − µ + v21 + v1v2 + v22 + O(µ2 + |v|4) = 0,

which we can solve for µ as a function µ(v1, v2, d) near (v1, v2, d) = (0, 0, 0) where

µ(v1, v2, d) = v21 + v1v2 + v22 − dN + O(d2 + |v|4).

It therefore suffices to solve (3.26b) which becomes

0 = dk(v1 − v2) + f (v2,µ)

= dk(v1 − v2) − µ(v1, v2, d)v2 + v32 + v2O(µ(v1, v2, d)
2 + µ(v1, v2, d)v

2
2 + v42)

= dk(v1 − v2) + v2(dN − v21 − v1v2 + O(d2 + |v|4))

and finally arrives at

dkv1 + d(N − k)v2 − v1v2(v1 + v2) + v2O(d2 + |v|4) = 0. (3.28)

To solve (3.28), we set v = (v1, v2) = s(cosφ, sinφ) with 0 ≤ s ≪ 1 and 0 < φ < π/2 so that (3.28)
becomes

d(k cosφ + (N − k) sinφ) − s2 cosφ sinφ(cosφ + sinφ) + O(d2 + s4) = 0 (3.29)

after dividing by s. Using the implicit function theorem, we can now solve this equation for d as a
function of (φ, s) with |s| < δ for some δ > 0 uniformly in 0 ≤ φ ≤ π/2 and obtain

d(φ, s) = (cosφ + sinφ) cosφ sinφ

k cosφ + (N − k) sinφ
s2 + O(s4).

Substituting the expressions for (v1, v2, d) as functions of (φ, s) into the formula for µ(v1, v2, d) gives

µ(φ, s) = k cos3 φ + (N − k) sin3 φ

k cosφ + (N − k) sinφ
s2 + O(s4),
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SNAKING BIFURCATIONS ON RING LATTICES 25

which proves the first part of the lemma. Inspecting the limits φ → 0 and φ → π
2 for each fixed

0 < s < δ, we see that d converges to zero, µ approaches s2 +O(s4) and (v1, v2) approach Ā
(k)
− (µ(0, s))

and C̄(k)
− (µ(π

2 , s)), respectively, as claimed. Similarly, substituting φ = π/4 into the expressions
for (v1, v2, d,µ) shows that the branch we constructed bifurcates from the branch of SN-symmetric
equilibria at (µ, d) = ( 12 ,

1
N )s2 + (O(s4),O(s4)).

Fixing ǫ > 0, we now restrict ourselves to values of φ with ǫ < φ < π
2 − ǫ. For such values, we

can solve for s as a function of (d,φ) where

s2 = s(d,φ)2 = k cosφ + (N − k) sinφ

(cosφ + sinφ) cosφ sinφ
d + O(d2)

so that µ can be written as a smooth function of (d,φ) via

µ(d,φ) =
(

k cos3 φ + (N − k) sin3 φ

(cosφ + sinφ) cosφ sinφ
+ O(d)

)

d =: (µ̃(φ) + O(d))d.

It remains to prove that the branch has a unique fold for each fixed d, and it suffices to prove this for
µ̃(φ) since its folds are generic and therefore persist upon adding the remainder term in d. We now
outline the strategy for proving that µ̃(φ) has a unique generic fold. Note that µ̃(φ) → ∞ for φ → 0
and φ → π

2 , and it therefore suffices to show that µ̃′(φ) increases strictly, which holds when µ̃′′(φ) > 0.
The second derivative µ̃′′(φ) is a fraction of trigonometric polynomials, and we can then show that this
derivative is indeed positive (we omit the tedious details). The fold bifurcation occurs in the region
0 < φ ≤ π

4 since µ̃′(π
4 ) = 3

2 (N − 2k) ≥ 0 (recall that 1 ≤ k ≤ ⌊N/2⌋). black �

Finally, we describe the continuation into 0 < d ≪ 1 of the connection between B̄(k)(µ) and D̄(k)(µ)

near µ = 1. We comment that this lemma covers the connection in the top-right corner of Fig. 2(iii) and
that the results are also illustrated in the right panel in Fig. 8.

Lemma 3.15 For each N ≥ 2 and k = 1, . . . , ⌊N/2⌋, there is a constant δ > 0 with the following
property. There is a unique branch of Sk × SN−k-symmetric equilibria of (3.2) near (u,µ) = (1, 1), and
this branch is smooth and given by

(v1, v2,µ)(s, d) = (1+ s, 1− s− Nd + O(s2 + d2), 1− s2 − (N − k)(2s+ Nd)d + O(ds2 + s3 + d3))

for |s| < δ and 0 ≤ d < δ. Furthermore, this branch bifurcates at µ = 1 − N2d
4 + O(d3) when

s = −Nd
2 + O(d2) from the SN-symmetric branch at which v1 = v2 = u−(µ) (this bifurcation point is

the same for each k) and undergoes a unique fold bifurcation at µ = 1 − k(N − k)d2 + O(d3) when
s = −(N − k)d + O(d2). As d → 0+, the solution (v1, v2) converges to B̄(k)(µ(s, 0)) for fixed s > 0
and to D̄(k)(µ(s, 0)) for s < 0.

Proof. We consider the neighbourhood of the solution (v1, v2,µ, d) = (1, 1, 1, 0) to (3.15). For
simplicity, denote µ = 1 − µ̃, v1 = 1 + ṽ1 and v2 = 1 + ṽ2. Using the expansion (3.4), these new
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Fig. 9. Shown are the results of numerical continuation for d = 0.005 and N = 20 nodes with (from left to right) sparse coupling
for m = 8, almost all-to-all coupling m = 9 and all-to-all coupling m = 10. Each branch starts at µ = 0.5 with a single node at
the upper stable branch of the zero set of f (u,µ) = −µu+ 2u3 − u5 and the remaining nodes at zero.

variables transform (3.15) to

F̃1(ṽ1, ṽ2, µ̃, d) = d(N − k)(ṽ2 − ṽ1) + µ̃ − ṽ21 − bµ̃ṽ1 + O(µ̃2 + µ̃|ṽ1|2 + |ṽ1|3) = 0, (3.30a){

F̃2(ṽ1, ṽ2, µ̃, d) = dk(ṽ1 − ṽ2) + µ̃ − ṽ22 − bµ̃ṽ2 + O(µ̃2 + µ̃|ṽ2|2 + |ṽ2|3) = 0. (3.30b)

We can apply the implicit function theorem to equation (3.30a) and find a unique smooth function
µ̃∗(ṽ1, ṽ2, d), defined in a neighbourhood of (ṽ1, ṽ2, d) = (0, 0, 0), satisfying µ̃∗(0, 0, 0) = 0 and
F̃1(ṽ1, ṽ2, µ̃∗(ṽ1, ṽ2, d), d) = 0, in the neighbourhood of (0, 0, 0, 0). Moreover, we have the expansion

µ̃∗(ṽ1, ṽ2, d) = −d(N − k)(ṽ2 − ṽ1) + ṽ21 + O(|d||ṽ|2 + |ṽ|3), (3.31)

where ṽ = (ṽ1, ṽ2). Next, we subtract the two equations in (3.15) to obtain

Nd(v2 − v1)+f (v1,µ) − f (v2,µ) = 0. (3.32)

Defining

g(ṽ1, ṽ2, µ̃) :=
∫ 1

0
fu(v2 + τ(v1 − v2),µ) dτ = −ṽ1 − ṽ2 + O(|µ̃| + |µ̃||ṽ1| + |µ̃||ṽ2| + |ṽ|2),

we can write (3.32) in new variables as

Nd(ṽ2 − ṽ1) + f (1+ ṽ1, 1− µ̃) − f (1+ ṽ2, 1− µ̃) = Nd(ṽ2 − ṽ1) + g(ṽ1, ṽ2, µ̃)(ṽ1 − ṽ2) = 0.

Assuming ṽ1 6= ṽ2, we can divide by ṽ2 − ṽ1 to arrive at

Nd−g(ṽ1, ṽ2, µ̃) = Nd + ṽ1 + ṽ2 + O(|µ̃| + |µ̃||ṽ1| + |µ̃||ṽ2| + |ṽ|2) = 0.
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We can further substitute the expression (3.31) for µ̃ and find

Nd + ṽ1 + ṽ2 + O(d|ṽ| + |ṽ|2) = 0.

Using the implicit function theorem to solve for ṽ2 as a function of (ṽ1, d) in a neighbourhood of (0, 0)
gives

ṽ∗2(ṽ1, d) = −Nd − ṽ1 + O(d|ṽ1| + |ṽ1|2), (3.33)

and substituting this expression into (3.31), we finally find

µ̃∗(ṽ1, d) = ṽ21 + (N − k)d(2ṽ1 + Nd) + O(dṽ21 + |ṽ1|3 + d3). (3.34)

Hence, a fold bifurcation takes place at ṽ1 = ṽ∗1(d) = −(N − k)d + O(d2) when d is near 0, and
substituting ṽ∗1(d) into µ̃∗(ṽ1, d) gives the claimed expansion. Solving the equation ṽ1 = ṽ2 for d near
zero using the implicit function theorem provides the existence and expansion of the symmetry-breaking
bifurcation from the family of homogeneous equilibria. This completes the proof. �

4. Discussion

In this paper, we characterized the branches of localized steady states of lattice dynamical systems on
a ring with N nodes with symmetric sparse, almost all-to-all and all-to-all coupling. We found snaking
branches with N

2 saddle-node bifurcations on each side for sparse coupling with interaction range m =
1, 2 and figure eight-type branches that start and end at homogeneous patterns for all-to-all coupling.
The case of almost all-to-all coupling for even N is more complicated due to additional symmetries, and
we provided a detailed analysis only for N ∈ {6, 8}.

There are many questions we did not address in this paper, and we now outline a few of these. First,
for sparse coupling, we do not know whether solution branches terminate at a branch of homogeneous
equilibria or pass near those branches. Numerical continuation turns out to be complicated for small
coupling strengths since the Jacobian has N eigenvalues close to zero near the homogeneous branches
for 0 < d ≪ 1, which makes continuation difficult and allows for the possibility that numerical solutions
may jump onto different branches.

Next, we will comment on different forms of coupling. Note first that, near the anti-continuum limit,
the precise form of coupling matters only near the pitchfork atµ = 0 and the fold at µ = 1: the branches
for 0 < µ < 1 can always be continued into 0 < d ≪ 1 regardless of the coupling function, so the key
task is to track these branches nearµ = 0, 1. We believe that our results for symmetric nearest-neighbour
and next-nearest-neighbour coupling can be extended to other values of m: we conjecture that we will
always find snaking curves that exhibit ⌊N2 ⌋ saddle nodes as long as the interaction range m is strictly
less than ⌊N2 ⌋ − 1, and we expect that the methods we utilized here can be used to study this more
general case. Figure 9 indicates that the case of almost all-to-all coupling (when m = ⌊N2 ⌋ − 1) is more
complicated. The case of asymmetric or distance-dependent coupling coefficients is also unclear. In
the case of asymmetric coupling, our methods should be applicable, though we expect that the specific
details will be different. Distance-dependent coupling is likely more complicated: for instance, the case
of all-to-all coupling will be different since the SN symmetry is no longer present in this case.
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Finally, we briefly discuss possible extensions to more complicated finite lattices. Surprisingly,
snaking was observed also on finite random graphs; see McCullen & Wagenknecht (2016). The formal
analysis in Kusdiantara & Susanto (2019) and the complementary rigourous results in Bramburger &
Sandstede (2020a) show that the shape of branches near folds seems to be determined by a small number
of motifs where only a few nodes interact, while the states of all other nodes are essentially irrelevant. It
might be this underlying generic structure that leads to the universality of snaking observed on random
graphs inMcCullen &Wagenknecht (2016). Using computations to obtain summary statistics of snaking
on random graphs would be a feasible first step towards a more general description of snaking and
branch structures on general finite graphs.
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