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Abstract—This paper studies the MIMO relay with non-
identical link coherence times, a condition known as coherence
diversity. This happens in practice when a node or the scatterers
surrounding it have different mobility compared with the condi-
tions at or around other nodes. In this paper, coherence diversity
in relays is studied under link coherence intervals with arbitrary
(unequal) length and alignment. Second, a new transmission
scheme under coherence diversity is proposed in which the relay
transmission is given a duty cycle based on the balance between
the gain versus the channel training costs in the relay-destination
link. Finally, we investigate multiple parallel relays operating
under non-identical coherence intervals, propose transmission
strategies, and calculate degrees of freedom.

I. INTRODUCTION

In wireless networks, due to the mobility of nodes and the
scattering environment, coherence times of difference links
are often non-identical. This also happens in the context of
the relay channel, for example, it is not uncommon that the
destination might be a node with high mobility, which is being
assisted by a relatively stationary relay.

The performance of fading relay channel has been ex-
tensively studied [1]–[6] under identical coherence intervals.
Exploration of unequal coherence intervals in a network began
with studies of the broadcast channels [7]–[9], showing the
interesting phenomena that ensue. Inner and outer bounds
for multiple access channel with unequal coherence times
were calculated in [9]. Achievable rates were calculated for
frequency-selective multiuser downlink channels under mis-
matched coherence conditions in [10]. The impact of hybrid
channel state information on MISO broadcast channel with
unequal coherence times was studied in [11]. In [12], it was
shown that when coherence intervals are identical, a relay
does not improve the degrees of freedom compared with
the direct link alone. Also, For a relay with non-identical
coherence times, [12] studied the effect of aligned coherence
intervals with integer ratios, and calculated achievable degrees
of freedom.

Previous analyses are insufficient for conditions often ob-
served in practice, in which different links in a relay channel
can experience different coherence intervals that are not a cor-
rect multiple of each other (integer ratio). Then, the coherence
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intervals cannot stay aligned as time progresses. This paper
begins with the analysis of the degrees of freedom of the
relay channel when the coherence intervals are arbitrary and
unaligned. The transmit design principles under this condition
are clarified and the corresponding degrees of freedom are
calculated. Further, a new scheme combining the product
superposition and relay scheduling is proposed, motivated by
the following observation: Whenever a pilot-based relay is
activated, the relay pilots impose a cost in degrees of freedom
due to their interference with source-destination transmission.
In the new scheme, this cost is matched against the relay gains
and the relay is activated accordingly. We show the extent to
which this new scheme improves the degrees of freedom of
the relay channel. Finally, this paper studies multiple parallel
relays under non-identical coherence intervals. Transmission
strategies and achievable degrees of freedom are presented.

II. ARBITRARY COHERENCE TIMES

A. Unaligned Coherence Blocks

Consider a MIMO Gaussian relay in full-duplex mode.
The source and destination are equipped with NS and ND

antennas. The relay has NR receive antennas and uses nr
antennas for transmitting. The received signals at the relay
and destination are:

yR = HSRxS + wR (1)
yD = HSDxS + HRDxR + wD, (2)

where xS and xR are signals transmitted from the source
and relay. wR and wD are i.i.d. Gaussian noise and HSR,
HRD and HSD are channel gain matrices whose entries are
i.i.d. Gaussian. Channel gain entries and noise components
are zero-mean and have unit variance. Channel gains expe-
rience block fading, remaining constant during the coher-
ence intervals but changing independently across intervals.
The coherence intervals are denoted TSR, TRD and TSD,
satisfying TSR ≥ 2 max(NS , NR), TRD ≥ 2 max(NR, ND)
and TSD ≥ 2 max(NS , ND).1 The source and relay obey
power constraints E[tr(xSx

′
S)] ≤ ρ and E[tr(xRx

′
R)] ≤ ρ.

1This guarantees each interval can fit link training, based on transmit
antennas.

3145978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

80
48



We assume there is no free channel state information at the
destination and no CSI feedback to transmitters.

To better illustrate the issues that are addressed in this
paper, and to motivate our developments, we begin with a
small example: NS = NR = 2 and ND = 3. The coherence
intervals TSD = TRD = 8 and TSR = ∞, i.e., the source-
relay channel is static, therefore the cost of training over this
link is amortized over a large number of samples, so we can
assume the relay knows HSR. From [12], degrees of freedom
d = 1.75 can be achieved when the coherence blocks are
aligned. If the coherence blocks of the relay are unaligned,
the following calculation shows that when there is an offset
of ∆T = 4 between the transition times of HSD and HRD,
i.e. , the coherence blocks of the channel HRD starts from
time slot 5 of HSR, the same degrees of freedom can still be
achieved.

The source uses product superposition, sending

XS = Xu[I2,02×1,Xd], (3)

where Xu ∈ C2×2 and Xd ∈ C2×5.
At the relay, the received signal is

YR = HSRXu[I2,02×1,Xd] + WR. (4)

The received signal from time slot 1 to 2 is

Y′R = HSRXu + W′
R. (5)

The relay knows HSR and decodes Xu. Denote the signal
decoded by the relay in the previous block is X′u and the two
rows of X′u are x′1,x

′
2 ∈ C1×2.

The relay uses one antenna for transmission and sends

XR = [01×2 1,x′1,x
′
2, 0] ∈ C1×8. (6)

In one coherence block of HSD , because the blocks of HRD

are unaligned with HSD, the received signal at the destination
experiences two realizations of HRD (HRD1 and HRD2 ), from
time slot 1 to 4 is

YD = HSDXS + HRD1XR + WD

= [HSD,HRD1
]

[
Xu[I2,02×1,Xd1]
01×2, 1, x′1(1)

]
+ WD

= [HSDXu,HRD1
][I3,XD] + WD,

(7)

where

XD =

[
Xd1

x′1(1)

]
. (8)

The destination estimates the equivalent channel HD =
[HSDXu HRD1

] from time slot 1 to 3 and decodes Xd1,x
′
1(1).

From time slot 5 to 8, the received signal is:

YD = HSDXS + HRD2XR + WD

= [HSDXu,HRD2
]

[
Xd2

x′1(2),x′2, 0

]
+ WD.

(9)

First part of the equivalent channel, HSDXu, is already
estimated. Second part HRD2

will be estimated in the next
transmission block. The destination decodes Xd2,x

′
1(2) and

x′2. Therefore, when the coherence blocks from the source
and relay to the destination are not aligned, The destination
achieves the same DoF d = (2× 5 + 2× 1× 2)/8 = 1.75.

B. Arbitrary Coherence Times

The following can be achieved using a transmit strategy for
arbitrary coherence intervals via product superposition.

Theorem 1. In a three-node relay with coherence diversity,
TSR > TSD, TRD > TSD. and NS , NR < ND, denote N∗S =
min{NS , NR}, the following degree of freedom is achievable:

d =
1

TSRTSDTRD
max
nr

{NS(TSRTSDTRD −NSTSRTRD

− nrTSRTSD) + min{N∗SNS(TSRTRD − TSDTRD),

nr(TSRTSDTRD −NSTSRTRD − nrTSRTSD)}}. (10)

Proof. Design the pilot-based achievable scheme in the fol-
lowing manner:
• On the multiple-access side, pilots sent from the relay and

the source will be allocated in different time slots, such
that they will not interfere with each other. In addition,
during these time slots no data is sent, avoiding pilot
contamination.

• On the broadcast side, the source-relay link needs fewer
pilots than the source-destination. Thus, product superpo-
sition enables transmission of additional data to the relay.

In the following, we consider a super-interval of length
TSRTRDTSD, after which the coherence intervals will come
back to their original alignment. The achievable degrees of
freedom are calculated as follows: In each source-destination
coherence interval TSD, NS pilot symbols are transmitted.
We call the pilot symbols in each coherence block a pilot
sequence.

Therefore, for source-destination link, we repeat the
length-NS pilot sequence TSRTRD times over the length-
TSRTRDTSD super-interval. Having coherence time TSRTRD,
the relay needs TSDTRD pilot sequences. Hence, product
superposition can be applied during (TSRTRD − TSDTRD)
pilot sequences of length N)Sto send data to the relay. Data
with N∗S degrees of freedom per symbol can be sent.

Over each super-interval, the relay-destination link needs
TSRTSD pilot sequences of length nr. The pilots slots will
be non-overlapping with pilots transmitted from the source
terminal.

In each super-interval, the source and the relay each have
(TSRTSDTRD −NSTSRTRD − nrTSRTSD) time slots avail-
able for sending data. The source has NS degrees of freedom
available per transmission, and the relay nr degrees of freedom
per transmission.

The relay can decode at most N∗SNS(TSRTRD −
TSDTRD) degrees of freedom, therefore, it provides
min{N∗SNS(TSRTRD − TSDTRD), nr(TSRTSDTRD −
NSTSRTRD − nrTSRTSD)} degrees of freedom, the
minimum of the degrees of freedom the relay can receive and
can transmit.

We can now sum the degrees of freedom by the source
transmission (subject to relay constraints) and the degrees of
freedom provided by the relay transmission, and optimize the
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number of relay antennas to be activated. This concludes the
proof.

III. PRODUCT SUPERPOSITION WITH RELAY SCHEDULING

In this section, a new scheme combining product superposi-
tion and relay scheduling is introduced. The following theorem
highlights the main result of this section. We begin by defining:

d1 , NS(T − nr −NS),

d2 , nr(T − nr −NS),

d3 , N2
S ,

Theorem 2. In a relay, if TSR = ∞, TSD = TSR = T and
NS = NR < ND,
• If d2 ≤ d3, the DoF d = 1

T maxnr
(d1+d2) is achievable.

• If d2 > d3, the following DoF is achievable.

d =
1

T
max
nr

(
d2 − d3
d2

NS(T −NS) +
d3
d2

(d1 + d2)), (11)

Proof. If d2 ≤ d3, the achievable DoF follows [12]. Consider
the case d2 > d3. The transmit scheme with relay scheduling
has two phases, each of them lasting an integer multiple of the
coherence interval T . In both phases, product superposition
is used at the source, but the relay action is different in
the two phases, as described in the sequel. We propose to
transmit for d2 − d3 coherence intervals in Phase 1, followed
by transmitting d3 coherence intervals in Phase 2.

During Phase 1, the relay transmission is deactivated but
the source continues to transmit via product superposition.
In this phase, in each coherence interval of length T , the
source delivers to the destination data rates corresponding to
its point-to-point DoF bound, which is NS(T − Ns), while
delivering additional data to the relay with DoF d3. We
transmit in Phase 1 for d2− d3 coherence intervals, therefore,
the normalized (per-symbol) average DoF contribution of this
phase is d2−d3

d2

1
TNS(T −NS).

During Phase 2, the relay is activated and the source sends
the product superposition signal:

XS = Xu[INS
,0NS×nr

,Xd], (12)

where nr ≤ min{NS , ND −NS}, Xu ∈ CNS×NS and Xd ∈
CNS×(T−nr−NS).

The relay knows HSR and decodes Xu. Denote by X′u the
message decoded by the relay in the previous block. The relay
uses nr antennas for transmission, sending

XR = [0nr×NS
, Inr

,Xr,d] ∈ Cnr×T , (13)

where Xr,d ∈ Cnr×(T−nr−NS).
The destination estimates the equivalent channel HD =

[HSDXu,HRD] during the first (NS + nr) time slots and
then decodes its messages. Destination receives: Xd from
the source and Xr,d from the relay, providing degrees of
freedom d1 and d2, respectively. Phase 2 consists of d3
coherence intervals, further, recall that the relay has stored data
available from Phase 1 in addition to the data it is receiving in

10 15 20 25 30 35 40
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3

Product superposition with relay scheduling

Product superposition

Direct Link

Fig. 1. Achievable DoF in Theorem (2)

Phase 2. Therefore, the relay can send data with DoF d2 to the
destination. Hence during phase 2, the normalized per-symbol
DoF are 1

T
d3

d2
(d1 + d2).

Adding the degrees of freedom achieved in Phase 1 and
Phase 2 and optimizing the number of relay transmit antennas
to be activated produces (11). This completes the proof.

Remark 1. For comparison, we also mention the degrees of
freedom without relay scheduling. For a relay with the follow-
ing setup TSR =∞, TSD = TSR = T and NS = NR < ND.
From Theorem 2 in [12], the following degrees of freedom are
achievable:

d =
1

T
max
nr

min {d1 + d2, d1 + d3} , (14)

Figure 1 shows the comparison between the achievable
degrees of freedom of product superposition alone and with
relay scheduling when NS = 3, ND = 5 for different T .

IV. MULTIPLE PARALLEL RELAYS

This section studies the MIMO relay channel with K full-
duplex relays, under coherence diversity. The source and des-
tination are equipped with NS and ND antennas. Relay k has
NR(k) receive antennas and uses nR(k) ≤ NR(k) antennas
for transmission. The received signals at the relays and the
destination are:

yR(k) = HSR(k)xS + wR(k), k = 1, . . . ,K (15)

yD = HSDxS +
∑

k=1,...,K

HRD(k)xR(k) + wD, (16)

where xS and xR(k) are signals transmitted from the source
and Relay k. wR and wD are i.i.d. zero-mean Gaussian noise
and HSR(k), HRD(k) and HSD are channel gain matrices,
whose entries are i.i.d. Gaussian. We assume there is no free
channel state information at the destination and no CSIT at
the source or relay. In the parallel relay geometry, there are
no inter-relay links. Denote the coherence time of the link
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between the source and Relay k as TSR(k) and the coherence
time of the link between Relay k and the destination as
TRD(k).

A. Achievable DoF for Two Parallel Relays

Consider the following channel with two parallel relays.
TSR(2) = K2TSR(1) = K2K1TSD = K2K1T and the desti-
nation knows the channel state of HRD(1) and HRD(2), i.e.,
TRD(1) = TRD(2) =∞. Denote N∗S(i) = min{NS , NR(i)}.
If Relay 1 or Relay 2 is activated alone, the achievable degrees
of freedom are:

di = max
nR(i)

{
NS(1− NS

T
)

+ min
{

(1− 1

Ki
)
N∗S(i)NS

T
, nR(i)(1− NS

T
)
}}
.

(17)

When Relay 1 and Relay 2 are both activated. Consider
a transmission interval of length K2K1T . During each co-
herence interval, Relay 1 and Relay 2 send the message
they decoded in the previous interval of length K2K1T . The
transmitted signal from Relay 1 and 2 over each sub-interval
of length T has the following structure and is repeated K2K1

times:
XR(i) = [0nR(i)×NS

,Xdi], i = 1, 2. (18)

During the first coherence interval of length K1T , in the first
sub-interval of length T , the source sends XS = [INS

,XD].
Relay 1 and Relay 2 estimate their channel. The signal at the
destination is:

YD = [HSD,HRD(1),HRD(2)]

 INS
,XD

0nR(1)×NS
,Xd1

0nR(2)×NS
,Xd2

+ WD,

=
[
HSD, [HSD,HRD(1),HRD(2)]X̄D

]
+ WD

(19)
where

X̄D =

XD

Xd1

Xd2

 . (20)

The destination estimates HSD and decodes the messages in
XD,Xd1 and Xd2, which provide NS , nR(1), nR(2) degrees
of freedom per symbol over this interval of length (T −NS).

In the remaining K1 − 1 intervals of length T , the source
sends the signal:

XS = Xi
R(1)[INS

,Xi
D], i = 1, 2, . . . ,K1 − 1, (21)

where Xi
R(1) ∈ CNS×NS . Relay 1 has already estimated its

channel in the first interval of length T . It can decode Xi
R(1),

providing N∗S(1)NS degrees of freedom. The total degrees
of freedom Relay 1 can decode are (K1 − 1)N∗S(1)NS . The
received signal at the destination is:

YD =
[
HSDXi

R(1), [HSDXi
R(1),

HRD(1),HRD(2)]X̄D

]
+ WD

(22)

The destination estimates HSDXi
R(1) and decodes X̄D.

During the remaining K2 − 1 coherence intervals of length
K1T , the transmitter sends, every K1T -length interval, the
signal with the same structure as the first sub-interval of length
T multiplying it from the left by Xj

R(2), which contains the
message for Relay 2. During each interval of length K1T , the
transmitted signal from the source has the following structure:

XS = Xj
R(2)

[
[INS

X1
D],X1

R(1)[INS
X2

D],

X2
R(1)[INS

X3
D], . . . ,X

(K1−1)
R (1)[INS

XK1

D ]
]
. (23)

During these K2 − 1 coherence intervals with length K1T ,
the channel HSR(2) remains the same as in the first sub-
interval of length K1T . Therefore, in each interval of length
K1T , Relay 2 can decode Xj

R(2) of N∗S(2)NS degrees of
freedom. The total degrees of freedom Relay 2 can decode are
(K2−1)N∗S(2)NS over coherence interval of length K2K1T .

The first NS symbols during the first sub-interval of length
K1T received at Relay 1 are:

YR(1) = Hj
SRX

j
R(2) + WR(1). (24)

The first NS symbols during the remaining sub-interval of
length K1T received at Relay 1 are:

YR(1) = Hj
SRX

j
R(2)Xi

R(1) + WR(1), i = 1, . . . ,K1 − 1.
(25)

Relay 1 first estimates its equivalent channel

H̃
j

SR(1) = Hj
SR(1)Xj

R(2), (26)

and decodes Xi
R(1), which provides N∗S(1)NS degrees of

freedom. The total degrees of freedom Relay 1 can decode
are (K2 − 1)(K1 − 1)N∗S(1)NS .

The received signal during the first sub-interval of length
K1T at the destination is:

YD =
[
HSDXj

R(2), [HSDXj
R(2),

HRD(1),HRD(2)]X̄D

]
+ WD

(27)

and the received signals during each remaining sub-intervals
of length K1T are

YD =
[
HSDXj

R(2)Xi
R(1), [HSDXj

R(2)Xi
R(1),

HRD(1),HRD(2)]X̄D

]
+ WD,

(28)

where i = 1, . . . ,K1 − 1, j = 1, . . . ,K2 − 1. The desti-
nation estimates the equivalent channel HSDXj

R(2)Xi
R(1),

HSDXj
R(2)Xi

R(1), and decodes XD,Xd1 and Xd2 inside
X̄D, which provide NS , nR(1), nR(2) degrees of freedom per
symbol over these time slots.

During each interval of length K2K1T , the source-
destination link can always provide NS(1 − NS

T ) degrees
of freedom per symbol. The maximum degrees of freedom
decoded at Relay 1 are (K1 − 1)N∗S(1)NS + (K2 − 1)(K1 −
1)N∗S(1)NS = K2(K1−1)N∗S(1)NS . The degrees of freedom
decoded at Relay 2 are (K2 − 1)N∗S(2)NS . The number of
time slots for sending data is K2K1(T −NS). The degrees of
freedom the relays can provide via the relay-destination links
are nR(i)K2K1(T − NS), i = 1, 2. Noting that the emitted
data by the relays is limited by what they can decode, we
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sum the degrees of freedom by the two relays, normalize it
per symbol, and optimize the number of transmit antennas
activated at the relays. The following degrees of freedom are
achievable:

d = max
nR(i)

{
NS(1− NS

T
) + min

{
(1− 1

K1
)
N∗S(1)NS

T
,

nR(1)
T −NS

T

}
+ min

{K2 − 1

K1K2

N∗S(2)NS

T
, nR(2)

T −NS

T

}}
.

(29)

B. Achievable DoF for K Parallel Relays
We now extend the ideas and techniques that were devel-

oped in the two-relay framework to the K-relay case. In the
interest of economy of expression, the parts that are similar to
the earlier discussions are condensed or omitted.

Denote with TSR,TRD, the size-K vectors containing, re-
spectively, source-relay and relay-destination coherence times,
and NR,nR the number of receive and activated transmit
antennas at the relays. Also, we allow a subset k of relays to
be used. We denote the coherence times of selected relays with
size-k vectors T′,T′′ and the number of receive and activated
transmit antennas in selected relays with size-k vector N′,n′.
The following result shows the achievable degrees of freedom,
which is maximized over selected relays and their activated
transmit antennas. Selection matrix Pk×K selects the relays.

Theorem 3. For the multi-relay system (15) and (16), the
following degrees of freedom are achievable:

d = max
P,n′,k

{
NS(1− NS

TSD
−

k∑
i=1

n′i
T ′′i

)

+

k∑
i=1

min
{
N∗i NS(

1

T ′i−1
− 1

T ′i
), n′i(1−

NS

TSD
−

k∑
j=1

n′j
T ′′j

)
}}
,

subject to: [T′ T′′ N′ n′] = P[TSR TRD NR nR], (30)

where T ′0 , TSD, P is a selection matrix consisting of k rows
of the identity matrix of size K, and N∗i = min{NS , N

′
i}.

Proof. The transmit scheme is designed in the same spirit as
Theorem 1: On the multiple-access side, pilots sent from the
relays and the source are allocated in different time slots; On
the broadcast side, product superposition enables transmission
of additional data to the relays. Throughout this proof, we
index only the activated relays, e.g., Relay i refers to i-th ac-
tivated relay. Without loss of generality, T ′1 ≤ T ′2 ≤ · · · ≤ T ′k.
Define T1 ,

∏k
i=1 T

′
i and T2 ,

∏k
i=1 T

′′
i . In the following,

we consider a super-interval of length T1T2TSD,
During each coherence interval of length T ′i , Relay i needs

TSDT2T1/T
′
i pilot sequences each of length NS for channel

estimation. Relay (i−1) needs TSDT2T1/T
′
i−1 pilot sequences

each of length NS . Therefore, product superposition can be ap-
plied during (TSDT2T1/T

′
i−1−TSDT2T1/T

′
i ) pilot sequences

each of length NS to send data to Relay i, providing N∗i
degrees of freedom per symbol.

During each coherence interval of length TSD in the source-
destination link, NS pilot symbols are transmitted. In each

6 7 8 9 10 11 12 13 14

1.2

1.3

1.4

1.5

1.6
Relay 1 and 2

Relay 1 Only

Direct link

Fig. 2. Achievable degrees of freedom with two parallel relays

super-interval (see above) T1T2 pilot sequences of length NS

are transmitted.
For channel estimation between Relay i and the destination,

during the super-interval of length T1T2TSD, the destination
needs T1T2TSD/T

′′
i pilot sequences of length n′i.

Therefore, In each super-interval, the source and relays can
use (TSDT1T2−NST1T2−

∑k
i=1

n′
i

T ′′
i
T1T2TSD) time slots to

send data. The source has NS degrees of freedom available
per transmission, and Relay i has n′i degrees of freedom per
transmission.

The degrees of freedom that Relay i can decode are at
most N ′iNS(TSDT2T1/T

′
i−1 − TSDT2T1/T

′
i ). Therefore, the

degrees of freedom Relay i can provide are:

min
{
N ′iNS(

TSDT2T1
T ′i−1

− TSDT2T1
T ′i

),

n′i(TSDT1T2 −NST1T2 −
k∑

i=1

n′i
T ′′i

T1T2TSD)
}
,

the minimum of the degrees of freedom Relay i can receive
and can transmit.

We can now sum the degrees of freedom by the source and
the relays and normalize it per symbol. Optimize the relays
to be activated, i.e, over k and P, and the number transmit
antennas at the relays n′. The degrees of freedom in (30) are
achieved. This concludes the proof.

Figure 2 shows the achievable degrees of freedom for the
system with NS = 3, NR(1) = NR(2) = 2, ND = 6, and
TSR(1)/TSR(2) = 2

3 , over different TSR(1).

V. CONCLUSION

This paper studies the relay channel under coherence diver-
sity. First, we extended the coherence diversity analysis to gen-
eral coherence intervals that are not guaranteed to be aligned
or integer multiples of each other. Second, we proposed and
analyzed a more efficient relay transmission strategy under
coherence diversity in which the relay, while always listening,
sometimes declines to transmit. Finally, we proposed and
analyzed multi-relay transmission strategies under coherence
diversity.
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