SAV DECOUPLED ENSEMBLE ALGORITHMS FOR FAST COMPUTATION OF
STOKES-DARCY FLOW ENSEMBLES
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Abstract. Numerical modeling and simulation of complex systems is often subject to uncertainties in model parameters.
Many popular uncertainty quantification (UQ) methods require repeated simulations of the underlying physical system with
different samples of the uncertain model parameters. This poses great challenges to many practical engineering applications due
to the high demand for computational resources. In this report we propose highly efficient ensemble simulation algorithms for
fast computation of coupled flow ensembles. The proposed ensemble algorithms are based on two recently developed numerical
approaches: scalar auxiliary variable (SAV) and ensemble timestepping. We introduce a new decoupling strategy using the
SAV idea and incorporate the ensemble timestepping method to develop two decoupled ensemble schemes for the Stokes-Darcy
system: SAV-BE-En and SAV-BDF2-En. The two ensemble algorithms are specially designed for UQ computations where
a number of realizations of the underlying coupled PDE system are required for analyzing and interpreting flow statistics.
Compared with traditional methods which solve for each realization independently, our proposed ensemble algorithms result in
a common coefficient matrix for all realizations and efficient iterative solvers such as block CG or block GMRES can be used
to solve for all realizations simultaneously reducing both computer storage and overall simulation time. We prove that both
ensemble algorithms are long time stable without any time step conditions. We also provide a comprehensive error analysis for
the fully discrete SAV-BE-En algorithm, and present a few illustrative numerical examples to demonstrate the efficiency and
effectiveness of the algorithms.
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1. Introduction. The coupling of a free surface flow and a subsurface flow in porous media appears
in many important geophysical and engineering applications. The inherent heterogeneity of the porous
media and inaccurate measurement or lack of information of physical parameters lead to uncertainties in
flow simulations. To quantify uncertainties and generate useful flow statistics, it is common to represent the
flow parameter under consideration as a stochastic function and numerically approximate the corresponding
stochastic partial differential equation (PDE) system. In ensemble-based uncertainty quantification (UQ)
methods, such as the classical Monte Carlo and its variants [2 [42], stochastic collocation method [62]
or the non-intrusive polynomial chaos method [54] , a number of samples of the flow parameter are first
generated according to the specified probabilistic distribution and then the underlying PDE system is solved
repeatedly for each sample. The main challenge in these UQ simulations is the excessive computational cost
especially for complex flow problems. One way to reduce the computational cost is to reduce the sample size
required to generate useful flow statistics, which has been the focus of the research direction of developing
efficient UQ methods [Il 2 24, [42] [54] 62]. Another research direction is to reduce the simulation cost
of each realization by building cheap surrogate models to replace the original model [53]. Recently, Jiang
and Layton proposed a different idea [31] to reduce the overall computational cost for ensemble simulations
by developing an ensemble timestepping method and exploiting the structure of the corresponding linear
systems. The proposed ensemble method makes use of a quantity called ensemble mean to construct linear
systems sharing the same coefficient matrix for all realizations of the Navier-Stokes flows, and efficient direct
and iterative solvers can be used to significantly reduce aggregate simulation cost for ensemble simulations.
This ensemble method can also be combined with the aforementioned efficient UQ methods that reduce the
size of parameter samples or use surrogate models leading to further reduced computational cost.

The ensemble method was originally developed for fast computation of Navier-Stokes flow ensembles
corresponding to different initial conditions and/or body forces [31], and has been extended to other PDE
models with different model parameters, such as Boussinesq equations [I1} 13} 29], MHD equations [37, 51],
heat equations [12, 49, 50], fluid-fluid interactions [§], Stokes-Darcy equations [22] [33] [35] 34, B6]. It has
been extensively tested and shown to be able to significantly reduce the computational cost, see [I7) [I8],
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19l 20, 211, 27, 28, 291 [32] B0}, 39] 45 [60) [61]. However, it suffers from a timestep condition that could be
restrictive for some applications. For nonlinear flow problems, the timestep condition comes from bounding
the nonlinear fluctuation term and can not be avoided without adding additional regularizations [32] 60],
due to the way the nonlinear term is treated (linearly implicitly) in the ensemble timestepping scheme. This
issue was very recently addressed for the Navier-Stokes equations [38] by adopting a scalar auxiliary variable
(SAV) approach that discretizes the nonlinear term fully explicitly to avoid producing a nonlinear fluctuation
term. For the linear Stokes-Darcy equations, the timestep condition usually comes from the decoupling of
two subdomain flows [22, B5], [36]. In this report we propose to adopt the SAV idea to design unconditionally
stable (no timestep condition) partitioned methods for simulating Stokes-Darcy coupled flow problems.
Partitioned methods [7, 40, 4T, [44], 2] 56, 57] are growing popular for numerically solving the Stokes-
Darcy equations as they decouple the coupling problem into two smaller subphysics problems that facilitate
parallel computation of the two subdomain problems and savings in computer storage and CPU time. The
main issue with partitioned methods is that the associated time step constraints can be severe for some
applications, e.g., when the hydraulic conductivity tensor IC has small eigenvalues [44]. The SAV approach
was first studied in [58] [59] for gradient flows. It introduces a new scalar auxiliary variable that can be used
to form a modified system of the original PDEs so that the nonlinear terms in the modified system can be
canceled out in discrete schemes, leading to unconditionally stable methods for solving nonlinear systems
[47, 48, [38]. Following this SAV idea, we find it is also possible to cancel out the coupling terms that usually
lead to the time step constraints in a typical partitioned method . Herein we design and study unconditionally
stable partitioned methods for decoupling the linear Stokes-Darcy equations and fast ensemble simulations.
Let Dy denote the surface fluid flow region and D,, the porous media flow region, where Dy, D, C R (d =
2,3) are both open, bounded domains. These two domains lie across an interface, I, from each other and
DyND,=0,D;N D, =1, see Figure The linear Stokes-Darcy system [3, [6] that models the coupling

Fig. 1.1: A sketch of the porous median domain D,, fluid domain Dy, and the interface I.

of the surface and porous media flows is: find fluid velocity u(z,t), fluid pressure p(z,t), and hydraulic head
¢(x,t) that satisfy

Owu —vAu+ Vp = ff(x,t),V-u=0 in Dy x (0,T],
S00ip — V - (K(2)V¢) = fp(x,t) in D, x (0,77, (1.1)
#(z,0) = ¢°(x) in D, and u(z,0) = u°(x) in Dy,
é(x,t) =01in ODL\I x (0,T] and u(z,t) = 0 in ID\I x (0,77,

where v, KC, So, ff, fp, and T are the kinematic viscosity, the hydraulic conductivity tensor, specific mass
storativity coefficient (positive), the external body force density, the sink/source term, and the final time,
respectively. Let 714/, denote the outward unit normal vector on I associated with Dy/,, where ny = —7,.
The coupling conditions across I are conservation of mass, balance of forces, and the Beavers-Joseph-Saffman
condition on the tangential velocity [4l, 53] [25]:

u-ng—KVe¢-ny,=0andp—vny-Vu-niy =g on I x (0,7T],

—vT; - Vu-ny = \/%BJTS?ZU -7; on I x (0,T], for any tangential vector 7; on I.
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Here, g is the gravity constant, apjs is a dimensionless constant in the Beavers-Joseph-Saffman condition
depending only on the structure of the porous medium. The conductivity K is assumed to be symmetric
positive definite (SPD).

In this paper, we will develop two ensemble algorithms based on a scalar auxiliary variable (SAV)
approach for computing an ensemble of multiple Stokes-Darcy systems to account for uncertainties in initial
conditions, forcing terms, and the hydraulic conductivity tensor. Herein we consider computing an ensemble
of J Stokes-Darcy systems corresponding to J different parameter sets (ug, 9, 1 fo: Ki) g =1,..,J,

Gtuj - VAUj + Vp; = ffJ(x,t), V-u; =0 in Dy x (0,7,
Soatqﬁj -V (IC] (J;)V(;SJ) = pr'(l‘,t) n Dp X (O,T], (12)

¢(x,0) = qb?(w) in D, and u;(z,0) = u?(:t) in Dy.
We have assumed there are uncertainties in initial conditions u°(x), ¢°(z), source terms ff(z,t) and f,(z,t),
and the hydraulic conductivity tensor K(z), then (uf, ¢3, f7 ;, fp.,KC;) is one of the samples drawn from the
respective probabilistic distributions. For simplicity on notations in the analysis, we consider homogeneous
Dirichlet boundary condition here, but the algorithms proposed in the report can be easily extended to the
non-homogeneous case in the form

¢j(z,t) =bj(x,t), in OD,\I x (0,T] and u;(x,t) = a;(x,t), in dD,\I x (0,T).

We will next introduce the the scalar auxiliary variables and the differential equations (DEs) they satisfy.
These new unknowns and the associated DEs will be added to the Stokes-Darcy system and form a new
governing system for the coupled flows. The newly introduced unknowns and DEs make it possible to
manipulate and cancel out the coupling terms that usually lead to the time step conditions associated with
standard partitioned methods. Define the scalar auxiliary variables 7;(t) by

t
i(t) = —=). 1.3
ri(t) = exp( T) (1.3)
Note that here the true solutions r;(t), j = 1,2,---,J are all equal, but the approximate solutions T,
j=1,2,---,J, from the proposed numerical methods will be different. We also have
dr; 1 1
G T gy (0 40) el 03)) .

where the interface term ¢y, defined as

er(u, ) =g/1¢u~ﬁf ds,

is a coupling term that will appear in the weak formulation of the Stokes-Darcy system. The second term
on the right hand side of equals zero, but will be nonzero in the discrete schemes and plays an essential
role in decoupling the computation of the free flow and the porous media flow. For example, in a standard
partitioned method based on the backward Euler timestepping, one will see c;(u, qb}”'l) - cI(u;-H'l, ¢7) on
the right hand side of the energy equation which can not be bounded by any positive terms on the left hand
side of the energy equation without assuming a time step constraint. Now with the second term on the right
hand side of , we can cancel out these problematic coupling terms and prove long time stability without
any time step conditions.

We then present the following two SAV decoupled ensemble algorithms for fast computation of the
Stokes-Darcy flow ensembles.

The SAV decoupled ensemble algorithm based on the Backward Euler timestepping (SAV-BE-En) reads

ALGORITHM 1.1 (SAV-BE-En). Find (u?“,p?“,qb?“) € XfxQf x X, and r;‘H satisfying for any
(%CIJ/J) € Xf X Qf X Xp,

u Tt —n
(JAt],’U +V(Vu?+1’vv)f+2/lm(u;}+l 'Ti)('U'Ti) ds — (p}’H,V-v)f (1.5)
f i
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Tn+1

+ 3 [ s =) A7) ds + — Lgmea(w.6) = U770y

exp

T
(¢, V-ujth)s =0, (1.6)
grtt — gn o o Pt )
9% va 9KV, V)p +9((K; = K)VET, Vi), — mcz(%ﬂﬁ) (1.7)
i T
- g(f;ﬁjlvw)pa
ntl _n
TAT T Y oy (T ) el o) (1.8)
T
where
1< s L
K:*Z’CJH 77233‘:%7 and ﬁi:*Zm,j-
= Vi KR 7 2

For the definition of function spaces X, Qr, and X, see in Section 2. We have denoted by (-,-)/
the inner products in L?(Dy ).

The SAV decoupled ensemble algorithm based on the second order Backward Difference Formula (SAV-
BDF2-En) reads

ALGORITHM 1.2 (SAV-BDF2-En). Find (u 77“,;0?“,@1)?“) € Xy xQf x X, and 7";”1 satisfying for
any (v,q,¢) € X x Qf x X,

3un T — 4y + 7t
J n 1 n 1 =~ n+1
( J SA7 I v (V + va—l—Z/m ) (v Tl)ds—(ijr,V-v)f (1.9)
f

n+1
#3202 =) B R o e (026 = 677 = (0
(0, V-uj™h); =0, (1.10)
37T — 497 + o7 ! _ _
7,"+1 b

- ﬁ er(2uf —ul ) = g(f7 1 P

exp(—*7)
3t g —|—r77 ! 1 1
m = s (26— — e~ (112
T

The SAV-BE-En algorithm is first order convergent while SAV-BDF2-En is second order convergent.
We will prove both algorithms are long time stable without any timestep conditions. The efficiency of
the ensemble algorithms lies in the facts that (1) the coefficients of the the unknowns u}”l and qb?“ are
independent of the ensemble index j so that all ensemble members share the same coefficient matrix, and (2)
the SAV approach decouples the original problem into two smaller subphysics problems leading to smaller
linear systems to be solved at each time step. The resulting linear systems of the proposed algorithms are
in the form of

n+1 un—l—l un-i—l 1 1 1
A n+1 L aer | = et as e |t (1.13)
by V2 Py
BLor™ [ ot |- [ i ] =t es ] o5, (1.14)
instead of more expensive linear systems in the form of
n+1 1 n+1 1 n+1 L
. [p’f“ } St A [ Pyt ] S e A [ Pt ] = (15
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Bigttt =it Bogptt =05t oo Byehtt =5t (1.16)

or
n+1 n+1 n+1
1+1 +1 u2+1 +1 UJ+1 +1
3 T T n T n
Ci | py =ci, Cy| ph =cy, -, Cy| pj =cj. (1.17)
n+1 n+1 n+1
1 2 J

from using traditional methods. For linear systems in the form of and , efficient iterative solvers
as block CG [I0] or block GMRES [14] can be used to significantly reduce the computational cost, compared
with linear systems (1.17]) obtained by a traditional nonensemble method or - 11.16)) from a nonensemble
partitioned method. More details about the efficiency and implementation of the ensemble algorithms are
discussed in Section 5.

The rest of the paper is organized as follows. Section 2 discusses basic notations and preliminaries. In
Section 3 we prove the long time stability of both algorithms under two parameter conditions without any
timestep constraints, and remark the unconditional stability while computing a single Stokes-Darcy system.
In Section 4 we provide a detailed convergence analysis for the SAV-BE-En algorithm. Section 5 shows how
to implement both algorithms and tests their efficiency with several numerical experiments. We conclude
the paper in Section 6.

2. Notation and Preliminaries. We denote the L?(I) norm by || - ||; and the L*(D;/,) norms by
| - |lf/p- Further, we denote the H*(Dy,,) norm by || - | z:(p;,,)- The following inequalities will be used in

the proofs, [44].
10llr < CDp)\ 81Vl llulls < C(Ds)y/lull [Vl g, (2.1)

where C(Dy,,) = O(\/Ly,p), Ly/p = diameter(Dy ). Define the function spaces:

Velocity: Xy :={v € (Hl(Df))d cv=0o0n 0D;\I},
Pressure: Q; := L*(Dy), (2.2)
Hydraulic Head: X, := {t) € H'(D,) : 1 = 0 on dD,\I}.

To discretize the Stokes-Darcy problem in space by the finite element method, we choose conforming velocity,
pressure, hydraulic head finite element spaces based on a Delaunay triangulation (d = 2) or tetrahedralization
(d = 3) of the domain Dy, with maximum element diameter h:

X} cXp,QhCQyp, X} C X,

The continuity across the interface I between the finite element meshes in the two subdomains is not assumed.
The finite element spaces (X }L, Q?) are assumed to satisfy the usual discrete inf-sup /LBB" condition for
stability of the discrete pressure, see [I6] for more on this condition. Taylor-Hood elements, [I6], are one
such choice used in the numerical tests in Section f] We will also consider the discretely divergence-free
space:

th = {Uh S X}l : (qh,V : ’Uh)f =0, Vg, € Ql}}
The fully discrete SAV-BE-En approximation of is:
ALGORITHM 2.1 (SAV-BE-En-h). Find (u;’"};l,p] : ,(b”‘H) € X}L X Q? X X;} and r;‘}fl satisfying for
any (Uhaqhawh) € XJ]} X Q? X le};

n+1 n
uiyt —uyy, n ntl =
<JAtJ’vh> —|—V(VU]J};17V’U;L f+2/772 +1 ’Uh 7‘1) ds (23)
f
n+1

— ~ n T',h n
+Z/ (Mig — gh “Ti)(vp - T) ds — (pjzl,v-vh) + %Cl(vhv(b ) = (ff;r17 )
fooexp(—=)
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(gn,V - u”“)f =0, (2.4)

¢n+1 B (ZSZ = n+1 = n 71;‘7;;1 n
950 T’ Un | + 9KV, Vibn)p + g(K; — K)VET 4, Vibn)p — mcl(%,h, ¥n) (25)
P T
- g(fnJrl wh)Pa
it =t 1 1
j.h j,h _ n+1 n+1 n n+1
N T?“J n T m (Cl(uj,h s j,h) - C[( Uy h,qb ) . (26)

The fully discrete SAV-BDF2-En approximation of is:
ALGORITHM 2.2 (SAV-BDF2-En-h). Find ( ;’Zl,pj . ,(b;”,gl) € X}L X Q? x X and rﬁ;l satisfying for

any (Uh7qha1;[}h) € X}L X Q? X X£7

3u — qun, 4wt
< ah 2A]1;h 2 o +1/(Vujh , Vup) f+2/7h T (on - T) ds (2.7)
rnzl
+ Z/ i = 10)(2ufy, — w3y t) - 7o) (on - 73) ds — (pﬁ;lav : Uh) + — e (on, 207, — 953, )
’ o exp(—5) ’
n+1
(ffj ) ) fs
(qn, V- uli ) p =0, (2.8)
367! — 0, + o o :
950 o )+ g RV V) + g((K; — RV oL, — ), Tun)y  (29)
p
Tnzl
n n—1 n+1
- W cr(2uj), —Uip s Yn) = g(fpj s ¥n)p,s
3rmft —gpn ol 1 1
j,h J,h j,h _ _ —.n+l ( n n—1y n n 1 n+1)
= rTt 4+ —|c 19 ; cr(2u’; , O .
IAL T 3k exp(—tqfl) I( ]h ¢jh (b],h ) I( 5,h T Yih ,h )

(2.10)

3. Stability Analysis. In this section we prove the proposed SAV decoupled ensemble algorithms are
long time stable without any timestep conditions. Let | - |2 denote the 2-norm of either vectors or matrices,
Ej.min (), Emin(x) be the minimum eigenvalue of the hydraulic conductivity tensor K;(z), K(z) respectively,
and p’;(z) be the spectral radius of the fluctuation of hydraulic conductivity tensor K;(x) — K(z). Since both
K;(x) and K(z) are symmetric, |K;(z) — K(z)|2 = pj(x). We then define the following quantities that will
be used in our proof.

/max __ = /max __ max —min __ —mazxr __ =
iy " = max |n;j(z) —mi(e)], ™ = maxg T, = ming (), g = max(z),
xel i xzel zel
kj,min = min kj,min(x)a kmzn = m,in kj,min; kmln = min kmzn(x)
z€D, J z€D,
/ _ / _ /
pj,maz - Helabx pj( ) Pmaz = mjax pj,maac'

3.1. Long time stability of (SAV-BE-En-h). We prove long time stability of Algorithm under
the following two parameter conditions, without any timestep conditions:

’r]zmam < Umm p{rnax < fcm”l' (31)

THEOREM 3.1 (Long time stability of Algorithm [2.1). If the two parameter conditions in (3.1) hold,
then Algorithm [2.1) is long time stable: for any N > 1,

1 gSo
§Huj,h||

"71 gpma:v
e A3 / W, 72 ds + AtIPmaz g N |2 (3.2)
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1
NS DI TS Tz

n=0
1 gSo e ~ 9P max
< gllidall + S50l + A1 30 % / w7 ds+ A Pme g, |2
N—-1 2 N-1 2
1 0 12 CPf 1 gCP 112
+ =i P 4+ At TG+ A =P | 2,
5175n 7;) 1775117 HZ:% T —p;,m)”f >
Proof. Setting vy, = uzzl, qn = p;”gl, Y = (b”“ in Algorithm multiplying (2.6]) by 7“;1’;:1 and adding
all four equations yields
wn ! n+1 n+1 AN
3 = s ledall3 + s ot — gl + AV 13 +Z/m AR s (33)
L 9% nt ~ 95 950 nt n n nt
rn;&;l @Il
+ = n+1 cr(uf}t, n,h)_j,inﬂcf(u’?h7¢ﬂj—;1)
easp( t ) s J ewp(—tT ) J 7
1 n+1
n+12 n |2 n+l _ 2 n+12 J:.h n+1 n+1
PR Sl Sl =l I - 2 (et 6 — er (s 65
24t "9 2At 2At g T exp(_t;) ih 2 D3, "
= (FF s + 9 o e Z/ (i — )y, - T) (Wit 7)) ds — g(K; — K)V @S, Voiih)p.

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, for any 8 > 0 we have

}’LJ17;Lh1f ;:,j n+1 }Lfnlf nlpnlp
Uit + 9t onm e < WFF sl st e + all fos o g2t

(3.4)
< Cryllff} HfIIVU pp| Y e 9
Pf i1 el +1 chp +1 +1
< =G+ VHVU" I + 1 ||f" 15 + Bakmin VS5 13-
The other two terms on the right hand side of (3.3]) can be bounded as follows.
_Z/ i — i) h Tz)( n+1 7 d5<2/|772,] i h i) (u ?Zl 7i)| ds (3.5)
1 n/maz n/maw 1
<Zn’m‘”/‘ uly - 7i)( "+ {Z / ]h-Ti)2d5+ ’2 /I(uy‘,t 'Ti)2d5:|,
and
~o (6~ R)93,, 9053") < [ 190550~ RIaI9 612 do (36)
<o | @I IV < 9 [ IV LIV
DP
n n 9Prmaz | 4n gpmam n
< 90Gmac IVl 1 V5 I < 522V T + IV I3
Using above estimates, equation (3.3]) becomes
'Il n 77177”’” "”;maw n Py
a5 gl + v+ X | - [ R s 5.)
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=min

ﬁmin 1 9 ! n/maac 9
_,_212{/1(%”}5 ) ds_/1< (O )2 ds]+2[ i 12 ]/I(“?,h'n) ds

i

gS T gS pmaw n gpma:p n 3
T GTE 2 = S 0TAll2 + (1 = B — 2202k V0712 + (||v¢ TR - 1V e2)

2At 2At min
1 n+1 2 _ 1 2 1 n+1 no2 gy n+1 2 < Clg—’,f n+1 CQ,p n+1 2
To obtain stability, we need
=min /max /
7712 ”12 >0, 1-pf-—Pmaz > (3.8)

min
Recall that 8, n{™**, pl . are all positive, we then have the following constraints on these parameters.
/
0<f<1,  Pmaz g pmer o pmin (3.9)
min
(3.9) leads to the two parameter conditions in (3.1]) required for stability. Now if the two parameter conditions
in (3.1) both hold, and taking 8 = 3(1 — =) (3.7) reduces to

1 U ~ ~ 950 950
+1 n 12 i +1 2 n 2 +1
515 = gl + 32 | [t 0% s [ 7 ) + ST - S5 1651

gpma;c n+1 1 n+12 1 g 1 n+1 n 2 n+12
4 Wmes (gm0 2 — [ 93AI2) + it P = g il + it = rial? + it

c
gpf

n 9C%, n
P + mm—_';)ﬂfpjl\ﬁ- (3.10)

Sum (3.10) from n =0 to N — 1 and multiply through by At to get

1 gSO 771 gpmax
gl + £l + e 32 7 - [ s are ool (3.11)

1
+ §|7"31'\,/h|2 Z |7“nJrl — il + - Z I’ n+1 2

1 gSO 771 gpmam
< gl + S5 1ol + 0 3 T / w7 ds+ ArPme g0, |2

N-1 N-1

1o 2 CPf +1 gCPp 12
Fo0 12 4 At nt12 L Ap ST TP 2
T D e D Lo

3.1.1. An alternative approach. Let k; ;40 () be the maximum eigenvalue of the hydraulic conduc-
tivity tensor /C;(x), and we define

U;njm = maxry; ; (.’L‘), mma - maxnzm]ara k],maw = max k] max(-r) kmaac = max kj,maw-
’ zel z€D, J

If it is easy to identify the minimum and maximum eigenvalues of the hydraulic conductivity tensor
K;(z) (e.g., ICj(x) is a diagonal matrix function), then the following algorithm can be used, which removes
parameter conditions for stability, resulting in an unconditionally stable scheme.

' 1 1 L

ALGORITHM 3.2. Find (u ?ng,pﬁt ,¢"+ ) € X;} X Q'} X XT’} and 7";7,;:1 satisfying ¥ (v, qn, Y1) € X}L X

Q x X},

u =y
(W’Uh —|—1/(Vu;‘7;1,Vv f"’Z/ ar( "+1 -T)(v-7;) ds (3.12)
f
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n+1

maa: u” ~ ~ n r',h n
+Z/ MNig — 14 Jl 'Ti)(v'Ti) ds — ( ]—}tlav vh) + . i+l CI(Uh7¢ ) (ffjla h) f
o exp(—-5) ’

(an, V- ujft)y =0, (3.13)

et — g .
950 (”At” Un )+ kmazg (VST V) + 9((Ks — kinas D)V Vi),
p

n+1
"j.h n n
- W I(“j,mwh) = g(fpjla%/fh)pv (3.14)
n+1
'r‘7h B r7h 1 n 1 n n n
% = _T’"j,jzrl + () (CI(Uj,Jﬁl, i) — cr(ufp, @] +1> . (3.15)
T

For this approach, since K;(z) and k45 Z are both symmetric, we have |IC;(x) — kmazZl2 < Emaz — Kmin-
We then prove the unconditionally long time stability of Algorithm [3:2] without any parameter conditions or
timestep conditions.

THEOREM 3.3 (Unconditional long time stability of Algorithm . Algorithm is unconditionally
long time stable: for any N > 1,

QSO 2 0 N ~\2 9(kmaz — kmin) N
—|| Ml +Atz /I(uj,h.n) ds + A== Vo) (3.16)
|7" n+1 4 |2 g n+1‘2
Js h ]JL T j,h
n=0
QSO 771
S % + 222 g8 AT TR
N-1 N—1
+ Atg(kmaw - kmzn) 1 Ol%f gCP,p

=5 M-

IVG3AlI5 + 3 lr0al® + A0 S0 < BEIFFT G + A0 3 o
n=0 n=0

Proof. See Appendix [A] O

3.2. Long time stability of (SAV-BDF2-En-h). We prove long time stability of Algorithm
under two parameter conditions, without any timestep conditions:

=min ];.

U /
'max < T , < . 317
7 _ 3 pmam 3 ( )

Ub

THEOREM 3.4 (Long time stability of Algorithm . If the two parameter conditions in (3.17)) hold,
then Algorithm [2.3 is long time stable: for any N > 2,

N—-1
ol + 2+ o ||f+Z||u”“—2u;ah+u G+ At S 2Vt (3.9
n=1
21 -
P Ao [l AP s a3y T [ R0 s g Sl oS24

+ gSO Z ||¢n+1 - 2¢;L,h + ¢j ”p + 69pmarAt||v¢ ||p + 2gpmaTAt||v¢ ||p + |Tj h|2

4AL =
+ (2 |2+Z|r"“—2u+r?hll2+7 i

n=1
< ek 2+ 12k, + a2 +AtZ2n /(u;h-nf ds+AtzT/I(u;{h.n)2 ds
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+980ll8; ull} + 95011205 1 + &5 1115 + 697as AV O] 115 + 20902 ALV S5 17
N-1 1% N—-1 290%
sl e b el Ay RIS A Y e —

/
kmzn - 3 max

S,

n=1 n=1

Proof. Setting vy, = ulyt, qn = pift, ¥n = ¢74" in Algorithm [2.2, multiplying (2:10) by »7/* and
adding all four equations yields

n+1 n+1 2 n+1 2
4At” |\f+4At||2u +tu ]h”f 4AtH h”f 4At||2ujh+u ||f+4AtHu _Q%h"'“]h 17
7 n ~ gSO gSO n n gSO
+v||w"“\|f+2 / (gt Gt 7 ds + 5+ R 12608 + Sl — SR llonall;
= 950 g+ T2 + I gt — 2gm, 4 0712 4+ g(RVGTEL, VeI,
4Nt Js P UAL Js j.h llp J.h
n+1 n+1
+ "j.h cr(u® 2¢ n—l) _ J,h 01(2,“7.1 o ¢n+1) 1 n+1|2
el,p(itn;l) Jh ’ g,h — Pih 61’p(*ﬁ;—1) j,.h ]h 5 4At jh
1 n n— ]' n n n
4At‘2r ;Lr1+7"]h|2_ 4At| rinl? = |27" Ty 1|2+47At|7"3;:1_27" h+r]h1|2 |7“ +1|2
n+1
r
3,h n n—1 n+1
_W( r(uf it 200, — o) —er(2ufy, —ul o )) (3.19)

f.g 2 Uin Jf T 9Up; N nz,] 772 Ujn — Ujp Ti)\U; p - 7i) ds
(fn+1 n+1) + (fn+1 n+1 2 n— 1) )( n+1 ) d
—g((K; = K)V(267, — &3, w"“) :

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, for any 8 > 0 we have

Frhain s +9(f it ol e < 75 ||f||“n+l||f +all o el efh (3.20)
<CPf|| ”*WfIIVu Vi E

P,f n+12 n+1 gCP,p n+1 2 n+1 2
< —2= ' —|— —v||Vu -|— —|— V X

The other two terms on the right hand side of (3.19) can be bounded as follows. Using the inequality
(2a — b)? < 6a® + 3b?, for any € > 0,

—Z/m,] 7)(2uf = uly, ") - )it -7, ds<Z/|mg il [(2ufy —uly, ") - T (uh - 7)| ds
< Sty / \<<2u?,h—u;;1>~a><u;#-a> ds (321)

U;mam n n—1 ~\2 en;maa: n+l ~\2
<Z[ 5 /1 (2u), —uiy ') - 7)? ds + 5 I(uj,‘,t 7;)° ds

max n ~ 377;"“”7 — ~ n;mam ~
<3 [ ot as P [t R s+ M [t R as

and

— g (K, OV - 613, V65) <o / Vet 1K — KlaIV (207, — 675 da (3.22)

Sg/ 3(@)[ VO 2V (2057, — 053] da Sgp},max/ IVoit 121V (207, — &3]z dz
D, D,

10



/ n n+1 3 / n 2 39p{max n—12 €gpmaw n+12
< 085 a1V 80 = SIS < 2000aa| V8742 + 20z gt )2 4 Somae gyt

Since all terms in ([3.21)) need to be bounded by Y, 7" [, (u "Zl 7;)% ds, we need to minimize (2+2 +£)
to make the time step condition sharp. This term achieves its minimum 3 when € = 3. Similarly, we need to

take e = 3 in . Then ) and (| - ) become

= g =~ R R ds (3.23)

=N /max =N 3 /max =N
< Z [ 'mm/ Wiy 7o) ds+ /I(uggl 7)? ds + =1 /I(u;{;l 7)? ds}

and

3
gpmar ||v¢n+1 ”p

a n n n gplm,arc n—
0 (06 = R)V (650~ 05310 VO3 < 00hman V05115 + 225 V055 +
Using above estimates, equation (3.19) becomes

12055 + 1~ 120, + w17 (3.24)

n+1|| +
ang MmNy 4At 4At 4At

nl 2 \V4 n+1 771 o ;maz n+l =~ 2d
i’ = 2uin + 5l + 5 VH Y ||f+z ] I(Uj,h "7)” ds

4At
TP UI(U;{#-%)? ds—/l(ugfh- ds] +3I L ’mar]/l(u;ﬁh.a)? s
,ﬁ:nzn n ~\2 d _ n—1 d 771 n;mam n—1_ ~\2 d

+276 I(uj7h~rl) s I(uj’h . s +Z ] I(Uj’h -7;)° ds

gSO n n gSO gSO n—
4 B0 gtz 950 gt g2 — D012 IR0 g g2
gSO n 3pma:c n ngmaz n n
+ A =20t o+ (1- 8- 157) Ghminl| VT2 + IV EHE = IV 05 ull5)
gpmam n n n
VIR - IV TP 2 P
4At| jh|2 ‘2rjh+r 1|2 4At ];zrl _2T]h+rj h1|2+ T rj,;zr1|2
Pf nt1 9C%y nt1)2
LTI + o ||f llp-
To obtain stability, we need
B e -
2 2 T Emin — '

Recall that g, n/™**, pl . are all positive, we then have the following constraints on these parameters:

1
e < S, (3.26)

9

W =

p/
0<p<l, —ar <

min

ol

This leads to the two parameter conditions in (3.17) required for stability. Now if the two parameter
conditions in (3.17) both hold and taking 8 = (1 — 3]—57‘”), then (3.24]) reduces to

W T+ g lI2efht + alalf - |2um+ugh 17 (3.27)

11
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n n " ntl A ~
4At”u - u?,h+ujh ||f+ V||VU +1Hf+z [/ ]Jﬁl'Ti)Q ds—/l(u?,h'Ti)Q dé’}

77mm ~\2 n—1 =\2 n+12 n+1 7 2
# | f a7 s [yt R s I+ 0 gyt 4 ol

950 950 o 950\ n n e
4Atll(ﬁ nllp — 4At”2¢ o5l + 4Atllaﬁ =200, + 00
390, n 9p; n -
+ 2"“”” (Vs 12 = 1V 7 Al17) + 7"“‘“ IV LllE = IV 655 12) + 4At|7“"+1\2
n n— 1 1
4At|2r]”;1 il = gl - |2rj nt i P g I = 2
90123717 || n+_1H2
Sum (3.27) from n =1 to N — 1 and multiply through by 4At to get
N—-1
[ufyllF + 120, + ul MG + Z a3t = 2uty, +ul G 4+ A 20| Va3 (3.28)
n=1
—’I’I’LZ’I’L 777”” A —
+At22 / (W, - 7)? ds+AtZ / 2 ds + gSollo, 12 + gSoll26%, + 6312

+9So Z Q75" =207 1 4 070 12 + 6901an ANV ORI + 29000 AV SN 12 + 177

N—1
|2r + 2 n+1 _ 2 n—1(2 4At n+1(2
Ji:h Tyh | +Z|T TJh+rJh| + T ZTj,h|

n=1
2 —min
<||ujh||f—|—||2u h—!—u]th—FAtZQnmm/(u W Ti)? ds—!—AtZ 77 / in -73)% ds

gSU”¢j,th gSOHQQSj,h + ¢j,h”p + 69pmazAtHv¢j,th + 2gpmamAtHV¢j,h”p
N-1 2 N—-1 2
20% 2gC%
Al +2rk 0 A Y SR e A Y TP
v kmzn - 3pma3{:

n=1 n=1

0

REMARK 3.5. For the first order method (SAV-BE-En-h), the parameter conditions in indicate that
the fluctuation needs to be smaller than the mean. They are usually easy to fulfill in UQ applications where
the magnitude of the fluctuation is generally much smaller than the magnitude of the uncertain parameter.
The parameter conditions in for the second order method (SAV-BDF2-En-h) are stricter than the
ones for the first order method, but still be expected to be satisfied easily in many applications. If they are
not satisfied for a large ensemble, one can split the large ensemble into smaller ensembles to make these
conditions satisfied and apply the ensemble algorithm to each smaller ensemble.

REMARK 3.6 (Unconditionally long time stability when solving a single system). Parameter conditions
are only needed in the ensemble algorithms to bound the fluctuations of the parameters for stability. For the
case of computing a single Stokes-Darcy system (setting J = 1 in our ensemble algorithm), the fluctuations
are equal to zero, and thus the parameter conditions are automatically satisfied. In other words, the proposed
algorithms are unconditionally long time stable for solving a single Stokes-Darcy system.

4. Error Analysis. In this section, we analyze the error of Algorithm[2.1] We assume the finite element
spaces satisfy the approximation properties of piecewise polynomials on quasiuniform meshes

inf V(0 —va)lly < Ch¥ vl ssscoy) Vo e [ (D)), (4.1)
Uh ¥
inf lg —qnlly < Ch*" gl o1y Vg € H"'(Dy), (4.2)
QhEQ};

12



inf |[V(¢ —¥n)llp < CR™ Y] grmsr(p,) vy € H™Y(D,), (4.3)
YrEX]

where the generic constant C' > 0 is independent of the mesh size h. An example for which both the LBB"

stability condition and the approximation properties are satisfied is the finite elements (P41—P—P11), { > 1,
see [16] 15, [43] for more details.

We also assume the following regularity on the true solution of the Stokes-Darcy equations.
uj € L=(0,T; H*(Dy)), 0yu; € L*(0,T; H* " (Dy)), Oyu; € L*(0,T; L*(Dy)),
¢; € L>=(0,T; H"(Dy)), 05 € L*(0,T; H™H(Dy)), 0ud; € L*(0,T; L*(Dy)),
pj € L*(0,T; HT(Dy)).

For functions v(z,t) defined on (0,T), we define the continuous norm

[V]lm,k,r == HUHLW(O,T;Hk(DT))’ re{f,p}
Given a time step At, let t, = nAt,T = NAt, v"™ = v(x,t,) and define the discrete norms

n=0

N 1/m
ollo s = max 0" [mrp,y  and ol 5, = <Z II’U”I%(DS)N> , se{f,p}

We will use the discrete Gronwall inequality (Lemma below) in the error analysis, see [23] for proof.
LEMMA 4.1. Let D > 0 and Ky, Ayp, Bp,Cy, > 0 for any integer n > 0 and satisfy

N N N
Ay +AtY By SALY kinAy + Aty Cn+ D for N >0.
n=0 n=0 n=0

Suppose that for all n, Atk, <1, and set g, = (1 — Atk,)~ L. Then,

N N N
Ag+ Atz B, < exp(At Zgnmn)[Atz C,, + D] for N > 0.

n=0 n=0 n=0

Let

Denote the errors by

(L noo.— p N g
€ju = Uj — Ujps €l ¢J ¢J,h’ Ejr =T Tjh

We prove the convergence of Algorithm under two parameter conditions, without any timestep conditions:

/mazx —min

ni < 771 ) p{rnaa: < Emin- (44)

THEOREM 4.2 (Error Estimate). For any j = 1,...,J, if the two parameter conditions in (4.4) hold,
and the timestep At is sufficiently small, i.e., At < 1/Cy, where Cy is a constant independent of h, then
there is a positive constant C independent of the time step At and mesh size h such that

N-1

n v max oy
e 17 + At > v|Ver, |17 + gmnvez;?uu} +ALY ) /1(er -73)? ds (4.5)
n=0 7
7 9 N—-1 N—-1 1
+ gSO||e§Y¢||f, + At <9gp;nw + ggkmm) HW%H% + |e%, 24 Z |e;j1 — 67,7-|2 + At Z T e;{jl|2
n=0 n=0

13



CcT 2 m 2
< exp(y—Fa7) (CAt2|5tuj||2,1,f + CR*M luglly gy + CALCN0i6512,1,5 + CH*™ 165115 11

10se05|2,0,p + CA#?

+OR 20153 e 5 + OR™ 20405 B, + OAP

ORI 112 g+ ORI, o+ +CRP™ 251 )

Proof. See Appendix [B] O

The error estimate indicates the numerical errors eévu, € b and e  of the free fluid velocity, the hydraulic
head, and the auxiliary variable, respectively, are all first order convergent in time. In particular, if Taylor-
Hood elements (k = 2, s = 1) are used for approximating (uj,p;), i.e., the C° piecewise- quadratic velocity
space X? and the C° piecewise-linear pressure space Q}}, and Py element (m = 2) is used for X , we have
the following estimate.

COROLLARY 4.3. If (X?,Q}},XI}}) are chosen as the (Py, Py, Py) elements, we have

N-1

el + 0 X VIV + FATLI + a0 e [ ) s (1.6)
n=0
2 N-1 N—-1 1
gl + At (St + oknin ) IV + 1P+ 3 I = e, P+ A0 3 et 1P
n=0 n=0

< O(h* + At?) .

5. Numerical Tests. In this section, we present the numerical implementation of the SAV approaches,
and run simulations to confirm the convergence rates of the proposed SAV-BE-En and SAV-BDF2-En algo-
rithms. Numerical tests are also presented to show the efficiency and effectiveness of SAV-BE-En (Due to
page limit we will only report results of SAV-BE-En). In all simulations, the spatial discretization is based
on the Taylor-Hood elements (P2-P1) for the Stokes problem and piecewise quadratic finite elements (P2)
for the Darcy problem.

5.1. Numerical Implementation. In the SAV-BE-En-h and SAV-BDF2-En-h algorithms given by
— and —, although the u and ¢ are decoupled, they are still coupled with r and additional
decoupling is needed to fully decouple the PDE system for desired efficiency. In this section we present
the implementation algorithms for both the SAV-BE-En-h and SAV-BDF2-En-h algorithms following the
decoupling strategies in [47, [48] 38]. Let

n+1 tn+1
n+l _ j,h n+l n+1
ST = — = T = exp(f—T ) SET, (5.1)
cap(— )
n+1 ~n41 n+1 vn+1 n+1 ~n4+1 n+1 vn+1 n+l _ In+l1 n+1 Iin+1
uly s o=ayy s+ SPTak piy =Dr, +S57T D Ly =y + ST (5.2)

5.1.1. SAV-BE-En-h. Instead of solving (2.3)-(2.6)), we solve the following four subproblems for
(@B it (). 63 respectively.

(BE sub-problem 1): Find (A?ng,ﬁ;ﬁgl) € X}L X Q? satisfying V (vn, qn) € X}L X Q?,

1/, (@7 ~ n
Kt (ujjgl,vh>f+u(Vujh ,V”Uh f+2/7]1 +1 Ti)(vh~7i) ds — ( ]Zl,v ’Uh)f

(f?j_lv h)f +At Jh’vh Z/ i — Mi)( Jh/ 7i)(vn - T) ds,  in Dy

(qn, V - u”*l)f =0, inDy

~n—+1 n+1
ayy =aly,  on D\

14



(BE sub-problem 2): Find qAS;”,gl € Xg satisfying V 1, € X"

So (= .
A (G0 o) + (kv Vi),
n gS 2 n :
- g(f +1 ’l/)h) 2 ( 7 h’ﬂ}h) ((’C] - K)V(bj,ha vd)h)pa mn Dp
Uit =017, on aDp\I.

(BE sub-problem 3): Find (“ﬁ;l,ﬁ;ﬁ;l) € XJ’} X Q? satisfying V (vp,qn) € XJ’} X Q?,

1 /o, on
A (u]n}tl,vh)f—i—u(Vth , Vup f+Z/m -Ti)(vp - T;) ds — (pJ#?V.vh)f

= —CI(Uh,(ﬁ?h) in Df
(qn, V - u”*l)f =0, in Dy
@'t =0, on dDs\I.

(BE sub-problem 4): Find zj;;”gl € XI’,L satisfying V ¢, € X*

So /o . ) |
% ((bj i wh)p + g(ICVq/)jVZH Vibr)p = cr(ujp, ¥n), in Dy

¢>§;1 =0, ondD,\I.

Now we need to derive an equation for S ntl, Multiplying (2.6]) by r;l;lrl gives

n+l _  n n+1

Tl " 1 Tl
g,k gih n+1 pnl2 g,k ( n+l n oy n o ntl ) -0 5.3
At + = T ] h | exp(_tanl) CI(U’]JL ) th) Cl(u],h’(zb‘%h ) . ( . )

Plugging (5.1)) into (5.3]) gives

(At + )(T] ;i;l) At’rj hrj ;’;1 Sj + <CI(U’]‘7;21’ ],h) - Cl(uj,h’ ¢]j;1)> = O
2tn+1 . 1 tn-i—l N
= (o + geap(——) (P = riean(— ) Sp

— g+ (C (@t 5+ u?#’ ") — er(ul h7¢n+1 n Sn+1¢n+1)) =0.

At last, we obtain the equation for 57+ as

B!
n+l [ gn+1gntl ntly _ =
SiT(AFTSFT 4 BT =0 = 5 = T o)
J
where
ot 1 2tnt1 gt ntl
Aj (At+ —)erp(— T )_CI<Jh’¢Jh)+CI(Jh’¢ )
n+1l _ 1 tn+1 ~n+l n n pntl
BT = _Ery,hexp(_ T ) = er(@y, s 3 n) + cr(ufp, 955°)-

~n+1 vn+l In+l Iin+l n+1
s, S

After getting ;T g can be computed directly using formula , and then we

+1 An+1 Sn+1 vn+1 n+1l ﬁn—i-l S;L-‘rl ;H—l and ¢?+1 — ¢n+1 S;L+1¢;L+1'

n
have u} (8 ) Py i J

15



5.1.2. SAV-BDF2-En-h. Instead of solving (2.7)-(2.10)), we solve the following four subproblems for

cntl ontly Gl ondl cndly Yl :
(ayst D50, o5t (@5t mynt), @5 respectively.

(BDF2 sub-problem 1): Find (Anzl,ﬁyzl) € X}L X Q? satisfying ¥V (vp, qn) € X;L X Qi},
3 /. . mtl mng. A n
g (o) + oV o+ 3 [ mat A7) ds = (7,9 )
f T JI f
2 1
n+1 e n o n—l
= (f75 »vn)s + At (uj,h’vh)f AL (uj,h ’vh>f

-3 / (s — 1) (27 —u"5Y) - 75)(on - 7) ds,  in Dy

(qn, V - u"+1)f =0, in Dy

~n+1 n+1
alyt =als,  on OD\I.

(BDF2 sub-problem 2): Find d)"'H € X;‘ satisfying V 1, € X"

2950
At

3950 n v n n

o (dn, wh)p + 9KV, Vi) = g(F71 n)p +
9((K; = K)V (267, — 607, Vin)p,  in D,

¢"+1 = b;");l, on ODp\I.

S .
( 7y h,wh) gA(;J (¢j,h17wh)p

(BDF2 sub-problem 3): Find (”;‘Zl,;ﬁ;‘;l) € XJ}} X Q? satisfying V (vp, qn) € X}‘ X Q;&,

’ i on—+1
2At ( Uit ’Uh>f+y(vu]h » VU f+Z/m Yo - 73) ds — (pjh ,V'vh)f

= —c1(vn, 207, — ¢7,"),  in Dy
(qn, V- @31 =0, in Dy
ai it =0, on dDs\I

(BDF2 sub-problem 4): Find gi;;’;l € XI}} satisfying V 1, € X"

3950 in T n n n— :

oar (Ohitn) +a(KVET Vun)y = er(2ufy —ufy! ), in D,
(z);l;l =0, ondD,\I.

Now we need to derive an equation for S;”’l. Multiplying (2.10) by rﬂ“l gives

n+1 n n—1
3rjn — A T T

en iy Loy 55)
7"77;21
—37< r(ufy L2600 — o 1)—61(2u}fh ugy, ,¢n+1))_

exp(—t7)

Plugging (5.1)) into (5.5]) gives

3 ]' n+1\2 n+1 ]' n—1 n+1
(2At+ )(Tj,h ) _Kt{r]h jh 2Atr]h T]h

—5?“( 1@ fh, 207, — 67 h) — er(2ufy, —ulfy, 7¢n+1)) -
3 1 2tn+1 2 tn+1 1 B tn+1
= (g T e ) (87" = ggrinen(= =) ST+ g ean(— =) 57

_gn#t (c @5+ Syt 2en, — ¢t — er(2ufy, —uly L et + SnH‘bﬁrl)) =0
16




Table 5.1: Convergence rates of the SAV-BE-En algorithm for u, p, ¢ with J = 3, At = h.

At lup, — u||§’11 Rate |lup — u||f1’12 Rate |lup — u||fl’13 Rate

1/8 2.346 x 1072 — 2.342 x 1072 — 2.516 x 1072 —

1/16 1138 x 1072 1.04 1.145x 1072 1.03 1.246 x 1072 1.01
1/32 5567 x107% 1.03 5.619x 1073 1.03 6.162x 1072 1.02
1/64 2748 x 1073 1.02 2.778 x 1072 1.02  3.060 x 1073  1.01
1/128 1.365x 1072 1.01 1.381 x 10™® 1.01 1.524x 1073 1.01

At Ilpn —pllis" Rate |pn —pll5>  Rate |[lpn —p[F3*  Rate

1/8 2.883 x 1072 — 3.942x 1072 — 5719 x 1072 —

1/16 1538 x 1072 0.91 2.083x 1072 0.92 2.995x 1072 0.93
1/32  7.938x107% 0.95 1.069x 1072 0.96 1.528 x 1072 0.97
1/64  4.033x 1073 098 5412x107® 0.98 7.712x 1072 0.99
1/128 2.033 x 1073 0.99 2.726 x 1072 0.99  3.877 x 102  0.99

At on —@lli  Rate |¢n —ol;i  Rate |[l¢n — |50  Rate

1/8 7815 x 1072  — 4.686 x 1072 — 4.758 x 1072 —

1/16  3.875x 1072 1.01 2.308 x 1072 1.02 2358 x 1072 1.01
1/32  1.917x 1072 1.02 1.132x107% 1.03 1.169x 1072 1.01
1/64 9519 x 1073 1.01 5590 x 10~2 1.02 5.810 x 1073 1.01
1/128 4.741 x 1072 1.01 2775 x107® 1.01  2.895x 1073  1.00

At last, we obtain the equation for S’;“H as

Bﬂ-‘rl
n+1 n+1 on+1 n+1\ __ n+1l _ J
J
where
n 3 1 ot n n
APt = (TAt + f)exp(— T ) —er(@f i, 200, — ¢y t) + er(2ufy, — uly 7¢ +1)7
n+1 n tn+1 1 tn+1 ~m—+41 n n—1 n n+1
B = AL Tperp(— )+ Erﬂh Lexp(— T ) —er(@f 3, 2%, — ¢ t) + er(2ulfy, — a9t

After gettin u"Jr1 d”+17 prtt "H S”+1 can be computed directly using formula (5.6, and then we
g g )
have un+1 ﬁ;L—&-l Sn+1 vn+17 p;L+1 _p;L—l—l S;L—‘rlﬁ;t—‘rl and gf);Hrl — ¢?+1 4 S;-l+l¢?+1.

5.2. Convergence test. The domains considered in this test are Dy = (0,1) x (1,2) and D, =
(0,1) x (0,1) with interface I = [0,1] x {1}. The model parameters, g, v, Sy, and apjs are set to be one, and
the hydraulic conductivity tensor is set as a diagonal matrix diag(k11, k22) with k11 and koo being constants.
We construct the exact solution as follows while ensuring all the boundary conditions and initial conditions
are compatible:

u(z,y,t) = (ui(z, l/,t), uz(z, y, ),

ur(@,,6) = (3(y — 1) + exp(y/v/Frn)) cos(t

us(z,y,t) = (%x(l - y)3 + koo(2 — 7rsm(7rx)) cos(t),

p(z,y,t) = (2 — wsin(wzx)) sin(0.57y) cos(t),

¢(z,y,t) = (2 — wsin(rx)) (1 — y — cos(my)) cos(t).
17



Table 5.2: Convergence rates of the SAV-BDF2-En algorithm for u, p, ¢ with J = 3, At = h.

At lup, — u||§’11 Rate |lup — u||f1’12 Rate |lup — u||fl’13 Rate

1/8 2357 x 1073 - 2561 x 1073 - 2.805 x 1073 -

1/16  4.731x107% 232 5.194x107* 230 5789 x 107% 2.28
1/32 1051 x107% 217 1.160x 10* 216 1.308 x 10~* 2.15
1/64 2479 x107° 2.08 2.744x 107° 2.08 3.116 x 107° 2.07
1/128 6.029 x 1076 2.04 6.680 x 1076 2.04 7.614 x 1075 2.03

At Ilpn —pllis" Rate |pn —pll5>  Rate |[lpn —p[F3*  Rate

1/8 6.875 x 1073 - 7310 x 1073 - 7.894 x 1073 -

1/16  1.721x107* 2.00 1.853x 1072 1.98 2.024 x 1073 1.96
1/32 4305 x107%* 2.00 4.665x 107 1.99 5.125x 10~* 1.98
1/64  1.076 x 10™* 2.00 1.170 x 107* 2.00 1.289 x 10~* 1.99
1/128 2,692 x 1075 2.00 2.930 x 107> 2.00 3.234 x 10=°> 2.00

At on —@lli  Rate |¢n —ol;i  Rate |[l¢n — |50  Rate

1/8 4.734 x 1073 - 4771 x 1073 - 4954 x 1073 -

1/16 8526 x 107* 247 8.070 x 107* 256 8.253 x 10~*  2.59
1/32  1.799 x 10~*  2.25 1538 x 107* 2.39 1.521 x 107* 2.44
1/64  4.203x 1075 2.10 3.300 x 107° 2.22  3.146 x 1075  2.27
1/128 1.025 x 1075 2.04 7.641 x107¢ 211 7.087x107% 2.15

The initial and boundary conditions and the forcing terms are then chosen from this exact solution. A group
of simulations with J = 3 members are performed for this convergence test. The three members are chosen
by setting J different hydraulic conductivity tensors, i.e. the j-th sample of k17 and koo are

,=1-01(G—-1), ky,=1+01G(-1), j=1,2,3.

To check the temporal convergence rate, we uniformly refine the mesh size h and time step size At = h
simutaneously, from initial time step size At = 1/8 to final size At = 1/128. In this setup, the expected errors
are O(h? 4+ At) = O(At) for SAV-BE-En and O(h? + At?) = O(At?) for SAV-BDF2-En. The approximation
errors at the final time T = 5 by the SAV-BE-En scheme are listed in Table for the fluid velocity wu,
fluid pressure p, and hydraulic head ¢, illustrating that the SAV-BE-En algorithm is first order in time
convergent. We also list the results by the SAV-BDF2-En scheme in Table from which we observe the
expected second order convergence.

5.3. Stochastic example. We then apply the SAV-BE-En algorithm to the computation of ensemble
flows by setting a random hydraulic conductivity tensor K(z,y,w) in the Stokes-Darcy equations. Here
w € §, where (Q,F,P) is a complete probability space. The conductivity K(z,y,w) is assumed to be
a diagonal stochastic tensor diag(k11(x,y,w), kea(x,y,w)) that has a continuous and bounded correlation
function. Specifically, the entries are given by the Karhunen-Loeve expansion

k11 (2, y,w) = koo (2, y,w) = ag + o/ Ao Yo(w) + Z o/ \ilY;(w) cos(ima) + Yo, 1i(w) sin(irx))], (5.7)
i=1

where \g = %\/WLC, A = ﬁLceXp(—i(iﬂLc)z) fori=1,--- ,nys, and Yp,---,Ys,, are indepdendent and
identically uniformly distributed in the interval [—+v/3,v/3], so they have zero mean and unit variance. In
the simulation, we take ny = 2, so there are totally 5 random variables Yy, Y1, ---,Ys. The other values are
taken as L. = 0.25,a9 = 1,0 = 0.15.

The computational domain and physical parameters are mostly the same as those in the convergence
test, except that we set the initial condition and Dirichlet boundary condition as

u(x7 y’ t? w) = (ul(x’ y? t? w)7 UQ(xay7 t’ w))’
18
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Fig. 5.1: Simulations at T' = 1.6 by SAV-BE ensemble and nonensemble algorithms using sparse-grid method
with J = 241 collocation points, h = 1/50, At = 1/100. From left to right: streamlines of the expectations
of fluid flow velocity v and porous media flow velocity v = —KV¢ by the ensemble scheme; expectations of
fluid flow pressure p and hydraulic head ¢ by the ensemble scheme; streamlines of the expectations of u and
v = —KV¢ by the nonensemble scheme; expectations of p and ¢ by the nonensemble scheme.

(2,9, t,w) = Yo(w) (y* — 2y + 1)) cos(t),
us(z,y,t,w) =Yy (w)(2* — z) cos(t),
oz, y,t,w) = Ya(w)y cos(t).

The problem is associated with the forcing terms fr = (Ys(w)zy, Ys(w)zy), fp = Ya(w)zy.

We solve the stochastic Stokes-Darcy problem by a sparse-grid collocation method utilizing univariate
Guassian quadrature. Taking h = 1/50 and At = 1/100, the numerical solutions at 7' = 1.6 using SAV-BE
ensemble and nonensemble algorithms with J = 241 collocation points are illustrated in Figure 5.1} The
streamlines of the expectations of fluid flow velocity u and porous media flow velocity v = —KV¢ are plotted
in the first and third pictures, for the ensemble and nonensemble schemes respectively. The expectations
of fluid flow pressure p and hydraulic head ¢ are also plotted in the second and forth pictures. Figure
shows that the ensemble and nonensemble schemes obtain almost identical numerical results.

The computational times using SAV-BE ensemble and nonensemble algorithms are listed in Table[5.3] It
is apparent that the SAV-BE ensemble method takes much less CPU time than the nonensemble algorithm.
The ensemble algorithm reduces the computational time of the nonensemble algorithm to 6.83% in this test,
thanks to the design that the algebraic matrix in the ensemble scheme is a constant matrix and shared by
all realizations, such that the 241 linear systems in each time step can be simultaneously solved by block
iterative solvers. To be specific, the symmetric positive definite system from BE sub-problem 2 and 4 (Darcy
part) with multiple right hand sides can be solved by the block conjugate gradient (CG) solver; the indefinite
system from BE sub-problem 1 and 3 (Stokes part) with multiple right hand sides can be efficiently solved
by the block generalized minimal residual (GMRES) method. In this test, we use the breakdown-free block
CG solver developed in [26], which addressed the rank deficiency issue, and the block GMRES algorithm
with deflation [5, BEFEGMRESD(m)] to remove redundant information due to linear dependence of multiple
residuals. The preconditioners used are the multigrid preconditioner for block CG and the block triangular
preconditioner, which is tested to be faster than the block diagonal preconditioner, for block GMRES. For
details on preconditioners the readers are referred to [9]. Our MATLAB implementation is based on the
data structure of the iFEM package.

5.4. Realistic application. We then apply the proposed SAV-BE-En method to a more realistic
simulation of the subsurface flow in a karst aquifer, inspired by example 4 in [46]. As shown in Figure
the free flow domain Dy with a curvy boundary ABCDEFGH is a Y-shape conduit which has a curvy
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Table 5.3: CPU time using sparse-grid method with J = 241 collocation points, h = 1/50, At = 1/100,T =
1.6. The average CPU time per time step is denoted by Zcpy.

SAV-BE ensemble SAV-BE nonensemble

Average time t¢p,, per step 57s 3.5%x241 s
Total CPU time 9274 s 135711 s
CPU time percentage 6.83% 100%

interface with the porous media flow domain D,,, both of which form a unit square. Specifically, A = (0,0.8),
B = (0,0.55), C = (0.55,0.4), D = (0.7,0), E = (0.85,0), F = (0.75,0.45), G = (1,0.5), and H = (1,0.7).
The physical parameters g, v, and Sy are set to be equal to one, and agjs = 0.1. In the simulation, we set
the source terms to be zero and ¢ = 0 on 9D, \I. The hydraulic conductivity K(z,y,w) is assumed to be a
diagonal stochastic tensor

_ mkll(xvyaw) 0

K<z,y7w> o 0 mk22($7y,W) ’

with k11 (z,y,w) and koo (x,y,w) expressed as in (5.7)). Here m is the conductivity magnitude, which varies
in our experiments. The inflow/outflow boundary condition for w is

(s1,0) on AB
u=1q (0,s2) on DE ,
(s3,0) on GH

where s1, s9 and s3 are constants.

Fig. 5.2: Domains with curvy interface for simulating the subsurface flow in a karst aquifer.

Taking h = 0.022 and At = 0.01, the numerical solutions at 7' = 1.0 solved by SAV-BE-En with a sparse
grid method (J = 241 collocation points) are illustrated in Figure where the computed expectations of
u, v = —KV¢, p, and ¢ for different scenarioes are presented. In all cases, the inflow conditions are fixed
by setting ss = 1 and s3 = —1, and the outflow condition is given by s; = —1.5. To test the effect of the
hydraulic conductivity on the solution, we set the magnitude m to be 1,1072, and 10~*. The corresponding
simulations are plotted from top to bottom. It is obvious that when m decreases, the flow speed in porous
media is significantly reduced.

6. Conclusions. We have presented a new strategy to decouple the Stokes-Darcy system using a
recently developed SAV idea, for fast computation of coupled flow ensembles. The proposed two SAV
decoupled ensemble algorithms: SAV-BE-En and SAV-BDF2-En are extremely efficient as all ensemble
members share the same constant coefficient matrix and the computation of the free flow and the porous
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Fig. 5.3: Simulations with different conductivity magnitude m. From top to bottom: m = 1, 1072, 1074,
Left: expectations of fluid flow velocity w and porous media flow velocity v = —KV¢; right: expectations of
fluid flow pressure p and hydraulic head ¢.

media flow are fully decoupled resulting in smaller linear systems to be solved. We proved both ensemble
algorithms are long time stable under two parameter conditions, without any time step conditions. In
particular, for a single simulation both algorithms are unconditionally long time stable. We have also
provided a comprehensive error analysis for the first order SAV-BE-En algorithm. Numerical experiments
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are presented to confirm the convergence order and demonstrate the efficiency and effectiveness of the
proposed ensemble algorithms in UQ and realistic coupled flow simulations.
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Appendix A. Proof of unconditional long time stability of Algorithm .

Proof. Setting vy, = u?j_:l, qn = p;.’}:l, = (b?j;l in Algorithm multiplying (3.15)) by ’/‘;Lj;l and
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adding all four equations yields
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The main difference from the proof of Theorem (|3.1) is on the estimates of the following two terms.
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Since we assume K; is SPD, and any two ensemble members have different hydraulic conductivity tensor

K, we have kipqz > kmin > 0 and thus 0 < km“gﬂ < 1. So we do not need any constraints on these

max
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Appendix B. Proof of Theorem

Proof. Step 1: formulate the energy equatwns of the solution errors 6?—51, e;ﬁ;l, and e"'H
For Vv, € Vf Vo, € X;‘,VAZ“ Qf, the true solution (u;,p;, ¢;) satisfies
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The consistency errors e?jl(vhﬁ ;L;f (Yn), E?H( ) are defined by

el upth — ntl
€p (on) = | =z = Oui(tnsa) on | = cr(vn, @57 = &7,
7

n+1 ¢?+17¢;‘L n+1 n
(¥n) = gSo Y = O01bj(tn+1),¥n | +er(ui™ —uf, vp),
P
Py = B )+ —L (G o5 = 67) —er(ui™ —uf, 67 )
€ r)i= —7i(tn 1 \C ) i) —crlu; — —U;, Qs .
J At JAInA1 exp(_t;) A J LA AR

Subtracting (2.3| . 2.4)) from (B.1] . 2.5)) from (B.2 . 2.6 from (B.3)) gives, for Yoy, € th,vwh € XZ},VAZH €
Qf7

et _en
J,u J,u /\
( At y Uh ; (V €iu ,V’U}L f+ E /771 Uh Tz) ds (B4)
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rn+1
Jh
s $n+1 Cl(vhagﬁz'l,h)

- no Lo o n+l n+1 . ny _
#3000 =N ) ertons o)~ s

> / (g = 0) (T = ) - 7)oy - 72) ds + €5 F (vn),

evz+1 —e ~
950 (W ¢h> g(KVerEt, Vn)y + 9((KK; — K)Vel 4, Vibn), (B.5)
P
n+1
n r j,h n = n n n
- C](’U,j 7wh) + : i+l Cl(uj,}wwh) = _g((K:j - K:)V((b + (b ) V¢h) +1(¢h)7
exp(—*7—)
n+1 n
el — e 1 1
J,T 7" n+1 n+1 n n+1 n
A 7% MGI(% L 07) —er(uiy ™, d%h) (B.6)
—cr(uf, 7)) + er(uffy, cﬁ}i#)) +e ().
The coupling terms in (B.4]) and (B.5|) can be rewritten as
n+1
n A7h n
cr(on, ¢F) — —— e (vn, 93 4) (B.7)
ewp(— )
con(~ 25" oy e
= ﬁ cr(vn, @) — —"cr(vn, @) + ——Smg—cr(on, 9 ) — ——2" =i (vn, 67
exp(—-7—) exp(—-7—) exp(—*7—) exp(—“7—)
it A R S
= —L——ci(vn, @] i CI(Vhs €5 4),
eop(=Zp) T eap(= )
and
+1
n " n B
cr(uj, n) — ——er(ujp,, ¥n) (B.8)
exp(—7—)
n+41 n+1 n+1 n+1
exp(—t7-) Tih T 1
= rer(uf ) — —— e (Wl n) + —— e (uf ) — —— ey, ¥n)
exp(—-7-) exp(—“7-) exp(—“7) exp(—7-)
et i
gr Js n
= ——c(uj,¥n) + —F5cr(e], ¥n).
el 1 Gy e
The coupling terms in can be rewritten as
CI( n+1’¢ ) ( ;l—}tl’(ﬁ], ) = CI( n+17¢ ) _CI(U’Z-}";17¢?) +cl(uz-}tl7¢?) - Cl(u;‘l’-}tlﬂ(b?,h) (Bg)
:c(?tlv(bn)—’—cf( le7 ]¢)
and
er(uf, i) —er(ufy, o740 = er(uf, o5 = er(uf, @70 + er(uf, o5 t) — er(ulfy, o5 4") (B.10)

= cr(ull, e 5N +er(el,, o0,

Multiplying by efi! gives

exp

1 1
(| n+1|2 |2_|_|€n+1 e}z,T 2) + = ‘ n+1|2 (Bll)
2At T
+1
_ e;nr n+1 n n+1 n n _n+l n+1 n+1 n+1
- ( tn+1) C(]u>¢)+cl(]ha ](;S) C(uj,ej@)*C](Ju,(;ﬁ ) +6j (T)ej,r .
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Step 2: split the solution errors, formulate the energy equation of errors in finite element spaces.
Let U ;’H, q);-”l be any interpolation of u;-”rl and (b}”l in th and X;} correspondingly. Denote

n+l _ n+l _ n+1 n+l _  n+l\ _.  n+l n+1
e = (i = UFT) + (Uj Ui ) = 1

n+l __ n+1 n+1 n+1 n+l\ _ . n+l n+1
o = (5 — i) + (‘I’j —Pn ) =g t &g

Then (B.4), (B.5) and (B.11]) can be rewritten as

git—¢p . N
(w,vh + V(Vfﬁil, V'Uh f + Z/Th n+1 ’i . Ti) dS (B12)
f
n+1
— n ~ =~ 'n n 47h n
+ Z/(Th;j — i) (& - T)(on - Ti) ds — (P = ATV Uh)f + — I m—er(on, £ )
—J1 e:cp( s )
wyEt —
=— (i —70) (W™ =) -7) (o - T) ds + €5 (on) = | =250 v(Vl it Von) s
. j At o
i
—Z/lm(u%t i) (vn - i) dS—Z/ Mij — i) /“LJU/. i) (v - Ti) ds
n+1 n+1
Cjr n "j.n n
T T a1 Vh,@;) — 7nc Uh,, i )
cop(~ ) cr(vn, ¢5) cop(— ) 1(vn, 1} )
€n+1 o é—n B B r’(LZl
) (AJ’,il)h) +g(KVEN T, Vbn)p + g((IC; — K)VES 4, Vion)p — mw(fﬁw Yn) (B.13)
» T
c pist =
—g((Kj = K)V (95 = ¢7), Vibn)p + €55 (4n) — 9So <W,¢ )
P
entl 7'77;1
- 1 I n T n 51 n
- g(’CVﬂ?}; aV1/)h)p - g((le - K)Vﬂj,¢v Vl/fh)p + mcl(% Pn) + mcf(:u‘j,uv V),
T T
1 n n 1 n
s (1 = Ve 2 + et — e )+ et P (B.14)
en+1
= exp(jitnﬂ (c & o) +er(uft on) + er(uift €8 y) + er(ul it it y) — er(ul, €83

- CI( U 7“?;1) - CI( Jyus ¢?,Zl) - CI(/J‘] u7¢n+1)> + 6?+1(T) ’ e?,jl'

Setting vy, = f;l;l in (B.12), ¢p, = 5?7:21 in (B.13) and adding these two equations and (B.14]) yields

n 1 n 3 n n o
S IR — s Nl + s e - Jully +IVELIG+ 3 / mEL - 7)? ds (B.15)
950 950 95 n =
+ Sag 655 G = SRR+ SR 168" — Erolly + 9(RVES, VETEh),
+1,2 2 +1 2 +1,2
+ a7 (5 P = lep P+ 1ep = e P) + el

-2 [ o= A A )5 =3 [ s =m0 (@ =) R ) s
72/ Nij — luju i)(é”ﬂ-‘rl & dsz/m ,U‘Z-i_l A' ?7;-"-1 7,:2) ds

= 9((K; = K)YV (@51 = 1), VEITp — 9((Kj = K)ViS 4, VET)p — 9((K; — K)VEL, VET),
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n+1
:U/Ju _u’ju

— 9KVt Ve, — (Vi Ve —( ~

n+1
Jyu

n+1
Hjo _”m

At

n+1
3,9

), ()

Tn;tkl rﬂfgl
_ Js c T'LJrl7 n —c 'r_Lu’ @+1 ) + Js ( w n+1 c ’I"LJrl’ n )
PN (er(gts€re) = erl€hn §57) ey (e 5 — e )
en+1 n+l n n+1 n+1
+exp tn+1) (/’[’]u7¢')+CI(J}L?§]¢)+Cl(jh7u’j¢) (]?/’Lj(b)_cf( ],u7¢ )
—er(u ww) FEPET T @ T e+ T - ALY ),
= ’Rl 4+ 4 R14 + €n+1(§ZI1) + 6?;1(5;;1) + €n+1(’l“)€?j:1 + ( n+1 )\n-i-l V- fn-H)

Step 3: bound the right hand side of (B.19)), i.e. the energy equation of errors in finite element spaces.

Next we bound the terms on the right hand side of (B.15)).

e AR GRS R ST G [T U ED
n/ma:c 9 nlma:c +1 9
<Z|: / i T 7;)° ds + -—— B /I(fj’u 'Ti> del
By (2.1) and Poincaré inequality, we have, for any o1 > 0
=3 [ ) RGE R de < Sl 105 ) FGE T ds
1 2 o1 N2
< rmaz |~ ™7 d 7/ ntl 2V g B.17
N P A RN N ACHE R (B.17)
[ +1 o1 +1 2
< 2 'n n /maw ’rL '/\i d
< 3 I g G [ )
—C C2 D max n o max n P
< P7f201( f)m( ”Hv(uj-H )Hf+ 21 ’ /(5 +1 ,)2 ds}
Z‘ L
_ _
S mmawm%ﬁ+-;mW“A@ﬁf-aﬁd%.
i L t
Z / (01,5 = 712) (5, FEGLT T d8<2n””‘“ / |15 7 (&G T ds (B.18)

7)2 ds + 2

3

< Zn’m‘” [201 /(uju-
<3|a

3> [cnwjuf 4

2

e
zﬁf

n-{—l A <
) ds 2[402nm,n / i
)2 ds]

ﬂ 'mazx

e 3 + o

~

01 imax .2
i

7772
Similarly, for any oo > 0
=% [n

+1 —mi +1 ~
< Z {40 nmmllu” 17 +Uzn%”’"/1(£§fu T
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n+1
u]u

:u’]u

—[@f-

-75)? ds}

-73)% ds +

~

T')2:| ds
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aai"

- [t w2 s
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< Z {CVM"H“ + oo /(f"Jr1 )2 ds} . (B.19)
The hydraulic conductivity tensor terms are estimated as follows.
Rs = —g((Kj = K)VE] 4, VET), < 9/ V€ ol2lCj — Kl2|VE] T2 da (B.20)
D,

<g / (D VEL o VEH o di < g7y /D IVED oI VES o da

p

1 9p, >, 9P 1
< 9Pnas V& ol IVE S o < == IVE Il + =522 1VE S -
For any o3 > 0, we have

Rs = —g((; — K)V(4m+ — gm), vert), < /D V(0 — bl — K|VeEt pde  (B.21)

p

<g / L@V = 6 LI VE o d < g9} e /D V(60 — 6o VT, da

P P

n n gp;naw n n n
< gpmava( - )HPva +1HP — 20_3 ||V(¢j+1 - ¢])||12) 7gpmaw||V§ +1||2

2
9p, m
< Lo [ 9(00,) tl} + Lot IVEL
9s, e
< mez g [ V(003 dt + Pobae VS
03 tn 2
Similarly,
Re = —g((K; — R)Viily, VEMD), < g / (V4 o2 I — KlaIVErt 3 do (B.22)

S QL P;(z)|vﬂ?,¢|2|vfzgl|2 dx S gp;’,maz / |VMJ ¢| ‘v£n+1|2 dx

p

< gpmaszluJ ¢||p||vfn+1||p S

/
gp
Lt |40 2+ %2 e | VER S 2

For any 1 > 0,52 > 0,
Rs+Ro = —g(KVpl i1, Ve, —v(Vul Ve (B.23)
< C IV 13 + IR 12) + B lIVE I3 + Baghmin VL2,

and
n+1 n+1
wie =1 T T .
Rio+Ri1 = — (j AL = jIl) — 95 (j L AL = j,;f1> (B.24)
f p
n+1 2 2 n+1
Hoju _MJU nt1 Cpp950  Mjp — Hig o nt12
+ iv||V + == + Emin ||V
<o 15+ BIVEL I + TR S fag V1
n 2 n+1 2
CP 1 gntt 02 QS2 1 t
] n+1 P,pI*-0 n+12
— O¢ i o dt AV —= || — Os i o dt Eminl|V
<ol [ o REACAS o v [ e ] + aghnin V51
p
C gl ) C gt )
n 2 7. n 2
<Al ). 187,17 dt + Brvl|VESEIF + At/ 10s 18,6112 dt + Boghmin||VETSH 2.
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n+1

From the stability result (3.2)), we have |r;“}tl| < (3 and thus % |7"”"’1|eaxp(tn+ ) < C. For any
B1> 0,52 >0,
n+1
Rzl = W(q(&ﬂl, 7o) = 1§, €150 | < Cler (8 €| + Cler (&, 511 (B.25)

< Ol 1P IVER I 2 IEr I 2V eEr 182 + Cler
<Ol IAVE T s + ClE NI VE sl + ClIER,
S CIEENG + BIVETHT + ClET 112 + Bzgl%mm\|V§;f¢||,%

+ CEr N3 + B VEL I + CIETS 2 + Baghmin | VES 2.

1/2 n 111/2
K Hvsjun P2len L2 vt L2
it Iverst

By trace theorem, we have the following estimates

)h n n
Riz = j_ tntl ) (CI(M;L,’UJ ijgl) - (gj,Jurl’ M?@))) (B26)
T

exp(

< C(IVHGlF +IVES615) + BlIVETHITF + Begkminl VES S -

To bound Ri4, we split it into three terms and bound each. Since u; € L°°(0,T; H**1(Dy)), ¢;
L>=(0,T; H"Y(D,)), we have

cap(— ) U Mg
< Ol IV IV + Clet IVl 195y < Clei IVt + Clest IV
et P+ O (Va3 + 19512 -

n+1
€; T n n n n n n n n
- ( (st o) — e M;l)) < el ler (Uit o) + el ler (uh 25D (B.27)

_ST Coor

Since u; € L>(0,T; H**1(Dy)), ¢; € L*>°(0,T; H™*1(D,)), and |e"4,'1 = |exp(fﬂ)fr"+l| < e+|rﬁl'l\ <
C, we have

en+1
7,7 cr n+1’ —c s n+1
exp( tn+1) ( jh /‘l’j (;5) I(/"LJ ¢ )

n+1
— +1 +1 +1 +1
- e:vp ( TL ;L,u ’:u’j qb) 76[(:“7 ua(rbn qu ))
n+1
= tw+1 ( n+1vlu’_7¢ I(e;‘i:lvu;};(ﬁ) —CI(U?,u’éb?H) +CI(,U’3 u’ 'Jnl;l))

exp(—
< e (er )+ er s8]

ele ! (ler(€nts )| + ler (s 1 )+ ler (s €501 + ler (s 511
< ele IVt A9l + 190 1905 )

el (N 12 Iv e 1 2NV ol + IV NS 1 2 I 132)

+elet? (||w7 ||f||wm||p+||w]u|\f||wy )

+ CIIS"“IIfHVE”“Hf + CIIVMJ ¢>||2 + CIIVMJ I+ OIS I IVES

+CIVEEIF + ClIVaT

< CIEIF + Bl VET T + Cllg Z“Ilp + BaghminlVESS 7
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+ CIVIGIT + CIVEG 15+ CIVRGT + CIVEG S + g7l

. n ntl n n
Since u; € L>(0,T; H*(Dy)), ¢; € L=(0,T; H™*1(D,)), and |e] +1| = |exp(—t7=) =17 < e+|rj H\ <
C, we have

G nil gn nit
W(C( o 85e) — 1§ O )) (B.28)
n+1
mp th < n+1 n+1 &) — e j7u7¢n+1 e;;w)
n+1
B exp(— t”“ ( "'H S 61(6?’31’ T.s) i ;Lu’¢n+1) +CI(§”U’€7;1)>

< e (er ™, ) + ler (€370
+elegf! (|cf< :21, roll - ler (it €)1 + e (€ 51+ ler (s w51
< Clett (I 6 I 2V oIy 4+ € IV el 21, )
+ Clestt (e 1 IV e 1 2165 s I AUVl + Il IV ER T 2N 1 21 s 132)
+ Cle (VAL 1 I IV ER IS + Nl IV R 21205 )

< Gl P+ (CIE A IVEL sy + UL IVERI)
FOUTE ARGl + CUEE 19Tl + CIGLAIVE s + CIGT IV
+ eIV + CIENANTE Ll + CIVuEE

< CU IV s + CUE L IVEly + I I ITE T + Ol

IV,

+ OV T+ CIVIG R + slef P

8T
< Ol 7 + BV ety + Cuﬁz’ullf + Buv|| Ve L2 L B 0 [ VERE
+ Ol ol + Saghm + CIVH G + CIVIGE G + g lenr
Next we bound the consistency errors.
I )
62?1(5?,31 < CHij —_ 8tuj(tn+1)H —+ CHV( n+1 ¢n)Hp + ﬁlvagnquHf (B29)

tn+1 tn+1

<cat [ fowliarrcat [ [9@opI3dt+ VeI
tm tm

(et < CH¢"+1 — ¢

s —0u5(tar)| + CIVE™ = u)I + PaghninIVESTE (B30

tn+1 tn+1

<cat [ Nougsl2der Ot [ V@) di + aghial VS
tn tm

Since u; € L>=(0,T; H**Y(Dy)), ¢; € L>=(0,T; H™T1(D,)), we have

&) eyt (B.31)
I

< |- Al - fj(tn+1)|\@?,tl| + e|c;(u}l+1,¢;‘+1 )||e"+1| +eler(u] n+l _ u]’¢n+1)”€n+1
Pt pn

< 1Lt it + CITa P IV (6 = o) llep |+ CIV ™+ — ) [T+ e
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r. —
< [t =)l 4+ CIV (@ = apllep £+ CIv () =)l
n+1 —
< Ol = #y(tar) P+ CIV(SSH = o7 + CIV (™ = )| +
¢ttt ¢t gntl

< CAt/ |7'*j|2dt+CAt/ ||V(6t¢j)||f,dt+CAt/ 19 @) e + |e”+1|2.
tn tm tn

o n+1‘2
8T

The pressure term can be bounded as follows.
(7t = ALV ) S Cllop = AT + Bl VERTIT (B.32)

Step 4: finalize the estimate for errors in finite element spaces, then the estimate for solution errors

n+1 n+1 n+1
g € s ande .

Combining all these estimates, taking 8, =

e
%, we have the following inequality
S VI3 — S gl + IV + 2 (IR I3 — IVER %) (B.33)

+§: (1= og)imin (1+o—)ngm)/(5;zl-a>2 ds
I
Imax n+l ~\2 n ~\2 gSO n+1 gSO n
3 g (/ it Ay s [ R ) + S - Bl

pma:c n 1 1. n n
+ (1 — 98> = (14 03) 7= ) Gkmin |VE T2 + (2g,ojm + 2ﬂzgkmm> (||V£ Sz - vamug)

min

1
n+12 2 n+1 2 n+1 2
(3112 =l 2+ et = e, ) + mlent |
g+l g+l
< CAt/ IV @euy) |7 dt +C|IV a3, |} +C||Vu”+1||f+0At/ IV @eb)ly dt + CI Vit lly
tn

tn

2At

tn-}—l

c C
n+1 n+1 ~ ) o
+C (Vi B+ Vi ) + 5 [ Mol i+ 57 [

C (I3 + IERal2) +C (1512 + 1€ 12) + C (19413 + Vs

gt

sllz)

tn+1 tn+1 tn+1
v cm/ ||attuj||§dt+cm/ 10012 dt + cm/ 72 dt
tm tm tn

tn+1 tn+1

coar [ @ IFacar [ Iv@oplEd oyt -

To make sure the fifth and ninth term on the left hand side are non-negative, we need 0 < o2 < 1,
0 < B2 <1/9, and

/max 1— 1
m LR | (B.31)
nlm,in 1 + 01 kmin 1 + g3
For Yoo € (0, ) Vo, > 0,Yo3 > 0, we can derive that 1 TTa) 1+U3 € (0,1). Now if the two parameter
conditions in are satisfied, we have 7%;7,1;?, 2’"‘” € (0,1). Then we can easily find o9 € (0,1),01 > 0
such that Ti,;mm = h such that % < ﬁ Here we take
=Min 'max 1 k. 1 /
01=02= %703 (mln_1)5/62:<1_pmla$>7
; + ; 2 pmam 18 kmzn

then (1 — o2)7/"™ — (1 +01)n/™** =0, 1 - 98 — (1 + ag)ﬂmw =0.
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Under the two parameter conditions in (4.4)), (B.33)) reduces to

SIS = SR + SIVERT I + 1 (V€8I ~ 19E7.03) (B.35)

max n oy n oy n gSO
+35 g ([t 7 as- /I<j,u.m2ds) mus T - S0

7 1 n+1 2 n+1(2 2 n+1 2 1
+ (189pmaz + §g mzn> <||V£ ”p - Hv£;l,¢||p) 2At (le | | j’l‘l + |€ e;‘L,T ) + ﬁ

gt gl

< CAt/ IV (Deus) |} dt + CIV N7 + CIVaG LG +0At/ IV (D)7 dt + ClIVig gl
t’!‘L

tn

s 1

gt gt

n n C
0 (19 + 190 82) + 55 [ bt [ ool
tn
C (I 17 + 1185 13) + ¢ (Hf"“||2 +168612) + € (IVaLl13 + 185412)
tn+1 tn+1 tn+1

+CAt/ ||8ttuj||?cdt+CAt/ \|att¢j||§dt+cm/ 1752 dt
tn tm tn
gt b1

voar [ V@) one [ V@0 + o = N
Since fjo-,u =0, 52(15 =0, and 6?77. = 0, summing up from n = 0 to n = N — 1 and multiplying through by
2At yields

N-1

[SWIEINDY VIVELIT+ % At vE] u\\f+Ath’m“””/ W T)? ds (B.36)

n=0

N-1 N—-1
7 2 n . 1 .,
+ 9S0l&25 15 +At< IPhnaw + 59 mm) VRl + lefn® + > left — el 1P+ At Y - les?

9 n=0 n=0
N—1 ¢t ¢ntl
<20t {cm/ IV (8rui) |7 dt + CIV i |1 + ClIVulE T + CAt/ IV (0512 dt
n=0 tn tn

tn+1 tn+1

C C
2 n+1 n+12 2
IV I+ (I 4 193 ) + 5 [ Nosalibae+ 57 [ Wl

+ C (I3 + 1€ra3) + € (MR IE + 16 12) + C (IVaull3 + 1907 412)

g+l gt gt

+C’At/ ||attuj||§dt+CAt/ ||8tt¢j||§dt+CAt/ | |% dt
tn tn

tn

gt gt
+0At/tn ||V(3tuj)\|§dt+CAt/tn ||V(at¢j)\|pdt+c”pn+1 )\ZH”?}.

Taking infimum of ||V, .| over the space X}L, [V, over the space X, ||Vp"+1 A over the
space Q?, and using interpolation inequalities, we obtain

N-1

63 + A8 D7 vIVELIF + Z ALIVENIF + Ath'W /I (&5 - 7)? ds (B.37)
n=0
7 9 N-1 N-1 1
SO + At (G0 + gohmn ) IVEILIE 16501+ 3 65" 4 80 X g
n=0

N
< ALY C (€717 + 1€ 615)
n=0
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2 m 2
+ CALP(0vujlon, 5 + ChFuglly iy + CAEB:5ll2,1.0 + CEZ™ D515 g1
+ CR* 2104w |3 k1 5 + CRP 2110085115 g1 p + CAL0rujll2,0,5 + CAL (|0 j]|2,0,p + CAL
s 2
+Ch® +2|Hpj|H2,s+1,f' (B.38)

Next we apply the discrete Gronwall inequality. Assuming At is sufficiently small, i.e., At < 1/C, we
have

N-1
n v maxr o
I€5ullF + At Y vIVELIF+ S AHIVELIT +AtD n; /I (& 7)* ds (B.39)
n=0 %
7 9 _ N-—-1 N-1 1
+ gS0IEIE + A Fathuae + Sobmin ) IVELIE + P+ 3 681 = el 4 A0 S Flert

n=0 n=0

< efﬂp(m) (CAt2||8tuj| 21,5 + O |luilly i s + CAL10:05 112,15 + CE*™ 165ll3,0m 1

+ O 2|03 k1, + O™ 210005113 1 + CAE |0t |l2,0,5 + CAL (|00t 5|2,0, + CAL
25+2 2
+Ch™ ||pj||2,s+1,f>-
Since
N—1 y
il 7+ Aty v Vag |7 + gAtIIVuﬁ-YuH? + ALY e /I(ujv,vu -7i)% ds (B.40)
n=0 i
gl 12+ At Lgphs + 2 ) VY, 2
g0 /LJ@ P ggpmax 99 min //4]7¢ P
2 2 2 2
< B2 ugI%, ki g + OB luslly sy p + CHP 2G50 yrp + CH N5 1 o
using triangle inequality on the error equations yields
N-1 y
e 17 + At > v|Ver, |17 + gAt||Ve§\fu||’j; + ALY e /I(eru -7)% ds (B.41)
n=0 i
7 9 N—1 N-1
+ gSollelN,lI2 + At <9gp2nax + ggkmm) IVesslly +lesnl®+ > leitt —ep P+ At D —lep
n=0 n=0

cT .
< exp(y—Fa7) (CAt2|8tUjII2,1,f + COPM|usll3 41 + CALN0:85 112,10 + CH N1 5113 011

+ O 2|0pus 13 o s1,p + CH* 2010513 1 p + CAL|Opeusll2 0,5 + CAL |02t 12,0, + CAL

oo,m+1,p

2 2 2
FOR Bl + ORI,y g+ CH 2]l ) 7

and completes the proof. O
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