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Abstract. Computing a flow system a number of times with different samples of flow param-
eters is a common practice in many uncertainty quantification (UQ) applications, which can be
prohibitively expensive for complex nonlinear flow problems. This report presents two second order,
stabilized, scalar auxiliary variable (SAV) ensemble algorithms for fast computation of the Navier-
Stokes flow ensembles: Stab-SAV-CN and Stab-SAV-BDF2. The proposed ensemble algorithms are
based on the ensemble timestepping idea which makes use of a quantity called ensemble mean to
construct a common coefficient matrix for all realizations at the same time step after spatial dis-
cretization, in which case efficient block solvers, e.g., block GMRES, can be used to significantly
reduce both storage and computational time. The adoption of a recently developed SAV approach
that treats the nonlinear term explicitly results in a constant shared coefficient matrix among all
realizations at different time steps, which further cuts down the computational cost, yielding an ex-
tremely efficient ensemble algorithm for simulating nonlinear flow ensembles with provable long time
stability without any timestep conditions. The SAV approach for the Navier-Stokes equations for a
single realization was proved to be unconditionally stable in [39,41]. However we found the SAV ap-
proach has very low accuracy that compromises its stability in our initial numerical investigations for
several commonly tested benchmark flow problems. In this report, we propose to use the stabilization
—ahA(u™t! —y™) in Stab-SAV-CN and —ahA (3u™ ! —4u™ + 4"~ 1) in Stab-SAV-BDF2 to address
this issue. We prove that both of our ensemble algorithms are long time stable under one parameter
fluctuation condition, without any timestep constraints. For a single realization, both algorithms are
unconditionally stable and have better accuracy than the SAV methods studied in [39,41] for our
test problems. Extensive numerical experiments are performed to show the efficiency of the proposed
ensemble algorithms and the effectiveness of the stabilization for increasing accuracy and stability.
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1. Introduction. Parameterized flow problems arise in the uncertainty quantifi-
cation (UQ) process for many engineering and geophysical applications, in which the
model coefficients, boundary conditions, initial conditions and/or body forces depend
on a set of input parameters, and usually repeated sampling of the parameters and
computing the corresponding numerical solutions of the underlying partial differential
equation (PDE) system are required. For this type of problems, numerical simula-
tions have to be carefully designed and verified to produce useful and reliable statis-
tics about the underlying physical systems. Much of the efforts have been devoted
to developing efficient UQ methods with the goal to achieve high accuracy without
incurring excessive computational cost, e.g. quasi-Monte Carlo sequences [36], Latin
hypercube sampling [19], centroidal Voronoi tessellations [48], stochastic collocation
methods [2,53] and non-intrusive polynomial chaos methods [20,47]. These methods
mostly focus on the approximation of the stochastic spaces associated with the ran-
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dom parameters, independent of the selection of numerical approaches for discretizing
the corresponding deterministic PDE systems. An accurate and efficient numerical
discretization technique is certainly desirable to be used together with the aforemen-
tioned UQ methods, and numerous methods exist in the literature for this purpose.
However, none of these numerical techniques are specifically designed for the com-
putation of a large number of realizations of a PDE system with different parameter
samples, until a recent development of ensemble algorithms for this setting, [23,26,27].
To be clear, existing numerical methods are mostly studied for solving one single PDE
or PDE system, while the recently developed ensemble algorithms attempt to find a
number of solutions of PDEs or PDEs systems with different parameters where the
computations of these solutions are coupled through a quantity called ensemble mean.
The ensemble algorithms have been extensively tested and demonstrated to be able
to greatly reduce the computational cost for ensemble simulations in various UQ ap-
plications, e.g., [15,16], and when combined with an efficient UQ method, they are
well suited for simulating parameterized flow problems.

The ensemble algorithm was first studied by Jiang and Layton [27] in 2014 for
computing the Navier-Stokes equations subject to uncertainties in the initial condi-
tions and forcing terms. The idea is that if all the linear systems from different realiza-
tions share a common coefficient matrix at each time step, then one is actually solving
a linear system with multiple right hand sides Alxy,zo, -,z 5] = [b1,bs, -+ ,bs], in-
stead of J separate linear systems Aix; = by, Asxe = by, -+ ,Ayxy; = by that a
traditional method (individual simulations) would yield. For solving a linear sys-
tem with multiple right hand sides, there is a large literature on the study of effi-
cient block solvers, such as block CG [22,44, 46], block GMRES [4, 10], which can
be used to markedly reduce the computational cost compared with solving J differ-
ent systems separately. This ensemble timestepping idea was subsequently extended
to simulate different PDE systems with various uncertain model parameters, e.g.
Navier-Stokes equations [12-16, 23, 24, 26, 28, 51, 52], Boussinesq equations [7,9, 25],
heat equation [8,42,43], MHD equations [31,45], coupled fluid-fluid model [5], Stokes-
Darcy equations [17,29,30]. Some recent developments include combining artificial
compressibility techniques to decouple the computation of velocity and pressure in
ensemble simulations [17,29], using time relaxation regularization to penalize the de-
viation of the fluctuations from the ensemble mean for simulation of high Reynolds
number flows [51], synthesizing the ensemble algorithm with the multilevel Monte
Carlo method [43] and the pseudo-spectral stochastic collocation method [38], devel-
oping ensemble-based conventional turbulence models [5,26]. Although shown to be
highly efficient, the ensemble algorithms suffer from a restrictive timestep constraint
for long time stability for nonlinear flow problems, [25,27]. The timestep condition
comes from bounding the fluctuation component of the nonlinear term which has been
lagged to the previous time levels and thus does not contribute to the common coef-
ficient matrix all realizations share. For the ensemble algorithms, this condition can
not be avoided with standard semi-implicit timestepping methods unless additional
regularizations are added [28,51]. But a very recent scalar auxiliary variable (SAV)
approach introduced in [39,41] puts forth a possible way to get rid of this timestep
condition and lead to unconditionally stable ensemble algorithms.

The SAV approach was introduced in [49,50] to construct unconditionally en-
ergy stable schemes for approximating gradient flows. The outstanding feature is
that the nonlinear term can be treated fully explicitly and one only needs to solve
decoupled equations with constant coefficients. This approach was later extended to
the Navier-Stokes equations in [41], where the authors devised and tested two uncon-
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ditionally stable SAV schemes based on backward Euler and second order backward
differentiation formula (BDF2) respectively. Following the same idea, [39] presented
a SAV scheme based on the Crank-Nicolson timestepping and provided detailed error
analysis for the scheme. In this report, we combine our ensemble algorithms with
the SAV idea to construct extremely efficient and unconditionally stable ensemble
algorithms. Specifically, the efficiency is achieved as follows. Consider computing
the Navier-Stokes equations J times with J different input parameters. After spatial
discretization, at the time level ¢, 11, one needs to solve .J linear systems A7Jz; = by,
j=1,2,---,J. The contributions of the ensemble timestepping and the SAV idea
are respectively

Ensemble timestepping: A7 — A"

(all realizations share a common coefficient matrix),
SAV: A" — A

(the coefficient matrix is a constant matrix).

The resulting SAV ensemble algorithms have improved efficiency and provable uncon-
ditional stability.

However, in our initial numerical investigations of the SAV approach [39,41] on
several benchmark flow problems, it shows very poor accuracy which apparently com-
promises its claimed unconditional stability. Some of these test results are presented
in Table 7, Figure 2 for the Kovasznay flow, Figure 6 for the double driven cavity
flow, Figure 7 for a flow between two offset cylinders, in comparison to the stabilized
SAV ensemble methods we will present in this report.

Artificial viscosity is a common numerical technique used to stabilize high Reynolds
number flows but may lead to overdiffusion. One possible fix is to add anti-diffusion
at large scales [1] or previous time levels [37] to correct the solution and improve the
accuracy. Similar ideas have been widely used for practical simulations within the
computational fluid dynamics (CFD) community, e.g., for turbulence modeling, the
variational multiscale (VMS) method has eddy viscosity acting only on small resolved
scales [32,33]. In this report, we adopt a simple approach presented in [37] to stabilize
our SAV based ensemble algorithms. In [37] the anti-diffusion is added at the previ-
ous time level for a Crank-Nicolson timestepping method to help reduce the effects of
artificial viscosity but still retain the good property of better conditioning the linear
system to be solved at each time step which gives better likelihood of success with
iterative solvers and preconditioners. The incorporation of this stabilization approach
with our SAV based ensemble algorithms is shown to be able to substantially improve
the accuracy of the SAV based schemes (both ensemble and non-ensemble) for the
several numerical tests in Section 6.

The rest of the paper is organized as follows. In Section 2, we present the proposed
stabilized SAV ensemble algorithms: Stab-SAV-CN and Stab-SAV-BDF2. They are
both proved to be long time stable under a fluctuation condition (without any timestep
conditions) in Section 3. In particular, for a single simulation, both algorithms are
unconditionally stable. Section 4 discusses their implementation algorithms. Section
5 is devoted to detailed explanations of the numerical implementation of the ensemble
algorithms and the block GMRES solver for solving the corresponding linear systems.
Numerical examples and computational results are presented and discussed in Section
6. We conclude with a brief discussion of the proposed ensemble algorithms in Section
7.
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2. The SAV Based Ensemble Algorithms. We consider the setting that the
Navier-Stokes equations are subject to uncertainties in the initial conditions, boundary
conditions, body forces and the kinematic viscosity, and the solution depends on a
set of input parameters that come from these uncertainties. To obtain solution data
assume J samples of the random parameters have been generated by an efficient
UQ method, e.g., [20,53], and next we need to find J solutions to the Navier-Stokes
equations corresponding to the J different parameter sets.

Consider J Navier-Stokes equations on a bounded domain with J slightly differ-
ent initial conditions, Dirichlet boundary conditions, body forces and the kinematic

viscosity, u?(:c), gj(z,t), fi(z,t), vj(x), for j =1,...,J:

(2.1) Ujt + (Uj . V)u] -V (VjVuj) + ij = fj, in Q,
V- U; = 0, in Q,
uj = g;, on 05,

u;(x,0) = uf(z), in Q.

Here we assume v;(x) € L>(Q) and vj(z) > vjmin > 0. To construct the ensemble
algorithms we need to define the ensemble mean 7 and the ensemble fluctuations 1/5-.
The minimum average ¥,,;, and maximum fluctuation v/, of the kinematic viscosity,
will be used in the proof of the long time stability. They are defined as

vi() := vj(x) — o(a).

K‘ \

j min V;na;c = max Sup |V§ (3’;)‘
J  xzeQ

k\*—‘

J

J
Umin = Z

Next we introduce a scalar auxiliary variable g; for each realization and a differ-
ential equation for it which will be added to the original Navier-Stokes equations to

form a new governing system, following the SAV idea in [39,41]. Define the scalar
auxiliary variable g;(t) by

(2.2) q;(t) = \/E(uj) + 9,
where E(u;) = [, 3|uj|*dz is the total kinetic energy of the system and & is an

arbitrary positive constant. Taking derivative of ¢;(¢) gives the following differential
equation

dg; 1 Ou;

1
2.3 = — cuide + ——— /u V)u; - u; dx
(23) At~ 2q; Jo ot 7 2/E(u;) + 0 Q( Jus s
1 - 1 2
- — n-ui)s|ui| do.
5y |, )3

Note that the last two terms in the above equation is equal to zero since V-u; = 0.
Combining this equation with the original Navier-Stokes equations we have a new
governing system that is equivalent to (2.1):

i(t
(24) Uj ¢ + E%(Uj . V)Uj -V- (I/jVUj) + ij = fj(x,t)7 V- U; = 0,
J
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das _ L[ Ouy

1
=— -u-dm—&—i/quuwwda:
at  2q; Jo Ot 2/ E(uj)+4¢ Q( 7V
= 1y, (2
- — m-9)5|95|° do.
sy |, 9la]

The benefit from introducing a new variable g and the associated equation into
the system is that we will have the same nonlinear term on different sides of the
energy equations. With an appropriate time discretization method, by making the
nonlinear terms fully explicitly in the same way, we can cancel out the nonlinear terms
by adding the two equations and consequently have a provable unconditionally stable
scheme for the Navier-Stokes equations. For the ensemble algorithms, one needs to
deal with fluctuation induced instabilities and there will be a fluctuation condition to
ensure stability. But usually in the context of UQ, the fluctuations of the parameter
are small and thus the fluctuation condition can be easily satisfied. In other cases,
one can always split a large ensemble into smaller ensembles to reduce the fluctuation
size.

Herein we present two second order, stabilized SAV ensemble algorithms based
on the Crank-Nicolson timestepping and the BDF2 timestepping respectively: Stab-
SAV-CN and Stab-SAV-BDF2. To increase the accuracy of the SAV schemes, we add
the following stabilization terms to the two proposed SAV ensemble algorithms.

— ahA(ul*! — u}) for Stab-SAV-CN,
— ahABui ! — 4uf +uf ™) for Stab-SAV-BDF2,

where a > 0 is a tuning parameter that is application dependent, and h is the mesh
size associated with the spatial discretization of choice.

The idea originates from the artifical viscosity stabilization which is to add an
artificial viscosity term —ahAw to the left hand side of the Navier-Stokes equations
so that the cell Reynolds number becomes O(1). For unsteady flows we consider
adding anti-diffusion at previous time levels to help reduce the effects of overdiffusion,
following the approach presented in [37]. The stabilized SAV ensemble algorithms have
accuracy O(At? + hAt + spatial error).

To construct an efficient ensemble algorithm we need to make all the realizations
share a common coefficient matrix. The way to do this is to decompose the viscosity
term into two parts: the mean and the fluctuation, i.e. v; = v + v;. The mean
viscosity does not depend on the ensemble index 7 but the fluctuation term does. So
we need to lag the fluctuation term to the previous time levels so that it goes to the
right hand side of the equation and does not affect the common coefficient matrix.
We usually need to decompose the nonlinear terms as well if a standard semi-implicit
method is used. But thanks to the SAV approach, the nonlinear term can be treated
fully explicitly and thus goes directly to the right hand side not contributing to the
coefficient matrix.

For the Stab-SAV-CN ensemble algorithm, we adopt a special linear extrapolation
ﬂ?H/ 2 (defined below), see [21], to approximate the fluctuation term. This is a second
order approximation and possibly the only choice that works with the Crank-Nicolson
timestepping for a provable long time stable ensemble algorithm.

Let t, = nAt, n =0,1,2,--- | N, where N = T/At, denote a uniform partition
of the interval [0, T]. Denote

nrijz W _n+1/2 2“? S R SR YRy
i =T 9 4= 2 2 i T
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+1 +1
w2 _ D5 Py w2 _ G T4
i T T g i T Ty
Note that ﬂ"H/ is a known quantity while u; "+1/2 contains the unknown function
u" . We now propose our second order, stablhzed SAV ensemble algorithm based

on the Crank-Nicolson timestepping as follows.
Algorithm 2.1 (Stab-SAV-CN). For j = 1,2,---,J, given u?,ujl-,u?,p?,q?, for

n=2,3,---,N—1, find u?“,p?“ q]"+1 satisfying
n+l _ um qT,L-’_l/2
(2.5) J ~ 74 J (ﬂ?+1/2 . V)ﬂ?“m + vp;;ﬂ/z
E(ﬂ?-‘rl/Q)_’_é
V- (ﬁVu?+1/2) v (véVﬂ?“/?) _ ahA(u?H —ul) = ff+1/2,
(26) V-uit'=0,
n+1 n n+1 n
n LWL (M T e
. At - 2q;1+1/2 At et
bn+1/2

~n+1/2 1/2 1/2 j
nEZ gyantl/2 /2 g 0

/—m / U J T nt1/20
+1/2 +5 2qj

where 0772 = [ (- g" V)L gh A2 do

The second order, stabilized SAV ensemble algorithm based on the BDF2 timestep-
ping is given by

Algorithm 2.2 (Stab-SAV-BDF2). For j = 1,2,---,.J, given u},uj,qj,qj, for
n=12--- N—1, find u?"'l,p;"'l, q'j'.“"1 satisfying

n+1 n n—1 n+1
28) Bu; T —4dul 4 u; qj
-V (DVU;LH) -V (V;Vﬁ?-H) - ozhA(Bu;-L‘|r1 —4uj + u}b_l) = f;”'l,
(29) V-ujtt =0,
n+1 n—1 n+1 n n—1
3q; —4q7 +q; 1 <3uj — 4 + u; u"“)

“n+1 “n+1 n+1
(uj -V)u! + Vp]

J

2.1 = !
( O) AL 2qn+1 2At 77

bn+l
n+1 n+1 dl‘ _ j

/ n+1 7 J
/ n+1 + s J Zq;}—i-lv

where b = [o (i - g?“ )31gi T P do and @)t = 2un — Tt

It is clear that for both ensemble algorithms, the coefficients for u;”rl (1) do not
vary from one step to another, and (2) are independent of the ensemble index j, which
means after spatial discretization, the constant coefficient matrix is the same for all
realizations, i.e. A does not depend on n or j. The linear system to be solved at each

timestep is in the form of

)

n+1 n+1 n+17 _ rpn+l n+1 n+1
A[zl y Lo 5, X ]*[bl 7b2 a"'abJ ]
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Solving this linear system with the block GMRES solver will result in significant
savings in computational cost, compared with traditional methods that run the sim-
ulations individually, i.e.

Apath =t At = ot AT = (non-SAV scheme)

or Ayt =it Agah Tt = b0t ,Aﬂn’}“ =yt (SAV scheme)

3. Stability of the SAV Ensemble Algorithms. In this section we prove both
ensemble algorithms are long time stable under a parameter fluctuation condition,
without any timestep conditions. In particular, for a single realization (J = 1), the
fluctuation is zero and the parameter fluctuation condition is automatically satisfied.
So the proposed stabilized algorithms are unconditionally stable for non-ensemble
simulations. For simplicity of presentation, we will assume homogeneous Dirichlet
boundary condition for the stability proofs. But the stability can also be obtained
under the same parameter fluctuation condition for the case of inhomogeneous Dirich-
let boundary conditions. Due to page limits, we will only present the proof of the
stability for the Stab-SAV-BDF2 ensemble algorithm. In the following theorems we
will assume g7’ is real so that |q?|2 is nonnegative. In practical simulations, if ¢j' ever
becomes complex at any time step, we claim the proposed stabilized SAV ensemble
algorithms fail and the simulations should be stopped, as the appearance of complex
q; will lead to the linear solvers failing eventually which is observed in our numerical
experiments for high Reynolds number flows. Nevertheless, it is also observed that the
stabilization we propose here is able to effectively prevent ¢} from becoming complex
in many cases for low to moderate Reynolds number flows, improving both accuracy
and stability of existing SAV algorithms in the literature.

THEOREM 3.1 (Long Time Stability of Stab-SAV-CN). Assume g} is real, for

anyn =0,--- ,N, 5 =1,---,J, and the following parameter fluctuation condition
holds
/
1
(3].) @ < =
Vmin

With homogeneous Dirichlet boundary condition, Algorithm 2.1 is nonlinearly, long
time stable, and the following energy inequality holds

3 - -
(32) 1P+ Svhaa At Vuy 2P AUy 2 4 ShAt V|

+ iljinax

<GP + SViman Ve + QVWAtnw”?n? + Shat| V|2
+ _ fn+1/2
—Q(me e n— HZZ | 124
THEOREM 3.2 (Long Time Stability of Stab-SAV-BDF2). Assume g7 is real, for
anyn =0,--- N, j=1,---,J, and the following parameter fluctuation condition
holds
{Inax <1
Vmin

With homogeneous Dirichlet boundary condition, Algorithm 2.2 is nonlinearly, long
time stable, and the following energy inequality holds
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a2+ 12¢Y — g TP+ Z| P 2g? + g P 4 ahAE (| Vul |2+ 12V — Vel %)

N—-1
+ maavA.éHqu”2 + ahAt Z ||Vun+1 QVU + Vun 1”2 + l/nuza:At”Vu;\[il||2
n=1
< g+ 12q) — 2P + ahAt (| Vul|? + |2V} — quHQ)
W M2+ AT+ 3 e,

maw n=1

Proof. Taking the L? inner product of (2.8) with u?"’l and using (2.9) gives

n+1 n n—1 n+1
(3.3) (3uj _4uj +uj unJrl) + 9 b(ﬁ(z+1 Gl u7}+1)
E(u

2At J ;l 1) J J J
/ (
o0

- /89( VNV o + (VAT vt

St

1
-u?“)p?“da - /ag(n uVu”H) ;’Hda + |72 VU?HHQ

St

J

—ah | (- (3Vu]* —4Vu) + VUl ) ul o
o9

« n n n « n s n—
+ 5h IV + 12V ™ — vl |?) + thVuj+1 —2Vu} + Vul

a n n n— n u”
= 5P (VUG + 12Vef = Vui %) = (™).

’ ]

Multiplying (2.10) with 2¢}*" gives

4 n+12 2n+1 n 2 2 n12
(3.4) mt(lq >+ 2001 = g ?) - 2At(lq\ﬂqj %)

3ut — 4y 4+t
|qn+1 _ Qq;L + q;L—1|2 _ ( J J J un-‘rl

2At 2At T
qn+1
+ Jn+1 b(u;l+1’ a;l+17u;}+1) _ bv_z+1.
E(uj™) 46

Adding (3.3) and (3.4) gives

1
n+12 n+1 n|2 2 n—1|2
+ |2 4 )
22t(| | |q q]|) 2ﬁt(‘q]| ‘q] 4q; |) 2215

=5 n n n n o n n n—
+ ||V2Vuj+1||2 + *h (||Vuj"’1H2 + H2Vuj+1 — Vuj ||2) - Eh (HVuj % + [2Vu} — Vu 1||2)

gt —2q) + ¢
[0 =
+ §h||Vu?+1 2Vul + Vui~ H12 = (f"+1, ;H'l) - (VéVu;-H'l,Vu?H)
j

+ ah/ (7 - (3VU§L+1 —4AVuj + Vu?_l)) cu o
1919)

- /(99(ﬁoU?+l)p?+ldU + /Og(ﬁo EVU?H) ~u?+1da + /SQ(n v Vu”“) }H'ldo - b}”’l.
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In particular, with homogeneous Dirichlet condition the terms of integrals on the

boundary are null. Note that 7(z) > D > 0. Applying Cauchy-Schwarz and
Young’s inequalities to the right hand side and and using (2a — b)? < 6a® + 3b? gives,
for any 5 > 0,e > 0,

n n n 1 n n n n—
mt (I 1 + 1205 = a3 *) = o (171 + 1265 — af 7'%) + QAt\q gl + g
b e IV S (T 4 29 Vu;||2> ~ Sh (I + 2V - Tup )

o =
+ ghllw?+1 =2V + Va7 P < Vg v VGV

1 ev! v ~
< Bmin ||V T2 + 72+ —5 IVu pH)2 y Ymas | g gny 2
45szn 2¢
— n+12 1 n+1(2 eyv/naw n+1 2 3 maa: n 2 3 ;naw n— 112
< BUmin VUi 1" + 7120+ =5 Ve |17 + IVui || + (N7
4BTmin 2 2

As the last three terms all need to be bounded by 7, ||Vu;7+1 |2, we want to minimize
5+ % + 2% by taking € = 3. The above inequality then reduces to

1 n n n 1 n— n n—
mt (I + 1205 = a3 ") = 5 (1717 + 1265 = af 7'%) + 2At‘ 27 4+ P
+ §h (IVu ™17 + [[2Vul*t — vul ) — 5h (IVug|® + 12V} — Vul~'?)

+ ghHV’U,;L+1 — QVU? + V’U,;-L71||2 +((1 - 6>Dmin — Symaa: Hvun+1”2

3 1 1
vn+l2 vnQ VnQ_vnl n+1(2
45 Vinan (1962 = IV312) + 5 (19012 = 93571 ) < o 72,
If the parameter condition is satisfied, then #,;p, —3v), ., > 0. Taking 5 = % %;;"‘f“ >
0, we have
1 3 1
(35) (1 - ﬁ)ﬁmzn - BV;nax = (5 2 ZZ?;)VmZn - 3y7lnax = 5 (ﬁmin - BV;nam) >0,

and
1 n n n— n n—
mt (g2 + 1247 — g ?) — 2At (g1 + 1247 — ¢/ 7' P) + QAt\q 2t + g
+ Sh (19 P + 2V ku ?) = Sh IV | + 295 — Vuy ' |?)
+ ShIVu =290 + Vuy W23y (Ve - [V
J 2 J J

1 nn2 n—1 1
+ 3¥nas (V1P = 190574 < 55— —50—

Summing up from n =1 to n = N — 1 and multiplying through by 2At gives

1712

N— — N—
) 1 + 12¢) — g “+Z|q"+1 2¢7 + ¢} P+ ahAt ([Vul |? + [12Vu) — Vu) )
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N-1
+ahAL > |Vt = 2Vl + Va2 4 80, At VUl [P + v, At VulY 2
n=1
< lgj* + 1245 — q51* + ahAt ([[Vuj||* + [12Vuj — Vad|?)
At N-1
+3 ma@At”vu || 2+ VrnancAtHVU’OH2 ﬁ Z Hf]n+1||2—1 ]
Vinaz n—=1

4. Implementation Algorithms. The Stab-SAV-CN given by (2.5)-(2.7) and
Stab-SAV-BDF2 given by (2.8)-(2.10) are coupled systems of u, p, ¢, which requires
appropriate decoupling strategies to achieve its claimed efficiency. In this section
we describe the corresponding implementation algorithm for the Stab-SAV-BDF2 en-
semble algorithm, following the decoupling strategy in [39,41]. The corresponding
implementation algorithm for the Stab-SAV-CN ensemble algorithm is similar, which
is omitted here due to page limits.

We will introduce a new scalar S”+1 to decompose the numerical solution (u ;H'l , p;“"l)

into two parts yielding two sub- problems for the two components (@ "+1, p?“) (ﬂ;”“l, ]5;”“1)

respectively, which do not contain S;H'l. A separate algebraic equation for S;H'1 will
be derived. Let

n+1
S(L+1 _ qj n+1 _ ~n+1 + Sn+1 vn+1 n+1l _ an+1 4 Sn+l vn—i—l

uiT =] e, =
E(un+1)—|—(57 J J J J pJ pJ
J

Then instead of solving (2.8)-(2.10), we solve the following two subproblems for

(AnHaP?H)v (t n“,p?“) respectively.

(Stab-SAV-BDF2 sub-problem 1)

3 ~n+1 An+1 _ ~n—+1 An+1 n+1 1 n
oAzl =V (OVa;T) = 3ahAdiT + VpiT = f] Atuj

1 n— ~n n n— :
~ 57 '+ V- (4 VEET) - dahAuf + ahAul T in Q

v-m“:o in Q

ﬂ?“ g;”rl, on 0N.

(Stab-SAV-BDF2 sub-problem 2)
iV (V) — A VT = (@ V)i 6

Vit =0, inQ
@5t =0, on OQ.

Now we need to derive an equation for S;‘H.

n+1

q ~n n
(4.1) Sitt=—~L = M= B@)+Ssp

Bt +0

Multiplying (2.10) with 2q}”r1 and then plugging in (4.1) gives the equation for
St as
J

(Stab-SAV-BDF?2 sub-problem 3) AL (S22 4 prttgntt 4 ot = o,
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where

Antl — i(E(’lT-L-H)—I—(S)— Sﬂ‘;‘ﬁ_l ,av_z-&—l _/(un-‘rl V) ~n+1 vr_L+1 dx
J At J 2Nt » Q J J ’

n —1 vn+1 ~ +1 n —1
Bl — —4qf + 45 E@ ) 46— 3u; 4t — ST — duf +uj el
At J 2At 7Y 2At T

_ / (,a;kFl . v),&;H*l X ,&}H’l dx,
Q

307 — 4y 4!
C]T_LJrl I ( J J J 7,&?+1 + b;_%‘rl.

2At

In general, this is a scalar quadratic equations with two roots. By the definition
of S;-’H, we should pick the root that is close to 1. If we ever get complex roots, the
proposed stabilized SAV ensemble algorithms are considered to have failed and the
simulation should be stopped as the linear solver will fail eventually in this case. We
want to emphasize here that it is also observed in our numerical experiments that the
stabilization we propose here is able to effectively prevent qa from becoming complex
in many cases for low to moderate Reynolds number flows, improving both accuracy
and stability of existing SAV algorithms in the literature.

In solving sub-problem 1 and sub-problem 2, all realizations have the same con-
stant coefficient matrix for all time steps and therefore can be solved very efficiently.
In sub-problem 3, we need to solve each realization separately. But since it is a scalar

quadratic equation, it can be solved quickly. After getting u”Jr1 ﬂ?“ and S"+1 we

n+1 An+1 + Sn+1 vn+1 n+1

; 43", and similarly for p}

have u”;

5. Algebraic Systems and Block GMRES with Deflation. Let S3(Q2)? and
S}(£2) denote the space of Taylor-Hood elements (P2—P1) on . The basis functions of
S3(Q)? and S}, () are denoted by {x }] 1 {X]} 7, respectively. The approximations
of the solutions will be represented by vectors of nodal values, denoted in bold. When
a superscript n is applied to a bold vector, it represents the value at time ¢, = nAt,
and a subscript j will be applied to represent the solution for the j-th sample. Let M,,,,
and S,, denote the velocity mass matrix and velocity stiffness matrix respectively.
We also define matrices Dy, S(v) and N(u) whose entries are given as follows.

[Duup]kz=/ﬂxf(v-x}é), [S(V)]MZ/QVJ‘VX?'VXE’ [N(U)]klZ/(u V)Xi' - Xk

Q

Our proposed stabilized SAV ensemble schemes will be compared with some non-
ensemble schemes:

Algorithm 5.1 (Stab-SAV-BDF2-nonensemble).
3u?+1 —4u} + u?fl q;”l
-V (V]Vu"'H) ozhA(3u;”+1 — 4dulf + u?_l) = f;L‘H,
+ equations (2.9) — (2.10).

“n+1 “n+1 n+1
(a;™ - V)aiT + Vpl

)
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Algorithm 5.2 (BDF2-nonensemble).

n+1 7 n—1
Bu;™ —duf +uj
2At
V- u;-“"l =0.

NAN JIANG AND HUANHUAN YANG

Zn41 +1 +1 +1y —_ pn+l
+(u;‘ V)u? +Vp? —V~(1/J-Vu}I )—f;I ,

We list the forms of algebraic systems of different numerical algorithms, for sample
j=1,---,J, which will be considered in the ensemble efficiency testing.

1. Stab-SAV-BDF2 Ensemble:

ﬁ’_"H br}-i-l
J J
Agavbdfzens 1 = )
P; 0
with
n+l _ en+1 2. n_ _1 n—1
by =177 + M (F5uf — 5x79)
n+l __ “n+1\=n+1
¢ = —N(uj")u;m,

Asavbdecns = T
-D

uup

2. Stab-SAV-BDF2 Non-ensemble:

n+1 _ pen+1
L (L Y

n+1 _
Cj =

ujL+1

(5

an+1
J

n+1
bj

0

Aéi)vbdfz

)

1

T 2At

with

2 n
AarYj

n+1
uj s

SN(i)

_DT

uup

€) -
Aibar = (

3. BDF2 Non-ensemble:

n+1
J

“+1
p;

At (
with
n+l _ en+1 2 ..n

3
G) _ [ zat
Abjde - (

) —S(

327 Muyy + S(7 4 3ah)

757 My, + S(v; + 3ah)

Muu + N(Uﬂ+1
-DT

uuUp

vn+1
U
vn+41
P;

n+1
Cj

Asavbdf2ens <

)-(% )

(4ahu} — ahu?_l),

0

=41
a1+ S,

/
Vi)
att!

J

)

_Duup
0

v

)
(>

“n+1
J

n+1
c
(4) J
Asavbdf2

)-(% )

— ahu?_l),

0

u?_l) + Suu(dahu}

_Duup
0 .

) +8(¥;)  —Duup

0

J

) |

One should notice that the matrix Ag,ybdfens in our ensemble method is fixed
for different samples, so we can simultaneously compute all realizations by solving a
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single linear system with multiple right hand sides (RHSs) corresponding to different
samples; but Ag}b a2 and Agd)m in the non-ensemble methods change over j, and we
need to simulate J samples one by one. In application, one can use the block GMRES
algorithm with deflation [4, BEFEGMRESD(m)] to solve those algebraic linear systems,
which is more practicable for large-scale simulations, especially for 3D problems. The
algorithm is stated in Algorithm 5.1. In general, a block iterative solver is especially
designed for huge sparse linear systems with multiple right-hand sides given at once.
With deflation, redundant information due to linear dependence of multiple residuals
are removed, so the block GMRES with deflation solver has good performance on
ensemble scaling. In contrast, the non-ensemble schemes solve the linear systems
for different samples one by one, so no simultaneous solving can be applied. The
corresponding solutions are obtained by a standard GMRES solver.

Algorithm 5.1 Block-GMRES-Deflation [4]

Input: matrix A € R™ ™ right hand side B € R™"*P initial guess Xy € R"*P_ pre-
conditioner K € R"*™ convergence threshold tol, deflation threshold ¢4, restart
number m, maximum iteration number it,,

Output: approximated solution of system AX = B

: Define diagonal matrix D = diag(||B(:,1)]|2,-- -, [|B(:,p)|l2) € RP*P
:for it =1,--- ,itye. do
R, = B — AX,

Do thin QR factorization of RgD™!: RgD ™! = QT with Q € R*»*P, T € RP*P
Do SVD factorization of T: T = USW7; choose the largest pq such that
E“'/EH > ¢eq for all ¢ < Pa

A A S

6: Vi =QU(,1:pg)
7 for j=1,--- ;m do
8: Zj = Kile
9: S=AZ;
10: fori=1,---,5do
11: Hi,j :VZTS € RPaxPd
12: S=S8S- ViHi)j
13: end for
14: Do thin QR factorization of S: S = V,;; H;;,; with V1, €
R’ﬂXPd7 Hj+1,j € RPdXPd
15: Record Z; = [Z1,--+,Z;] € R™Pa. H; = (Hpi)i<k<ji1.1<i<j €
RUGHDPaxira  where H,; is a block Hessenberg matrix with H;; = 0p,xp, for
1>7+1
16: Solve Y; = argminy cpiraxrs||H;Y — Bj|| r, where B; = |:0-Ipd }
_ JPdXPd
17: Rj = (Hij — B])E(]. 1 pg, 1 Zpd)W(]. :p, 1 Ipd)T
18: if max; [|R;(:,1)|l2 < tol then
19: X; =Xo+ Z;Y;2(1:pg, 1 :pa)W(L:p,1:pg)TD;  stop
20: end if
21: end for
22: Xp + Xo+ ZmYm2(1 P pa, 1 :pd)W(]. :p, 1 Ipd)TD
23: end for

The least-square commutator precontioning [6] can be applied to speed up the
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convergence of GMRES:

C Dy, C —Duy,
System matrix: A = . ,  Preconditioner: Kpsc = R
-D}., 0 0 —Risc

where C is a preconditioner for C given, for instance, by a multigrid V-cycle,

ﬁLSC = (Dgupﬁ;z}Duup)(DZupﬁ;;Cﬁ;jDuuz))_l(Dgupﬁ;}Duup)v
with ﬁuu = diag(M,,,). Inside the block GMRES solver, in particular, this precon-
ditioner can be solved by the block CG or block GMRES algorithm with an ILU or
multigrid preconditioner.

Remark 5.3. The least-square commutator preconditioner is a competitive choice
for our stabilized SAV ensemble algorithms. Although we have discrete Stokes equa-
tions to solve in the SAV sub-problems, the considered problem is still a convection
dominated flow problem since the Reynolds number is generally not as small as the
one in a standard Stokes model. Consequently, the MINRES or GMRES iterative
solver with a block diagonal preconditioner

~

C 0
Kgpia = N
0 RMass
or a simpler block triangular preconditioner

~

C _Duup
Kprri = R
0 _RMass
taking ﬁMass as scaled pressure mass matrix ﬁMP would not have enough effi-

ciency for the proposed stabilized SAV ensemble algorithms.

We report in Table 1 the performance of three iterative solvers on the test problem
in Section 6.1: (1) Ky sc preconditioned GMRES, (2) K pr,; preconditioned GMRES,
(3) Kppia preconditioned MINRES. As expected, for large Reynolds number (7 =
0.001), GMRES with preconditioner Ky g¢ is highly competitive, whereas MINRES
with preconditioner K g p;, is not efficient; for small Reynolds number (7 = 0.1), there
is no significant difference in terms of CPU time.

6. Numerical Experiments. In this section, we perform numerical experi-
ments to validate the stability and accuracy of the Stab-SAV-CN and Stab-SAV-BDF2
ensemble algorithms proposed. The choice of § value, having been well-studied in the
literature, can range from 108 to 10° and is not so significant, so we will not do
benchmark tests on this. In this report, the following physical quantities will be used.

1 1
Energy = §||uH2, Enstrophy = §V||V x )%

The plan of this section is as follows. (1) In subsection 6.1, we validate the
convergence rate of Stab-SAV-CN and Stab-SAV-BDF2 ensemble algorithms with a
large Reynolds number, as compared to [39-41]. In addition, we show the ensemble
efficiency of Stab-SAV-BDF2 by comparing with two non-ensemble schemes. (2) In
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Table 1: Performance of different iterative solvers: (1) K s¢ preconditioned GMRES,
(2) Kpryi preconditioned GMRES, (3) Kgpiq preconditioned MINRES. The average
number of iteration and average CPU time in each time step solving Stab-SAV-BDF?2
sub-problem 1 are denoted by 7ty sup1 and tepu, sup1 respectively; Similarly for Stab-
SAV-BDF2 sub-problem 2.

v « solver ﬁitr,subl tcpu,subl ﬁitr,subQ tcpu,sub2 total CPU time
0.00I 005 (1) 8 3.2 9 3.7s 552.0s

0.001 0.05 (2) 85 55s 177 180s 15112.0s

0.001 0.05 (3) 164 62s 339 140s 10493.8s

0.1 0 (1) 29 19s 31 21s 2408.5s

0.1 0 (2) 27 13s 38 20s 2202.7s

0.1 0 (3) 54 22s 75 32s 3603.1s

subsection 6.2, we simulate the Kovasznay flow and show the improvement on accuracy
by using stabilization techniques we propose, as compared to [41]. (3) In subsection
6.3, we simulate the double driven cavity flow and validate the effectiveness of stabi-
lization techniques we propose. (4) In subsection 6.4, we simulate the flow between
two offset cylinders and show the efficiency of Stab-SAV-BDF2 ensemble scheme in
simulating complex flows.

6.1. Tests for convergence rate and ensemble efficiency. In this subsec-
tion, we take a simple test problem [11] with Green-Taylor vortex solution on a square
domain Q = (0,1)? to check the convergence rate of Stab-SAV-CN and Stab-SAV-
BDF2 ensemble schemes, and also the ensemble efficiency. The analytical solution of
the Navier-Stokes equations (NSE) is given by

1
Utrue = (—coszsiny, sinzcosy)Tg(t),  Prrue = —Z[COS(Z’E) + cos(2y)]g(t)?,
fx,y,t) =g (t) + 2vg(t))(— cos xsiny, sinz cos y) 7,

with g(t) = e cos(2t). Inhomogeneous Dirichlet boundary condition is imposed on
0f). Initial and boundary conditions are selected to match the prescribed analytical
solution. We will consider an ensemble of J members, which are the solutions to NSE
corresponding to

vy :Vmin(1+€j), j: 1, ,J.

In this setup, we have J groups of different initial conditions, boundary conditions,
and body forces.

For convergence rate check, we set J = 3, €1 = 0, e2 = 0.1, e3 = 0.2. Taking
T =1, h = At, we compute approximation solutions to the test problem with both
SAV-CN and SAV-BDF2 ensemble algorithms on four successive mesh refinements and
corresponding timestep reductions. Specifically, we test two typical cases. In the first
case, Vmin = 0.01, so the Reynolds number is relatively small and no stabilization is
needed in this case for this test problem. We set @ = 0 in this case, the corresponding
results are reported in Table 2 and Table 3. As one can see, both algorithms have
second order convergence as predicted.

In the second case, we take v,;, = 0.001. The Reynolds number is relatively large
in this case and stabilization will be added for the SAV algorithms to converge. SAV
algorithms have been studied in several papers [39-41] for the Navier-Stokes equations
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Table 2: Errors at T = 1 and convergence rates of the SAV-CN ensemble algorithm
(J =3) with At = h, a =0, Vin = 0.01.

At lup — u|§’11 Rate |up — u|1]f:,12 Rate |up — u|§f)’ Rate

1/8 3205%x 1072 —  3.016x 1072 — 2847 x 1072 —
1/16  8.033x 1073 2.00 7.567x 1072 1.99 7.146 x 1073 1.99
1/32 2021 x 1073 1.99 1.907 x 1072 1.99 1.803 x 1073 1.99
1/64 5070 x 107*  1.99 4.784 x 107* 1.99 4.523 x 10~* 1.99
1/128 1268 x 107% 2.00 1.197 x 10* 2.00 1.131 x 10~* 2.00

Table 3: Errors at T' = 1 and convergence rates of the SAV-BDF2 ensemble algorithm
(J = 3) with At = h, a =0, v, = 0.01.

At lup — u|f1’11 Rate |up — u|f112 Rate |up — u|1]fz,’13 Rate

1/8 3858 x 1072 —  3631x1072 — 3435x1072 —
1/16 9350 x 1072 2.04 8.847 x 1073 2.04 8407 x 1072 2.03
1/32  2.332x 1072 2.00 2210x107% 2.00 2.104 x 107 2.00
1/64  5.844 x107* 2.00 5.544 x 107* 2.00 5.282x 107* 1.99
1/128 1.465x 107* 2.00 1.390 x 10~* 2.00 1.325 x 10~* 2.00

Table 4: Errors at T'= 1 and convergence rates of the Stab-SAV-CN ensemble algo-
rithm (J = 3) with At = h, a = 0.2, vy, = 0.001.

At |up, — u|fl’11 Rate |up — u|f1’12 Rate |up — u|fp‘5 Rate

1/8 1.814x107Y — 1756 x 1071 — 1701 x 107t —
1/16 4.174x 1072 212 3883 x 1072 218 3.621 x 1072 2.23
1/32 5289 x 1073 298 4908 x 1072 298 4.610 x 103 2.97
1/64 1103 x 1072 2.26 1.062 x 1072 2.21  1.028 x 1073 2.17
1/128 2.755 x 10~*  2.00 2.666 x 10~* 1.99 2.587 x 10~* 1.99

Table 5: Errors at T = 1 and convergence rates of the Stab-SAV-BDF2 ensemble
algorithm (J = 3) with At = h, a« = 0.05, v, = 0.001.

At |up, — u|1]f:,’11 Rate |up — u|§12 Rate |up — u|f[’13 Rate

1/8 L.710 x 107*  —  1.660 x 107' — 1.611x 107t —
1/16  3.367x 1072 235 3.099 x 1072 242 2872x 1072 2.49
1/32  6.713x 1073 233 6474 x 1073 226 6.274x 1073 2.19
1/64  1.822x 1073 1.88 1.759 x 1072 1.88 1.707 x 1073 1.88
1/128 4.750 x 107*  1.94 4581 x 107* 1.94 4.432x10~* 1.95

and unconditional stability has been proved and illustrated therein. However, the
convergence rates were tested with relatively small Reynolds numbers. For instance,
v = 11in [39,40] and v = 0.01 in [41]. In fact, those algorithms have restrictive
timestep conditions for convergence, and the timestep conditions degrade quickly as
the Reynolds number increases. We will show with numerical experiments that the
timestep restriction for convergence can be relaxed with the stabilization we propose.
The corresponding results are reported in Table 4 and Table 5. As we can see, both
schemes have second order convergence as predicted.

Specifically, in this test we set a = 0.2 for Stab-SAV-CN and « = 0.05 for Stab-
SAV-BDF2. Slightly larger « values also work fine with acceptable accuracy, but
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may have a little impact on desired convergence rate. The choice of the stabilization
parameter is application dependent and will need pre-computations to determine an
appropriate value. Generally, when « is too small, SAV schemes may not converge
for large time steps; when « is too large, it maintains the convergence of SJT-L+1 but
may bring additional errors to the original SAV schemes. In this test Stab-SAV-BDF2
requires smaller value of « than Stab-SAV-CN according to our experiments.

We then report the ensemble efficiency with the number J of samples varying from
1 to 100, Vpmin = 0.001, €; being random numbers uniformly distributed in [0, 0.2].
We take h = At = 1/64 and run the simulation until 77 = 1. In this particular
test, we use the block GMRES algorithm with deflation [4] to solve those discretized
linear systems, which is more practicable for large scale simulations, especially for
3D problems. The least-square commutator precontioning is applied to speed up
the convergence of GMRES. For the convenience of implementation, this result is
based on MATLAB computation while the results in other subsections are obtained
by FreeFem++ [18] using direct linear solvers.

Table 6 shows the comparison of CPU time and errors computed by different
algorithms with different numbers of ensemble members. It is observed that the
Stab-SAV-BDF2 ensemble algorithm outperforms other methods as it takes less CPU
times but keeps similar accuracy. Compared with the other non-ensemble schemes,
the advantage of the ensemble algorithm becomes more obvious as the ensemble size
increases. This is because all the realizations in the ensemble method share a common
coefficient matrix, and the associated linear system with different right hand sides can
be solved simultaneously.

Table 6: CPU time and errors of mean for different values of J at final time 7" = 1
with h = At = 1/64.

Stab-SAV-BDF2 Stab-SAV-BDF2 BDF2

Ensemble Non-ensemble Non-ensemble
J ‘ |E[un, —u]|f;1 CPU time ‘ |[Elur, — u]|lgr CPU time ‘ |E[ur, — u]|lgr CPU time
1 1.832 x 1073 642.8 s | 1.832 x 1073 618.4s | 1.669 x 1073 733.8 s
10 1.678 x 1073 1967.4s | 1.742 x 1073 5266.3s | 1.615 x 1073 6229.3 s
100 | 1.669 x 1073 11317.4s | 1.735 x 1072 53536.7s | 1.610 x 1072  62634.2 s

6.2. Kovasznay flow. In this experiment we test the proposed algorithms using
the Kovasznay flow [35,41], for which the analytic expression of the flow field at steady
state is available. On the domain Q = (—0.5,1) x (—0.5,0.5), the Kovasznay flow
solution to the NSE (with f = 0) is given by the following expressions for the velocity
u = (u1,ug) and pressure:

A 1
(6.1) up =1 — e cos(2my), up = 2—6’\7” sin(2my), p= 5(1 — ey,
T

with A = % —4/ ﬁ + 472, To perform a direct comparision with [41], we also employ

a non-dimensional viscosity v = 0.025 in this test, and consider J = 1. Dirichlet
boundary conditions are imposed for the velocity according to the above expression,
and the external body force is also set to f = 0. As was done in [41], we set a zero
initial velocity, then perform simulations for a sufficiently long time until the steady
state is reached. The flow pattern is shown in Figure 1. At last, we evaluate the errors
of the numerical solution against the exact solution given in (6.1). While [41] claims
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Fig. 1: Kovasznay flow.

that the SAV algorithms allow the use of fairly large time steps to maintain energy
stability, here we stress and will use numerical results to illustrate that using pure
SAV algorithms it is difficult to achieve desired accuracy. The stabilization techniques
we propose play a fundamental role in improving accuracy.

Table 7: Kovasznay flow: L? errors of u; at T = 10 versus time-step size.

b At Stab-SAV-BDF2  Stab-SAV-CN | Stab-SAV-BDF2  Stab-SAV-CN
with a =0 with a =0 with a > 0 with a > 0
1/25 0.5 2.595 x 1071 2.878 x 1071 1.237 x 1073 2.060 x 1073
1/25 0.1 1.900 x 101 1.963 x 107! 6.541 x 1075 6.453 x 107°
1/25  0.05 1.516 x 107! 1.358 x 107! 6.481 x 1075 6.443 x 1075
1/25  0.02 7.217 x 1072 8.254 x 1072 6.459 x 107° 6.440 x 107°
1/25  0.01 1.263 x 1072 5.440 x 1072 6.454 x 1075 6.439 x 1075
1/25  0.005 | 6.452 x 107° 6.439 x 1075 6.452 x 1075 6.438 x 1075
1/100 0.5 2.603 x 101 2.874 x 1071 4.308 x 1073 1.952 x 1073
1/100 0.1 1.896 x 107! 1.868 x 107! 6.942 x 1076 2.898 x 1076
1/100  0.05 1.435 x 107! 1.368 x 107! 3.132 x 1076 1.447 x 1076
1/100 0.02 7.338 x 1072 8.044 x 1072 1.452 x 107¢ 1.029 x 1076
1/100 0.01 1.203 x 1072 2.212 x 1072 1.093 x 1076 9.726 x 1077
1/100 0.005 | 9.869 x 10~7 3.919 x 1076 9.904 x 10~7 9.588 x 1077

Similar to [41], in Table 7, we have listed the L? errors of u; at final time 7' = 10,

computed with different time steps, ranging from At = 0.5 to At = 0.005. In the
simulations we use both a coarse mesh (h = 1/25) and a fine mesh (h = 1/100). As
one can see from the table, although the computation using pure SAV algorithms
(i.e. Stab-SAV-BDF2 and Stab-SAV-CN with o = 0) does not blow up when At is
large, the computational accuracy is far from an acceptable level. There exists a gap
on accuracy from At = 0.01 to At = 0.005. This gap is caused by the fact that the
approximate ratio %, where R} = /E(u}) + , evolves to one only with At = 0.005
J
but not with At = 0.01. This fact is illustrated in the left of Figure 2, in which we plot
\/E(u?) +4, and S7. With

small At values, 0.005 for instance, the two quantities qj and R} are eventually close,

the time histories of the numerical solutions q;, R} =
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Fig. 2: Kovasznay flow: time histories of ¢}, R} = /E(u})+ 4, and S} obtained

using fixed h = 1/100 and various time step sizes: At = 0.5, 0.1, 0.01, 0.005. Here
J =1=j. Left: pure SAV-CN scheme; right: stabilized SAV-CN scheme.

which is evident from the picture in bottom-left. When At is greater than 0.01, one
can observe apparent difference between ¢(t) and R(t). The discrepancy grows larger
with increasing At, see the first three pictures in the left of Figure 2. While R(¢)

stays at an almost constant level, ¢(¢) and hence the auxiliary ratio % in equation

(2.5) appears to be driven towards zero with a large A¢. This automatic adjustment
on the nonlinear term in the NSE seems to explain the stable feature of pure SAV
algorithms. However, such mechanism does not guaratee the accuracy.

In contrast, when the stabilization techniques are added, the accuracy of the
numerical solution obtained using a large At can be significantly improved. For
instance, when h = 1/25, At = 0.1, 6 = 0.01, by setting & = 1 in the Stab-SAV-BDF2
scheme, the error can be reduced to 6.541x107° as compared to 1.900x 10~ ! computed
with @ = 0. Similarly, Stab-SAV-CN with o = 2 is also enough to derive accurate
simulations even when At is as large as 0.1. We also mention that the optimal choice
of «v is generally unknown and needs pre-computations to determine. The experience
for Kovasznay flow is that one may use a slightly larger « for finer mesh to achieve
desired accuracy with large At. For instance, when h = 1/100, we set o = 5 for Stab-
SAV-BDF2 and « = 10 for Stab-SAV-CN. Slightly smaller « values also work fine, but
lose a litte accuracy with large At mostly because of the discrepancy between ¢(t) and
R(t). In the right of Figure 2, one can observe the effectiveness of the stabilization
in forcing the convergence of ¢(t) to R(t). If « is too small, the time histories of ¢(¢)
and R(t) will be in a pattern between the left and the right of Figure 2.

6.3. Double driven cavity flow. In this example, we take a classical bench-
mark problem, the two-dimensional driven cavity problem [3], to test the Stab-SAV-
BDF2 scheme proposed. The driven cavity problem consists of a viscous incompress-
ible flow in the square = (0,1)2. Specifically, the double driven cavity flow is driven
by two sides of the boundary: (uj,u2) = (1,0) on y = 1 and (uy,u2) = (0,—1) on
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N x

(a) BDF2 (At = 0.005) (b) SAV-BDF2 (At = 0.005)

lt N e n &

(c) Stab-SAV-BDF2 (At = 0.01) (d) Stab-SAV-BDF2 (At = 0.005)

Fig. 3: Velocity fields of the double driven cavity flow at T = 60, computed with
v =103 h = 1/32 and by different schemes. Consider (a) as a reference, while the
pure SAV-BDF2 scheme in (b) gives accurate result, it does not work with A¢ = 0.01
(simulation will blow up); whereas (c¢) shows the effectiveness of Stab-SAV-BDF2 with
large At = 0.01.

x = 0. On the other parts of the boundary, the no-slip boundary condition is imposed,
i.e. u = 0. The external body force is set to f = 0. We set a zero initial velocity, and
then run simulations for a sufficiently long time to study the stability and accuracy
of the Stab-SAV-BDF2 scheme.

We will demonstrate that for this test (1) the timestep condition for convergence
can be relaxed by the stabilization technique we propose; (2) one has to use a stabi-
lization technique for large Reynolds numbers such as Re = 10%.

For the case of v = 1073, we plot in Figure 3 the velocity fields of the double driven
cavity flow at T' = 60, computed with A = 1/32 and by different schemes. Consider
the simulation by the BDF2 scheme with At = 0.005 as a reference. While the pure
SAV-BDF2 scheme with At = 0.005 gives accurate results, it does not work with
At = 0.01 (the simulation will blow up); whereas a simulation by Stab-SAV-BDF2
(a = 1) with At as large as 0.01 is already accurate enough. This demonstrates the
effectivenss of relaxing timestep condition for convergence by the stabilization.

We then study the case of ¥ = 10~%. In Figure 4, we plot the velocity fields of
the double driven cavity flow at T = 60, computed with h = 1/64 and by different
schemes. Consider the simulation by BDF2 scheme with At = 0.001 as a reference.
While the pure SAV-BDF2 scheme with At = 0.001 gives accurate results, it does not
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(c) Stab-SAV-BDF2

(At = 0.005) (d) Stab-SAV-BDF2

(At =0.001)

Fig. 4: Velocity fields of the double driven cavity flow at 7' = 60, computed with
v =10"% h = 1/64 and by different schemes. Consider (a) as a reference. The pure
SAV-BDF2 scheme gives accurate results with At = 0.001 but not with At = 0.005
(simulation will blow up); (b) shows the effectiveness of Stab-SAV-BDF2 with large

At =0.01.

1.05

0.95
0

1.05

0.95
0

1.05

0.95
0

Stab-SAV-BDF2( A t=0.01)
T T T

| |
20 30 40
Stab-SAV-BDF2 ( A t=0.005)
T T T

20 30 40
Stab-SAV-BDF2 (A t=0.001)
T T T

L
20 30 40
time t N

60

Fig. 5: Double driven cavity flow: time histories of ST computed by the Stab-SAV-
BDF2 scheme with v = 1074, h = 1/64,J =1 = j.
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Fig. 6: Time histories of energy and enstrophy of the double driven cavity flow com-
puted with v = 107% h = 1/64, T = 60 and by different schemes.

work with At = 0.005 (the simulation will blow up); whereas a simulation by Stab-
SAV-BDF2 (o = 1) with At as large as 0.01 is already stable and accurate. We also
plot the time history of S7 in Figure 5. The time histories of energy and enstrophy
of the flow computed by different schemes are plotted in Figure 6.

This study shows the importance of adding stabilizations for simulating com-
plex flows. When v = 1073, a timestep size 0.005 is enough for the convergence of
pure SAV-BDF2: whereas At needs to be reduced to 0.001 when v = 10~%, which
corresponds to a more complex flow. This drawback can be overcome by our Stab-
SAV-BDF?2 method. For both v = 1073 and v = 107%, a large At = 0.01 is good
enough for stable simulations with Stab-SAV-BDF2.

In the end, we report in Table 8 the CPU time for simulating the double driven
cavity flow with v = 107%, h = 1/64, T = 60. As expected, with the same timestep
size the Stab-SAV-BDF2 scheme results in linear systems that are much cheaper to
solve as compared with BDF2, since we treat the nonlinear term of the NSE explicitly.
The BDF2 scheme mostly converges with large At in this example, but this is not
always the case in other situations. We will see a typical example in Section 6.4 (Table
9) showing that BDF2 must be applied with very small A¢. In that case, Stab-SAV-
BDF?2 scheme will markedly save computational time since it has a relaxed timestep
condition.

Table 8: CPU time for simulating the double driven cavity flow with v = 1074, h =
1/64, T = 60.
Scheme | At=0.01 At=0.005 At=0.001

BDF2 13140.4s 26531.3s  132718.0 s
Stab-SAV-BDF2 4636.1 s 9018.0 s 441774 s

6.4. Flow between two offset cylinders. In this example, we consider a 2D
flow between two offset cylinders, and test the stability and efficiency of the proposed
Stab-SAV-BDF2 ensemble algorithm. The domain is a disk with a smaller off center
obstacle inside. It is given by

Q= {(z1,22) : 22 + 22 < 1 and (z; — 0.5)> + 22 > 0.1%}.

We enforce no-slip boundary conditions on both circles (i.e. homogeneous Dirichlet
boundary condition). The flow is driven by a counterclockwise rotational body force

T
flay,x0) = (74372(1 — x% — a:%),élxl(l — x% — x%)) .
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Fig. 7: Time histories of energy and enstrophy of the flow between two offset cylinders,
computed by different ensemble schemes. We take J = 2, v; = 0.008, v, = 0.01592,
and the plots correspond to vy.

It interacts with the inner circle generating complex flow structures. Specifically it
forms a Von Karmén vortex street that reinteracts with the inner circle. Extensive
experiments on this flow of a first order ensemble method have been studied in [27]
and a second order scheme in [23]. To generate perturbations of the initial conditions,
we solve the steady Stokes problem with J perturbed body forces given by

fi(x1,z2) = f(x1,22) + €5 (sin(37wx) sin(37y), cos(3nz) cos(37ry))T, j=1,---,J,

where ¢; is uniformly distributed in [1073,1072]. This gives us J discretely divergence
free initial conditions. Ome should notice that the flow generated in this way is
generally much more complicated than previous examples.

The Stab-SAV-BDF2 ensemble scheme will be compared to a standard BDF2
ensemble algorithm [23]. It has been studied in [23] that the BDF2 ensemble algorithm
requires a CFL condition

J
1
At||Vul|I? < Cujh, where u}f}, = 2ul'), — uzgl -3 Z(Qu}fh - uzgl),
j=1

to guarantee stability. This is apparent in the simulation of the flow between two offset
cylinders. When J = 2, 11 = 0.01, v = 0.0199, simulation by BDF2 ensemble with
At = 0.005 will blow up. The situation is worse when v; is smaller. For instance, when
J =2, 1 =0.008, vy = 0.01592, the simulation by BDF2 ensemble with At = 0.001
will blow up. This has been illustrated in Figure 7, which plots the time histories
of energy and enstrophy of the flow computed by different ensemble schemes with
h=1/64, T =10, § =100, o = 10. The curves correspond to v; in particular.

The stability and accuracy of Stab-SAV-BDF2 ensemble scheme with relatively
large timesteps are also illustrated in Figure 8. Specifically, the left of Figure 8 plots
the velocity fields of the flow computed by different ensemble schemes with J = 2,
v =0.01, v, =0.0199, h = 1/64, T =10, 6 = 100, o = 5. Consider the simulation
by BDF2 ensemble scheme with At = 0.001 as a reference. While this scheme gives
accurate results with At = 0.001, it does not work with At = 0.005 (the simulation
will blow up); whereas a simulation by Stab-SAV-BDF2 ensemble with At as large
as 0.01 is already stable. More accurate results can be achieved with At reducing to
0.005 or 0.001. The right of Figure 8 plots the corresponding vorticity contours of the
flow. Moreover, we plot the time history of S7 in Figure 9.

In the end, we report in Table 9 the CPU time for simulations with J = 2,
vy = 0.01, o = 0.0199, h = 1/64, T = 10. As we expect, with the same time-step
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(d) Stab-SAV-BDF2 Ensemble (At = 0.001)

Fig. 8: Velocity fields (left column) and vorticity contours (right column) of the flow
between two offset cylinders at T' = 10, computed by different ensemble schemes with
J =2, 11 =0.01,v, = 0.0199, h = 1/64. Consider (a) as a reference. The BDF2
ensemble scheme gives accurate results with At = 0.001 but not with At = 0.005
(simulation will blow up), (b) shows the stability of Stab-SAV-BDF2 ensemble scheme
with large At = 0.01, (c) and (d) shows more accurate simulations with reduced At.
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Fig. 9: Flow between two offset cylinders: time histories of 7" computed by the Stab-
SAV-BDF2 ensemble scheme with J =2, v; = 0.01, v, = 0.0199, h = 1/64, T = 10.
The plot corresponds to j = 1.

size At = 0.001, the Stab-SAV-BDF2 scheme takes much less computational time
than BDF2. While BDF2 ensemble scheme fails for the choices of At = 0.01 and
At = 0.005, the Stab-SAV-BDF2 ensemble scheme markedly saves computational
time since it works fine with larger time steps.

Table 9: CPU time for simulating the flow between two offset cylinder with J = 2,
v1 = 0.01, v =0.0199, h = 1/64, T = 10. The X symbol means a simulation failure.

Scheme | At=0.01 At=0.005 At=0.001

BDF2 Ensemble X X 105448.0 s
Stab-SAV-BDF2 Ensemble 5243.4 s 10202.0 s 48144.5 s

7. Conclusions. We proposed two second order, stabilized, SAV-based, ensem-
ble algorithms for fast computation of incompressible flow ensembles: Stab-SAV-CN
and Stab-SAV-BDF2. The two ensemble algorithms are extremely efficient in that
they result in a common constant coefficient matrix for all realizations of the flow
equations so that efficient block GMRES solvers can be applied to significantly re-
duce the computational cost. The algorithms are based on a recently introduced SAV
idea that makes it possible to construct unconditionally stable schemes while treat-
ing the nonlinear term fully explicitly. The incorporation of the SAV idea improves
the efficiency of the ensemble algorithms by making the common coefficient matrix
independent of the time index n and leads to provable long time stable ensemble
schemes, without any timestep conditions. We also introduced a stabilization method
to the SAV ensemble algorithms, which evidently improves the accuracy of SAV-based
methods making them more suitable for simulations of practical flows. We proved that
the two stabilized ensemble algorithms are both long time stable under a parameter
fluctuation condition. Ample numerical experiments were performed and test results
showed that the stabilization is able to substantially improve the accuracy of SAV
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based schemes and the porposed stabilized SAV ensemble algorithms are extremely
efficient, e.g., Table 6 showed the Stab-SAV-BDF2 ensemble algorithm can save 82%
of the CPU time compared with a traditional BDF2 non-ensemble method, and 78%
of the CPU time compared with a standard but stabilized SAV-BDF2 non-ensemble
method, when computing with J = 100 realizations of the flow.
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