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Photosynthesis in eukaryotes first arose through phagocytotic processes
wherein an engulfed cyanobacterium was not digested, but instead became a
permanent organelle. Other photosynthetic lineages then arose when eukaryotic
cells engulfed other already photosynthetic eukaryotic cells. Some of the result-
ing lineages subsequently lost their ability for phagocytosis, while many others
maintained the ability to do both processes. These mixotrophic taxa have more
complicated ecological roles, in that they are both primary producers and con-
sumers that can shift more towards producing the organic matter that forms
the base of aquatic food chains, or towards respiring and releasing CO,. We
still have much to learn about which taxa are predatory mixotrophs as well as
about the physiological consequences of this lifestyle, in part, because much
of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncul-
tured. Here, we discuss existing methods for studying predatory mixotrophs,
their individual biases, and how single-cell approaches can enhance knowledge
of these important taxa. The question remains what the gold standard should be
for assigning a mixotrophic status to ill-characterized or uncultured taxa—a
status that dictates how organisms are incorporated into carbon cycle models
and how their ecosystem roles may shift in future lakes and oceans.
This article is part of a discussion meeting issue ‘Single cell ecology’.

1. Introduction

Phagocytosis is an ancient trait and a uniquely eukaryotic form of nutrition [1]
that allows a predatory lifestyle in protists—and additional roles in multicellular
organisms [2]. It is a process initiated by an encounter with suitable prey, typically
detected by receptors that trigger ingestion into cytosolic, membrane-bound food
vacuoles [3,4] (figure 1). This requires restructuring of the actin cytoskeleton and
coordination of vacuolar transport and fusion, eventually enabling digestion of
prey by lysosomal enzymes under acidic conditions [5]. Nutrients and carbon
thus made available are resorbed and either respired or assimilated in biosyn-
thetic processes, while remaindered indigestible material is egested allowing
membrane recycling. In aquatic environments, unicellular predatory eukaryotes
feeding via phagocytosis have been estimated to consume 60% or more of pri-
mary production [6] and a large portion of bacterial production [7], and can
thus control carbon flux through aquatic food webs.

The capacity for phagocytosis further shaped the dynamic evolutionary pro-
cesses that gave rise to multiple eukaryotic supergroups and diversity within.

© 2019 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. The phagocytotic process in a mixotrophic flagellate. The steps in phagocytosis (a) include detection and ingestion of a prey item (e.g. bacterium, orange)
(1), modification of the food vacuole properties by fusion with vesicles originating from the endoplasmatic reticulum (ER) and acidification through proton pumping
by V-type ATPases (2), creating the acidic conditions required for lysosomal enzyme activities and prey digestion (3). Molecules from digested prey are resorbed into
the cytosol via diverse transporters and used to fuel respiration (4) or incorporated as building blocks in macromolecule biosynthesis (5). Remaining indigestible
material is ultimately egested (6). Illustrated cellular structures are plastids with thylakoids (green), nucleus (blue) neighboured by ER (grey) and mitochondrion
(purple). A freshwater eukaryote Ochromonas globosa feeding on the cyanobacterium Microcystis aeruginosa (b). Shown are a eukaryotic cell ingesting a cyano-
bacterial prey cell (top image) and a eukaryotic cell with multiple M. aeruginosa in food vacuoles (bottom image). Samples fixed with Lugol’s iodine solution.

The primary endosymbiosis involving a photosynthetic
cyanobacterium phagocytosed by a heterotrophic host, and
ultimately integrated as the plastid [8], provided a stepping
stone for the subsequent evolution of other photosynthetic
eukaryotes. These evolved from multiple, evolutionarily dis-
tant groups of ancestrally heterotrophic protists via secondary
and tertiary endosymbiosis events, wherein a heterotroph
engulfed and retained an already photosynthetic eukaryotic
cell [9-11]. Despite the intricate role of phagocytosis in the evol-
ution of photosynthetic eukaryotes, the traditional view of
aquatic protists entails a clear separation into purely photosyn-
thetic protists forming part of the phytoplankton, and purely
heterotrophic protists constituting part of the zooplankton.
Yet we know that many photosynthetic protists from across
the eukaryotic tree of life have retained their capacity for phago-
cytosis and hence combine photosynthetic activity with
heterotrophic nutrition in a mixotrophic lifestyle [12] (termed
here predatory mixotrophy).

Over evolutionary time, some members of these
photosynthetic lineages have subsequently lost either photosyn-
thetic or predatory capabilities, making it difficult to discern
predatory mixotrophs from sequence data alone, unless a
sequenced, cultured representative exists for the taxon. Further,
heterotrophic protists can also temporarily acquire photosyn-
thetic potential via kleptoplastidy wherein plastids are
retained selectively from photosynthetic prey organisms [13].
Other forms of mixotrophy are osmotrophy wherein dissolved
organic carbon is taken up to fuel a heterotrophic metabolism
[14], and algal symbioses wherein a heterotrophic host harbours
a photosynthetic endosymbiont (e.g. in Foraminifera, Radiolaria
and dinoflagellates) [15] and for purposes of clarity these are not
discussed further herein. Thus, the diversity of modern photo-
synthetic eukaryotes includes various combinations of
nutritional forms, and has been shaped by their phagocytotic
potential or that of their heterotrophic ancestors.

Evidence for the importance of unicellular predatory
mixotrophs to bacterivory in aquatic ecosystems ranges from
early studies in lakes [16], to subtropical ocean gyres [17,18]
and polar seas [19], underscoring the need to understand

their implications for elemental flow through planktonic
food-webs [20]. For instance, predatory mixotrophs can acquire
the nutrients needed to support photosynthetic growth by
ingesting microbial prey [21]. This contrasts with assumptions
regarding control of primary production by availability of
dissolved inorganic nutrients and provides a competitive
advantage of mixotrophs over purely photosynthetic protists
in oligotrophic environments [22,23]. Other theoretical predic-
tions on the consequences of a high proportion of predatory
mixotrophs include stronger suppression of bacterial abun-
dances [24-26], more efficient carbon transfer to higher
trophic levels [23,27] and increased carbon export into deep
waters [27].

A current goal is to gain knowledge of the molecular taxo-
nomic identity of aquatic predatory mixotrophs. Additionally,
their physiology, biogeography and contributions to ecosys-
tem processes must be resolved so that there is empirical
support for assumptions and parameters on which appropri-
ate trait-based and other model types can be built [27-29].
The first step is to determine which taxa are predatory mixo-
trophs and their abundance in nature, and then of course we
must develop understanding of the relative importance of
photosynthesis versus phagotrophy to their nutrition [28-
30]. This task is methodologically challenging and will require
a combination of methods, some already existing [31] and
some yet to be developed. Here, we discuss the reliability
and weaknesses of current methods for studying predatory
mixotrophs and implications for interpretation of experimen-
tal results. We include some primary data to highlight
potential biases of broadly used methods. Finally, we highlight
the promises of single-cell techniques for characterizing pred-
atory mixotrophs and ultimately quantifying their rates of
photosynthesis and phagotrophy in nature.

2. Using cultures to characterize mixotrophy

The most comprehensive characterization of a mixotrophic life-
style is achieved in cultured isolates, where not only can
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Figure 2. Growth rates of three mixotrophic species of the stramenopile genus Ochromonas under autotrophic growth in the light without bacterial prey, under
mixotrophic growth on bacterial prey in the light, and under heterotrophic growth on bacterial prey in darkness. Data on marine isolates (a,b) and the freshwater
0. globosa (c) are from [37] and [38], respectively. Note the difference in y-axis scaling in panel (c) versus (a) and (b). Error bars indicate standard deviation of three
replicates and significantly different growth rates (one-way ANOVA) are indicated by letters.

ingestion of prey into food vacuoles easily be observed by light
or transmission electron microscopy (TEM), but also digestion
of prey can be visualized [32-34]. Predatory mixotrophs have
marked differences in growth physiology and these differences
can be robustly characterized when cultures are available
[35,36]. For example, in our studies of three mixotrophic species
of the stramenopile alga Ochromonas [37,38], the level of
reliance on prey consumption can be complete (obligate;
figure 2a) or only partial for different species, where there
is a benefit to having prey available, but it is not required
(facultative; figure 2b,). Correspondingly, the reliance on
photosynthesis can also be obligate or facultative. These
growth differences as well as assimilation of prey into predator
biomass have been clearly demonstrated in marine dinofla-
gellates and prymnesiophytes, as well as both marine and
freshwater chrysophytes, such as Ochromonas, using exper-
imental manipulations of prey and light availability [35,39—45].

In cultured mixotrophs, rates of photosynthesis can be
measured by standard techniques, following one of three cur-
rencies: oxygen production, electron transfer rates through
the photosynthetic apparatus, or carbon-fixation. In many mix-
otrophs rates of photosynthesis depend on the amount of prey,
as they can either invest their resources into maintenance of the
photosynthetic machinery, which can be expensive, or into
structures required for feeding [46]. Such trade-offs are
reflected in adjustment of the nutritional balance in response
to resource availability [47]. In mixotrophs with facultative
autotrophy, the cellular chlorophyll content can be strongly
reduced when prey is abundant [41]. In mixotrophs with
obligate requirement for photosynthesis, on the other hand,
ingestion of prey can stimulate increased rates of photosyn-
thesis if the prey supplies nutrients or other growth factors
needed for an otherwise photosynthetic lifestyle [42,43].
Reflecting its role in purely photoautotrophic organisms,
the photosynthetic machinery is typically assumed to mainly
serve carbon fixation. However, access to an alternative
carbon source through feeding might weaken the reliance on
carbon fixation and allow more flexibility for the use of photo-
synthetically produced reducing equivalents and energy for
other cellular processes. A preference for photoheterotrophic
nutrition in which the photosynthetic machinery mainly
supplies reducing equivalents and energy, while carbon is
acquired through feeding, has been suggested for the fresh-
water chrysophyte Ochromonas danica [48]. Such flexibility in

the use of the photosynthetic machinery could cause larger
variation in the ratios among oxygen production, electron
transport and carbon fixation than typically found in pure
photoautotrophs and make conversions between these
different currencies less reliable.

Understanding ecosystem impacts of mixotrophic preda-
tors further necessitates quantification of their ingestion
rates. In culture experiments, this can be done by following
disappearance of prey, if the prey mortality incurred by the
mixotroph is high enough to clearly impact prey population
dynamics [48,49]. In mixotrophs with low ingestion rates
amendment with fluorescently labelled surrogate prey is
used instead. The uptake of these tracers, such as fluorescently
labelled bacteria or fluorescent microspheres, can be followed
into predator cells over time by epifluorescence microscopy
[42,49,50]. Culture experiments show that ingestion rates can
range substantially. For instance, in the freshwater chrysophyte
and obligate phototroph Dinobryon cylindricum ingestion of
bacteria is negligible in darkness and ranges up to 8.5 bacteria
cell”' h™" at a high light intensity of 400 pmol quanta m™>s™"
[42], while the obligate phagotroph Poterioochromonas malha-
mensis showed twofold higher ingestion rates in the dark
than in the light [41]. Quantification of ingestion rates is
prone to some biases. To follow prey disappearance, it is crucial
to exclude indirect effects of the predator on prey growth, for
instance, via organic exudates that support bacterial growth.
The use of fluorescent prey as tracers relies on the assumption
that no other processes cause increased co-association of prey
and predator over time. For small cells such as the pico-
eukaryotes (less than 2pm cell diameter), it is difficult to
distinguish whether a microbe is inside a picoeukaryote or
rather just physically co-associated owing to attachment on the
eukaryote’s cell exterior or even coincidental overlap of prey
and predator cells that occurs when the sample is filtered for
mounting and visualization. Even with cultures, mixotrophic
processes can thus be difficult to study, especially for cells that
are too small to clearly be visualized by microscopy [51].

It remains an open question whether photosynthetic
picoeukaryotes are capable of phagocytosis. Micromonas polaris
CCMP2099, an important picoeukaryotic primary producer in
polar waters, has recently been proposed to consume bacteria
based on experiments with fluorescent microspheres and
low percentages of co-occurrence observed on a filter by
microscopy [51]. Here, we test the impact of growth conditions
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Figure 3. Percentage of Micromonas polaris (CCMP2099) cells with co-associated fluorescent polystyrene microspheres and the abundance of CCMP2099 in an
experiment (EXP1) comparing exponentially grown cells incubated (a) under a light—dark cycle or (b) shifted into darkness, and in an experiment (EXP2) comparing
(cd) living versus (e,f) heat-killed cultures with cells having been pre-acclimated to darkness for 4d prior to experimental treatments. Error bars indicate the
standard deviation of three biological replicates. Contoured density plots of flow cytometric data from (d) living and (f) heat-killed cultures from EXP2 show
three populations: yellow-green fluorescent microspheres (carrying green fluorescence, baseline red fluorescence), CCMP2099 cells (carrying red chlorophyll-derived
fluorescence, baseline green) and CCMP2099 cells (f only) with co-associated microspheres showing both red and green fluorescence. (Online version in colour.)

and cell viability of M. polaris on its tendency to form co-associ-
ations with fluorescent microspheres by flow cytometry (see
the electronic supplementary material for methods). Because
feeding could represent a strategy to survive long periods of
darkness in polar regions, we first tested CCMP2099’s ten-
dency to form co-associations with fluorescent microspheres
when grown in exponential phase on a light-dark cycle and
maintained like this (figure 3a) or shifted into complete dark-
ness causing cell division to cease (figure 3b). The experiment
was performed with axenic cultures of M. polaris at an abun-
dance of 2 x 10° cells ml™" offering 3 x 10° microspheres ml™"
as surrogate prey. In both treatments, a low proportion of
M. polaris was associated with microspheres under the nutrient

replete conditions tested, and this proportion did not increase
during short-term incubations (0-3 h, figure 3a,b), but did
increase after 24 h in darkness (RM-ANOVA effect of light:
p =0.572, effect of time: p < 0.001; Holm-Sidak pairwise com-
parison of TO and T24 in dark-treatment p = 0.013). To further
examine if the cells with co-associated microspheres were
indeed senescing, as might occur in a photoautotroph in dark-
ness, we performed an additional experiment. Specifically,
microspheres were incubated with ‘senescent cells’ represented
by heat-killed cells (figure 3e,f) versus living cultures kept in
darkness (figure 3c,d). In the heat-killed treatment, 14.7% of
the CCMP2099 population formed co-associations with micro-
spheres, as visualized by flow cytometry (figure 3f) and the
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percentage increased during the incubation period (figure 3e;
RM-ANOVA effects of treatment and time: p <0.001). These
results emphasize how co-associations can be influenced by
physiology via processes independent of phagocytosis, prob-
ably cell surface properties and stickiness related to culture
health (or death).

Apart from variation in ingestion rates, predatory mixo-
trophs and heterotrophs show surprising flexibility in
feeding—also in how they detect and ingest particles. Although
predatory nanoflagellates (2-20 pm in size) are traditionally
considered as bacterivores [7,52], many of them have wide
prey spectra and feed as omnivores on multiple trophic levels
[53]. Behavioural and biochemical aspects of prey selectivity
can best be studied in cultured organisms and include prey
searching, prey capture, initiation of ingestion and finally diges-
tion [53,54]. Feeding behaviour studied by videomicroscopy
showed switches in swimming patterns of the marine hetero-
trophic dinoflagellate Oxyrrhis marina, from interception
feeding on bacterial prey to raptorial feeding on larger eukary-
otic cells [54,55]. Also the mixotrophic lifestyle of two marine
prymnesiophytes was found reflected in their swimming
behaviour, as analysis of flow fields generated by individual
cells indicated that their feeding currents are insufficient to
support purely heterotrophic growth on natural bacterial
assemblages [56]. Videomicroscopy further showed that prey
selectivity can even occur after ingestion, as in the mixotrophic
freshwater chrysophyte Ochromonas globosa, which unselec-
tively ingested both microspheres and bacteria but rapidly
egested the microspheres [57]. The response of predatory pro-
tists to chemo-attractants originating from prey [58] and
selective digestion behaviours as described above indicate the
importance of prey recognition at multiple phases of feeding
from prey searching to after ingestion; nevertheless, the bio-
chemical basis of prey recognition is not well understood.

The process of phagocytosis is mediated by receptors recog-
nizing cell surface molecules of prey and a mannose binding
lectin has been identified as a receptor involved in prey recog-
nition in Oxyrrhis marina [59]. Also integrins have been
suggested as receptors potentially occurring in protistan preda-
tors [54] based on their established role in metazoan
phagocytosis [60] and occurrence in several protist lineages
[61]. Next to suitable prey organisms many predatory mixo-
trophs also ingest fluorescent, polystyrene microspheres that
do not carry cell surface recognition sites [57,62,63], indicating
receptor-independent initiation of phagocytosis. In mouse
phagocytes, receptor-independent phagocytosis can be initiated
by plasma membrane deformation and has been suggested as
an evolutionarily ancient form of phagocytosis [64]. So far, avail-
able information stems from only a few model organisms that do
not represent the eukaryotic diversity found in aquatic ecosys-
tems. More is still to be learned on the receptors and initiation
of phagocytosis in environmentally relevant protists. Such
information will be required to study the interaction between
biochemical and behavioural aspects of feeding through, for
instance, experimentation with receptor stimulation. Also the
mediation of feeding behaviour by photosynthetic resource
acquisition in mixotrophs has hardly been studied.

Full characterization of a predatory mixotroph requires
both visual observation of ingested prey and quantitative
experiments on growth benefits resulting from photosynthesis
and prey assimilation. However, growth physiology is difficult
to trace in natural assemblages and therefore several different
methods have been developed to establish mixotrophic

status, each with their own advantages and biases [31,65]. “

Available techniques include basic identification as a predatory
mixotroph via visualization methods such as microscopy and
flow cytometry, sometimes in connection with stains targeting
acidic food vacuoles [66] and incubations with labelled prey
[18,51,67,68]. Stable isotope probing (SIP), wherein a prey
population carrying an isotopic signature is incubated with
wild communities to detect prey assimilation into nucleic
acids [69,70], can be used to detect predatory activity in puta-
tive mixotrophs. Rate measurements of both ingestion and
photosynthesis in individual mixotrophs in nature are urgently
needed, but currently still lacking.

Once in the field, one relies more on assumptions about basic
biology so that results can be assigned to a specific process.
Characterization of a protist as predatory mixotroph requires
detection of both photosynthesis and phagotrophy or at least
the potential for both processes. Even if all predatory mixo-
trophs manifested a similar balance in dependence on prey,
their contributions to photosynthesis and predation remain
mired with those of pure photoautotrophs and bacterivores
in the field. The broadly used methods for estimating primary
production in aquatic environments quantify bulk rates of the
entire community and thus do not delineate between the con-
tributions of photoautotrophic and mixotrophic taxa. Likewise,
there are multiple methods for estimating bacterial mortality
owing to predation by bacterivores, most of which do not
delineate between pure phagotrophs and predatory mixo-
trophs. To wunderstand predatory mixotrophs, ideally,
quantification of both processes is needed at either the level
of populations or even individual cells.

Identification of protists as predatory mixotrophs is often
based on detection of putative prey (either naturally occurring
prey or fluorescently labelled prey surrogates) in a pigmented
eukaryote [71,72]. Epifluorescence microscopy and flow cyto-
metry are commonly used to capture these co-associations.
Microscopy typically allows verification and imaging of the
prey being positioned inside food vacuoles in predatory
heterotrophic [50] and mixotrophic protists (e.g. figure 1b)
large enough (greater than 3 pm) to resolve sufficient morpho-
logical detail, including the plastid, based on fluorescing
natural pigments for the latter [33,73]. Microcopy can be used
to distinguish between ingestion and other forms of physical
co-association; however, visualization is challenging for small
cells, such as the pico- and nanoflagellates, as discussed
above. Flow cytometry more generally detects pigmented
eukaryotes (as a population of potential mixotrophs) contain-
ing a co-associated signal from putative prey (or microbes
representing another form of co-association)—if fluorescent—
and can be used to select and sort these cells by fluorescence
activated cell sorting (FACS). The resulting sorted cells can
be characterized along with the co-sorted putative prey
through amplicon sequencing (see below), or by scintillation
counts of radioactively labelled prey [18,74]. Flow cytometry
circumvents statistical issues with microscopic imaging if cell
concentrations are low and offers faster analysis times.
Fluorescence in situ hybridization (FISH) further refines
identification of the predators and verification of the position



of prey inside the predator because the FISH signal localizes
to the cytoplasm, and thus facilitates the localization of prey
inside the predator [73]. FISH provides one of the most solid
approaches to visualizing natural mixotroph—prey inter-
actions when used with fluorescent prey or dual probes,
one hybridizing to the mixotroph and the other hybridizing
to the prey [75]. This technique has demonstrated prymnesio-
phyte algae as important bacterivores, followed by
chrysophytes and morphologically identified dinoflagellates,
in the North Atlantic Ocean [76] and Mediterranean Sea [73],
respectively. The dual FISH labelling approach requires prior
knowledge of the predator and prey, if specific probes are
desired, unlike FACS and amplicon sequencing, or hand
picking cells under a microscope and sequencing, as has
been done for predatory heterotrophs [77].

Most rate measurements on mixotrophs in nature follow
ingestion rates by use of surrogate fluorescent prey as tracers,
a technique first introduced for quantifying ingestion rates by
heterotrophic flagellates [78] in natural communities. Multiple
studies have since quantified ingestion rates by mixotrophs
and shown their important and often dominant contributions
to overall bacterivory in many freshwater and marine environ-
ments [16,17,67]. Nevertheless, the use of surrogate prey is
subject to known biases involving prey selectivity and diel
variations of ingestion rates by mixotrophs [31,65]. Further-
more, there are other processes that might lead to co-
association of bacteria with photosynthetic eukaryotes that
can be difficult to distinguish from ingestion. Bacteria benefit
from higher nutrient concentrations available through co-
association with photosynthetic eukaryotes in an area known
as the “phycosphere’, which describes an envelope surround-
ing each phytoplankton cell where leaked chemical
compounds and metabolites from the host cell are elevated
relative to that of the surrounding water. However, the for-
mation and stability of these associations are still not well
understood [20,79]. As shown above, the surface properties
of phytoplankton cells (and likely many cell types) are influ-
enced by growth state, and senescing cells (figure 3e,f and
later timepoint in darkness treatment, figure 3b) or even
zygotes can be much ‘stickier’ than healthy cells [80]. Impor-
tantly, in nature, phytoplankton stickiness is known to
promote aggregation [81] that can result in export from the
photic zone. It is quantified by following associations of phyto-
plankton cells with fluorescent microspheres or other
planktonic species over time [82], and thus relies largely on
the same technique as measurement of ingestion rates, but
assuming co-associations to be caused by stickiness. The ten-
dency to aggregate is mediated by cellular excretion of
organic molecules that form exopolymers, and some species
show the highest excretion of organic matter in nutrient-
stressed and senescent cells [83]. Such non-phagocytosis-
related stickiness could lead to overestimation of ingestion
rates, especially when low ingestion rates need to be distin-
guished against a background of coincidental overlap of
bacterial (prey) and predator cells (that occurs on filters).
Quantification of surrogate prey associated with putative pre-
dators at the start of the incubation is an important but rarely
reported control, and can be significant compared to the num-
bers found associated with predators at termination of an
incubation experiment (figure 3; [84]). In oligotrophic marine
waters mixotrophs showed 50-75% lower ingestion rates
than heterotrophs, but owing to their high numerical abun-
dance relative to other potential bacterivores they can
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Figure 4. Pigmented flagellates with acidic compartments stained. Cultured
Ochromonas CCMP2951 stained by LysoTracker (green DND-26) (a), and cells
from an oligotrophic eastern North Pacific Ocean site (Station 67-125;
34.287°N; 127.355°W) sorted by FACS based on LysoSensor (yellow—blue
DND 160) staining (b,c). Shown are images from bright-field light microscopy
(left), epifluorescence microscopy showing chlorophyll and yellow—green
LysoTracker fluorescence (a, middle), or yellow LysoSensor fluorescence and
red chlorophyll fluorescence individually (b,c, middle and right). For
(CMP2951 an overlay of bright field and epifluorescence microscopy is also
shown (a, right). Images in (a) and (b) represent mixotrophic cells with sig-
nals from acidic food vacuoles, while the signal in (c) likely stems from an
acidic thylakoid lumen and thus does not demonstrate mixotrophy.

dominate community bacterivory [18,67]. A small bias in rate
estimates is thus multiplied by their high abundance and
might result in substantially overestimated contributions to
community bacterivory. The use of fluorescent surrogate prey
is a relatively simple method available to most laboratories
and applicable in remote field locations, and it therefore will
continue to be widely used to study bacterivory by mixotrophs.
Better understanding its biases and limitations will hence be
important, including potential solutions such as the use of sur-
factants after fixation and prior to flow cytometry [76], and
comparisons with other techniques.

Like most approaches to detect phagotrophic feeding, staining of
acidic vacuoles, as an indicator of food vacuoles, was first
applied to heterotrophic protists [66]. Acidotropic dyes like Lyso-
Tracker and LysoSensor accumulate in acidic compartments of
the cell, and flow cytometric counts of heterotrophic flagellates
based on food-vacuole staining with LysoTracker were shown
to be comparable to counts by epifluorescence microscopy [66].
Furthermore, a strong correlation between the activities of the
digestive enzyme B-glucosaminidase with population average
green fluorescence (derived from the acidotropic dye) suggested
this technique could be used as a proxy for feeding activity [85].
Subsequently, acidotropic dyes have been applied to quantify the
fraction of feeding cells in populations of the mixotrophic dino-
flagellate Dinophysis norvegica [86] and the prymnesiophyte
Prymmnesium parvum [87] for which specificity of the stain was
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Figure 5. Cytograms of water from an eastern North Pacific coastal site (Station M1; 36.754°N; 122.021°W) on 5 May (a,b) and 20 March (c,d) 2014 reveal the complex-
ity of interpreting signals from acidic vacuole stains. FACS targeting putatively phagotrophic protists used green LysoTracker staining (b,d) compared to an unstained
control (a,c). Circles indicate the position of individual sorted cells and colours show taxonomic affiliations for each cell based on the 18S ribosomal RNA gene. Detailed
taxonomy and flow cytometry data for each sorted cell can be found in the electronic supplementary material, files S3 and S4.

verified microscopically (localization to a food vacuole) or
through co-association with a fluorescent signal from putative
prey. Likewise, when applied to the mixotrophic marine chryso-
phyte Ochromonas CCMP2951, the food vacuole is clearly visible
after staining (figure 44). Importantly, photosynthetic eukaryotes
contain multiple acidic structures, including the thylakoid lumen
that can reach values below pH 5 under stressful conditions [88].
Thus, verification of the intracellular position of acidic compart-
ments is important, and without such verification results can
be misleading.

Although acidotropic dyes have already been employed to
report on mixotrophs in natural communities [65,89,90], care-
ful verification of their reliability is lacking. Here, we sorted
populations, or individual cells, of potentially mixotrophic
protists from sites in the eastern North Pacific by FACS (see
detail of methods in the electronic supplementary material)
using acidotropic probes. For example, cells stained with Lyso-
Sensor and sorted by FACS based on that signal from an
oligotrophic site in the eastern North Pacific show different
scenarios. Both show localized staining resembling food vacu-
oles (figure 4b), but one also shows signal localization within
the plastid (figure 4c) that likely results from staining of an
acidic thylakoid lumen. Staining by acidotropic probes there-
fore does not ensure the presence of food vacuoles and
non-feeding related staining is more likely to occur in photo-
synthetic (due to lumen acidity) compared to heterotrophic
protists. To assess the taxonomic identity of putative predatory
protists, we also sorted individual cells based on the presence
of green staining by LysoTracker, with the cells also showing
red (chlorophyll) fluorescence representing putative mixo-
trophs (figure 5). Multiple displacement amplification (MDA)

was used to amplify DNA in the sorted cells, followed by
18S and 165 rRNA V4 amplicon sequencing. The putative mix-
otrophs sorted in May 2014 and identified by either their
nuclear (185) or plastid (16S) rRNA sequence consisted of cryp-
tophytes, prymnesiophytes and several photosynthetic
stramenopile groups, including chrysophytes and dictyocho-
phytes, but also diatoms (figure 5b, electronic supplementary
material file S3). While most of these groups include mixo-
trophic species and their recovery is therefore in line with the
assumption that the acidotropic dye signal originates from
food vacuoles, diatoms do not. Moreover, water collected
from the same station six weeks earlier showed a distinct popu-
lation of LysoTracker positive, pigmented eukaryotes, which
consisted entirely of photosynthetic stramenopiles, more
specifically the diatom genus Minidiscus (figure 5d). Diatoms
have been studied extensively, but not found capable of preda-
tion, and the signal most likely originated from the acidic silica
deposition vesicles during the formation of their frustules [91].
Although the dye signal was somewhat weaker compared with
the putative mixotrophs sorted later, it was higher than the con-
trol. Notably, some members of the groups captured in May
also make siliceous structures, which could be the source of
signal. The question remains open whether it is possible to
reliably define a threshold to distinguish signals derived
from food vacuoles versus other acidic compartments, and so
far, the risk of protists falsely identified as mixotrophs needs
to be considered when applying acidotropic probes in natural
communities. Thus, the gold standard here would be to visual-
ize the cells after staining to ascertain that they contain a clear
(stained) food vacuole and presumably prey cells (figure 4).
Complementing the higher throughput attained by flow
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cytometry with high-resolution imaging techniques to verify
co-associations detected with labelled prey, or staining
of acidic vacuoles, could fully use the strengths of these
techniques in future studies.

Detecting benefits of ingestion for growth is key to establishing
mixotrophy; however, such data are nearly impossible to
acquire from field studies. Alternatively, assimilation of
carbon from stable-isotope or radioactively labelled prey can
also be tracked and compared with carbon derived from photo-
synthetic carbon fixation. In culture experiments, the primarily
heterotrophic growth strategy in the freshwater chrysophte
Ochromonas sp. strain BG-1 has been confirmed by detection
of assimilated carbon and nitrogen-stable isotopes by Nano-
SIMS [92], while the use of radioactively labelled prey
revealed preferential assimilation of prey-derived carbon into
proteins in the dinoflagellate Karlodinium micrum [40]. To dis-
tinguish prey assimilation by mixotrophs in nature from
mere co-association of labelled putative prey with a mixo-
trophic predator, the label should be detected in molecules
specific for the potential mixotroph. Protistan predators of
the picocyanobacteria Prochlorococcus and Synechococcus were
identified by RNA stable isotope probing (RNA-SIP) in the oli-
gotrophic North Pacific and included presumably mixotrophic
members of the Prymnesiophyceae and stramenopiles, specifi-
cally Dictyochophyceae and Bolidomonas [70]. Also grazers
feeding on Micromonas pusilla CCMP1545 that were identified
by DNA-SIP included mixotrophic dinoflagellates in a pro-
ductive site in the eastern North Pacific [93]. Both RNA- and
DNA-SIP rely on physical separation of heavy and light nucleic
acids by density gradient ultracentrifugation, which requires
relatively high isotope enrichment. This might result in a bias
against detection of mixotrophs owing to dilution of stable
isotope signals from assimilated prey by inorganic carbon
acquisition via photosynthesis. A potentially more sensitive
alternative is the use of bromodeoxyuridine (BrdU), a thymidine
substitute, as a label in bacterial prey. BrdU uptake from
bacterial prey and incorporation into mixotroph DNA can be
detected by immunoprecipitation followed by amplicon
sequencing [94]. While less sensitive to label dilution, this
technique might be more prone to giving false positives. Both
RNA/DNA-SIP or BrdU only detect predatory nutrition by
following prey assimilation. Knowledge on the photosynthetic
potential of mixotrophic predators usually comes from sequence
similarity to known phototrophs, but could also be acquired by
targeting the plastid-derived 16S rRNA gene of phototrophs for
amplicon sequencing. While all of these methods are qualitative,
quantitative methods for measuring prey assimilation in nature
are urgently needed, but currently not available.

The challenge to detect both photosynthesis and phagocytosis
within the same cells calls urgently for single-cell approaches.
The predicted increases in temperature of the surface ocean
mixed layer, or lake epilimnia, and reduced nutrient injection
from deeper waters owing to strengthened stratification,

alongside longer periods at high light intensity owing to a shal-
lower mixed layer depth [95,96], will all affect phytoplankton
communities [97-99] including mixotrophs (figure 6). Elevated
temperatures can cause shifts in the nutritional balance of mix-
otrophs, observed in two freshwater mixotrophic chrysophytes
so far. The more heterotrophic O. globosa shifted further
towards heterotrophy with increasing temperature under
saturating light, nutrient and prey availability [38], while the
more phototrophic Dinobryon sociale became less heterotrophic
at higher temperatures, when grown with ambient bacterial
densities present in non-axenic cultures [63]. Strengthened
nutrient limitation could further stimulate higher ingestion
rates, to compensate for the reduced availability of dissolved
nutrients in the future surface ocean or oligotrophic lakes.
On the other hand, if phagocytosis mainly serves as a route
for carbon acquisition, increased light intensity in future sur-
face mixed layers could reduce the requirement to feed [25].
A first step is to know who has the capacity for predatory
mixotrophy and who does not. Building on 185 rRNA gene
screening of sorted individual cells (figure 5b), with staining
of specific attributes such as acidic vacuoles, alongside con-
firmation of food vacuoles’ presence through assessment of
localization (figure 4b), it should be possible to retrieve
genome and transcriptome data from predatory mixotrophs.
Partial genome assemblies have already been generated from
population-based sorts of photosynthetic eukaryotes [100]
and from merged data from individual cells stained with Lyso-
Tracker, but lacking chlorophyll [101-103]. These types of data
promise to inform us on the potential for predation.

One important consideration is that, while oxygenic photo-
synthesis is well characterized at the protein level, and strongly
conserved, the situation is more difficult for phagocytosis.
Although phagocytosis is an ancient eukaryotic trait, many
of the proteins required are poorly conserved, poorly known
or not specific to phagocytosis. The Arp2/3 complex is an
example of the latter case: it initiates the formation of branched
actin filaments necessary for the phagocytotic ingestion of prey,
but is also necessary for other modulations of cell shape [104].
Similarly, many proteins involved in vesicle trafficking and
prey digestion might be shared in the process of autophagy,
which is responsible for recycling of ageing cellular com-
ponents in both multicellular organisms and protists [105].
Moreover, proteins comprising phagosomes from members
of different eukaryotic supergroups have been shown to be
divergent [106], although this finding may also be influenced
by insufficient detection of the proteomic approach employed.
Thus, prediction of phagotrophic potential from genomic data
would be best supported by reference information from mul-
tiple eukaryotic Supergroups—and by necessity, by genomic
data from uncultured mixotrophs for which relevant cultures
do not exist.

Single cell amplified genomes (SAGs) can further provide
the necessary references for meta-omics approaches, for
instance, for mapping of metatranscriptomic [107] or metapro-
teomic data to specific taxa based on available SAGs. In this
way, they can help to acquire information on activities of indi-
vidual taxa in nature, and in the future might even be used for
more quantitative stable isotope approaches, such as protein-
SIP in which isotopic enrichment of peptides can be accurately
quantified by mass-spectrometry [108,109]. In contrast to
RNA/DNA-SIF, already low amounts of isotope incorporation
can be quantified, promising suitability of protein-SIP for
rate measurements, which—with the necessary reference
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sequences in hand—can be assigned to individual taxa. The
use of both stable-isotope labelled prey and inorganic resources
for photosynthetic uptake in separate incubations could thus
allow quantification of the nutritional balance of mixotrophs
with high phylogenetic resolution.

Single-cell methods can advance understanding of
predatory mixotrophs in ways that extend beyond acquiring
genome data. For example, chlorophyll fluorescence (referred
to from here on as CF) measurements of live organisms can
provide information regarding the absorption of light and
flow of electrons through the photosynthetic apparatus
[110,111]. A common component of CE known as the maximum
quantum yield of PSII (Fv/Fm), estimates the proportion of
light absorbed by chlorophyll that is then used by the PSII reac-
tion centre during photosynthesis. The maximum quantum
yield of PSII provides a useful proxy for the overall health of
the chloroplast and its photosynthetic ability. Chlorophyll flu-
orescence is increasingly wused to estimate primary
productivity from bulk water samples [112-114]. At the
single-cell level, microscopy-based measurements can provide
a powerful tool for exploring how various photosynthetic prop-
erties differ across species or populations [115], and have
already been applied in cultured kleptoplastidic mixotrophic
dinoflagellates [116]. Importantly, higher throughput options
can facilitate studies of relatively low concentrations of

predatory mixotrophs in the field. Custom-built flow cyt-
ometers capable of measuring Fv/Fm have been used to
study impacts of iron enrichment in the open ocean [117,118].
In these studies, low signal-to-noise ratios limited reliable
measurements to larger cell sizes (greater than 5pm) with
higher chlorophyll content. Recently, a similar approach has
been used to look at the role of nitrate limitation in photosyn-
thetic poise and lipid bioaccumulation (through staining) in
the diatom Phaeodactylum tricornutum [119], highlighting the
power of coupling live CF measurements with traditional cell
phenotyping via flow cytometry. CF-enabled flow cytometers
are not yet commercially available and additional reference
studies on diverse cultured mixotrophic protists are clearly
needed. These must characterize the physiological shifts associ-
ated with predatory behaviour, modes of nutritional
acquisition, photophysiological signatures and the genomic
repertoire of phagosomes from across eukaryotic supergroups.
This includes robust experiments that characterize cell states
that potentially interfere with the reliable detection of phagotro-
phy, such as outer membrane stickiness or presence of acidic
compartments that are not food vacuoles, as well as variable
conditions under which these occur. Collectively, such studies
will provide the framework for interpretation of data recovered
from individual uncultured predatory mixotrophs in the field
and their activities in the environment.
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Direct effects of changing environmental conditions on the
physiology of mixotrophs will differ across species and shifts
towards an increased importance of phagocytosis or photosyn-
thesis to their nutrition are both possible [38,63] (figure 6, pink
and yellow cells). Additional indirect effects will likely alter
prey availability and competitive interactions with specialist
autotrophic or heterotrophic protists. While the combined effects
of different environmental drivers on mixotrophs remain
unstudied, the generally more oligotrophic conditions predicted
with increased surface ocean stratification are expected to
favour mixotrophs over purely autotrophic or heterotrophic
competitors [25,30]. Apart from the picocyanobacterium
Prochlorococcus, which is well adapted to ultraoligotrophic con-
ditions owing to its small size [97], the abundance of larger,
purely autotrophic eukaryotes might decline, as might purely
heterotrophic flagellates that could be outcompeted by mixo-
trophs (figure 6). The past developments of oceanographic
proxies for primary productivity were grounded on a solid cell
biological and physiological understanding of photosynthesis.
Similarly, reliable proxies for marine mixotrophy will require a
solid understanding of the process based on the cell biology
and physiology of taxa from each of the major eukaryotic super-
groups. Because of the uncultured nature of many putatively
mixotrophic lineages, quantitative methods for assessing the
abundance, diversity and metabolic activities of mixotrophs
will require cross-scale studies. These by necessity must

1. Yutin N, Wolf MY, Wolf YI, Koonin EV. 2009 The

origins of phagocytosis and eukaryogenesis. Biol. 9525(02)02777-4)

Genet. 18, 577-584. (doi:10.1016/s0168-

incorporate single-cell techniques combined with targeted ima-
ging and stable isotope probing to gain baseline information on
uncultured mixotrophs in the wild. Additionally, refined model-
ing efforts supported by differentiated traits representing varied
mixotrophic strategies will be key in understanding transitions
in plankton communities.
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