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Variation of singular Kähler–Einstein metrics:
Positive Kodaira dimension

By Junyan Cao at Nice, Henri Guenancia at Toulouse and Mihai Păun at Bayreuth

Abstract. Given a Kähler fiber space p W X ! Y whose generic fiber is of general
type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively
curved metric on the relative canonical bundle KX=Y of p. We also propose a conjectural
generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that
our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we
explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which
represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not
necessarily maximal Kodaira dimension).

Introduction

Let p W X ! Y be a Kähler fiber space. By this we mean that p is a proper, surjective
holomorphic map with connected fibers such that the total space X is Kähler. Important ques-
tions in birational geometry (such as, e.g., Iitaka Cnm conjecture) are treated by investigating
the properties of direct images

(0.1) p?.mKX=Y /;

where m is a positive integer, and KX=Y WD KX � p?.KY / is the relative canonical bundle
of the map p. In other words, one considers the variation of the pluricanonical linear series
H 0.Xy ; mKX=Y jXy / for y 2 Y and some fixed m� 0.

In this article we will adopt a slightly different point of view by working with an object
which “encodes” the asymptotic behavior of the entire canonical ring

L
m p?.mKX=Y /. If the

generic fiber of p is of general type, then this turns out to be the singular Kähler–Einstein met-
ric. The direct image (0.1) is positively curved, and our main concern in this article is to show
that the same holds true for the metric induced onKX=Y by fiberwise singular Kähler–Einstein
metrics.
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General set-up and main results. Let p W X ! Y be a Kähler fiber space. We will
systematically use the notation Y ı � Y for a set contained in the regular values of the map p
such that the complement Y n Y ı is analytic. Let Xı WD p�1.Y ı/ be its inverse image.

Let .L; hL/ be a Q-line bundle endowed with a singular metric hL whose curvature
current is positive, i.e.,

‚hL.L/ > 0:

We assume for the moment that the relative adjoint bundleKX=Y C L is p-big. In many impor-
tant geometric settings (including the case I.hL/ D OX ) for every y 2 Y general enough there
exists a unique closed positive current !KE;y 2 c1.KXy C L/ such that

(0.2) Ric!KE;y D �!KE;y C‚hL.L/:

The precise framework for (0.2) to hold will become clear in Section 1. In what follows !KE;y

will be referred to as singular Kähler–Einstein metric by analogy with the case L trivial and
KXy ample.

The results we establish in this article are converging towards the following general
problem.

Conjecture 0.1. In the above set-up, the relative Kähler–Einstein metrics .!KE;y/y2Y ı

induce a metric e��KE onKXı=Y ı C LjXı which is positively curved and which extends canon-
ically across X XXı to a positively curved metric on KX=Y C L.

As consequence of important approximation results in pluripotential theory we show that
a much more general form of the conjecture above would follow provided that one is able to
deal with the case where ‚hL.L/ equals the current of integration along a divisor with simple
normal crossings support and coefficients in .0; 1/ plus a smooth form, cf. Theorem 1.6.

Our main theorem states the following.

Theorem A. Conjecture 0.1 holds true if the Lelong numbers of the curvature current
corresponding to hL are zero on the p-inverse image of a Zariski open subset of Y .

For example, if L D 0, then Theorem A shows that the metric on KX=Y induced by the
fiberwise KE current is positively curved.

One of the main motivations for Conjecture 0.1 will become clear from the context we
next discuss. Let p W X ! Y be a Kähler fiber space, and let B be an effective Q-divisor
on X with coefficients in .0; 1/ such that BjXy has simple normal crossings support for y
generic. Assume furthermore that KXy C BjXy has positive Kodaira dimension. Here we use
the notation “B” rather than L in order to emphasize that the metric is fixed.

There exists a relative version of the so-called canonical metric introduced by Song
and Tian [34] and generalized by Eyssidieux, Guedj and Zeriahi [19]. It is defined on the
base Z0 of a birational model q0 W X 0 ! Z0 of the relative Iitaka fibration q W X Ü Z over
Y , cf. Section 4 for more details. In case of a family p whose generic fiber has maximal
Kodaira dimension, the metric in [34] coincides with the singular Kähler–Einstein metric (up
to a birational transformation).

Theorem B. Let p W X ! Y be a Kähler fiber space such that for y generic,

�.KXy C By/ > 0:
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Let f W X Ü Z be the relative Iitaka fibration of KX=Y C B , and let f 0 W X 0 ! Z0 a bira-
tional model of f such that X 0 and Z0 are smooth.

X 0 Z0

X Z

Y

f 0

f

p

Let !can;y be the canonical metric on Z0y of the pair .X 0y ; B
0
y/; it induces a current !ıcan over

the smooth locus of Z0 ! Y . Moreover, we assume that Conjecture 0.1 holds true. Then the
current !ıcan is positive and extends canonically to a closed positive current on Z0.

Coming back to the absolute case, let .X;B/ be a compact Kähler klt pair such that
�.X;B/ > 0 and let f 0 W X 0 ! Z0 be a bimeromorphic model of the Iitaka fibration ofKXCB
such that X 0 and Z0 are smooth. On top of the canonical metric !can on Z0, another important
metric comes into play which it related to the direct image f 0�.m.KX 0=Z0 C B// for m large
and divisible enough. More precisely, there exist bimeromorphic modifications � W �X ! X 0,
� W �Z ! Z0 as well as a Kähler fiber space �f W �X ! �Z fitting the commutative diagram

�X �Z
X 0 Z0

�

�f
�

f 0

such that there exists an “NS-type” Kähler–Einstein metric !KE on �Z. This means that the
Narasimhan–Simha hNS on the line bundle �L WD 1

m
�f�.m.K �X=�Z C B//�� enjoys some partic-

ular integrability properties so that the equation

Ric!KE D �!KE C i‚hNS.
�L/

is satisfied on �Z in the sense of Definition 1.1, cf. Section 4.1 for more details. The following
result relates the “NS-type” Kähler–Einstein metric !KE on �Z and the canonical metric !can

on Z0, cf. Proposition 4.6.

Proposition C. With the notation above, the Kähler–Einstein and canonical metrics are
related by the following identity holding on Z0:

��!KE D !can:

Previously known results. There are basically two types of techniques used in order to
address the questions we are interested in here, due to Schumacher and Tsuji in [31] and [37],
respectively. The former concerns the smooth case (e.g., KXy ample) and it is based on a max-
imum principle. The later consists in showing that non-singular KE metrics can be obtained by
an iteration scheme involving pluricanonical sections normalized in a specific way. Both meth-
ods have their advantages and flaws. For example, it is difficult to conceive that Schumacher
method can be used in the presence of base points. Also, at first sight the method of Tsuji looks
very general. However, it uses in an essential manner the asymptotic expansion of Bergman
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kernels, which depends on at least two derivatives of the metric. This is the main reason why
we cannot deal with the general case of a line bundle .L; hL/ as in Conjecture 0.1.

In the following paragraph we recall the definitions of relative (singular) Kähler–Einstein
metrics and collect some earlier results.

Relative singular Kähler–Einstein metrics. A singular Kähler–Einstein metric is
a generic term to refer to a non-smooth, closed, positive, .1; 1/-current ! that satisfies a Kähler–
Einstein-like equation in a weak sense. Among the most natural examples are: Kähler–Einstein
with conic singularities, mentioned above, cf. also [11, 12, 27], Kähler–Einstein metrics on
singular varieties, cf. [2, 3, 18]. These metrics are obtained by solving an equation of the form

Ric! D �! C T

on a compact Kähler manifold X , where T is a closed .1; 1/-current (e.g., the current of inte-
gration along a R-divisor with coefficients in ��1; 1�). The cohomology class ˛ 2 H 1;1.X;R/
of ! is determined by the equation unless � D 0, and it may be degenerate. That is, instead of
being Kähler, ˛ may be semipositive and big, or even merely big. The singularities of ! may
then appear because of the singularities of T or the non-Kählerness of ¹!º. The singularities of
the first type are rather well known when T is a current of integration along an effective divisor
with snc support (one gets conic or cusp singularities, cf., e.g., [24,28,35]), but they are mostly
mysterious in the second case with a few numbers of exceptions like when X is a resolution of
singularities of a variety Y with orbifold singularities, or isolated conical singularities, cf. [26],
and ˛ is the pull-back of a Kähler class on Y .

Earlier results. If the generic fiber has ample canonical bundle, that is, ifKXy is ample
for any y 2 Y ı, then it follows from the Aubin–Yau theorem [1, 39] that one can endow each
smooth fiber with a Kähler–Einstein metric with � D �1. This induces a metric on KX=Y jXı
whose curvature form!ıKE is smooth (by the Implicit Function Theorem). Moreover, the restric-
tion !ıKEjXy coincides with the KE metric. The surprising important fact is that !ıKE > 0 onXı,
as it has been showed by Schumacher [31] and independently by Tsuji [37].

� Following Schumacher’s strategy, one obtains in [29] a generalization of this result to
the Kähler setting (including the extension property) only assuming that KXy C ¹ˇºjXy
is relatively ample for some smooth, semipositive, closed .1; 1/-form ˇ on X .

Based on this approach again, the second name author studied the conic analogue of these
questions, cf. [25]: let B D

P
biBi be a divisor with snc support on X and coefficients in

.0; 1/ and assume that KXy C BjXy is ample for y 2 Y ı, the relative conical Kähler–Einstein
metric solution of Ric!y D �!y C ŒBjXy � induces a singular .1; 1/-current !ıKE on Xı that is
positive, and extends canonical to a positive current !KE 2 c1.KX=Y C B/.

We refer to [10, 13, 32] for other applications of this method.

� In the case of a manifold with ample canonical bundle, Tsuji observes that !ıKE is the
limit of relative Bergman kernels whose variation is known to be semipositive cf. [5].
The metric induced by fiberwise Bergman kernels extends, cf. [5]. Therefore !ıKE extends
canonically to a current !KE 2 c1.KX=Y / on X . See [36] for potential applications.

� In a more general singular case KXy C By big, the fiberwise Kähler–Einstein metrics
pick up singularities that are yet to be understood, and neither of the previous approaches
seem to work.
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About the proof. The strategy of the proof of Theorem A is explained in detail at the
beginning of Section 3 and consists in realizing the singular Kähler–Einstein metric as a limit
of suitably chosen and renormalized Bergman kernels, as those are known to vary in a psh way
by [5]. Although the global scheme of our arguments is similar to [37], the level of difficulties
induced by the presence of base points in the problems we are treating here is far more severe. In
order to overcome them, one has to resort to using numerous intricate approximation processes.
Ultimately, our feeling is that the room to manoeuvre is so small that Theorem A is probably
close to the optimal result that our method can reach, aside from the orbifold case discussed in
Section 3.6.

Acknowledgement. We would like to thank Sébastien Boucksom, Tristan Collins,
Vincent Guedj, Christian Schnell, Song Sun, Valentino Tosatti and Botong Wang for numer-
ous useful discussions about the topics of this paper. This work has been initiated while Henri
Guenancia was visiting KIAS, and it was carried on during multiple visits to UIC as well as
to IMJ-PRG; he is grateful for the excellent working conditions provided by these institutions.
During the preparation of this project, the authors had the opportunity to visit FRIAS on several
occasions and benefited from an excellent work environment.

1. Pluricanonical sections and singular Kähler–Einstein metrics

Let X be a compact Kähler manifold of dimension n. Let .L; hL/ be a Q-line bundle
endowed with a possibly singular hermitian metric hL D e��L with positive curvature, that is,

‚hL.L/ D dd
c�L > 0

in the sense of currents.
We now recall the definition of Kähler–Einstein metric for the pair .X;L/ in caseKXCL

is big. This definition has been given by [9, Section 6] when L D 0, and can be easily adapted
to our slightly more general context.

Definition–Proposition 1.1. LetX be a compact Kähler manifold and .L; hL/ a Q-line
bundle endowed with a singular hermitian metric hL D e��L with positive curvature, that is,
‚hL.L/ > 0 in the sense of currents. We assume moreover that:

(1) The Q-line bundle KX C L is big.

(2) The algebra R.X;L/ D
L
m>0H

0.X; bm.KX C L/c/ is finitely generated.

(3) For every p 2 N and every s 2 H 0.X; p.KX C L//, we have
R
X jsj

2
p e��L < C1.

Then there exists a unique closed, positive .1; 1/-current !KE onX which satisfies the following
conditions:

(i) The current !KE belongs to the big cohomology class c1.KX C L/ and it has full mass,
that is,

R
X h!

n
KEi D vol.KX C L/.

(ii) The current !KE satisfies the following equation in the weak sense of currents

Ric!KE D �!KE C
i

2�
‚hL.L/:
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Remark 1.2. Some remarks are in order.
(a) An important feature of this definition is that it is birationally invariant. More pre-

cisely, if .X;L; e��L/ satisfies conditions (1)–(3) and if � W X 0 ! X is any birational proper
morphism, then so does .X 0; L0; e��L0 /, whereL0 WD ��L; �L0 WD ���L. Furthermore, if !0KE
is the Kähler–Einstein metric of .X 0; L0; e��L0 /, then !0KE D �

�!KE C ŒKX 0=X �.
(b) Conditions (2) and (3) are automatically satisfied if the multiplier ideal sheaf of hL is

trivial, that is, if I.hL/ D OX . This is clear for (3). As for (2), we use the following argument.
As KX C L is big, X is automatically projective and we have

KX C L �Q ACE

for some ample Q-line bundle A and an effective Q-divisor E. From the solution of the
openness conjecture, cf. [4, 21], for some m0 large enough, we have

(1.1) I.e
��L�

1
m0
�E / D OX :

As the question is birationally invariant, by Demailly’s regularization theorem, after some
birational morphism, we can suppose that

LC
1

m0
A �Q B CH

for some effective Q-divisor B and a semi-ample Q-line bundle H such that �L is more sin-
gular than �B , where �B a canonical singular weight attached to B , cf. proof of Lemma 2.3
for instance. Together with equation (1.1), B C 1

m0
E is klt. Thanks to [8], the canonical ring

of KX C .B C 1
m0
E/CH is finitely generated. Combining this with the relation�
1C

1

m0

�
.KX C L/ �Q KX C

�
B C

1

m0
E

�
CH;

condition (2) is proved.
(c) If L corresponds to an effective, klt Q-divisor B and �L is the canonical singu-

lar weight on B , then one recovers the standard log Kähler–Einstein metric whose existence
follows essentially from [9], cf., e.g., [23, Section 2.3].

(d) Condition (ii) can be rewritten in terms of non-pluripolar Monge–Ampère equations
as follows:

h.dd c�KE/
n
i D e�KE��L ;

where �KE is a local weight for!KE and where h � ni denotes the non-pluripolar Monge–Ampère
operator, cf. [9, Definition 1.1 and Proposition 1.6].

(e) We will see in the proof that !KE has minimal singularities in the sense of [17, Defi-
nition 1.4]. Moreover, if hL is smooth on a non-empty Zariski open subset of X , then one can
prove that !KE is smooth on a Zariski open set by reducing the problem to the semi-ample and
big case and use [18]. To our knowledge, there is still no purely analytical proof of the generic
smoothness as explained in the few lines following [9, Theorem C].

Proof of Definition–Proposition 1.1. Set

R.X;L/ WD
M
m>0

H 0.X; bm.KX C L/c/;
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and let us define Xlc WD ProjR.X;L/ to be the log canonical model of X , cf., e.g., [8, Defini-
tion 3.6.7]. Taking a desingularization of the graph of the natural birational map f W X Ü Xlc,
one gets the diagram �X

X Xlc

� �

f

and the formula

(1.2) ��.KX C L/ D �
�.KXlc C Llc/C F;

where Llc WD f�L (recall that f does not contract any divisor) and F is an effective �-excepti-
onal divisor. Clearly, KXlc C Llc is ample. Thus, setting �L WD ��L;A WD ��.KXlc C Llc/ and
E WD F CK �X=X , the decomposition

K �X C �L D ACE
is a Zariski decomposition of K �X C �L, and we have

R �X jsj 2p e���L < C1 for any section
s 2 H 0.�X;p.K �X C �L// and where ��L WD ���L. We want to solve the following equation:

.dd c��/n D e��C�E���L
for �� a bounded psh weight on A, where �E is the canonical singular weight attached to E.
Thanks to the results in [23, Section 2.3], we are reduced to establishing the following property:

(1.3) e�E���L 2 L1C" for some " > 0:

Take p large enough so that p�L;pE are integral and jpAj is basepoint free. Let ¹�1; : : : ; �rº be
a basis ofH 0.�X;pA/. Then

Pr
iD1 j�i j

2 is non-vanishing everywhere. Let spE be the canonical
section of pE. Thanks to (3), we have

Z
�X
 

rX
iD1

j�i j
2

! 1
p

jspE j
2
p e���L < C1:

Together with the fact that
Pr
iD1 j�i j

2 is non-vanishing everywhere, we get

(1.4) e���LC�E 2 L1loc:

By applying the solution of the generalized openness conjecture [4, 21] to the psh weight
��L C .1 � 1

p
/�pE , we see that (1.3) follows from (1.4).

Now, define � WD �� C �F . From the Zariski decomposition (1.2), it follows that the psh
weight � on ��.KX C L/ has minimal singularities and it satisfies

h.dd c�/ni D h.dd c��/ni D e����L
as the operator h � ni puts no mass on proper analytic sets. There exists a unique psh weight �KE

on KX C L such that � D ���KE . It has automatically minimal singularities and satisfies
h.dd c�KE/

ni D e�KE��L ; this ends the proof.
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It will be convenient to use the following setting.

Setting 1.3. Let p W X ! Y be a projective fibration between two smooth Kähler mani-
folds. Let .L; hL/ be a holomorphic singular hermitian Q-line bundle on X such that

i‚hL.L/ > 0:

Let Y ı � Y be a Zariski open subset such that p is smooth over Y ı, and set Xı WD p�1.Y ı/.
Assume that the additional two conditions are satisfied:

(i) The Q-line bundle KX C L is p-big and for every y 2 Y ı, the algebra

R.Xy ; L/ D
M
m>0

H 0.Xy ; bm.KXy C Ly/c/

is finitely generated.

(ii) Let y 2 Y ı. For every m 2 N and every s 2 H 0.Xy ; m.KX C L//, we haveZ
Xy

jsj
2
m

hL
< C1:

We can now state the precise form of the conjecture already mentioned in the introduc-
tion.

Conjecture 1.4. In Setting 1.3 above, the Kähler–Einstein metrics .!KE;y/y2Y ı on the
smooth fibers in the sense of Definition–Proposition 1.1 induce a metric e��KE on KX=Y C L
over Xı such that:

(i) i‚�KE.KX=Y C L/ > 0 on Xı.

(ii) The metric e��KE extends canonically across X XXı and i‚�KE.KX=Y C L/ > 0 on X .

The above conjecture is very general as it deals with a wide range of singular hermitian
bundles .L; hL/. A version of this is the following.

Conjecture 1.5. Let p W X ! Y be a Kähler fiber space. Let .L; hL/ be a holomorphic
hermitian Q-line bundle on X such that

(i) .L; hL/ D .B Cƒ; hBhƒ/, where B is an effective Q-divisor and the restriction on the
generic fiber BjXy is klt with simple normal crossings support, hB is the canonical sin-
gular metric on B andƒ is a Q-line bundle with a smooth hermitian metric hƒ such that
‚hƒ.ƒ/ > 0 on X .

(ii) The Q-line bundle KX C L is p-big and admits a relative Zariski decomposition, i.e.,
KX C L �Q ACE for some relatively semi-ample and big Q-line bundle A and an
effective Q-divisor E such that the natural map

p�p�OX .mA/! p�p�OX .mACmE/

is a sheaf isomorphism over Y ı for any m divisible enough.

Then the relative Kähler–Einstein metric e��KE induced on KX=Y C L over Xı satisfies

‚�KE.KX=Y C L/ > 0 on Xı:
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Our first result, proved in Section 2, is to reduce Conjecture 1.4 to Conjecture 1.5:

Theorem 1.6. Conjecture 1.5 implies Conjecture 1.4.

At this stage, we are not able to prove Conjecture 1.4 (or Conjecture 1.5) in full generality
but only in the particular case where the metric hL D e��L on L has vanishing Lelong num-
bers; i.e., 8x 2 X; �.�L; x/ D 0. The proof is given in Section 3.5 and relies on the approach
developed in Section 3.2, after a reduction step explained in Section 3.1.

Theorem 1.7. Conjecture 1.4 holds true provided that Lelong numbers of the metric
hL D e

��L of L vanish identically.

2. Proof of Theorem 1.6

We have organized this section in the following way: first we show that Conjecture 1.4 (i)
implies Conjecture 1.4 (ii). The proof of Conjecture 1.4 (i) will be given in the second part of
our arguments.

The extension property.

Proposition 2.1. In Setting 1.3, the local weights of �KE are locally bounded above
near X XXı.

Proof. The proof of the proposition follows very closely [29, Section 3.3], so we will
mostly sketch the proof.

Let y 2 Y ı and let us pick any point x in Xy . We choose a Stein neighborhood � of x
in X ; we write �y D � \Xy , choose a potential �y of !KE;y such that the equation satisfied
by �y on �y is

h.dd c�y/
n
i D e�y�'L

ˇ̌̌̌
dz

dt

ˇ̌̌̌2
;

where 'L is a local weight for hL on�, and the coordinates .z1; : : : ; zn; t1; : : : ; tm/ are chosen
so that p.z; t/ D t . We set

Hm;y WD

²
f 2 O.�y/ W

Z
�y

jf j2e�m�y h.dd c�y/
n
i 6 1

³
:

Note that e�m�y h.dd c�y/ni D e�.m�1/�y�ujdzdt j
2 for some psh function u on�. Then, thanks

to Demailly’s approximation theorem, one has

�.y/.x/ D lim
m!1

sup
f 2Hm;y

1

m
log jf .x/j:

But for f 2 Hm;y , Hölder’s inequality yields

(2.1)
Z
�y

jf j
2
m e��y h.dd c�y/

n
i 6

�
vol.KXy C Ly/

� m
m�1 :

The right-hand side is bounded above independently of y andm; this can be seen for instance by
finding a birational model � W X 0 ! X , where ��.KX C L/ has a relative Zariski decompo-
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sition ACE so that the volume ofKXy C Ly is simply the intersection number .Any/ which is
independent of y 2 Y ı. Furthermore, theL

2
m version of Ohsawa–Takegoshi extension theorem

[6] yields a holomorphic function F on � that extends f and such that

jF.x/j
2
m 6 C�

Z
�

jF j
2
m jdzj2 6 C

Z
�y

jf j
2
m

ˇ̌̌̌
dz

dt

ˇ̌̌̌2
6 C 0

Z
�y

jf j
2
m e��y h.dd c'y/

n
i

as 'L is bounded above on �. Moreover, the integral on the right-hand side is bounded above
uniformly in y and m by (2.1). Therefore supXy �y 6 C for a constant C that uniform as long
as y 2 Y ı varies in compact subsets of Y .

Regularization. Thanks to Proposition 2.1, Conjecture 1.4 reduces to its first item (i).
That property is local on the base so from now on, the base Y will be a small Stein open
set. The rest of this section is devoted to showing that Conjecture 1.5 implies that item (i) in
Conjecture 1.4 holds.

Lemma 2.2. It is enough to prove item (i) of Conjecture 1.4 when KX C L admits a
relative Zariski decomposition, namely KX C L �Q ACE for some relatively semi-ample
and big Q-line bundle A and an effective Q-divisor E such that the natural map

p�p�OX .mA/! p�p�OX .mACmE/

is a sheaf isomorphism over Y ı for any m divisible enough.

Proof. By assumption, the OY -algebra E WD
L
m>0 p�.m.KX=Y C L// is finitely gen-

erated. By blowing up the base locus of E , we can find a birational map � W �X ! X such
that on the generic fiber �Xy of � ı p, we have the Zariski decomposition of K �Xy C ��Lj �Xy .
Therefore, there exists a Zariski dense open subset Y0 � Y such that K �X C ��L admits a rel-
ative Zariski decomposition K �X C ��L D ACE on .� ı p/�1.Y0/ and for any m divisible
enough, the natural map

.� ı p/�.� ı p/�O �X .mA/! .� ı p/�.� ı p/�O �X .mACmE/ on .� ı p/�1.Y0/

is an isomorphism.
Now, let !KE; �X (resp. !KE;X ) be the relative Kähler–Einstein metric with respect to

.�X;��L;���L/ (resp. .X;L; �L/) over Y0. Thanks to Remark 1.2 (a), we have

��!KE; �X D !KE;X on p�1.Y0/:

If we can prove that !KE; �X > 0 on .� ı p/�1.Y0/, then

!KE;X D ��!KE; �X > 0 on p�1.Y0/:

Together with Proposition 2.1, the lemma is proved.

Proposition 2.3. It is enough to prove item (i) of Conjecture 1.4 when

.L; hL/ D .B Cƒ; hBhƒ/;

where B is an effective Q-divisor and the restriction on the generic fiber BjXy is klt with
normal crossing support, hB is the canonical singular metric on B and ƒ is a Q-line bundle
with a smooth hermitian metric hƒ such that i‚hƒ.ƒ/ > 0 on X .
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Proof. We proceed in two steps.

Step 1: Reduction to the case where ddc�L is a Kähler current. By Lemma 2.2
above, one can assume that KX C L D ACE is a relative Zariski decomposition of KX C L
onX . As Y is Stein andKX C L is p-big,KX C L is big onX . Therefore, there exists a weight
�0 with analytic singularities on .KX C L/ such that dd c�0 > 0 on X . Let us fix some small
ı > 0. We set Lı WD LC ı.KX C L/ so that the relative Zariski decomposition of KX C Lı
is .1C ı/AC .1C ı/E. Let �L C ı�0 be the weight on Lı . Then dd c.�L C ı�0/ is a Kähler
current. To finish the proof of Step 1, it remains to prove that:

(i) The triplet .X;Lı ; e��L�ı�0/ admits a relative Kähler–Einstein metric !KE;ı for ı > 0
small enough.

(ii) We have !KE;ı ! !KE in the weak topology when ı approaches zero.

To make notation more tractable, we will – from now on and in this first step only – work on a
fixed fiber Xy and drop all indices y.

Proof of (i). We know from (1.3) that there exists p > 1 such that e�E��L 2 Lp. Then
e.1Cı/�E�.�LCı�0/ 2 Lr for some 1 < r < p as long as ı is small enough. Even better,

(2.2) ke.1Cı/�E�.�LCı�0/kLr .X/ 6 C

for some uniform C > 0. Thanks to Definition–Proposition 1.1, we get (i).

Proof of (ii). It requires more work. Let !A be a smooth semipositive form in c1.A/,
let hL (resp. hE ) be a smooth hermitian metric on OX .L/ (resp. on OX .E/) and let ! be
a reference Kähler form such that

i‚!.KX /C i‚hL.L/ D !A C i‚hE .E/:

Finally, let us choose potentials 'L; '0; 'E such that

i‚hL.L/C dd
c'L D dd

c�L;

i‚!.KX /C i‚hL.L/C dd
c'0 D dd

c�0;

i‚hE .E/C dd
c'E D ŒE�:

The Kähler–Einstein metric !KE;ı can be written as

!KE;ı D !ı C .1C ı/ŒE�;

where !ı D .1C ı/!A C dd c'ı 2 c1..1C ı/A/ is a positive current with bounded potentials
such that

(2.3) ..1C ı/!A C dd
c'ı/

n
D e'ıC.1Cı/'E�'L�ı'0!n:

Let us write d� WD e'E�'L!n and d�ı WD e.1Cı/'E�'L�ı'0!n.

Claim 2.4. There exists a constant C > 0 independent of ı such that

(2.4) k'ıkL1.X/ 6 C:
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Proof of Claim 2.4. A first trivial observation is that one can rewrite formula (2.3) as
a Monge–Ampère equation in a fixed cohomology class as follows:�

!A C dd
c 1

1C ı
'ı

�n
D e'ıC.1Cı/'E�'L�ı'0�n log.1Cı/!n:

Thanks to the a priori estimates established in [18], the claim comes down to showing that there
exists a uniform C > 0 such that

(2.5) sup
X

'ı 6 C

and that e.1Cı/'E�'L�ı'0 admits uniform Lp bounds for some p > 1; but we already know
that from (2.2). Let us prove (2.5) now. As 'ı has bounded potentials, its Bedford–Taylor
Monge–Ampère has full mass, i.e.,Z

X

e'ıC.1Cı/'E�'L�ı'0!n D .1C ı/n.An/;

and, in particular, the integral
R
X e

'ıC.1Cı0/'EdV is uniformly bounded above for ı0 > 0
fixed. An application of Jensen’s inequality yields

R
X 'ıdV 6 C , and the bound (2.5) then

follows from standard properties of quasi-psh functions.

The proof of item (ii) above now follows from the next claim.

Claim 2.5. When ı approaches zero, the function 'ı converges weakly to '.

Proof of Claim 2.5. An equivalent formulation of the claim is that

'ı � sup
X

'ı ���!
ı!0

�' WD ' � sup
X

':

This is consequence of [3, Theorem 4.5], but the bound (2.4) actually makes the arguments
much easier. We will only recall the main lines. First, one chooses a sequence ıj such that
'j WD 'ıj � supX 'ıj converges weakly to some sup-normalized !A-psh function  ; we want
to show that  D �'. We use the variational characterization of 'j as the supremum of the
functional Gj D Ej CLj acting on sup-normalized .1C ıj /!A-psh functions. Here, Ej is the
usual energy functional attached to .1C ıj /!A and Lj .�/ D � log

R
X e
� d�ıj . Thanks to (2.2)

and (2.4), the dominated convergence theorem implies

(2.6) lim
j!C1

Lj .'j / D L. /:

Moreover, [3, Lemma 4.6] implies that

(2.7) lim
j!C1

Ej .'j / 6 E. /:

As ' 2 PSH.X; .1C ıj /!A/, one has automatically

Gj .'j / > G .�'/:
Finally, as the Bedford–Taylor product is continuous with respect to smooth convergence, one
has limj Ej .�'/ D E.�'/. Putting these last two results together with (2.6) and (2.7), one finds

G . / > lim
j!C1

Gj .'j / > lim
j!C1

Gj .�'/ D G .�'/
hence the result.



Cao, Guenancia and Păun, Variation of singular Kähler–Einstein metrics 13

In conclusion, 'ı converges weakly to ', hence !KE;ı converges to !KE. This argument
was done fiberwise, but it clear that the weak convergence on the fiber implies the weak con-
vergence in any small neighborhood of the given fiber as well. This proves (ii) and completes
Step 1.

Step 2: Reduction to the case where �L has analytic singularities. By Step 1, one
can assume that dd c�L is a Kähler current. By the Demailly regularization theorem [16], �L is
the weak, decreasing limit of strictly psh weights �L;" onLwith analytic singularities, say with
singularities along the analytic set Z". Taking a log resolution �" W X" ! X of .X;Z"/, one
can assume that ���L;" D �B" C �A" , where �B" is the canonical singular psh weight on an
effective normal crossing Q-divisorB", and �A;" is a smooth psh weight on some Q-line bundle
A" with ‚�A;".A"/ > 0 on X".

After passing to another birational model if necessary, one can assume that over a generic
fiber, we have a Zariski decomposition

K.X"/y C �
�
" L"j.X"/y DMy CEy ;

and B"j.X"/y CEy is normal crossing. Let �" WD B" ^E be the common part of B andE. We
have the following Zariski decomposition:

K.X"/y C
�
B"j.X"/y � �"j.X"/y

�
C A"j.X"/y DMy C

�
Ey � �"j.X"/y

�
:

Furthermore, thanks to Setting 1.3 (ii) and the decreasing property of .�L;"/, we know that the
divisor .B"j.X"/y � �"j.X"/y / is klt on .X"/y .

Let !" be the relative Kähler–Einstein metric of .X" ! Y; ��" L;�
�
" .�L;"// and let !0"

be the relative Kähler–Einstein metric of .X" ! Y; .B" � �"/C A"; �B" � ��" C �A"/. By
definition, we have

(2.8) !" D !
0
" C Œ�"�:

If Conjecture 1.4 holds for .X" ! Y; .B" � �"/C A"; �B" � ��" C �A"/, thanks to (2.8) and
Remark 1.2, it holds also for .X ! Y;L; �L;"/. Finally, when " converges to 0, the rela-
tive Kähler–Einstein metric of .X ! Y;L; �L;"/ converges to the relative Kähler–Einstein
metric of .X ! Y;L; �L/ as a direct consequence of the comparison principle. Therefore
Theorem 1.6 is proved.

3. Proof of Theorem 1.7

We will present our arguments in several steps, according to the following plan.

(a) It is enough to prove Theorem 1.7 in case hL non-singular. This is based on two results:
we first use that hL is limit of non-singular metrics whose negative part of the curva-
ture tends to zero. Another important fact we are using is that the algebra associated to
KX C LC ıH is finitely generated, for any H ample and for any positive rational ı.

(b) It is enough to prove Theorem 1.7 provided that A is an ample Q-bundle. Remark that, in
general, the semi-ample part A of the Zariski decomposition is not ample. In this second
step we write A as limit of ample bundles, and show that the solution of the resulting
Monge–Ampère equation converges to the singular KE metric.
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(c) Reduction to the case c1.L/ 2 Z. Let p be a positive integer such that pL is a line bundle.
Then we write p.KX C L/ D KX C .p � 1/.KX C L/C L and then we replace our
initial Q-bundle L with the line bundle Lp WD .p � 1/.KX C L/C L. The problem is
that we also have to replace hL with a positively curved metric on Lp. The metric on
L is given. It is less clear what should be the metric on KX C L, since it has to fulfill
two conditions: its curvature must be positive, and in the relative setting (i.e., when we
replace X with a fiber of p) it must induce a positively curved metric on the twisted
relative canonical bundle. It seems impossible to achieve this in one single step. What
is possible is to set up an iteration scheme so that the resulting limit coincides with the
singular KE metric.

(d) If L .D Lp/ is a line bundle, show that the singular Kähler–Einstein metric correspond-
ing to .X;L/ can be obtained as limit of iterated Bergman kernels. We conclude by
this fact, since the fiberwise Bergman kernel metric has the required curvature properties
specified in (c) above.

Also, at each step we establish the relevant convergence results needed to conclude at the end.

3.1. Reduction to the case hL non-singular. Let .L; hL D e��L/ be a hermitian line
bundle on a projective varietyX such thatKX C L is big and �L is a psh weight with vanishing
Lelong numbers. Let � be the weight onKX C L such that !� WD dd c� is the Kähler–Einstein
metric of .X;L; e��L/, i.e.,

Ric.!�/ D �!� C dd c�L:

Let H be an ample line bundle on X , and let �H be a weight on H such that dd c�H is
a Kähler form. Thanks to Demailly’s regularization theorem, there exists a family of smooth
weights �L;" on L such that

�L;" # �L and dd c.�L;" C "�H / > 0:

Let ı > " be a positive number and �ı;" the suitably normalized weight onKX C LC ıH such
that !�ı;" WD dd

c�ı;" is the Kähler–Einstein metric of .X;LC ıH; e��L;"�ı�H /, i.e.,

Ric.!�ı;"/ D �!�ı;" C dd
c.�L;" C ı�H /:

Proposition 3.1. With the notation above, there exists a family of positive numbers
.ı"/">0 decreasing to zero such that !�ı";" converges weakly to !� when " approaches zero.

As an consequence, one gets the following:

Corollary 3.2. It is sufficient to prove Theorem 1.7 when hL is smooth.

Proof of Proposition 3.1. Let us start by setting some additional notation. Let � (resp.
�L) be a closed smooth .1; 1/-form in the cohomology class c1.KX C L/ (resp. c1.L/). Let
!H WD dd

c�H and let dV be a smooth volume form such that

�Ric.dV /C �L D �:

Finally, let 'L and 'L;" be some quasi-psh functions such that �L C dd c'L D dd c�L (resp.
�L C dd

c'L;" D dd
c�L;") and satisfying additionally that 'L;" # 'L when " # 0. Let 'ı;" be
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the unique .� C ı!H /-psh function with minimal singularities solution of

.� C ı!H C dd
c'ı;"/

n
D e'ı;"�'L;"dV

whose existence is guaranteed by [9] (cf. also [23, Theorem 2.2]). When " D 0, one writes
'ı WD 'ı;0 and sets ' WD '0. Note that �Cdd c' is the Kähler–Einstein metric of .X;L; e��L/.

For the time being, let ı > 0 be fixed. As 'L;" decreases toward 'L and 'L has vanishing
Lelong number, the convergence e�'L;" " e�'L happens in any Lp space for p > 0 thanks
to Skoda’s integrability theorem, cf., e.g., [33, Proposition 7.1]. In particular, it follows from
[22, Theorem 5.2] that 'ı;" converges weakly to 'ı D 'ı;0 when " approaches zero.

As !H > 0, the � -psh function ' is also � C ı!H -psh and it is a subsolution of the
equation

.� C ı!H C dd
c /n D e �'LdV;

so one gets

(3.1) ' 6 'ı

for any ı > 0. Moreover, the same argument shows that 'ı decreases when ı # 0. Let

'� WD lim
ı!0

'ı :

If we can prove that '� D ', then we will be done.
From inequality (3.1), one can deduce two things. First, '� is a � -psh function with

minimal singularities. Also, the sequence .'ı/ı>0 is locally bounded on the ample locus �
of KX C L. Because the Monge–Ampère operator is continuous with respect to bounded
decreasing sequences, one finds that

.� C dd c'�/n D e'
��'LdV on �:

As the non-pluripolar Monge–Ampère operator does not put any mass to analytic sets, it
follows that the previous equation is satisfied on the whole X . As ' and '� have minimal
singularities, the currents � C dd c' and � C dd c'� have full mass (almost by definition, cf.
[9, remarks below Definition 2.1]) and thereforeZ

X

e'
��'LdV D

Z
X

.� C dd c'�/n

D

Z
X

.� C dd c'/n

D

Z
X

e'�'L dV:

It follows from (3.1), i.e., ' 6 '�, that ' D '� almost everywhere. As both functions are
� -psh, they must agree on X .

3.2. The approximation of A. A first remark is that thanks to Lemma 2.2 and Corol-
lary 3.2, one can assume that hL is smooth and that KX C L admits a relative Zariski decom-
position over Xı (which denotes here the inverse image of a well-chosen open subset of Y ),

KX C L D ACE:
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By the Kodaira lemma, there exists an effective Q-divisor EX such that A �EX is
p-ample. As Y is chosen to be Stein, one can assume that A �EX is globally ample. Therefore
for each positive, small enough ı we have

(3.2) KX C L D ACE D Aı CEı ;

where Aı WD .1 � ı/AC ı.A �EX / is ample and Eı WD E C ıEX for any ı > 0.

Convention. For the rest of this subsection our results will exclusively concern the
fibers Xy of p. Since y 2 Y ı is fixed, we will denote Xy by X and drop the index y in the
relevant line bundles and weights that will be considered here.

3.2.1. Notations. Let !A in c1.A/ be a smooth, semipositive representative. We denote
E WD

Pk
iD1 aiEi and let EX WD

Pk
iD1 ciEi be the divisors above where some of ai ; ci could

be zero. Since ¹A �EXº is a Kähler class, we can fix a Kähler form !0 2 ¹A �EXº. For each
positive ı we obtain a Kähler form

!ı WD .1 � ı/!A C ı!0 2 c1.Aı/;

where Aı WD A � ıEX . We write

Eı D

kX
iD1

aıi Ei ;

where
aıi D ai C ıci :

Let si be a defining section for Ei and let hEi D e
��i be a non-singular hermitian metric

on OX .Ei /. We obtain the metrics

hE D
Y

h
ai
Ei

and hEı D
Y

h
aı
i

Ei

on E and Eı , respectively.
We define

jsEı j
2¹`pº

WD

Y
i

jsEi j
2.d`paı

i
e�`paı

i
/;

where jsEi j
2 denotes the squared norm of sEi with respect to hi .

The Kähler–Einstein metric

!' D !A C dd
c'

of .X;L; �L/ satisfies the following Monge–Ampère equation on X :

.!A C dd
c'/n D jsE j

2e'�fL!n;

where ! is a reference Kähler metric on X and fL is the unique smooth function on X such
that

(3.3) !A C‚.E/C dd
cfL D ‚hL.L/C‚!.KX /;

Z
X

f dV! D 0:

It will be convenient for later to fix some notations for the local expression of the objects
above. Let U � X be an open coordinate subset such that the Q-bundles above are trivial when
restricted to U .
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Let �i be the local weight of the metric hi with respect to a trivialization of OX .Ei /jU .
We will use the notation

�Eı WD
X

aıi �i

for the weight of the induced metric on Eı .
In a similar manner we introduce �A; �0; �L on A;A �EX and L, respectively, such that

dd c�A D !A and dd c�0 D !0. Finally, we consider for ı > 0,

(3.4) �Aı WD .1 � ı/�A C ı�0:

We assume that the metrics hi are chosen such that �0 D �A � ı
P
i ci�i .

Expressed in terms of local weights and coordinates, equality (3.3) becomes

(3.5) �A C �E C fL D �L C log det.!
˛ˇ
/

modulo a pluriharmonic function on U . We see that we are free to choose the trivialization ofE
and L together with a coordinate system .zi / such that (3.5) becomes an equality by modifying
the weights �A.

3.2.2. The approximation statement. For ı; " > 0, the Aubin–Yau theorem shows
that the equation

(3.6) .!ı C dd
c'ı;"/

n
D .jsE j

2
C "2/e'ı;"�fL!n

has a unique solution such that !ı C dd c'ı;" is a smooth Kähler metric. In the two equations
above, jsE j2 (resp. jsE j2 C "2) has to be interpreted as

Q
i jsi j

2ai (resp.
Q
i .jsi j

2 C "2/ai ). We
have the following convergence result.

Proposition 3.3. There exists a family of positive numbers .ı"/">0 decreasing to 0 when
" approaches zero such that

lim
"!0
k'ı";" � 'kL1.X/ D 0:

Proof. For now, let ı 2 .0; 1/ be fixed. By [22, Theorem 1.1], one has

(3.7) lim sup
"!0

k'ı;" � 'ı;0kL1.X/ D 0:

Let
 ı WD

1

1 � ı

�
'ı;0 � n log.1 � ı/

�
:

The above function satisfies the Monge–Ampère equation

(3.8)
�
!A C

ı

1 � ı
!0 C dd

c ı

�n
D jsE j

2e.1�ı/ ı�fL!n:

The !A-psh function O ı WD  0 C ı
1�ı
� infX  0 is a subsolution of (3.8). Indeed, one has�

!A C
ı

1 � ı
!0 C dd

c O ı

�n
> .!A C dd

c 0/
n

D jsE j
2e.1�ı/

O ı�fLeı. 0�infX  0/!n

> jsE j2e.1�ı/
O ı�fL!n:
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Therefore, one gets O ı 6  ı , i.e.,

 0 6  ı �
ı

1 � ı
� inf
X
 0:

In particular, one finds a uniform lower bound  ı > �C , where C > 0 is independent of ı.
LetK WD min¹0; infı infX  ıº, where the first infimum ranges over ı 2 Œ0; e�1� say. Using the
same argument as above, one concludes that for any 0 6 � 6 ı 6 e�1, one has

 � �
K�

1 � �
6  ı �

Kı

1 � ı
:

That is, the family of !A-psh functions . ı � Kı
1�ı

/ı>0 decreasing toward a bounded !A-psh� 0 when ı # 0. The function � 0 satisfies the same Monge–Ampère equation (3.8) as  0
thanks to the continuity of the Monge–Ampère operator with respect to bounded decreasing
sequences. Therefore, one has � 0 D  0 D ':

Now, the !A-psh function ' is continuous. Indeed, this is because !A is the pull-back of
a Hodge form on a (singular) space by a birational morphism, hence one can apply jointly
[18, Theorem A] and [14, Corollary C]. All in all, Dini’s theorem shows that the conver-
gence  ı � Kı

1�ı
! ' is uniform. In particular, 'ı;0 converges uniformly to ' when ı ! 0.

The proposition now follows from (3.7) and a suitable diagonal process.

3.3. Reduction to the case c1.L/ 2 H 2.X;Z/. We fix an integer p > 1 such that pE
is integral and pL is a line bundle. The first step in the algorithm which will follow consists in
solving the equation

.p!ı C dd
c'1;ı;"/

n
D e'1;ı;"�fL.jsE j

2
C "2/!n:

This is very similar to (3.6). In particular, one can apply Proposition 3.3 to show that there
exists a family of numbers .ı.1/" /">0 decreasing to zero when " # 0 such that

lim sup
"!0

k'
1;ı

.1/
" ;"
� '1;0;0kL1.X/ D 0:

One sets '1;" WD '1;ı.1/" ;"
and '1 WD '1;0;0. Next, one solves the equation

.p!ı C dd
c'2;ı;"/

n
D e'2;ı;"�

p�1
p
'1;"�fL.jsE j

2
C "2/!n:

Proposition 3.3 applies again verbatim to show that there exists a family of numbers .ı.2/" /">0
decreasing to zero when " # 0 such that

lim sup
"!0

k'
2;ı

.2/
" ;"
� '2;0;0kL1.X/ D 0:

We set '2;" WD '2;ı.2/" ;"
, '2 WD '2;0;0 and repeat the procedure. The result is the following.

Proposition 3.4. For each integerm > 1 there exist a family of positive reals .ı.m/" /">0
decreasing to zero and a family of smooth strictly p!

ı
.m/
"

-psh functions 'm;" such that

.p!
ı
.m/
"
C dd c'm;"/

n
D e'm;"�

p�1
p
'm�1;"�fL.jsE j

2
C "2/!n

and

(3.9) lim sup
"!0

k'm;" � 'mkL1.X/ D 0;

where 'm are the unique p!A-psh bounded functions such that '0 D 0 and

(3.10) .p!A C dd
c'm/

n
D jsE j

2e'm�
p�1
p
'm�1�fL!n:
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Thanks to (3.2), one gets for each integer m > 1 a decomposition

KX C L D Aı.m/"
CE

ı
.m/
"

and one can define the weights

(3.11) �m WD p�A C 'm; �m;" WD p�A
ı
.m/
"

C 'm;"

on pA and pA
ı
.m/
"

, respectively, cf. (3.4). Let �E be a singular weight on E such that

dd c�E D ŒE�;

and let �L a smooth weight on L such that

dd c�L D i‚hL.L/:

The expressions e�m�
p�1
p
�m�1C�E��L define a global volume form which we normalize (by

adding a constant to �L) such that

(3.12)
Z
X

e�m�
p�1
p
�m�1C�E��L d� D .An/:

It follows from (3.10) combined with the definition of fL, cf. (3.3), that �m solves

(3.13) .dd c�m/
n
D e�m�

p�1
p
�m�1C�E��L d�:

3.4. Convergence of the Ricci iteration. The current!m WD dd c�m D p!ACdd c'm
satisfies the following twisted Kähler–Einstein-like equation:

Ric!m D �!m C
p � 1

p
!m�1 � ŒE�C i‚hL.L/:

Its behavior when m!C1 is given by the following result.

Proposition 3.5. When m tends to C1, the current 1
p
!m converges weakly to the

(unique) twisted Kähler–Einstein metric !1 2 c1.A/ solution of

�Ric!1 C i‚hL.L/ D !1 C ŒE�:

Remark 3.6. We see that !1 is equal to the Kähler–Einstein metric !KE of .X;L; �L/
on X nE. More precisely, we have !KE D !1 C ŒE�.

Proof. Recall that !m D p!A C dd c'm is solution of the Monge–Ampère equation

.p!A C dd
c'm/

n
D e'm�

p�1
p
'm�1d�;

where d� D jsE j2 � !n. We aim to show that for each m > 2, one has

(3.14) k'm � 'm�1kL1.X/ 6
p � 1

p
k'm�1 � 'm�2kL1.X/:
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Let Cm WD supX .'m�1 � 'm�2/, and let Um D ¹'m > 'm�1 C
p�1
p
Cmº. An application of

the comparison principle yields

(3.15)
Z
Um

e'm�
p�1
p
'm�1d� 6

Z
Um

e'm�1�
p�1
p
'm�2 d�:

On Um, one has

'm �
p � 1

p
'm�1 >

1

p
'm�1 C

p � 1

p
Cm

D

�
'm�1 �

p � 1

p
'm�2

�
C
p � 1

p
ŒCm � .'m�1 � 'm�2/�

> 'm�1 �
p � 1

p
'm�2:

Together with (3.15), we know that Um has measure zero with respect to d�, hence also with
respect to .p!A C dd c'm/n. By the domination principle, cf., e.g., [9, Corollary 2.5], we see
Um is empty, hence

'm � 'm�1 6
p � 1

p
sup
X

.'m�1 � 'm�2/:

Using an analogous argument, one can show that

'm � 'm�1 >
p � 1

p
inf
X
.'m�1 � 'm�2/;

which proves (3.14). It follows by iteration that

k'm � 'm�1kL1.X/ 6
�
p � 1

p

�m�1
k'1kL1.X/

and therefore the sequence .'m/m>1 converges uniformly to a p!A-psh function '1. As the
Bedford–Taylor product is continuous with respect to uniform convergence, '1 satisfies

.p!A C dd
c'1/

n
D e

1
p
'1 d�;

which proves the proposition.

3.5. Convergence of the Bergman kernel iteration. In this subsection we fix an inte-
germ > 1 and we prove that the twisted Kähler–Einstein metric !m is the weak limit of iterated
Bergman kernels.

Consider the line bundle

Lp WD .p � 1/.KX C L/C L;

where p is a positive integer such that pL is a line bundle and pE has integer coefficients.
We recall that the triple .X;L; hL/ satisfies the following:

� KX C L D ACE is a Zariski decomposition of the big line bundle KX C L.

� The hermitian metric hL D e��L on the Q-line bundle L is a smooth and has semiposi-
tive curvature, i.e., dd c�L > 0.
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We then endow Lp with the metric given by the weights

(3.16) �m WD .p � 1/

�
�m�1

p
C �E

�
C �L;

where �m�1 is the weight corresponding to the metric on pA defined by (3.11), �E is a singular
weight on OX .E/ such that dd c�E D ŒE� and finally �L is the smooth metric on L satisfying
dd c�L D ‚hL.L/ such that we have equality (3.13).

We write
.`C 1/.KX C Lp/ D KX C `.KX C Lp/C Lp

and then we can define a singular metric h` on the line bundle `.KX C Lp/ by induction on `
in the following manner:

(3.17) h`C1 WD K
�1
`C1;

where
K`C1 WD K.X; .`C 1/.KX C Lp/; h` � e

��m/

is the Bergman kernel of .`C 1/.KX C Lp/ endowed with the metric above. Of course, it
depends on m and p, even if our notation does not reflects this.

In the current subsection we are aiming at the following result, from which Theorem 1.7
will follow easily.

Theorem 3.7. Under the assumptions above, the sequence of renormalized Bergman
kernels .nŠ``Š�nK`/

1
` converges to e�mCp�E as `!C1.

Prior to the proof of this result we are making a few preliminary remarks concerning the
singularities of h`. SinceKX C L D ACE is a Zariski decomposition, one knows that if p is
divisible enough, the multiplication by spE induces an isomorphism

H 0.X; pA/! H 0.X; p.KX C L//:

Therefore all sections s 2 H 0.X; `.KX C Lp// vanish along pE at order at least `. Since A
is semi-ample, there exists a section whose vanishing order along pE is exactly `. A quick
induction shows that every section s 2 H 0.X; .`C 1/.KX C Lp// is square integrable with
respect to h` � e��p .

The Monge–Ampère equation for �m is as follows:

.dd c�m/
n
D e�mC�E��L�

p�1
p
�m�1 d�

given (3.13). The solution �m is not regular enough for what is needed in the arguments to
follow, so we also consider the approximation obtained in Proposition 3.4 for which we have

(3.18) .dd c�m;"/
n
D e�m;"�

p�1
p
�m�1;"��L."2e�E C e�E / d�;

where e��E is the smooth metric on E we fixed in Section 3.2.
The weights

`.�m;" C p�E"/
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are defining a metric on `.KX C Lp/ and therefore the quantity

C` WD inf
X

K`

jsE" j
2¹`pºe`.�m;"Cp�E;"/

is a strictly positive real number, cf. the discussion above.
The proof of Theorem 1.7 relies heavily on the following statement.

Proposition 3.8. For every m fixed, there exists �";` > 0 such that

C` > �";` �
`n

nŠ
� C`�1

and

lim
"!0

lim
`!C1

 Ỳ
kD1

�";k

! 1
`

D 1:

Proof. We have organized our arguments in four main steps.

Step 1: Choice of an appropriate local section u. Let x0 2 X be an arbitrary point.
Let x0 2 U � X be an open subset of X such that the restriction to U of all our bundles
(i.e., pL; pE; : : :) is trivial. We consider the local weights �i for hi cf. Section 3.2.1 such that
�i .x0/ D 0 for all i . We take a coordinate system .zi /iD1;:::;n on U , centered at x0, and we
assume that (3.5) holds. All the local computations to follow are done with respect to this data.

We introduce the quadratic function

h.z/ WD �m;".x0/C 2
X
i

ài .�m;"/.x0/zi C 4
X
i;j

à2i;j .�m;"/.x0/zizj

and the holomorphic section of .1C `/.KX C Lp/jU

u WD
Y

f
dp.1C`/a"

i
e

i � e
1C`
2
hdz ˝ e˝`KXCLp ˝ eLp

written as .n; 0/-form with values in `.KX C Lp/C LpjU . Note that a"i > ai for each index i .
We denote by h" the metric on `.KX C Lp/C Lp defined by the weights

(3.19) `.�m;" C p�E"/C �m C log jsE" j
2¹`pº;

where we recall that

�m D .p � 1/

�
�m�1

p
C �E

�
C �L

was introduced in (3.16). The measure induced by the pointwise norm of u with respect to the
metric (3.19) is equal to

juj2h" D e
.1C`/<.h/

� e�`.�m;"Cp�E;"/��m
Y
jfi j

2dp.1C`/a"
i
e d�

jsE" j
2¹`pº

and it can be reorganized as follows:

(3.20) juj2h" D e
.1C`/.<.h/��m;"// �

Y
jfi j

2�i � e¹`pa
"
i
º�i e�m;"�

p�1
p
�m�1C�E��L d�;

where �i WD dp.1C `/a"i e � p`a
"
i � pai � ¹`pa

"
i º.
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We therefore have the pointwise inequality

(3.21) juj2h" 6 
"Fe
.1C`/.<.h/��m;"/.dd c�m;"/

n

on the set U , where the positive function F and the constant 
" are as follows:

(i) We define 
" WD supU e
p�1
p
j�m�1;"��m�1j. By Proposition 3.4, we have 
" ! 0.

(ii) Let F WD
Q
jfi j

2�i � e¹`pa
"
i
º�i be the function corresponding to the product in (3.20).

We have
F D

Y
jfi j

2.dp.1C`/"cie�dp`"cie/ � e¹`pa
"
i
º�i ;

hence F.0/ 6 1, and supU .F / � 1 is smaller than the diameter of U multiplied with a
bounded constant.

Step 2: Estimate of the L2 norm of u. Let B.r"/ be the Euclidean ball centered at
x0 of radius r" with respect to the fixed Kähler metric !. We have the following inequalities,
which will be proved by a direct computation at the end of this section.

Claim 3.9. For every " > 0 fixed, there exists a radius r" and a sequence a` converging
to 0 (independent of x0 2 X ) such that

(3.22)
.`C 1/n

nŠ

Z
B.r"/

Fe�.`C1/.�m;"�Re.h//.dd c�m;"/
n 6 1C a` for every ` 2 N

and

(3.23) .`C1/n
Z
B.r"/nB.

r"
2
/

Fe�.`C1/.�m;"�Re.h//.dd c�m;"/
n 6 a` for every ` 2 N:

An important point of the claim is that the sequence ¹a`º is independent of x0.
Combined with inequality (3.21), we obtain

(3.24)
.`C 1/n

nŠ

Z
B.r"/

juj2h" 6 1C a` for every ` 2 N

and

(3.25) .`C 1/n
Z
B.r"/nB.

r"
2
/

juj2h" 6 a` for every ` 2 N:

Step 3: Construction of a global section. For every " > 0 fixed, we will construct
in this step a section v`;" 2 H 0.X; .`C 1/p.KX C L// such that v`;".x0/ D u.x0/ together
with an estimate for its L2 norm

.`C 1/n

nŠ
�

Z
X

jv`;"j
2
h`
e��m

uniform with respect to the point x0 2 X .
Let � be a smooth function on X n ¹x0º which equals n log jx � x0j2 near x0. For every

" > 0, we can find a cut-off function �" for B.r"/, namely �" � 1 on B. r"
2
/ and �" � 0 on

X X B.r"/ such that

(3.26) e��jNà�"j2!m;" 6 M" on B.r"/ n B. r"2 /
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for some constant M" independent of x0 2 X . One can easily check that for ` large enough
(depending on "), we have

(3.27) `dd c.�m;" C p�E;"/C dd
c�m;" C dd

c
�
�C log jsE" j

2¹.1C`/pº
�

> dd c�m;"

on X , since dd c�m;" D !m;" is a Kähler metric for each m; ". Thanks to (3.24) we have

.`C 1/n

nŠ

Z
X

j�"uj
2
h"

6 1C a`:

By inequality (3.25) and the construction of �", we haveZ
X

jNà.�"u/j2h";!m;" 6
Z
B.r"/nB.

r"
2
/

e��jNà�"j2!m;" � e
�.`C1/.�m;"�Re.h//.dd c�m;"/

n:

Together with (3.25) and (3.26), we get

.`C 1/n
Z
X

jNà.�`u/j2h";!m;"e
�� 6 a` �M":

Thanks to (3.27), one can solve the Nà-equation and apply Hörmander estimates (see, e.g.,
[7, Corollary 14.3 on p. 86]) for ` large enough (independent of x) to the Nà-closed form

Nà.�"u/ 2 C1.X;ƒn;1T �X ˝E/;

whereE D `.KX C Lp/C Lp is endowed with the hermitian metric h`;". This yields a global,
smooth section u`;" of ƒn;0T �X ˝E D .`C 1/.KX C Lp/ such that

Nàu`;" D Nà.�"u/ and .`C 1/n
Z
X

ju`;"j
2
h"

6 a` �M":

Because of the non-integrability of e�� at x0, one has u`.x0/ D 0. As a consequence, the
section v`;" WD �"u � u`;" 2 H 0.X; .`C 1/.KX C Lp// satisfies the inequality

.`C 1/n

nŠ
�

Z
X

jv`;"j
2
h"

6 1C a`

and we also have v`;".x0/ D u.x0/. By the definition of C` we have

(3.28)
.`C 1/n

nŠ
�

Z
X

jv`j
2
h`
e��m 6 
"

1C a`

C`
:

Step 4: Conclusion. Thanks to (3.28) we obtain that the following inequality:

K`C1 >
C`


".1C a`/

.`C 1/n

nŠ
� e.`C1/.�m;"Cp�E" /jsE" j

2¹.1C`/pº

at x0. Therefore

C`C1 > �";` �
.`C 1/n

nŠ
� C`;

where �";` D .
".1C a`//�1. Although the sequence ¹a`º depends on ", we have

lim
`!C1

 Ỳ
kD1

�";k

! 1
`

D 
"
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since it tends to 0. Therefore

lim
"!0

lim
`!C1

 Ỳ
kD1

�";k

! 1
`

D 1;

and Proposition 3.8 is proved.

It remains to prove Claim 3.9 stated in Step 3.

Proof of Claim 3.9. Up to replacing �m;" by �m;" � Re.h/ (which does not change the
metric dd c�m;"), one can assume that �m;" has no polyharmonic terms of order two or less
in its expansion near x0, and F.x0/ D 1. With respect to local coordinates .zi / centered at x,
one has

�m;" D
X
j;k

aj;kzj Nzk CR.z/;

where R.z/ D O.jzj3/ and the matrix A D .aj;k/ is positive definite. These quantities are
depending on " but the important point is that, when " > 0 is fixed, one can find a constant
C" > 0 independent of the chosen point x such that

jR.z/j 6 C"jzj
3; C�1" In < A < C"In:

The constant C" can be chosen to be commensurable to supX .j!m;"j! C jr
!!m;"j/.

After the change of variable w WD
p
`C 1

p
A � z and up to increasing the constant C"

a little, the integral we have to bound is dominated byZ
jwj26.`C1/r2"

e�jwj
2.1�C"`

� 1
2 jwj/.1C C"`

� 1
2 jwj/ �

.dd cjwj2/n

nŠ
:

Now, if one chooses r" < 1
2C"

, one sees that the integrand is less than 2e�
jwj2

2 , hence one
can apply the dominated convergence theorem to conclude that our integral is asymptotically
dominated byZ

Cn
e�jwj

2

�
.dd cjwj2/n

nŠ
D

1

�n

Z
Cn
e�jwj

2

i dw1 ^ d Nw1 ^ � � � ^ i dwn ^ d Nwn D 1

which concludes the proof of (3.22).
As for (3.23), the same change of variable reduces our integral toZ

1
4
.`C1/r2"6jwj26.`C1/r2"

e�jwj
2.1�C"`

� 1
2 jwj/.1C C"`

� 1
2 jwj/ �

.dd cjwj2/n

nŠ

which, up to increasing C", is dominated by

C"

Z
1
4
.`C1/r2"6jwj26.`C1/r2"

e�
`r2"
8 � .dd cjwj2/n D O.`ne�

`r2"
8 /:

Estimate (3.23) follows.

We will also need an integral upper estimate of K`; it follows easily from the definition
of the Bergman kernel.
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Proposition 3.10. One has the following upper bound:

lim sup
`!C1

Z
X

nŠ.`Š�nK`/
1
` e��p 6 .pA/n:

Proof. First, we observe that .`Š�nK`/
1
` e��p is a volume form, so that the claim is

licit. Let .u1; : : : ; uN`/ be an orthonormal basis of H 0.X; `.KX C Lp// with respect to the
Bergman L2 metric K�1

`�1
e��p . Since `p.KX C L/ D `pAC `pE is the Zariski decompo-

sition of `p.KX C L/, every (pluri-)section is L2 with respect to the Bergman metric. In
particular, we have

(3.29) N` WD dimH 0.X; `pA/ D
.pA/n

nŠ
� `n.1CO.`�1//

by the Riemann–Roch formula. One hasZ
X

K` �K
�1
`�1e

��p D N`:

Therefore, applying Hölder’s inequality with p D ` and q D `
`�1

, one getsZ
X

K
1
`

`
� e��p 6

�Z
X

K` �K
�1
`�1e

��p

� 1
`

�

�Z
X

K
1
`�1

`�1
e��p

� `�1
`

6 N
1
`

`
�

�Z
X

K
1
`�1

`�1
e��p

� `�1
`

:

By induction, one gets Z
X

K
1
`

`
� e��p 6

 Ỳ
iD1

Ni

! 1
`

:

Now, thanks to (3.29), the right-hand side of this inequality is equal to

.pA/n

nŠ
� .`Š/

n
`

�
1CO

�
log `
`

��
which concludes the proof of the proposition.

After all these preliminary statements we can prove the main result of this subsection.

Proof of Theorem 3.7. By Proposition 3.10 combined with the Jensen inequality, we
have that ¹.`Š�nK`/

1
` º
C1

`D1
is a family of upper bounded psh weights. Therefore, to prove the

theorem, it is sufficient to prove that any convergent subsequence of ¹nŠ.`Š�nK`/
1
` º
C1

`D1
con-

verges to e�mCp�E .
Let ¹nŠ.`sŠ�nK`s /

1
`s º
C1
sD1 be a convergent subsequence of ¹nŠ.`Š�nK`/

1
` º
C1

`D1
and let �

be the limit. Thanks to Proposition 3.8, one infers

nŠ.`Š�nK`/
1
` >

 Ỳ
kD1

�";k

! 1
`

� jsE" j
2¹`pº
` e�m;"Cp�E" :
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Letting ` tend to C1, and then letting " tend to zero, item (3.9) in Proposition 3.17 and
Proposition 3.8 yield

lim inf
`!C1

nŠ.`Š�nK`;m/
1
` > e�mCp�E :

Therefore, we have

(3.30) � > e�mCp�E :

Note thatZ
X

�e�.p�1/.
�m�1
p
C�E/e��L D lim

`!C1

Z
X

nŠ.`sŠ
�nK`s ;m/

1
`s e�.p�1/.

�m�1
p
C�E/e��L :

Combining this with Proposition 3.10, we getZ
X

�e�.p�1/.
�m�1
p
C�E/e��L 6 .pA/n D

Z
X

e�mCp�E � e�.p�1/.
�m�1
p
C�E/e��L ;

where the last equality comes from (3.12). Together with (3.30), we get � D e�mCp�E and the
theorem is proved.

Remark 3.11. The convergence .`Š�nK`/
1
` !

e�mCp�E
nŠ

has been proved for a fixed
fiber Xy , but it readily implies convergence in L1loc.X

ı/. Indeed, as .Any/ is independent of
y 2 Y ı, Proposition 3.10 coupled with the Jensen inequality show that the weights of the
metric .`Š�nK`/�

1
` are uniformly bounded above locally near X XX0, hence the pointwise

convergence almost everywhere on Xı implies convergence in L1loc.X
ı/.

Now, we can finally give the proof of Theorem 1.7.

Proof of Theorem 1.7. Thanks to the reduction steps, we can suppose that on the fibers
over y 2 Y 0, we have a Zariski decomposition

.KX=Y C L/jXy D Ay CEy ;

where A is semi-ample and big, Ey has snc support and hL is smooth with semipositive
curvature.

We first prove by induction that for every m 2 N, �m C p�E is a psh weight on Xı.
For m D 1: We get a sequence of metrics .h`;1/`>1 on p`.KX C L/ defined by (3.17).

Recall that �0 D �A is the weight of !A. Thanks to [5, Theorem 0.1], h1;1 has positive cur-
vature on the total space X . We suppose by induction that h`;1 has positive curvature. Then
h`;1 � e

�.p�1/.
�A
p
C�E/e��L has also positive curvature. By applying [5, Theorem 0.1] again,

h`C1;1 has positive curvature on the total space X . As a consequence, h`;1 has positive cur-
vature on the total space X for all `. Together with Theorem 3.7, the limit �1 C p�E is a psh
weight on X0.

Then we apply the same process again tom D 2, and get a sequence of metrics .h`;2/`>1
on p`.KX C L/with positive curvature, and therefore the limit �2 C p�E is psh. By induction
on m, we know that �m C p�E is psh for any m > 1.

We can now prove the theorem. Thanks to Proposition 3.5 and Remark 3.6, �m C p�E
converges to the relative Kähler–Einstein metric of .Xı; L; �L/. As �m C p�E has positive
curvature, the relative Kähler–Einstein metric has also positive curvature.
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3.6. The orbifold case. In this subsection, we would like to discuss an extension of
Theorem 1.7 to a particular case where the weight �L could have positive Lelong numbers.
More precisely, we have the following:

Proposition 3.12. Let p W X ! Y be a Kähler fiber space and let

B D
X
i2I

�
1 �

1

mi

�
Bi

be an effective divisor such that:

� The Q-line bundle KX=Y C B is p-ample.

� For y 2 Y generic, BjXy has snc support.

� The numbers mi > 1 are integers such that .mi ; mj / D 1 whenever Bi \ Bj ¤ ;.

Then the relative Kähler–Einstein metric is positively curved and extends canonically through
the singular locus of p.

Proof. The same strategy as for the proof of Theorem 1.7 applies, modulo the fact that
�m;" from (3.18) are to be replaced by their orbifold counterparts, so that we have

.dd c�m;"/
n
D e�m;"�

p�1
p
�m�1;"��B ."2e�E C e�E / d�;

where �B is the canonical singular weight on the Q-line bundle OX .B/. The current dd c�m;"
defines an orbifold Kähler metric, that is, its pull-back to local uniformizing charts near the
support of B becomes a genuine Kähler metric. In this setting, a new problem arise (due to
the presence of singularities): the peak sections from Proposition 3.8 have to be replaced by
orbifold peak sections. One way to bypass this is to use the orbifold Bergman kernel expan-
sion due to Ross and Thomas [30], see also Dai, Liu and Ma [15]. Instead of considering
the Bergman kernels K` on `.KX=Y C B/, one considers suitable linear combinations of the
Bergman kernels of the form

Pmi�1
˛D0 K`C˛. These combinations, unlike K` alone, turn out to

admit the same expansion as in the smooth case at order zero, when `!C1. This is where
the assumption on the arithmetic relation between the integers mi is important. The rest of the
proof of Theorem 1.7 can be applied almost without any change to conclude.

Remark 3.13. It is likely that combining the ideas above with the techniques in [30]
may allow us to weaken the assumption that KX=Y C B is p-ample and only assume that
KX=Y C B is p-big admits a relative Zariski decomposition on X .

4. The case of intermediate Kodaira dimension

4.1. Iitaka fibration and associated Kähler–Einstein metric. We will first consider
the absolute case. Let X be a compact Kähler manifold and let B be a Q-effective divi-
sor such that the pair .X;B/ is klt and such that �.KX C B/ > 0. Let Z be the canonical
model of .X;B/. We consider f W X Ü Z the Iitaka fibration induced by the linear system
jm.KX C B/j form large and divisible enough. Thanks to [8] in the projective case and [20] for
the Kähler case the space Z is normal. After desingularisation f induces a fibration between
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two compact Kähler manifolds. For simplicity we will denote the new map by f W X ! Z. In
general the torsion-free sheaf f?.m.KX=Z C B// is not locally free. This is the case for the
reflexive hull .f?.m.KX=Z C B///??.

We will now recall the definition of the Narasimhan–Simha metric on the line bundle
.f?.m.KX=Z C B///

??.

Definition 4.1. Let Z0 � Z be a locus such that f is smooth over Z0 and BjXz is klt
for every z 2 Z0. Let z 2 Z0 and let s 2 .f?.m.KX=Z C B///z D H 0.Xz; mKXz CmB/.
We define the Narasimhan–Simha metric

ksk2hm WD

�Z
Xz

jsj
2
m

hB

�m
;

where hB is the canonical singular hermitian metric with respect to the divisorB . Thanks to [5],
hm can be canonically extended as a possible singular metric on .Z; .f?.m.KX=Z C B///??/.
We call it the m-th Narasimhan–Simha metric.

Remark 4.2. We can easily check that the weight of the Narasimhan–Simha metric hm
is locally integrable over the locus where f?.m.KX=Z C B// is locally free. Moreover, the pair
.Z; 1

m
.f?.m.KX=Z C B///

??; h
1=m
m / is independent of the choice of m, namely for any two

m1; m2 large and sufficiently divisible, we have an isometry�
1

m1
.f?.m1.KX=Z C B///

??; h
1
m1
m1

�
�Q

�
1

m2
.f?.m2.KX=Z C B///

??; h
1
m2
m2

�
:

By construction, the pair .Z; 1
m
.f?.m.KX=Z C B///

??; h
1
m
m / satisfies conditions (1) and

(2) of Definition–Proposition 1.1. However, it does not satisfy in general (3), roughly because
of the codimension two subsets of the base Z whose f -inverse image have codimension one.
This situation can be improved by a trick due to [38] which we now recall. By Hironaka’s
flattening theorem cf. [38, Lemma 7.3], we can find a morphism f 0 W X 0 ! Z0 between two
compact Kähler manifolds which satisfies the commutative diagram

X 0 Z0

X Z

�

f 0

�

f

such that the morphisms �;� are bimeromorphic, and moreover, each hypersurface W � X 0

such that codimY 0 f 0.W / > 2 is �-contractible, i.e., codimX �.W / > 2.
We denote by OB the strict transform of B by � , and write

KX 0 C OB D �
�.KX C B/C

X
aiEi :

We set B 0 WD OB C
P
ai<0

.�ai /Ei . Then .X 0; B 0/ is klt. Let us choosem large enough so that
Fm WD f

0
?.m.KX 0=Z0 C B

0// is non-zero. Then Fm is a torsion free sheaf of rank one on Z0

and its reflexive hull F ??
m is a line bundle that we can equip with the m-th Narasimhan–Simha

metric hm. Thanks to Remark 4.2, the following Q-line bundle and the metric are independent
of the choice of m:

L WD
1

m
f 0?.m.KX 0=Z0 C B

0//??; h WD h
1
m
m :

Let � be the weight of h.
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We have the following statement, which connects our current setting with Definition–
Proposition 1.1.

Proposition 4.3. In the above setting, the following holds:

(i) i‚�.L/ > 0 on Z0.

(ii) KZ0 C L is a big Q-line bundle and for any m 2 N sufficiently divisible, the algebraM
p>0

H 0.Z0; pm.KZ0 C L//

is finitely generated.

(iii) For every p 2 N sufficiently divisible and every s 2 H 0.Z0; p.KZ0 C L//, we haveZ
Z0
jsj

2
p e�� < C1:

Proof. The first item is a direct consequence of [5].
For the second term, let m 2 N sufficiently divisible such that for every p 2 N, the

algebraH 0.X 0; pm.KX 0 C B
0// is generated by

Np
H 0.X 0; m.KX 0 C B

0//. By the construc-
tion of L, there exist two effective divisors EC and E� on X 0 such that

(4.1) m.KX 0 C B
0/CE� D m � .f

0/�.KZ0 C L/CEC;

and for every � 2 H 0.X 0; m.KX 0 C B
0//, � vanishes over EC. As a consequence, for every

s 2 H 0.X 0; pm.KX 0 C B
0//, s vanishes over pŒEC�. Note that .f 0/�.E�/ is supported in the

non-locally free locus of f 0?.m.KX 0=Z0 C B
0//. Then E� is �-contractible. Together with the

above argument, for every p 2 N, we have the natural isomorphisms

H 0.Z0; pm.KZ0 C L// D H
0.X 0; pm.KX 0 C B

0/C pE�/

D H 0.X; pm.KX C B//:

As a consequence, KZ0 C L is big and the algebraM
p>0

H 0.Z0; pm.KZ0 C L//

is finitely generated.
For the third term, let sEC be the canonical section of EC and let hB 0 (resp. hE�) be the

canonical singular metric on B 0 (resp. E�). As p is sufficient divisible, we can assume that
p1 WD

p
m
2 N. Thanks to (4.1), we have

.f 0/�.s/˝ s
˝p1
EC
2 H 0.X 0; p1.mKX 0 CmB

0
CE�//:

By the definition of the Narasimhan–Simha metric, we haveZ
Z0
jsj

2
p e�� D

Z
X 0
j.f 0/�.s/˝ s

˝p1
EC
j

2
p

hB0 ;hE�
:

Note that E� is �-contractible, .f 0/�.s/˝ s˝p1EC
vanishes along E� of order at least p1E�.

Together with the fact that B 0 is klt, we haveZ
X 0
j.f 0/�.s/˝ s

˝p1
EC
j

2
p

hB0 ;hE�
< C1:

The proposition is proved.
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Remark 4.4. Using the above argument, we know that e�� is in L1loc.Z
0 n f 0.E�//.

Together with Proposition 4.3, we get:

Corollary 4.5. With the above notation, Z0 admits a natural Kähler–Einstein metric
!KE in the sense of Definition 1.1. This metric satisfies

(4.2) Ric!KE D �!KE C‚�.L/ on Z0:

We call !KE the Kähler–Einstein metric associated to the Iitaka fibration of .X;B/.

4.2. Relation with the canonical metrics. Let X be a compact Kähler manifold and
let B be a Q-divisor with snc support such that .X;B/ is klt. We suppose that �.KX C B/ > 1.
Thanks to [8,20], the canonical model Z of .X;B/ is normal. After blowing up the indetermi-
nacy locus of the Iitaka fibration, we can suppose that the Iitaka fibration of KX C B induces
a morphism f W X ! Z and there is an ample Q-line bundle A on Z such that

KX C B D f
�ACEX

is a Zariski decomposition for some effective Q-divisorEX with normal crossing support onX .
In that context, the analogue of Kähler–Einstein metrics for the pair .X;B;EX /, sometimes
called canonical metrics, are objects that are singular metrics !can on Z satisfying a “canoni-
cal” Monge–Ampère equation. They were first introduced by Song–Tian when B D EX D 0
(see [34]) and later generalized by Eyssidieux, Guedj and Zeriahi [19, Definitions 2.2 and 2.7].

Let us recall the definition of the canonical metric in this setting. One first picks a smooth
hermitian metric hA D e��A on A with positive curvature � WD dd c�A. Then one introduces
a measure �hA;hE on X by setting

�hA;hE WD
.� ^ N�/

1
N e��B

j� j
2
N

f �hA;hE

;

where � is a local trivialization of N.KX C B/ for N divisible enough, �B is the canoni-
cal singular weight on B and hE is the canonical singular metric on E. Finally, one defines
!can WD �C dd

c'can as the unique positive current on Z with bounded potentials such that

(4.3) .�C dd c'can/
dimZ

D e'canf��hA;hE :

Note that the singularity of hE gives rise the zero locus of �hA;hE . One can check that the
measure f��hA;hE has L1C" density with respect to a smooth volume form, cf. [19, Lem-
ma 2.1]. Moreover, the canonical metric !can is independent of the choice the hermitian met-
ric hA, cf. [19, Lemma 2.4].

By applying the construction in Section 4 to f W X ! Z, we can find a morphism
f 0 W X 0 ! Z0 between two compact Kähler manifolds and satisfies the commutative diagram

X 0 Z0

X Z

�

f 0

�

f
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such that the morphisms �;� are bimeromorphic, and moreover, each hypersurface W � X 0

such that codimY 0 f 0.W / > 2 is �-contractible, i.e., codimX �.W / > 2. Following the nota-
tions in Proposition 4.3, for m large enough, we can equip L WD 1

m
f 0?.m.KX 0=Z0 C B

0//??

with the Narasimhan–Simha-type metric e�� . Thanks to Corollary 4.5, we can find the “NS-
type” Kähler–Einstein metric !KE on Z0 which satisfies

Ric!KE D �!KE C
i

2�
‚�.L/ on Z0:

We now establish a relation between the Kähler–Einstein metric !KE and the canonical
metric !can.

Proposition 4.6. With the notation above, let !KE be the Kähler–Einstein metric on Z0

solution of (4.2) and let !can be the canonical metric on Z solution of (4.3). Then one has
��!KE D !can.

Proof. Recall that by (4.1), we have

(4.4) m.KX 0 C B
0/CE� D .f

0/�.m.KZ0 C L//CEC;

and by construction, we have

m.KX 0 C B
0
�EX 0/ D .f

0
ı �/�mA

for some Q-effective divisor EX 0 such that �?.EX 0/ D EX .
We first establish the relation between ��A and KZ0 C L. Remember that

f 0�OX 0.kEC/ ' OZ0

for any integer k such that kEC has integral coefficients. We deduce that

m.KZ0 C L/ D �
�.mA/˝ f 0�.mEX 0 CE�/:

In particular, we get that f 0�.mEX 0 CE�/ is a locally trivial sheaf of rank one, hence associated
to a divisormEZ0 ; it is clearly effective and�-exceptional, as Supp.f 0/�.mEX 0/���1.Zsing/

and codimZ0 f 0.E�/ > 2. Then we have the Zariski decomposition

(4.5) KZ0 C L �Q ��ACEZ0 :

By construction, we have f 0�.mEZ0/CEC D mEX 0 CE�.
Now, take U � Z0 a small coordinate open subset, and let e��mA 2 H 0.U; ��mA/

and emEZ0 2 H
0.U;mEZ0/ be trivializations of ��mA and mEZ0 , respectively. Let dz be

a trivialization of KZ0 over U . They induce a trivialization e 2 H 0.U;mL/ of mL such that

(4.6) dz˝m ˝ e D e��mA ˝ emEZ0 :

Set e�'��A WD je��mAj
2
m

��mhA
, e�'EZ0 WD jemEZ0 j

2
m

e
��
mE0

Z

and e�' WD jej
2
m

e��
. Let

� WD .f 0/�e��mA 2 H
0.f 0�1.U /;m.KX 0 C B

0
�EX 0//:

Thanks to (4.4) and (4.6), we have

� WD � ˝ .f 0/�.emZ0/˝ sEC 2 H
0.f 0�1.U /;m.KX 0 C B

0/CE�/
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and

(4.7) e�'.z/ D

Z
X 0z

j� j
2
m e��B0�

1
m
�E� D e�'EZ0 �

Z
X 0z

j� j
2
m e��B0C�EX0 :

Note that the canonical measure � onZ0 has density with respect to the Lebesgue measure
d� D jdzj2 given by the formula

d�

d�
.z/ D

Z
X 0z

.� ^ N�/1=me��B0C�EX0

j� j
2
m

f 0���hA

D e'��A
Z
X 0z

j� j
2
m e��B0C�EX0

for z 2 Z0 generic. Together with (4.7), we get

d�

d�
D e'��A�'C'EZ0 :

Therefore, ! WD ��!can C ŒmEZ0 � satisfies

Ric! D ���!can C dd
c' � ŒEZ0 � D �! C

i

2�
‚�.L/:

As ! 2 c1.KZ0 C L/ has minimal singularities by the Zariski decomposition (4.5) and satisfies
the same Monge–Ampère equation as !KE, one deduces that ! D !KE, i.e.,

!KE D �
�!can C ŒEZ0 �:

As EZ0 is �-exceptional, the proposition is proved.

Remark 4.7. The proof of Proposition 4.6 above shows the more precise identity

!KE D �
�!can CEZ0

for some explicit divisor EZ0 on Z0.

4.3. Relative Kähler–Einstein and canonical metrics, Main Theorem. To finish this
section, we now discuss the positivity of the relative Kähler–Einstein or the canonical metrics
when the fiber is of intermediate Kodaira dimension.

Theorem 4.8. Let p W X ! Y be a projective fibration between two Kähler manifolds
of relative dimension n and let B be an effective klt Q-divisor on X . We assume that for
a generic fiber Xy , the log Kodaira dimension satisfies �.KXy C By/ > 0. Let f W X Ü Z

be the relative Iitaka fibration ofKX=Y C B , and let f 0 W X 0 ! Z0 be a birational model of f
such that X 0 and Z0 are smooth.

X 0 Z0

X Z

Y

f 0

f

p

For y generic, let !can;y be the canonical metric on Z0y of the pair .X 0y ; B
0
y/; it induces

a current !ıcan over the smooth locus of Z0 ! Y .
Assuming that Conjecture 1.4 holds, then the current !ıcan is positive and extends canon-

ically to a closed positive current on Z0.
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The proof of Theorem 4.8 consists mostly in putting together all the constructions ex-
plained above. By using [8, 20], the canonical ring

R.Xy ; By/ D
M
m>0

H 0.Xy ; bm.KXy C By/c/

is finitely generated. Together with the fact that h0.Xy ; m.KXy C BjXy // is constant with
respect to y 2 Y ı for some m large enough, one can construct the relative Iitaka fibration
f W X Ü Z WD Proj.p�.m.KX=Y C B//. Thanks to the Section 4.2, we can find a desingu-
larization f 0 W X 0 ! Z0 fitting the commutative diagram

X 0 Z0

X Z

Y

�

f 0

�

q0

f

p q

such that we have an f 0-Zariski decomposition over Y0

KX 0 C B
0
�Q .f 0 ı �/�ACE on .f 0/�1.Y0/;

where A is q-ample.
Let

q0 WD q ı � W Z0 ! Y

be the projection to the base. Each fiberZ0y for y 2 Y ı can be endowed with a canonical metric
!can;y 2 c1.�

�Ay/ and a Kähler–Einstein metric !KE;y 2 c1.KZ0y C Ly/, where Ly WD LjZ0y
is the restriction of the Q-line bundleL WD 1

m
f 0�.m.KX 0=Z0 C B

0//�� toZ0y , endowed with the
corresponding restriction of the Narasimhan–Simha metric on L. In particular, these fiberwise
metrics induce singular hermitian metrics e��can on ��Ajq�1.Y ı/ and e��KE on Ljq0�1.Y ı/,
respectively. As seen in Section 4.2, there exists a �-exceptional effective divisor EZ0 on Z0

such that �KE D �can C ŒEZ0 �.
Assuming Conjecture 1.4, e��KE is a positively curved metric on .KZ0=Y C L/jq0�1.Y ı/

that extends canonically to a positively curved metric on KZ0=Y C L on the whole Z0. As �can

comes from Z and EZ0 is �-exceptional, it follows that e��can is a positively curved metric on
��Ajq0�1.Y ı/ that extends canonically to Z0. This proves Theorem 4.8.
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