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Variation of singular Kdhler—Einstein metrics:
Positive Kodaira dimension

By Junyan Cao at Nice, Henri Guenancia at Toulouse and Mihai Pdun at Bayreuth

Abstract. Given a Kihler fiber space p : X — Y whose generic fiber is of general
type, we prove that the fiberwise singular Kidhler—Einstein metric induces a semipositively
curved metric on the relative canonical bundle Ky,y of p. We also propose a conjectural
generalization of this result for relative twisted Kéhler—Einstein metrics. Then we show that
our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we
explain the relevance of our conjecture for the study of fiberwise Song—Tian metrics (which
represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not
necessarily maximal Kodaira dimension).

Introduction

Let p : X — Y be a Kihler fiber space. By this we mean that p is a proper, surjective
holomorphic map with connected fibers such that the total space X is Kéhler. Important ques-
tions in birational geometry (such as, e.g., litaka Cy,;, conjecture) are treated by investigating
the properties of direct images

(0.1) px(mKy;y),

where m is a positive integer, and Ky,y := Kx — p*(KYy) is the relative canonical bundle
of the map p. In other words, one considers the variation of the pluricanonical linear series
H%(Xy,mKxy|x,) for y € Y and some fixed m >> 0.

In this article we will adopt a slightly different point of view by working with an object
which “encodes” the asymptotic behavior of the entire canonical ring ,, p«(mKx,y). If the
generic fiber of p is of general type, then this turns out to be the singular Kéhler-Einstein met-
ric. The direct image (0.1) is positively curved, and our main concern in this article is to show
that the same holds true for the metric induced on Ky, y by fiberwise singular Kéhler-Einstein
metrics.
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General set-up and main results. Let p : X — Y be a Kihler fiber space. We will
systematically use the notation Y'° C Y for a set contained in the regular values of the map p
such that the complement ¥ \ Y ° is analytic. Let X° := p~1 (Y °) be its inverse image.

Let (L,hr) be a Q-line bundle endowed with a singular metric /7, whose curvature
current is positive, i.e.,

Op, (L) = 0.
We assume for the moment that the relative adjoint bundle Kx,y + L is p-big. In many impor-
tant geometric settings (including the case d(hr) = Ox) for every y € Y general enough there
exists a unique closed positive current wig,y € ¢1(Kx, + L) such that

0.2) Ric wkg,y = —wkE,y + Op, (L).

The precise framework for (0.2) to hold will become clear in Section 1. In what follows wxg, y
will be referred to as singular Kihler—Einstein metric by analogy with the case L trivial and
Kx, ample.

The results we establish in this article are converging towards the following general
problem.

Conjecture 0.1. In the above set-up, the relative Kéhler-Einstein metrics (wkg,y)yeye
induce a metric e ~?<& on Kyo /ye + L|xe which is positively curved and which extends canon-
ically across X ~ X° to a positively curved metric on Ky,y + L.

As consequence of important approximation results in pluripotential theory we show that
a much more general form of the conjecture above would follow provided that one is able to
deal with the case where ®,, (L) equals the current of integration along a divisor with simple
normal crossings support and coefficients in (0, 1) plus a smooth form, cf. Theorem 1.6.

Our main theorem states the following.

Theorem A. Conjecture 0.1 holds true if the Lelong numbers of the curvature current
corresponding to hy, are zero on the p-inverse image of a Zariski open subset of Y .

For example, if L = 0, then Theorem A shows that the metric on Ky ,y induced by the
fiberwise KE current is positively curved.

One of the main motivations for Conjecture 0.1 will become clear from the context we
next discuss. Let p : X — Y be a Kihler fiber space, and let B be an effective Q-divisor
on X with coefficients in (0, 1) such that By, has simple normal crossings support for y
generic. Assume furthermore that Ky, + B|x, has positive Kodaira dimension. Here we use
the notation “B” rather than L in order to emphasize that the metric is fixed.

There exists a relative version of the so-called canonical metric introduced by Song
and Tian [34] and generalized by Eyssidieux, Guedj and Zeriahi [19]. It is defined on the
base Z’ of a birational model ¢’ : X’ — Z’ of the relative Iitaka fibration ¢ : X --> Z over
Y, cf. Section 4 for more details. In case of a family p whose generic fiber has maximal
Kodaira dimension, the metric in [34] coincides with the singular K&hler—Einstein metric (up
to a birational transformation).

Theorem B. Let p : X — Y be a Kiihler fiber space such that for y generic,
k(Kx, + By) > 0.
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Let [ : X --> Z be the relative litaka fibration of Kx;y + B, and let f' : X' — Z' a bira-
tional model of f such that X' and Z' are smooth.

x —

| |

------------- y Z

\/

Let wean,y be the canonical metric on Z/ of the pair (X!, B!, ) it induces a current Oonn
the smooth locus of Z' — Y. Moreover we assume that Conjecture 0.1 holds true. Then the
current w3, is positive and extends canonically to a closed positive current on Z'.

over

Coming back to the absolute case, let (X, B) be a compact Kéhler kit pair such that
k(X,B) > 0andlet f' : X" — Z’ be a bimeromorphic model of the Titaka fibration of Kx + B
such that X" and Z’ are smooth. On top of the canonical metric w¢,, on Z’, another important
metric comes into play which it related to the direct image f,(m(Kx:/z' + B)) for m large
and d1V1s1ble enough. More precisely, there exist blmeromorphlc modifications 7 : X — X/,

: Z — Z' as well as a Kihler fiber space f X—>Z fitting the commutative diagram

x-7'.7
|
X’ —> A

such that there exists an “NS-type” Kahler—Einstein metric wkg on Z. This means that the
Narasimhan—Simha /g on the line bundle L := n% Sfem(Kg, 5 + B))** enjoys some partic-
ular integrability properties so that the equation

Ric wkg = —wkg + 1 Op (z)

is satisfied on Z in the sense of Definition 1.1, cf. Section 4.1 for more details. The following
result relates the “NS-type” Kihler—Einstein metric wgg on Z and the canonical metric wcay
on Z', cf. Proposition 4.6.

Proposition C. With the notation above, the Kdhler—Einstein and canonical metrics are
related by the following identity holding on Z’:

MxWKE = Wcan-

Previously known results. There are basically two types of techniques used in order to
address the questions we are interested in here, due to Schumacher and Tsuji in [31] and [37],
respectively. The former concerns the smooth case (e.g., Kx, ample) and it is based on a max-
imum principle. The later consists in showing that non-singular KE metrics can be obtained by
an iteration scheme involving pluricanonical sections normalized in a specific way. Both meth-
ods have their advantages and flaws. For example, it is difficult to conceive that Schumacher
method can be used in the presence of base points. Also, at first sight the method of Tsuji looks
very general. However, it uses in an essential manner the asymptotic expansion of Bergman
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kernels, which depends on at least two derivatives of the metric. This is the main reason why
we cannot deal with the general case of a line bundle (L, #7) as in Conjecture 0.1.

In the following paragraph we recall the definitions of relative (singular) Kéhler—Einstein
metrics and collect some earlier results.

Relative singular Kihler—Einstein metrics. A singular Kihler—Einstein metric is
a generic term to refer to a non-smooth, closed, positive, (1, 1)-current w that satisfies a Kdhler—
Einstein-like equation in a weak sense. Among the most natural examples are: Kihler—Einstein
with conic singularities, mentioned above, cf. also [11, 12, 27], Kihler—Einstein metrics on
singular varieties, cf. [2, 3, 18]. These metrics are obtained by solving an equation of the form

Rico =Aw + T

on a compact Kihler manifold X, where T is a closed (1, 1)-current (e.g., the current of inte-
gration along a R-divisor with coefficients in ]—oo, 1]). The cohomology class o« € H "1 (X, R)
of w is determined by the equation unless A = 0, and it may be degenerate. That is, instead of
being Kéhler, « may be semipositive and big, or even merely big. The singularities of @ may
then appear because of the singularities of 7' or the non-Kihlerness of {w}. The singularities of
the first type are rather well known when 7 is a current of integration along an effective divisor
with snc support (one gets conic or cusp singularities, cf., e.g., [24,28,35]), but they are mostly
mysterious in the second case with a few numbers of exceptions like when X is a resolution of
singularities of a variety Y with orbifold singularities, or isolated conical singularities, cf. [26],
and « is the pull-back of a Kihler class on Y.

Earlier results. If the generic fiber has ample canonical bundle, that is, if Ky, is ample
for any y € Y°, then it follows from the Aubin—Yau theorem [1,39] that one can endow each
smooth fiber with a Kihler-Einstein metric with A = —1. This induces a metric on Ky, y|xe
whose curvature form wgy is smooth (by the Implicit Function Theorem). Moreover, the restric-
tion wgg|x, coincides with the KE metric. The surprising important fact is that wgg = 0 on X°,
as it has been showed by Schumacher [31] and independently by Tsuji [37].

* Following Schumacher’s strategy, one obtains in [29] a generalization of this result to
the Kihler setting (including the extension property) only assuming that Ky, + {B}|x,
is relatively ample for some smooth, semipositive, closed (1, 1)-form B on X.

Based on this approach again, the second name author studied the conic analogue of these
questions, cf. [25]: let B = >_b; B; be a divisor with snc support on X and coefficients in
(0, 1) and assume that Ky, + Blx, is ample for y € Y°, the relative conical Kéhler-Einstein
metric solution of Ric wy = —wy, + [B|x, ] induces a singular (1, 1)-current wgg on X ° that is
positive, and extends canonical to a positive current wgg € ¢1(Kx/y + B).

We refer to [10, 13, 32] for other applications of this method.

* In the case of a manifold with ample canonical bundle, Tsuji observes that wgp is the
limit of relative Bergman kernels whose variation is known to be semipositive cf. [5].
The metric induced by fiberwise Bergman kernels extends, cf. [5]. Therefore wgy, extends
canonically to a current wgg € ¢1(Ky /y) on X. See [36] for potential applications.

* In a more general singular case Kx, + B) big, the fiberwise Kéhler-Einstein metrics
pick up singularities that are yet to be understood, and neither of the previous approaches
seem to work.
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About the proof. The strategy of the proof of Theorem A is explained in detail at the
beginning of Section 3 and consists in realizing the singular Kéhler—Einstein metric as a limit
of suitably chosen and renormalized Bergman kernels, as those are known to vary in a psh way
by [5]. Although the global scheme of our arguments is similar to [37], the level of difficulties
induced by the presence of base points in the problems we are treating here is far more severe. In
order to overcome them, one has to resort to using numerous intricate approximation processes.
Ultimately, our feeling is that the room to manoeuvre is so small that Theorem A is probably
close to the optimal result that our method can reach, aside from the orbifold case discussed in
Section 3.6.

Acknowledgement. We would like to thank Sébastien Boucksom, Tristan Collins,
Vincent Guedj, Christian Schnell, Song Sun, Valentino Tosatti and Botong Wang for numer-
ous useful discussions about the topics of this paper. This work has been initiated while Henri
Guenancia was visiting KIAS, and it was carried on during multiple visits to UIC as well as
to IMJ-PRG:; he is grateful for the excellent working conditions provided by these institutions.
During the preparation of this project, the authors had the opportunity to visit FRIAS on several
occasions and benefited from an excellent work environment.

1. Pluricanonical sections and singular Kéihler-Einstein metrics

Let X be a compact Kéhler manifold of dimension n. Let (L, A7) be a Q-line bundle
endowed with a possibly singular hermitian metric 47, = e =%~ with positive curvature, that is,

@hL(L) = ddC¢L >0

in the sense of currents.

We now recall the definition of Kidhler—Einstein metric for the pair (X, L) in case Ky + L
is big. This definition has been given by [9, Section 6] when L = 0, and can be easily adapted
to our slightly more general context.

Definition-Proposition 1.1. Let X be a compact Kéiihler manifold and (L, hp) a Q-line
bundle endowed with a singular hermitian metric hy, = e~ PL with positive curvature, that is,
Op, (L) = 0 in the sense of currents. We assume moreover that:

(1) The Q-line bundle Kx + L is big.
(2) The algebra R(X,L) = @, HO(X,|m(Kx + L)]) is finitely generated.
(3) Forevery p € N and everys € H(X, p(Kx + L)), we have Ix |s|%e_¢L < +o0.

Then there exists a unique closed, positive (1, 1)-current wgg on X which satisfies the following
conditions:

(1) The current wgg belongs to the big cohomology class c1(Kx + L) and it has full mass,
that is, [y (wkg) = vol(Kx + L).

(i1) The current wgg satisfies the following equation in the weak sense of currents

. i
Ric wgg = —wkg + z—Op, (L).
2w
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Remark 1.2. Some remarks are in order.

(a) An important feature of this definition is that it is birationally invariant. More pre-
cisely, if (X, L, e~®L) satisfies conditions (1)~(3) and if 7 : X’ — X is any birational proper
morphism, then so does (X', L', e~?"), where L' := n*L, ¢ := m* ¢, . Furthermore, if wi
is the Kahler-Einstein metric of (X', L', e™%2’), then wi = n*wke + [Kx//x]-

(b) Conditions (2) and (3) are automatically satisfied if the multiplier ideal sheaf of /i is
trivial, that is, if (i1 ) = Ox. This is clear for (3). As for (2), we use the following argument.
As Kx + L is big, X is automatically projective and we have

Kx +L=gA+FE

for some ample Q-line bundle A and an effective Q-divisor E. From the solution of the
openness conjecture, cf. [4,21], for some mg large enough, we have

(1.1) J(e P ma%E) = oy

As the question is birationally invariant, by Demailly’s regularization theorem, after some
birational morphism, we can suppose that

1
mo

for some effective Q-divisor B and a semi-ample Q-line bundle H such that ¢, is more sin-
gular than ¢, where ¢p a canonical singular weight attached to B, cf. proof of Lemma 2.3
for instance. Together with equation (1.1), B + mLOE is klt. Thanks to [8], the canonical ring
of Kx + (B + mLOE ) + H is finitely generated. Combining this with the relation

1 1
(l +—)(KX + L)~ Kx + (B + —E) + H,
mo nmo

condition (2) is proved.

(c) If L corresponds to an effective, kit Q-divisor B and ¢;, is the canonical singu-
lar weight on B, then one recovers the standard log Kéhler—Einstein metric whose existence
follows essentially from [9], cf., e.g., [23, Section 2.3].

(d) Condition (ii) can be rewritten in terms of non-pluripolar Monge—Ampere equations
as follows:

(dd®¢xe)") = ePx=—or,

where ¢k is a local weight for wgg and where (- ") denotes the non-pluripolar Monge—Ampeére
operator, cf. [9, Definition 1.1 and Proposition 1.6].

(e) We will see in the proof that wgg has minimal singularities in the sense of [17, Defi-
nition 1.4]. Moreover, if iz is smooth on a non-empty Zariski open subset of X, then one can
prove that wkg is smooth on a Zariski open set by reducing the problem to the semi-ample and
big case and use [18]. To our knowledge, there is still no purely analytical proof of the generic
smoothness as explained in the few lines following [9, Theorem C].

Proof of Definition—Proposition 1.1.  Set

R(X,L):= @ H(X, Im(Kx + L)),

m=0
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and let us define Xj. := Proj R(X, L) to be the log canonical model of X, cf., e.g., [8, Defini-
tion 3.6.7]. Taking a desingularization of the graph of the natural birational map f : X --> X,
one gets the diagram

X ____________ > X]C

and the formula
(1.2) n*(Kx + L) = v*(Kx, + Lic) + F,

where L. := f«L (recall that f does not contract any divisor) and F is an effective v-excepti-
onal divisor. Clearly, Ky, + L is ample. Thus, setting L := u*L, A := v*(Kx, + Lic) and
E:=F+ Ky /X the decomposition

Ky+L=A+E
is a Zariski decomposition of K + L, and we have / 5 |s|%e_¢'13 < +o00 for any section
se HO(X, p(Kg + L)) and where ¢7 := *¢r. We want to solve the following equation:
(ddca)” — e$+¢E—¢z

for a a bounded psh weight on A, where ¢g is the canonical singular weight attached to E.
Thanks to the results in [23, Section 2.3], we are reduced to establishing the following property:

(1.3) e?E79C ¢ L'*¢  for some & > 0.

Take p large enough so that pz, pE are integral and | pA| is basepoint free. Let {ty, ..., 7} be
abasisof H(X, pA). Then Sl |2 is non-vanishing everywhere. Let spEg be the canonical
section of pE. Thanks to (3), we have

F Ny
/~ (Z |ri|2) lspE|7e %L < +oo.
X \ . _
i=1
Together with the fact that Y/ _; |t |2 is non-vanishing everywhere, we get

(1.4) e Prtor e ]

By applying the solution of the generalized openness conjecture [4, 21] to the psh weight
o7 + (1 — %)qﬁpE, we see that (1.3) follows from (1.4).

Now, define ¢ := ¢ + ¢F. From the Zariski decomposition (1.2), it follows that the psh
weight ¢ on u*(Ky + L) has minimal singularities and it satisfies

(d°9)") = ((dd“P)") = e*~01

as the operator ( -”) puts no mass on proper analytic sets. There exists a unique psh weight ¢xg
on Kx + L such that ¢ = u*¢gg. It has automatically minimal singularities and satisfies
((dd€¢gg)") = e?<=%L; this ends the proof. |
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It will be convenient to use the following setting.

Setting 1.3. Let p : X — Y be a projective fibration between two smooth Kéhler mani-
folds. Let (L, k1) be a holomorphic singular hermitian Q-line bundle on X such that

i®p, (L) =0.
Let Y° C Y be a Zariski open subset such that p is smooth over Y °, and set X° := p~1(Y°).
Assume that the additional two conditions are satisfied:
(i) The Q-line bundle Kx + L is p-big and for every y € Y °, the algebra
R(Xy.L) = P H(X,.|m(Kx, + Ly)])
m=0
is finitely generated.

(ii) Let y € Y°. Forevery m € N and every s € HO(Xy,m(KX + L)), we have
/ | |l
S|t < 4o00.
X, he

We can now state the precise form of the conjecture already mentioned in the introduc-
tion.

Conjecture 1.4. In Setting 1.3 above, the Kéhler-Einstein metrics (wkg,y)yeye on the
smooth fibers in the sense of Definition—Proposition 1.1 induce a metric e ~#<& on Ky )y + L
over X ° such that:

(i) 1Ogpy (Kx)y + L) = 0o0n X°.

(ii) The metric e ~#%E extends canonically across X ~ X° and i O (Kx/y + L) =0o0n X.

The above conjecture is very general as it deals with a wide range of singular hermitian
bundles (L, k7). A version of this is the following.

Conjecture 1.5. Let p : X — Y be a Kihler fiber space. Let (L, iz ) be a holomorphic
hermitian Q-line bundle on X such that

(1) (L,hy) = (B + A,hghya), where B is an effective Q-divisor and the restriction on the
generic fiber B, is kit with simple normal crossings support, 4 p is the canonical sin-
gular metric on B and A is a Q-line bundle with a smooth hermitian metric /25 such that
Op,(A)=0o0n X.

(i1) The Q-line bundle Ky + L is p-big and admits a relative Zariski decomposition, i.e.,
Kx + L =g A + E for some relatively semi-ample and big Q-line bundle 4 and an
effective QQ-divisor E such that the natural map

P p«Ox(mA) — p*pxOx (mA + mE)
is a sheaf isomorphism over Y ° for any m divisible enough.
Then the relative Kihler—Einstein metric e ~#%E induced on Ky /vy + L over X° satisfies

®¢KE(KX/Y +L)=0 onX°.
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Our first result, proved in Section 2, is to reduce Conjecture 1.4 to Conjecture 1.5:
Theorem 1.6. Conjecture 1.5 implies Conjecture 1.4.

At this stage, we are not able to prove Conjecture 1.4 (or Conjecture 1.5) in full generality
but only in the particular case where the metric 47, = e~%Z on L has vanishing Lelong num-
bers; i.e., Vx € X, v(¢r,x) = 0. The proof is given in Section 3.5 and relies on the approach
developed in Section 3.2, after a reduction step explained in Section 3.1.

Theorem 1.7. Conjecture 1.4 holds true provided that Lelong numbers of the metric
hr, = e~%L of L vanish identically.

2. Proof of Theorem 1.6

We have organized this section in the following way: first we show that Conjecture 1.4 (i)
implies Conjecture 1.4 (ii). The proof of Conjecture 1.4 (i) will be given in the second part of
our arguments.

The extension property.

Proposition 2.1. [In Setting 1.3, the local weights of ¢xg are locally bounded above
near X ~ X°.

Proof. The proof of the proposition follows very closely [29, Section 3.3], so we will
mostly sketch the proof.

Let y € Y° and let us pick any point x in X,. We choose a Stein neighborhood €2 of x
in X'; we write 2, = Q N X, choose a potential 7y, of wkg,y such that the equation satisfied
by 7, on £, is

C n Ty— dZ >
((ddty)") = e™ 7% —| |
dt
where ¢ is a local weight for iy on 2, and the coordinates (z1, ..., Z,, 1, . . ., iy ) are chosen

so that p(z,t) = t. We set
Hp y = {f € 0(2y) :/Q | f12e™™™ ((dd ty)") < 1}.
y

Note that e % ((dd 1)) = e~ Doy ‘fl—f |2 for some psh function u on Q. Then, thanks
to Demailly’s approximation theorem, one has

1
T(y)x) = lim  sup —log|f(x)].

€Hpm,y

But for f € H,,,, Holder’s inequality yields
@.1) / |flme™ ((dd°Ty)") < (vol(Kx, + Ly))™ .
Qy ’

The right-hand side is bounded above independently of y and m; this can be seen for instance by
finding a birational model 7 : X’ — X, where 7*(Kx + L) has a relative Zariski decompo-
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sition A + E so that the volume of Ky, + Izy is simply the intersection number (A4Y) which is
independent of y € Y °. Furthermore, the L 7 version of Ohsawa—Takegoshi extension theorem
[6] yields a holomorphic function F on 2 that extends f and such that

2 2 2 |dz|? 2 _
F(x)|m scg/ |F|3«|dz|2sc/ 1| sc’[ f 17 e™™ (ddC py)")
Q Q, dt Q,

as ¢y, is bounded above on 2. Moreover, the integral on the right-hand side is bounded above
uniformly in y and m by (2.1). Therefore supy 7, < C for a constant C that uniform as long
as y € Y° varies in compact subsets of Y. O

Regularization. Thanks to Proposition 2.1, Conjecture 1.4 reduces to its first item (i).
That property is local on the base so from now on, the base ¥ will be a small Stein open
set. The rest of this section is devoted to showing that Conjecture 1.5 implies that item (i) in
Conjecture 1.4 holds.

Lemma 2.2. [t is enough to prove item (i) of Conjecture 1.4 when Ky + L admits a
relative Zariski decomposition, namely Ky + L =g A + E for some relatively semi-ample
and big Q-line bundle A and an effective Q-divisor E such that the natural map

p*pxOx(mA) — p* pxOx (mA + mE)
is a sheaf isomorphism over Y ° for any m divisible enough.

Proof. By assumption, the Oy -algebra € := @~ px(m(Kx,y + L)) is finitely gen-
erated. By blowing up the base locus of &, we can find a birational map p© : X — X such
that on the generic fiber X of w o p, we have the Zariski decomposition of K¢ %, T W L| %,
Therefore, there exists a Zariski dense open subset Yo C Y such that K 5 + u* L admits a rel—

ative Zariski decomposition K¢ + u*L = A+ E on (o p)~ 1(Yo) and for any m divisible
enough, the natural map

(o p)*(no p)xOg(mA) — (o p)*(no p)xOg(mA+mE) on(uo p)~ ' (Yo)

is an isomorphism.
Now, let Ogp (resp wkg,x) be the relative Kéhler—Einstein metric with respect to
(X WL, u*ér) (resp (X, L,¢r)) over Yy. Thanks to Remark 1.2 (a), we have

/,L*Q)KEY = WKE,x On P_I(YO)'
If we can prove that Og X = 0on (o p)~1(Yy), then
WKE, X = ’u*a)KEX =0 on p I(YO)

Together with Proposition 2.1, the lemma is proved. O

Proposition 2.3. It is enough to prove item (i) of Conjecture 1.4 when
(L.hr) = (B + A hphy),

where B is an effective Q-divisor and the restriction on the generic fiber Blx, is kit with
normal crossing support, hp is the canonical singular metric on B and A is a Q-line bundle
with a smooth hermitian metric ha such thati©®p, (A) = 0 on X.
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Proof.  'We proceed in two steps.

Step 1: Reduction to the case where dd€¢y, is a Kihler current. By Lemma 2.2
above, one can assume that Ky + L = A + E is a relative Zariski decomposition of Ky + L
on X.As Y isSteinand Ky + L is p-big, Ky + L isbigon X. Therefore, there exists a weight
¢o with analytic singularities on (Ky + L) such that dd€¢o > 0 on X. Let us fix some small
6 >0.Weset Ls := L 4 §(Kx + L) so that the relative Zariski decomposition of Kx + Lg
is (1 +8)A + (1 + 8)E. Let ¢r. + S¢po be the weight on Lg. Then dd (¢, + S¢o) is a Kihler
current. To finish the proof of Step 1, it remains to prove that:

(i) The triplet (X, Lg, e_¢L_8¢0) admits a relative Kihler—Einstein metric wgg g for § > 0
small enough.

(ii) We have wgg s — wke in the weak topology when § approaches zero.

To make notation more tractable, we will — from now on and in this first step only — work on a
fixed fiber X, and drop all indices y.

Proof of (i). We know from (1.3) that there exists p > 1 such that e?27%Z ¢ LP?_ Then
e +8)dE—(@L+5d0) ¢ 7 for some 1 < r < p as long as § is small enough. Even better,

(2.2) ||e(1+8)¢E_(¢L+8¢0)||Lr(X) <C

for some uniform C > 0. Thanks to Definition—Proposition 1.1, we get (i).

Proof of (ii). It requires more work. Let w4 be a smooth semipositive form in cq(A4),
let hy, (resp. hg) be a smooth hermitian metric on Ox (L) (resp. on Ox(E)) and let w be
a reference Kihler form such that

100 (Ky) + 0, (L) = wg + iy, (E).
Finally, let us choose potentials ¢y, ¢, ¢ g such that

i@hL(L) +dder, =dd¢r,
1O (Kx) +i0p, (L) +ddpo = dd¢o.
101, (E) + dd g = [E].

The Kihler-Einstein metric wgg s can be written as
wke,s = ws + (1 +0)[E],

where wg = (1 + §)wg + dd ps € c1((1 + §)A) is a positive current with bounded potentials
such that

(2.3) (1 + §)wg +ddCes)" = e?s+(1+8)pE—0r—8¢0 ()
Let us write du := e¥E~%L@" and dug := eI +8or—or—800 yn
Claim 2.4. There exists a constant C > 0 independent of & such that

(2.4) lgsllLoxy < C.
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Proof of Claim 2.4. A first trivial observation is that one can rewrite formula (2.3) as
a Monge—Ampere equation in a fixed cohomology class as follows:

n
(CUA + ddcl j_5¢8) — e(05+(1+8)(p5—(pL—8(oo—n 10g(1+8)wn.

Thanks to the a priori estimates established in [18], the claim comes down to showing that there
exists a uniform C > 0 such that

(2.5) supgps < C
X
and that ¢(1+8)9£=¢L =690 admits uniform L? bounds for some p > 1; but we already know

that from (2.2). Let us prove (2.5) now. As @g has bounded potentials, its Bedford—Taylor
Monge—Ampere has full mass, i.e.,

/ e‘/’8+(1+8)(ﬂE_§0L—5(P0wn — (1 4 S)H(An)’
X

and, in particular, the integral [, e%s +(+80)¢E 1 is uniformly bounded above for 8y > 0
fixed. An application of Jensen’s inequality yields fX wsdV < C, and the bound (2.5) then
follows from standard properties of quasi-psh functions. O

The proof of item (ii) above now follows from the next claim.
Claim 2.5. When § approaches zero, the function ¢g converges weakly to ¢.

Proof of Claim 2.5.  An equivalent formulation of the claim is that
Qs —SUp Qs ——> ¢ 1= ¢ —sUpg.
X §—0 X

This is consequence of [3, Theorem 4.5], but the bound (2.4) actually makes the arguments
much easier. We will only recall the main lines. First, one chooses a sequence 6; such that
®j 1= @5, — supy @¢s; converges weakly to some sup-normalized w4-psh function ¥; we want
to show that ¥ = @. We use the variational characterization of ¢; as the supremum of the
functional §; = &; + &£; acting on sup-normalized (1 4 §;)w4-psh functions. Here, &; is the
usual energy functional attached to (1 + 8;)wy and £ () = —log [y e® dps; . Thanks to (2.2)
and (2.4), the dominated convergence theorem implies

(2.6) im - &£ (p;) = L(V).
J—>+0o0
Moreover, [3, Lemma 4.6] implies that
2.7) lim &5 (p)) < E®Y).
J—>+oo
As ¢ € PSH(X, (1 4 §;)wy4), one has automatically
Gi(9j) = 5(9).

Finally, as the Bedford—Taylor product is continuous with respect to smooth convergence, one
has lim; &; (¢) = &(¢). Putting these last two results together with (2.6) and (2.7), one finds

S(y)= Tim §(p) = Iim (@) =94
J—>+o0 j—>+o0

hence the result. D
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In conclusion, gs converges weakly to ¢, hence wgg s converges to wgg. This argument
was done fiberwise, but it clear that the weak convergence on the fiber implies the weak con-
vergence in any small neighborhood of the given fiber as well. This proves (ii) and completes
Step 1.

Step 2: Reduction to the case where ¢;7 has analytic singularities. By Step 1, one
can assume that d d € ¢y is a Kéhler current. By the Demailly regularization theorem [16], ¢y, is
the weak, decreasing limit of strictly psh weights ¢, . on L with analytic singularities, say with
singularities along the analytic set Z,. Taking a log resolution 7, : X — X of (X, Z;), one
can assume that 7*¢r, . = ¢pp, + ¢4, Where ¢p_ is the canonical singular psh weight on an
effective normal crossing Q-divisor B, and ¢4 ¢ is a smooth psh weight on some Q-line bundle
Ag with g, (Ae) = 0 on X,.

After passing to another birational model if necessary, one can assume that over a generic
fiber, we have a Zariski decomposition

K(Xs)y + n:le(Xs)y = My + EY’

and Be|(x,), + Ey is normal crossing. Let I'; := B, A E be the common part of B and E. We
have the following Zariski decomposition:

K(Xa)y + (Bs|(X6)y - Fsl(Xa)y) + A8|(Xg)y = My + (Ey - Fsl(Xa)y)'

Furthermore, thanks to Setting 1.3 (ii) and the decreasing property of (¢ ), we know that the
divisor (Be|(x,), — el(x,),) is klton (X¢)y.

Let we be the relative Kéhler-Einstein metric of (X, — Y, 7} L, 7} (¢ ¢)) and let w;,
be the relative Kéhler—Einstein metric of (X; — Y, (Be — I's) + A¢, ¢B, — ¢r. + ¢4,). By
definition, we have

(2.8) we = w, + [Te].

If Conjecture 1.4 holds for (X; — Y, (Bg — I's) + As, ¢, — ¢r, + ¢4,), thanks to (2.8) and
Remark 1.2, it holds also for (X — Y, L, ¢r ). Finally, when e converges to 0, the rela-
tive Kihler—Einstein metric of (X — Y, L, ¢r ) converges to the relative Kéihler—Einstein
metric of (X — Y, L,¢r) as a direct consequence of the comparison principle. Therefore
Theorem 1.6 is proved. |

3. Proof of Theorem 1.7

We will present our arguments in several steps, according to the following plan.

(a) It is enough to prove Theorem 1.7 in case hy, non-singular. This is based on two results:
we first use that /7 is limit of non-singular metrics whose negative part of the curva-
ture tends to zero. Another important fact we are using is that the algebra associated to
Kx + L + 8H is finitely generated, for any H ample and for any positive rational §.

(b) It is enough to prove Theorem 1.7 provided that A is an ample Q-bundle. Remark that, in
general, the semi-ample part A of the Zariski decomposition is not ample. In this second
step we write A as limit of ample bundles, and show that the solution of the resulting
Monge—Ampere equation converges to the singular KE metric.
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(¢) Reduction to the case c1(L) € Z. Let p be a positive integer such that pL is a line bundle.
Then we write p(Ky + L) = Kx + (p — 1)(Kx + L) + L and then we replace our
initial Q-bundle L with the line bundle L, := (p — 1)(Kx + L) + L. The problem is
that we also have to replace /iy, with a positively curved metric on L,. The metric on
L is given. It is less clear what should be the metric on Ky + L, since it has to fulfill
two conditions: its curvature must be positive, and in the relative setting (i.e., when we
replace X with a fiber of p) it must induce a positively curved metric on the twisted
relative canonical bundle. It seems impossible to achieve this in one single step. What
is possible is to set up an iteration scheme so that the resulting limit coincides with the
singular KE metric.

(d) If L (= Lp) is a line bundle, show that the singular Kihler—Einstein metric correspond-
ing to (X, L) can be obtained as limit of iterated Bergman kernels. We conclude by
this fact, since the fiberwise Bergman kernel metric has the required curvature properties
specified in (c) above.

Also, at each step we establish the relevant convergence results needed to conclude at the end.

3.1. Reduction to the case /7, non-singular. Let (L,%; = e~%Z) be a hermitian line
bundle on a projective variety X such that Kx + L is big and ¢, is a psh weight with vanishing
Lelong numbers. Let ¢ be the weight on Ky + L such that wg := dd ¢ is the Kéhler—Einstein
metric of (X, L, e_¢L), i.e.,

Ric(wg) = —wg + dd e¢r.

Let H be an ample line bundle on X, and let ¢y be a weight on H such that dd€¢g is
a Kihler form. Thanks to Demailly’s regularization theorem, there exists a family of smooth
weights ¢7, ¢ on L such that

¢Led ¢ and dd(¢L.e+epm) = 0.

Let § > & be a positive number and ¢s . the suitably normalized weight on Ky + L + §H such
that wgs , := dd°¢s . is the Kihler-Einstein metric of (X, L + 6H, e~PL.eT0m) e,

RiC(a)qu,g) = —W¢s, T+ ddc(¢L,£ + 5¢H).

Proposition 3.1. With the notation above, there exists a family of positive numbers
(8e)e>0 decreasing to zero such that wgs_ , converges weakly to wg when & approaches zero.

As an consequence, one gets the following:
Corollary 3.2. [t is sufficient to prove Theorem 1.7 when hp, is smooth.

Proof of Proposition 3.1.  Let us start by setting some additional notation. Let 6 (resp.
01,) be a closed smooth (1, 1)-form in the cohomology class ¢1(Kx + L) (resp. ¢1(L)). Let
wyg = dd Py and let dV be a smooth volume form such that

—Ric(dV) + 6, = 6.

Finally, let ¢7, and ¢, » be some quasi-psh functions such that 07, + dd“¢;, = dd“¢y, (resp.
0L +dd gr e = dd°¢r ) and satisfying additionally that ¢z o | @7 when e | 0. Let g5  be
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the unique (6@ + dwp )-psh function with minimal singularities solution of
0 + bwy + ddc(pg’a)” — oP5.ePL.eJY

whose existence is guaranteed by [9] (cf. also [23, Theorem 2.2]). When ¢ = 0, one writes
@s := @50 and sets ¢ := @g. Note that § +-d d € ¢ is the Kihler—Einstein metric of (X, L, e~%L).

For the time being, let § > 0 be fixed. As ¢y, , decreases toward ¢y, and ¢z, has vanishing
Lelong number, the convergence e~ %Z-¢ 1 ¢~ %L happens in any L? space for p > 0 thanks
to Skoda’s integrability theorem, cf., e.g., [33, Proposition 7.1]. In particular, it follows from
[22, Theorem 5.2] that @5 . converges weakly to ¢s = @s o when ¢ approaches zero.

As wg = 0, the 0-psh function ¢ is also 6 + dwp-psh and it is a subsolution of the
equation

(0 + 8wy +ddSy)" = eV 9LqV,

SO one gets
3.1 < s

for any 6 > 0. Moreover, the same argument shows that @5 decreases when § | 0. Let
@* = lim ¢g.
§—0

If we can prove that ¢* = ¢, then we will be done.

From inequality (3.1), one can deduce two things. First, ¢* is a 6-psh function with
minimal singularities. Also, the sequence (¢g)s=¢ is locally bounded on the ample locus €2
of Kx + L. Because the Monge—Ampere operator is continuous with respect to bounded
decreasing sequences, one finds that

0+ dde*)" = e °LdV on Q.

As the non-pluripolar Monge—Ampere operator does not put any mass to analytic sets, it
follows that the previous equation is satisfied on the whole X. As ¢ and ¢* have minimal
singularities, the currents 6 + dd“¢ and 6 + dd€¢* have full mass (almost by definition, cf.
[9, remarks below Definition 2.1]) and therefore

/ew*_(pLdV:/(Q-i-ddc(p*)n
X X

= /X 0+ ddp)"

=/ etp—wL dvVv.
X

It follows from (3.1), i.e., ¢ < ¢*, that ¢ = ¢™ almost everywhere. As both functions are
0-psh, they must agree on X. O

3.2. The approximation of A. A first remark is that thanks to Lemma 2.2 and Corol-
lary 3.2, one can assume that /7, is smooth and that Ky + L admits a relative Zariski decom-
position over X ° (which denotes here the inverse image of a well-chosen open subset of Y'),

Ky+L=A+E.
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By the Kodaira lemma, there exists an effective Q-divisor Ex such that A — Ey is
p-ample. As Y is chosen to be Stein, one can assume that A — Ey is globally ample. Therefore
for each positive, small enough § we have

(3.2) Kx +L=A+E = As + Eg,
where Ag := (1 —38)A + §(A — Ex) is ample and Eg := E + §Ex for any § > 0.

Convention. For the rest of this subsection our results will exclusively concern the
fibers X, of p. Since y € Y° is fixed, we will denote X, by X and drop the index y in the
relevant line bundles and weights that will be considered here.

3.2.1. Notations. Letwy in cj(A) be a smooth, semipositive representative. We denote
E = Zf;l a;E; and let Ex := ) ;_, ¢; E; be the divisors above where some of a;, ¢; could
be zero. Since {A — Ex } is a Kéhler class, we can fix a Kéhler form wog € {4 — Ex}. For each
positive 6 we obtain a Kihler form

ws ;= (1 —=8)wq + dwgy € c1(Ag),

where Ag := A — §Ex. We write

k
Es =Y alE;.
i=1
where
af =a; + d¢;.

Let s; be a defining section for E; and let h g, = e™” be a non-singular hermitian metric
on Ox (E;). We obtain the metrics

]
hg =[]h% and hg=]]h%
on E and Ejy, respectively.
We define

s |27 = l_[ |5, [2([tpat1=trap)
i 9

1

where |sg; |2 denotes the squared norm of s E; With respect to h;.

The Kihler—Einstein metric
wy =wg +dd e
of (X, L, ¢r) satisfies the following Monge—Ampere equation on X :
(w4 + ddCo)" = |sg|>e? Lo,

where w is a reference Kihler metric on X and f7, is the unique smooth function on X such
that

(3.3) w4+ O(E) +dd€ fr = Oy, (L) + B4 (Kx), / fdV, =0.
X

It will be convenient for later to fix some notations for the local expression of the objects
above. Let U C X be an open coordinate subset such that the Q-bundles above are trivial when
restricted to U.
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Let p; be the local weight of the metric s; with respect to a trivialization of Ox (E;)|y .
We will use the notation
ory = Y alpy

for the weight of the induced metric on E§.
In a similar manner we introduce ¢4, ¢o, ¢ on A, A — Ex and L, respectively, such that
dd®¢4 = wq and dd€po = wy. Finally, we consider for § > 0,

(3.4) $as = (1 = 8)da + S¢bo.

We assume that the metrics /; are chosen such that ¢g = ¢4 —8 ) ; cip;.
Expressed in terms of local weights and coordinates, equality (3.3) becomes

(3.5) ¢4+ ¢E + fL = ¢L + logdet(w,5)

modulo a pluriharmonic function on U. We see that we are free to choose the trivialization of £
and L together with a coordinate system (z;) such that (3.5) becomes an equality by modifying
the weights ¢4.

3.2.2. The approximation statement. For §,& > 0, the Aubin—Yau theorem shows
that the equation

(3.6) (ws +dd s )" = (s + 82)e(ps.a—fLwn

has a unique solution such that ws + dd s . is a smooth Kihler metric. In the two equations
above, |sg |? (resp. |sg|? + 2) has to be interpreted as [ ; |si|*% (resp. [, (|si|* + €2)%). We
have the following convergence result.

Proposition 3.3. There exists a family of positive numbers (8¢)¢>0 decreasing to 0 when
& approaches zero such that

li — oo =0.
82310||<P58,a @llLeox)

Proof. For now, let § € (0, 1) be fixed. By [22, Theorem 1.1], one has
(3.7) limsup ||@s,e — @s5,0llL(x) = 0.
e—0
Let

1
Vs 1= 1—_8(%’,0 —nlog(l — 5))-

The above function satisfies the Monge—Ampere equation

n
(3.8) (a)A+ a)o—i—ddcx/fs) _ o PeO=Ds—Fi g

1—-6

The w4-psh function 1/}3 = Yo + 1875 -infy ¥ is a subsolution of (3.8). Indeed, one has

5 A\"
(wA—i- 1_8wo+ddcw8) > (wg + dd€yo)"
= |SE |ze(1_8)@3_fL65(W0—ian 1[/0)0);1

> |sp [2e=OVs—fr .
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Therefore, one gets 1/75 < Yg,ie.,

< — .1
Yo S Vs — 75 -infvo.

In particular, one finds a uniform lower bound ¥ = —C, where C > 0 is independent of §.
Let K := min{0, infs infy 15}, where the first infimum ranges over § € [0, e~!] say. Using the

same argument as above, one concludes that for any 0 < 1 < § < e™!, one has
" Kn <y K$é
T S =y

That is, the family of w4-psh functions (Y5 — 1= 5)5>0 decreasing toward a bounded w4-psh
WO when § | 0. The function tﬂg satisfies the same Monge—Ampere equation (3.8) as g
thanks to the continuity of the Monge—Ampere operator with respect to bounded decreasing
sequences. Therefore, one has K’;O =yYp=¢

Now, the w4-psh function ¢ is continuous. Indeed, this is because wy is the pull-back of
a Hodge form on a (singular) space by a birational morphism, hence one can apply jointly
[18, Theorem A] and [14, Corollary C]. All in all, Dini’s theorem shows that the conver-

gence Vg — % — ¢ is uniform. In particular, ¢35 ¢ converges uniformly to ¢ when § — 0.

The proposition now follows from (3.7) and a suitable diagonal process. O

3.3. Reduction to the case c1(L) € H*(X,Z). We fix an integer p > 1 such that pE
is integral and pL is a line bundle. The first step in the algorithm which will follow consists in
solving the equation

(pws +dd p 5.6)" = e?15:7 L (|sp|? 4 eH)o".

This is very similar to (3.6). In particular, one can apply Proposition 3.3 to show that there
exists a family of numbers (8§1))8>0 decreasing to zero when ¢ | 0 such that

limsup [lg, s . —¢1,00[lLoo(x) = 0.
e—>0 e
One sets @1, := ¢, s, and @1 = @1,0,0. Next, one solves the equation
Ve
_pr—1 —
(pws +dd gy 5.)" = eP2.8.67 ", Ple fL(lSE|2 + 2"

Proposition 3.3 applies again verbatim to show that there exists a family of numbers (§ 9) >0
decreasing to zero when ¢ | 0 such that

limsup [l¢, s . —¢2,0,0lLex) = 0.
£—>0 e

We set 92,5 1= @, 5 ., 92 1= ¢2,0,0 and repeat the procedure. The result is the following.

Proposition 3.4. For each integer m = 1 there exist a family of positive reals (8§m))8>0
decreasing to zero and a family of smooth strictly pwgon -psh functions ¢m,s such that

—1
(Pws(m) + ddc(/’m,s)n — efpm,a_prﬂm—l.s_fL(|sE|2 + 82)wn

and

(3.9) lim sup ||§0m,s - (pm”LOO(X) =0,

e—>0

where @, are the unique pwy-psh bounded functions such that o9 = 0 and

(3.10) (pwa + dd om)" = |SE|2ewm—"TT‘<pm_l—fLwn.
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Thanks to (3.2), one gets for each integer m > 1 a decomposition
Kx + L = Agom + Egom

and one can define the weights

(3.11) Om = pPA+ Om.  Pm = P¢A8§m) + Om,s
on pA and pA 50> respectively, cf. (3.4). Let ¢ g be a singular weight on £ such that

dd°¢p = [E],
and let ¢;, a smooth weight on L such that
dd°¢r, =10y, (L).

-1
The expressions =5 Im1+9E=L Gefine a global volume form which we normalize (by
adding a constant to ¢y ) such that

(312) / e¢’”—ijl¢m—l+¢E_¢L d) = (An)
X
It follows from (3.10) combined with the definition of f7,, cf. (3.3), that ¢, solves
(3.13) (ddC )"t = b= 5 om1+oE=L g5

3.4. Convergence of the Ricci iteration. The current w,, := dd“¢,y, = pws+dd€ e,
satisfies the following twisted Kédhler—Einstein-like equation:

. —1 )
Ricwy, = —om + pTa)m_l —[E]+i©p, (L).
Its behavior when m — +o0 is given by the following result.

Proposition 3.5. When m tends to +oo, the current %wm converges weakly to the
(unique) twisted Kdihler—Einstein metric wso € c1(A) solution of

Remark 3.6. We see that w is equal to the Kdhler—Einstein metric wgg of (X, L, ¢1,)
on X \ E. More precisely, we have wgxg = weo + [E].

Proof. Recall that w,, = pwg + dd €@y is solution of the Monge—Ampere equation
—1
(pr + ddc(Pm)n — e‘ﬂm_prpm—ldM’

where dju = |sg|? - @™. We aim to show that for each m > 2, one has

p—1
(3.14) lom — om—1llLeox) < T||¢m—1 — Om—2llLoo(x)-
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Let Cy, := supy (@m—1 — ¢m—2), and let Uy, = {om > om—1 + pTTlCm}. An application of
the comparison principle yields

(3.15) / e(Pm_pT(pm—ldM S/ oPm—1— 5 om—2 du.

On U,,, one has

—1 1 —1
Om — p—¢m—1 > —¢Pm-1+ p—cm
V4 V4 V4

—1 —1
= (fﬁm—l — pTGDm—z) + pT[Cm — (@m—1 — Pm—2)]

p—1
Z Pm—1— T Pm—2.
p

Together with (3.15), we know that U,, has measure zero with respect to du, hence also with
respect to (pwg + dd€pm)". By the domination principle, cf., e.g., [9, Corollary 2.5], we see

Uy, is empty, hence
p—1
Om — Pm—-1 S Sup(@m—1 — Pm—2)-
P x

Using an analogous argument, one can show that

Om — Pm—1 = i)I}f((Pm—l — Om—2),

which proves (3.14). It follows by iteration that

m—1
P
16m — ot ooy < (T) AT

and therefore the sequence (¢, )m=1 converges uniformly to a pwg4-psh function ¢so. As the
Bedford—Taylor product is continuous with respect to uniform convergence, ¢ satisfies

(pwa + dd pss)" = 7> dpu,

which proves the proposition. O

3.5. Convergence of the Bergman Kkernel iteration. In this subsection we fix an inte-
germ = 1 and we prove that the twisted Kihler—Einstein metric wy, is the weak limit of iterated
Bergman kernels.

Consider the line bundle

Ly =(p-)(Kx+L)+L,
where p is a positive integer such that pL is a line bundle and pE has integer coefficients.
We recall that the triple (X, L, hz) satisfies the following:
e Kx + L = A+ E is a Zariski decomposition of the big line bundle Ky + L.

* The hermitian metric 7 = e~?L on the Q-line bundle L is a smooth and has semiposi-
tive curvature, i.e., dd“¢p = 0.
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We then endow L, with the metric given by the weights

¢m—1
P

(3.16) T 1= (P—l)( +¢E) +éL.
where ¢,,,—1 is the weight corresponding to the metric on pA defined by (3.11), ¢ £ is a singular
weight on Ox (E) such that dd“¢pg = [E] and finally ¢y, is the smooth metric on L satisfying
dd®¢r = Oy, (L) such that we have equality (3.13).
We write
L+1D)(Kx +Lp)=Kx +0(Kx +Lp)+ L,

and then we can define a singular metric /1y on the line bundle {(Kx + L) by induction on £
in the following manner:

(3.17) hepr = K.

where
Koy = K(X,({+ 1)(Ky + Lp),hg . e_f’")

is the Bergman kernel of (¢ + 1)(Kx + L) endowed with the metric above. Of course, it
depends on m and p, even if our notation does not reflects this.

In the current subsection we are aiming at the following result, from which Theorem 1.7
will follow easily.

Theorem 3.7. Under the assumptions above, the sequence of renormalized Bergman
1
kernels (n'*01"" K ;)T converges to e®ntPE g5 { — +o0.

Prior to the proof of this result we are making a few preliminary remarks concerning the
singularities of &y. Since Kx + L = A + E is a Zariski decomposition, one knows that if p is
divisible enough, the multiplication by s, induces an isomorphism

H%(X, pA) - H°(X, p(Kx + L)).

Therefore all sections s € H?(X,¢(Kx + L)) vanish along pE at order at least £. Since A
is semi-ample, there exists a section whose vanishing order along pFE is exactly £. A quick
induction shows that every section s € H%(X, (€ + 1)(Kx + L)) is square integrable with
respect to /iy - e~ 2.,

The Monge—Ampere equation for ¢, is as follows:

(ddCpm)" = ot OE—bL—"5 b1 gy

given (3.13). The solution ¢,, is not regular enough for what is needed in the arguments to
follow, so we also consider the approximation obtained in Proposition 3.4 for which we have

(3.18) (dd® pm.e)" = ePme™ 5 m=1.670L (2P 4 o#E) )

where e "PE is the smooth metric on £ we fixed in Section 3.2.
The weights
Udm,e + PPE,)
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are defining a metric on £(Kx + L) and therefore the quantity

o Ky
=1
¢ X |SE6|2{el’}ee(¢m,s+P¢E,s)

is a strictly positive real number, cf. the discussion above.
The proof of Theorem 1.7 relies heavily on the following statement.

Proposition 3.8.  For every m fixed, there exists Kz y > 0 such that

n
Co = Kep— - Cp
n:

and .
l i
Iim lim K =1.
e—=0{—>+o00 <klj[1 g’k)

Proof. 'We have organized our arguments in four main steps.

Step 1: Choice of an appropriate local section u. Let xo € X be an arbitrary point.
Let xo € U C X be an open subset of X such that the restriction to U of all our bundles
(ie., pL, pE,...) is trivial. We consider the local weights p; for /; cf. Section 3.2.1 such that
pi(xp) = 0 for all i. We take a coordinate system (z;);=1,...» on U, centered at x¢, and we
assume that (3.5) holds. All the local computations to follow are done with respect to this data.
We introduce the quadratic function

h(z) := ¢m,e(xo) + 2 Z 0i (Pm,e)(x0)zi + 4 Z al-z,j (Pm,e)(x0)ziz)
i i,j
and the holomorphic section of (1 + £)(Kx + L,)|u

[p(1+0)a?] 1+¢
u::l_[fl. i .ezhdz®e?£+Lp®eLp

written as (n, 0)-form with values in £(Kx + Lp) + Lp|y. Note that af > a; for each index i.
We denote by &, the metric on £(Kx + L,) + L, defined by the weights

(3.19) Ume + poE,) + Tm + log |sg, |29,

where we recall that

rm=<p—1>( +¢E)+¢L

was introduced in (3.16). The measure induced by the pointwise norm of u with respect to the
metric (3.19) is equal to

¢m—1
p

QUFORG) . ~mctpor.)=un [ | 2104001 dA

2 _
|u|hg - |SEF|2{ZP}

and it can be reorganized as follows:

(3.20) |u|1218 = UFORM)=¢m.e)) l—[ | fi|2H - e{fpa,-g}pie¢m.s—prl¢m—1+¢E—¢L da,

where p; := [p(1 + £)af| — pla? — pa; — {{paf}.
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We therefore have the pointwise inequality
(3.21) uly, < ye FeTOOM~n (gqcq,, )"

on the set U, where the positive function F' and the constant y, are as follows:

—1
L|¢m—l,8

(i) We define y, := supy e ? ~om—1l, By Proposition 3.4, we have y, — 0.

(i) Let F :=[]|f;|?* - etP%}Pi be the function corresponding to the product in (3.20).

We have
F = l_[ | £; 2P +0Oeci1=Tpteci) . {lpaj}pi

hence F(0) <1, and supy (F) — 1 is smaller than the diameter of U multiplied with a
bounded constant.

Step 2: Estimate of the L2 norm of u. Let B(r;) be the Euclidean ball centered at
xo of radius r, with respect to the fixed Kéhler metric w. We have the following inequalities,
which will be proved by a direct computation at the end of this section.

Claim 3.9. For every ¢ > 0 fixed, there exists a radius re and a sequence ay converging
to 0 (independent of xg € X ) such that

{+ 1"
(322) %/B( )Fe—(e'f‘l)((ﬁm.g—Re(h))(ddc(pm,g)n <1 +ay for everye e N
! r
and
(3.23) (L+1)" /B - )Fe—<f+1><¢mss—R°(h)>(dd%m,s)" <a; foreveryl € N.
Te 3

An important point of the claim is that the sequence {ay} is independent of xg.
Combined with inequality (3.21), we obtain

{4+ 1)"
(3.24) u/ |u|i <l4ay foreveryl e N
nt Jpe F
and
(3.25) L+ 1)"/ |u|i€ <ay forevery{ e N.
B(re)\B(%$)

Step 3: Construction of a global section. For every ¢ > 0 fixed, we will construct
in this step a section vy , € HO(X, (¢ + 1)p(Kx + L)) such that vy e(X0) = u(xo) together

with an estimate for its L2 norm
(6 + l)n 2 —Tm
" : |v€,8|h[€
n: X

uniform with respect to the point xo € X.

Let p be a smooth function on X \ {xo} which equals n log |x — x¢|? near x¢. For every
e > 0, we can find a cut-off function y. for B(r¢), namely y. = 1 on B(rz—s) and yo =0 on
X ~ B(rg) such that

(3.26) e ?10xels, . < M on B(re) \ B(%)

|2
Wme
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for some constant M, independent of xog € X. One can easily check that for £ large enough
(depending on ¢), we have

(3.27) Ldd®(¢pme + poE.e) + dd Ttme + dd®(p + log |sg, [HATOPY = ddy,, .

on X, since dd€pm s = wm ¢ is a Kihler metric for each m, . Thanks to (3.24) we have

L+ 1"
( )/|s|,, I +ap.

By inequality (3.25) and the construction of y., we have

/ Bl . < / g2, e CHDGnR) (g,
X e B(re)\B('%)
Together with (3.25) and (3.26), we get

L+ 1) /X B, e <a M,

Thanks to (3.27), one can solve the 5—equation and apply Hormander estimates (see, e.g.,
[7, Corollary 14.3 on p. 86]) for £ large enough (independent of x) to the 0-closed form

d(yeu) € (X, A™!' Ty ® E),

where £ = {(Kx + Lp) + L is endowed with the hermitian metric ¢ .. This yields a global,
smooth section uy  of A”’OT; ® E = ({ + 1)(Kx + Lp) such that

Ouge =0(xeu) and (£ 4+ 1)" /X lug,elf, < ag- M.

Because of the non-integrability of e at x¢, one has uy(xg) = 0. As a consequence, the
Section vy o := YeU — Uy ¢ € HO(X, (¢ + 1)(Kx + Lp)) satisfies the inequality

Z+1”
( ) /'Kslh <1+ag

and we also have vy (x9) = u(xo). By the definition of C; we have

(z+1)" o <, L ac
(3.28) e <

Step 4: Conclusion. Thanks to (3.28) we obtain that the following inequality:

_ C, £+ D@ e+ P9 | p 240 HDP)
ve(1 +ap) n! ¢

Kot

at x¢. Therefore €+ 1)
+
Cov1 = Keyg - - - Cy,

where k¢ = (ye(1 4 ag))~!. Although the sequence {a;} depends on &, we have
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since it tends to 0. Therefore

¢ 7
lim lim =1
e—=0{—>+o0 ( 1_[ Ks,k) ’
k=1
and Proposition 3.8 is proved. o
It remains to prove Claim 3.9 stated in Step 3.

Proof of Claim 3.9.  Up to replacing ¢, ¢ by ¢m.. — Re(h) (which does not change the
metric dd ¢, ¢), one can assume that ¢, . has no polyharmonic terms of order two or less
in its expansion near xg, and F(xg) = 1. With respect to local coordinates (z;) centered at x,
one has

me =) ajkzjZk + R(2),
j.k
where R(z) = O(|z|?) and the matrix A = (a k) is positive definite. These quantities are
depending on ¢ but the important point is that, when ¢ > 0 is fixed, one can find a constant
C¢ > 0 independent of the chosen point x such that

|R(z)| < Celz)?, C.'I, < A < Cely.

The constant C, can be chosen to be commensurable to supy (|wm.ele + [V 0m ¢l)-
After the change of variable w := +/f + 1+/A - z and up to increasing the constant C
a little, the integral we have to bound is dominated by

(dd¢w|*)"

e~ WPA=Ce 3D (1 4 e 0=E ) :
n:

/|w|2s(£+1)r€2
. . . w2
Now, if one chooses rg < 2178, one sees that the integrand is less than 2e 2 , hence one
can apply the dominated convergence theorem to conclude that our integral is asymptotically
dominated by

c 2\n
/ e—'w'z-w - in/ e WP dwi Adiby A Ai dwy Adiby = 1
n n! T n

which concludes the proof of (3.22).
As for (3.23), the same change of variable reduces our integral to

(ddlw?)"

e—|w|2(1—Cg£_%|wI)(1 + Cgﬁ_%|w|) :
n!

A(£+1)r3$|w|zs(ﬁ+l)r§
which, up to increasing C,, is dominated by
Krg €r82
CE/ e” 8 - (dd¢lw®)" = 0("e” 8 ).
LU+Dr2<siwi2<@+nr?
Estimate (3.23) follows. O

We will also need an integral upper estimate of K; it follows easily from the definition
of the Bergman kernel.
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Proposition 3.10. One has the following upper bound:

limsup/ n!(ﬁ!_"Kg)%e_T” < (pA)".
X

{—>+o00

Proof. First, we observe that (£!7" Kg)%e_tp is a volume form, so that the claim is
licit. Let (u1,...,uy,) be an orthonormal basis of H%(X,£(Kx + Lp)) with respect to the
Bergman L2 metric Ke__lle_fl’. Since {p(Ky + L) = {pA + {pE is the Zariski decompo-
sition of £p(Kx + L), every (pluri-)section is L? with respect to the Bergman metric. In
particular, we have

(p )"

(3.29) Ny :=dim H°(X, tpA) = "1 4 o)

by the Riemann—Roch formula. One has
/ Ky K e ™ = Ny.
X

Therefore, applying Holder’s inequality with p = £ and ¢ = %, one gets

-1

1
1 7 1 T
/ Kf-e™™ < (/ Kg-K[_lle_Tp) (/ K/~ e_tp)
X X X
1 1 Z;fl
ol ([ )™
L x {—1

. ¢ 4
/);K; e < (HN,)

i=1

By induction, one gets

Now, thanks to (3.29), the right-hand side of this inequality is equal to

(pA)n e (1+0(lo§€))

which concludes the proof of the proposition. O

After all these preliminary statements we can prove the main result of this subsection.

Proof of Theorem 3.7. By Proposition 3.10 combined with the Jensen inequality, we
have that {({!™" K g) yree (=7 1s a family of upper bounded psh weights. Therefore, to prove the
theorem, it is sufficient to prove that any convergent subsequence of {n!({!™" K g) oo (=7 con-
verges to e®m T POE

Let {n!(£s!™" Ky, )fa } 1 be a convergent subsequence of {n!(£!™" Ky)¢ }+°° and let I'
be the limit. Thanks to Proposmon 3.8, one infers

)=

14
1 2{(’ s
"!(Z!_"KK)ZZ(II’%J«) s, |FE edmetrone,
k=1
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Letting £ tend to 400, and then letting € tend to zero, item (3.9) in Proposition 3.17 and
Proposition 3.8 yield

liminf n!(¢!™" Ky, )z > PmtroE
{—+o0

Therefore, we have
(3.30) [ > ePmtroe,
Note that

/re‘(l’ DB+ ~00 — fim [ nl(O1 Ky, ) B e~ PO H08) 01
X {—+o00 Jx

Combining this with Proposition 3.10, we get

/Fe—(p—1><""’;,—'+¢E)e—¢L < (pA)" :f etmtpdr |~ (=D or) g1
X X

where the last equality comes from (3.12). Together with (3.30), we get I' = e TP?Z and the

theorem is proved. o

- L etmtrer

Remark 3.11. The convergence (£!™" Ky)¢ — <+ has been proved for a fixed

fiber Xy, but it readily implies convergence in L1 (X°). Indeed, as (AY}) is independent of

yevYe, Proposmon 3.10 coupled with the Jensen inequality show that the weights of the

metric ({!7"Ky)™ 7 are uniformly bounded above locally near X ~ Xy, hence the pointwise
convergence almost everywhere on X ° implies convergence in L1 (X°).

loc

Now, we can finally give the proof of Theorem 1.7.

Proof of Theorem 1.7. Thanks to the reduction steps, we can suppose that on the fibers
over y € Y9, we have a Zariski decomposition

(Kx;y + L)|x, = Ay + E,.

where A is semi-ample and big, E), has snc support and Az, is smooth with semipositive
curvature.

We first prove by induction that for every m € N, ¢, + p@E is a psh weight on X°.

For m = 1: We get a sequence of metrics (/1g,1)¢>1 on pl(Kx + L) defined by (3.17).
Recall that ¢g = ¢4 is the weight of w4. Thanks to [5, Theorem 0.1], 41,3 has positive cur-
vature on the total space X. We suppose by induction that Ay ; has positive curvature. Then
hey-e —(-DHF Ltor )e~®L has also positive curvature. By applying [5, Theorem 0.1] again,
hy+1,1 has positive curvature on the total space X. As a consequence, /1y ; has positive cur-
vature on the total space X for all £. Together with Theorem 3.7, the limit ¢; + p¢@E is a psh
weight on X©.

Then we apply the same process again to m = 2, and get a sequence of metrics (/7 2)¢>1
on pl(Kx + L) with positive curvature, and therefore the limit ¢ + p¢@g is psh. By induction
on m, we know that ¢, + pog is psh for any m > 1.

We can now prove the theorem. Thanks to Proposition 3.5 and Remark 3.6, ¢, + poEg
converges to the relative Kédhler—Einstein metric of (X°, L, ¢r). As ¢ + pdE has positive
curvature, the relative Kdhler—Einstein metric has also positive curvature. |
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3.6. The orbifold case. In this subsection, we would like to discuss an extension of
Theorem 1.7 to a particular case where the weight ¢; could have positive Lelong numbers.
More precisely, we have the following:

Proposition 3.12. Let p : X — Y be a Kdhler fiber space and let
1
B = 1——)B;
()

be an effective divisor such that:
* The Q-line bundle Ky ;y + B is p-ample.
* Fory €Y generic, B|x, has snc support.
* The numbers m; = 1 are integers such that (m;,m;) = 1 whenever B; N B; # 0.

Then the relative Kdhler—Einstein metric is positively curved and extends canonically through
the singular locus of p.

Proof. The same strategy as for the proof of Theorem 1.7 applies, modulo the fact that
¢m.e from (3.18) are to be replaced by their orbifold counterparts, so that we have

(ddc¢m,8)n — e¢m.8_p7_l¢m—l,s_¢3 (82€pE + e¢E) dk’

where ¢p is the canonical singular weight on the Q-line bundle Ox (B). The current dd ¢y, ¢
defines an orbifold Kdhler metric, that is, its pull-back to local uniformizing charts near the
support of B becomes a genuine Kihler metric. In this setting, a new problem arise (due to
the presence of singularities): the peak sections from Proposition 3.8 have to be replaced by
orbifold peak sections. One way to bypass this is to use the orbifold Bergman kernel expan-
sion due to Ross and Thomas [30], see also Dai, Liu and Ma [15]. Instead of considering
the Bergman kernels K; on £(Ky,y + B), one considers suitable linear combinations of the
Bergman kernels of the form Z;”;Bl K¢ +q- These combinations, unlike Ky alone, turn out to
admit the same expansion as in the smooth case at order zero, when £ — +o0. This is where
the assumption on the arithmetic relation between the integers m; is important. The rest of the
proof of Theorem 1.7 can be applied almost without any change to conclude. O

Remark 3.13. It is likely that combining the ideas above with the techniques in [30]
may allow us to weaken the assumption that Kx,y + B is p-ample and only assume that
Kx,y + B is p-big admits a relative Zariski decomposition on X.

4. The case of intermediate Kodaira dimension

4.1. Titaka fibration and associated Kihler-Einstein metric. We will first consider
the absolute case. Let X be a compact Kihler manifold and let B be a Q-effective divi-
sor such that the pair (X, B) is kIt and such that x(Ky + B) > 0. Let Z be the canonical
model of (X, B). We consider f : X --> Z the litaka fibration induced by the linear system
|m(Ky + B)| for m large and divisible enough. Thanks to [8] in the projective case and [20] for
the Kihler case the space Z is normal. After desingularisation f induces a fibration between
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two compact Kéhler manifolds. For simplicity we will denote the new mapby f : X — Z.In
general the torsion-free sheaf f.(m(Kx,z + B)) is not locally free. This is the case for the
reflexive hull (fx(m(Kx,z + B)))**.

We will now recall the definition of the Narasimhan—Simha metric on the line bundle
(fu(m(Kxyz + B)**.

Definition 4.1. Let Zo C Z be a locus such that f is smooth over Zy and By, is kit
for every z € Zy. Let z € Zg and let s € (f«(m(Kx,z + B))); = HO(XZ,mKXZ + mB).
We define the Narasimhan—Simha metric

2 2\"
s = ([X |s|;;;) ,
4

where / p is the canonical singular hermitian metric with respect to the divisor B. Thanks to [5],
hm can be canonically extended as a possible singular metric on (Z, (f«(m(Kx;z + B)))*™).
We call it the m-th Narasimhan—Simha metric.

Remark 4.2. We can easily check that the weight of the Narasimhan—Simha metric /,,
is locally integrable over the locus where f+(m(Kx,z + B)) is locally free. Moreover, the pair
(Z, %(f,, (m(Kx/z + B)))**, h,l,,/m) is independent of the choice of m, namely for any two
m1,my large and sufficiently divisible, we have an isometry

(mim(ml(KX/z e v ) - (im (ma(Kx /7 + BY)** 2 )
1 my

By construction, the pair (Z, %(f* (m(Kx,z + B)))**, h,%) satisfies conditions (1) and
(2) of Definition—Proposition 1.1. However, it does not satisfy in general (3), roughly because
of the codimension two subsets of the base Z whose f-inverse image have codimension one.
This situation can be improved by a trick due to [38] which we now recall. By Hironaka’s
flattening theorem cf. [38, Lemma 7.3], we can find a morphism f’: X’ — Z’ between two
compact Kihler manifolds which satisfies the commutative diagram

X/ L) Z/

ﬂl ll/«
x L7

such that the morphisms 7, u are bimeromorphic, and moreover, each hypersurface W C X’
such that codimy’ /(W) = 2 is m-contractible, i.e., codimy 7 (W) = 2.
We denote by B the strict transform of B by 7, and write

Ky +B = 7*(Kx + B) +ZaiEi.

We set B’ := B + > a;<0(—ai)Ei. Then (X, B') is klt. Let us choose m large enough so that
Fm = fl(m(Kx;z + B')) is non-zero. Then ¥, is a torsion free sheaf of rank one on Z’
and its reflexive hull #,,* is a line bundle that we can equip with the m-th Narasimhan—Simha
metric /hy,. Thanks to Remark 4.2, the following Q-line bundle and the metric are independent

of the choice of m: | 1
L:= Zf:(m(KX’/Z’ + B)*™*, h:=hy.
Let ¢ be the weight of /.
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We have the following statement, which connects our current setting with Definition—
Proposition 1.1.

Proposition 4.3. In the above setting, the following holds:
(i) iOg(L)=00nZ'"
(i) Kz + L is a big Q-line bundle and for any m € N sufficiently divisible, the algebra
P HZ'. pm(Kz + L))
p=0
is finitely generated.
(iii) For every p € N sufficiently divisible and every s € H*(Z', p(Kz: + L)), we have

2
/ Is|7e™® < +o0.

Proof. The first item is a direct consequence of [5].

For the second term, let m € N sufficiently divisible such that for every p € N, the
algebra H%(X’, pm(Ky+ + B')) is generated by Q” H°(X',m(Kx- + B’)). By the construc-
tion of L, there exist two effective divisors £+ and E_ on X’ such that

@.1) m(Kx' + B') + E_ =m-(f)*(Kz' + L) + E4.

and for every t € H%(X’,m(Kxs + B’)), T vanishes over E. As a consequence, for every
s € HO(X', pm(Kx’ + B')), s vanishes over p[E]. Note that ( f/)«(E_) is supported in the
non-locally free locus of f, (m(Kx/z 4+ B’)). Then E_ is w-contractible. Together with the
above argument, for every p € N, we have the natural isomorphisms

H®Z' , pm(Kz + L)) = H°(X', pm(Kx: + B') + pE_)
= H°(X, pm(Kx + B)).
As a consequence, Kz + L is big and the algebra
P HZ pm(Kz + L))
p=0

is finitely generated.

For the third term, let s, be the canonical section of £ and let hp (resp. hg_) be the
canonical singular metric on B’ (resp. E_). As p is sufficient divisible, we can assume that
p1:= £ e N. Thanks to (4.1), we have

(f)*(s) @ sg7" € HO(X', pr(mKx: +mB' + E-)).
By the definition of the Narasimhan—Simha metric, we have

5 2
2 _ ®
st = [ 10 © 958, .,

Note that E_ is m-contractible, (f/)*(s) ® s?f ! vanishes along E_ of order at least p; E_.

Together with the fact that B’ is klt, we have

2
[RCERCEY A

The proposition is proved. O
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Remark 4.4. Using the above argument, we know that e~ is in LIIOC(Z "\ f(E2)).
Together with Proposition 4.3, we get:

Corollary 4.5. With the above notation, Z' admits a natural Kihler-Einstein metric
wKE in the sense of Definition 1.1. This metric satisfies

4.2) Ric wxg = —wkg + ®¢(L) onZ'.

We call wgg the Kdihler—Einstein metric associated to the litaka fibration of (X, B).

4.2. Relation with the canonical metrics. Let X be a compact Kihler manifold and
let B be a Q-divisor with snc support such that (X, B) is klt. We suppose that k (Ky + B) > 1.
Thanks to [8,20], the canonical model Z of (X, B) is normal. After blowing up the indetermi-
nacy locus of the litaka fibration, we can suppose that the litaka fibration of Kx + B induces
amorphism f : X — Z and there is an ample QQ-line bundle A on Z such that

Kx-i-B:f*A-l-EX

is a Zariski decomposition for some effective QQ-divisor Ey with normal crossing support on X .
In that context, the analogue of Kihler—Einstein metrics for the pair (X, B, Ex), sometimes
called canonical metrics, are objects that are singular metrics wc,, on Z satisfying a “canoni-
cal” Monge—Ampere equation. They were first introduced by Song—Tian when B = Ex =0
(see [34]) and later generalized by Eyssidieux, Guedj and Zeriahi [19, Definitions 2.2 and 2.7].

Let us recall the definition of the canonical metric in this setting. One first picks a smooth
hermitian metric 14 = e~%4 on A with positive curvature y := dd°¢$,. Then one introduces
a measure iy, p, On X by setting

|
(0 AG)Ne 9B
Khyhp =

’

2
N
|0|f*hA,hE

where o is a local trivialization of N(Kx + B) for N divisible enough, ¢p is the canoni-
cal singular weight on B and /g is the canonical singular metric on E. Finally, one defines
Wean := X + dd€@can as the unique positive current on Z with bounded potentials such that

(43) (X + ddc(pcan)dimz — €¢°a“f*MhA,hE-

Note that the singularity of g gives rise the zero locus of up, p,. One can check that the
measure fi/lp, h, has L'%¢ density with respect to a smooth volume form, cf. [19, Lem-
ma 2.1]. Moreover, the canonical metric w¢y, 1S independent of the choice the hermitian met-
ric hy, cf. [19, Lemma 2.4].

By applying the construction in Section 4 to f : X — Z, we can find a morphism
f: X" — Z' between two compact Kihler manifolds and satisfies the commutative diagram

X/ L> Z/

x| L

X —— Z
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such that the morphisms 7, 4 are bimeromorphic, and moreover, each hypersurface W C X’
such that codimy- f'(W) = 2 is m-contractible, i.e., codimy 7 (W) = 2. Following the nota-
tions in Proposition 4.3, for m large enough, we can equip L := %f:(m(KX//Z/ + B))**
with the Narasimhan—Simha-type metric e ~%. Thanks to Corollary 4.5, we can find the “NS-
type” Kihler—Einstein metric wgg on Z" which satisfies

Ric wgg = —wkE + 2l—®¢(L) onZ'.
bid

We now establish a relation between the Kihler—Einstein metric wgg and the canonical
MeEtric Weay.

Proposition 4.6. With the notation above, let wgg be the Kiihler—Einstein metric on Z'
solution of (4.2) and let wea be the canonical metric on Z solution of (4.3). Then one has

HxWKE = Wcan-

Proof. Recall that by (4.1), we have
(4.4) m(Kx + B") + E_ = (f")*(m(Kz + L)) + E4,
and by construction, we have
m(Kx/ + B’ — Ex) = (f" o p)*mA

for some Q-effective divisor Ex such that 7. (Ex/) = Ex.
We first establish the relation between u*A and Kz + L. Remember that

feOx1(kEy) ~ Oz
for any integer k such that k £t has integral coefficients. We deduce that
m(Kz: + L) = p*(mA) ® fl(mEx + E-).

In particular, we get that f,/(m Ex: + E_) is alocally trivial sheaf of rank one, hence associated
to a divisor m Ez/; it is clearly effective and j-exceptional, as Supp( f”)«(mEx) C £ ™1 (Zsing)
and codimz: f/(E_) = 2. Then we have the Zariski decomposition

4.5) Kz +L=qu*A+Ez.

By construction, we have f*(mEz/)+ E+ = mEx, + E_.

Now, take U C Z’ a small coordinate open subset, and let e, +mq € H (U, n*mA)
and eyg,, € H O(U,mEz) be trivializations of u*mA and mEz/, respectively. Let dz be
a trivialization of Kz over U. They induce a trivialization e € H%(U, mL) of mL such that

(4.6) dz®" ®e = eyrma ® emE. -
2 2 2
—QurA n ~9E, ._ n —Q e |
Set e™Pu*a = |eﬂ*’"A|u*mhA’ e Pz = lemE,, i, and e := |e|’,,. Let
0= (f) eurma € H*(f""'(U).m(Kx' + B' — Ex")).
Thanks to (4.4) and (4.6), we have

t:=0® (/) *(emz) ®sg, € H'(f7'(U).m(Kx' + B") + E_)
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and

4.7) e 92 :/ |f|%e—¢3/—$¢5_ — o YEz / |o|%e_¢3’+¢5x/_

Note that the canonical measure v on Z’ has density with respect to the Lebesgue measure
dA = |dz|? given by the formula

dv o AG)V/meO toEK 2 _

|G|}n’*.u*hA

for z € Z’ generic. Together with (4.7), we get
ﬂ — e(p,u,*A_(p'i'(pEZ/.
dA
Therefore, w := w*wean + [ME 7] satisfies

Ricw = _/'L*wcan +dd¢—[Ez]=—w+ 2l_n®¢(L)-

Asw € c¢1(Kz/ + L) has minimal singularities by the Zariski decomposition (4.5) and satisfies
the same Monge—Ampere equation as wgg, one deduces that w = wkg, i.e.,

WKE = M*wcan + [EZ’]~

As Ez/ is pu-exceptional, the proposition is proved. |

Remark 4.7. The proof of Proposition 4.6 above shows the more precise identity
WKE = M*a)can + Ez

for some explicit divisor Ez/ on Z’.

4.3. Relative Kiihler-Einstein and canonical metrics, Main Theorem. To finish this
section, we now discuss the positivity of the relative Kihler—Einstein or the canonical metrics
when the fiber is of intermediate Kodaira dimension.

Theorem 4.8. Let p : X — Y be a projective fibration between two Kdhler manifolds
of relative dimension n and let B be an effective kit Q-divisor on X. We assume that for
a generic fiber Xy, the log Kodaira dimension satisfies k(Kx, + By) > 0. Let f : X -—> Z
be the relative litaka fibration of Kx;y + B, and let f': X" — Z' be a birational model of f
such that X' and Z' are smooth.

X/;/)Z/

| |

------------- y Z

\/

For y generic, let e,y be the canonical metric on Zj, of the pair (X,, B}); it induces
a current wg,, over the smooth locus of Z' — Y.

Assuming that Conjecture 1.4 holds, then the current wg,, is positive and extends canon-
ically to a closed positive current on Z'.
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The proof of Theorem 4.8 consists mostly in putting together all the constructions ex-
plained above. By using [8,20], the canonical ring

R(Xy, By) = P H (X, Im(Kx, + By)))

m=0

is finitely generated. Together with the fact that hO(Xy,m(KXy + B|x,)) is constant with
respect to y € Y° for some m large enough, one can construct the relative Iitaka fibration
f X -—> Z := Proj(p«(m(Kx;y + B)). Thanks to the Section 4.2, we can find a desingu-
larization f’: X’ — Z’ fitting the commutative diagram

x— 7

nl o fd

\/

such that we have an f’-Zariski decomposition over Yy

Kx'+ B =g (f'ow)*A+E on(f)""(Yo).

where A is g-ample.
Let
g =qou:7Z'—-Y

be the projection to the base. Each fiber Z;, ! for y € Y° can be endowed with a canonical metric
Wean,y € c1(u*Ay)and a Kahler—ElnStem metric wkg,y € ¢1(Kz; + Ly), where Ly := L|z;
is the restriction of the Q-line bundle L := 1 o Ja(m(Kxr 7z + B’ ))** to Z{,, endowed with the
corresponding restriction of the Narasimhan—Slmha metric on L. In pa.rticular, these fiberwise
metrics induce singular hermitian metrics e =% on pu* A| g—1(ve) and e~ on L| -1 (Y°)>
respectively. As seen in Section 4.2, there exists a j-exceptional effective divisor Ez/ on Z’
such that OKE = Pean + [EZ’]'

Assuming Conjecture 1.4, e~?KE is a positively curved metric on (K z/ jYy + L)l g—1(yey
that extends canonically to a positively curved metric on Kz//y + L on the whole Z'. As ¢can
comes from Z and E 7 is yu-exceptional, it follows that e =%« is a positively curved metric on
W* Al g—1(yoy that extends canonically to Z ’. This proves Theorem 4.8.

References

[1] T. Aubin, Equations du type Monge—Ampere sur les variétés kiihlériennes compactes, Bull. Sci. Math. (2) 102
(1978), no. 1, 63-95.

[2] R.J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kihler-Einstein metrics and the Kéhler—
Ricci flow on log Fano varieties, J. reine angew. Math. 751 (2019), 27-89.

[3] R.J. Berman and H. Guenancia, Kihler—Einstein metrics on stable varieties and log canonical pairs, Geom.
Funct. Anal. 24 (2014), no. 6, 1683-1730.

[4] B. Berndtsson, The openness conjecture and complex Brunn—Minkowski inequalities, in: Complex geometry
and dynamics, Abel Symp. 10, Springer, Cham, (2015), 29-44.



[5]
(6]
7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
(28]

[29]

(30]
[31]
(32]

[33]

Cao, Guenancia and Pdun, Variation of singular Kéhler—Einstein metrics 35

B. Berndtsson and M. Pdun, Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke
Math. J. 145 (2008), no. 2, 341-378.

B. Berndtsson and M. Pdun, Quantitative extensions of pluricanonical forms and closed positive currents,
Nagoya Math. J. 205 (2012), 25-65.

J. Bertin, J.-P. Demailly, L. Illusie and C. Peters, Introduction a la théorie de Hodge, Panor. Syntheses 3,
Société Mathématique de France, Paris 1996.

C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general
type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468.

S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Monge—Ampere equations in big cohomology classes,
Acta Math. 205 (2010), no. 2, 199-262.

M. Braun, Y.-J. Choi and G. Schumacher, Kihler forms for families of Calabi—Yau manifolds, Publ. Res. Inst.
Math. Sci. 56 (2020), no. 1, 1-13.

S. Brendle, Ricci flat Kédhler metrics with edge singularities, Int. Math. Res. Not. IMRN 2013 (2013), no. 24,
5727-5766.

F. Campana, H. Guenancia and M. Pdun, Metrics with cone singularities along normal crossing divisors and
holomorphic tensor fields, Ann. Sci. Ec. Norm. Supér. (4) 46 (2013), no. 6, 879-916.

Y.-J. Choi, Semi-positivity of fiberwise Ricci-flat metrics on Calabi-Yau fibrations, preprint 2015, http://
arxiv.org/abs/1508.00323.

D. Coman, V. Guedj and A. Zeriahi, Extension of plurisubharmonic functions with growth control, J. reine
angew. Math. 676 (2013), 33-49.

X. Dai, K. Liu and X. Ma, A remark on weighted Bergman kernels on orbifolds, Math. Res. Lett. 19 (2012),
no. 1, 143-148.

J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992),
no. 3, 361-409.

J.-P. Demailly, T. Peternell and M. Schneider, Pseudo-effective line bundles on compact Kéhler manifolds,
Internat. J. Math. 12 (2001), no. 6, 689-741.

P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kédhler—Einstein metrics, J. Amer. Math. Soc. 22 (2009),
no. 3, 607-639.

P. Eyssidieux, V. Guedj and A. Zeriahi, Convergence of weak Kéhler—Ricci flows on minimal models of
positive Kodaira dimension, Comm. Math. Phys. 357 (2018), no. 3, 1179-1214.

O. Fujino, Some remarks on the minimal model program for log canonical pairs, J. Math. Sci. Univ. Tokyo
22 (2015), no. 1, 149-192.

Q. Guan and X. Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2,
605-616.

V. Guedj, C. H. Lu and A. Zeriahi, Stability of solutions to complex Monge-Ampere flows, Ann. Inst. Fourier
(Grenoble) 68 (2018), no. 7, 2819-2836.

H. Guenancia, Kdhler—Einstein metrics with cone singularities on klt pairs, Internat. J. Math. 24 (2013), no. 5,
Article ID 1350035.

H. Guenancia, Kéhler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing
divisor, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 3, 1291-1330.

H. Guenancia, Families of conic Kdhler—Einstein metrics, Math. Ann. 376 (2020), no. 1-2, 1-37.

H.-J. Hein and S. Sun, Calabi—Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes
Etudes Sci. 126 (2017), 73-130.

T. Jeffres, R. Mazzeo and Y. A. Rubinstein, Kihler—Einstein metrics with edge singularities, Ann. of Math. (2)
183 (2016), no. 1, 95-176.

R. Kobayashi, Kéhler—Einstein metric on an open algebraic manifold, Osaka J. Math. 21 (1984), no. 2,
399-418.

M. Pdun, Relative adjoint transcendental classes and Albanese map of compact Kédhler manifolds with nef
Ricci curvature, in: Higher dimensional algebraic geometry—In honour of Professor Yujiro Kawamata’s
sixtieth birthday, Adv. Stud. Pure Math. 74, The Mathematical Society of Japan, Tokyo (2017), 335-356.

J. Ross and R. Thomas, Weighted Bergman kernels on orbifolds, J. Differential Geom. 88 (2011), no. 1,
87-107.

G. Schumacher, Curvature of higher direct images and applications, preprint 2008, http://arxiv.org/
abs/0808.3259.

G. Schumacher, Positivity of relative canonical bundles and applications, Invent. Math. 190 (2012), no. 1,
1-56.

H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans C”, Bull. Soc. Math. France 100 (1972),
353-408.


http://arxiv.org/abs/1508.00323
http://arxiv.org/abs/1508.00323
http://arxiv.org/abs/0808.3259
http://arxiv.org/abs/0808.3259

36

[34]
[35]
[36]
(37]

(38]

[39]

Cao, Guenancia and Pdun, Variation of singular Kdhler—Einstein metrics

J. Song and G. Tian, Canonical measures and Kéhler—Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2,
303-353.

G. Tian and S.-T. Yau, Existence of Kihler—Einstein metrics on complete Kdhler manifolds and their appli-
cations to algebraic geometry, in: Mathematical aspects of string theory (San Diego 1986), Adv. Ser. Math.
Phys. 1, World Scientific, Singapore (1987), 574-628.

H. Tsuji, Dynamical construction of Kéhler—Einstein metrics, Nagoya Math. J. 199 (2010), 107-122.

H. Tsuji, Canonical singular Hermitian metrics on relative canonical bundles, Amer. J. Math. 133 (2011),
no. 6, 1469-1501.

E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in: Algebraic
varieties and analytic varieties (Tokyo 1981), Adv. Stud. Pure Math. 1, North-Holland, Amsterdam (1983),
329-353.

S. T. Yau, On the Ricci curvature of a compact Kéhler manifold and the complex Monge—Ampére equation. I,
Comm. Pure Appl. Math. 31 (1978), no. 3, 339—411.

Junyan Cao, Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS,
Université Cote d’ Azur, Parc Valrose, 06108 Nice Cedex 02, France
e-mail: junyan.cao@unice.fr

Henri Guenancia, Institut de Mathématiques de Toulouse, UMR 5219,
Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
https://orcid.org/0000-0001-6528-2975
e-mail: henri.guenancia@math.cnrs.fr

Mihai Péun, Institut fiir Mathematik, Universitit Bayreuth, 95440 Bayreuth, Germany
e-mail: mihai.paun @uni-bayreuth.de

Eingegangen 4. September 2019, in revidierter Fassung 28. April 2021



