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States of America, 2 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São

Carlos, São Paulo, Brazil, 3 Department of Mathematical Sciences, Montana State University, Bozeman,

Montana, United States of America

☯ These authors contributed equally to this work.

* gameiro@math.rutgers.edu

Abstract

We demonstrate a modeling and computational framework that allows for rapid screening of

thousands of potential network designs for particular dynamic behavior. To illustrate this

capability we consider the problem of hysteresis, a prerequisite for construction of robust

bistable switches and hence a cornerstone for construction of more complex synthetic cir-

cuits. We evaluate and rank most three node networks according to their ability to robustly

exhibit hysteresis where robustness is measured with respect to parameters over multiple

dynamic phenotypes. Focusing on the highest ranked networks, we demonstrate how addi-

tional robustness and design constraints can be applied. We compare our results to more

traditional methods based on specific parameterization of ordinary differential equation

models and demonstrate a strong qualitative match at a small fraction of the computational

cost.

Author summary

A major challenge in the domains of systems and synthetic biology is an inability to effi-

ciently predict function(s) of complex networks. This work demonstrates a modeling and

computational framework that allows for a mathematically justifiable rigorous screening

of thousands of potential network designs for a wide variety of dynamical behavior. We

screen all 3-node genetic networks and rank them based on their ability to act as an induc-

ible bistable switch. Our results are summarized in a searchable database that can be used

to construct robust switches. The ability to quickly screen thousands of designs signifi-

cantly reduces the set of viable designs and allows synthetic biologists to focus their exper-

imental and more traditional modeling tools to this much smaller set.

1 Introduction

Ever since the dawn of cellular biology, the central analogy that we employ to describe cells is

that of miniature machines that transform the information about its environment to
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appropriate responses. The responses take the form of increased or decreased gene expression,

protein activation or deactivation, or regulation of transport between cellular compartments

and exterior of the cell. There is only a short step from viewing cells as little machines to the

desire of controlling them, repairing them, and then building new cellular functions. This is

the starting point of synthetic biology [1–4]; for recent review of progress and challenges see

[5]. The success of engineered mechanical or electronic systems, crucially depends on (i) mod-

ularity of their designs and (ii) ability to model complicated assemblies of parts before they are

built. In synthetic biology both of these steps present significant challenges. The focus of this

contribution is on a novel mathematical approach to addressing the second challenge.

The strength of our approach that we call Dynamic Signatures Generated by Regulatory

Networks (DSGRN) is that we are agnostic to the specific biochemical or biophysical design of

the elements of the circuits that we analyze. The input consists of a mathematical abstraction

of a gene regulatory network, e.g. Fig 1a, that consists of nodes and annotated directed edges

indicating activation or repression. The user is required to provide a means of scoring the

behavior of the network from the information about dynamics that is computed by DSGRN.

The DSGRN software [6] then allows a ranking of the networks in question based on this

score.

To demonstrate the applicability of DSGRN we focus on the question of design of a hyster-

etic switch. There are three reasons that make this a natural choice. First, it is conceptually sim-

ple. The same ideas can be applied to the design or analysis of more complicated logic circuits,

but this naturally entails a corresponding increase in complexity of computation and analysis.

Second, it is one of the early successes of synthetic biology [7]. Third, its resolution requires a

global understanding of the dynamics of the design over multiple phenotypes, e.g. monostabil-

ity versus multistability, and therefore is a nontrivial mathematical problem. While experimen-

tal implementation of a design consisting of two mutually repressing transcription factors was

a great triumph of predictive modeling, the design of [7] seems to be fragile and follow-up

attempts [8] have been made to make it more robust. A natural question arises if more com-

plex networks are able to exhibit a more robust switching behavior. This paper provides an

efficient algorithmic approach towards addressing this question.

We begin with the well established observation that in vivo gene regulatory networks oper-

ate under noisy conditions [9, 10]. Rather than attempting to provide a specific model for the

noise, we adopt the perspective that noise is significant enough to impact the initial conditions

of the dynamics and the parameter values at which the network operates, but not so significant

that it overwhelms the underlying nonlinear dynamics. Thus, for this paper we adopt the fol-

lowing design principle: a synthetic network should attempt to maximize the range of the phase

space and parameter space where it exhibits the desired function.

Fig 1. (a) Regulatory network 107. There are three nodes labelled 0, 1, and 2. Edges! indicates up regulation and a

indicates down regulation. (b) Conceptual image of ascending hysteresis. Off/low output for low values of input signal

s. On/high output for high values of s. Bistability for intermediate values of s allowing for hysteresis. (c) Descending

hysteresis. Results, analogous to those for ascending hysteresis, are discussed in Section 5.

https://doi.org/10.1371/journal.pcbi.1009189.g001
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Fig 1b summarizes the minimal structure and functionality of an (ascending) hysteretic

switch. As values of an input signal are increased from a low level, the output signal is off.

Once the input signal achieves a given threshold, S1, the output signal changes to on and

remains at on for high values of the signal. As the input signal is lowered the output value

remains on until the input signal reaches the threshold S0, that is lower than S1, at which point

the output signal switches to off.

This property of “remembering” past states is called hysteresis. Since on and off are deter-

mined by dynamics, they must be represented by stable states. To obtain hysteresis requires

that both stable states be present for the range of signal between S0 and S1, e.g. that the system

exhibits bistability. For this reason a system of this type is often referred to as a bistable switch.

In order to have a well defined problem we ask and provide answers to the following ques-

tion: Which three-node networks exhibit the functionality of a bistable switch over the largest

range of parameter values? The reader is no doubt aware that as of yet we have not described

our model for the network dynamics nor indicated what signals indicate on and off.

This is discussed in varying detail in later sections. We have adopted this approach in an

attempt to emphasize that DSGRN can be used with minimal knowledge of the rather substan-

tial mathematical theory and machinery that justifies the software [11–17]. While dynamics is

expressed as an action on a phase space, the specific action very much depends on parameters.

With this in mind the DSGRN model provides a combinatorial representation of a decomposi-

tion of parameter space and combinatorial representations of dynamics. We attempt in Section

2 I1-I3 to provide a minimal description of these combinatorial representations that allows us

to describe our results. We do not expect that this description is sufficient for the typical reader

to understand how DSGRN works. Thus, we provide more detailed descriptions of various

aspects of the DSGRN machinery in Section 4.

We remark that it is the fact that DSGRN is a combinatorial model that allows us to per-

form extremely efficient computations, and as indicated above, allows DSGRN to be agnostic

to the biochemical or biophysical details. Of course, it is precisely these details that play essen-

tial roles in the actual construction of components of a synthetic network. With this in mind,

the true novelty of DSGRN is that it employs ideas from computational algebraic geometry to

provide an explicit decomposition of parameter space [15, 17] on which dynamics is under-

stood. It is unreasonable to expect that these precise bounds on parameters should be valid for

more traditional models involving explicit nonlinearities. Nevertheless, as we demonstrate in

the context of ordinary differential equation (ODE) models using Hill function nonlinearities

with more than 20 dimensional parameter spaces, DSGRN provides considerable insight into

parameter values at which bistable switching occurs.

2 Results

Our goal is to identify three-node networks that act as bistable switches over large regions of

parameter space. As indicated in Fig 1a we label the nodes in our network by 0, 1, and 2, and

assume that node 0 is directly affected by the input and the output of the network is expressed

via node 2. Since each node can influence any other node (itself included) in three ways—acti-

vation, repression, or no impact—there are 39 = 19, 683 distinct three node networks. The stip-

ulation that 0 is an input node and 2 is the output node precludes any reduction in the number

of networks due to symmetries. We exclude 5, 103 trivial networks as defined in Section 4.6.

The number of regions into which DSGRN decomposes parameter space grows rapidly

with the number of edges in the network. For example, three-node networks with 8 edges can

have up to 823, 011, 840 distinct parameter regions, while for 9 edges this number increases to

93, 329, 542, 656. Because of this size, we only consider one network with 9 edges, that where
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each edge is an activator. Therefore, we consider 14, 068 networks. These networks are ana-

lyzed using the DSGRN software described in Section 4. However, for the purpose of reporting

the results we include the following information about the combinatorial structure of DSGRN.

I1 provides information about the combinatorial dynamics. I2 and I3 discuss the decomposi-

tion of parameter space.

I1. For three node networks the phase space is {(x0, x1, x2) j xn> 0} where the variable xn is

associated with node n. For a given parameter value DSGRN decomposes phase space

into cubes defined by the hyperplanes xn = θm,n where θm,n is the threshold parameter

associated with an edge from node n to node m. The global dynamics at the given param-

eter value is determined by a state transition graph (STG) defined on these cubes. A cube

C that has a self edge under the STG is labeled as an FP(i0, i1, i2). This should be inter-

preted as a stable state under the associated dynamics. The ik 2 {0, 1, 2, 3} indicates that if

x 2 C, then xk is greater than ik of the thresholds θ�,k, and thus provides information

about the location in phase space of the stable state.

I2. The parameter space for the DSGRN model consists of multiple positive real numbers

associated with each node (1 for the node, 2 for each incoming edge, and 1 for each out-

going edge). For node n the DSGRN software produces a finite decomposition of parame-

ter space and encodes this decomposition via a factor graph, denoted by PG(n). Two

vertices in the factor graph are connected by an edge if they represent regions of the con-

tinuous parameter space whose closures intersect on a codimension-one face.

Details about the parameters are presented in Section 4.1. For the moment we remark

that if at a vertex in the factor graph parameters associated with the in-edges do not align

properly (i.e. the parameters corresponding to the in-edges are consistently too high, or

consistently too low) with the parameters associated with the out-edges, then one can

remove edges associated with the node. This in turn implies that the dynamics is captured

by a simpler regulatory network. A node in the factor graph is defined to be essential if

every in-edge and every out-edge are relevant for the dynamics [16]. The essential factor

graph PGe(n) is the subgraph of the factor graph PG(n) consisting of the essential nodes.

I3. The full parameter space of a regulatory network is a product of the parameter spaces

associated with each node. The decomposition of the full parameter space is indexed by

the parameter graph PG. Since each region of this decomposition is made up of the prod-

uct of the region from the decomposition of the parameter space of each node, the param-

eter graph is the product of the factor graphs, i.e. PG ¼
Q2

n¼0
PGðnÞ. Of fundamental

importance is the fact that for each node in the parameter graph the state transition graph

is constant over all parameters in the associate region. For each node in the parameter

graph the DSGRN output includes the FP(i0, i1, i2) that arise from the associated state

transition graph.

Fix a regulatory network with a fixed set of parameter values. In particular, this identifies a

unique vertex (v1, v2) in the graph PG(1) × PG(2). Since we are interested in a direct corre-

spondence between network topology and bistable switching we restrict our attention to the

essential nodes PGe(1) × PGe(2).

We view the continuous change of the input signal s to node 0 as a curve through the

parameter space associated with node 0, e.g. monotone change in inducer concentration

induces a monotone change in abundance of protein produced by gene 0 (cf. IPTG in [7]).

The DSGRN analogue to a continuous change in the inducer is a discrete path

v0
0
; . . . ; vt

0
; . . . ; vT

0
within the factor graph PG(0), which is realized in the entire parameter
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graph as a path ðv0
0
; v1; v2Þ; . . . ; ðvt

0
; v1; v2Þ; . . . ; ðvT

0
; v1; v2Þ within the graph PG(0) × (v1, v2).

Each vertex ðvt
0
; v1; v2Þ on this path is an element of the parameter graph PG and hence for

each vertex DSGRN can determine the global dynamics.

We say the path exhibits ascending hysteresis if at the initial vertex of the path ðv0
0
; v1; v2Þ

there is a FP(i0, i1, j1), at the final vertex of the path ðvT
0
; v1; v2Þ there is a FP(i0, i1, j3) where

j3 > j1, and at some intermediate vertex of the path there are two stable states FP(i0, i1, j1) and

FP(i0, i1, j2) with j2 > j1. For the purposes of this paper we set j1 = 0 and require that j2 > 0 and

j3 > 0. Note that since we need to observe at least three distinct forms of global dynamics we

insist that our paths be of length at least three.

Since such a path need not traverse all of PG(0) we refer to it as a partial path. We focus on

partial paths because we do not presume to know the parameter values associated to node 0 at

which the regulatory network is acting in the absence of the input signal (cf. in the context of

construction of the toggle switch [7] we do not presume to know the level of protein produc-

tion in the absence of the added IPTG).

We define the hysteresis score of a regulatory network to be the percentage of paths that

exhibit ascending hysteresis among all paths. The total number of the paths is given by the

number of paths of length at least 3 in PG(0) times the total number of vertices in PGe(1) ×
PGe(2).

The ranking according to the hysteresis score is presented in Fig 2 (left). Observe that the

typical three-node network is incapable of exhibiting hysteresis and less than 1% of networks

are capable of producing hysteresis for the majority of parameter values. However, fourteen

networks are capable of producing hysteresis for more than 60% of the paths. Based on our

design principle we now restrict (for the most part) our attention to these fourteen three-node

regulatory networks shown in Fig 3.

Returning to the motivation of our design principle that in vivo gene regulatory networks

operate under noisy conditions, we remark that by restricting our analysis to essential nodes

we are assuming that even under noisy conditions each edge of the regulatory network oper-

ates effectively. For example, networks 1-4 in Fig 3 have a partial path hysteresis score of 100%

since they exhibit partial path hysteresis in all of their essential parameter nodes. However, if

Fig 2. Left: 14,098 three node networks ranked by (ascending) hysteresis score analyzed at the essential parameters. This is the percentage of partial paths in the

essential parameter sub-graph which exhibit switch-like behavior. The rapid decrease in score indicates that most networks are unlikely to exhibit hysteresis at most

parameters. Right: The top scoring networks are further discriminated by scoring hysteresis in a neighborhood of the essential parameters. The scores after

perturbation (red) are significantly lower than the scores at essential parameters (blue) for the top 4 networks. This is an indication that these networks are fragile i.e.

will fail to perform well if any component of the network is removed.

https://doi.org/10.1371/journal.pcbi.1009189.g002
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any one of the edges is removed, then the remaining network will not be bistable and not

capable of hysteresis (we return to this point in greater detail in Section 4.4). This observation

motivates a search for a measure of the robustness of hysteresis with respect to network

perturbations.

A more reasonable assumption might be that not all edges in the regulatory network func-

tion effectively at all times. To capture this, for the top fourteen regulatory networks we con-

sider the set of parameter nodes in PG(1) × PG(2) that are within one edge of PGe(1) × PGe(2)

and repeat the computation of the partial path hysteresis score. The results—we call this the

perturbed hysteresis score—are shown in red in Fig 2 (right).

As expected, the perturbed hysteresis score is less than the hysteresis score. However, this

loss of functionality varies widely across networks and is difficult to predict from the topology

alone. We define the robustness score of a regulatory network to be its perturbed hysteresis

score divided by its hysteresis score. We refer to each network by its position in the list ordered

by decreasing hysteresis score (see [18]). Networks 1-4, 13, and 14 (boxed with dotted lines in

Fig 3) have robustness scores under 0.5. This suggests that under ideal conditions these net-

works will perform well as a switch. However, they are easy to break in the sense that small per-

turbations from the essential parameters largely destroy their ability to act as a switch. With

this in mind we call regulatory networks with robustness score less than or equal to 0.5 fragile,
while those scoring above 0.5 are referred to as robust (and are boxed by dashed lines in Fig 3).

Invoking the hysteresis rank and robustness allows us to reduce our attention to eight regu-

latory networks at which point we can focus on the actual topology of the design. The imple-

mentation of a gene regulatory network is constrained by available control mechanisms which

must be considered when comparing networks. For instance, Network 5 in Fig 3 requires that

node 0 act both as an activator and repressor. While this is biologically possible, e.g. the dimer

CI acting in phage λ lysogenic/lytic switch, simpler design features may be desired. We call a

Fig 3. The top fourteen regulatory networks by hysteresis score. The six regulatory networks in dotted boxes are fragile, while the eight outlined via the dashed lines

are robust. Observe that the three networks outlined by the solid lines are also consistent and each node acts only as an activator.

https://doi.org/10.1371/journal.pcbi.1009189.g003
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node consistent if it acts as an activator or a repressor, but not both. As is indicated by the solid

boxes in Fig 3 there are three high ranked and robust regulatory networks in which all nodes

are consistent: 6, 11, and 12.

Note that in networks 13 and 14, node 1 provides a constant input to node 0. Therefore

node 1 does not affect the existence of ascending hysteresis. Removing this ineffectual node

transforms networks 13 and 14 into a two node toggle switch with mutually activating edges,

and with positive self-regulation on node 0. The fact that these networks are fragile in our anal-

ysis recapitulates the observation from [7, 8] that the two-node design of the toggle switch is

fragile.

It is interesting to observe that the top three consistent regulatory networks that provide

ascending hysteresis are based on nodes that are activators. The consistent regulatory network

based on repressing nodes that has the highest hysteresis score (33.33%) is shown in Fig 4.

This is a fragile network with the perturbed hysteresis score of 6.66%.

Thus, simple robust design of ascending hysteresis seems to require the use of activators.

Interestingly, the role of activators in ascending hysteresis is not mirrored by the role of repres-

sors in the descending hysteresis. First, no 3-node network that only consists of activators is

capable of producing descending hysteresis. Second, in contrast with Fig 3, there is no network

among the top 14 networks for descending hysteresis, with only repressing edges (see Fig 9).

Based on three criteria—hysteresis score, robustness score, and consistency of nodes—Net-

work 12 is the most desirable design. Returning to the question posed in the introduction—are

more complex networks capable of exhibiting more robust switching behavior—the answer is

a qualified yes. However, complexity alone is not sufficient. This is evidenced by the fact that if

Network 12 is modified by adding an additional activating edge from node 1 to node 2, a self

activation for either 1 or 2, or any combination of these edges the resulting network has a

smaller hysteresis score, often dramatically so. For instance if we attempt to maximize com-

plexity by adding every single edge as an activator, the resulting network has a hysteresis score

of 0%.

The results discussed up to this point have all been obtained from the combinatorial com-

putations of DSGRN. More traditional modeling of regulatory networks is based on ODEs. As

is discussed in Section 4.1 and in Section 6, there is a direct translation from DSGRN parame-

ters to nonlinearities based on Hill functions in the limit when the exponents in the Hill func-

tion are very large. We now demonstrate that information from DSGRN has implications for

the ODE models. Two important observations are that (i) trustworthy ODE computations are

many orders of magnitude more expensive than DSGRN computations, and (ii) it is

Fig 4. (a) The best network with only repressing edges, network 66, has a hysteresis score of 33.33%. (b) Continuation of equilibria

in the Hill model (1) for regulatory network 12 using n = 4. (c) Regulatory network 33. (d) Regulatory network 3839.

https://doi.org/10.1371/journal.pcbi.1009189.g004
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unreasonable to expect the explicit DSGRN decomposition of parameter space to apply pre-

cisely to any specific ODE.

To expand on this we consider Network 12 and a corresponding ODE. Assumptions need

to be made on how multiple in-edges to a node impact the rate of change of the associated var-

iable. These assumptions are discussed in detail in Section 4.1, but for the moment it suffices

to state that since all the arrows in Network 12 have the form! leads to a summation of the

nonlinear terms affecting the growth rate. Hence we consider

_x0 ¼ �g0x0 þ L0 þ
d0;0xn0
y
n
0;0
þ xn

0

þ
d0;1xn1
y
n
0;1
þ xn

1

þ
d0;2xn2
y
n
0;2
þ xn

2

þ s

_x1 ¼ �g1x1 þ L1 þ
d1;0xn0
y
n
1;0
þ xn

0

þ
d1;2xn2
y
n
1;2
þ xn

2

_x2 ¼ �g2x2 þ L2 þ
d2;0xn0
y
n
2;0
þ xn

0

ð1Þ

where for simplicity have made two modeling assumptions. First, the effect of the external sig-

nal on the growth rate of x0 is given by a simple linear additive term s. Second, the exponents n
of the Hill functions are the same. In addition, there are 21 other parameters that lie in (0,

1)21 (see Section 4.1). There are 707 vertices in PG(0) (see [15]), and 24 vertices in PGe(1) ×
PGe(2) (see Section 4.2).

The most computationally efficient means of identifying the desired hysteresis curve in Eq

(1) is to fix a parameter value in (0,1)22, choose an initial value s0 for s, find a stable fixed

point with low x2 value, perform continuation with respect to arc-length of a fixed length, and

check that two saddle-node bifurcations have occurred. An example of this computation is

shown in Fig 4b (see Section 6 for details). With the goal of quantifying how robustly this sys-

tem exhibits hysteresis the obvious question is how many parameter values should be chosen

and what is the appropriate choice of arc-length. Based on the number of vertices in PG(0) and

PGe(1) × PGe(2), the number of partial paths computed by DSGRN is on the order of 105. Fur-

thermore, since each region of parameter space is an unbounded open set in (0,1)22 even

sampling each region is non-trivial. This suggests that performing sufficiently many continua-

tion computations to compare with the DSGRN hysteresis score is prohibitively expensive.

With this in mind we greatly simplify the DSGRN computations being performed. We

remark that a partial order can be placed on the vertices of PG(0) (see Section 4.1) such that

there is a unique minimal vertex v0 and unique maximal vertex �v0. A path v0
0
; . . . ; vt

0
; . . . ; vT

0

within the factor graph PG(0) is full if v0
0
¼ v0 and vT

0
¼ �v0. This leads to two new scores

obtained as follows.

For each vertex in (v1, v2) 2 PGe(1) × PGe(2) we consider all full paths

ðv0; v1; v2Þ; . . . ; ðvt
0
; v1; v2Þ; . . . ; ð�v0; v1; v2Þ and mark those paths that exhibits hysteresis as hys-

teretic. The full path hysteresis score is the percentage of hysteretic paths among all full paths.

The perturbed full path hysteresis score is the same but based on the one edge neighborhood of

PGe(1) × PGe(2).

To compare the predictions of DSGRN against ODE models we chose four regulatory net-

works, Network 12 from Fig 3, Network 107 from Fig 1a, and Network 33 and 3839 shown in

Fig 4c and 4d. These latter three networks were chosen because they exhibit different hysteresis

scores: 42.46%, 18.95%, and 0%, respectively. For each network we performed two sets of

experiments. For the first we randomly chose 1000 parameter values that lay in

v0 � PGeð1Þ � PGeð2Þ, and for the second we chose 1000 parameter values in the one edge

neighborhood with respect to PGe(1) × PGe(2). In each case for each parameter choice we
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performed the above mentioned procedure to identify whether or not one obtains a hysteresis

curve. The results are indicated in Table 1.

We highlight three observations from Table 1.

• For large Hill exponent n the DSGRN full path scores and the ODE scores are quite similar.
This is not surprising. DSGRN is based on a mathematical approach to nonlinear dynamics

that captures features that persist under perturbation [11–14, 19].

• For more biologically realistic levels of n the quantitative agreement between the scores disap-
pears. Again, this is not surprising. It has long been known that in order for nonlinearities

with gentle sigmoidal shape to intersect at multiple points, their parameters must be carefully

adjusted. As a result, for low n, bistability is rare.

• The relative ranking by DSGRN of the capability of regulatory networks to achieve robust
switching is predictive of the observations from the ODE models. Moving from left to right

along the rows, DSGRN predicts that the corresponding networks are progressively less

capable of acting as a robust switch. For the most part the ODE simulations agree with this

prediction. Most importantly, Network 12 is the best at all values of n. We include Networks

107 and 3839 to emphasize that the predictive power of DSGRN is not perfect. However, for

these networks the realization of ascending hysteresis is consistently low, again suggesting

that DSGRN is capable of identifying regulatory networks of interest.

3 Discussion

DSGRN provides a modeling framework and associated computational tool that is capable of

analyzing all 3-node regulatory networks for prevalence over a large range of parameter values

of a particular phenotype. Our investigation into the identification of the robust expression of

the phenotype of hysteresis demonstrates DSGRN’s practical value—in synthetic biology hys-

teresis forms a basis for a design of a bistable switch. It also demonstrates the power of

DSGRN to capture complex dynamics—hysteresis arises from global organization of multiple

phenotypes (monostability, bistability, monostability) as a function of increasing external

input. Furthermore, the publicly available searchable database of all 3-node networks allows

synthetic biologist to select robust designs that meets additional implementation criteria [18].

Table 1. The regulatory network number comes from the ranking of the hysteresis score [18]. The bottom two rows indicate the full path and partial path hysteresis

scores obtained from DSGRN. The first column indicates the exponent of the Hill function used in the ODE model for the regulatory network, e.g. (1). The two columns

under each regulatory network number indicate the percentage of continuation computations that result in a hysteresis curve. The first column assumes the parameter

value is in a region defined by v0 � FPð1Þ � FPð2Þ and the second column assume the parameter value is in region defined by a one edge neighborhood. 1000 curves were

computed for each entry.

Regulatory Network 12 33 107 3839

Hill function exponent

n
Hysteresis

Score

Perturbed

Score

Hysteresis

Score

Perturbed

Score

Hysteresis

Score

Perturbed

Score

Hysteresis

Score

Perturbed

Score

30 96.4% 72.2% 84.8% 34.5% 29.7% 57.1% 6.8% 3.8%

20 92.2% 58.1% 78.5% 30.2% 16.7% 42.9% 7.3% 4.5%

10 68% 26.3% 50% 16.9% 2.8% 16.1% 7.8% 3.6%

5 17.7% 3.6% 12.4% 3.4% 0% 2.3% 7.5% 2.1%

4 8.9% 1.6% 6.1% 1.4% 0% 0.5% 4.4% 1.2%

DSGRN (full path) 100% 79.09% 83.33% 61.67% 33.96% 25.05% 0% 0%

DSGRN (partial path) 80.91% 64.13% 42.46% 27.73% 18.95% 13.34% 0% 0%

https://doi.org/10.1371/journal.pcbi.1009189.t001
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It is important to note that the complexity of hysteresis phenotype makes it challenging to

succinctly describe the network features i.e. number, sign and position of edges, that character-

ize high scoring networks. While it is known that presence of positive edges generally leads to

bistability, our computations show that there is no simple relationship between the hysteresis

score and the number of positive edges. Furthermore, we believe that as size and complexity of

networks increase, simple network features are even less likely to predict presence or absence

of specific dynamics. Thus, a direct evaluation of the prevalence of such dynamics across

parameters by DSGRN becomes a crucial tool in understanding of behavior of complex

networks.

Obviously, DSGRN can be used to search for simpler phenotypes. In particular, it has been

used to catalog types and number of intermediate steady states in epithelial-mesenchymal

transition network [20], as well as to characterize START network controlling G1/S transition

in human cell cycle [16]. In principle it can be applied to the analysis of more complicated con-

trol circuits.

DSGRN occupies a novel niche in the collection of modeling tools for regulatory networks.

On one hand it is similar to Boolean models, where in the simplest setting gene expression

is either on or off, i.e. 0 or 1, and the update rule that encodes the dynamics is a Boolean func-

tion. The dynamics of Boolean models is thus efficiently computable. Conceptually, the closest

analogue to DSGRN is the work pioneered by L. Glass and S. Kauffman [21, 22] involving

switching systems where the logic of the Boolean system is embedded into continuous differen-

tial equations with the goal of predicting qualitative features of differential equation dynamics

by the dynamics of the asynchronously updated embedded Boolean system. The state transi-

tion graphs used by DGSRN extend the embedded Boolean systems and allow for modeling a

broader class of dynamics, while preserving the efficiency of computations. DSGRN also com-

binatorializes parameter space to understand how dynamics changes under the change in

parameters. Again, similar to the Boolean models the goal of DSGRN is not to precisely match

and reproduce carefully measured expression data of genes over a wide variety of growth

conditions.

However, in the setting of systems biology more often than not such measurements are not

available, especially for networks involving more than a few genes. In such situations, DSGRN

can be a first step in understanding of network dynamics. DSGRN can search through many

proposed networks over a wide range of parameter values, and eliminate those that do not sup-

port the desired dynamical behavior, coarsely defined e.g. equilibria or oscillations with partic-

ular patterns of high and low expression values. Elimination of networks or reduction of

potential functional parameter values for a given network provides significant reduction of

hypotheses space.

In contexts where one has carefully measured expression data of genes, modeling tools of

choice often involve ODEs with experimentally determined parameters. In contrast to the

Boolean approach, the mathematical foundations of DSGRN—a continuous phase space and

parameter space—allows for direct comparison with an extremely broad class of ODE models

[19]. As is demonstrated in this paper, DSGRN provides a means to compare systems of

ODEs. In particular, it can rank the relative ability of ODE models to produce particular

dynamics over large ranges of parameter values. At the same time, DSGRN provides a priori

bounds on parameter regions where sampling of parameters and fitting the expression data is

feasible. Finally, DSGRN provides, at low computational cost, the ability to describe relation-

ships between any simultaneous change in many parameters and the changes in network

dynamics. This facilitates generation of hypothesis of behavior of a system under different con-

ditions and leads to prioritization of experiments.
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To add additional emphasis on the importance of the computational efficacy of DSGRN we

note that the comparisons in Table 1 are based on full path and perturbed full path hysteresis

scores. We expect that in many applications it is more likely that external control will not lead

to a path that extends across the entire parameter domain of the input node. In this case the

partial path statistics are more relevant. However, carrying out such computations in the set-

ting of tradition ODE models appears to be computationally prohibitive.

Due to its ability to describe complex relationship between network parameters and net-

work dynamics, albeit on a coarse level, and the associated systematic reduction of the hypoth-

esis space for experimental examination of this dynamics, DSGRN should become a part of an

essential toolbox in systems and synthetic biology.

4 Methods

We provide a brief description of how DSGRN combinatorializes both phase space and param-

eter space of regulatory networks. For more details the reader is referred to [15, 16, 23].

4.1 Input and output

DSGRN takes as input an annotated directed graph (see Fig 3), called a regulatory network,

where the annotations on the edges indicate activation! or repression a along with an alge-

braic expression that indicates how incoming edges to a node interact. To understand the role

of algebraic expression we note that implicit in the DSGRN calculations is a positive variable

xn, e.g. level of protein, associated with node n of the regulatory network. Each xn decays at a

rate γn. If there is an edge from node m to node n, then the model includes three positive

parameters: ℓn,m, a low growth rate of xn induced by xm; δn,m, such that ℓn,m + δn,m represents a

high growth rate of xn induced by xm; and θn,m, a threshold that separates the values of xm that

induce low or high growth rate of xn. In particular, if node n has a single in-edge! from m
then the increase or decrease of xn is determined by the sign of

�gnxn þ

(
‘n;m if xm < yn;m

‘n;m þ dn;m if xm > yn;m:
ð2Þ

If there are multiple in-edges to node n, then the user has considerable flexibility in deciding

whether to add or multiply the rates associated with the in-edges. For this paper we adopted

the convention to first add rates associated with! edges, and then multiply by values associ-

ated with a edges. In particular, because Network 12 consists exclusively of! edges, all the

nonlinearities are summed (this in turn leads to the form of (1)). In the case of Network 33

(see Fig 4c) the nonlinearities that drive the production of x1 would be multiplied, i.e.

�g1x1 þ

(
‘1;0 if x0 < y1;0

‘1;0 þ d1;0 if x0 > y1;0

0

@

1

A

(
‘1;2 þ d1;2 if x2 < y1;2

‘1;2 if x2 > y1;2:

0

@

1

A

Given a regulatory network as input DSGRN is capable of producing as output a queryable

database, called the DSGRN database, indicating the possible global dynamics at associated

parameters. Conceptually it is useful to view the DSGRN database via the parameter graph
(described below), where associated to each node in the parameter graph is an explicit region

in parameter space and a description of the global dynamics in the form of a Morse graph
(described below). For a fixed ordering of the thresholds (see below), an edge between two

nodes in the parameter graph indicates that the associated regions share a co-dimension 1

boundary.

PLOS COMPUTATIONAL BIOLOGY Rational design of complex phenotype via network models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009189 July 29, 2021 11 / 25

https://doi.org/10.1371/journal.pcbi.1009189


Finally, we remark that there is an apparent symmetry relating the topology of a network

and the algebraic expressions which govern the interactions between its nodes. The simplest

example can be seen in Networks 1-4 which have very similar topology. Each has exactly 3

edges which connect the nodes cyclically. One also notices that they have identical hysteresis

and robustness scores so that, in some sense, these networks are “dynamically equivalent”. A

related symmetry for STGs has been identified and studied in [24]. In [24], all observable pat-

terns of fixed points and cycles were enumerated and classified for 3 node networks (assuming

no self edges). Each distinct pattern was identified with a corresponding Boolean 3-cube with

directed edges in a specific configuration and the dynamically equivalent configurations were

related by permutations of the 3-cube.

The similar topologies and scores for Networks 1-4 in this work can be attributed to the fact

that for these networks, this STG symmetry is also preserved along paths through the DSGRN

parameter graph. In fact, for Networks 1-4, one can essentially prove this equivalence “by

hand”. However, we do not exploit this symmetry in this work because, outside of the simplest

cases such as Networks 1-4, this symmetry is not well understood despite being easily observed

[17]. Obtaining a deeper understanding of the relationship between a generic network’s topol-

ogy and the algebraic expressions governing the interactions between its nodes is an open

problem.

4.2 Parameter graph

As indicated above, given a regulatory network with N nodes and E edges, the DSGRN param-

eter space is (0,1)N+3E. The parameter graph provides combinatorial representation of a finite

decomposition of this parameter space. Each node of the parameter graph corresponds to an

explicit open semi-algebraic set [15, 17] with the property that the STG (see Section 4.3) is con-

stant for all parameters in that set.

As is discussed in I2 and I3 the parameter graph is the product of the factor graphs and

each factor graph is determined by the in-edges and out-edges of its corresponding node in

the regulatory network. Fig 5a shows the factor graphs for nodes whose number of in and out-

edges are (from left to right) (2, 1), (1, 2), and (1, 1).

General descriptions of how parameters are identified with nodes of the factor graph can be

found in [15, 17]. To provide intuition we focus on the simplest factor graph corresponding to

(1, 1), i.e. one in-edge and one out-edge.

Because there is a single in-edge and a single out-edge, as indicated in (2) there is a unique

γ, θ, ℓ and δ. Furthermore, the sign of the expression (2) is constant over the subsets of parame-

ter space defined by the inequalities

gnyk;n < ‘n;m < ‘n;m þ dn;m; ‘n;m < gnyk;n < ‘n;m þ dn;m; ‘n;m < ‘n;m þ dn;m < gnyk;n ð3Þ

where θk,n is the threshold associated with the edge from node n to node k. These three regions

are represented by the nodes in the rightmost factor graph PG(2) in Fig 5a.

Observe that if the parameters satisfy the leftmost or rightmost sets of inequalities in (3),

then the sign of (2) is independent of the value of xm. Since we are assuming that n has a

unique in- and out-edge, this implies that we can remove node n from the network without

losing information about the potential dynamics (the constant growth rate on xk due to xn will

be compensated for by the parameter values). Thus only the node associated with the middle

set of inequalities in (3) is essential, as is indicated by the blue node in Fig 5a.

We remark that in the context of switching systems the analogue of an essential parameter

node is the notion of effective regulator [25]. However, the restriction in the DSGRN setting is
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in the choice of parameter, i.e. a node in the parameter graph, as opposed to the choice of a

Boolean function defined on the regulatory network.

Observe that the order of the set of inequalities of (3) can be obtained by associating it with

increasing values of γ. This same approach applies in general and we use it to induce a partial

order on any form of factor graph that PG(0) may assume. All full and partial paths discussed

in Section 2 are chosen to be strictly monotone with respect this partial order.

4.3 Combinatorial dynamics

Note that if there are sn out-edges from node n, there must be sn thresholds associated to node

n with indices of the form, θ�,n, and these thresholds divide the domain of the variable, xn, into

sn + 1 intervals. This in turn implies that for a given regulatory network with N nodes there is a

decomposition of the phase space (0,1)N into rectangular cells bounded by thresholds, zero,

or extending to infinity.

Each cell is labeled by a vector (α0, α1, . . ., αN−1), αn 2 {0, . . ., sn}, where sn 2 {0, . . ., N} is

the number of out-edges of node n in the network under consideration. See Fig 5b for an illus-

tration for a three node network i.e. N = 3.

The combinatorial dynamics is represented by a STG as defined in [15] and Section 7. Each

node of the STG represents one rectangular cell and edges indicate how cells are mapped for-

ward in time.

We conclude this section by emphasizing that as presented in [15], DSGRN was not capable

of analyzing networks with self repressing interactions or nodes without an out-edge. As part

of this work we remove these restrictions (see Section 7 for details). The DSGRN code is avail-

able at [6].

4.4 Intuition into robustness and fragility

A focus of this paper is on identifying regulatory networks that, if they can be built, will per-

form as desired under a variety of settings. This led to a measure of robustness and fragility.

We do not claim to have a sharp characterization of the quantities, but we can provide a poste-

riori intuition.

To understand fragility consider Network 1 in Fig 3. Because there is one out-edge for each

node, there is one hyperplane xn = θm,n associated to each coordinate of phase space (0,1)3.

Fig 5. (a) For fixed ordering of the thresholds the parameter graph for the network in Fig 4a where the nodes 0, 1, and

2 have 2 in-edges and 1 out-edge,1 in-edge and 2 out-edges, and 1 in-edge and 1 out-edge, respectively, written as a

Cartesian product of the three factor graphs. For i = 1, 2, PGe(i) is the subgraph consisting of only the blue vertices. (b)

Phase space decomposition for Regulatory Network shown in Fig 4a under the assumption that θ2,1 < θ0,1. The cell

identified by ? is labeled (1, 0, 0).

https://doi.org/10.1371/journal.pcbi.1009189.g005
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Thus phase space is divided into eight three-dimensional cubes indexed by {0, 1}3 that is repre-

sented by the graph shown in Fig 6 where each node represents a cube and edges indicate that

the two associated cubes intersect along a hyperplane. For this simple example, the direction of

the arrow is determined by the sign of (2) evaluated at the hyperplane xn = θm,n (see Section 7

and [15] for the general procedure).

There are 27 nodes in the parameter graph for Network 1 in Fig 3. The same argument as

presented in Section 4.2 shows that there is a single essential node in PGe(1) × PGe(2) given by

the inequalities

‘1;0 < g1y2;1 < ‘1;0 þ d1;0 and ‘2;1 < g2y0;2 < ‘2;1 þ d2;1: ð4Þ

Again, as discussed in Section 4.2, the factor graph for PG(0) consists of three nodes and thus

for Network 1 there is a unique full and unique partial path v0
0
; v1

0
; v2

0
. The STG associated to

each node in the path through parameter the parameter graph are indicated in Fig 6.

The three STGs shown in Fig 6 indicate the existence of ascending hysteresis. The blue

nodes in the STGs indicate the attracting states that, as indicated in I1, DSGRN labels as an

FP. Thus moving from left to right we have monostability (FP(0, 0, 0)), bistability (FP(0, 0, 0)

and FP(1, 1, 1)), and monostability (FP(1, 1, 1)). Observe that the x2 values at these attracting

states (again moving from left to right) are 0, 0 and 1, and 1. Since this is the unique partial

path for Network 1, the hysteresis score is 100%, in agreement with Fig 2. However, we leave it

to the reader to check that if one chooses a node in PG(1) × PG(2) that differs from the essen-

tial node by a single inequality (there are four such nodes), then along the associated path one

will not achieve the desired bistability state. Thus, the perturbed hysteresis score is 20% and

Network 1 is labeled as fragile.

To provide intuition into robustness consider Network 6 in Fig 3. Both node 1 and node 2

have a single in and out-edge, and thus there is a single essential node in PG(1) × PG(2). Hav-

ing fixed this parameter value, we need to consider the STGs associated with paths over the

factor graph PG(0). Observe that phase space is partitioned into regions bounded by the hyper-

planes defined by x0 = θ1,0, x0 = θ2,0, x0 = θ3,0, x1 = θ0,1, and x2 = θ0,2. Thus the nodes of the

desired STGs are as shown in Fig 7.

Fig 6. Hysteresis representation in DSGRN. State transition graph for Network 1 in Fig 3 over a factor graph PG(0) at the unique essential node of PG
(1) × PG(2). (v0

0
) represents a low input to node 0 and exhibits FP(0, 0, 0); (v1

0
) represents a medium input to node 0 and exhibits bistability between FP

(0, 0, 0) and FP(1, 1, 1); (v2
0
) represents a high input to node 0 and exhibits FP(1, 1, 1).

https://doi.org/10.1371/journal.pcbi.1009189.g006
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We begin by focusing on identifying bistability. High values of variables x1 and x2 are repre-

sented by the four cubes labeled (0, 1, 1), (1, 1, 1), (2, 1, 1), and (3, 1, 1) where x1 > θ0,1 and

x2 > θ0,2. Observe that for these cubes the variable x0 will increase (arrows pointing to the

right). Similarly, low values of x1 and x2 are represented by (0, 0, 0), (1, 0, 0), (2, 0, 0), and (3, 0,

0) and there the variable x0 will decrease (arrows pointing to the left). Let us now restrict our

attention to essential nodes in PG(0). We leave it to the reader to check that for any essential

node in PG(0) the direction of arrows on the left and right squares are as depicted in Fig 7. The

directions of the other, unoriented edges, are dependent upon the specific essential node.

However, observe that the bistabilty between (000) and (311) is assured for any such choice.

As a consequence of this multitude of means of maintaining bistability, perturbing away from

the essential node of PGe(1) × PGe(2) does not necessarily destroy bistability. Finally, consider

any full path over the factor graph PG(0). We claim that at the endpoints of this graph the STG

gives rise to monostability. However, any such path goes through an essential node of PG(0)

and thus experiences bistability. Similarly, there are full paths over the factor graph PG(0)

based at nodes obtained from perturbing away from the essential node of PG(1) × PG(2).

Therefore, it is not surprising that this network exhibits robust hysteresis. Again, we emphasize

that this is an a posteriori computation; we can explain the results found from the DSGRN

computations, but we cannot predict them.

We remark that there are similarities and differences in the concept of robustness used in

this paper from those that are explored in the context of switching systems [25, 26] or Boolean

models [27]. The overwhelming similarity is that we are concerned with whether the dynamics

observed at one parameter value is equivalent to that at nearby parameter values. In our case

parameter space is continuous and partitioned into a finite set of regions. Thus, nearby param-

eters either lie in the same region or a region that differs by a co-dimension one hypersurface.

In the case of the Boolean models [27], a nearby parameter value is a Boolean function that dif-

fers by a single entry. A subtle difference is that our primary focus is not on matching the exis-

tence of individual trajectories arising as solutions to a differential equation that to the

temporal sequence of the Boolean updates, but rather with the existence of a global dynamical

structures, e.g. monostability and bistability. A more important difference is that we are inter-

ested in tracking and organizing these global structures over large ranges of parameter space,

Fig 7. STG for network 6 from Fig 3. Since node 0 has three output edges there are three thresholds of the variable

corresponding to 0 and four states 0,1,2,3. The arrows are valid for any essential parameter nodes in PG. The direction

of other, un-oriented edges, depends on a choice of a particular essential node in PG(0). Since the bistabilty between

(000) and (311) is assured for any such choice resulting in lack of fragility of the bistablty and hysteresis.

https://doi.org/10.1371/journal.pcbi.1009189.g007
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e.g. hysteresis consists of a prescribed combinatorial sequence of monostability, bistability,

monostability.

4.5 Morse graphs

The information in the STG is summarized by a Morse graph. This is an acyclic directed graph,

or, equivalently, a partially ordered set, where nodes indicate potential recurrent dynamics

and the directed edges indicate the direction of the dynamics between recurrent sets [15, 28].

We summarize the importance of Morse graph representation of dynamics by noting that any

minimal node of the Morse graph labeled FP(α0, α1, α2) indicates that the corresponding cell is

an attracting region for the dynamics [15]. Thus a Morse graph with a unique minimal node

suggests monostability, while two minimal nodes indicates bistability.

4.6 Constraints on searched networks

There are 39 = 19, 683 three node networks. We only consider a subset of these defined as fol-

lows. Let aij 2 {−1, 0, 1} denote the edge coefficients which describe the type (or lack) of interac-

tion from node j to node i. Specifically, aij = 0 if there is no interaction, aij = −1 if node j
represses node i, and aij = 1 if node j activates node i. We say that a three node network is triv-
ial if either there exists no path from node 0 to node 2, or no path from node 1 to node 2. In

terms of the edge coefficients, a network is trivial if and only if

ja20a21j þ ja20a01j þ ja21a10j ¼ 0:

Our restriction to nontrivial networks follows from the observation that if a network has no

path from node 0 to node 2, then it is incapable of acting as a switch. Furthermore, if there is

no path from node 1 to node 2, then node 1 has no influence on the dynamics, and therefore

can not be responsible for any hysteresis or lack thereof. We omit these 5, 103 trivial networks

from our analysis.

As indicated in the introduction we omit all but one of the three node networks in which

every gene interacts directly with every other gene. The remaining 14, 068 are the networks

analyzed in this paper.

4.7 Computations

The computations of the DSGRN ascending hysteresis score presented in Fig 2 took a total

wall time of 1, 478.61 hours. The computations were performed on a cluster with 100 nodes

and finished after just over 15 hours. The numerical continuation for Hill models presented in

Table 1 were computed on a single laptop and took a total time of 7.9 hours.

5 Results for descending hysteresis

We consider descending hysteresis in which the switch-like behavior transitions from a high

steady state to a low steady state with bistability in between. A schematic for this case is shown

in Fig 1c.

We carried out the same analysis as for the ascending hysteresis. The combinatorial defini-

tion of descending hysteresis is analogous to that of ascending hysteresis. Specifically, a path

exhibits descending hysteresis if at the initial vertex of the path ðv0
0
; v1; v2Þ there is a FP(i0, i1,

j1), at the final vertex of the path ðvT
0
; v1; v2Þ there is a FP(i0, i1, j3) with j3 < j1, and at some

intermediate vertex of the path there are two stable states FP(i0, i1, j1) and FP(i0, i1, j2) with j2
< j1. For the purposes of this paper we set j3 = 0 and require that j1 > 0 and j2 > 0. As in the

study of the ascending hysteresis, we only consider paths of length at least three.
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The ranking according to the hysteresis score is presented in Fig 8 (left) along with the

scores after perturbation for the top 14 networks in Fig 8 (right). These 14 networks are shown

in Fig 9. Observe the striking similarity with Fig 3. In both cases there are exactly 4 networks

that have a 100% hysteresis score and contain only 3 edges that cyclically connect the nodes.

All of these networks are fragile and their corresponding robustness scores are also similar.

Comparing Fig 3 with Fig 8 we observe that the distribution of ascending and descending hys-

teresis scores are very similar and indicate that robust switching is relatively rare in either case.

The close similarity between analysis of the entire collection of 3 node networks with respect

Fig 8. Left: 14,098 three node networks ranked by (descending) hysteresis score analyzed at the essential parameters. Right: The top scoring networks are further

discriminated by scoring hysteresis in a neighborhood of the essential parameters. The scores after perturbation are shown in (red) and the scores at essential parameters

in (blue).

https://doi.org/10.1371/journal.pcbi.1009189.g008

Fig 9. The top fourteen regulatory networks by descending hysteresis score. The six regulatory networks in dotted boxes are fragile, while

the eight outlined via the dashed lines are robust. Observe that none of the networks are consistent. Networks 13 and 14 are analogous to

networks 13 and 14 of the main paper. The fact that they are fragile recovers observation from [7] that 2-node toggle switch is fragile (see

comment in the main text).

https://doi.org/10.1371/journal.pcbi.1009189.g009
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to ascending and descending hysteresis suggests that there exists some relation, e.g. symmetry,

where a network’s ascending hysteresis and robustness scores are comparable to its partner’s

descending scores. This relation does not appear to be obvious as it must be compatible with

observations about asymmetry made in the main text. For example, even though there is a net-

work consisting of only repressors that exhibits ascending hysteresis ranked networks, there is

no network with only activators that exhibits descending hysteresis. Exploring this relationship

and its implications is the subject of current research and remains an open problem.

6 Hill model continuation computations

The dynamics of a regulatory network as modelled by DSGRN is obtained by assuming that

the rate of change of x can be approximated by

�Gxþ LðxÞ; ð5Þ

where x = (x0, . . ., xN−1) represent the state variables of the N nodes of the network, Γ is a diag-

onal matrix

G ¼

g0

g1

. .
.

gN�1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

where γi> 0 is the decay rate of xi, and Λ(x) = (Λ0(x), . . ., ΛN−1(x)) takes the form described

below. Let

sþðy; ‘; d; yÞ ¼

(
‘; if y < y

‘þ d; if y > y

and

s�ðy; ‘; d; yÞ ¼

(
‘þ d; if y < y

‘; if y > y:

Assume that node i has k in-edges from the nodes j1, . . ., jk in the regulatory network. Fur-

thermore, assume that of these edges j1; . . . ; jk1
are activating and jk1þ1; . . . ; jk are repressing.

For the computations of this paper we set

LiðxÞ ¼ ðsþðxj1Þ þ � � � þ s
þðxjk1 ÞÞs

�ðxjk1þ1
Þ � � � s�ðxjkÞ: ð6Þ

As an example, for network 12 in Fig 3, Eq (5) takes the form

�g0x0 þ s
þðx0; ‘0;0; d0;0; y0;0Þ þ s

þðx1; ‘0;1; d0;1; y0;1Þ þ s
þðx2; ‘0;2; d0;2; y0;2Þ

�g1x1 þ s
þðx0; ‘1;0; d1;0; y1;0Þ þ s

þðx2; ‘1;2; d1;2; y1;2Þ

�g2x2 þ s
þðx0; ‘2;0; d2;0; y2;0Þ

since all the in-edges are activating.

PLOS COMPUTATIONAL BIOLOGY Rational design of complex phenotype via network models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009189 July 29, 2021 18 / 25

https://doi.org/10.1371/journal.pcbi.1009189


For the numerical computations to obtain the results in Tables 1 and 2 we consider Hill

function models

_x0 ¼ �g0x0 þH0ðxÞ þ s

_x1 ¼ �g1x1 þH1ðxÞ

_x2 ¼ �g2x2 þH2ðxÞ

where Hi is obtained from the regulatory network by replacing the step functions σ− and σ+ in

Λi by the decreasing and increasing Hill functions

H�ðx; ‘; d; y; nÞ ¼ ‘þ d
y
n

y
n
þ xn

and

Hþðx; ‘; d; y; nÞ ¼ ‘þ d
xn

y
n
þ xn

;

respectively. We represent the input signal to node 0 by the additive parameter s in the first

equation.

Returning to network 12 in Fig 3, the Hill model is given by

_x0 ¼ �g0x0 þ ‘0;0 þ
d0;0xn0
y
n
0;0
þ xn

0

þ ‘0;1 þ
d0;1xn0
y
n
0;1
þ xn

1

þ ‘0;2 þ
d0;2xn2
y
n
0;2
þ xn

2

þ s

_x1 ¼ �g1x1 þ ‘1;0 þ
d1;0xn0
y
n
1;0
þ xn

0

þ ‘1;2 þ
d1;2xn2
y
n
1;2
þ xn

2

_x2 ¼ �g2x2 þ ‘2;0 þ
d2;0xn2
y
n
2;0
þ xn

0

:

Notice that in (1) we combined the ℓ parameters as L0 = ℓ0,0 + ℓ0,1 + ℓ0,2, L1 = ℓ1,0 + ℓ1,2, and

L2 = ℓ2,0.

Using the Hill models we compute curves of equilibria using a pseudo arclength continua-

tion method [29] to detect fold bifurcation points. A sample continuation curve for (1) is pre-

sented in Fig 4b, where the following values of parameters were used:: γ0 = 1, γ1 = 1, γ2 = 1,

Table 2. (Hysteresis and perturbed hysteresis scores) Results for comparisons with four networks. Numbers for Regulatory network come from ranking in Fig 8. Bot-

tom rows are the full and partial path hysteresis scores obtained from DSGRN for Regulatory networks 12, 33, 108, and 4346. The first column indicates the exponent of

the Hill function used in the ODE model for the regulatory network. The two columns under each regulatory network number indicate the percentage of continuation

computations that result in a hysteresis curve. The first column assumes the parameter value is in a region defined by v0 � FPð1Þ � FPð2Þ and the second column assume

the parameter value is in region defined by a one edge neighborhood. 1000 curves were computed for each entry.

Regulatory Network 12 33 108 4346

Hill function exponent

n
Hysteresis

Score

Perturbed

Score

Hysteresis

Score

Perturbed

Score

Hysteresis

Score

Perturbed

Score

Hysteresis

Score

Perturbed

Score

30 81.2% 51.7% 84.4% 41.2% 57.9% 56.1% 0% 0%

20 70.8% 41.3% 74.9% 34.0% 45.4% 46.8% 0% 0%

10 39.7% 18.8% 45.3% 16.6% 18.2% 21.8% 0% 0%

5 7.3% 2.1% 7.6% 2.2% 1.3% 2.4% 0% 0%

4 3.1% 0.6% 2.2% 0.5% 0.2% 0.3% 0% 0%

DSGRN (full path) 100% 79.1% 83.3% 61.7% 33.9% 25.1% 0% 0%

DSGRN (partial path) 80.9% 64.1% 42.5% 27.7% 18.9% 13.3% 0% 0%

https://doi.org/10.1371/journal.pcbi.1009189.t002
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L0 = 0.508736659464953, L1 = 0.823149364604282, L2 = 0.129562882298977, θ0,0 =

2.742699202456864, θ1,0 = 3.176067131107269, θ2,0 = 3.406985767928092, θ0,1 =

1.753260803421655, θ0,2 = 0.724695975751957, θ1,2 = 1.566020932246446, δ0,0 =

1.172412555847297, δ1,0 = 2.862607698545040, δ2,0 = 4.947150771599252, δ0,1 =

0.946904335902318, δ0,2 = 0.077108238106769, and δ1,2 = 1.624416688203425.

For the numerical continuation computations DSGRN provides sample parameter values

from parameter regions and for each sampled parameter point we search for hysteresis using

the following procedure.

For ascending (descending) hysteresis we randomly sample 10 initial guesses ðx0
0
; x0

1
; x0

2
Þ sat-

isfying the conditions 0 < x0
0
� min y�;0, 0 < x0

1
� min y�;1, and 0 < x0

2
� min y�;2

(max y�;2 < x0
2
� 2 max y�;2 for descending hysteresis). For each initial guess ðx0

0
; x0

1
; x0

2
Þ we

perform the following computations (where the successive steps are dependent on the success-

ful completion of the previous ones):

1. Run Newton’s method with ðx0
0
; x0

1
; x0

2
Þ as initial guess to find an equilibrium solutions to

the Hill model with s = 0.

2. If Newton’s methods converges to an equilibrium solution (x0, x1, x2) check if it satisfies the

condition 0< x2�min θ�,2 (max θ�,2 < x2 for descending hysteresis).

3. If the above condition is satisfied we use the solution (x0, x1, x2) and s = 0 as the initial point

for a pseudo arclength continuation method to compute a curve of equilibria from s = 0 up

to s = 4.

4. During the continuation of the equilibria we identify saddle-node bifurcations by monitor-

ing the sign of the determinant.

5. If during the continuation of the equilibria we get an even number of saddle-node bifurca-

tions and for each bifurcation the value of x2 just before the bifurcation point is smaller

(larger for descending hysteresis) than the value of x2 just after the bifurcation point, then

we declare this a hysteretic curve.

If we get a hysteretic curve for at least one of the random initial guesses we declare the sam-

pled parameter point used for the computations as a hysteretic parameter point.
The hysteresis score of a set of sampled parameter points is the percentage of hysteretic

parameter points in the given set of parameter points. For the computations in Tables 1 and 2

we used 1, 000 sampled parameter points (1, 000 curves) for each of the scores. Networks 33,

108, and 4346 used in Table 2 are shown in Fig 10.

7 Extending DSGRN capabilities

To be processed by the original DSGRN software [15] a regulatory network was required to

satisfy the following conditions:

1. Every node must have an in edge.

2. No repressing self-edges.

3. Every node must have an out edge.

These assumptions are too restrictive as they remove a tremendous number of potentially

interesting regulatory networks. The current version of DSGRN [6] overcomes these con-

straints as indicated below.
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7.1 No in edges

As an example consider network 13 or 14 of Fig 9 where node 1 has an out edge, but no in

edges. In general if node n has no in-edges the n-th component of (5) reduces to

�gnxn þ b

and derivation of the parameter regions proceeds as usual (though the computation is trivial)

[17].

7.2 Node with a self repressing edge

We begin by quickly surveying how DSGRN produces a state transition graph (STG) that is a

representative for the dynamics. For more details see [15]. Consider a regulatory network with

N vertices. Let E(n) denote the number of out edges from node n. Thus, the set of threshold

values associated with the n-th node isYðnÞ≔ fymk;n
jk ¼ 0; . . . ;EðnÞ � 1 where we assume

that 0 < ymk ;n
< ymkþ1 ;n

. The complement of the set of hyperplanes xn ¼ ymk;n
, n = 0, . . ., N − 1

defines a collection of open cubical subsets of (0,1)N. We refer to these sets as top cells. We

index these cells by K≔
QN�1

n¼0
f0; 1; . . . ;EðnÞg where (j0, . . ., jN−1) is the cell containing points

x satisfying ymj;n
< xn < ymjþ1 ;n

with the convention that ym0 ;n
¼ 0 and ymEðnÞþ1 ;n

¼ 1. The

boundaries of the top cells are called walls and each interior wall, i.e. a wall contained in

(0,1)N, is a subset of a hyperplane xn ¼ ymk;n
. Furthermore, each such wall is the boundary

element of exactly two top cells and we use this fact to index the walls by W≔ fðk0; k1Þg �

K�K where the pair (κ0, κ1) indicates the wall whose two top cells are indexed by κ0 =

(i0, . . ., iN−1) and κ1 = (j0, . . ., jN−1). We refer to i0, . . ., iN−1 as the coordinates of κ0. Observe

that this allows us to adopt the following convention: the wall indexed by (κ0, κ1) is a subset of

the hyperplane xn ¼ ymk ;n
if and only if in = k − 1, jn = k, and iℓ = jℓ for ℓ 6¼ n. If we wish to

emphasize this information we write (κ0, κ1)k,n Consider κ0 and (κ0, κ1)k,n. Referring to (5) we

define (κ0, κ1) to be repelling or absorbing (in [15] they are referred to as incoming and outgo-

ing, respectively) with respect to κ0 if

�gnymk;n
þ LnðxÞ < 0 or � gnymk;n

þ LnðxÞ > 0; ð7Þ

respectively, for x in the top cell indexed by κ0. The opposite set of inequalities are used to

define repelling and absorbing with respect to κ1.

Fig 10. (a) Regulatory network 33. (b) Regulatory network 108. (d) Regulatory network 4346.

https://doi.org/10.1371/journal.pcbi.1009189.g010
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Observe that the indexing of top cells K only depends on the ordering of the thresholds,

not their numerical values. Thus, K is a purely combinatorial object. Nevertheless, based on

the motivating geometry we say that κ and κ0 are adjacent if all their coordinate values are

the same except for one coordinate and in that coordinate they differ by exactly one. It is

only in (7) that the value of the thresholds plays a role. The decomposition of parameter

space is chosen such that for each region of the decomposition the inequalities of (7) are

preserved.

As is described in [15] if there are no repressive self-edges in the regulatory network, then

given (κ0, κ1) the options are:

A1. (κ0, κ1) is absorbing with respect to κ0 and repelling with respect to κ1;

A2. (κ0, κ1) is repelling with respect to κ0 and absorbing with respect to κ1;

A3. (κ0, κ1) is repelling with respect to both κ0 and κ1.

According to these three options the classical DSGRN defines an edge κ0! κ1 in case A1,

an edge κ1! κ0 in case A2, and no edge between κ0 and κ1 in case A3 (see Fig 11). We can

view this as suggesting that the absorbing direction dictates how one top cell is mapped to a

neighboring top cell. Performing this computation over all of W produces the STG. Observe

that K is the set of vertices of the STG and that edges only exist between adjacent elements

of K.

If there is a repressive self-edge in the regulatory network, then it is possible that (κ0, κ1) is

absorbing with respect to both κ0 and κ1. The naive response is to introduce edges κ0! κ1

and κ1! κ0, but this suggests recurrent dynamics where it may not exist. Thus, this case was

not considered in the classical DSGRN.

However, based on [15] (see in particular Section 4.2) we claim the results:

R1. Consider (κ0, κ1) indexing a wall contained in xn = θn,n. Then, LiðxÞ ¼ Lið�xÞ for all i 6¼ n
and for any x 2 κ0 and �x 2 k1.

R2. In addition, consider ðk0
0
; k0

1
Þ indexing a wall contained in xn = θn,n, such that ðk0; k

0
0
Þ

and ðk1; k
0
1
Þ are indices for walls, i.e. κ0 and k0

0
are adjacent as are κ1 and k0

1
. If ðk0; k

0
0
Þ is

repelling (absorbing) with respect to κ0 or k0
0
, then ðk1; k

0
1
Þ is repelling (absorbing) with

respect to κ1 or k0
1
.

Fig 11. (a) A potential original DSGRN complex K where the vertical threshhold is associated with a self-repressing

edge. An arrow going from a top cell κi to a wall indicates an absorbing wall and an arrow from a wall to a top cell

indicate a repelling wall. (b) Portion of the refined DSGRN complex Ka. The cells κ0 and κ1 are the additional cells in

the refined complex. The wall labelling in (b) induces the edges k�
0
! k0, k�

0
! k�

1
, k0 ! kþ

0
, κ0! κ1, k�

1
! k1, and

kþ
1
! k1 in the STG on Ka.

https://doi.org/10.1371/journal.pcbi.1009189.g011
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We resolve the issue of a self-edge by expanding K. Fix a region of parameter space. This

implies that the inequalities (7) are fixed. Define

Ka≔
YN�1

n¼0

f0; . . . ; k; . . . ;E�ðnÞg

where E�(n) = E(n) + 1 if there is a self-repressing edge to node n and E�(n) = E(n) otherwise.

If there is a self-repressing to node n then the threshold corresponding to this edge is ymk ;n
and

we indicate this by denoting k�
�
¼ k and k�

þ
≔ kþ 1. In this case it is possible to have a wall

(κ0, κ1)k,n such that (κ0, κ1) is absorbing with respect to both κ0 and κ1. Again based on [15]

this is only possible for the k corresponding to the k�
�

above. To define the STG we need to

consider adjacent cells in Ka, i.e., the set Wa≔ fðk0; k1Þg � Ka �Ka where again it is

assumed that a single coordinate of κ1 is larger than the coordinate in κ0. Let ðk0; k1Þ 2Wa
. If

neither κ0 nor κ1 contain a k�
�

as a coordinate, then we use the classical DSGRN rules based on

A1–A3. Thus, we only need to consider ðk0; k1Þ 2Wa
where either κ0 or κ1 contains k�

�
as a

coordinate. Consider ðk0; k1Þk�� ;n. Then the classical DSGRN rules apply to determine whether

(κ0, κ1) is absorbing or repelling with respect to κ0. If (κ0, κ1) is absorbing (repelling) with

respect to κ0, define (κ0, κ1) is repelling (absorbing) with respect to κ1. Consider ðk0; k1Þk�
þ
;n.

Then the classical DSGRN rules apply to determine whether (κ0, κ1) is absorbing or repelling

with respect to κ1. If (κ0, κ1) is absorbing (repelling) with respect to κ1, define (κ0, κ1) is repel-

ling (absorbing) with respect to κ0. Now assume that a k�
�

is a coordinate of both κ0 and κ1 and

hence we need to consider (κ0, κ1)ℓ,n0. Once again there are three cases to consider ‘ ¼ k0�
�

,

‘ ¼ k0�
þ

, or the ℓ-th threshold is not associated with a repressive self-edge. Classical DSGRN

does not apply for determing absorbing and repelling in any of these cases. To determine this

consider k�
0
; k�

1
2 Ka such that (see Fig 11)

ðk�
0
; k�

1
Þ; ðkþ

0
; kþ

1
Þ; ðk�

0
; k0Þ; ðk0; k

þ
0
Þ; ðk�

1
; k1Þ; ðk1; k

þ
1
Þ 2Wa:

Note that while k�
0

or k�
1

must exist, it is possible that only one pair exists. Also observe that

classical DSGRN applies to the pairs k�
0

and k�
1

and thus absorbing and repelling of ðk�
0
; k�

1
Þ

and ðkþ
0
; kþ

1
Þ is determined. If both k�

0
and k�

1
exist, then by R2 ðk�

0
; k�

1
Þ is absorbing/repelling

with respect to k�
0

(k�
1

) if and only if ðkþ
0
; kþ

1
Þ is absorbing/repelling with respect to kþ

0
(kþ

1
).

We define (κ0, κ1) to be absorbing/repelling with respect to κ0 (κ1) in accordance with

ðk�
0
; k�

1
Þ or ðkþ

0
; kþ

1
Þ.

7.3 Node without an out-edge

DSGRN uses the thresholds corresponding to the out-edges of each node to construct the cubi-

cal complex X decomposing the phase space. For this reason the original DSGRN does not

allow for nodes in the network without at least one out-edge [15]. We address this limitation

in the following way. We treat a node without out-edges as if it had one single out-edge. In

particular, we use the parameter factor graph of a node with a single out edge in the construc-

tion of the parameter graph for this node. Hence if xi is a node without an out-edge, in the

parameter decomposition for this node there is a threshold θ;,i that is not associated to any

edge in the network. Using this approach we have at least one threshold for every node and

can construct the cubical complex X as it is done in the original DSGRN. The threshold θ;,i is

only used to determine the cubical complex X at the node xi and it does not affect the other

nodes of the network. In the DSGRN output of parameter inequalities this threshold is dis-

played as>[xi!].
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