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Abstract
Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string

topology bracket on the $1-equivariant homology H (LX Q) of the free loop space of X preserves the Hodge

decomposition of H (LX Q), making it a bigraded Lie algebra. We deduce this result from a general theorem on
derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG
Lie algebras. Our theorem settles a conjecture of [7].

1. Introduction

Let X be a simply connected closed oriented manifold, and let £LX := Map(S', X) denote the free loop
space over X. Chas and Sullivan [14] showed that the rational equivariant homology of £ X with respect
to the natural S'-action carries a graded Lie algebra structure with the so-called string topology bracket

(e} B (LX.Q) x (£X.Q)— T (LX,Q). (.1

This bracket is intrinsically related to the geometry of £X and has many interesting properties which
have been studied extensively in recent years (see, e.g., [24, 25, 56, 57]).
In this paper we show that the string topology bracket (1.1) is compatible with Frobenius (power)

operations on H (LX Q) — that is, it respects the natural decomposition

R (cx.0 = (PR " (ex.0. (1.2)
p=0

_ ¢l
where the direct summands are common eigenspaces of graded endomorphisms of Hf (L£LX,Q) with
eigenvalues n” (n > 0) induced by the finite coverings of the circle ' — S', e/? + ¢ [11]. More
precisely, we prove the following:

Theorem 1.1. Assume that the manifold X is rationally elliptic as a topological space — that is,
dim }};5, 7 (X) ® Q < co. Then

=S'.(q) S ,(p+q-1)

{ 2P cx.8 9 ¢x, Q)} (£LX,Q), Vp,g>0,p+q>1.
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2 Berest Yuri et al.

Thus, the Chas—Sullivan Lie algebra of X is bigraded:

B cx.o=-PPu " wxo.

n>0 p>-1

where the first grading is given by the homological degree and the second by the Hodge degree (shifted
by 1).
The result of this theorem was conjectured in our earher paper [7], where we showed that the

bracket (1.1) preserves a filtration on the vector space H (LX Q) associated naturally with the direct
sum decomposition (1.2) (see [7, Theorem 4.3]). Thus we strengthen [7, Theorem 4.3], albeit under the
additional assumption that X is rationally elliptic.!

The question of compatibility of Hodge decomposition with various natural operations, including
string topology operations, has been studied by numerous authors (see, e.g., [24, 28, 29, 33, 60] and
references therein). In particular, we should mention that [7, Theorem 4.3] can be deduced from results
of Felix and Thomas [24]. Specifically, [24, Theorem 2] says that the so-called loop product on the
ordinary homology H,(£X; Q) preserves its Hodge filtration. Since the Chas—Sullivan bracket (1.1)
is determined by the loop product (see [14, 25] and equation (4.11)) and the Frobenius operations on

H.(£X;Q) are compatible with those on H (£X,Q), one can check that [24, Theorem 2] implies [7,
Theorem 4.3]. By contrast — to the best of our knowledge — the result of Theorem 1.1 was not anticipated
in the earlier literature.

Theorem 1.1 is a geometric fact: it relates two geometrically defined structures on a simply connected
manifold X. Unfortunately, we do not know how to see this relation directly, in geometric terms,
using the original definition of string topology in [14]. Instead, we prove Theorem 1.1 in a somewhat
roundabout way, deducing it from an abstract algebraic result on derived Poisson structures on the
universal enveloping algebra Ua of a (DG) Lie algebra a (see [2]). The main property of such a structure
is that it naturally induces a Lie bracket on the (reduced) cyclic homology of Ua:

{~,-} : HC,(Ua) x HC, (Ua) — HC, (Ua), (1.3)

which is an algebraic model for the string topology bracket (1.1). On the other hand, for any DG Lie
algebra a, the cyclic homology of Ua has a canonical direct sum decomposition

HC.(Ua) = @ HCP)(a), (1.4)
=1

which is called the Lie—Hodge decomposition (see [3, 7] and Section 2.2). This raises a natural question
about compatibility of the two structures:

Does the derived Poisson bracket (1.3) preserve the Lie-Hodge decomposition (1.4)?

As shown in [7], the answer to this question is, in general, negative. It is therefore necessary to impose
certain restrictions on the Lie algebra a and the derived Poisson structure on Ua. In this paper, we consider
a special class of derived Poisson structures on Ua that arise from a cyclic pairing on a cocommutative
DG coalgebra C Koszul dual to the DG Lie algebra a. Then, under natural finiteness assumptions on a and
C, we prove that the bracket (1.3) does preserve the Lie-Hodge decomposition (1.4). To state our main
result in precise terms, we recall that every DG Lie algebra a has a minimal model, which is given by an

1Recall that in rational homotopy theory, there is a fundamental dichotomy dividing all simply connected spaces with finite
rational homology into two classes: elliptic and hyperbolic. Although ‘generic’ spaces are known to be rationally hyperbolic,
many important spaces occurring ‘in nature’ are rationally elliptic: these include, for example, the spheres S (n > 2), the
complex projective spaces CP” (r > 1), all compact connected Lie groups G and their homogeneous spaces G/K with K
compact connected. Moreover, any simply connected compact manifold X of dimension d is known to be rationally elliptic if
i (X) ® Q=0fori > d (see [23, Part IV, Section 32]).
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Le-algebra structure on the homology H, (a) of a together with an Lo.-quasi-isomorphism a — H, (a).
This structure is unique up to an L. -quasiautomorphism H. (a) — H. (a), whose first component is the
identity map on H. (a) (see [47, Theorem 10.3.15]). We denote this minimal L.,-model simply by H..(a).

Theorem 1.2. Let a € DGLA] be a nonnegatively graded DG Lie algebra defined over a field k of
characteristic 0. Assume the following:

1. dimg H.(a) < oo, and H,.(a) is nilpotent as an L.-algebra.
2. a has a Koszul-dual cocommutative coalgebra C with dimy C < co.

Then the derived Poisson bracket (1.3) associated to a(ny) nondegenerate cyclic pairing on C preserves
the Lie-Hodge decomposition (1.4) — that is,

{Hcil’)(a),Hci@(a)} c HCP* ) (a), Vp,q>0.

As an example, we note that Theorem 1.2 applies to an ordinary finite-dimensional nilpotent Lie
algebra a, with derived Poisson bracket coming from the natural pairing on the Chevalley—Eilenberg
chain complex C.(a; k) = A*a (see [15, Section 6]).

Now, Theorem 1.1 is a consequence of Theorem 1.2 modulo known results in the literature. First
of all, we recall that by a fundamental theorem of Quillen [53], the rational homotopy type of any
simply connected space X is determined by a DG Lie algebra ax called the Quillen model of X. To
deduce Theorem 1.1 from Theorem 1.2, we thus take a = ax to be the Quillen model of a given
simply connected manifold X. Then, by a theorem of Goodwillie [32, Theorem V.1.1] combined with

- —ql
[23, Theorem 26.5], there is a natural isomorphism of graded vector spaces HC.(Ua) = Hf (£X,Q);

moreover, by [7, Theorem 1.2], this isomorphism identifies HC”) (a) = ﬁfl’(p_l) (LX,Q)forallp > 1.
Thus, the geometric Hodge decomposition (1.2) for a simply connected space X coincides (up to a shift
in degree) with the Lie—Hodge decomposition (1.4) for the Quillen model of X. Next, for any compact
manifold X, Lambrechts and Stanley [41] constructed a finite-dimensional commutative algebra model
Ax whose (linear) dual coalgebra C := Hom(Ayx, Q) is Koszul dual to the Quillen model ay. This
coalgebra C comes equipped with a nondegenerate cyclic pairing (Poincaré duality), and — as observed

in [2] (see also Lemma 4.3) — the associated derived Poisson bracket on HC, (Ua) agrees with the Chas—

1
Sullivan bracket on ﬁf (£X,Q). To apply Theorem 1.2, it remains to note that for X rationally elliptic,
the minimal Ls-model of ay is finite dimensional and nilpotent — that is, H..(a) satisfies condition (1)
of Theorem 1.2.

Next, we briefly outline our proof of Theorem 1.2. As a first step, we replace the cyclic homology
HC, (Ua) of the algebra Ua by its Hochschild cohomology HH* (Ua, Ua) and, following an idea of [15],
express the derived Poisson bracket on HC, (Ua) in terms of the canonical cup product on HH* (Ua, Ua)
(see Proposition 3.2). We show that the Lie—Hodge decomposition of HC, (Ua) naturally extends to a
direct sum decomposition of HH* (Ua, Ua), which we also refer to as a Lie—Hodge decomposition (see
Theorem 2.2). Using the results of [7, 15], we then reduce the proof of Theorem 1.2 to proving that the
cup product on HH*(Ua, Ua) preserves its Lie-Hodge decomposition. Writing A for the Chevalley—
Eilenberg cochain complex of the minimal L-model H.(a) of the DG Lie algebra a, we observe
that there is a Hodge-degree-preserving algebra isomorphism HH*(Ua, Ua) = HHE (A, A), where
HHg (A, A) stands for the Hochschild cochain complex of A constructed using direct sums (in place of
infinite direct products). Thus, our problem reduces to showing that the cup product preserves the Lie—
Hodge decomposition of HHg (A, A). To prove this, we recall that by definition, A is a symmetric algebra
equipped with a differential which encodes the Lo -structure on H.(a). Hence, by the Hochschild—
Kostant-Rosenberg theorem, there is a natural linear map Iyxr : H*[V] — HHg (A, A), where H*[V]
denotes the cohomology ring of the algebra V = V(.A) of polyderivations of A. It is easy to show that the
map Igkr preserves Hodge grading; however, in general, it is not a homomorphism of graded algebras.
In fact, Kontsevich’s (cohomological) version of Duflo’s classical theorem, which applies to A because
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H. (a) is finite dimensional, says that to get an algebra isomorphism between H*[V] and HHg (A, A),
one needs to ‘correct’ the HKR map by contracting it with a certain canonical cohomology class called
the Todd genus. In general, contraction by the Todd genus does not preserve the Hodge grading on V;
however, when H, (a) is a nilpotent L-algebra, we show (see Proposition 4.1) that the Todd genus is
actually trivial.? Thus, it turns out that under our assumptions on a, the HKR map is an isomorphism
of graded algebras. Now, since the product on V obviously preserves the Hodge grading, this completes
the proof of Theorem 1.2.

We would like to conclude this introduction by mentioning a well-known analogy between rational
homotopy theory and local commutative algebra [1]. The rationally elliptic spaces correspond in com-
mutative algebra to local complete intersection rings, and the S'-equivariant homology of free loop
spaces to (relative) cyclic homology of local rings. It seems natural to ask whether a result parallel to
our Theorem 1.1 holds in commutative algebra. Although one can consider Lie algebra models for local
rings (analogues of Quillen models in topology), our ‘abstract’ Theorem 1.2 does not apply directly to
such models, since they are not defined over fields of characteristic 0.

The paper is organised as follows. In Section 2, we review the Loday—Goodwillie (simplicial) ap-
proach to Hodge decompositions and show how the Lie-Hodge decomposition of HC,.(Ua) constructed
in [3] arises from this approach. We also construct the Lie-Hodge decomposition on the Hochschild
cohomology HH* (Ua, Ua) and prove some technical results needed for our main theorem. In Section 3
we recall definitions and review some known results on derived Poisson structures. The most important
result for us (proven in [15]) relates the cyclic derived Poisson structure on Ua to the cup product and
Gerstenhaber bracket on the Hochschild cohomology of Ua via the Van den Bergh duality. We also show
that the Van den Bergh duality is compatible with Lie-Hodge decompositions (Lemma 3.2). Finally,
Section 4 contains the proof of Theorem 1.2, as well as its application to string topology.

Notation

Throughout this paper, k denotes a field of characteristic 0. All vector spaces, chain complexes and
associative and Lie algebras — as well as unadorned multilinear operations, such as ®, Hom, Sym and
others — are defined over k. The categories of chain complexes, DG algebras, commutative DG algebras,
DG Lie algebras and (conilpotent) DG coalgebras are denoted Comy, DGAy, DGCAy, DGLA; and
DGCy, respectively. The corresponding categories of augmented algebras and coaugmented coalgebras
are denoted DGA/r, DGCA/x and DGCy i The Koszul sign rule is tacitly used throughout the paper.

2. Hodge decompositions

Itis well known that the cyclic homology of any commutative (DG) algebra A has a natural decomposition
HC,(4) = (P HC (1), @1
=0

which is usually called the Hodge (or A-) decomposition of HC,(A). Loday [45] gave an elegant
explanation of this phenomenon in terms of the classical bar construction C,(A) of the algebra A.
Recall that for any associative algebra, C.(A) is a cyclic module — that is, a functor ACP — Comy
defined on (the opposite of) Connes’ cyclic category AC. The category AC®P naturally embeds into
the category of finite sets Fin, and the theorem of Loday (compare [46, Theorem 6.4.5]) asserts that
the cyclic homology of a cyclic module E. : AC°® — Comy admits a direct sum decomposition of the
form in equation (2.1) whenever the functor E, extends to Fin — that is, factors through the inclusion
AC®° — Fin. Now, for the cyclic bar construction E, = C.(A), this happens exactly when A is a
commutative algebra (see [46, Proposition 6.4.4]).

2In the case when a is an ordinary finite-dimensional nilpotent Lie algebra, this observation goes back essentially to Duflo’s
original paper [20] (see also [50]).
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Goodwillie (compare [46, Exercise E.6.4.5]) observed that the Hodge decomposition of HC..(E)
may exist in a more general situation: namely, when the functor E, : AC® — Comy admits an
extension EY : AP — Comy to the so-called epicyclic category AWPP. The category AW has the
same objects as AC but contains extra morphisms which induce the power (Adams) operations on
HC. (E); on the other hand, AY is strictly smaller than Fin. Thus, if E, : AC°? — Comy, factors through
ACP — AW, then HC,(E) has a natural Hodge decomposition; furthermore, this decomposition
agrees with Loday’s when the corresponding epicyclic module EY : AW — Comy factors through
AY°P — Fin.

In this section, we show that the cyclic bar construction C.(Ua) of the universal enveloping algebra
of a (DG) Lie algebra a has a natural epicyclic structure (which does not factor through Fin). We
prove that the Hodge decomposition of cyclic homology HC..(Ua) arising from this epicyclic structure
coincides with the Lie-Hodge decomposition constructed in [3]. We also establish some properties
of Hodge decomposition of Hochschild homology which we will need for the proof of our main
theorem.

2.1. Epicyclic modules and Adams operations

Let A denote the standard simplicial category whose objects are the finite ordered sets [n] = {0 <
1 <2 < --- < n} and morphisms are the order-preserving maps. The category A is generated by two
families of maps d!, : [n— 1] — [n] (withO <i <n,n > 1)and s}, : [n+1] — [n] (with0 < j < n,
n > 0), called the (co)face and (co)degeneracy maps respectively. These maps satisfy the standard
(co)simplicial relations given, for example, in [46, Appendix B.3]. Connes’ cyclic category AC is an
extension of A that contains — in addition to d’, and s}, — the cyclic maps 7, : [n] — [n] forn > 0. More
generally, for any integer k > 1, we can define the k-cyclic category AC™® that contains A (and has the
same objects as A) with additional morphisms 7, : [n] — [n] satisfying

; i—1 j j—1 k(n+1
kTnod, =d, " oyTy, kTn © Sy =83 © kTn, () ¥ = 1d,).

There are two natural functors relating AC%) to AC = ACV:
Priac® > ac,  sdfiac® - Ac. (2.2)

The functor P is characterised by the property that its restriction to A is the identity, while PX (;7,) = 7,
for all n > 0. The functor Sd* — called the kth edgewise subdivision [48] — is defined by

sd¥([n]) := [k(n+ 1) = 1] = [a]u -*- U[n],

and on morphisms as
Sd*(¢) = pu -*- Lip, for g € Mor(A),  SA*(k7) = Tr(uan)-1-

where the notation [n]Ul K. U[n] means taking the disjoint union of k copies of the set [n], and
U K. Ly means applying the map ¢ to each of these copies separately.

Now, the epicyclic category AW [12] is the extension of AC (i.e., AC C AY), which —in addition to
the morphisms {d%}, {s;,} and {r,} generating AC - contains a family of morphisms

akk(n+1)=1]>[n], Vn=0,k>1,

called the (co)power maps. These maps are characterised by the property that 7% : Sd* — PX define
natural transformations of functors AC%¥) — AC < AW for all ¥ > 1 and, in addition, satisfy the
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relations
1.k ki
7 = 1dpn), T © Ty(ney-1 = T -
If C is a category, an epicyclic object in € is, by definition, a functor X : A¥°P — C; we will write Cay
for the category of such functors, with morphisms being the natural transformations. Note that giving
an epicyclic object in € is equivalent to giving a cyclic object X : AC°? — C together with a family of
morphisms in AC%) (k > 1):

PRX) : PE(X) = SdX(X),  pk:Xy— X1, (2.3)
satisfying
pl=1d,  propl=pk

where P¥(X) and Sd*(X) are the k-cyclic objects (AC(k))Op — C defined by P¥(X) := X o PK
and Sd*(X) := X o Sd¥ (see (2.2)). It is a classical observation (due to Connes) that when € =
Set, the geometric realisation |X| of any cyclic set X : AC° — Set caries a natural S'-action (see
[46, Theorem 7.1.4]). In a similar way, if X is an epicyclic set, then in addition to the S'-action
its realisation |X| carries power operations which induce Adams operations on the S'-equivariant
homology HS 1 (]X]) of |X]| [12, Theorem A]). We will look at an algebraic (chain) version of this
construction.

Recall that to any associative unital (DG) k-algebra A, one can naturally attach a cyclic
module

C.(A) : AC® = Comy, [n] > A®"*D, (2.4)

called the cyclic bar construction [46, Proposition 2.5.4]. Our main observation in this section is the
following:

Proposition 2.1. If A is a cocommutative (DG) Hopf algebra, then C.(A) carries a natural epicyclic
structure.

To prove Proposition 2.1, we need to extend the functor (2.4) to the epicyclic category — that is,
construct a functor C¥ (A) : AWP — Comy such that C¥ (A)|ycor = C.(A). This can be done directly
by defining the structure maps (2.3) and verifying the required relations. We will give a more conceptual
construction of C¥ (A) that relies on the well-known fact that the cocommutative Hopf algebras are the
group objects in the category of cocommutative coalgebras.

Let ® denote (the skeleton of) the category of finitely generated free groups: thus, the objects of
® are the free groups (n) = F,, one for each cardinality n > 0, and the morphisms (n) — (m)
are arbitrary group homomorphisms F,, — F,,. The category ® carries a (strict) monoidal struc-
ture with product (n) = (m) = (n + m) for all n,m > 0. The category of all (discrete) groups Gr
can then be described as the category Setg’ of strict monoidal functors ®°P — Set with values in

Set equipped with the usual (cartesian) monoidal structure: the equivalence Gr - Setg is given
by the Yoneda functor G — G := Homg:(—, G) restricted to the subcategory ® < Gr. Now, it is
known and easy to check (see, e.g., [9] and [12, Example 1.3]) that the cyclic nerve N.°(G) :=
{G"”}n>0 of any discrete group G carries a canonical epicyclic structure with power maps (2.3)

given by
PG S GRD (g0, gn) o (800 805 K805 8R)-
Thus we have a well-defined functor Ni*° : Gr — Setay. If we identify Gr = Set® via G — G
as before, then N;°° is simply the pullback functor ¥* : Setg — Setpy for a natural map in
Cat:
¥Y:AY— 6. (2.5)
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Explicitly, the functor (2.5) is defined on objects by ¥([n]) = (n+1) = F(xo, . .., x,) and on morphisms
by the following formulas:

1 s ey A=y AGATH] s o e ey > | < >
Y (dy):(n)y—> (n+1), (x0,...,%p-1) — (%o Nl XiXiel *n) l "
(XnX05 X115+ + s Xn=1)s i=n,
lP(sij’l):<n+2>_)<n+1>’ (-XOa-H’xn+])'_)(wa-‘axj,l,xj+l’~-~7xn)7
Y(tn): (n+1)y—> (n+1), (%05 -+ s Xn) > (Xp X0, X15 -+ -5 Xno1),

Y(rk) : (k(n+ Dy> (n+ 1), xpoxm, m=0,1,... k(n+1)—1.
where m denotes the remainder of m modulo n + 1.

Proof (of Proposition 2.1). The category of cocommutative (DG) Hopf algebras is equivalent to the
category Comg of strict monoidal functors ®°°? — Comy, with an algebra A corresponding to the
functor A : ®°° — Comy,(n) — A®" (see, e.g., [51]). Now, the epicyclic module CY(A) associated to
A is simply given by the composition

0

pop A
CY(A) : AY?P — B = Comy, [n] > A®™

where WP is the opposite functor of the functor (2.5). Note that by the construction of W, the restriction
of CY(A) to AC® c AW coincides with the cyclic bar construction (2.4) associated to A as an
algebra. m

Remark. The functor ¥ does nor factor through Fin nor its opposite category Fin°®. Thus, unlike
in [45], our epicyclic bar construction CY(A) : APP — Comy does not extend to all finite sets. To
avoid confusion, we note that there is a different functor AW — ® that factors naturally through Fin: to
construct it, consider the composition

- s!
AC — AC®® — Fin, (2.6)

where the first arrow is Connes’ cyclic duality identifying the cyclic category with its opposite [46,
Proposition 6.1.11] and the second is the standard cyclic model of the circle S'. It is known and easy to
check (see, e.g., [46, Exercise E.6.4.4]) that the functor (2.6) extends to AY, giving a map AY — Fin.
Now, combining this last map with the free group functor F : Set — Gr, we define

®: A¥ — Fin — 6.

When restricted to A, the functor (2.6) coincides with the natural inclusion A < Fin which identifies
[7n] = {0,1,2,...,n} [46, Remark 6.4.3]. Hence, on objects, the functor @ agrees with ¥, mapping
[n] — (n+ 1). However, the values of ® on morphisms are quite different from those of W. In fact, the
group homomorphisms @ (d’,) : (n) — (n+1) corresponding to the coface maps d’, : [n—1] — [n] are
givenby x; > xi for k < iandxg +— xg for k& > i, while for the codegeneracy maps s{; : [n+1] — [n]
we have ®(s5,) : (n+2) = (n+ 1), x; — xi, for k < j and xx — x_ for k > j. This shows that
for a cocommutative Hopf algebra A, the cyclic module ®* (A) := A o ®°P : AC? — Comy depends
only on the coalgebra structure of A, and hence it is entirely different from C,(A). By Loday [45], the
cyclic homology of ®* (A) admits a direct decomposition which is simply a formal (coalgebra) dual to
the classical Hodge decomposition for commutative algebras (2.1).

It follows from Proposition 2.1 that if A is a cocommutative Hopf algebra, the cyclic module C,(A)
is equipped with extra power operations (see (2.3)) given by simplicial maps:

pk(A) : C.(A) > SA¥[C.(A)], k> 1. 2.7
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To describe these maps we need first to identify their targets Sd*[C.(A)]. Recall that for any
(DG) algebra A and any (DG) A-bimodule M, one can define a simplicial (complex of) module(s)
C.(A,M) = {C,(A,M) = M ® A®"} _ whose homology is the Hochschild homology HH..(A, M).
In particular, for M = A we have C.(A, A) = C.(A). We will use this construction for the bimodule
. A®% over the algebra A®%, where the left A®*-module structure is twisted by a cyclic permutation —
that is,

(a1 ®---®ak)'(b1®~~®bk)=akb1 Qaib)® - ®ayr_1by.

Lemma 2.1.

(a) For every k > 1, there is an isomorphism of simplicial modules

SdF[C.(A)] = C.(A®K, , A%F) (2.8)

given (in simplicial degree n) by ‘transposition of matrices’:

A®(n+l)® k. QAR _, p®kg n+l QA®K

ap Apsl - A(k=1)(n+) aop ai an
ap Aps2 - A(k=1)(n+l)+1 an+l ans2 Tt Aongl

. [ . . . . B
an A4l **+ Ak(n+l)-1 A(k=-1)(n+1) A(k-1)(n+D)+1 " Ak(n+1)-1

where the elements of the tensor powers A2 "V and A®* are represented as matrix columns.
(b) With identification (2.8), the power maps (2.7) are given by

(n+)

pk o A®mH) 5 A%k QA% Ao ® -+ ® an — AX(ag) ® - -- ® A¥(ay,),

where A¥ : A — A®X is the k-iterated coproduct on A.

Proof. (a) Straightforward verification. We leave it as an exercise to the reader. (») By definition, the
maps pk are the images of the generating morphisms 7% : [(n + 1)k — 1] — [n] of the category AW.
Under the functor ¥ (see (2.5)), these morphisms correspond to the folding maps

VE k(n+ D))y = (n+ s Hox(na 1y (n+ 1),

which act as identities Id,+1) on each copy of the free group (n + 1) in (k(n + 1)). Now, it is easy to
see that the maps V’; . factor in ® as

Vk
(m+ DxXosne 1) 2 (n+ 1)

Vk* (n+l) *Vk N
(kys Y (k)
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where Vy @ (k) = (1) * - -+ % (1) — (1) is the k-folding map for (1) € ® and o¥ is the isomorphism of
free groups given by the transposition

X0 Xp+l 0 X(k=1)(n+l) X0 X1 e Xp
X1 Xp42 "0 X(k=1)(n+1)+1 Xp+l Xp+2 crr o Xoptl

. H 9
Xn X2n+1 * 0 Xk(n+l)-1 X(k=1)(n+1) X(k=1)(n+D)+1 **° Xk(n+l1)-1

where the matrix columns represent the generators of the corresponding factors of the free products.
Since under the functor A : $°° — Comy the folding maps Vi : (k) — (1) correspond exactly to the
k-iterated coproducts A¥ : A — A®K the claim of part (b) follows. |

Finally, using Lemma 2.1 we describe the Adams operations induced by the power maps (2.7) on the
cyclic homology of a cocommutative DG Hopf algebra. Let R be a cocommutative DG Hopf algebra
which is cofibrant as an object in DGA /x. Let Ry, := R/(k+[R, R]) denote the cyclic construction on R
which computes — by a theorem of Feigin and Tsygan (see, e.g., [5, 22]) — the (reduced) cyclic homology
HC..(R) of R viewed as an associative DG algebra.> Then, applying Lemma 2.1 to the epicyclic module
C.(R), we get the commutative diagram

pk
C.(R) —> C.(R®*,,R%")

canl . J uk (2.9)
Ry

where can is the canonical projection onto moC.(R) = Ry and uk is the composition of the natural
map 7 : C. (R®X, R®K) —» (,R®* )h with the map (, R®*), A Ry induced by iterated multiplication

—k
on R. It follows from Lemma 2.1(b) that the maps ¥ : R, — Ry in diagram (2.9) are induced by the
compositions

k
Wk RAL RS R k1. (2.10)

Thus, we conclude the following:

Corollary 2.1. For any cocommutative DG Hopf algebra R which is cofibrant in DGAy jx, the Adams
operations on HC,(R) coming from the epicyclic structure on C.(R) are induced by the maps (2.10).

In the next section, we will give a different construction of these Adams operations in terms of
derived functors, following [3].

2.2. Lie-Hodge decomposition

Given a Lie algebra a over k, we consider the symmetric ad-invariant k-multilinear forms on a of (fixed)
degree p > 1. Every such form is induced from the universal one: a X a x - -- x a — A1) (a), which
takes its values in the space 1(P) (a) of coinvariants of the adjoint representation of a in Sym” (a). The
assignment a > 1) (a) defines a (nonadditive) functor on the category of Lie algebras that naturally
extends to the category of DG Lie algebras:

AP) : DGLA; — Comg,  a+— SymP(a)/[a, Sym”(a)]. (2.11)

3Recall that the cyclic homology of an arbitrary (not necessarily cofibrant) DG algebra R can be defined explicitly as the
homology of (the total complex of) Connes’ bicomplex of R (see, e.g., [46, Section 5.3.3]).
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10 Berest Yuri et al.

The functor (2.11) does not preserve quasi-isomorphisms and hence does not descend to the homotopy
category Ho(DGLA(). To remedy this problem, we replace A(P) by its (left) derived functor

LAP) . Ho(DGLA;) — D(k), (2.12)

which takes its values in the derived category D (k) of chain complexes. We write HC,E” ) (a) for the
homology of L") (a), and call it the Lie—Hodge homology of a.

For p = 1, the functor A g just the abelianisation of Lie algebras; in this case, the existence of
LAWY follows from Quillen’s general theory [52, Chapter II, §5]), and HC,EI) (a) coincides (up to shift
in degree) with the classical Chevalley—Eilenberg homology H. (a, k) of the Lie algebra a. For p = 2,
the functor 1? was introduced by Drinfeld [19]; the existence of LA? was established by Getzler and
Kapranov [27], who suggested that HCiz) (a) should be viewed as an analogue of cyclic homology for
Lie algebras. The existence of LA(?) for arbitrary p was established in [3, Section 7].

Next, consider the functor

(-)y : DGAx — Comy, R — R/(k + [R,R]),

which is called the cyclic functor on associative DG algebras (compare [22]). Observe that each AP
comes together with a natural transformation to the composite functor

u =)
U, : DGLA; — DGA, /; —> Comy,

where U is the universal enveloping algebra functor on the category of (DG) Lie algebras. The natural
transformations A(P) — Uy, are induced by the symmetrisation maps

1
Symp(a) — Ua, X1X2 - Xp ]7 Z o (1) " Xo(2) " Xo(p)s (2.13)

TEex,
which by the Poincaré—Birkhoff-Witt theorem assemble to an isomorphism of DG a-modules
Sym, (a) = Ua. From this, it follows that 1(P) — Uy give an isomorphism of functors

P =, (2.14)
p=1

On the other hand, by a theorem of Feigin and Tsygan [22] (see also [5]), the functor (), has a left
derived functor L(-), : Ho(DGAy/x) — D(k) that computes the reduced cyclic homology HC.(R)
of an associative algebra R € DGAy «. Since U preserves quasi-isomorphisms and maps cofibrant DG
Lie algebras to cofibrant DG associative algebras, the isomorphism (2.14) induces an isomorphism of
derived functors from Ho(DGLAy) to D(k):

@ LAY = L(-), 0 L. (2.15)
p=1
At the level of homology, the isomorphism (2.15) yields the direct decomposition (compare [3, Theorem
7.2])

EB HC'” (a) = HC,(Ua). (2.16)
p=1

To state the main theorem of this section, we recall that the universal enveloping algebra Ua of a (DG)
Lie algebra a has the natural structure of a cocommutative (DG) Hopf algebra. By Proposition 2.1, the
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—k —
associated simplicial module C..(Ua) carries therefore an epicyclic structure. We write ¥ : HC, (Ua) —
HC.(Ua), k > 1, for the Adams operations induced by this structure.

Theorem 2.1. Forevery p > 2, the Lie—-Hodge homology HC,(FP ) () is the common (graded) eigenspace

—k
of the operators ¥ corresponding to the eigenvalues kP, k > 1.

Proof. Without loss of generality, we may assume that a is a cofibrant DG Lie algebra. Then, as already
explained, R = Ua is acocommutative DG Hopf algebra which is cofibrant as an associative DG algebra.
By Corollary 2.1, the Adams operations are induced by the maps yz oA : R— R, where A¥ : R — R®*
is the k-iterated coproduct on R and y; : R®% — R is the k-iterated product. The theorem follows now
from [3, Proposition 7.5 and Corollary 7.7], which show that the very same Adams operations @k arise
from the derived functors LA(P). O

Theorem 2.1 implies that the Lie-Hodge decomposition (2.16) arises from the natural epicyclic
structure on C,(Ua) given in Proposition 2.1.

2.3. Hodge decomposition of Hochschild homology

The decomposition (2.16) also extends to (reduced) Hochschild homology (see [7, Section 2.1]):
HH, (Ua) = @HHi”)(a).
p=0

Recall that there is a natural isomorphism HH, (Ua) = H.(a;Sym(a)) [46, Theorem 3.3.2]: under
this isomorphism, the summand HH(? (a) is identified with H, (a; Sym” (a)). The Connes periodicity
sequence for Ua decomposes into a direct sum of Hodge components: the summand of Hodge degree p
is given by the long exact sequence [7, Theorem 2.2]

-2 HCP Y () 25 HHY (a) 5 HCP () 2 HCPED (@) — - (2.17)

Next we shall show that the Hochschild cohomology HH*(Ua, Ua) has a similar Hodge decompo-
sition. Recall that A € DGAg i is Koszul dual to C € DGCy /i if there is a quasi-isomorphism of
DG algebras R := Q(C) — A, where Q(C) denotes the (associative) cobar construction of C. As-
sume that A is Koszul dual to C. Let ¢ : C — R denote the universal twisting cochain. Further recall
that given a twisting 7 : C — A, there is a convolution algebra Hom™ (C, A) with twisted differential
dhom(c,a) + [7,-]. The following proposition is well known (see, e.g., [49, Theorem 1.1]):

Proposition 2.2. There is an isomorphism of graded k-algebras
HH*(A, A) = H_, [Hom*(C, R)] .

Recall that for a DG algebra E, the Hochschild cochain algebra C*(E, E), with product given by
the cup product, is isomorphic to IT,soHom(E[1]®", E) as a graded algebra. The graded subspace
®,>0Hom(E[1]®", E) is a (DG) Gerstenhaber subalgebra of C*(E, E), which we shall denote by
C%(E,E). Let HH (E, E) denote the corresponding cohomology.

Corollary 2.2. If C is finite dimensional and E := C* is the graded linear dual of C, then there is an
isomorphism of algebras

HH*(A, A) = HH% (E, E).
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Proof. Since C is finite dimensional,

Hom‘(C, R) = @Hom (C,C[-1]1%") = @Hom (E[11®",E).

n>0 n>0

Thus Hom*(C, R) — viewed as a cochain complex by inverting degrees —is isomorphic to the (normalised)
Hochschild cochain complex Ci, (E, E) as a graded vector space. Is is easy to verify that the identification
turns the differential on Hom*(C, R) into the Hochschild differential on Cg (E, E) and the convolution
product on Hom*(C, R) into the cup product on Cg (E, E). By Proposition 2.2, there is an isomorphism
of associative algebras HH* (A, A) = HHg (E, E). O

Let a € DGLAy be Koszul dual to C € DGCCy . This is equivalent to the existence of a quasi-
isomorphism £ := Qcomm (C) = a, where Qcomm (C) denotes the (Lie) cobar construction of C. Define
R :=QC and let : C — R be the universal twisting cochain. It is easy to verify that R = UL. Since the
image of ¢ lies in £ C R, we may view ¢ as a twisting cochain from C to £ as well. Let R(”) denote the
image of Sym” (L) in R under the symmetrisation map (2.13). The adjoint action of £ on R induces
an action of Hom(C, £) on Hom(C, R): indeed, viewing £ as a Lie subalgebra of R, we can consider
[@, f] € Hom(C, R) for « € Hom(C, £) and f € Hom(C, R). This action equips Hom*(C, R) with
the structure of a Lie module over the DG Lie algebra Hom*(C, £). Further assume that C is finite
dimensional.

Theorem 2.2. The natural inclusions R'P) < R induce a direct sum decomposition of DG Hom*(C, £)-
modules:

Hom‘(C,R) = @Hom‘(C,R(p)).
p=0

Asa consequence,

HH*(Ua, Ua) = @ H* (a; Sym” (a)).
p=0

Proof. There is an isomorphism of £-modules R = @;"zOR(P ). Since C is finite dimensional,

Hom(C, R) = EB Hom(C, RP)) (2.18)
p=0

as graded vector spaces. It remains to check that if « € Hom(C,£) and f € Hom(C, R(P)), then
[, f] € Hom (C, R'P)). Indeed,

[a, f1(c) = (=D W a(c") f(e”) = (=pI llatlaliel e eya ()
= (—l)lc/”fla(c')f(c") _ (_1)\.)"||rl|+|rl\|C”|+\C’IIC”\f(C")a(C')
= (=D a (e, £,

where the second equality follows from the fact that C is cocommutative. Since a(c¢’) € £ and
f(c”) € R we have [a(c’), f(c”)] € R'P), because the map (2.13) is a morphism of £ modules
(with the adjoint action). This shows that the isomorphism (2.18) is a morphism of graded Hom(C, £)
Lie modules. In particular, for f € Hom (C, R(P)), we have [, f] € Hom (C, R‘P)). The differential
on Hom‘(C,R) thus restricts to Hom* (C, R(P)) for each p. Hence, the isomorphism (2.18) is an
isomorphism of complexes

Hom‘(C,R) = @Hom‘(C,R(m).
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Next, the Jacobi identity for the commutator bracket on the convolution algebra Hom(C, R) implies that
the action of Hom(C, £) on Hom(C, R) is compatible with the twisted differential d + [¢, —]. This proves
the first statement of the theorem. The second statement follows from Proposition 2.2 once we verify that

H_.[Hom‘(C,RP)] = H* (a, Sym” (a)) . (2.19)

Since C is Koszul dual to R, R ®, C is a semifree resolution of k as a DG left R = UL-module.
Similarly, since C is Koszul dual to a, Ua ®; C is a semifree resolution of k as a DG left Ua-module,

where T denotes the composite twisting cochain C = £S5 a. It follows that there are isomorphisms in
the derived category of complexes of k-vector spaces:

Hom‘(C, R‘P)) = Homyz (R ®, C,Sym” (L))
= RHomyz (k, Sym? (L))
= RHomy ¢ (k, Sym” (a))
= Homy ¢ (R ®, C, Sym” (a))
= Hom" (C, Sym” (a))
= Homy, (Ua ®; C, Sym” (a))
= RHomyy, (k, Sym?” (a)) .

This implies the isomorphism (2.19) on homologies. O

Let E := C* denote the (graded) linear dual of C. Then Hom (E [1], E) is an E-module via the action
(x- f)y)=x- f(y) for f € Hom (E[1],E),x € E,y € E[1]. Itis easy to verify that

Hom(C, R'")) = Sym?, [£g (Hom (E[1],E))].
where £ (V) denotes the free Lie algebra generated (over E) by a free E-module V. From Theorem 2.2

and Corollary 2.2, we have the following:

Corollary 2.3. There is a direct sum decomposition

C,(E,E) = @Symg [£E (Hom (E[1],E))] .
p=0

Moreover,

H* (Sym}, [£g (Hom (E[1],E))]) = H (a; Sym”(a)) .

Remark. The decomposition of Hochschild cochains in Corollary 2.3 is analogous to the Hodge
decomposition of the complex of polydifferential operators on a smooth proper variety (over a field of
characteristic 0) in [54, Section 4].

3. Cyclic pairings and derived Poisson structures

The notion of a (noncommutative) derived Poisson algebra was introduced in [2] (see also [7]), as a
natural — higher homological — generalisation of the Hyp-Poisson algebras of Crawley-Boevey [16]. The
Hy-Poisson algebras can be viewed, in turn, as a generalisation of the so-called necklace Lie algebras
introduced in [8, 30] following an idea of Kontsevich [40].
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3.1. Derived Poisson algebras

Let A be an augmented DG algebra. The space Der(A) of graded k-linear derivations of A is naturally a
DG Lie algebra with respect to the commutator bracket. Let Der(A)% denote the subcomplex of Der(A)
consisting of the derivations with image in k + [A, A] C A. It is easy to see that Der(A)# is a DG Lie
ideal of Der(A), so that Der(A)y := Der(A)/Der(A)# is a DG Lie algebra. The natural action of Der(A)
on A induces a Lie algebra action of Der(A)y on the quotient space Ay := A/(k + [A, A]). We write
o : Der(A), — End(Ay) for the corresponding DG Lie algebra homomorphism.

Now, following [2], we define a Poisson structure on A to be a DG Lie algebra structure on Ay such
that the adjoint representation ad : Ay — End(Ay) factors through ¢ — that is, there is a map of DG Lie
algebras a : Ay — Der(A)y such that ad = g o @. It is easy to see that if A is a commutative DG algebra,
then a Poisson structure on A is the same thing as a (graded) Poisson bracket on A. On the other hand,
if A is an ordinary k-algebra (viewed as a DG algebra), then a Poisson structure on A is precisely an
Hy-Poisson structure in the sense of [16].

Let A and B be two Poisson DG algebras — that is, objects of DGAy/x equipped with Poisson
structures. A morphism f : A— B of Poisson algebras is then a morphism f : A — B in DGA, such
that f, : Ay — By is a morphism of DG Lie algebras. With this notion of morphisms, the Poisson DG
algebras form a category which we denote DGPAy. Note that DGPA; comes with two natural functors:
the forgetful functor U : DGPA; — DGAy x and the cyclic functor (-), : DGPA; — DGLAj. We say
that a morphism f is a weak equivalence in DGPA if U f is a weak equivalence in DGAy x and f is a
weak equivalence in DGLAy; in other words, a weak equivalence in DGPA( is a quasi-isomorphism of
DG algebras, f : A — B, such that the induced map f; : Ay — By is a quasi-isomorphism of DG Lie
algebras.

Proposition 3.1 ([7]). The category DGPA with weak equivalences is a (saturated) homotopical
category in the sense of [21].

This proposition allows us to define a well-behaved homotopy category of Poisson algebras
Ho(DGPAy) := DGPA, [77'],

where 7/ is the class of weak equivalences.

Definition 3.1 ([7]). A derived Poisson algebra is a cofibrant associative DG algebra A equipped with
a Poisson structure, which is viewed up to weak equivalence — that is, as an object in Ho(DGPA},).

An important result that motivates our study of these objects is the following theorem generalising
the main theorem of [16].

Theorem 3.1 (see [2, 7]). Let A be a derived Poisson algebra over k.

(a) The (reduced) cyclic homology HC,.(A) of A carries a natural structure of a graded Lie algebra.
(b) For any n > 1, there is a unique graded Poisson algebra structure on the n-dimensional represen-
tation homology HR, (A, k)OT of A, such that the derived character map (compare [4, 5, 6])

Tr,(A) : HC.(A) — HR, (A, k")

is a (graded) Lie algebra homomorphism.

Example 3.1 (Necklace Lie algebras). The simplest example of a derived Poisson algebra is the tensor
algebra A = TV generated by an even-dimensional k-vector space V equipped with a symplectic form
(—,—) : VXV — V. In this case, A carries a double Poisson structure in the sense of [59]. The double
bracket

{--}:ARA> ARA
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is given by the formula

{{(Vl, AR svn)’ (Wl» .. an)}} =

Z <Vi,Wj> (Wl,..-,Wj_l,Vi+1,.-.,Vn)®(Vl,...,Vi-],Wj+1,.-.,Wm), (31)
i=1,..., n
j=l,..., m
where (v, ...,v,) denotes the element v{ ® - - - ® v, € TV with vy, ..., v, € V. This double bracket

can be extended to A ® A by setting {{a, 1}} = {{1,a}} = 0. It induces a noncommutative Poisson
structure on A with Lie bracket on Ay, given by

{@,B} = po . BY,

where u : A ® A — A is the multiplication map and a denotes the image of a € A under the canonical
projection A — Ay. The Lie algebra Ay = T;V}, with this bracket is called the necklace Lie algebra
[8, 30].

3.2. Cyclic pairings

We now describe a construction of derived Poisson structures associated with cyclic coalgebras. Recall
(compare [27]) that a graded associative k-algebra is called n-cyclic if it carries a symmetric bilinear
pairing (—,—) : A X A — k of degree n satisfying

{ab,c) ={a,bc), VYa,b,ce€A.
Dually, a graded coalgebra C is called n-cyclic if it carries a symmetric bilinear pairing (—,—) : CXC — k
of degree n satisfying
Woww =xv,ww’, Yv,weC,
where v’ and v’ are the two components of the coproduct Acv = v’ ® v”” written in Sweedler notation.
Note that if A is a finite-dimensional graded —n-cyclic algebra whose cyclic pairing is nondegenerate,

then C := Homg (A, k) is a graded n-cyclic coalgebra. A DG coalgebra C is n-cyclic if it is n-cyclic as
a graded coalgebra and

{(du,v) = {u,dv) =0
for all homogeneous u, v € C —thatis, if (—, ) : C[n]®C[n] — k[n] is amap of complexes. We say that
a coaugmented DG coalgebra C € DGCy i is n-cyclic if C is n-cyclic as a noncounital DG coalgebra.
Assume that C € DGCy /x is equipped with a cyclic pairing of degree n and let R := Q(C) denote
the (associative) cobar construction of C. Recall that R = Ty (C[-1]) as a graded k-algebra. For

Vis...,v, € C[~1],1et (vi,...,v,) denote the element v; ® - -- ® v,, of R. By [2, Theorem 15], the
cyclic pairing on C of degree n induces a double Poisson bracket of degree n + 2 (in the sense of [59])

{—-}:R®R—>R®R.
This double bracket is given by the formula

{{(Vlw--7Vn)’(wl7---,wm)}} =

Z i<vlawj> (Wla""wjflavi+l""7‘}1’1)®(Vl"'-7vl'*15wj+]7'-‘9wm) (3'2)
i
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generalising equation (3.1). This double bracket can be extended to R ® R by setting {{r,1}} =
{{1,7r}} = 0. Associated to equation (3.2) is the usual bracket

{--}=po{{--} :R®R— R. (3.3)

Similarly, the bimodule R ® R (equipped with outer R-bimodule structure) has a double bracket (in the
sense of [15, Definition 3.5]) given by the formula

{—~-3:Rx(R®R)> R®(R®R)®(R®R) ®R,
{r.p@q} = {{r,p ® g+ (=DIPIIrFp @ (g}

This double bracket restricts to a double bracket on the sub-bimodule Q'R of R ® R [15, Corollary
5.2]. Let {—,—} : R® Q'R — Q'R denote the composite map u o {{—,—}}, where u is the bimodule
action. Furthermore, for any R-bimodule M, denote by My, := M /[M, R] its abelianisation. Then for
M = Q'R, define {-,—}; : R®Q'R— (Q! R),, to be the composition of {—, -} with canonical projection
§: Q'R > (Q'R),.

As in the case of necklace Lie algebras, the bracket o {—,—} : R® R — Ry, descends to a DG (n+2)-
Poisson structure on R. In particular, there is a (DG) Lie bracket {—,—}; on Ry of degree n + 2. The
restriction of the bracket (3.3) to R induces a degree n + 2 DG Lie module structure over Ry on R, and
the bracket {—,—}, : R® Q'R — (QlR)h induces a degree n + 2 DG Lie module structure over Ry on

(QlR)tl [15, Proposition 3.11]. On homologies, we have the following (see [15, Theorems 1.1 and 1.2]):

Theorem 3.2. Let A € DGAyx be an augmented DG algebra Koszul dual to a DG coalgebra C €
DGCy k. Assume that C is n-cyclic. Then HC,(A) has the structure of a graded Lie algebra with Lie
bracket of degree n + 2. Moreover, HH,.(A) has the structure of a graded Lie module over HC,(A) of

degree n + 2, with Connes’ maps I, B and S being the degree (n + 2) Lie module homomorphisms over
HC.(A).

The Lie bracket of degree n + 2 on HC.,(A) induced by an (n + 2)-Poisson structure on Ry, as before
is an example of a derived (n + 2)-Poisson structure on A. Such derived Poisson structures have been
further studied in [7, 55].

Convention

Since we work with algebras that are Koszul dual to n-cyclic coalgebras, the associated Lie algebras
that we work with have Lie bracket of degree n + 2. Similarly, the modules over such Lie algebras are
Lie modules of degree n + 2. To simplify our terminology, we will drop the prefix ‘degree n + 2’ in all
sections that follow. In particular, for n fixed, we will refer to (derived) (n+2)-Poisson structures simply
as (derived) Poisson structures.

3.3. Van den Bergh duality

Assume that A € DGAg/; is Koszul dual to C € DGCyr. Let 7 : C — A denote the twisting

cochain corresponding to the quasi-isomorphism R — A, where R := Q(C). Further, assume that C
is a finite-dimensional coalgebra equipped with a cyclic pairing (of degree —n) which is induced by a
nondegenerate cyclic pairing (of degree n) on the graded linear dual £ = C*. The pairing on C induces
an isomorphism (complexes) ¢ : E := Homy (C, k) — C[—n] of k-vector spaces whose (shifted) inverse
is the linear map

C=E[n], cm {c,-).
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The isomorphism ¢ : E — C[—n] induces an isomorphism of DG R-bimodules
Hom,; (C,R°) = R®, C[-n] ®, R, (3.4)

where the R-bimodule structure on the left is induced by the ‘inner’ bimodule structure on R¢. Identifying
Hom*(C, R¢) = Homge (R ®, C ®, R, R°) and noting that R ®, C ®, R is a semifree resolution of R,
we see that the nondegenerate cyclic pairing on C induces an isomorphism in D? (R¢)

RY = R[-n],

where R" is the (derived) bimodule dual of R. Taking derived tensor products over R¢ and homology,
we obtain an isomorphism

¥ : HH*(A, A) = HH,,_.(A). (3.5)

The isomorphism RY = R[-n] induces an isomorphism H, (R¥ ®%. R) = H. (R ®k. R[-n]). The
image of the identity map on R (viewed as an element of Hy (R" ®ﬁg R) under this isomorphism) is an
element 7 € HH,,(A, A). We recall the following:

Lemma 3.1 ([17, Proposition 5.5]). The map ¥ coincides with the isomorphism n N —: HH*(A, A) =
HH,,—..(A).

Let {—,—} : HC,(A) ® HC,(A) — HC,(A) denote the derived Poisson bracket on HC,(A). The
following result was proven for quadratic Koszul algebras in [15, proof of Corollary 1.5]; we give a
different, more direct proof in a slightly more general context:

Proposition 3.2. The derived Poisson bracket on HC,(A) is given by
{a,8y =1[¥ [P (B(a)) V¥ (B(B)]|], Va,BeHC.(A).

Proof. Since R ®, C ®, R is a semifree resolution of R as an R-bimodule, HH, (A) = HH.(R) can be
identified with the homology of the complex (R ®, C ®, R) ®ge R, which is isomorphic to R ® C as
graded vector spaces. The differential on R ® C induced by that on R ®, C ®, R is, however, twisted
and differs from the differential on R ®, C. We let R ®, C, denote R ® C equipped with this differential.
Explicitly, for » € R and ¢ € C, we have

Ore,c,(r®c)=dgrec+ (-1)"redcc+ (DI 1Dy @ ¢ = (D) () @ .

On the other hand, by a theorem of Feigin and Tsygan [22] (see also [5]), HC,(A) = H, [Rh]~ It is easy
to verify that the Lie bracket on Ry, is given by the composite map
FEY) --
R, ® R, 2% (R®, C,[-1]) ® (R®, C.[-1]) > R® R® C[-11% 225 p 5 Ry,
where the second arrow permutes factors and 0 : Ry — R ®, C,[~1] denotes the cyclic derivative. On

homology, the cyclic derivative 0 induces the Connes operator B : HC,(A) — HH,, (A). It therefore
suffices to check that the map induced on homology by the composition

(R®,C)®(R®,C,) —» RoRac® 250 p Ry

coincides with

p-1)®? _
HH, (A)®? & HH* (A, A)®* 2 HH* (A, A) — HH. (A) - HC.(A). (3.6)
By Proposition 2.2, HH*(A, A) is the homology of Hom*(C, R), whose convolution product induces
the cup product. On identifying Hom‘(C, R) with R ® E as graded vector spaces, the map ¥~! gets
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identified with the map induced on homology by Idg ® ¢! : R ® C — R ® E, and the convolution
product on Hom*(C, R) is identified with the product on R ® E. On the other hand, the map I is induced
on homology by

Idr®ec

R® C,—— R » Ry,

It therefore suffices to verify that the following diagram commutes:

(ReC)®(ROC) — (R®R)®(Coc) HEEED 1 R,
(Idg ® ¢~1)** Idge: ® (¢1)®2J Idg ® &c
(R®E)®(R®E) — (RoR) & (E®E) +REFE, poE r®9  rec
This reduces to verifying the commutativity of the diagram
E®E-E . F
¢p®¢ Jsc °¢
coc 22 .

Note that ec : C — k coincides with 1 under the identification E = C*. Thus, forv € E,

ec(¢(v)) = 1(¢(v)) = (¢(1e), ¢())c = (1. V)E,

where (-, —)g denotes the original pairing on E. The commutativity of the diagram therefore follows
once we show that

(), d(w)) = (v, w)g = (1g,v-w)g, VYv,wekE.
This is a consequence of the fact that the pairing on E is cyclic. This completes the proof. O

Recall (see Theorem 3.2) that there is an action of HC,(A) on HH, (A) making the latter a graded
Lie module over the former. Abusing notation, we denote this action by

{~,—} : HC.(A) x HH,.(A) - HH, (A).

Let [-, -] denote the Gerstenhaber bracket on HH* (A, A).
Proposition 3.3. For all « € HC,(A) and all B € HH,(A),

{o. By = ¥([¥7'(B(), ¥ (B)] 5)-

Proof. Note that the isomorphism W can be used to transport the Gerstenhaber bracket onto
HH..(A), making HH. (A) a graded Lie algebra (up to shift in homological degree) with Lie bracket
lI‘([‘I‘_l(—), lP_l(—)]G). By [15, Corollary 8.6 and proof of Theorem 1.6], B : HC,(A) — HH,,;(A)
is a graded Lie algebra homomorphism, where HC, (A) is equipped with the derived Poisson bracket.
It therefore remains to verify that the action of HC, (A) on HH, (A) arising out of the Lie algebra ho-
momorphism B coincides with the action arising out of the derived Poisson structure. We complete
this verification in the routine computation that follows. For notational brevity, define V := C‘[—l],
and for vi,...,v, € V,set (vi,...,v,) =V ®---®v, € R. Pick p = (v{,...,v,) € R and
g®c=(uy,...,um) ®ce€RQ, C,. Then

{(p.g@cy={p.qgt®c+(-1)IPllygd(p, c}),
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where b : Q'R — Qth denotes the canonical projection. Hence {p, ¢ ® ¢} equals

Z i<svi’suk>(ul7' s Uk—15Vitls oo -5 Vi, V],"'7Vl'*l’uk+1"",um) ®c+
1<i<n
I<k<m

Z +h [(ul,...,um)d(<svj,c>vj+1,...,vn,v1,...,vj_l)] ,
I<j<n

or more explicitly,

Z i<svi’suk>(ul7-~-’uk*l’vl‘+17' ..,Vn,V],...,Vifl,uk-'.l,..-,um) ®c+

1<i<n
1<ksm

Z i<SVj,C> (v[+1,...,vj,],m,...,um,vj+1,...,vn,v1,...,v,-,1) ® sv; +
I<i<j<n

Z £ (Y7, C) (Vitls e oo Vs Vis e oo s Vim L UL oo Uiy Vs e e o5 Vie1) © SV
1<j<isn

On the other hand,

B ) = D (Vi Vi Vi) ® 57,

1<i<n

U Uy, um) ®¢) = (U, .. tty) ®C,

where we denote ¢ := ¢! (c). Hence the bracket [~ (B(p)), ¥™'(¢)]; equals

Z £V (€) (Visls oo s Viml Uls e oo Uiy Vitls oo o5 Vs Vs e Viel) ® SV; +
I<i<j<n

Z £V (€) (Visls o o3 Vis Vi e e Ve s ULy e oy Uy Vs - - - Viel) ® SV7 +
1<j<ign

Z iSV,’ (Suk) (Ml, e U1, Vidls oo s Vs Vs e s Viel, Ukt - - - ’um) ® E

1<i<n
I1<k<m

Since u (w) = (u, w) for all u,w € C, this computation shows that
Y '({p.gech = [¥'(B(p). ¥ (ga0)],.

Since HC,(A) = H, (Ry) and HH,(A) = H.(R ®, C,), the desired verification is complete once we
apply W to both sides of this equation. O

Assume further that C is cocommutative, so that A = Ua, where a € DGLA[ is Koszul dual to C. The
image of the counit ec € C¥ under the isomorphism C¥ = C[-n] defines an n-cycle in C whose class
in H, (C) = H,,(a; k) is denoted by 5. This in turn defines a cap product N - : H*™" (a; N) — H, (a; N)
for any DG a-module N [25, Sect. 7.1].

Lemma 3.2. Under the natural isomorphisms HH,(Ua) = H,(a; Ua) and HH*(Ua, Ua) = H*(a; Ua),
the map ¥ is identified with

nN—:H(a;Ua) > H,—.(a; Ua).
As a consequence,
Y [H* (a; Sym” (a))] = H,—« (a; Sym?(a)), VY p =0.
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Proof. The map W is induced by the map of complexes
Hom‘(C,R) = R®, C,[-n] 3.7

obtained by tensoring the bimodule map (3.4) with R over R¢. Hence, identifying the left-hand side (as
graded vector spaces) with R ® E, we see that the isomorphism (3.5) coincides with the map Idg ® ¢.

On the other hand, the natural isomorphisms HH,.(Ua) = H,(a; Ua) and HH*(Ua, Ua) = H*(a; Ua)
are induced by the maps Hom‘(C, R) — Hom™(C,Ua) and R ®, C, — Ua ®; C; induced by the
canonical projection R — Ua, and where 7 : C — Ua denotes the twisting cochain corresponding to
the algebra homomorphism R — Ua. We therefore need to verify that the map n N — is induced on
homologies by the map

Idye ® ¢ : Hom™ (C, Ua) — Ua @, C[-n].
Identifying Hom™ (C,Ua) = Ua ® E as a graded vector space, we see that by [25, Section 7.1], the

map 1 N — is induced on homology by a map of complexes which coincides (as a map of graded vector
spaces) with

Idyg Idye 1d
Ua ® E 222" (a9 E® C[-n] 25 Ua® E ® C ® C[-n] —=22% Ua ® C[-n].

It therefore, suffices to check that ® : E — C[—n] coincides with the map

Ide ® 7 Ide ® A eveld

E E ® C[-n] E®CQC[-n]

Cl-nl,

which is clear. This completes the proof. O

4. Hodge decomposition of derived Poisson structures
4.1. The main theorem

Recall that if g is an Ls.-algebra with higher operations (Lie brackets) my : Akg — g, k > 1, the lower
central filtration on g is defined inductively (see, e.g., [26, Sect. 4]) by

Flg:=g, F'g:= Z mi (Fi'g, ..., Fi*g), r=>2. @1

i1+ +ig=r

Then g is called nilpotent if definition (4.1) terminates after finitely many steps — that is, F"g = 0 for
r > 0. For the rest of this section, we assume the following:

Assumption: g is a nonnegatively graded, finite-dimensional, nilpotent Lo,-algebra.

This assumption implies that all higher Lie brackets my vanish for k > 0. The Chevalley—Eilenberg
cochain algebra of g is therefore of the form A = (Sym(V), Q), where V = g*[—1]. Let W := g[1] denote
the (graded) linear dual of V. Following [13, Section 5], we will use the language of formal differential
geometry, regarding W as a supermanifold and A as the algebra of functions on W equipped with
cohomological vector field Q of (cohomological) degree 1. Note that the algebra Sym(V)®Sym(W[—-1])
of polyvector fields on W is naturally a graded Lie module over the Lie algebra Der(Sym(V)) =
Sym(V) @ W of (graded) derivations of Sym(V). Let V denote the algebra of polyvector fields on W
equipped with the differential given by the action of the derivation Q € Der(Sym(V)). The Schouten
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bracket makes V a Gerstenhaber algebra. Recall that there is a natural Hochschild—Kostant—Rosenberg
map Iggr : V— Cg (A, A), which is defined (on homogeneous derivations of A) by the formula

1 )
Inkr (01 - -+ 0y) = m Z +5ign(0) 0o (1) ® *** ® G- ()

T oex,

where the extra signs come from the Koszul sign rule.
The next observation is crucial for the proof of our main theorem.

Proposition 4.1. The map Inkr : V— C4 (A, A) is a quasi-isomorphism of complexes that induces an
isomorphism of algebras on cohomology.

Proof. While it is not hard to check directly that the map Iykgr : V— Cg (A, A) is a quasi-isomorphism
of complexes, the fact that it induces an algebra isomorphism on cohomology is more subtle. To
establish this fact we observe that Iggg takes values in the subcomplex D;oly (A) of C5 (A, A) spanned
by multilinear maps A®" — A that are differential operators in each argument — in other words, the
Hochschild—Kostant—Rosenberg map factors as

IHKR V- D:)oly(‘A) — CZB(‘A"A) (42)
We will prove that each of the two arrows in the composition (4.2) induces an algebra isomorphism
on cohomology. For the second arrow, this follows from Lemma 4.1, which shows that the inclusion
D;‘mly (A) — Cg(A, A) is actually a quasi-isomorphism of DG algebras. As for the first arrow, we will
use a general version of the Duflo-Kontsevich isomorphismtTheorem for symmetric algebras equipped
with a (co)homological differential (see, e.g., [13, Theorem 5.3]). This last theorem implies that the
map Ipkr : V— D7, (A) induces an algebra isomorphism on cohomology, up to a twist given by a
canonical cohomology class J(«) called the Todd genus. It suffices to show that under our assumptions
on g, the class J(a) is trivial.

Recall that the graded algebra of differential forms on W is defined by Q(W) := Sym(V & V[1]).
For any x € V we write dx for the corresponding element in V[1]. The de Rham differential is the
derivation of (homological) degree 1 given on generators by d(x) = dx, d(dx) = 0. There is an action ¢ of
differential forms on polyvector fields by contraction, where x € V acts by left multiplication and dx acts
by the derivation ¢4, such that ¢4, (y) = 0fory € V and 14, (s‘lv) = x(v) for v € W. Choosing a basis
{x',...,x"} in V that consists of homogeneous elements, we define the 1-form @ € Q!'(W) ® End(W)
whose matrix with respect to the basis {e; := d,i } of W is given by

o
o = d (0.0 (7)) = aain—a(jzi)dxk.

Let ﬁ(W) denote the completion of Q(W) with respect to the ideal generated by V[1]. The Todd genus
associated to « is defined by

e Q(W),

J(a) .= Ber [I—Lp(—a)]
a

where Ber : ﬁ(W) ®End(W) — ﬁ(W) is amap induced by the Berezinian on End(W) [43, Chap. I, §7]).
Note that w = exp (X4 cxa*) for some formal power series 3 cx@* with constant term 0. Thus

J(@) =exp (i cx Str (ak)) ,

k=1

where Str : Q(W) ® End(W) — Q(W) is a linear map induced by the (super)trace on End(W).
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We claim that J () = 1. It suffices to show that « is nilpotent, since then Str (a'k) =0 for all k. The
nilpotency of a follows from the nilpotency of the L,-algebra g = W[—1]. Recall that the (co)restriction
of the Chevalley—FEilenberg (co)derivation on C*(g; k) to W = g[1] gives a linear map Sym(W) —» W,
whose component in degree p we denote by

[-....=]p : Sym” (W) = W, Vi Vp [vl,...,vp]p.
Note that [vl,...,vp]p = xm, (s7'vi,...,s7'vp) for vi,...,v, homogeneous in W, where m,, :
g®P — g is the p-fold bracket on g (which of course is antisymmetric). Now,

. 1 P .
Q(xl)z—z Z F[eilv"-ael‘ly];,‘xll.'.xlps (4.3)
where v/ stands for the coefficient of e jinV for any v € W. Therefore

. 1 . . .
a(ei) = axidQ (xj) €j=- Z Z M [eil >€iys e v e eilz]p dxll(sil'le3 ceex'r

F>2 il ----- ip

=_Z Z ﬁ[ei,,ei,...,eip]pdxi‘xi3-~~xi"eW®Ql(W),
ip :

p=21i1,i3,...,

where 0;;, is the Kronecker delta. It follows that for any (homogeneous) element v € W,

1 . )
a(v) ==+ Z Z M [eil,v, . ..,eip]pdx”x’3 cex'r e W Q(W). 4.4)

P2 itz iy

If {F"g},> is the lower central filtration of g (see definition (4.1)), we set F”W := F"g[1] for r > 1.
By equation (4.4), @ (F/W ® Q(W)) c F/*'W @ Q(W) for all j. Hence the image of " is contained in
F'W @ Q(W) for all r. Since F"W = 0 for r > 0, " = 0 for r > 0. This verifies that « is nilpotent,
as desired.

By [44, Theorem 4.3] (see also [ 13, Theorem 5.3]), the map IHKROLJ(Q) 1 defines a quasi-isomorphism

of complexes that induces an algebra isomorphism on cohomology. Since J(a) = 1, the desired
proposition follows from Lemma 4.1. O

Lemma 4.1. The inclusion D;oly (A) = CL(A,A) is a quasi-isomorphism of DG algebras.

Proof. The inclusion D;‘)O]y(fl) — C4(A, A) is clearly compatible with cup products. It therefore
suffices to check that it is a quasi-isomorphism. Let Ay := (Sym(V),0) denote the DG algebra with

trivial differential that is isomorphic to A as a graded algebra. First, we check that the HKR map
IICiIKR tAp ® Sym(W[-1]) — CZ;(A(), Ao) 4.5)

is a quasi-isomorphism. Indeed, Cg (Ao, Ap) may be identified with the complex Hom(Ag ® x BAy ®x
Ay, Ap), where Hom is in the category of graded Ay-bimodules. Here, Ag®, BAg®, A is viewed as the

free resolution of A (as a graded A(-bimodule) whose term in homological degree i is Ag ®fTo®l ®Ap.
On the other hand, since Sym¢ (V[1]) is Koszul dual to Ay, Ag ® Sym®(V[1]) &, Ay also yields a free
resolution of Ay as a graded Ag-bimodule, where 7 : Sym®(V[1]) — Ay denotes the corresponding
twisting cochain. The map Sym“(V[1]) — BAg of coalgebras corresponding to 7 induces a quasi-
isomorphism Cg (Ag, Ag) = Ao ® Sym(W[—-1]) whose inverse is the HKR map (4.5).

Now, observe that the fact that map (4.5) is a quasi-isomorphism implies that Iykgr : V— Cg (A, A)
is a quasi-isomorphism. Indeed, converting cohomological grading to homological (and vice versa), we
can view V and Cg (A, A) as direct sum complexes of the double complexes V... and C.. with V,,, =
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(A ®Sym™?(W[-1])), and Cp; = Hom (A®P, A)q, respectively. Each of these double complexes is
concentrated in the second and third quadrants, and Iggr defines a map of double complexes V... — C....
The canonical row filtrations yield spectral sequences converging to H*[V] and HHE, (A, A), respectively.
The map induced by Iykr on the E'-page is precisely the map (4.5). By a standard comparison
theorem for spectral sequences (see, e.g., [61, Theorem 5.2.12]), we conclude that Iykr is a homology
isomorphism, since so is the map (4.5).* Finally, since Iygr factors through V — D; Oly(fl), and
this last map is a quasi-isomorphism, the inclusion of D;‘,oly(A) in C5 (A, A) is a quasi-isomorphism
as well. O

Let D(A) denote the algebra of differential operators on A — that is, the DG subalgebra of Endy (A)
generated by A and Dery (A). Note that, modulo trivial modifications, the arguments of [54, Section 4]

go through in the DG setting, showing that D;oly(‘A) splits into a direct sum of subcomplexes

Doy (A) = () Sym? (L4 (D(A))),
p=0
where £ 4 (D(A)) denotes the free Lie algebra generated over A by D(A) (to which the Hochschild
differential indeed restricts). The A-module structure on D(A) is given by the natural left multiplication,
which makes D(A) a semifree DG A-module. Setting V? := A ® Sym” (W[-1]), we see as in [54,
Section 4.2] that the map Iykr restricts to a quasi-isomorphism

Ihkg : VP — Sym” (L4 (D(A)))

for each p. Now, the subcomplex Sym” (£ 4 (D(A))) of D;‘,O]y (A) is the image of a projection operator

e Df ) (A) = Dy (A)

that is the restriction of a projection operator ¢ (”)* on C% (A, A). The latter has an explicit combinatorial
definition in terms of Eulerian idempotents [46, Section 4.5]. The operators eP)* define the Hodge
decomposition of Hochschild cohomology:

CL(AA) = @ CP (A, A),  HHY(AA) = @HHEB”)’*(A, A).
p=0 p=0

Lemma 4.2. The cup product on HHg (A, A) preserves the Hodge decomposition. More precisely,
HH{" (A, A) UHHY " (A, A) € HHYPM" (A, A).

Proof. The previous argument shows that the Hochschild—Kostant—Rosenberg map intertwines the nat-
ural Hodge decomposition V = &, VP with that of Cg (A, A). By Lemma 4.1, it induces isomorphisms
foreach p > 0

Iukg : H* [VP] = HHY) (A, A).

Since the product on V preserves the Hodge decomposition V = &,V?, the lemma follows from
Proposition 4.1. o

Remark. For d > 1, it has been shown that the cup product on the higher Hochschild cohomology
HHSd’*(A, A) of a commutative DG algebra A (with finite-dimensional cohomology in each degree)

4Note that this argument only uses the fact that A is a graded symmetric algebra with differential. That the Chevalley—Eilenberg
cochain algebra of g is of this form, however, uses the nilpotency of g.
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preserves the Hodge decomposition [29, Section 6]. This statement is, however, not true in general for
HHS' (A, A) = HH" (A, A).

Proposition 4.2. Let a € DGLAy be as in Theorem 1.2, and let § denote the minimal L.-model
of a. Then the cup product and the Gerstenhaber bracket on HH*(Ua, Ua) preserve the Lie—Hodge
decomposition — that is,

HHP)*(a) UHH'?"*(a) € HHP*9)+*(q)
HH'P)*(a), HH'?*(a) S HH(P*=D-*(q).

Proof. We begin by showing that there is a Hodge-decomposition-preserving isomorphism of algebras
HH"(Ua, Ua) = HHg (A, A), where A is the Chevalley-Eilenberg cochain algebra of g. Since A is
neither finite dimensional (it is only locally finite dimensional) nor bigraded, we are not in a position to
quote results from the literature (see, e.g., [39, Theorem 3.5] and [34]) for our purpose. Let C := C.(g; k)
denote the Chevalley—Eilenberg chain coalgebra of g. Note that C = A", the graded linear dual of A. The
obvious degree —1 map € := C.(g; k) — g is a generalised twisting cochain,> which we denote by . The
unit of the adjunction Qcon : DGCCy . 2 DGLA : C. gives a weak equivalence of DG coalgebras
C - Cu(Qcom(C); k) (see, e.g., [3, Section 6.2]). Let ¢ : € — Qcom(€C) denote the corresponding
(canonical) twisting cochain and let f = (fi, f2,...) : § = Qcom(C) denote the corresponding L-
morphism. Composition with f defines an L,-morphism Hom(C, g) — Hom(C, Qcom(C€)), which we
continue to denote by f. Explicitly, for ¢, ..., ¢, € Hom(C, g),

fn((’ol""’(p'l)zfno((Pl®'~'®90n)oA"_1,

where A""! 1 € — @®" denotes the n-iterated coproduct for n > 2 (with A? = Id). Clearly, f(n) = ¢.
Next, observe that Hom(C, g) is complete with respect to the decreasing filtration F"Hom(C, g) :=
Hom (Sym>"(g[1]), g). Hence, by [62, Theorem 3.21] (see also [18, Proposition 1]), there is a twisted
Lo-morphism f”7 : Hom” (€, g) — Hom*(C, Qcom(€)), whose nth Taylor coefficient is given by the
formula (compare [62, Definition 3.20])

S
HOIRTSEDSY Tkt en).
k=0 "

Using this, it is not difficult to verify the commutativity of the diagram

U
Hom” (€, g) i Hom* (€, Qcom(©)),

.| | (46)

P! (Inkr) ly1 Hom (A[1],4)

where the vertical arrow on the right is given by taking graded linear duals followed by composition by
the inclusion C[—1] — Qcom(C).
Since Sym” (g) is finite dimensional for each p, there is an isomorphism of DG algebras

@ Hom” (€, Sym”(g)) = @ Ve,
P P

SRecall that if C is a (coaugmented, conilpotent) cocommutative DG coalgebra and £ is an Leo-algebra, a generalised twisting
cochain 7 : C — £ is defined to be an element of degree —1 in the convolution Lo,-algebra Hom (C, £) satisfying the generalised

Maurer—Cartan equation: 7 + 3,50 %mn(r ..... 7) = 0 (see, e.g., [26, Definition 4.3]). Such generalised twisting cochains
in Hom (C‘ , L) are in (natural) bijection with the morphisms of coaugmented, conilpotent cocommutative DG coalgebras from
Cto C. (L3 k).
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where the (convolution) algebra structure on the left-hand side is induced by the coproduct on € and the
product on Sym(g). As in Theorem 1.2, let C denote a finite-dimensional cocommutative DG coalgebra
Koszul dual to a. By [47, Theorem 10.3.15], there is an Lo,-quasi-isomorphism a — g. It follows that
there are weak equivalences of DG coalgebras

C— C.(ajk)— C. @.7

Let 7 denote the (generalised) twisting cochain C — C A g. Let p denote the (generalised) twisting
4.7

cochain C “p eS Q(C). The commutativity of diagram (4.6) implies that there is a commutative

diagram

I
®,Hom" (C, Sym”g) HER

CL (A, A)

Cs(AE)

. l o Sym” (f]) 1d, l
®,Hom" (C, Sym”g) ®,Hom” (C, Sym? Qcom(C)) — Hom”(C, QC),

where the second arrow in the upper row is induced by the algebra homomorphism A — E = C*
obtained by applying graded linear duals to the map (4.7) and the last arrow on the lower row is
induced by the natural symmetrisation map. Note that Hom” (€, Sym” (g)) (resp., Hom™ (C, Sym” (g)))
may be identified with Hompg comode (€, € ®; Sym” (g)) (resp.,Hompg comode (C. € ®,; Sym?”(g))).
Under this identification, the map Hom"” (€, Sym” (g)) — Hom™ (C, Sym? (g)) is induced by the weak
equivalence C — C of DG C-comodules. Since C®,, Sym? (g) is a fibrant (see [38, 42]) DG €-comodule,
this map is a quasi-isomorphism for each p (see [35, Section 9.7]).

Now, since C is conilpotent and finite dimensional, E* = 0 for n > 0, which implies that Hom(C, g)
is complete with respect to the filtration F"Hom(C, g) := E>" ® g. Hence, by (minor modification
of the proof of) [18, Proposition 1, Part 5], f being a quasi-isomorphism implies that f{ is a quasi-
isomorphism. Since Iygr is a quasi-isomorphism by Lemma 4.1 and Id.. is an isomorphism of complexes,
the map Cg (A, A) = C5 (A, E) is a quasi-isomorphism of DG algebras. Thus, there is a zigzag of DG
algebra maps

Cy(A,A) > Co(AE) « Co(E,E), (4.8)

where the first arrow is quasi-isomorphism. We claim that the second arrow in the diagram (4.8)
is also a quasi-isomorphism. Filter the complex Cj (A, E) by the subcomplexes F, (Cg (A, E)) :=
®,Hom (A®P, E.,) and similarly for C (E, E). Since E is finite dimensional, the filtrations on these
complexes are finite, and the associated spectral sequences converge. It is easy to see that Cg(E, E) —
C; (A, E) induces an isomorphism between the E'-pages of these spectral sequences. Hence, by a
standard comparison theorem, this map of complexes is a quasi-isomorphism.

Since the Hodge decomposition on all these Hochschild cochain complexes is combinatorially defined
by the Eulerian idempotents, the induced isomorphism of algebras on cohomologies

HHY, (A, A) = HH, (E, E)

preserves the Hodge decomposition as well. It follows from Corollaries 2.2 and 2.3 that there is an
isomorphism of algebras preserving Hodge decomposition:

HH"(Ua, Ua) = HHE (A, A).
By Lemma 4.2, the cup product on HH* (Ua, Ua) preserves the Hodge decomposition —that is,

HH?)*(a) UHH?"*(a) € HHP*?-*(q). (4.9)
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Finally, define the BV operator A : HH*(Ua, Ua) — HH*!(Ua, Ua) by A := ¥~! o B o ¥, where B
denotes the Connes diftferential. By [7, Thm. 2.2], B decreases the Lie—Hodge degree by 1. It follows
from Lemma 3.2 that A(HH®*(Ua, Ua)) € HH?~Y-*(Ua, Ua)). By [31, Theorem 3.4.3],

[a,b]lg = A(aUb) —A(a) Ub - (=D)!4lau A(b).
It follows from (4.9) that [a, b]g € HHP*4~D-*(Ua, Ua) for all elements a € HH-*(Ua, Ua) and
b € HHD*(Ua, Ua). O

Proof (of Theorem 1.2). Since the minimal L-model of a is finite dimensional, nonnegatively graded
and nilpotent, HH”)-*(a) U HH?-*(a) c HH*?)*(a) by Proposition 4.2. By [7, Theorem 2.2],
B(HC(a)) ¢ HH" V(a) for all p > 1. Since a is Koszul dual to a finite-dimensional C €

DGCCy i equipped with a nondegenerate cyclic pairing, we have ¥~ (HHiP D (a)) = HH(P~D-*(q)
by Lemma 3.2. Thus,

1|w[e ! (B(HC! (@) vt (B (HC? @) || < 1| [HHP D (@) UHRE D )|
clI [‘P [HH(’”‘"Z)’*(a)”
= 1 [HHP* ) (o)
c HCP*7? (a).

The equality follows from Lemma 3.2, and the last inclusion is by [7, Theorem 2.2]. The theorem now
follows immediately from Proposition 3.2. O

Assume that a € DGLA], satisfies the conditions of Theorem 1.2. Assume further that a finite-
dimensional C € DGCCy/; that is Koszul dual to a carries a nondegenerate cyclic pairing. By Theo-

rem 3.2, there is an action of HC, (Ua) on HH, (Ua) making the latter a graded Lie module over the
former. The following result strengthening [7, Theorem 3.4] holds under the foregoing conditions:

Theorem 4.1. Forall p,q > 1, {Hcip)(a),HHiq)(a)} c HHip+q—2)(a)'
Proof. Note that
v [lp—l (B (Hc<p>(a))) ! (HH<q)(a))] cw [HH(”_U’*(a),HH(‘1>’*(a)]
G G
c ¥ (HH(P*02 (o))
= HH{"*? (a).

The first inclusion follows from [7, Theorem 2.2] and Lemma 3.2, the second from Proposition 4.2 and
the equality from Lemma 3.2. The theorem follows now from Proposition 3.3. O

4.2. Application to string topology

Let X be a simply connected space of finite rational type. Recall [23] that associated to X are a
commutative cochain DG Q-algebra Ay, called the Sullivan model of X, and a connected chain DG Lie
Q-algebra ayx, called the Quillen model of X. The Quillen and Sullivan models determine the rational
homotopy of X, and are Koszul dual to each other in the sense that there is a quasi-isomorphism of DG
algebras

C*(ax; Q) — Ay,

where C* denotes the Chevalley—FEilenberg cochain complex with trivial coefficients.
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Now, let £LX = Map (S ¢ ) denote the free loop space over X. In the case when X is a simply
connected closed oriented manifold of dimension d, Chas and Sullivan [14] constructed a product —
called the loop product — on the (reduced) rational homology of £X:

e :H,(L£X,Q) ®H.(LX,Q)— H,_4(LX,Q).

The free loop space £X is equipped with a natural circle action via rotation of loops. In addition
to the usual homology, one may therefore consider the S'-equivariant homology (resp., reduced S'-

_ql
equivariant homology) HS l (LX,Q) (resp., Hf (£LX,Q)) of LX. The two homology theories are related
by the Gysin long exact sequence

B ex,Q B H.cx,0 B85 ox,0 S, Lx,0), (4.10)

where D stands for the Gysin map and p : LX X ES' — L£LX x¢1 ES! is the canonical projection. The
—cl
string bracket on HS (L£X, Q) is the bilinear map

B X QeR Lx.Q-H (X0
induced by the loop product (compare [14]):
{a,b} = (=D1**p. (M(a) « M(D)). @11

As mentioned in the introduction, the following theorem is a combination of well-known results ([32,
Theorem V.1.1] and [23, Theorem 26.5]; see also [10, 36, 37, 58]):

Theorem 4.2. There are natural isomorphisms of graded vector spaces

ax : HH,(Uay) — H.(LX, Q), Bx : HC,(Uay) — ﬁfl (£LX,Q),

identifying the Connes periodicity sequence for Uax with the Gysin long exact sequence for the S'-
equivariant homology of LX.

On the other hand, the finite coverings of the circle ¢” : ' — §', ¢’ > ™%  give natural maps
v+ LX — LX, one for each n > 0, which induce Frobenius (power) operations on homology:

o H.(LX,Q) - H(LX.Q), &) :H (LX.Q—H (£X.0).

By [7, Theorem 4.1], the isomorphisms a@x and Bx of Theorem 4.2 restrict to isomorphisms of (graded)
vector spaces

L(p-1)

HH? (Uay) S AP (LX,Q),  HCP (ay) > (LX,0Q),

where the targets are common eigenspaces of the endomorphisms ®% and <i>§( with eigenvalues n”:
A (£X,Q) = () Ker (@ - n71d), 77 cx,0) = () Ker (&% - n”1d).

n>0 n>0

Thus, we have the Hodge-type decompositions

oo
= =(p) =S! S .(p)
H.(0X,Q = PR (X0, H (£X.Q= (£LX.Q),
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and the Gysin long exact sequence (4.10) decomposes into a direct sum of exact sequences

S (p) S ,(p=1) S (p)

ex.Q S a x5 £x,Q) >

(£X,Q). 4.12)
—s!

By [7, Theorem 4.2], the string bracket gives H, (£X, Q) the structure of a filtered Lie algebra with

respect to the filtration

Fpﬁfl(ax, Q) := @ i cx,Q).

g<p+1
The following result strengthens [24, Theorem 2] in the rationally elliptic case:

Theorem 4.3. Let X be a simply connected closed oriented manifold of rationally elliptic type. Then
the loop product preserves the Hodge decomposition — that is,

(p)(LX Q) e H(q)(LX Q) CH(p q)

(£X,Q).
Let ax be a Quillen model of X. Recall the isomorphism ax : HH.(Uax) = H.(LX,Q) of
Theorem 4.2. The following proposition is a consequence of [25, Theorem D and Proposition 8]:

Proposition 4.3. The isomorphism ay identifies the loop product on H,(£LX, Q) with the product
HH. (Uax) @ HH. (Uax) 5 HH.(Uax),  a®b o ¥ (¥ (@ U¥(5).

Proof. Define d := dim X. Recall that the map o} gives a natural isomorphism H*(£X,Q) =
H* (ax; Ua)v(), where Ua;’( denotes the graded linear dual of ax, both sides of which we identify. By [25,
Theorem D], the isomorphism [X] N—: HY™* (ax; UaY,) > H, (ax;Uay) transforms the coproduct on
the right-hand side to the dual of the loop product on H* (a X5 Ua;’(). The graded linear dual of this iso-
morphism therefore transforms the loop product on H,.(£ X, Q) to the product on H*(ax; Uay). Let C
denote the Lambrechts—Stanley model [41] of X. By (the proof of ) Lemma 3.2, the isomorphism [ X] N—
is induced by the map ¢ ® Idy,y : E ® Uay — C[-d] ® Uay, where E := C* and ¢ : E — C[-d] is
the isomorphism induced by the cyclic pairing on C. It follows that the map ¢* : E[d] — C coincides
with ¢[d], whence the graded linear dual of the map [X] N - : H?™* (ax; Uay,) — H. (ax;Ua},) coin-
cides with the map [X] N—: H¥*(ax; Uax) — H.(ax; Uax). By Lemma 3.2, this in turn is identified
with the isomorphism ¥ : HHY™*(Uax, Uax) — HH,(Uax). Since the product on H*(ax; Uax) is
identified with the cup product on HH*(Uax, Uax ) by Proposition 2.2, the proposition follows. m]

Proof (of Theorem 4.3). Since the minimal L,-model of ax is finite dimensional and nilpotent, Propo-
sition 4.2 applies to ax. By Proposition 4.2 and Lemma 3.2,

HH!" (ax) @ HH'? (ax) € HH"* (ay).

The desired result is therefore immediate from Proposition 4.3 and [7, Theorem 4.1], by which ax
identifies HH'” (ay) with H'") (£X, Q) for all p. O

The following lemma, which is known to experts, is an immediate consequence of Theorem 4.2 and
Propositions 3.2 and 4.3:

- ~ —ql
Lemma 4.3. The isomorphism Bx : HC.(Uax) — Hf (£LX,Q) identifies the string bracket on

gl —
Hf (LX, Q) with the derived Poisson bracket on HC.(Uay) induced by the Poincaré duality pairing
on its Koszul dual.

We are now in position to give a proof of our first theorem, stated in the introduction.
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Proof (of Theorem 1.1). Since the minimal L.-model of ax is finite dimensional and nilpotent, and
since the Koszul dual of ax equipped with the Poincaré duality pairing has a finite-dimensional
model (namely, the graded linear dual of the Lambrechts—Stanley model), Theorem 1.1 follows from
Lemma 4.3, Theorem 1.2 and [7, Theorem 4.1]. O

__ By Theorem 3.2, the Poincaré duality pairing on the Koszul dual of ax also induces an action of
HC.(Uax) on HH, (Uay), ma.kmg the latter a graded Lie module over the former. By Theorem 4.2, we

have a graded Lie action of H (L£LX,Q) (with string topology bracket) on H.(£X, Q). The following
result strengthens [7, Theorem 4.3(ii)] in the case when X is rationally elliptic:

Theorem 4.4. Assume that X is rationally elliptic. Then
{ 70 cx.0). Y (£x. Q)} 777 (£x.0).

Proof. Since the minimal L-model of ay is finite dimensional and nilpotent, and since the Koszul
dual of ax equipped with the Poincaré duality pairing has a finite-dimensional model (namely, the
graded linear dual of the Lambrechts—Stanley model [41]), the desired result follows immediately from
Theorem 4.1 and [7, Theorem 4.1]. O
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