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Abstract

Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string

topology bracket on the �푆1-equivariant homology H
�푆1

∗ (L�푋,Q) of the free loop space of X preserves the Hodge

decomposition of H
�푆1

∗ (L�푋,Q), making it a bigraded Lie algebra. We deduce this result from a general theorem on

derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG

Lie algebras. Our theorem settles a conjecture of [7].

1. Introduction

Let �푋 be a simply connected closed oriented manifold, and let L�푋 := Map(�푆1, �푋) denote the free loop

space over �푋 . Chas and Sullivan [14] showed that the rational equivariant homology of L�푋 with respect

to the natural �푆1-action carries a graded Lie algebra structure with the so-called string topology bracket

{–, –} : H
�푆1

∗ (L�푋,Q) × H
�푆1

∗ (L�푋,Q) −→ H
�푆1

∗ (L�푋,Q). (1.1)

This bracket is intrinsically related to the geometry of L�푋 and has many interesting properties which

have been studied extensively in recent years (see, e.g., [24, 25, 56, 57]).

In this paper we show that the string topology bracket (1.1) is compatible with Frobenius (power)

operations on H
�푆1

∗ (L�푋,Q) – that is, it respects the natural decomposition

H
�푆1

∗ (L�푋,Q) =

∞⊕
�푝=0

H
�푆1 , (�푝)

∗ (L�푋,Q), (1.2)

where the direct summands are common eigenspaces of graded endomorphisms of H
�푆1

∗ (L�푋,Q) with

eigenvalues �푛�푝 (�푛 ≥ 0) induced by the finite coverings of the circle �푆1 −→ �푆1, �푒�푖 �휃 ↦→ �푒�푛�푖�휃 [11]. More

precisely, we prove the following:

Theorem 1.1. Assume that the manifold �푋 is rationally elliptic as a topological space – that is,
dim

∑
�푖≥2 �휋�푖 (�푋) ⊗ Q < ∞. Then{

H
�푆1 , (�푝)

∗ (L�푋,Q),H
�푆1 , (�푞)

∗ (L�푋,Q)

}
⊆ H

�푆1 , (�푝+�푞−1)

∗ (L�푋,Q), ∀ �푝, �푞 ≥ 0, �푝 + �푞 ≥ 1.
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2 Berest Yuri et al.

Thus, the Chas–Sullivan Lie algebra of �푋 is bigraded:

H
�푆1

∗ (L�푋,Q) =
⊕
�푛≥0

⊕
�푝≥−1

H
�푆1 , (�푝+1)

�푛 (L�푋,Q),

where the first grading is given by the homological degree and the second by the Hodge degree (shifted
by 1).

The result of this theorem was conjectured in our earlier paper [7], where we showed that the

bracket (1.1) preserves a filtration on the vector space H
�푆1

∗ (L�푋,Q) associated naturally with the direct

sum decomposition (1.2) (see [7, Theorem 4.3]). Thus we strengthen [7, Theorem 4.3], albeit under the

additional assumption that �푋 is rationally elliptic.1

The question of compatibility of Hodge decomposition with various natural operations, including

string topology operations, has been studied by numerous authors (see, e.g., [24, 28, 29, 33, 60] and

references therein). In particular, we should mention that [7, Theorem 4.3] can be deduced from results

of Felix and Thomas [24]. Specifically, [24, Theorem 2] says that the so-called loop product on the

ordinary homology H∗(L�푋;Q) preserves its Hodge filtration. Since the Chas–Sullivan bracket (1.1)

is determined by the loop product (see [14, 25] and equation (4.11)) and the Frobenius operations on

H∗(L�푋;Q) are compatible with those on H
�푆1

∗ (L�푋,Q), one can check that [24, Theorem 2] implies [7,

Theorem 4.3]. By contrast – to the best of our knowledge – the result of Theorem 1.1 was not anticipated

in the earlier literature.

Theorem 1.1 is a geometric fact: it relates two geometrically defined structures on a simply connected

manifold �푋 . Unfortunately, we do not know how to see this relation directly, in geometric terms,

using the original definition of string topology in [14]. Instead, we prove Theorem 1.1 in a somewhat

roundabout way, deducing it from an abstract algebraic result on derived Poisson structures on the

universal enveloping algebra U�픞 of a (DG) Lie algebra �픞 (see [2]). The main property of such a structure

is that it naturally induces a Lie bracket on the (reduced) cyclic homology of U�픞:

{–, –} : HC∗(U�픞) × HC∗(U�픞) −→ HC∗(U�픞), (1.3)

which is an algebraic model for the string topology bracket (1.1). On the other hand, for any DG Lie

algebra �픞, the cyclic homology of U�픞 has a canonical direct sum decomposition

HC∗(U�픞) =

∞⊕
�푝=1

HC
(�푝)
∗ (�픞), (1.4)

which is called the Lie–Hodge decomposition (see [3, 7] and Section 2.2). This raises a natural question

about compatibility of the two structures:

Does the derived Poisson bracket (1.3) preserve the Lie-Hodge decomposition (1.4)?

As shown in [7], the answer to this question is, in general, negative. It is therefore necessary to impose

certain restrictions on the Lie algebra�픞 and the derived Poisson structure onU�픞. In this paper, we consider

a special class of derived Poisson structures on U�픞 that arise from a cyclic pairing on a cocommutative

DG coalgebra�퐶 Koszul dual to the DG Lie algebra�픞. Then, under natural finiteness assumptions on�픞 and

�퐶, we prove that the bracket (1.3) does preserve the Lie-Hodge decomposition (1.4). To state our main

result in precise terms, we recall that every DG Lie algebra �픞 has a minimal model, which is given by an

1Recall that in rational homotopy theory, there is a fundamental dichotomy dividing all simply connected spaces with finite
rational homology into two classes: elliptic and hyperbolic. Although ‘generic’ spaces are known to be rationally hyperbolic,
many important spaces occurring ‘in nature’ are rationally elliptic: these include, for example, the spheres �푆�푛 (�푛 ≥ 2), the
complex projective spaces CP�푟 (�푟 ≥ 1) , all compact connected Lie groups �퐺 and their homogeneous spaces �퐺/�퐾 with �퐾
compact connected. Moreover, any simply connected compact manifold �푋 of dimension �푑 is known to be rationally elliptic if
�휋�푖 (�푋 ) ⊗ Q = 0 for �푖 > �푑 (see [23, Part IV, Section 32]).
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�퐿∞-algebra structure on the homology H∗(�픞) of �픞 together with an �퐿∞-quasi-isomorphism �픞
∼
−→ H∗ (�픞).

This structure is unique up to an �퐿∞-quasiautomorphism H∗(�픞) → H∗(�픞), whose first component is the

identity map on H∗(�픞) (see [47, Theorem 10.3.15]). We denote this minimal �퐿∞-model simply by H∗ (�픞).

Theorem 1.2. Let �픞 ∈ DGLA+
�푘 be a nonnegatively graded DG Lie algebra defined over a field �푘 of

characteristic 0. Assume the following:

1. dim�푘 H∗(�픞) < ∞, and H∗(�픞) is nilpotent as an �퐿∞-algebra.
2. �픞 has a Koszul-dual cocommutative coalgebra �퐶 with dim�푘 �퐶 < ∞.

Then the derived Poisson bracket (1.3) associated to a(ny) nondegenerate cyclic pairing on �퐶 preserves
the Lie-Hodge decomposition (1.4) – that is,

{
HC

(�푝)
∗ (�픞),HC

(�푞)
∗ (�픞)

}
⊆ HC

(�푝+�푞−2)
∗ (�픞), ∀ �푝, �푞 ≥ 0.

As an example, we note that Theorem 1.2 applies to an ordinary finite-dimensional nilpotent Lie

algebra �픞, with derived Poisson bracket coming from the natural pairing on the Chevalley–Eilenberg

chain complex C∗(�픞; �푘) = ∧∗�픞 (see [15, Section 6]).

Now, Theorem 1.1 is a consequence of Theorem 1.2 modulo known results in the literature. First

of all, we recall that by a fundamental theorem of Quillen [53], the rational homotopy type of any

simply connected space �푋 is determined by a DG Lie algebra �픞�푋 called the Quillen model of �푋 . To

deduce Theorem 1.1 from Theorem 1.2, we thus take �픞 = �픞�푋 to be the Quillen model of a given

simply connected manifold �푋 . Then, by a theorem of Goodwillie [32, Theorem V.1.1] combined with

[23, Theorem 26.5], there is a natural isomorphism of graded vector spaces HC∗(U�픞) � H
�푆1

∗ (L�푋,Q);

moreover, by [7, Theorem 1.2], this isomorphism identifies HC(�푝) (�픞) � H
�푆1 , (�푝−1)

∗ (L�푋,Q) for all �푝 ≥ 1.

Thus, the geometric Hodge decomposition (1.2) for a simply connected space �푋 coincides (up to a shift

in degree) with the Lie–Hodge decomposition (1.4) for the Quillen model of �푋 . Next, for any compact

manifold �푋 , Lambrechts and Stanley [41] constructed a finite-dimensional commutative algebra model

�퐴�푋 whose (linear) dual coalgebra �퐶 := Hom(�퐴�푋 ,Q) is Koszul dual to the Quillen model �픞�푋 . This

coalgebra �퐶 comes equipped with a nondegenerate cyclic pairing (Poincaré duality), and – as observed

in [2] (see also Lemma 4.3) – the associated derived Poisson bracket on HC∗(U�픞) agrees with the Chas–

Sullivan bracket on H
�푆1

∗ (L�푋,Q). To apply Theorem 1.2, it remains to note that for �푋 rationally elliptic,

the minimal �퐿∞-model of �픞�푋 is finite dimensional and nilpotent – that is, H∗(�픞) satisfies condition (1)

of Theorem 1.2.

Next, we briefly outline our proof of Theorem 1.2. As a first step, we replace the cyclic homology

HC∗(U�픞) of the algebra U�픞 by its Hochschild cohomology HH∗(U�픞,U�픞) and, following an idea of [15],

express the derived Poisson bracket on HC∗(U�픞) in terms of the canonical cup product on HH∗(U�픞,U�픞)

(see Proposition 3.2). We show that the Lie–Hodge decomposition of HC∗(U�픞) naturally extends to a

direct sum decomposition of HH∗(U�픞,U�픞), which we also refer to as a Lie–Hodge decomposition (see

Theorem 2.2). Using the results of [7, 15], we then reduce the proof of Theorem 1.2 to proving that the

cup product on HH∗(U�픞,U�픞) preserves its Lie–Hodge decomposition. Writing A for the Chevalley–

Eilenberg cochain complex of the minimal �퐿∞-model H∗(�픞) of the DG Lie algebra �픞, we observe

that there is a Hodge-degree-preserving algebra isomorphism HH∗(U�픞,U�픞) � HH∗
⊕ (A,A), where

HH∗
⊕ (A,A) stands for the Hochschild cochain complex of A constructed using direct sums (in place of

infinite direct products). Thus, our problem reduces to showing that the cup product preserves the Lie–

Hodge decomposition of HH∗
⊕ (A,A). To prove this, we recall that by definition,A is a symmetric algebra

equipped with a differential which encodes the �퐿∞-structure on H∗(�픞). Hence, by the Hochschild–

Kostant–Rosenberg theorem, there is a natural linear map IHKR : H∗ [V] −→ HH∗
⊕ (A,A), where H∗ [V]

denotes the cohomology ring of the algebraV = V(A) of polyderivations ofA. It is easy to show that the

map IHKR preserves Hodge grading; however, in general, it is not a homomorphism of graded algebras.

In fact, Kontsevich’s (cohomological) version of Duflo’s classical theorem, which applies to A because
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H∗ (�픞) is finite dimensional, says that to get an algebra isomorphism between H∗ [V] and HH∗
⊕ (A,A),

one needs to ‘correct’ the HKR map by contracting it with a certain canonical cohomology class called

the Todd genus. In general, contraction by the Todd genus does not preserve the Hodge grading on V;

however, when H∗(�픞) is a nilpotent �퐿∞-algebra, we show (see Proposition 4.1) that the Todd genus is

actually trivial.2 Thus, it turns out that under our assumptions on �픞, the HKR map is an isomorphism

of graded algebras. Now, since the product on V obviously preserves the Hodge grading, this completes

the proof of Theorem 1.2.

We would like to conclude this introduction by mentioning a well-known analogy between rational

homotopy theory and local commutative algebra [1]. The rationally elliptic spaces correspond in com-

mutative algebra to local complete intersection rings, and the �푆1-equivariant homology of free loop

spaces to (relative) cyclic homology of local rings. It seems natural to ask whether a result parallel to

our Theorem 1.1 holds in commutative algebra. Although one can consider Lie algebra models for local

rings (analogues of Quillen models in topology), our ‘abstract’ Theorem 1.2 does not apply directly to

such models, since they are not defined over fields of characteristic 0.

The paper is organised as follows. In Section 2, we review the Loday–Goodwillie (simplicial) ap-

proach to Hodge decompositions and show how the Lie–Hodge decomposition of HC∗(U�픞) constructed

in [3] arises from this approach. We also construct the Lie-Hodge decomposition on the Hochschild

cohomology HH∗(U�픞,U�픞) and prove some technical results needed for our main theorem. In Section 3

we recall definitions and review some known results on derived Poisson structures. The most important

result for us (proven in [15]) relates the cyclic derived Poisson structure on U�픞 to the cup product and

Gerstenhaber bracket on the Hochschild cohomology ofU�픞 via the Van den Bergh duality. We also show

that the Van den Bergh duality is compatible with Lie–Hodge decompositions (Lemma 3.2). Finally,

Section 4 contains the proof of Theorem 1.2, as well as its application to string topology.

Notation

Throughout this paper, �푘 denotes a field of characteristic 0. All vector spaces, chain complexes and

associative and Lie algebras – as well as unadorned multilinear operations, such as ⊗, Hom, Sym and

others – are defined over �푘 . The categories of chain complexes, DG algebras, commutative DG algebras,

DG Lie algebras and (conilpotent) DG coalgebras are denoted Com�푘 , DGA�푘 , DGCA�푘 , DGLA�푘 and

DGC�푘 , respectively. The corresponding categories of augmented algebras and coaugmented coalgebras

are denoted DGA�푘/�푘 , DGCA�푘/�푘 and DGC�푘/�푘 . The Koszul sign rule is tacitly used throughout the paper.

2. Hodge decompositions

It is well known that the cyclic homology of any commutative (DG) algebra �퐴 has a natural decomposition

HC∗(�퐴) =

∞⊕
�푝=0

HC
(�푝)
∗ (�퐴), (2.1)

which is usually called the Hodge (or �휆-) decomposition of HC∗(�퐴). Loday [45] gave an elegant

explanation of this phenomenon in terms of the classical bar construction C∗(�퐴) of the algebra �퐴.

Recall that for any associative algebra, C∗(�퐴) is a cyclic module – that is, a functor Δ�퐶op −→ Com�푘

defined on (the opposite of) Connes’ cyclic category Δ�퐶. The category Δ�퐶op naturally embeds into

the category of finite sets Fin, and the theorem of Loday (compare [46, Theorem 6.4.5]) asserts that

the cyclic homology of a cyclic module �퐸∗ : Δ�퐶op −→ Com�푘 admits a direct sum decomposition of the

form in equation (2.1) whenever the functor �퐸∗ extends to Fin – that is, factors through the inclusion

Δ�퐶op ↩→ Fin. Now, for the cyclic bar construction �퐸∗ = C∗(�퐴), this happens exactly when �퐴 is a

commutative algebra (see [46, Proposition 6.4.4]).

2In the case when �픞 is an ordinary finite-dimensional nilpotent Lie algebra, this observation goes back essentially to Duflo’s
original paper [20] (see also [50]).
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Goodwillie (compare [46, Exercise E.6.4.5]) observed that the Hodge decomposition of HC∗(�퐸)

may exist in a more general situation: namely, when the functor �퐸∗ : Δ�퐶op −→ Com�푘 admits an

extension �퐸Ψ
∗ : ΔΨop −→ Com�푘 to the so-called epicyclic category ΔΨop. The category ΔΨ has the

same objects as Δ�퐶 but contains extra morphisms which induce the power (Adams) operations on

HC∗(�퐸); on the other hand, ΔΨ is strictly smaller than Fin. Thus, if �퐸∗ : Δ�퐶op −→ Com�푘 factors through

Δ�퐶op ↩→ ΔΨop, then HC∗(�퐸) has a natural Hodge decomposition; furthermore, this decomposition

agrees with Loday’s when the corresponding epicyclic module �퐸Ψ
∗ : ΔΨop −→ Com�푘 factors through

ΔΨop ↩→ Fin.

In this section, we show that the cyclic bar construction C∗(U�픞) of the universal enveloping algebra

of a (DG) Lie algebra �픞 has a natural epicyclic structure (which does not factor through Fin). We

prove that the Hodge decomposition of cyclic homology HC∗(U�픞) arising from this epicyclic structure

coincides with the Lie–Hodge decomposition constructed in [3]. We also establish some properties

of Hodge decomposition of Hochschild homology which we will need for the proof of our main

theorem.

2.1. Epicyclic modules and Adams operations

Let Δ denote the standard simplicial category whose objects are the finite ordered sets [�푛] = {0 <

1 < 2 < · · · < �푛} and morphisms are the order-preserving maps. The category Δ is generated by two

families of maps �푑�푖�푛 : [�푛 − 1] −→ [�푛] (with 0 ≤ �푖 ≤ �푛, �푛 ≥ 1) and �푠
�푗
�푛 : [�푛 + 1] −→ [�푛] (with 0 ≤ �푗 ≤ �푛,

�푛 ≥ 0), called the (co)face and (co)degeneracy maps respectively. These maps satisfy the standard

(co)simplicial relations given, for example, in [46, Appendix B.3]. Connes’ cyclic category Δ�퐶 is an

extension of Δ that contains – in addition to �푑�푖�푛 and �푠
�푗
�푛 – the cyclic maps �휏�푛 : [�푛] −→ [�푛] for �푛 ≥ 0. More

generally, for any integer �푘 ≥ 1, we can define the �푘-cyclic category Δ�퐶 (�푘) that contains Δ (and has the

same objects as Δ) with additional morphisms �푘�휏�푛 : [�푛] −→ [�푛] satisfying

�푘�휏�푛 ◦ �푑
�푖
�푛 = �푑�푖−1

�푛 ◦ �푘�휏�푛, �푘�휏�푛 ◦ �푠
�푗
�푛 = �푠

�푗−1
�푛 ◦ �푘�휏�푛, (�푘�휏�푛)

�푘 (�푛+1) = Id[�푛] .

There are two natural functors relating Δ�퐶 (�푘) to Δ�퐶 ≡ Δ�퐶 (1) :

P�푘 : Δ�퐶 (�푘) −→ Δ�퐶, Sd�푘 : Δ�퐶 (�푘) −→ Δ�퐶. (2.2)

The functor P�푘 is characterised by the property that its restriction toΔ is the identity, while P�푘 (�푘�휏�푛) = �휏�푛
for all �푛 ≥ 0. The functor Sd�푘 – called the �푘th edgewise subdivision [48] – is defined by

Sd�푘 ([�푛]) := [�푘 (�푛 + 1) − 1] = [�푛]⊔
�푘
· · · ⊔[�푛],

and on morphisms as

Sd�푘 (�휑) = �휑⊔
�푘
· · · ⊔�휑, for �휑 ∈ Mor(Δ), Sd�푘 (�푘�휏�푛) = �휏�푘 (�푛+1)−1,

where the notation [�푛]⊔
�푘
· · · ⊔[�푛] means taking the disjoint union of �푘 copies of the set [�푛], and

�휑⊔
�푘
· · · ⊔�휑 means applying the map �휑 to each of these copies separately.

Now, the epicyclic category ΔΨ [12] is the extension of Δ�퐶 (i.e., Δ�퐶 ⊂ ΔΨ), which – in addition to

the morphisms
{
�푑�푖�푛

}
,
{
�푠
�푗
�푛

}
and

{
�휏�푛
}

generating Δ�퐶 – contains a family of morphisms

�휋�푘
�푛 : [�푘 (�푛 + 1) − 1] −→ [�푛], ∀ �푛 ≥ 0, �푘 ≥ 1,

called the (co)power maps. These maps are characterised by the property that �휋�푘
∗ : Sd�푘 −→ P�푘 define

natural transformations of functors Δ�퐶 (�푘) −→ Δ�퐶 ↩→ ΔΨ for all �푘 ≥ 1 and, in addition, satisfy the
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relations

�휋1
�푛 = Id[�푛] , �휋�푙�푛 ◦ �휋

�푘
�푙 (�푛+1)−1

= �휋�푘�푙
�푛 .

If C is a category, an epicyclic object in C is, by definition, a functor �푋 : ΔΨop −→ C; we will write CΔΨ

for the category of such functors, with morphisms being the natural transformations. Note that giving

an epicyclic object in C is equivalent to giving a cyclic object �푋 : Δ�퐶op −→ C together with a family of

morphisms in Δ�퐶 (�푘) (�푘 ≥ 1):

�푝�푘∗ (�푋) : P�푘
∗ (�푋) −→ Sd�푘

∗ (�푋), �푝�푘�푛 : �푋�푛 −→ �푋�푘 (�푛+1)−1, (2.3)

satisfying

�푝1
∗ = Id, �푝�푘∗ ◦ �푝�푙∗ = �푝�푘�푙∗ ,

where P�푘
∗ (�푋) and Sd�푘

∗ (�푋) are the �푘-cyclic objects
(
Δ�퐶 (�푘)

)op
−→ C defined by P�푘

∗ (�푋) := �푋 ◦ P�푘

and Sd�푘
∗ (�푋) := �푋 ◦ Sd�푘 (see (2.2)). It is a classical observation (due to Connes) that when C =

Set, the geometric realisation |�푋 | of any cyclic set �푋 : Δ�퐶op −→ Set caries a natural �푆1-action (see

[46, Theorem 7.1.4]). In a similar way, if �푋 is an epicyclic set, then in addition to the �푆1-action

its realisation |�푋 | carries power operations which induce Adams operations on the �푆1-equivariant

homology H�푆1

∗ (|�푋 |) of |�푋 | [12, Theorem A]). We will look at an algebraic (chain) version of this

construction.

Recall that to any associative unital (DG) �푘-algebra �퐴, one can naturally attach a cyclic

module

C∗(�퐴) : Δ�퐶op −→ Com�푘 , [�푛] ↦→ �퐴⊗(�푛+1) , (2.4)

called the cyclic bar construction [46, Proposition 2.5.4]. Our main observation in this section is the

following:

Proposition 2.1. If �퐴 is a cocommutative (DG) Hopf algebra, then C∗(�퐴) carries a natural epicyclic
structure.

To prove Proposition 2.1, we need to extend the functor (2.4) to the epicyclic category – that is,

construct a functor CΨ
∗ (�퐴) : ΔΨop −→ Com�푘 such that CΨ

∗ (�퐴) |Δ�퐶op = C∗(�퐴). This can be done directly

by defining the structure maps (2.3) and verifying the required relations. We will give a more conceptual

construction of CΨ
∗ (�퐴) that relies on the well-known fact that the cocommutative Hopf algebras are the

group objects in the category of cocommutative coalgebras.

Let �픊 denote (the skeleton of) the category of finitely generated free groups: thus, the objects of

�픊 are the free groups 〈�푛〉 = F�푛, one for each cardinality �푛 ≥ 0, and the morphisms 〈�푛〉 −→ 〈�푚〉

are arbitrary group homomorphisms F�푛 −→ F�푚. The category �픊 carries a (strict) monoidal struc-

ture with product 〈�푛〉 ∗ 〈�푚〉 = 〈�푛 + �푚〉 for all �푛, �푚 ≥ 0. The category of all (discrete) groups Gr

can then be described as the category Set⊗
�픊

of strict monoidal functors �픊op −→ Set with values in

Set equipped with the usual (cartesian) monoidal structure: the equivalence Gr
∼
−→ Set⊗

�픊
is given

by the Yoneda functor �퐺 ↦→ �퐺 := HomGr (–, �퐺) restricted to the subcategory �픊 ⊂ Gr. Now, it is

known and easy to check (see, e.g., [9] and [12, Example 1.3]) that the cyclic nerve �푁
cyc
∗ (�퐺) :={

�퐺�푛+1
}
�푛≥0

of any discrete group �퐺 carries a canonical epicyclic structure with power maps (2.3)

given by

�푝�푘�푛 : �퐺�푛+1 −→ �퐺�푘 (�푛+1) , (�푔0, . . . , �푔�푛) ↦→ (�푔0, . . . , �푔�푛; �푘. . .; �푔0, . . . , �푔�푛).

Thus we have a well-defined functor �푁
cyc
∗ : Gr −→ SetΔΨ. If we identify Gr � Set⊗

�픊
via �퐺 ↦→ �퐺

as before, then �푁
cyc
∗ is simply the pullback functor Ψ∗ : Set⊗

�픊
−→ SetΔΨ for a natural map in

Cat:

Ψ : ΔΨ −→�픊. (2.5)
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Explicitly, the functor (2.5) is defined on objects by Ψ([�푛]) = 〈�푛+1〉 = F〈�푥0, . . . , �푥�푛〉 and on morphisms

by the following formulas:

Ψ
(
�푑�푖�푛

)
: 〈�푛〉 −→ 〈�푛 + 1〉, (�푥0, . . . , �푥�푛−1) ↦→

{
(�푥0, . . . , �푥�푖−1, �푥�푖�푥�푖+1, . . . , �푥�푛), �푖 < �푛,

(�푥�푛�푥0, �푥1, . . . , �푥�푛−1), �푖 = �푛,

Ψ
(
�푠
�푗
�푛

)
: 〈�푛 + 2〉 −→ 〈�푛 + 1〉, (�푥0, . . . , �푥�푛+1) ↦→

(
�푥0, . . . , �푥 �푗 , 1, �푥 �푗+1, . . . , �푥�푛

)
,

Ψ
(
�휏�푛
)

: 〈�푛 + 1〉 −→ 〈�푛 + 1〉, (�푥0, . . . , �푥�푛) ↦→ (�푥�푛, �푥0, �푥1, . . . , �푥�푛−1),

Ψ
(
�휋�푘
�푛

)
: 〈�푘 (�푛 + 1)〉 −→ 〈�푛 + 1〉, �푥�푚 ↦→ �푥�푚, �푚 = 0, 1, . . . , �푘 (�푛 + 1) − 1.

where �푚 denotes the remainder of �푚 modulo �푛 + 1.

Proof (of Proposition 2.1). The category of cocommutative (DG) Hopf algebras is equivalent to the

category Com⊗
�픊

of strict monoidal functors �픊op −→ Com�푘 , with an algebra �퐴 corresponding to the

functor �퐴 : �픊op −→ Com�푘 ,〈�푛〉 ↦→ �퐴⊗�푛 (see, e.g., [51]). Now, the epicyclic module CΨ
∗ (�퐴) associated to

�퐴 is simply given by the composition

CΨ
∗ (�퐴) : ΔΨop Ψop

✲ �픊op
�퐴✲ Com�푘 , [�푛] ↦→ �퐴⊗�푛+1,

where Ψop is the opposite functor of the functor (2.5). Note that by the construction of Ψ, the restriction

of CΨ
∗ (�퐴) to Δ�퐶op ⊂ ΔΨop coincides with the cyclic bar construction (2.4) associated to �퐴 as an

algebra. �

Remark. The functor Ψ does not factor through Fin nor its opposite category Finop. Thus, unlike

in [45], our epicyclic bar construction CΨ
∗ (�퐴) : ΔΨop → Com�푘 does not extend to all finite sets. To

avoid confusion, we note that there is a different functor ΔΨ →�픊 that factors naturally through Fin: to

construct it, consider the composition

Δ�퐶
∼
−→ Δ�퐶op

�푆1
∗

−−→ Fin, (2.6)

where the first arrow is Connes’ cyclic duality identifying the cyclic category with its opposite [46,

Proposition 6.1.11] and the second is the standard cyclic model of the circle �푆1. It is known and easy to

check (see, e.g., [46, Exercise E.6.4.4]) that the functor (2.6) extends to ΔΨ, giving a map ΔΨ → Fin.

Now, combining this last map with the free group functor F : Set → Gr, we define

Φ : ΔΨ → Fin
F
−→�픊.

When restricted to Δ , the functor (2.6) coincides with the natural inclusion Δ ↩→ Fin which identifies

[�푛] = {0, 1, 2, . . . , �푛} [46, Remark 6.4.3]. Hence, on objects, the functor Φ agrees with Ψ, mapping

[�푛] → 〈�푛 + 1〉. However, the values of Φ on morphisms are quite different from those of Ψ. In fact, the

group homomorphismsΦ
(
�푑�푖�푛

)
: 〈�푛〉 → 〈�푛+1〉 corresponding to the coface maps �푑�푖�푛 : [�푛−1] → [�푛] are

given by �푥�푘 ↦→ �푥�푘 for �푘 < �푖 and �푥�푘 ↦→ �푥�푘+1 for �푘 ≥ �푖, while for the codegeneracy maps �푠
�푗
�푛 : [�푛+1] → [�푛]

we have Φ
(
�푠
�푗
�푛

)
: 〈�푛 + 2〉 → 〈�푛 + 1〉, �푥�푘 ↦→ �푥�푘 , for �푘 ≤ �푗 and �푥�푘 ↦→ �푥�푘−1 for �푘 > �푗 . This shows that

for a cocommutative Hopf algebra �퐴, the cyclic module Φ∗
(
�퐴
)

:= �퐴 ◦ Φop : Δ�퐶op → Com�푘 depends

only on the coalgebra structure of �퐴, and hence it is entirely different from C∗(�퐴). By Loday [45], the

cyclic homology of Φ∗
(
�퐴
)

admits a direct decomposition which is simply a formal (coalgebra) dual to

the classical Hodge decomposition for commutative algebras (2.1).

It follows from Proposition 2.1 that if �퐴 is a cocommutative Hopf algebra, the cyclic module C∗(�퐴)

is equipped with extra power operations (see (2.3)) given by simplicial maps:

�푝�푘∗ (�퐴) : C∗(�퐴) −→ Sd�푘 [C∗(�퐴)], �푘 ≥ 1. (2.7)
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To describe these maps we need first to identify their targets Sd�푘 [C∗(�퐴)]. Recall that for any

(DG) algebra �퐴 and any (DG) �퐴-bimodule �푀 , one can define a simplicial (complex of) module(s)

C∗(�퐴, �푀) =
{
C�푛 (�퐴, �푀) = �푀 ⊗ �퐴⊗�푛

}
�푛≥0

whose homology is the Hochschild homology HH∗(�퐴, �푀).

In particular, for �푀 = �퐴 we have C∗(�퐴, �퐴) = C∗(�퐴). We will use this construction for the bimodule

�푡 �퐴
⊗�푘 over the algebra �퐴⊗�푘 , where the left �퐴⊗�푘 -module structure is twisted by a cyclic permutation –

that is,

(�푎1 ⊗ · · · ⊗ �푎�푘 ) · (�푏1 ⊗ · · · ⊗ �푏�푘 ) = �푎�푘�푏1 ⊗ �푎1�푏2 ⊗ · · · ⊗ �푎�푘−1�푏�푘 .

Lemma 2.1.

(a) For every �푘 ≥ 1, there is an isomorphism of simplicial modules

Sd�푘 [C∗(�퐴)]
∼
−→ C∗

(
�퐴⊗�푘 , �푡 �퐴

⊗�푘
)

(2.8)

given (in simplicial degree �푛) by ‘transposition of matrices’:

�퐴⊗(�푛+1)⊗
�푘
· · · ⊗�퐴⊗(�푛+1) −→ �퐴⊗�푘⊗

�푛+1
· · · ⊗�퐴⊗�푘 ,

©­­­­«

�푎0 �푎�푛+1 · · · �푎 (�푘−1) (�푛+1)

�푎1 �푎�푛+2 · · · �푎 (�푘−1) (�푛+1)+1

...
...

. . .
...

�푎�푛 �푎2�푛+1 · · · �푎�푘 (�푛+1)−1

ª®®®®¬
↦→

©­­­­«

�푎0 �푎1 · · · �푎�푛
�푎�푛+1 �푎�푛+2 · · · �푎2�푛+1

...
...

. . .
...

�푎 (�푘−1) (�푛+1) �푎 (�푘−1) (�푛+1)+1 · · · �푎�푘 (�푛+1)−1

ª®®®®¬
,

where the elements of the tensor powers �퐴⊗(�푛+1) and �퐴⊗�푘 are represented as matrix columns.
(b) With identification (2.8), the power maps (2.7) are given by

�푝�푘�푛 : �퐴⊗(�푛+1) −→ �퐴⊗�푘⊗
(�푛+1)
· · · ⊗�퐴⊗�푘 , �푎0 ⊗ · · · ⊗ �푎�푛 ↦→ Δ �푘 (�푎0) ⊗ · · · ⊗ Δ �푘 (�푎�푛),

where Δ �푘 : �퐴 −→ �퐴⊗�푘 is the �푘-iterated coproduct on �퐴.

Proof. (�푎) Straightforward verification. We leave it as an exercise to the reader. (�푏) By definition, the

maps �푝�푘�푛 are the images of the generating morphisms �휋�푘
�푛 : [(�푛 + 1)�푘 − 1] −→ [�푛] of the category ΔΨ.

Under the functor Ψ (see (2.5)), these morphisms correspond to the folding maps

∇�푘
�푛+1 : 〈�푘 (�푛 + 1)〉 = 〈�푛 + 1〉∗

�푘
· · · ∗〈�푛 + 1〉 −→ 〈�푛 + 1〉,

which act as identities Id〈�푛+1〉 on each copy of the free group 〈�푛 + 1〉 in 〈�푘 (�푛 + 1)〉. Now, it is easy to

see that the maps ∇�푘
�푛+1

factor in�픊 as

〈�푛 + 1〉∗
�푘
· · · ∗〈�푛 + 1〉

∇�푘
�푛+1 ✲ 〈�푛 + 1〉

〈�푘〉∗
(�푛+1)
· · · ∗〈�푘〉

∇�푘∗
(�푛+1)
· · · ∗∇�푘

✻

,
�

�휎 �푘
�푛 ✲
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where ∇�푘 : 〈�푘〉 = 〈1〉 ∗ · · · ∗ 〈1〉 −→ 〈1〉 is the �푘-folding map for 〈1〉 ∈ �픊 and �휎�푘
�푛 is the isomorphism of

free groups given by the transposition

©­­­­«

�푥0 �푥�푛+1 · · · �푥 (�푘−1) (�푛+1)

�푥1 �푥�푛+2 · · · �푥 (�푘−1) (�푛+1)+1

...
...

. . .
...

�푥�푛 �푥2�푛+1 · · · �푥�푘 (�푛+1)−1

ª®®®®¬
↦→

©­­­­«

�푥0 �푥1 · · · �푥�푛
�푥�푛+1 �푥�푛+2 · · · �푥2�푛+1

...
...

. . .
...

�푥 (�푘−1) (�푛+1) �푥 (�푘−1) (�푛+1)+1 · · · �푥�푘 (�푛+1)−1

ª®®®®¬
,

where the matrix columns represent the generators of the corresponding factors of the free products.

Since under the functor �퐴 : �픊op −→ Com�푘 the folding maps ∇�푘 : 〈�푘〉 −→ 〈1〉 correspond exactly to the

�푘-iterated coproducts Δ �푘 : �퐴 −→ �퐴⊗�푘 , the claim of part (b) follows. �

Finally, using Lemma 2.1 we describe the Adams operations induced by the power maps (2.7) on the

cyclic homology of a cocommutative DG Hopf algebra. Let �푅 be a cocommutative DG Hopf algebra

which is cofibrant as an object in DGA�푘/�푘 . Let �푅♮ := �푅/(�푘 + [�푅, �푅]) denote the cyclic construction on �푅

which computes – by a theorem of Feigin and Tsygan (see, e.g., [5, 22]) – the (reduced) cyclic homology

HC∗(�푅) of �푅 viewed as an associative DG algebra.3 Then, applying Lemma 2.1 to the epicyclic module

C∗(�푅), we get the commutative diagram

C∗(�푅)
�푝�푘∗✲ C∗(�푅

⊗�푘 , �푡�푅
⊗�푘 )

�푅♮

can ❄❄ Ψ
�푘

✲ �푅♮,

�휇�푘

❄
(2.9)

where can is the canonical projection onto �휋0C∗(�푅) � �푅♮ and �휇�푘 is the composition of the natural

map �휋0 : C∗

(
�푅⊗�푘 , �푡�푅

⊗�푘
)
։

(
�푡�푅

⊗�푘
)
♮

with the map (�푡�푅
⊗�푘 )♮

�휇
−→ �푅♮ induced by iterated multiplication

on �푅. It follows from Lemma 2.1(b) that the maps Ψ
�푘

: �푅♮ −→ �푅♮ in diagram (2.9) are induced by the

compositions

Ψ�푘 : �푅
Δ�푘

−−→ �푅⊗�푘 �휇
−→ �푅, �푘 ≥ 1. (2.10)

Thus, we conclude the following:

Corollary 2.1. For any cocommutative DG Hopf algebra �푅 which is cofibrant in DGA�푘/�푘 , the Adams

operations on HC∗(�푅) coming from the epicyclic structure on C∗(�푅) are induced by the maps (2.10).

In the next section, we will give a different construction of these Adams operations in terms of

derived functors, following [3].

2.2. Lie–Hodge decomposition

Given a Lie algebra �픞 over �푘 , we consider the symmetric ad-invariant �푘-multilinear forms on �픞 of (fixed)

degree �푝 ≥ 1. Every such form is induced from the universal one: �픞 × �픞 × · · · × �픞 → �휆 (�푝) (�픞), which

takes its values in the space �휆 (�푝) (�픞) of coinvariants of the adjoint representation of �픞 in Sym�푝 (�픞). The

assignment �픞 ↦→ �휆 (�푝) (�픞) defines a (nonadditive) functor on the category of Lie algebras that naturally

extends to the category of DG Lie algebras:

�휆 (�푝) : DGLA�푘 −→ Com�푘 , �픞 ↦→ Sym�푝 (�픞)/[�픞, Sym�푝 (�픞)] . (2.11)

3Recall that the cyclic homology of an arbitrary (not necessarily cofibrant) DG algebra �푅 can be defined explicitly as the
homology of (the total complex of) Connes’ bicomplex of �푅 (see, e.g., [46, Section 5.3.3]).
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The functor (2.11) does not preserve quasi-isomorphisms and hence does not descend to the homotopy

category Ho(DGLA�푘 ). To remedy this problem, we replace �휆 (�푝) by its (left) derived functor

R�휆 (�푝) : Ho(DGLA�푘 ) → D(�푘), (2.12)

which takes its values in the derived category D(�푘) of chain complexes. We write HC
(�푝)
∗ (�픞) for the

homology of R�휆 (�푝) (�픞), and call it the Lie–Hodge homology of �픞.

For �푝 = 1, the functor �휆 (1) is just the abelianisation of Lie algebras; in this case, the existence of

R�휆 (1) follows from Quillen’s general theory [52, Chapter II, §5]), and HC
(1)
∗ (�픞) coincides (up to shift

in degree) with the classical Chevalley–Eilenberg homology H∗(�픞, �푘) of the Lie algebra �픞. For �푝 = 2,

the functor �휆 (2) was introduced by Drinfeld [19]; the existence of R�휆 (2) was established by Getzler and

Kapranov [27], who suggested that HC
(2)
∗ (�픞) should be viewed as an analogue of cyclic homology for

Lie algebras. The existence of R�휆 (�푝) for arbitrary �푝 was established in [3, Section 7].

Next, consider the functor

(–)♮ : DGA�푘/�푘 −→ Com�푘 , �푅 ↦→ �푅/(�푘 + [�푅, �푅]),

which is called the cyclic functor on associative DG algebras (compare [22]). Observe that each �휆 (�푝)

comes together with a natural transformation to the composite functor

U♮ : DGLA�푘
U
−→ DGA�푘/�푘

(–)♮
−−−→ Com�푘 ,

where U is the universal enveloping algebra functor on the category of (DG) Lie algebras. The natural

transformations �휆 (�푝) → U♮ are induced by the symmetrisation maps

Sym�푝 (�픞) → U�픞, �푥1�푥2 · · · �푥�푝 ↦→
1

�푝!

∑
�휎∈Σ�푝

±�푥�휎 (1) · �푥�휎 (2) · · · · · �푥�휎 (�푝) , (2.13)

which by the Poincaré–Birkhoff–Witt theorem assemble to an isomorphism of DG �픞-modules

Sym�푘 (�픞) � U�픞. From this, it follows that �휆 (�푝) → U♮ give an isomorphism of functors

∞⊕
�푝=1

�휆 (�푝)
� U♮ . (2.14)

On the other hand, by a theorem of Feigin and Tsygan [22] (see also [5]), the functor (–)♮ has a left

derived functor R(–)♮ : Ho(DGA�푘/�푘 ) → D(�푘) that computes the reduced cyclic homology HC∗(�푅)

of an associative algebra �푅 ∈ DGA�푘/�푘 . Since U preserves quasi-isomorphisms and maps cofibrant DG

Lie algebras to cofibrant DG associative algebras, the isomorphism (2.14) induces an isomorphism of

derived functors from Ho(DGLA�푘 ) to D(�푘):

∞⊕
�푝=1

R�휆 (�푝)
� R(–)♮ ◦ U. (2.15)

At the level of homology, the isomorphism (2.15) yields the direct decomposition (compare [3, Theorem

7.2])

∞⊕
�푝=1

HC
(�푝)
∗ (�픞) � HC∗(U�픞). (2.16)

To state the main theorem of this section, we recall that the universal enveloping algebra U�픞 of a (DG)

Lie algebra �픞 has the natural structure of a cocommutative (DG) Hopf algebra. By Proposition 2.1, the
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associated simplicial module C∗(U�픞) carries therefore an epicyclic structure. We writeΨ
�푘

: HC∗(U�픞) −→

HC∗(U�픞), �푘 ≥ 1, for the Adams operations induced by this structure.

Theorem 2.1. For every �푝 ≥ 2, the Lie–Hodge homology HC
(�푝)
∗ (�픞) is the common (graded) eigenspace

of the operators Ψ
�푘

corresponding to the eigenvalues �푘 �푝 , �푘 ≥ 1.

Proof. Without loss of generality, we may assume that �픞 is a cofibrant DG Lie algebra. Then, as already

explained, �푅 = U�픞 is a cocommutative DG Hopf algebra which is cofibrant as an associative DG algebra.

By Corollary 2.1, the Adams operations are induced by the maps �휇�푘 ◦Δ
�푘 : �푅 −→ �푅, whereΔ �푘 : �푅 −→ �푅⊗�푘

is the �푘-iterated coproduct on �푅 and �휇�푘 : �푅⊗�푘 −→ �푅 is the �푘-iterated product. The theorem follows now

from [3, Proposition 7.5 and Corollary 7.7], which show that the very same Adams operations Ψ
�푘

arise

from the derived functors R�휆 (�푝) . �

Theorem 2.1 implies that the Lie–Hodge decomposition (2.16) arises from the natural epicyclic

structure on C∗(U�픞) given in Proposition 2.1.

2.3. Hodge decomposition of Hochschild homology

The decomposition (2.16) also extends to (reduced) Hochschild homology (see [7, Section 2.1]):

HH∗(U�픞) �

∞⊕
�푝=0

HH
(�푝)
∗ (�픞).

Recall that there is a natural isomorphism HH∗(U�픞) � H∗ (�픞; Sym(�픞)) [46, Theorem 3.3.2]: under

this isomorphism, the summand HH(�푝) (�픞) is identified with H∗(�픞; Sym�푝 (�픞)). The Connes periodicity

sequence for U�픞 decomposes into a direct sum of Hodge components: the summand of Hodge degree �푝

is given by the long exact sequence [7, Theorem 2.2]

· · ·
�푆
−→ HC

(�푝+1)

�푛−1
(�픞)

�퐵
−→ HH

(�푝)
�푛 (�픞)

�퐼
−→ HC

(�푝)
�푛 (�픞)

�푆
−→ HC

(�푝+1)

�푛−2
(�픞) → · · · . (2.17)

Next we shall show that the Hochschild cohomology HH∗(U�픞,U�픞) has a similar Hodge decompo-

sition. Recall that �퐴 ∈ DGA�푘/�푘 is Koszul dual to �퐶 ∈ DGC�푘/�푘 if there is a quasi-isomorphism of

DG algebras �푅 := 
(�퐶)
∼
−→ �퐴, where 
(�퐶) denotes the (associative) cobar construction of �퐶. As-

sume that �퐴 is Koszul dual to �퐶. Let �휄 : �퐶 −→ �푅 denote the universal twisting cochain. Further recall

that given a twisting �휏 : �퐶 −→ �퐴, there is a convolution algebra Hom�휏 (�퐶, �퐴) with twisted differential

�푑Hom(�퐶,�퐴) + [�휏, –]. The following proposition is well known (see, e.g., [49, Theorem 1.1]):

Proposition 2.2. There is an isomorphism of graded �푘-algebras

HH∗(�퐴, �퐴) � H−∗ [Hom �휄 (�퐶, �푅)] .

Recall that for a DG algebra �퐸 , the Hochschild cochain algebra C∗(�퐸, �퐸), with product given by

the cup product, is isomorphic to Π�푛≥0Hom(�̄퐸 [1]⊗�푛, �퐸) as a graded algebra. The graded subspace

⊕�푛≥0Hom(�̄퐸 [1]⊗�푛, �퐸) is a (DG) Gerstenhaber subalgebra of C∗(�퐸, �퐸), which we shall denote by

C∗
⊕ (�퐸, �퐸). Let HH∗

⊕ (�퐸, �퐸) denote the corresponding cohomology.

Corollary 2.2. If �퐶 is finite dimensional and �퐸 := �퐶∗ is the graded linear dual of �퐶, then there is an
isomorphism of algebras

HH∗(�퐴, �퐴) � HH∗
⊕ (�퐸, �퐸).
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Proof. Since �퐶 is finite dimensional,

Hom �휄 (�퐶, �푅) �
⊕
�푛≥0

Hom
(
�퐶, �̄퐶 [−1]⊗�푛

)
�

⊕
�푛≥0

Hom
(
�̄퐸 [1]⊗�푛, �퐸

)
.

Thus Hom �휄 (�퐶, �푅) – viewed as a cochain complex by inverting degrees – is isomorphic to the (normalised)

Hochschild cochain complex C∗
⊕ (�퐸, �퐸) as a graded vector space. Is is easy to verify that the identification

turns the differential on Hom �휄 (�퐶, �푅) into the Hochschild differential on C∗
⊕ (�퐸, �퐸) and the convolution

product on Hom �휄 (�퐶, �푅) into the cup product on C∗
⊕ (�퐸, �퐸). By Proposition 2.2, there is an isomorphism

of associative algebras HH∗(�퐴, �퐴) � HH∗
⊕ (�퐸, �퐸). �

Let �픞 ∈ DGLA�푘 be Koszul dual to �퐶 ∈ DGCC�푘/�푘 . This is equivalent to the existence of a quasi-

isomorphism L := 
Comm(�퐶)
∼
−→ �픞, where 
Comm(�퐶) denotes the (Lie) cobar construction of�퐶. Define

�푅 := 
�퐶 and let �휄 : �퐶 −→ �푅 be the universal twisting cochain. It is easy to verify that �푅 � UL. Since the

image of �휄 lies in L ⊂ �푅, we may view �휄 as a twisting cochain from �퐶 to L as well. Let �푅 (�푝) denote the

image of Sym�푝 (L) in �푅 under the symmetrisation map (2.13). The adjoint action of L on �푅 induces

an action of Hom(�퐶,L) on Hom(�퐶, �푅): indeed, viewing L as a Lie subalgebra of �푅, we can consider

[�훼, �푓 ] ∈ Hom(�퐶, �푅) for �훼 ∈ Hom(�퐶,L) and �푓 ∈ Hom(�퐶, �푅). This action equips Hom �휄 (�퐶, �푅) with

the structure of a Lie module over the DG Lie algebra Hom�휄 (�퐶,L). Further assume that �퐶 is finite

dimensional.

Theorem 2.2. The natural inclusions �푅 (�푝) ↩→ �푅 induce a direct sum decomposition of DG Hom �휄 (�퐶,L)-
modules:

Hom �휄 (�퐶, �푅) �

∞⊕
�푝=0

Hom �휄 (�퐶, �푅 (�푝) ).

As a consequence,

HH∗(U�픞,U�픞) �

∞⊕
�푝=0

H∗ (�픞; Sym�푝 (�픞)) .

Proof. There is an isomorphism of L-modules �푅 � ⊕∞
�푝=0

�푅 (�푝) . Since �퐶 is finite dimensional,

Hom(�퐶, �푅) �

∞⊕
�푝=0

Hom(�퐶, �푅 (�푝) ) (2.18)

as graded vector spaces. It remains to check that if �훼 ∈ Hom(�퐶,L) and �푓 ∈ Hom(�퐶, �푅 (�푝) ), then

[�훼, �푓 ] ∈ Hom
(
�퐶, �푅 (�푝)

)
. Indeed,

[�훼, �푓 ] (�푐) = (−1) |�푐
′ | | �푓 |�훼(�푐′) �푓 (�푐′′) − (−1) | �푓 | |�훼 |+ |�훼 | |�푐′ | �푓 (�푐′)�훼(�푐′′)

= (−1) |�푐
′ | | �푓 |�훼(�푐′) �푓 (�푐′′) − (−1) | �푓 | |�훼 |+ |�훼 | |�푐′′ |+ |�푐′ | |�푐′′ | �푓 (�푐′′)�훼(�푐′)

= (−1) |�푐
′ | | �푓 | [�훼(�푐′), �푓 (�푐′′)],

where the second equality follows from the fact that �퐶 is cocommutative. Since �훼(�푐′) ∈ L and

�푓 (�푐′′) ∈ �푅 (�푝) , we have [�훼(�푐′), �푓 (�푐′′)] ∈ �푅 (�푝) , because the map (2.13) is a morphism of L modules

(with the adjoint action). This shows that the isomorphism (2.18) is a morphism of graded Hom(�퐶,L)

Lie modules. In particular, for �푓 ∈ Hom
(
�퐶, �푅 (�푝)

)
, we have [�휄, �푓 ] ∈ Hom

(
�퐶, �푅 (�푝)

)
. The differential

on Hom �휄 (�퐶, �푅) thus restricts to Hom �휄
(
�퐶, �푅 (�푝)

)
for each �푝. Hence, the isomorphism (2.18) is an

isomorphism of complexes

Hom �휄 (�퐶, �푅) �

∞⊕
�푝=0

Hom �휄 (�퐶, �푅 (�푝) ).
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Next, the Jacobi identity for the commutator bracket on the convolution algebra Hom(�퐶, �푅) implies that

the action of Hom(�퐶,L) on Hom(�퐶, �푅) is compatible with the twisted differential �휕+ [�휄, –]. This proves

the first statement of the theorem. The second statement follows from Proposition 2.2 once we verify that

H−∗ [Hom �휄 (�퐶, �푅 (�푝) )] � H∗ (�픞, Sym�푝 (�픞)) . (2.19)

Since �퐶 is Koszul dual to �푅, �푅 ⊗ �휄 �퐶 is a semifree resolution of �푘 as a DG left �푅 � UL-module.

Similarly, since �퐶 is Koszul dual to �픞, U�픞 ⊗�휏 �퐶 is a semifree resolution of �푘 as a DG left U�픞-module,

where �휏 denotes the composite twisting cochain �퐶
�휄
−→ L

∼
−→ �픞. It follows that there are isomorphisms in

the derived category of complexes of �푘-vector spaces:

Hom �휄 (�퐶, �푅 (�푝) ) � HomUL (�푅 ⊗ �휄 �퐶, Sym�푝 (L))

� RHomUL (�푘, Sym�푝 (L))

� RHomUL (�푘, Sym�푝 (�픞))

� HomUL (�푅 ⊗ �휄 �퐶, Sym�푝 (�픞))

� Hom�휏 (�퐶, Sym�푝 (�픞))

� HomU�픞 (U�픞 ⊗�휏 �퐶, Sym�푝 (�픞))

� RHomU�픞 (�푘, Sym�푝 (�픞)) .

This implies the isomorphism (2.19) on homologies. �

Let �퐸 := �퐶∗ denote the (graded) linear dual of�퐶. Then Hom
(
�̄퐸 [1], �퐸

)
is an �퐸-module via the action

(�푥 · �푓 ) (�푦) = �푥 · �푓 (�푦) for �푓 ∈ Hom
(
�̄퐸 [1], �퐸

)
, �푥 ∈ �퐸, �푦 ∈ �̄퐸 [1]. It is easy to verify that

Hom(�퐶, �푅 (�푝) ) � Sym
�푝

�퐸

[
L�퐸

(
Hom

(
�̄퐸 [1], �퐸

) ) ]
,

where L�퐸 (�푉) denotes the free Lie algebra generated (over �퐸) by a free �퐸-module�푉 . From Theorem 2.2

and Corollary 2.2, we have the following:

Corollary 2.3. There is a direct sum decomposition

C∗
⊕ (�퐸, �퐸) �

∞⊕
�푝=0

Sym
�푝

�퐸

[
L�퐸

(
Hom

(
�̄퐸 [1], �퐸

) ) ]
.

Moreover,

H∗
(
Sym

�푝

�퐸

[
L�퐸

(
Hom

(
�̄퐸 [1], �퐸

) ) ] )
� H∗ (�픞; Sym�푝 (�픞)) .

Remark. The decomposition of Hochschild cochains in Corollary 2.3 is analogous to the Hodge

decomposition of the complex of polydifferential operators on a smooth proper variety (over a field of

characteristic 0) in [54, Section 4].

3. Cyclic pairings and derived Poisson structures

The notion of a (noncommutative) derived Poisson algebra was introduced in [2] (see also [7]), as a

natural – higher homological – generalisation of the H0-Poisson algebras of Crawley-Boevey [16]. The

H0-Poisson algebras can be viewed, in turn, as a generalisation of the so-called necklace Lie algebras

introduced in [8, 30] following an idea of Kontsevich [40].
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3.1. Derived Poisson algebras

Let �퐴 be an augmented DG algebra. The space Der(�퐴) of graded �푘-linear derivations of �퐴 is naturally a

DG Lie algebra with respect to the commutator bracket. Let Der(�퐴)♮ denote the subcomplex of Der(�퐴)

consisting of the derivations with image in �푘 + [�퐴, �퐴] ⊆ �퐴. It is easy to see that Der(�퐴)♮ is a DG Lie

ideal of Der(�퐴), so that Der(�퐴)♮ := Der(�퐴)/Der(�퐴)♮ is a DG Lie algebra. The natural action of Der(�퐴)

on �퐴 induces a Lie algebra action of Der(�퐴)♮ on the quotient space �퐴♮ := �퐴/(�푘 + [�퐴, �퐴]). We write

�휚 : Der(�퐴)♮ → End(�퐴♮) for the corresponding DG Lie algebra homomorphism.

Now, following [2], we define a Poisson structure on �퐴 to be a DG Lie algebra structure on �퐴♮ such

that the adjoint representation ad : �퐴♮ → End(�퐴♮) factors through �휚 – that is, there is a map of DG Lie

algebras �훼 : �퐴♮ −→ Der(�퐴)♮ such that ad = �휚 ◦�훼. It is easy to see that if �퐴 is a commutative DG algebra,

then a Poisson structure on �퐴 is the same thing as a (graded) Poisson bracket on �퐴. On the other hand,

if �퐴 is an ordinary �푘-algebra (viewed as a DG algebra), then a Poisson structure on �퐴 is precisely an

H0-Poisson structure in the sense of [16].

Let �퐴 and �퐵 be two Poisson DG algebras – that is, objects of DGA�푘/�푘 equipped with Poisson

structures. A morphism �푓 : �퐴 −→ �퐵 of Poisson algebras is then a morphism �푓 : �퐴 → �퐵 in DGA�푘/�푘 such

that �푓♮ : �퐴♮ −→ �퐵♮ is a morphism of DG Lie algebras. With this notion of morphisms, the Poisson DG

algebras form a category which we denote DGPA�푘 . Note that DGPA�푘 comes with two natural functors:

the forgetful functor �푈 : DGPA�푘 → DGA�푘/�푘 and the cyclic functor (–)♮ : DGPA�푘 → DGLA�푘 . We say

that a morphism �푓 is a weak equivalence in DGPA�푘 if �푈 �푓 is a weak equivalence in DGA�푘/�푘 and �푓♮ is a

weak equivalence in DGLA�푘 ; in other words, a weak equivalence in DGPA�푘 is a quasi-isomorphism of

DG algebras, �푓 : �퐴 → �퐵, such that the induced map �푓♮ : �퐴♮ −→ �퐵♮ is a quasi-isomorphism of DG Lie

algebras.

Proposition 3.1 ([7]). The category DGPA�푘 with weak equivalences is a (saturated) homotopical
category in the sense of [21].

This proposition allows us to define a well-behaved homotopy category of Poisson algebras

Ho(DGPA�푘 ) := DGPA�푘

[
�

−1
]
,

where � is the class of weak equivalences.

Definition 3.1 ([7]). A derived Poisson algebra is a cofibrant associative DG algebra �퐴 equipped with
a Poisson structure, which is viewed up to weak equivalence – that is, as an object in Ho(DGPA�푘 ).

An important result that motivates our study of these objects is the following theorem generalising

the main theorem of [16].

Theorem 3.1 (see [2, 7]). Let �퐴 be a derived Poisson algebra over �푘 .

(a) The (reduced) cyclic homology HC∗(�퐴) of �퐴 carries a natural structure of a graded Lie algebra.
(b) For any �푛 ≥ 1, there is a unique graded Poisson algebra structure on the �푛-dimensional represen-

tation homology HR∗(�퐴, �푘
�푛)GL of �퐴, such that the derived character map (compare [4, 5, 6])

Tr�푛 (�퐴) : HC∗(�퐴) → HR∗(�퐴, �푘
�푛)GL

is a (graded) Lie algebra homomorphism.

Example 3.1 (Necklace Lie algebras). The simplest example of a derived Poisson algebra is the tensor

algebra �퐴 = �푇�푘�푉 generated by an even-dimensional �푘-vector space �푉 equipped with a symplectic form

〈–, –〉 : �푉 × �푉 −→ �푉 . In this case, �퐴 carries a double Poisson structure in the sense of [59]. The double

bracket

{{–, –}} : �̄퐴 ⊗ �̄퐴 −→ �퐴 ⊗ �퐴
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is given by the formula

{{(�푣1, . . . , �푣�푛), (�푤1, . . . , �푤�푚)}} =∑
�푖=1,...,�푛
�푗=1,...,�푚

〈
�푣�푖 , �푤 �푗

〉 (
�푤1, . . . , �푤 �푗−1, �푣�푖+1, . . . , �푣�푛

)
⊗
(
�푣1, . . . , �푣�푖−1, �푤 �푗+1, . . . , �푤�푚

)
, (3.1)

where (�푣1, . . . , �푣�푛) denotes the element �푣1 ⊗ · · · ⊗ �푣�푛 ∈ �푇�푘�푉 with �푣1, . . . , �푣�푛 ∈ �푉 . This double bracket

can be extended to �퐴 ⊗ �퐴 by setting {{�푎, 1}} = {{1, �푎}} = 0. It induces a noncommutative Poisson

structure on �퐴 with Lie bracket on �퐴♮ given by

{
�̄훼, �훽

}
= �휇 ◦ {{�훼, �훽}},

where �휇 : �퐴 ⊗ �퐴 −→ �퐴 is the multiplication map and �푎 denotes the image of �푎 ∈ �퐴 under the canonical

projection �퐴 −→ �퐴♮. The Lie algebra �퐴♮ = �푇�푘�푉♮ with this bracket is called the necklace Lie algebra
[8, 30].

3.2. Cyclic pairings

We now describe a construction of derived Poisson structures associated with cyclic coalgebras. Recall

(compare [27]) that a graded associative �푘-algebra is called �푛-cyclic if it carries a symmetric bilinear

pairing 〈–, –〉 : �퐴 × �퐴 −→ �푘 of degree �푛 satisfying

〈�푎�푏, �푐〉 = 〈�푎, �푏�푐〉, ∀ �푎, �푏, �푐 ∈ �퐴.

Dually, a graded coalgebra�퐶 is called �푛-cyclic if it carries a symmetric bilinear pairing 〈–, –〉 : �퐶×�퐶 −→ �푘

of degree �푛 satisfying

〈�푣′, �푤〉�푣′′ = ±〈�푣, �푤′′〉�푤′, ∀ �푣, �푤 ∈ �퐶,

where �푣′ and �푣′′ are the two components of the coproduct Δ�퐶�푣 = �푣′ ⊗ �푣′′ written in Sweedler notation.

Note that if �퐴 is a finite-dimensional graded −�푛-cyclic algebra whose cyclic pairing is nondegenerate,

then �퐶 := Hom�푘 (�퐴, �푘) is a graded �푛-cyclic coalgebra. A DG coalgebra �퐶 is �푛-cyclic if it is �푛-cyclic as

a graded coalgebra and

〈�푑�푢, �푣〉 ± 〈�푢, �푑�푣〉 = 0

for all homogeneous �푢, �푣 ∈ �퐶 – that is, if 〈–, –〉 : �퐶 [�푛] ⊗�퐶 [�푛] −→ �푘 [�푛] is a map of complexes. We say that

a coaugmented DG coalgebra �퐶 ∈ DGC�푘/�푘 is �푛-cyclic if �̄퐶 is �푛-cyclic as a noncounital DG coalgebra.

Assume that �퐶 ∈ DGC�푘/�푘 is equipped with a cyclic pairing of degree �푛 and let �푅 := 
(�퐶) denote

the (associative) cobar construction of �퐶. Recall that �푅 = �푇�푘
(
�̄퐶 [−1]

)
as a graded �푘-algebra. For

�푣1, . . . , �푣�푛 ∈ �̄퐶 [−1], let (�푣1, . . . , �푣�푛) denote the element �푣1 ⊗ · · · ⊗ �푣�푛 of �푅. By [2, Theorem 15], the

cyclic pairing on �퐶 of degree �푛 induces a double Poisson bracket of degree �푛 + 2 (in the sense of [59])

{{–, –}} : �̄푅 ⊗ �̄푅 −→ �푅 ⊗ �푅.

This double bracket is given by the formula

{{(�푣1, . . . , �푣�푛), (�푤1, . . . , �푤�푚)}} =∑
�푖=1,...,�푛
�푗=1,...,�푚

±
〈
�푣�푖 , �푤 �푗

〉 (
�푤1, . . . , �푤 �푗−1, �푣�푖+1, . . . , �푣�푛

)
⊗
(
�푣1, . . . , �푣�푖−1, �푤 �푗+1, . . . , �푤�푚

)
(3.2)
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generalising equation (3.1). This double bracket can be extended to �푅 ⊗ �푅 by setting {{�푟, 1}} =

{{1, �푟}} = 0. Associated to equation (3.2) is the usual bracket

{–, –} := �휇 ◦ {{–, –}} : �푅 ⊗ �푅 −→ �푅. (3.3)

Similarly, the bimodule �푅 ⊗ �푅 (equipped with outer �푅-bimodule structure) has a double bracket (in the

sense of [15, Definition 3.5]) given by the formula

{{–, –}} : �푅 × (�푅 ⊗ �푅) −→ �푅 ⊗ (�푅 ⊗ �푅) ⊕ (�푅 ⊗ �푅) ⊗ �푅,

{{�푟, �푝 ⊗ �푞}} := {{�푟, �푝}} ⊗ �푞 + (−1) |�푝 | ( |�푟 |+�푛) �푝 ⊗ {{�푟, �푞}}.

This double bracket restricts to a double bracket on the sub-bimodule Ω1�푅 of �푅 ⊗ �푅 [15, Corollary

5.2]. Let {–, –} : �푅 ⊗ Ω1�푅 −→ Ω1�푅 denote the composite map �휇 ◦ {{–, –}}, where �휇 is the bimodule

action. Furthermore, for any �푅-bimodule �푀 , denote by �푀♮ := �푀/[�푀, �푅] its abelianisation. Then for

�푀 = Ω1�푅, define {–, –}♮ : �푅⊗Ω1�푅 −→
(
Ω1�푅

)
♮

to be the composition of {–, –} with canonical projection

♮ : Ω1�푅 ։
(
Ω1�푅

)
♮
.

As in the case of necklace Lie algebras, the bracket ♮◦ {–, –} : �푅 ⊗ �푅 −→ �푅♮ descends to a DG (�푛+2)-

Poisson structure on �푅. In particular, there is a (DG) Lie bracket {–, –}♮ on �푅♮ of degree �푛 + 2. The

restriction of the bracket (3.3) to �̄푅 induces a degree �푛 + 2 DG Lie module structure over �푅♮ on �̄푅, and

the bracket {–, –}♮ : �푅 ⊗ Ω1�푅 −→
(
Ω1�푅

)
♮

induces a degree �푛 + 2 DG Lie module structure over �푅♮ on(
Ω1�푅

)
♮

[15, Proposition 3.11]. On homologies, we have the following (see [15, Theorems 1.1 and 1.2]):

Theorem 3.2. Let �퐴 ∈ DGA�푘/�푘 be an augmented DG algebra Koszul dual to a DG coalgebra �퐶 ∈

DGC�푘/�푘 . Assume that �퐶 is �푛-cyclic. Then HC∗(�퐴) has the structure of a graded Lie algebra with Lie

bracket of degree �푛 + 2. Moreover, HH∗(�퐴) has the structure of a graded Lie module over HC∗(�퐴) of
degree �푛 + 2, with Connes’ maps �퐼, �퐵 and �푆 being the degree (�푛 + 2) Lie module homomorphisms over
HC∗(�퐴).

The Lie bracket of degree �푛 + 2 on HC∗(�퐴) induced by an (�푛 + 2)-Poisson structure on �푅♮ as before

is an example of a derived (�푛 + 2)-Poisson structure on �퐴. Such derived Poisson structures have been

further studied in [7, 55].

Convention

Since we work with algebras that are Koszul dual to �푛-cyclic coalgebras, the associated Lie algebras

that we work with have Lie bracket of degree �푛 + 2. Similarly, the modules over such Lie algebras are

Lie modules of degree �푛 + 2. To simplify our terminology, we will drop the prefix ‘degree �푛 + 2’ in all

sections that follow. In particular, for �푛 fixed, we will refer to (derived) (�푛+2)-Poisson structures simply

as (derived) Poisson structures.

3.3. Van den Bergh duality

Assume that �퐴 ∈ DGA�푘/�푘 is Koszul dual to �퐶 ∈ DGC�푘/�푘 . Let �휏 : �퐶 −→ �퐴 denote the twisting

cochain corresponding to the quasi-isomorphism �푅
∼
−→ �퐴, where �푅 := 
(�퐶). Further, assume that �퐶

is a finite-dimensional coalgebra equipped with a cyclic pairing (of degree −�푛) which is induced by a

nondegenerate cyclic pairing (of degree �푛) on the graded linear dual �퐸 = �퐶∗. The pairing on �퐶 induces

an isomorphism (complexes) �휙 : �퐸 := Hom�푘 (�퐶, �푘) −→ �퐶 [−�푛] of �푘-vector spaces whose (shifted) inverse

is the linear map

�퐶 � �퐸 [�푛], �푐 ↦→ 〈�푐, –〉.
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The isomorphism �휙 : �퐸 −→ �퐶 [−�푛] induces an isomorphism of DG �푅-bimodules

Hom �휄
�푘 (�퐶, �푅

�푒) −→ �푅 ⊗ �휄 �퐶 [−�푛] ⊗ �휄 �푅, (3.4)

where the �푅-bimodule structure on the left is induced by the ‘inner’ bimodule structure on �푅�푒 . Identifying

Hom �휄 (�퐶, �푅�푒) = Hom�푅�푒 (�푅 ⊗ �휄 �퐶 ⊗ �휄 �푅, �푅
�푒) and noting that �푅 ⊗ �휄 �퐶 ⊗ �휄 �푅 is a semifree resolution of �푅,

we see that the nondegenerate cyclic pairing on �퐶 induces an isomorphism in D�푏 (�푅�푒)

�푅∨
� �푅[−�푛],

where �푅∨ is the (derived) bimodule dual of �푅. Taking derived tensor products over �푅�푒 and homology,

we obtain an isomorphism

Ψ : HH∗(�퐴, �퐴) � HH�푛−∗ (�퐴). (3.5)

The isomorphism �푅∨
� �푅[−�푛] induces an isomorphism H∗

(
�푅∨ ⊗R

�푅�푒 �푅
)
� H∗

(
�푅 ⊗R

�푅�푒 �푅[−�푛]
)
. The

image of the identity map on �푅 (viewed as an element of H0

(
�푅∨ ⊗R

�푅�푒 �푅
)

under this isomorphism) is an

element �휂 ∈ HH�푛 (�퐴, �퐴). We recall the following:

Lemma 3.1 ([17, Proposition 5.5]). The map Ψ coincides with the isomorphism �휂 ∩ – : HH∗(�퐴, �퐴) �

HH�푛−∗(�퐴).

Let {–, –} : HC∗(�퐴) ⊗ HC∗(�퐴) −→ HC∗(�퐴) denote the derived Poisson bracket on HC∗(�퐴). The

following result was proven for quadratic Koszul algebras in [15, proof of Corollary 1.5]; we give a

different, more direct proof in a slightly more general context:

Proposition 3.2. The derived Poisson bracket on HC∗(�퐴) is given by

{�훼, �훽} = I
[
Ψ

[
Ψ−1(�퐵(�훼)) ∪ Ψ−1(�퐵(�훽))

] ]
, ∀ �훼, �훽 ∈ HC∗(�퐴).

Proof. Since �푅 ⊗ �휄 �퐶 ⊗ �휄 �푅 is a semifree resolution of �푅 as an �푅-bimodule, HH∗(�퐴) � HH∗(�푅) can be

identified with the homology of the complex (�푅 ⊗ �휄 �퐶 ⊗ �휄 �푅) ⊗�푅�푒 �푅, which is isomorphic to �푅 ⊗ �퐶 as

graded vector spaces. The differential on �푅 ⊗ �퐶 induced by that on �푅 ⊗ �휄 �퐶 ⊗ �휄 �푅 is, however, twisted

and differs from the differential on �푅 ⊗ �휄 �퐶. We let �푅 ⊗ �휄 �퐶 �휄 denote �푅 ⊗�퐶 equipped with this differential.

Explicitly, for �푟 ∈ �푅 and �푐 ∈ �퐶, we have

�휕�푅⊗�휄�퐶�휄
(�푟 ⊗ �푐) = �푑�푅�푟 ⊗ �푐 + (−1) |�푟 |�푟 ⊗ �푑�퐶�푐 + (−1) |�푐

′′ | ( |�푟 |+ |�푐′ |)�휏(�푐′′)�푟 ⊗ �푐′ − (−1) |�푟 |�푟�휏(�푐′) ⊗ �푐′′.

On the other hand, by a theorem of Feigin and Tsygan [22] (see also [5]), HC∗(�퐴) � H∗

[
�푅♮

]
. It is easy

to verify that the Lie bracket on �푅♮ is given by the composite map

�푅♮ ⊗ �푅♮
�휕⊗�휕
−−−→ (�푅 ⊗ �휄 �퐶 �휄 [−1]) ⊗ (�푅 ⊗ �휄 �퐶 �휄 [−1]) → �푅 ⊗ �푅 ⊗ �퐶 [−1]⊗2 �휇⊗〈-,-〉

−−−−−−→ �푅 ։ �푅♮,

where the second arrow permutes factors and �휕 : �푅♮ −→ �푅 ⊗ �휄 �퐶 �휄 [−1] denotes the cyclic derivative. On

homology, the cyclic derivative �휕 induces the Connes operator �퐵 : HC∗(�퐴) −→ HH∗+1(�퐴). It therefore

suffices to check that the map induced on homology by the composition

(�푅 ⊗ �휄 �퐶 �휄) ⊗ (�푅 ⊗ �휄 �퐶 �휄) → �푅 ⊗ �푅 ⊗ �퐶⊗2 �휇⊗〈-,-〉
−−−−−−→ �푅 ։ �푅♮

coincides with

HH∗(�퐴)
⊗2

(Ψ−1)
⊗2

−−−−−−→ HH∗(�퐴, �퐴)⊗2 ∪
−→ HH∗(�퐴, �퐴)

Ψ
−→ HH∗(�퐴)

I
−→ HC∗(�퐴). (3.6)

By Proposition 2.2, HH∗(�퐴, �퐴) is the homology of Hom �휄 (�퐶, �푅), whose convolution product induces

the cup product. On identifying Hom�휄 (�퐶, �푅) with �푅 ⊗ �퐸 as graded vector spaces, the map Ψ−1 gets
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identified with the map induced on homology by Id�푅 ⊗ �휙−1 : �푅 ⊗ �퐶 −→ �푅 ⊗ �퐸 , and the convolution

product on Hom �휄 (�퐶, �푅) is identified with the product on �푅 ⊗ �퐸 . On the other hand, the map I is induced

on homology by

�푅 ⊗ �휄 �퐶 �휄
Id�푅⊗�휀�퐶
−−−−−−→ �푅 ։ �푅♮ .

It therefore suffices to verify that the following diagram commutes:

(�푅 ⊗ �퐶) ⊗ (�푅 ⊗ �퐶) ✲ (�푅 ⊗ �푅) ⊗ (�퐶 ⊗ �퐶)
�휇�푅 ⊗ 〈–, –〉✲ �푅

Id ✲ �푅.

(�푅 ⊗ �퐸) ⊗ (�푅 ⊗ �퐸)

(
Id�푅 ⊗ �휙−1

) ⊗2

❄
✲ (�푅 ⊗ �푅) ⊗ (�퐸 ⊗ �퐸)

Id�푅⊗2 ⊗
(
�휙−1

) ⊗2

❄ �휇�푅 ⊗ �휇�퐸✲ �푅 ⊗ �퐸
Id�푅 ⊗ �휙✲ �푅 ⊗ �퐶

Id�푅 ⊗ �휀�퐶
✻

This reduces to verifying the commutativity of the diagram

�퐸 ⊗ �퐸
�휇�퐸 ✲ �퐸

�퐶 ⊗ �퐶

�휙 ⊗ �휙
❄ 〈–, –〉 ✲ �푘.

�휀�퐶 ◦ �휙
❄

Note that �휀�퐶 : �퐶 −→ �푘 coincides with 1�퐸 under the identification �퐸 = �퐶∗. Thus, for �푣 ∈ �퐸 ,

�휀�퐶 (�휙(�푣)) = 1�퐸 (�휙(�푣)) = 〈�휙(1�퐸 ), �휙(�푣)〉�퐶 = 〈1�퐸 , �푣〉�퐸 ,

where 〈–, –〉�퐸 denotes the original pairing on �퐸 . The commutativity of the diagram therefore follows

once we show that

〈�휙(�푣), �휙(�푤)〉 = 〈�푣, �푤〉�퐸 = 〈1�퐸 , �푣 · �푤〉�퐸 , ∀ �푣, �푤 ∈ �퐸.

This is a consequence of the fact that the pairing on �퐸 is cyclic. This completes the proof. �

Recall (see Theorem 3.2) that there is an action of HC∗(�퐴) on HH∗(�퐴) making the latter a graded

Lie module over the former. Abusing notation, we denote this action by

{–, –} : HC∗(�퐴) × HH∗(�퐴) −→ HH∗(�퐴).

Let [–, –]�퐺 denote the Gerstenhaber bracket on HH∗(�퐴, �퐴).

Proposition 3.3. For all �훼 ∈ HC∗(�퐴) and all �훽 ∈ HH∗(�퐴),

{�훼, �훽} = Ψ(
[
Ψ−1(�퐵(�훼)),Ψ−1(�훽)

]
�퐺
).

Proof. Note that the isomorphism Ψ can be used to transport the Gerstenhaber bracket onto

HH∗(�퐴), making HH∗(�퐴) a graded Lie algebra (up to shift in homological degree) with Lie bracket

Ψ(
[
Ψ−1(–),Ψ−1(–)

]
�퐺
). By [15, Corollary 8.6 and proof of Theorem 1.6], �퐵 : HC∗(�퐴) −→ HH∗+1(�퐴)

is a graded Lie algebra homomorphism, where HC∗(�퐴) is equipped with the derived Poisson bracket.

It therefore remains to verify that the action of HC∗(�퐴) on HH∗(�퐴) arising out of the Lie algebra ho-

momorphism �퐵 coincides with the action arising out of the derived Poisson structure. We complete

this verification in the routine computation that follows. For notational brevity, define �푉 := �̄퐶 [−1],

and for �푣1, . . . , �푣�푛 ∈ �푉 , set (�푣1, . . . , �푣�푛) := �푣1 ⊗ · · · ⊗ �푣�푛 ∈ �푅. Pick �푝 = (�푣1, . . . , �푣�푛) ∈ �푅 and

�푞 ⊗ �푐 = (�푢1, . . . , �푢�푚) ⊗ �푐 ∈ �푅 ⊗ �휄 �퐶 �휄. Then

{�푝, �푞 ⊗ �푐} = {�푝, �푞} ⊗ �푐 + (−1) ( |�푝 |−�푛) |�푞 |♮(�푞�푑{�푝, �푐}),
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where ♮ : Ω1�푅 −→ Ω1�푅♮ denotes the canonical projection. Hence {�푝, �푞 ⊗ �푐} equals∑
16�푖6�푛
16�푘6�푚

±〈�푠�푣�푖 , �푠�푢�푘〉(�푢1, . . . , �푢�푘−1, �푣�푖+1, . . . , �푣�푛, �푣1, . . . , �푣�푖−1, �푢�푘+1, . . . , �푢�푚) ⊗ �푐 +

∑
16 �푗6�푛

±♮
[
(�푢1, . . . , �푢�푚)�푑

(〈
�푠�푣 �푗 , �푐

〉
�푣 �푗+1, . . . , �푣�푛, �푣1, . . . , �푣 �푗−1

) ]
,

or more explicitly,∑
16�푖6�푛
16�푘6�푚

±〈�푠�푣�푖 , �푠�푢�푘〉(�푢1, . . . , �푢�푘−1, �푣�푖+1, . . . , �푣�푛, �푣1, . . . , �푣�푖−1, �푢�푘+1, . . . , �푢�푚) ⊗ �푐 +

∑
16�푖< �푗6�푛

±
〈
�푠�푣 �푗 , �푐

〉 (
�푣�푖+1, . . . , �푣 �푗−1, �푢1, . . . , �푢�푚, �푣 �푗+1, . . . , �푣�푛, �푣1, . . . , �푣�푖−1

)
⊗ �푠�푣�푖 +

∑
16 �푗<�푖6�푛

±
〈
�푠�푣 �푗 , �푐

〉 (
�푣�푖+1, . . . , �푣�푛, �푣1, . . . , �푣 �푗−1, �푢1, . . . , �푢�푚, �푣 �푗+1, . . . , �푣�푖−1

)
⊗ �푠�푣�푖 .

On the other hand,

Ψ−1(�퐵(�푣1, . . . , �푣�푛)) =
∑

1≤�푖≤�푛

(�푣�푖+1, . . . , �푣�푛, �푣1, . . . , �푣�푖−1) ⊗ �푠�푣�푖 ,

Ψ−1((�푢1, . . . , �푢�푚) ⊗ �푐) = (�푢1, . . . , �푢�푚) ⊗ �̃푐,

where we denote �̃푐 := �휙−1(�푐). Hence the bracket
[
Ψ−1(�퐵(�푝)),Ψ−1(�푞)

]
�퐺

equals

∑
16�푖< �푗6�푛

±�푠�푣 �푗 (�̃푐)
(
�푣�푖+1, . . . , �푣 �푗−1, �푢1, . . . , �푢�푚, �푣 �푗+1, . . . , �푣�푛, �푣1, . . . , �푣�푖−1

)
⊗ �푠�푣�푖 +

∑
16 �푗<�푖6�푛

±�푠�푣 �푗 (�̃푐)
(
�푣�푖+1, . . . , �푣�푛, �푣1, . . . , �푣 �푗−1, �푢1, . . . , �푢�푚, �푣 �푗+1, . . . , �푣�푖−1

)
⊗ �푠�푣�푖 +

∑
16�푖6�푛
16�푘6�푚

±�푠�푣�푖 (�푠�푢�푘 ) (�푢1, . . . , �푢�푘−1, �푣�푖+1, . . . , �푣�푛, �푣1, . . . , �푣�푖−1, �푢�푘+1, . . . , �푢�푚) ⊗ �̃푐.

Since �푢 (�푤) = 〈�푢, �푤〉 for all �푢, �푤 ∈ �퐶, this computation shows that

Ψ−1({�푝, �푞 ⊗ �푐}) =
[
Ψ−1(�퐵(�푝)),Ψ−1(�푞 ⊗ �푐)

]
�퐺
.

Since HC∗(�퐴) = H∗

(
�푅♮

)
and HH∗(�퐴) = H∗(�푅 ⊗ �휄 �퐶 �휄), the desired verification is complete once we

apply Ψ to both sides of this equation. �

Assume further that�퐶 is cocommutative, so that �퐴 � U�픞, where �픞 ∈ DGLA�푘 is Koszul dual to�퐶. The

image of the counit �휀�퐶 ∈ �퐶∨ under the isomorphism �퐶∨
� �퐶 [−�푛] defines an �푛-cycle in �퐶 whose class

in H�푛 (�퐶) � H�푛 (�픞; �푘) is denoted by �휂. This in turn defines a cap product �휂∩– : H�푛−�푟 (�픞; �푁) −→ H�푟 (�픞; �푁)

for any DG �픞-module �푁 [25, Sect. 7.1].

Lemma 3.2. Under the natural isomorphisms HH∗(U�픞) � H∗(�픞;U�픞) and HH∗(U�픞,U�픞) � H∗(�픞;U�픞),
the map Ψ is identified with

�휂 ∩ – : H∗(�픞;U�픞) −→ H�푛−∗ (�픞;U�픞).

As a consequence,

Ψ [H∗ (�픞; Sym�푝 (�픞))] = H�푛−∗ (�픞; Sym�푝 (�픞)) , ∀ �푝 ≥ 0.
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Proof. The map Ψ is induced by the map of complexes

Hom �휄 (�퐶, �푅) � �푅 ⊗ �휄 �퐶 �휄 [−�푛] (3.7)

obtained by tensoring the bimodule map (3.4) with �푅 over �푅�푒. Hence, identifying the left-hand side (as

graded vector spaces) with �푅 ⊗ �퐸 , we see that the isomorphism (3.5) coincides with the map Id�푅 ⊗ �휙.

On the other hand, the natural isomorphisms HH∗(U�픞) � H∗(�픞;U�픞) and HH∗(U�픞,U�픞) � H∗(�픞;U�픞)

are induced by the maps Hom�휄 (�퐶, �푅) −→ Hom�휏 (�퐶,U�픞) and �푅 ⊗ �휄 �퐶 �휄 −→ U�픞 ⊗�휏 �퐶�휏 induced by the

canonical projection �푅
∼
−→ U�픞, and where �휏 : �퐶 −→ U�픞 denotes the twisting cochain corresponding to

the algebra homomorphism �푅
∼
−→ U�픞. We therefore need to verify that the map �휂 ∩ – is induced on

homologies by the map

IdU�픞 ⊗ �휙 : Hom�휏 (�퐶,U�픞) −→ U�픞 ⊗�휏 �퐶�휏 [−�푛] .

Identifying Hom�휏 (�퐶,U�픞) = U�픞 ⊗ �퐸 as a graded vector space, we see that by [25, Section 7.1], the

map �휂 ∩ – is induced on homology by a map of complexes which coincides (as a map of graded vector

spaces) with

U�픞 ⊗ �퐸
IdU�픞⊗�퐸 ⊗�휂
−−−−−−−−→ U�픞 ⊗ �퐸 ⊗ �퐶 [−�푛]

Id⊗Δ
−−−−→ U�픞 ⊗ �퐸 ⊗ �퐶 ⊗ �퐶 [−�푛]

IdU�픞 ⊗ev⊗Id
−−−−−−−−−→ U�픞 ⊗ �퐶 [−�푛] .

It therefore, suffices to check that Φ : �퐸 −→ �퐶 [−�푛] coincides with the map

�퐸
Id�퐸 ⊗ �휂✲ �퐸 ⊗ �퐶 [−�푛]

Id�퐸 ⊗ Δ✲ �퐸 ⊗ �퐶 ⊗ �퐶 [−�푛]
ev ⊗ Id✲ �퐶 [−�푛],

which is clear. This completes the proof. �

4. Hodge decomposition of derived Poisson structures

4.1. The main theorem

Recall that if �픤 is an �퐿∞-algebra with higher operations (Lie brackets) �푚�푘 : ∧�푘�픤 → �픤, �푘 ≥ 1, the lower

central filtration on �픤 is defined inductively (see, e.g., [26, Sect. 4]) by

�퐹1�픤 := �픤, �퐹�푟�픤 :=
∑

�푖1+···+�푖�푘=�푟

�푚�푘

(
�퐹�푖1�픤, . . . , �퐹�푖�푘�픤

)
, �푟 ≥ 2. (4.1)

Then �픤 is called nilpotent if definition (4.1) terminates after finitely many steps – that is, �퐹�푟�픤 = 0 for

�푟 ≫ 0. For the rest of this section, we assume the following:

Assumption: �픤 is a nonnegatively graded, finite-dimensional, nilpotent �퐿∞-algebra.

This assumption implies that all higher Lie brackets �푚�푘 vanish for �푘 ≫ 0. The Chevalley–Eilenberg

cochain algebra of �픤 is therefore of the formA = (Sym(�푉), �푄), where�푉 = �픤∗ [−1]. Let�푊 := �픤[1] denote

the (graded) linear dual of �푉 . Following [13, Section 5], we will use the language of formal differential

geometry, regarding �푊 as a supermanifold and A as the algebra of functions on �푊 equipped with

cohomological vector field�푄 of (cohomological) degree 1. Note that the algebra Sym(�푉)⊗Sym(�푊 [−1])

of polyvector fields on �푊 is naturally a graded Lie module over the Lie algebra Der(Sym(�푉)) �

Sym(�푉) ⊗ �푊 of (graded) derivations of Sym(�푉). Let V denote the algebra of polyvector fields on �푊

equipped with the differential given by the action of the derivation �푄 ∈ Der(Sym(�푉)). The Schouten
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bracket makes V a Gerstenhaber algebra. Recall that there is a natural Hochschild–Kostant–Rosenberg

map IHKR : V −→ C∗
⊕ (A,A), which is defined (on homogeneous derivations of A) by the formula

IHKR (�휕1 · · · �휕�푛) :=
1

�푛!

∑
�휎∈Σ�푛

±sign(�휎)�휕�휎 (1) ⊗ · · · ⊗ �휕�휎 (�푛) ,

where the extra signs come from the Koszul sign rule.

The next observation is crucial for the proof of our main theorem.

Proposition 4.1. The map IHKR : V −→ C∗
⊕ (A,A) is a quasi-isomorphism of complexes that induces an

isomorphism of algebras on cohomology.

Proof. While it is not hard to check directly that the map IHKR : V −→ C∗
⊕ (A,A) is a quasi-isomorphism

of complexes, the fact that it induces an algebra isomorphism on cohomology is more subtle. To

establish this fact we observe that IHKR takes values in the subcomplex D∗
poly(A) of C∗

⊕ (A,A) spanned

by multilinear maps A⊗�푛 −→ A that are differential operators in each argument – in other words, the

Hochschild–Kostant–Rosenberg map factors as

IHKR : V → D∗
poly(A) ↩→ C∗

⊕ (A,A). (4.2)

We will prove that each of the two arrows in the composition (4.2) induces an algebra isomorphism

on cohomology. For the second arrow, this follows from Lemma 4.1, which shows that the inclusion

D∗
poly(A) ↩→ C∗

⊕ (A,A) is actually a quasi-isomorphism of DG algebras. As for the first arrow, we will

use a general version of the Duflo–Kontsevich isomorphismtTheorem for symmetric algebras equipped

with a (co)homological differential (see, e.g., [13, Theorem 5.3]). This last theorem implies that the

map IHKR : V −→ D∗
poly(A) induces an algebra isomorphism on cohomology, up to a twist given by a

canonical cohomology class �퐽 (�훼) called the Todd genus. It suffices to show that under our assumptions

on �픤, the class �퐽 (�훼) is trivial.

Recall that the graded algebra of differential forms on �푊 is defined by Ω(�푊) := Sym(�푉 ⊕ �푉 [1]).

For any �푥 ∈ �푉 we write �푑�푥 for the corresponding element in �푉 [1]. The de Rham differential is the

derivation of (homological) degree 1 given on generators by �푑 (�푥) = �푑�푥, �푑 (�푑�푥) = 0. There is an action �휄 of

differential forms on polyvector fields by contraction, where �푥 ∈ �푉 acts by left multiplication and �푑�푥 acts

by the derivation �휄�푑�푥 such that �휄�푑�푥 (�푦) = 0 for �푦 ∈ �푉 and �휄�푑�푥
(
�푠−1�푣

)
= �푥(�푣) for �푣 ∈ �푊 . Choosing a basis{

�푥1, . . . , �푥�푛
}

in �푉 that consists of homogeneous elements, we define the 1-form �훼 ∈ Ω1(�푊) ⊗ End(�푊)

whose matrix with respect to the basis {�푒�푖 := �휕�푥�푖 } of �푊 is given by

�훼
�푗
�푖 := �푑

(
�휕�푥�푖�푄

(
�푥 �푗
) )

=
�휕2�푄

(
�푥 �푗
)

�휕�푥�푖�휕�푥�푘
�푑�푥�푘 .

Let Ω̂(�푊) denote the completion of Ω(�푊) with respect to the ideal generated by �푉 [1]. The Todd genus
associated to �훼 is defined by

�퐽 (�훼) := Ber

[
1 − exp(−�훼)

�훼

]
∈ Ω̂(�푊),

where Ber : Ω̂(�푊)⊗End(�푊) −→ Ω̂(�푊) is a map induced by the Berezinian on End(�푊) [43, Chap. I, §7]).

Note that
1−exp(−�훼)

�훼
= exp

(∑
�푘 �푐�푘�훼

�푘
)

for some formal power series
∑

�푘 �푐�푘�훼
�푘 with constant term 0. Thus

�퐽 (�훼) = exp

(
∞∑
�푘=1

�푐�푘Str
(
�훼�푘

))
,

where Str : Ω(�푊) ⊗ End(�푊) −→ Ω(�푊) is a linear map induced by the (super)trace on End(�푊).
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We claim that �퐽 (�훼) = 1. It suffices to show that �훼 is nilpotent, since then Str
(
�훼�푘

)
= 0 for all �푘 . The

nilpotency of �훼 follows from the nilpotency of the �퐿∞-algebra �픤 = �푊 [−1]. Recall that the (co)restriction

of the Chevalley–Eilenberg (co)derivation on C∗(�픤; �푘) to �푊 = �픤[1] gives a linear map Sym(�푊) −→ �푊 ,

whose component in degree �푝 we denote by

[–, . . . , –]�푝 : Sym�푝 (�푊) −→ �푊, �푣1 · · · · · �푣�푝 ↦→
[
�푣1, . . . , �푣�푝

]
�푝
.

Note that
[
�푣1, . . . , �푣�푝

]
�푝
= ±�푚�푝

(
�푠−1�푣1, . . . , �푠

−1�푣�푝
)

for �푣1, . . . , �푣�푝 homogeneous in �푊 , where �푚�푝 :

�픤⊗�푝 −→ �픤 is the �푝-fold bracket on �픤 (which of course is antisymmetric). Now,

�푄
(
�푥 �푗
)
= −

∑
�푝>1

∑
�푖1 ,...,�푖�푝

1

�푝!

[
�푒�푖1 , . . . , �푒�푖�푝

] �푗
�푝
�푥�푖1 · · · �푥�푖�푝 , (4.3)

where �푣 �푗 stands for the coefficient of �푒 �푗 in �푉 for any �푣 ∈ �푊 . Therefore

�훼(�푒�푖) = �휕�푥�푖�푑�푄
(
�푥 �푗
)
�푒 �푗 = −

∑
�푝>2

∑
�푖1 ,...,�푖�푝

1

(�푝 − 2)!

[
�푒�푖1 , �푒�푖2 , . . . , �푒�푖�푝

]
�푝
�푑�푥�푖1�훿�푖�푖2�푥

�푖3 · · · �푥�푖�푝

= −
∑
�푝>2

∑
�푖1 ,�푖3 ,...,�푖�푝

1

(�푝 − 2)!

[
�푒�푖1 , �푒�푖 , . . . , �푒�푖�푝

]
�푝
�푑�푥�푖1�푥�푖3 · · · �푥�푖�푝 ∈ �푊 ⊗ Ω1(�푊),

where �훿�푖�푖2 is the Kronecker delta. It follows that for any (homogeneous) element �푣 ∈ �푊 ,

�훼(�푣) = ±
∑
�푝>2

∑
�푖1 ,�푖3 ,...,�푖�푝

1

(�푝 − 2)!

[
�푒�푖1 , �푣, . . . , �푒�푖�푝

]
�푝
�푑�푥�푖1�푥�푖3 · · · �푥�푖�푝 ∈ �푊 ⊗ Ω(�푊). (4.4)

If {�퐹�푟�픤}�푟 ≥1 is the lower central filtration of �픤 (see definition (4.1)), we set �퐹�푟�푊 := �퐹�푟�픤[1] for �푟 ≥ 1.

By equation (4.4), �훼
(
�퐹 �푗�푊 ⊗ Ω(�푊)

)
⊂ �퐹 �푗+1�푊 ⊗Ω(�푊) for all �푗 . Hence the image of �훼�푟 is contained in

�퐹�푟+1�푊 ⊗ Ω(�푊) for all �푟 . Since �퐹�푟�푊 = 0 for �푟 ≫ 0, �훼�푟 = 0 for �푟 ≫ 0. This verifies that �훼 is nilpotent,

as desired.

By [44, Theorem 4.3] (see also [13, Theorem 5.3]), the map IHKR◦�휄
�퐽 (�훼)

1
2

defines a quasi-isomorphism

of complexes that induces an algebra isomorphism on cohomology. Since �퐽 (�훼) = 1, the desired

proposition follows from Lemma 4.1. �

Lemma 4.1. The inclusion D∗
poly(A) ↩→ C∗

⊕ (A,A) is a quasi-isomorphism of DG algebras.

Proof. The inclusion D∗
poly(A) ↩→ C∗

⊕ (A,A) is clearly compatible with cup products. It therefore

suffices to check that it is a quasi-isomorphism. Let A0 := (Sym(�푉), 0) denote the DG algebra with

trivial differential that is isomorphic to A as a graded algebra. First, we check that the HKR map

I◦HKR : A0 ⊗ Sym(�푊 [−1]) −→ C∗
⊕ (A0,A0) (4.5)

is a quasi-isomorphism. Indeed, C∗
⊕ (A0,A0) may be identified with the complex Hom(A0 ⊗�휋 HA0 ⊗�휋

A0,A0), where Hom is in the category of gradedA0-bimodules. Here,A0⊗�휋 HA0⊗�휋A0 is viewed as the

free resolution of A0 (as a graded A0-bimodule) whose term in homological degree �푖 is A0 ⊗A0

⊗�푖
⊗A0.

On the other hand, since Sym�푐 (�푉 [1]) is Koszul dual to A0, A0 ⊗�휏 Sym�푐 (�푉 [1]) ⊗�휏 A0 also yields a free

resolution of A0 as a graded A0-bimodule, where �휏 : Sym�푐 (�푉 [1]) −→ A0 denotes the corresponding

twisting cochain. The map Sym�푐 (�푉 [1]) −→ HA0 of coalgebras corresponding to �휏 induces a quasi-

isomorphism C∗
⊕ (A0,A0) −→ A0 ⊗ Sym(�푊 [−1]) whose inverse is the HKR map (4.5).

Now, observe that the fact that map (4.5) is a quasi-isomorphism implies that IHKR : V −→ C∗
⊕ (A,A)

is a quasi-isomorphism. Indeed, converting cohomological grading to homological (and vice versa), we

can view V and C∗
⊕ (A,A) as direct sum complexes of the double complexes �푉∗∗ and �퐶∗∗ with �푉�푝�푞 =
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(A ⊗ Sym−�푝 (�푊 [−1]))�푞 and �퐶�푝�푞 = Hom
(
A⊗−�푝 ,A

)
�푞
, respectively. Each of these double complexes is

concentrated in the second and third quadrants, and IHKR defines a map of double complexes�푉∗∗ → �퐶∗∗.

The canonical row filtrations yield spectral sequences converging to H∗ [V] and HH∗
⊕ (A,A), respectively.

The map induced by IHKR on the �퐸1-page is precisely the map (4.5). By a standard comparison

theorem for spectral sequences (see, e.g., [61, Theorem 5.2.12]), we conclude that IHKR is a homology

isomorphism, since so is the map (4.5).4 Finally, since IHKR factors through V −→ D∗
poly(A), and

this last map is a quasi-isomorphism, the inclusion of D∗
poly(A) in C∗

⊕ (A,A) is a quasi-isomorphism

as well. �

Let D(A) denote the algebra of differential operators on A – that is, the DG subalgebra of End�푘 (A)

generated by A and Der�푘 (A). Note that, modulo trivial modifications, the arguments of [54, Section 4]

go through in the DG setting, showing that D∗
poly(A) splits into a direct sum of subcomplexes

D∗
poly(A) �

∞⊕
�푝=0

Sym�푝 (LA (D(A))),

where LA(D(A)) denotes the free Lie algebra generated over A by D(A) (to which the Hochschild

differential indeed restricts). TheA-module structure on D(A) is given by the natural left multiplication,

which makes D(A) a semifree DG A-module. Setting V�푝 := A ⊗ Sym�푝 (�푊 [−1]), we see as in [54,

Section 4.2] that the map IHKR restricts to a quasi-isomorphism

IHKR : V�푝 −→ Sym�푝 (LA(D(A)))

for each �푝. Now, the subcomplex Sym�푝 (LA (D(A))) of D∗
poly(A) is the image of a projection operator

�푒 (�푝) ,∗ : D∗
poly(A) −→ D∗

poly(A)

that is the restriction of a projection operator �푒 (�푝) ,∗ on C∗
⊕ (A,A). The latter has an explicit combinatorial

definition in terms of Eulerian idempotents [46, Section 4.5]. The operators �푒 (�푝) ,∗ define the Hodge

decomposition of Hochschild cohomology:

C∗
⊕ (A,A) �

∞⊕
�푝=0

C
(�푝) ,∗
⊕ (A,A), HH∗

⊕ (A,A) �

∞⊕
�푝=0

HH
(�푝) ,∗
⊕ (A,A).

Lemma 4.2. The cup product on HH∗
⊕ (A,A) preserves the Hodge decomposition. More precisely,

HH
(�푝) ,∗
⊕ (A,A) ∪ HH

(�푞) ,∗
⊕ (A,A) ⊆ HH

(�푝+�푞) ,∗
⊕ (A,A).

Proof. The previous argument shows that the Hochschild–Kostant–Rosenberg map intertwines the nat-

ural Hodge decomposition V � ⊕�푝V
�푝 with that of C∗

⊕ (A,A). By Lemma 4.1, it induces isomorphisms

for each �푝 ≥ 0

IHKR : H∗ [V�푝] � HH
(�푝) ,∗
⊕ (A,A).

Since the product on V preserves the Hodge decomposition V � ⊕�푝V
�푝 , the lemma follows from

Proposition 4.1. �

Remark. For �푑 > 1, it has been shown that the cup product on the higher Hochschild cohomology

HH�푆�푑 ,∗(�퐴, �퐴) of a commutative DG algebra �퐴 (with finite-dimensional cohomology in each degree)

4Note that this argument only uses the fact that A is a graded symmetric algebra with differential. That the Chevalley–Eilenberg
cochain algebra of �픤 is of this form, however, uses the nilpotency of �픤.
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preserves the Hodge decomposition [29, Section 6]. This statement is, however, not true in general for

HH�푆1 ,∗(�퐴, �퐴) = HH∗(�퐴, �퐴).

Proposition 4.2. Let �픞 ∈ DGLA�푘 be as in Theorem 1.2, and let �픤 denote the minimal �퐿∞-model
of �픞. Then the cup product and the Gerstenhaber bracket on HH∗(U�픞,U�픞) preserve the Lie–Hodge
decomposition – that is,

HH(�푝) ,∗(�픞) ∪ HH(�푞) ,∗ (�픞) ⊆ HH(�푝+�푞) ,∗(�픞)[
HH(�푝) ,∗(�픞),HH(�푞) ,∗ (�픞)

]
�퐺
⊆ HH(�푝+�푞−1) ,∗(�픞).

Proof. We begin by showing that there is a Hodge-decomposition-preserving isomorphism of algebras

HH∗(U�픞,U�픞) � HH∗
⊕ (A,A), where A is the Chevalley–Eilenberg cochain algebra of �픤. Since A is

neither finite dimensional (it is only locally finite dimensional) nor bigraded, we are not in a position to

quote results from the literature (see, e.g., [39, Theorem 3.5] and [34]) for our purpose. Let C := C∗(�픤; �푘)

denote the Chevalley–Eilenberg chain coalgebra of �픤. Note that C = A∗, the graded linear dual ofA. The

obvious degree −1 map C := C∗(�픤; �푘) −→ �픤 is a generalised twisting cochain,5 which we denote by �휂. The

unit of the adjunction 
Com : DGCC�푘/�푘 ⇄ DGLA�푘 : C∗ gives a weak equivalence of DG coalgebras

C −→ C∗(
Com(C); �푘) (see, e.g., [3, Section 6.2]). Let �휄 : C −→ 
Com(C) denote the corresponding

(canonical) twisting cochain and let f = ( �푓1, �푓2, . . .) : �픤 −→ 
Com(C) denote the corresponding �퐿∞-

morphism. Composition with f defines an �퐿∞-morphism Hom(C, �픤) −→ Hom(C,
Com(C)), which we

continue to denote by f . Explicitly, for �휑1, . . . , �휑�푛 ∈ Hom(C, �픤),

�푓�푛 (�휑1, . . . , �휑�푛) = �푓�푛 ◦ (�휑1 ⊗ · · · ⊗ �휑�푛) ◦ Δ
�푛−1,

where Δ�푛−1 : C −→ C⊗�푛 denotes the �푛-iterated coproduct for �푛 ≥ 2 (with Δ0 = Id). Clearly, f (�휂) = �휄.

Next, observe that Hom(C, �픤) is complete with respect to the decreasing filtration �퐹�푛Hom(C, �픤) :=

Hom
(
Sym>�푛 (�픤[1]), �픤

)
. Hence, by [62, Theorem 3.21] (see also [18, Proposition 1]), there is a twisted

�퐿∞-morphism f �휂 : Hom�휂 (C, �픤) −→ Hom �휄 (C,
Com(C)), whose �푛th Taylor coefficient is given by the

formula (compare [62, Definition 3.20])

�푓
�휂
�푛 (�휑1, . . . , �휑�푛) =

∞∑
�푘=0

1

�푘!
�푓�푛+�푘 (�휂, . . . , �휂, �휑1, . . . , �휑�푛).

Using this, it is not difficult to verify the commutativity of the diagram

Hom�휂 (C, �픤)
�푓
�휂

1 ✲ Hom �휄 (C,
Com(C)),

V
1

�
✻

(IHKR) |V1✲ Hom
(
Ā[1],A

)∪

✻
(4.6)

where the vertical arrow on the right is given by taking graded linear duals followed by composition by

the inclusion C̄[−1] ↩→ 
Com(C).

Since Sym�푝 (�픤) is finite dimensional for each �푝, there is an isomorphism of DG algebras⊕
�푝

Hom�휂 (C, Sym�푝 (�픤)) �
⊕
�푝

V
�푝 ,

5Recall that if �퐶 is a (coaugmented, conilpotent) cocommutative DG coalgebra and L is an �퐿∞-algebra, a generalised twisting
cochain �휏 : �퐶 → L is defined to be an element of degree−1 in the convolution �퐿∞-algebra Hom

(
�̄퐶,L

)
satisfying the generalised

Maurer–Cartan equation: �휕�휏 +
∑

�푛≥2
1
�푛!�푚�푛 (�휏, . . . , �휏) = 0 (see, e.g., [26, Definition 4.3]). Such generalised twisting cochains

in Hom
(
�̄퐶,L

)
are in (natural) bijection with the morphisms of coaugmented, conilpotent cocommutative DG coalgebras from

�퐶 to C∗ (L; �푘) .
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where the (convolution) algebra structure on the left-hand side is induced by the coproduct on C and the

product on Sym(�픤). As in Theorem 1.2, let �퐶 denote a finite-dimensional cocommutative DG coalgebra

Koszul dual to �픞. By [47, Theorem 10.3.15], there is an �퐿∞-quasi-isomorphism �픞
∼
−→ �픤. It follows that

there are weak equivalences of DG coalgebras

�퐶 −→ C∗(�픞; �푘) −→ C. (4.7)

Let �휏 denote the (generalised) twisting cochain �퐶 −→ C
�휂
−→ �픤. Let �휌 denote the (generalised) twisting

cochain �퐶
(4.7)
−→ C

�휄
−→ 
(C). The commutativity of diagram (4.6) implies that there is a commutative

diagram

⊕�푝Hom�휂 (C, Sym�푝�픤)
IHKR ✲ C∗

⊕ (A,A) ✲ C∗
⊕ (A, �퐸)

⊕�푝Hom�휏 (�퐶, Sym�푝�픤)
❄ Sym∗

(
�푓 �휏
1

)
✲ ⊕�푝Hom�휌 (�퐶, Sym�푝


Com(C))
Id∗✲ Hom�휌 (�퐶,
C),

�

❄

where the second arrow in the upper row is induced by the algebra homomorphism A −→ �퐸 := �퐶∗

obtained by applying graded linear duals to the map (4.7) and the last arrow on the lower row is

induced by the natural symmetrisation map. Note that Hom�휂 (C, Sym�푝 (�픤)) (resp., Hom�휏 (�퐶, Sym�푝 (�픤)))

may be identified with HomDG CoModC

(
C,C ⊗�휂 Sym�푝 (�픤)

) (
resp.,HomDG CoModC

(
�퐶,C ⊗�휂 Sym�푝 (�픤)

) )
.

Under this identification, the map Hom�휂 (C, Sym�푝 (�픤)) −→ Hom�휏 (�퐶, Sym�푝 (�픤)) is induced by the weak

equivalence�퐶 −→ C of DG C-comodules. Since C⊗�휂 Sym�푝 (�픤) is a fibrant (see [38, 42]) DG C-comodule,

this map is a quasi-isomorphism for each �푝 (see [35, Section 9.7]).

Now, since �퐶 is conilpotent and finite dimensional, �̄퐸�푛 = 0 for �푛 ≫ 0, which implies that Hom(�퐶, �픤)

is complete with respect to the filtration �퐹�푛Hom(�퐶, �픤) := �̄퐸>�푛 ⊗ �픤. Hence, by (minor modification

of the proof of) [18, Proposition 1, Part 5], f being a quasi-isomorphism implies that �푓 �휏
1

is a quasi-

isomorphism. Since IHKR is a quasi-isomorphism by Lemma 4.1 and Id∗ is an isomorphism of complexes,

the map C∗
⊕ (A,A) −→ C∗

⊕ (A, �퐸) is a quasi-isomorphism of DG algebras. Thus, there is a zigzag of DG

algebra maps

C∗
⊕ (A,A) −→ C∗

⊕ (A, �퐸) ← C∗
⊕ (�퐸, �퐸), (4.8)

where the first arrow is quasi-isomorphism. We claim that the second arrow in the diagram (4.8)

is also a quasi-isomorphism. Filter the complex C∗
⊕ (A, �퐸) by the subcomplexes �퐹�푞

(
C∗

⊕ (A, �퐸)
)

:=

⊕�푝Hom
(
A⊗�푝 , �퐸6�푞

)
and similarly for C∗

⊕ (�퐸, �퐸). Since �퐸 is finite dimensional, the filtrations on these

complexes are finite, and the associated spectral sequences converge. It is easy to see that C∗
⊕ (�퐸, �퐸) −→

C∗
⊕ (A, �퐸) induces an isomorphism between the �퐸1-pages of these spectral sequences. Hence, by a

standard comparison theorem, this map of complexes is a quasi-isomorphism.

Since the Hodge decomposition on all these Hochschild cochain complexes is combinatorially defined

by the Eulerian idempotents, the induced isomorphism of algebras on cohomologies

HH∗
⊕ (A,A) � HH∗

⊕ (�퐸, �퐸)

preserves the Hodge decomposition as well. It follows from Corollaries 2.2 and 2.3 that there is an

isomorphism of algebras preserving Hodge decomposition:

HH∗(U�픞,U�픞) � HH∗
⊕ (A,A).

By Lemma 4.2, the cup product on HH∗(U�픞,U�픞) preserves the Hodge decomposition –that is,

HH(�푝) ,∗(�픞) ∪ HH(�푞) ,∗ (�픞) ⊆ HH(�푝+�푞) ,∗(�픞). (4.9)
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Finally, define the BV operator Δ : HH∗(U�픞,U�픞) −→ HH∗−1(U�픞,U�픞) by Δ := Ψ−1 ◦ �퐵 ◦ Ψ, where �퐵

denotes the Connes differential. By [7, Thm. 2.2], �퐵 decreases the Lie–Hodge degree by 1. It follows

from Lemma 3.2 that Δ (HH(�푝) ,∗(U�픞,U�픞)) ⊆ HH(�푝−1) ,∗(U�픞,U�픞)). By [31, Theorem 3.4.3],

[�푎, �푏]�퐺 = Δ (�푎 ∪ �푏) − Δ (�푎) ∪ �푏 − (−1) |�푎 |�푎 ∪ Δ (�푏).

It follows from (4.9) that [�푎, �푏]�퐺 ∈ HH(�푝+�푞−1) ,∗(U�픞,U�픞) for all elements �푎 ∈ HH(�푝) ,∗(U�픞,U�픞) and

�푏 ∈ HH(�푞) ,∗ (U�픞,U�픞). �

Proof (of Theorem 1.2). Since the minimal �퐿∞-model of �픞 is finite dimensional, nonnegatively graded

and nilpotent, HH(�푝) ,∗(�픞) ∪ HH(�푞) ,∗ (�픞) ⊂ HH(�푝+�푞) ,∗(�픞) by Proposition 4.2. By [7, Theorem 2.2],

�퐵(HC
(�푝)
∗ (�픞)) ⊂ HH

(�푝−1)
∗ (�픞) for all �푝 ≥ 1. Since �픞 is Koszul dual to a finite-dimensional �퐶 ∈

DGCC�푘/�푘 equipped with a nondegenerate cyclic pairing, we have Ψ−1
(
HH

(�푝−1)
∗ (�픞)

)
= HH(�푝−1) ,∗(�픞)

by Lemma 3.2. Thus,

�퐼
[
Ψ

[
Ψ−1

(
�퐵
(
HC

(�푝)
∗ (�픞)

))
∪ Ψ−1

(
�퐵
(
HC

(�푞)
∗ (�픞)

))] ]
⊆ �퐼

[
Ψ

[
HH(�푝−1) ,∗(�픞) ∪ HH(�푞−1) ,∗ (�픞)

] ]
⊆ �퐼

[
Ψ

[
HH(�푝+�푞−2) ,∗(�픞)

] ]
= �퐼

[
HH

(�푝+�푞−2)
∗ (�픞)

]
⊆ HC

(�푝+�푞−2)
∗ (�픞).

The equality follows from Lemma 3.2, and the last inclusion is by [7, Theorem 2.2]. The theorem now

follows immediately from Proposition 3.2. �

Assume that �픞 ∈ DGLA+
�푘 satisfies the conditions of Theorem 1.2. Assume further that a finite-

dimensional �퐶 ∈ DGCC�푘/�푘 that is Koszul dual to �픞 carries a nondegenerate cyclic pairing. By Theo-

rem 3.2, there is an action of HC∗(U�픞) on HH∗(U�픞) making the latter a graded Lie module over the

former. The following result strengthening [7, Theorem 3.4] holds under the foregoing conditions:

Theorem 4.1. For all �푝, �푞 > 1,
{
HC

(�푝)
∗ (�픞),HH

(�푞)
∗ (�픞)

}
⊆ HH

(�푝+�푞−2)
∗ (�픞).

Proof. Note that

Ψ
[
Ψ−1

(
�퐵
(
HC(�푝) (�픞)

))
,Ψ−1

(
HH(�푞) (�픞)

)]
�퐺

⊆ Ψ
[
HH(�푝−1) ,∗(�픞),HH(�푞) ,∗ (�픞)

]
�퐺

⊆ Ψ
(
HH(�푝+�푞−2) ,∗(�픞)

)
= HH

(�푝+�푞−2)
∗ (�픞).

The first inclusion follows from [7, Theorem 2.2] and Lemma 3.2, the second from Proposition 4.2 and

the equality from Lemma 3.2. The theorem follows now from Proposition 3.3. �

4.2. Application to string topology

Let �푋 be a simply connected space of finite rational type. Recall [23] that associated to �푋 are a

commutative cochain DG Q-algebra A�푋 , called the Sullivan model of �푋 , and a connected chain DG Lie

Q-algebra �픞�푋 , called the Quillen model of �푋 . The Quillen and Sullivan models determine the rational

homotopy of �푋 , and are Koszul dual to each other in the sense that there is a quasi-isomorphism of DG

algebras

C
∗(�픞�푋 ;Q)

∼
−→ A�푋 ,

where C∗ denotes the Chevalley–Eilenberg cochain complex with trivial coefficients.
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Now, let L�푋 = Map
(
�푆1, �푋

)
denote the free loop space over �푋 . In the case when �푋 is a simply

connected closed oriented manifold of dimension �푑, Chas and Sullivan [14] constructed a product –

called the loop product – on the (reduced) rational homology of L�푋:

• : H∗(L�푋,Q) ⊗ H∗(L�푋,Q) −→ H∗−�푑 (L�푋,Q).

The free loop space L�푋 is equipped with a natural circle action via rotation of loops. In addition

to the usual homology, one may therefore consider the �푆1-equivariant homology (resp., reduced �푆1-

equivariant homology) H�푆1

(L�푋,Q) (resp., H
�푆1

∗ (L�푋,Q)) of L�푋 . The two homology theories are related

by the Gysin long exact sequence

H
�푆1

�푛−1(L�푋,Q)
M
→ H�푛 (L�푋,Q)

�푝∗
→ H

�푆1

�푛 (L�푋,Q)
�퐷
−→ H

�푆1

�푛−2 (L�푋,Q), (4.10)

where �퐷 stands for the Gysin map and �푝 : L�푋 × �퐸�푆1 −→ L�푋 ×�푆1 �퐸�푆1 is the canonical projection. The

string bracket on H
�푆1

(L�푋,Q) is the bilinear map

{–, –} : H
�푆1

(L�푋,Q) ⊗ H
�푆1

(L�푋,Q) −→ H
�푆1

(L�푋,Q)

induced by the loop product (compare [14]):

{�푎, �푏} = (−1) |�푎 |+�푑 �푝∗(M(�푎) •M(�푏)). (4.11)

As mentioned in the introduction, the following theorem is a combination of well-known results ([32,

Theorem V.1.1] and [23, Theorem 26.5]; see also [10, 36, 37, 58]):

Theorem 4.2. There are natural isomorphisms of graded vector spaces

�훼�푋 : HH∗(U�픞�푋 )
∼
−→ H∗(L�푋,Q), �훽�푋 : HC∗(U�픞�푋 )

∼
−→ H

�푆1

∗ (L�푋,Q),

identifying the Connes periodicity sequence for U�픞�푋 with the Gysin long exact sequence for the �푆1-
equivariant homology of L�푋 .

On the other hand, the finite coverings of the circle �휑�푛 : �푆1 −→ �푆1, �푒�푖 �휃 ↦→ �푒�푛�푖�휃 , give natural maps

�휑�푛
�푋

: L�푋 −→ L�푋 , one for each �푛 ≥ 0, which induce Frobenius (power) operations on homology:

Φ�푛
�푋 : H∗(L�푋,Q) −→ H∗(L�푋,Q), Φ̃�푛

�푋 : H
�푆1

∗ (L�푋,Q) −→ H
�푆1

∗ (L�푋,Q).

By [7, Theorem 4.1], the isomorphisms �훼�푋 and �훽�푋 of Theorem 4.2 restrict to isomorphisms of (graded)

vector spaces

HH
(�푝)
∗ (U�픞�푋 )

∼
−→ H

(�푝)

∗ (L�푋,Q), HC
(�푝)
∗ (�픞�푋 )

∼
−→ H

�푆1 , (�푝−1)

∗ (L�푋,Q),

where the targets are common eigenspaces of the endomorphisms Φ�푛
�푋

and Φ̃�푛
�푋

with eigenvalues �푛�푝:

H
(�푝)

∗ (L�푋,Q) :=
⋂
�푛≥0

Ker
(
Φ�푛

�푋 − �푛�푝Id
)
, H

�푆1 , (�푝)

∗ (L�푋,Q) :=
⋂
�푛≥0

Ker
(
Φ̃�푛

�푋 − �푛�푝Id
)
.

Thus, we have the Hodge-type decompositions

H∗(L�푋,Q) =

∞⊕
�푝=0

H
(�푝)

∗ (L�푋,Q), H
�푆1

∗ (L�푋,Q) =

∞⊕
�푝=0

H
�푆1 , (�푝)

∗ (L�푋,Q),
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and the Gysin long exact sequence (4.10) decomposes into a direct sum of exact sequences

H
�푆1 , (�푝)

�푛−1 (L�푋,Q)
M
→ H

(�푝)

�푛 (L�푋,Q)
�푝∗
→ H

�푆1 , (�푝−1)

�푛 (L�푋,Q)
�퐷
−→ H

�푆1 , (�푝)

�푛−2 (L�푋,Q). (4.12)

By [7, Theorem 4.2], the string bracket gives H
�푆1

∗ (L�푋,Q) the structure of a filtered Lie algebra with

respect to the filtration

�퐹�푝H
�푆1

∗ (L�푋,Q) :=
⊕
�푞≤�푝+1

H
�푆1 , (�푞)

∗ (L�푋,Q).

The following result strengthens [24, Theorem 2] in the rationally elliptic case:

Theorem 4.3. Let �푋 be a simply connected closed oriented manifold of rationally elliptic type. Then
the loop product preserves the Hodge decomposition – that is,

H
(�푝)

∗ (L�푋,Q) • H
(�푞)

∗ (L�푋,Q) ⊆ H
(�푝+�푞)

∗ (L�푋,Q).

Let �픞�푋 be a Quillen model of �푋 . Recall the isomorphism �훼�푋 : HH∗(U�픞�푋 ) � H∗(L�푋,Q) of

Theorem 4.2. The following proposition is a consequence of [25, Theorem D and Proposition 8]:

Proposition 4.3. The isomorphism �훼�푋 identifies the loop product on H∗(L�푋,Q) with the product

HH∗(U�픞�푋 ) ⊗ HH∗(U�픞�푋 )
•
−→ HH∗(U�픞�푋 ), �푎 ⊗ �푏 ↦→ Ψ

(
Ψ−1(�푎) ∪ Ψ−1(�푏)

)
.

Proof. Define �푑 := dim �푋 . Recall that the map �훼∗
�푋 gives a natural isomorphism H∗(L�푋,Q) �

H∗
(
�픞�푋 ;U�픞∨

�푋

)
, where U�픞∨

�푋
denotes the graded linear dual of �픞�푋 , both sides of which we identify. By [25,

Theorem D], the isomorphism [�푋] ∩ – : H�푑−∗
(
�픞�푋 ;U�픞∨�푋

)
−→ H∗

(
�픞�푋 ;U�픞∨�푋

)
transforms the coproduct on

the right-hand side to the dual of the loop product on H∗
(
�픞�푋 ;U�픞∨�푋

)
. The graded linear dual of this iso-

morphism therefore transforms the loop product on H∗(L�푋,Q) to the product on H∗(�픞�푋 ;U�픞�푋 ). Let �퐶

denote the Lambrechts–Stanley model [41] of �푋 . By (the proof of) Lemma 3.2, the isomorphism [�푋] ∩–

is induced by the map �휙 ⊗ IdU�픞∨
�푋

: �퐸 ⊗ U�픞∨�푋 −→ �퐶 [−�푑] ⊗ U�픞∨�푋 , where �퐸 := �퐶∗ and �휙 : �퐸 −→ �퐶 [−�푑] is

the isomorphism induced by the cyclic pairing on �퐶. It follows that the map �휙∗ : �퐸 [�푑] −→ �퐶 coincides

with �휙[�푑], whence the graded linear dual of the map [�푋] ∩ – : H�푑−∗
(
�픞�푋 ;U�픞∨�푋

)
−→ H∗

(
�픞�푋 ;U�픞∨�푋

)
coin-

cides with the map [�푋] ∩ – : H�푑−∗(�픞�푋 ;U�픞�푋 ) −→ H∗(�픞�푋 ;U�픞�푋 ). By Lemma 3.2, this in turn is identified

with the isomorphism Ψ : HH�푑−∗(U�픞�푋 ,U�픞�푋 ) −→ HH∗(U�픞�푋 ). Since the product on H∗(�픞�푋 ;U�픞�푋 ) is

identified with the cup product on HH∗(U�픞�푋 ,U�픞�푋 ) by Proposition 2.2, the proposition follows. �

Proof (of Theorem 4.3). Since the minimal �퐿∞-model of �픞�푋 is finite dimensional and nilpotent, Propo-

sition 4.2 applies to �픞�푋 . By Proposition 4.2 and Lemma 3.2,

HH
(�푝)
∗ (�픞�푋 ) • HH

(�푞)
∗ (�픞�푋 ) ⊆ HH

(�푝+�푞)
∗ (�픞�푋 ).

The desired result is therefore immediate from Proposition 4.3 and [7, Theorem 4.1], by which �훼�푋

identifies HH
(�푝)
∗ (�픞�푋 ) with H

(�푝)
∗ (L�푋,Q) for all �푝. �

The following lemma, which is known to experts, is an immediate consequence of Theorem 4.2 and

Propositions 3.2 and 4.3:

Lemma 4.3. The isomorphism �훽�푋 : HC∗(U�픞�푋 )
∼
−→ H

�푆1

∗ (L�푋,Q) identifies the string bracket on

H
�푆1

∗ (L�푋,Q) with the derived Poisson bracket on HC∗(U�픞�푋 ) induced by the Poincaré duality pairing
on its Koszul dual.

We are now in position to give a proof of our first theorem, stated in the introduction.
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Proof (of Theorem 1.1). Since the minimal �퐿∞-model of �픞�푋 is finite dimensional and nilpotent, and

since the Koszul dual of �픞�푋 equipped with the Poincaré duality pairing has a finite-dimensional

model (namely, the graded linear dual of the Lambrechts–Stanley model), Theorem 1.1 follows from

Lemma 4.3, Theorem 1.2 and [7, Theorem 4.1]. �

By Theorem 3.2, the Poincaré duality pairing on the Koszul dual of �픞�푋 also induces an action of

HC∗(U�픞�푋 ) on HH∗(U�픞�푋 ), making the latter a graded Lie module over the former. By Theorem 4.2, we

have a graded Lie action of H
�푆1

∗ (L�푋,Q) (with string topology bracket) on H∗ (L�푋,Q). The following

result strengthens [7, Theorem 4.3(ii)] in the case when �푋 is rationally elliptic:

Theorem 4.4. Assume that �푋 is rationally elliptic. Then{
H

�푆1 , (�푝)

∗ (L�푋,Q),H
(�푞)

∗ (L�푋,Q)

}
⊆ H

(�푝+�푞−1)

∗ (L�푋,Q).

Proof. Since the minimal �퐿∞-model of �픞�푋 is finite dimensional and nilpotent, and since the Koszul

dual of �픞�푋 equipped with the Poincaré duality pairing has a finite-dimensional model (namely, the

graded linear dual of the Lambrechts–Stanley model [41]), the desired result follows immediately from

Theorem 4.1 and [7, Theorem 4.1]. �
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