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In this paper, we introduce and study representation homology of topological spaces,
which is a natural homological extension of representation varieties of fundamental
groups. We give an elementary construction of representation homology parallel to the
Loday-Pirashvili construction of higher Hochschild homology; in fact, we establish a
direct geometric relation between the two theories by proving that the representation
homology of the suspension of a (pointed connected) space is isomorphic to its higher
Hochschild homology. We also construct some natural maps and spectral sequences
relating representation homology to other homology theories associated with spaces
(such as Pontryagin algebras, S!-equivariant homology of the free loop space, and stable
homology of automorphism groups of f.g. free groups). We compute representation
homology explicitly (in terms of known invariants) in a number of interesting cases,
including spheres, suspensions, complex projective spaces, Riemann surfaces, and some
3-dimensional manifolds, such as link complements in R® and the lens spaces L(p, q).
In the case of link complements, we identify the representation homology in terms of

ordinary Hochschild homology, which gives a new algebraic invariant of links in R3.
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2 Y. Berest et al.
1 Introduction

Representation homology is an algebraic homology theory associated with derived
representation schemes, which are natural (“derived”) extensions of classical repre-
sentation varieties. The subject may be plainly viewed as part of derived algebraic
geometry (see, e.g., [75]); however, somewhat surprisingly, there are more elementary
constructions. What makes representation homology interesting (it seems) are the rela-
tions between these different constructions and interpretations coming from different
parts of mathematics.

In the present paper, we give two (equivalent) definitions of representation
homology of topological spaces: one in terms of (non-abelian) derived functors on
simplicial groups and the other in terms of classical homological algebra in functor
categories. The first definition is inspired by our earlier work on representation
homology of algebras (see [4-6]) while the second by the Loday-Pirashvili approach to
higher Hochschild homology [60]. Both definitions are conceptually very simple and
accessible to computations: in this paper, we will use them in a complementary way
to establish basic properties of representation homology and do some examples; in our
subsequent paper [10], we will look at applications. We begin with some motivation for

studying representation homology.

1.1 Representation varieties and representation homology

Let G be a finite-dimensional affine algebraic group defined over a field k of charac-
teristic zero. For any (discrete) group I', the set of all representations of I' in G has
a natural structure of an affine k-scheme called the representation scheme Rep ().
Representation schemes and associated varieties play an important role in many areas
of mathematics, most notably in representation theory and low-dimensional topology.
In representation theory, the fundamental problem is to understand the structure of
representations of I' in G. One can approach this problem geometrically by studying the
natural (adjoint) action of the group G on the variety Rep,(I"). When k is algebraically
closed and I is finitely generated, the equivariant geometry of Rep,(I') is closely related
to the representation theory of I': the equivalence classes of representations of I in G
are in bijection with the G-orbits in Rep;(I'), and the geometry of G-orbits determines
the algebraic structure of representations. This relation has been extensively studied
since the late '70s, and the representation varieties have become a standard tool in

representation theory of groups (see, e.g., [51, 70]).
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Representation Homology of Topological Spaces 3

In topology, one is usually interested in global algebro-geometric invariants of
spaces defined in terms of representation varieties of fundamental groups. For example,
if K is a knot in S®, many classical invariants of K arise from its character variety
xc(K) = Repglm; (Xg)l//G, which is the (categorical) quotient of the representation
variety of the fundamental group of the knot complement Xy := S*\K. These invariants
include, in particular, the classical Alexander polynomial Ag(?) (in the simplest case
when G = C*, see, e.g., [55]), the so-called A-polynomial Ag(m,1) (see [19]), the Casson
invariant [20], and the famous Chern-Simons invariant [47], all of which are defined for
G = SL,(C). In fact, for G = SL,(C), the entire character variety, or rather its coordinate
ring Olx;(K)], has a purely topological interpretation as a Kauffman bracket skein
module of Xy (see [63]).

Despite being useful tools, the representation varieties have some intrinsic
deficiencies. First of all, these varieties are usually very singular, which makes it hard
to understand their geometry. Thus, in representation theory, one faces the problem
of resolving singularities of Rep,(I"). In topology, the use of representation varieties
is mostly limited to (compact orientable) surfaces, hyperbolic 3-manifolds, and knot
complements in S3, all of which are known to be aspherical spaces. The homotopy type
of such a space is completely determined by the isomorphism type of its fundamental
group, which makes representation varieties of these groups very strong and efficient
invariants. For more general spaces, however, one needs to take into account a higher
homotopy information, and looking at representation varieties of fundamental groups
(or even, higher homotopy groups) is not enough.

A natural way to remedy these problems is to replace the representation functor
Rep, with its (non-abelian) derived functor DRep,; much in the same way as one
replaces non-exact additive functors in classical homological algebra (such as “®"
and “Hom”) with corresponding derived functors (“®%” and “RHom”"). Geometrically,
passing from the representation scheme Rep.(I") to the derived representation scheme
DRep,(T") amounts to desingularizing Rep.(I"), while topologically, this yields a new
homology theory of spaces that captures a good deal of homotopy information and
refines the classical representation varieties of fundamental groups in an interesting
and nontrivial way.

To explain this idea in more precise terms, we recall that the representation

scheme Rep(I') is defined as the functor on the category of commutative k-algebras:

Rep;(I'): Comm Algy — Set A+ Homg (', G(4)), (1.1)
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4 Y. Berest et al.

assigning to a k-algebra A the set of families of representations of I' in G parametrized
by the k-scheme Spec(A4). It is well known that the functor (1.1) is representable, and
we denote the corresponding commutative algebra by I'; = Ol[Reps(I)I: this is the
coordinate ring of the affine k-scheme Rep,(I'). Varying I" (while keeping G fixed), we

can now regard I'; as a functor on the category of groups:

()g: Gr = Comm Algy I'+—Tg, (1.2)

which we call the representation functor in G. The functor (1.2) extends naturally to the
category sGr of simplicial groups, taking values in the category sCommAlg; of simplicial
commutative algebras. Both categories sGr and sCommAlg; carry standard (simplicial)
model structures, with weak equivalences being the weak homotopy equivalences of
underlying simplicial sets. The functor (-); : sGr — sCommAlg; is not homotopy
invariant: in general, it does not preserve weak equivalences and hence does not descend
to a functor between the homotopy categories Ho(sGr) and Ho(sCommAlg;). However, it
is easy to check that (-); takes weak equivalences between cofibrant objects in sGr
to weak equivalences in sCommAlg; (see Lemma 3.1). Hence, by standard homotopical

algebra, it has a (total) left derived functor

L(-);: Ho(sGr) — Ho(sComm Algy). (1.3)

We call (1.3) the derived representation functor in G. Heuristically, L(-),; may be
thought of as the “best possible” approximation of the representation functor (1.2) at
the level of homotopy categories. When applied to a simplicial group I', the functor
(1.3) is represented by a simplicial commutative algebra that we denote by O[DRep.(I")].
The derived representation scheme DRep(I') is then defined formally as the “Spec”
of O[DRep;(T"), that is, the simplicial algebra O[DRep;(I")] viewed as an object of the
opposite category Ho(sCommAlg)°P. The homotopy groups of O[DRep.(I")] depend only
on I' and G, with 7yO[DRep(I')] being canonically isomorphic to 7y(I');. In particular,
if I' is a discrete simplicial group, then 7yO[DRep;(I')] = I' ;. Extending our terminology
from [4, 6], we will refer to 7, O[DRep;(I')] as the representation homology of T" in G and
denote it HR(I", G). We should mention that representation homology of associative and
Lie algebras was introduced and studied in [4-6]. The idea of deriving the representation
functor was motivated by noncommutative geometry, where the representation functor

plays an important role (see [38, 49] and also [7]).
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Representation Homology of Topological Spaces 5

Next, we recall that the model category sGr of simplicial groups is Quillen
equivalent to the category of reduced simplicial sets, sSet, which is, in turn, Quillen
equivalent to the category Top,, of pointed connected topological spaces. These
classical equivalences are given by two pairs of adjoint functors:

G:sSety = sGr: W, |-|: sSety = Topg, : S,

the construction of which will be briefly reviewed in Section 2.2. Here, we only recall
that G is the Kan loop group functor that assigns to a reduced simplicial set X € sSetja
semi-free simplicial group GX, which is a simplicial model of the based loop space Q|X]|
(see [44]). The Kan loop group functor preserves weak equivalences and hence induces
a functor between the homotopy categories: G : Ho(sSet;) — Ho(sGr). Combining this
last functor with (1.3), we set O[DRep;(X)] := L(GX), and define the representation
homology of X € sSet by

HR, (X, G) := m,O[DRep;(X)]. (1.4)

By definition, HR, (X, G) is a graded commutative algebra that depends only on the
homotopy type of X and hence is a homotopy invariant of the corresponding space
|X|. In degree zero, we have HRy(X,G) = (7;(X)); = OIlReps(7,(X))], where m;(X)
is the fundamental group of X. To avoid confusion, we emphasize that HR (X, G) #
HR, (7, (X), G) in general; however, if " is a discrete group and X is a K(I", 1)-space (e.g.,
X = BI'), then we do have a natural isomorphism HR,(X,G) = HR,(T', G), so there is no
ambiguity in our notation.

The goal of the present paper is three-fold. First, we establish basic properties
of the derived representation functor (1.3). Second, we give an elementary construction
of representation homology in terms of classical (abelian) homological algebra. Our
construction is analogous to Pirashvili’s construction of higher order Hochschild homol-
ogy, and it provides a natural interpretation of representation homology as functor
homology. This opens up the way to efficient computations and places representation
homology in one row with other classical invariants such as Hochschild and cyclic
homology. Third, we construct some spectral sequences and natural maps relating
representation homology to other homology theories associated with spaces (including
the Pontryagin algebra H, (2X), higher Hochschild homology, and stable homology of the
automorphism groups of f.g. free groups F,)). We also compute representation homology

explicitly in a number of interesting cases, including the spheres S", suspensions XX,
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6 Y. Berest et al.

co-H-spaces, closed surfaces of arbitrary genus, and some classical 3-dimensional
spaces, such as the link complements in R® and the lens spaces L(p,q). In our
subsequent paper, [10], we will extend these computations to arbitrary simply connected
topological spaces by expressing the representation homology of a 1-connected space
of finite rational type in terms of its Quillen and Sullivan models and give some

applications to representation theory.

1.2 Main results

We now proceed with a summary of the main results of the paper. Recall that an
affine algebraic group G is defined by its functor of points, which is a group-valued
representable functor on commutative algebras. This functor extends in the natural way

to simplicial commutative algebras:
G: sCommAlgy — sGr A, — G(4,). (1.5)

By definition, the representation functor (1.2) is left adjoint to the functor of points of
G; hence, its simplicial extension is left adjoint to (1.5). Thus, for any affine algebraic

group, we have the adjunction
()¢ : sGr & sCommAlgy : G. (1.6)
Our 1st main result reads

Theorem 1.1. The functor (1.5) has a total right derived functor RG : Ho(sCommAlgy) —
Ho(sGr), which is right adjoint to the derived representation functor (1.3); thus, (1.6)

induces the derived adjunction
L(-); : Ho(sGr) < Ho(sCommAlgy) : RG. (1.7)

Note that the categories sGr and sCommAlg; have natural (simplicial) model
structures, and the above result would be immediate from the well-known adjunction
theorem of Quillen [65] if (1.6) were Quillen functors. However, it is easy to see that the
functors (1.6) do not form a Quillen pair of model categories, nor even do they form
a deformable adjunction of homotopical categories in the sense of [23]. Theorem 1.1
is therefore an interesting and fairly nontrivial result, which is—to the best of our

knowledge—new.
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Representation Homology of Topological Spaces 7

In the special case when G = GL,, the derived functor RG can be described

explicitly as the composite of two well-known functors:
RGL, = LloGL,. (1.8)

The functor éin : sCommAlg; — sMon takes values in the category of simplicial
monoids, assigning to a simplicial algebra A, the simplicial monoid of (n x n)-matrices
over A, “invertible up to homotopy”: more precisely, (ﬁ.n (A,) is defined by the pull-back

diagram in the category sMon:

GL,(A,) — GL,(7,A,)

l l (1.9)

M, (A,) — M,(1yA,).

This functor was originally introduced by Waldhausen [77] to define a homotopy
invariant version of algebraic K-theory of simplicial rings. The second functor in (1.8)
is the total left derived functor LI : Ho(sMon) — Ho(sGr) of the group completion
(localization) of simplicial monoids: it can be viewed as a special case of the classical
Dwyer—Kan localization of simplicial categories studied in [24]. Formula (1.8) is rather
unusual as it expresses a right derived functor in terms of a left derived one.

For an arbitrary algebraic group G, we construct an explicit model for RG using
the recent work of Galatius and Venkatesh [33]. In this model, instead of simplicial
monoids, we factor RG through the reduced simplicial spaces (or reduced Segal
precategories) in the sense of Bergner [12]. This construction leads to a more general
definition of representation homology that applies to simplicial spaces and does not
use the Kan loop group equivalence (see Section 3.4).

The second main result of this paper is an interpretation of representation
homology in terms of classical homological algebra in functor categories. To this
end we consider the category & of finitely generated free groups with objects (n) :=
F(x,,%x,,...,X,) (for n > 0) and morphisms being the arbitrary group homomorphisms.
This category is a PROP (i.e., a small permutative category) with monoidal structure
(n) X (m) = (n + m), and it is known that the category of k-algebras over & (i.e., the
category of strict monoidal functors from & to the category Vect, of k-vector spaces) is
equivalent to the category of commutative Hopf k-algebras (see, e.g., [40].). Under this
equivalence, a commutative Hopf algebra # corresponds to the functor 2 : & — Vecty,
(n) — H®", which actually takes its values in the category of commutative algebras.

Note that any functor F : & — CommAlg;, extends naturally (by taking the left Kan
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8 Y. Berest et al.

extension along the inclusion & <> FGr) to the category of all (based) free groups,
FGr, whose objects are the free groups F(S) given with a prescribed generating set S
and morphisms are the arbitrary group homomorphisms; we denote this extension by
F:FGr — CommAlgy.

Now, mimicking the Pirashvili construction of higher Hochschild homology (cf.
[60] and Section 4.1 below), for a reduced simplicial set X € sSet, and a commutative
Hopf algebra H, we consider the composition of functors

GX H
A°? —= FGr — CommAlgy,

where GX is the Kan loop group construction of X and % is the (left Kan) extension of the
strict monoidal functor % : & — Vect, corresponding to #. This defines a simplicial

commutative algebra H(GX), whose homotopy groups we denote by
HR, (X, H) := 7, H(GX) = H,IN(H(GX))]. (1.10)

It turns out that this definition is equivalent to our original definition of representation
homology (1.4) given in terms of the derived representation functor L(-).. Precisely

(cf. Proposition 4.1), we have

Proposition 1.1. Let G be an affine group scheme over k with coordinate ring H =
O(G). Then, for any X € sSet,, there is a natural isomorphism of graded commutative

algebras

HR,(X,O(G)) = HR,(X, G).

Thanks to Proposition 1.1, we may (and will) use the notation HR, (X, G) and
HR,(X,H) interchangeably, without causing confusion. Although its proof is almost
immediate, Proposition 1.1 has a number of important implications. First, we state the

following theorem, which is the main result of Section 4 (see Theorem 4.3).

Theorem 1.2. For any X € sSet, there is a natural 1st quadrant spectral sequence
2 _ ® .
Ep, = Tor,) (H,(QX; k), 1) ? HR, (X, H) (1.11)

converging to the representation homology of X.
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Representation Homology of Topological Spaces 9

The spectral sequence (1.11) relates the representation homology HR, (X, ) of
a space X to its Pontryagin algebra H,(QX; k). To describe the E,-term of (1.11) we
recall that H,(Q2X; k) has a natural structure of a graded cocommutative Hopf algebra
with coproduct induced by the Alexander-Whitney diagonal and the product by the
Eilenberg—Zilber map. For each g € Z, the assignment (n) — [H®”]q, where [H®"]q is
the g-th graded component of the n-th tensor power of H = H_(QX; k), defines a functor
H,: &°P — vecty, which is the 1st argument of the “Tor” in (1.11). The “Tor” itself is the
(abelian) derived functor of the tensor product ®, between covariant and contravariant
Vect-valued functors over the (small) category &. The spectral sequence (1.11) is
a counterpart of Pirashvili’'s fundamental spectral sequence for higher Hochschild
homology (cf. [60,Theorem 2.4]); however, in the case of representation homology it takes
a more geometric form.

Theorem 1.2 has several interesting implications. First of all, it shows that
the representation homology HR, (X, #) is stable under Pontryagin equivalences (i.e.,
maps of spaces X — Y inducing isomorphisms of Pontryagin algebras H,(QX;k) =S
H,(QY;k)), and hence, if X is simply connected, HR,(X,H) is actually a rational
homotopy invariant of X (see Proposition 4.2). Next, if X is a K(I", 1)-space, the spectral

sequence (1.11) degenerates giving an isomorphism (cf. Corollary 4.3)

HR, (T, G) = Tor® (kIT'], O(G)), (1.12)

where k[I'] is the group algebra of I' equipped with the natural (cocommutative) Hopf
algebra structure. The isomorphism (1.12) shows that the representation homology has
a natural “Tor” interpretation, similar to the classical (Connes) interpretation of the
Hochschild and cyclic homology (see [50, Chap. 6]). It is also interesting to compare

(1.12) with another natural isomorphism

H, (T, k) = Tor? (kIr], liny), (1.13)

which provides a “Tor” interpretation (over &) for the ordinary homology of I' as a
discrete group. Here lin, stands for the linearization functor & — Vect, that takes
the free group (n) to the vector space k" (see (4.9)). Note that if G = G, is the additive
group over k, then we have a natural isomorphism of functors O(G,) = Symy(ling),

which implies HR (", G,) = A[H, (T, k)]. More generally, for any (pointed connected)
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10 Y. Berest et al.

space X, we have an isomorphism of graded commutative algebras (see Example 3.1)

HR,(X,G,) = A[H,, (X, k), (1.14)

where Ai[H, (X, k)] is the symmetric algebra of the graded vector space H, (X, k) =
®;>0 H; ;1 (X, k). Thus, we may think of representation homology as a generalization of
the ordinary (singular) homology of spaces.

In Section 5, we show that representation homology can be also viewed as a
generalization of higher Hochschild homology of spaces. The main result of this section
reads (cf. Theorems 5.1 and 5.2).

Theorem 1.3. Let H be a commutative Hopf algebra.

(a) For any simplicial set X € sSet, there is a natural isomorphism

HR,(2(X,),H) = HH (X, H), (1.15)

where X, = X Ui {x} is a pointed simplicial set obtained from X by adjoining functorially
a basepoint, and X is the (reduced) suspension functor on the category of pointed
simplicial sets.

(b) For any pointed simplicial set X € sSet,, there is a natural isomorphism

HR, (X, H) = HH, (X, H; k), (1.16)

where HH, (X, #; k) is the Pirashvili-Hochschild homology of the commutative algebra

‘H with coefficients in k viewed as an H-module via the Hopf algebra counit ¢ : H — k.

The proof of Theorem 1.3 is based on Milnor's classical FK-construction [56] that
gives a simple simplicial group model for the space QX|X]|.

Theorem 1.3 has strong implications: in particular, it allows one to compute
the representation homology of suspensions in a completely explicit way. It is known
that X for any pointed connected space X is rationally homotopy equivalent to a
bouquet of spheres of dimension >2. Since representation homology depends only
on the rational homotopy type of a space, the isomorphism (1.16), together with
Pirashvili's computations [60] of higher Hochschild homology of spheres, implies (cf.
Proposition 5.3).
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Representation Homology of Topological Spaces 11

Proposition 1.2. For any pointed connected space X of finite type, there is an

isomorphism
HR,(ZX,G) = A [H,(X;g")],

where A [H,(X; g%)]is the graded symmetric algebra of the reduced (singular) homology
of X with coefficients in the dual Lie algebra of the group G.

By induction, Proposition 1.2 implies HR, ("X, G) = Ay (H,(X; g*)[n — 1]) for all

n > 1. In particular, for S* = ©S"1, we have
HR,(S", G) = Ai(g'ln — 1) n > 2. (1.17)

In Section 6, we compute representation homology of some classical non-simply
connected spaces. Our examples include closed surfaces of arbitrary genus (both
orientable and non-orientable) as well as some three-dimensional spaces (the link
complements in R3 and S3, the lens spaces L(p, q), and a general closed orientable 3-
manifold). The representation homology of surfaces and link complements is expressed
in terms of classical Hochschild homology of O(G) and related commutative algebras.

For example, for the link complements in R?, we prove the following (cf. Theorem 6.1).

Theorem 1.4. Let L be a link in R® obtained as the Alexander closure of a braid g € B,,.
Then the representation homology of the complement of its (regular) neighborhood in

R? is given by

HR,(R*\L, G) = HH,(O(G"), O(G")p). (1.18)

The right-hand side of (1.18) is the (ordinary) Hochschild homology of the asso-
ciative algebra O(G™) with bimodule coefficients. The bimodule O(G")ﬂ is isomorphic
to O(G") = O(G)®" as a left module, while the right action of O(G") is twisted by an
element B viewed as an automorphism of O(G)®" via the Artin representation of the
braid group B,,.

Theorem 1.4 shows that the Hochschild homology groups HH, (O(G"), O(G”)ﬁ)
are algebraic invariants of links in R3, which, to the best of our knowledge, have not
appeared in the earlier literature. We should mention, however, that the representation
homology of link complements bears a striking resemblance to knot contact homology,
which is a new geometric homology theory of knots and links in R® defined in [58]

and studied extensively in recent years (see the remark after Theorem 6.1). We will
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12 Y. Berest et al.

discuss the relation between representation homology and knot contact homology in
our subsequent paper.

In Section 6, we also discuss a multiplicative version of the derived Harish—
Chandra conjecture proposed in [6]. If G is a connected reductive group with a maximal
torus T C G and W is the associated Weyl group, then for any space X, there is a natural

map
HR,(X,6)¢ — HR, (X, T)", (1.19)

which we call the derived Harish-Chandra homomorphism (cf. [6, Section 7]). In view
of (1.17), by the classical Chevalley restriction theorem [18], the map (1.19) is an
isomorphism for any odd-dimensional sphere X = S?P+1. We conjecture that (1.19) is also
an isomorphism for the two-dimensional torus T? = S! x S!, which gives the following

explicit formula for the representation homology of T? (see Section 6.1.1, Conjecture 1):
HR,(T?,G)° = [O(T x T) ® AL(H")1,

where § is the Lie algebra of T (i.e., a Cartan subalgebra of g) and h* is its linear dual.
As for the Drinfeld homomorphism, it would be interesting to find more examples
of spaces, for which the map (1.19) is an isomorphism, and/or give an abstract
characterization of all such spaces.

In the last section of the paper, we give another interpretation of representation
homology as the Hochschild—-Mitchell homology of a certain bifunctor on the category
of finitely generated free groups &. Such an interpretation is useful for several reasons.
First, it allows us to define representation cohomology in a natural way (by simply
replacing the Hochschild-Mitchell homology with the Hochschild-Mitchell cohomology
of the same bifunctor). Second, it suggests that it is natural to extend the definition of
representation (co)homology by taking the Hochschild-Mitchell (co)homology of & with
coefficients in an arbitrary bifunctor D: that is, HR(D) := HH(®, D). Third and most
important, it exhibits a close analogy with topological Hochschild homology, which is
known to be isomorphic to the Hochschild-Mitchell homology of the category &, of
finitely generated free abelian groups (see [62]). Motivated by this analogy, we construct

functorial trace maps
DTr® (D) : H,(Aut(F,), D,) — HR,(D) Vn=>1,

relating homology of the automorphism groups of f.g. free groups with appropriate

coefficients to representation homology. These maps are compatible with natural
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inclusions Aut(F,) < Aut(F, ;) and hence have an stable limit as n — oo. The
corresponding stable map D'I‘rffo (D) : H,(Aut,, D) — HR,(D) can be viewed as a non-
abelian analogue of the classical Dennis trace relating topological Hochschild homology
to stable homology of general linear groups. We conjecture that the map DTr® (D) is
actually an isomorphism, whenever D is a polynomial bifunctor (cf. Conjecture 2). This

is a non-abelian analogue of a theorem of Scorichenko [28].

1.3 Relation to derived algebraic geometry

The derived representation schemes DRep.(X) are basic objects of derived algebraic
geometry. To the best of our knowledge, the first construction of this kind—the derived
moduli space RLoc;(X) of G-local systems over a finite, pointed, connected CW complex
X—was proposed by Kapranov in [45]. He defined RLoc;(X) using a simplicial DG
scheme RBG that played the role of a canonical “injective resolution” of the classifying
space BG of the algebraic group G in the category of simplicial DG schemes. A more
refined construction Map(X, BG)—called the derived mapping stack of flat G-bundles on
X—was developed by Toén and Vezzosi in [76] (see also [59]), using local homotopy theory
of simplicial presheaves on the category of (derived) affine schemes. For a detailed
comparison of these two constructions with our construction of DRep(X), we refer the
reader to the appendix of [9], where we showed that—despite different frameworks—all
three constructions are essentially equivalent.

We would like to conclude this introduction by mentioning some interesting
topological generalizations of higher Hochschild homology that appeared in recent
years, such as factorization homology (see, e.g., [36, 37]) and higher topological
Hochschild homology [15]. Our results show that representation homology, while closely
related to Hochschild homology, is a richer and somewhat more geometric theory that
blends topology and representation theory in a very natural way. It would therefore be
interesting to see if representation homology admits topological refinements similar to

those of Hochschild homology.

1.4 Appendix

The paper contains an appendix, where we collect basic facts and prove some new
results in abstract homotopy theory concerning derived functors. The main result
of the appendix—Theorem A.2—arises from our attempt to abstract the situation of

Theorem 3.1: it is a version of Quillen's derived adjunction theorem for homotopical
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14 Y. Berest et al.

categories. This theorem as well as Theorem A.3 and Lemma A.1 are of independent

interest.

1.5 Outline of the paper

The paper is organized as follows. In Section 2, we introduce notation and recall some
basic facts about simplicial sets and spaces. In Section 3, we study basic properties of
the derived representation functor and define representation homology. In Section 4, we
give our second construction of representation homology in terms of functor homology
and derive its implications. In Section 4, we establish the isomorphism between the
representation homology of suspensions and higher Hochschild homology. In Section 6,
we give examples computing representation homology explicitly for some geometrically
interesting spaces. In Section 7, we identify representation homology in terms of
Hochschild-Mitchell homology and construct a non-abelian analogue of the Dennis
trace map relating representation homology to the stable homology of automorphism
groups of finitely generated free groups. The paper ends with an appendix where we
recall basic definitions and prove a few results from abstract homotopy theory used in

Section 3.

2 Preliminaries

In this section, we introduce notation and recall some basic definitions related to

simplicial sets. Standard references for this material are [54], [39], and [79, Chapter 8].

2.1 Simplicial objects

Let A denote the simplicial category. Recall that the objects of A are the finite-ordered
sets [n] := {0,1,...,n}, n > 0, and the morphisms are the (weakly) order preserving
maps [n] — [m]. A simplicial object in a category % is a contravariant functor from A to
¢ thatis, A°? — % . The simplicial objects in ¥ form a category, with morphisms being
the natural transformations of functors. We denote this category by s¢. If X € Ob(s%),

we write X, := X([n]).

n>1

The category A is generated by two distinguished classes of morphisms {(Si}0<i<n

and {0/ }SEZ;LH, whose images under X € s% are called the face and degeneracy maps of

X, respectively. The map §! : [n — 1] — [n] is the (unique) injection that does not contain

"

i" in its image; the corresponding face map is denoted by d; = X(&") : X,, — X,,_;.

Similarly, for n > 0, the map o’ : [n + 1] — [n] is the (unique) surjection in A that takes
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"
l

value “i" twice. The image of o/ under X is the degeneracy map s; := X(0?) : X,, — X,,;.
The face and degeneracy maps of a simplicial object satisfy the following simplicial

relations:

did; = d;_,d; ifi<j
d;s; = sj_d; ifi<j
dsj =sjd;_; ifi>j+1 (2.1)
$iS; = Sjp8; i<y

dss; = 1d ifi=j,j+]1.

Thus, a simplicial object in s% is determined by a family X = {X, },.o of objects in ¢
together with morphisms d; : X, — X,,_; and s; : X,, — X, satisfying the relations
(2.1). The object X,, is usually called the “set” of n-simplices of X, and the 0-simplices
are usually called the vertices of X.

We let sSet denote the category of simplicial sets (i.e., simplicial objects in the
category Set). A simplicial set X is called reduced if it has a single vertex, that is,
X, = {x}. The full subcategory of sSet consisting of reduced simplicial sets will be
denoted sSet. A simplicial set X is called pointed if there are distinguished simplices
x, € X,, one in each degree, such that x,, = sy(x,_;) for all n > 1. The sequence
(X0, X1,Xg,...) € [[4=0X, is called a basepoint of X. The category of pointed simplicial
sets will be denoted sSet,. Note that sSet can also be viewed as a full subcategory of
sSet, as every reduced simplicial set has a canonical (unique) basepoint.

Given X € ssSet, the set of nondegenerate n-simplices of X is defined to be
n—1
X, =X, \ | siX,_p).
i=0

Every element of X,, can be uniquely expressed in terms of the nondegenerate elements
of X (see [35, Lemma 11] for a precise statement). In particular, a simplicial set can be
defined by specifiying its nondegenerate simplices together with the restriction of each
face map to the set of nondegenerate simplices.

We give a few basic examples of simplicial sets that will be used in this paper.
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16 Y. Berest et al.

2.1.1 Discrete simplicial objects
To any object A € ¥ one can associate a simplicial object A, € s%, with A,, = A and
d;, s; being the identity map of A for all n,i,j. This gives a fully faithful embedding

% — s%. The objects of s arising this way are called discrete simplicial objects.

2.1.2 Geometric simplices

The n-dimensional geometric simplex is the topological space

n
A" = {(xq,...,X,) € R in: 1,x;,>0}.
i—0

Let e; denote the vertex of A™ with i-th coordinate 1. For any morphism f : [m] — [n] in
A, there is a (unique) linear map R™*! — R"*! sending e, to er that restricts to a map
of topological spaces f* : A™ — A™. The collection A* := {A"}, _, forms a cosimplicial
space, that is, a (covariant) functor A — Top, where Top denotes the category of
(compactly generated weakly Hausdorff) topological spaces. This functor is faithful:
it gives a topological realization of the simplicial category, which was historically the

first definition of A.

2.1.3 Standard simplices
Let Y : A — sSet denote the Yoneda embedding. The functor Y assigns to [n] a

simplicial set A[n], called the standard n-simplex. Explicitly, Aln], is given by
Alnly = Hom, ([k], [n]) = {(ng,..., np) 10 <ng <... <ng <nj,

where a function f : [k] — [n]is identified with the sequence of its values (f(0),...,f(k)).
Under this identification, the nondegenerate simplices correspond to strictly increasing
functions, and the face and degeneracy maps in A[n], are given by

d,(ng,....,.ny) = (Ng, ..., Ny, ..., Ny), $i(Ng, ..., ) = (Mg, ..., Ny, NG, Ng).
By Yoneda lemma, for any simplicial set X, there is a natural bijection

Homg.  (Aln],, X) = X,

which shows that A[n], (co)represents the functor: sSet — Set, X — X,,.
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2.1.4 Simplicial spheres

The Yoneda functor Y : A — sSet can be also regarded as a cosimplicial object in the
category of simplicial sets. In particular, for any n > 1, there are n + 1 coface maps
di: Aln — 11, — Alnl,, 0 <i < n. Using these maps, we define the boundary of Aln], to

be the simplicial subset

0AInl, == | d'aln-11,) c Alnl,,

0<i<n

The simplicial n-sphere is then defined to be the corresponding quotient set S} :=
Alnl,/9Aln],. It is easy to see that the only nondegenerate simplices in ST are in degree
0 and n, with S; = {x} and S, = {S}, where S is the image of the map Id € Alnl, in
Sit. Note that d;(S) = sg_l(*) for all i. Thus, the simplicial structure of S? reflects the
standard CW decomposition of the n-sphere S™ with one cell in dimension 0 and one
cell in dimension n.

The simplicial 1-sphere S! is called the simplicial circle. By Example 2.1.3, we
have Alll, = {(©,...,0,1,...,1)|i = 0,1,...,k+ 1} and dA[1], = {(0,...0),(1,..., )}

i k+1—i
Hence, S} is given explicitly by

St ={O,...,0,1,...,D)]i=1,..., k+1},
R
i k+1—i

with (0, ...,0) corresponding to the basepoint .
There is an important functor |-| : sSet — Top assigning to each simplicial set
X a topological space |X| called the geometric realization of X. Explicitly, the space |X]|
is defined by
x| = | &, x A"/ ~,
n>0
where each set X, is equipped with discrete topology and the equivalence relation is

given by

(dgx,p) ~ (x,d'p) for (x,p) € X, x A™"!

(s;x,p) ~ (x,5'p) for (x,p) € X, | x A".

More formally (see, e.g., [66, Section 1.3]), the functor |- | : sSet — Top can be defined as

the (left) Kan extension |-| = Lany(A*) of the geometric simplex A* along the Yoneda

1202 4890100 ZZ uo Jesn uojBuiwoo|g - seleiqi] AlsieAlun euelpu] Aq Zyv99/S/SZ0BRUI/UILI/SE0 L 0 L /I0p/8|01MB-80UBAPER/UIWI/WO02 dNO"dIWapeIe//:sd)y Wol) POPEOjUMO(]



18 Y. Berest et al.

embedding Y : A — sSet. It follows from this definition that |A[n],| = A" for all
n > 0, and in general, |X| = colim A", where the colimit is taken over all morphisms of
Alnl, - X, n > 0. If X € sSet is a simplicial set and x; € X, we write 7,(X, x;) for
the n-th homotopy group of X at x,, which is, by definition, the n-th homotopy group
7,(1X|, xy) of the geometric realization of X.

The category sSet has a standard model structure, where the weak equivalences
are the morphisms inducing weak homotopy equivalences of the corresponding geomet-
ric realizations. The cofibrations are levelwise injective maps and the fibrations are the
Kan fibrations (see [54, §7]). This structure gives a model structure on sSet.

Let (X, *) be a pointed topological space. The (total) singular complex of X is a
simplicial set S, (X) defined by S,(X) := Homq (A", X). The Eilenberg subcomplex of
S,(X) is

S,X):={f : A" > X : f(v;) = x forall verticesv; € A™}.

If X is connected, the natural inclusion 3*(X) — S,(X) is a weak equivalence of
simplicial sets. Further, if we restrict S to the category Topg,, of connected pointed

spaces, we get the pair of adjoint functors

-] :sSety & Topg, : S, (2.2)

which induce mutually inverse equivalences of the homotopy categories: Ho(sSet() =~
Ho(Topy ,)- This equivalence justifies the following standard convention that we will
follow throughout the paper.

Convention. We shall not notationally distinguish between a reduced simplicial set
X and its geometric realization |X|. Nor shall we distinguish notationally between a

topological space and a (reduced) simplicial model of that space.

2.2 The Kan loop group construction

We will briefly review the classical construction of Kan [44] that provides a functorial
simplicial group model of the based loop space QX. For details and proofs we refer
the reader to [54, Chapter VI] and [39, Chapter V]). Let sGr denote the category of
simplicial groups. It has a standard model structure, where the weak equivalences
and fibrations of simplicial groups are the weak equivalences and fibrations of the
underlying simplicial sets. We note that, unlike sSet, the model category sGr is fibrant:
by a classical theorem of Moore, every simplicial group is a Kan complex (see [54,
Theorem 17.1]).
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Representation Homology of Topological Spaces 19

Definition 2.1. A simplicial group I' = {I', },,¢ is called semi-free if there is a sequence
of subsets B,, C I',,, one in each degree, such that I',, is freely generated by B,,, and the
set B = [J,>0 By, is closed under degeneracies of I', that is, s;(B,,_;) € B, forall 0 <j <
n—1and n > 1. The subset B, := B,)\ U?;ol 5;(B,_,) is called the set of nondegenerate

generators of I of degree n.

One can show that every element in B,, is nondegenerate (when considered as an
element of the underlying simplicial set), and a semi-free simplicial group is determined
by specifying the sets of nondegenerate generators B,, and the face elements of these
generators.

Semi-free simplicial groups are cofibrant objects in the model category sGr. The
Kan loop group construction provides an important class of semi-free simplicial groups
that arise naturally from reduced simplicial sets. To be precise, the Kan construction

defines a pair of adjoint functors:
G: sSety = sGr : W, (2.3)

where G is called the Kan loop group functor and W is the classifying simplicial com-
plex. The functor G preserves weak equivalences and cofibrations, while W preserves
weak equivalences and fibrations (see [39, Proposition V.6.3]). Hence, (2.3) is a Quillen
pair, which is actually a Quillen equivalence: that is, the functors G and W induce
mutually inverse equivalences between the homotopy categories of sSet, and sGr (see
[39, Corollary V.6.4]). Combining this with the classical Quillen equivalence (2.2) between

topological spaces and simplicial sets:
Topg « E) sSet E) sGr
we get equivalences of the homotopy categories:
Ho(Topg ,) = Ho(sSet) = Ho(sGr).

For further use, we recall the explicit construction of the functor G. Given a

reduced simplicial set X = {X, },,., the set of n-simplices of GX is defined by

GX, = (X,.1)/(s0x) =1, Vx € X,) = (By),
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20 Y. Berest et al.

where B, := X, 1\ s¢(X},) and the isomorphism is induced by the inclusion B,, — X, ;.
The degeneracy maps s;(.;’X : GX,, —» GX,, are induced by the degeneracy maps s;,; :
X, .1 — X, of the simplicial set X, and the face maps d‘f’X : GX,, - GX,,_, are given
by

dgX(x) == (d1%) - (do0)™' and di¥(x):=d; (%), Yi> 0.

Conversely, given a simplicial group I' = {I',},,-(, the simplicial set WT is defined by
WTy := {*} and WI',, := I',,_; x [,_, x ... x Iy for n > 0. The degeneracy and face
maps of WT are given explicitly in [54, §21]. We note that when restricted to discrete
simplicial groups, the functor W coincides with the usual nerve construction, that is,

WT = BT for any discrete group I'.

Proposition 2.1. The Kan loop group GX of any reduced simplicial set X is semi-free.

More precisely, for each n > 0, the composite map 7 : X,, — (X,

) = GX,,_, is injective
when restricted to the subset X,, C X,,, and the image t(X,,) C GX,,_; forms the set of
nondegenerate generators En_l = r(}_{n) in degree (n — 1) of the semi-free basis {B, },-

of GX.

The following fundamental theorem clarifies the meaning of the Kan loop group

construction.

Theorem 2.1 (Kan [44]). For any reduced simplicial set X, there is a weak homotopy

equivalence
IGX| ~ Q|X],
where ©Q|X| is the (Moore) based loop space of |X]|.

A detailed proof of Theorem 2.1 can be found in [54, § 26]. Its significance
becomes clear from the following considerations. Given any path-connected CW com-
plex Y one can choose a pointed connected simplicial set X’ such that |X'| ~ Y. If X
is the path-connected component of X’ containing the basepoint, then X is a reduced
simplicial set such that |[X| ~ |X'| >~ Y because Y is connected. Hence, applying the
Kan loop group construction to X, we get |GX| >~ QY. Thus, GX is a semi-free simplicial
group model of the based loop space of Y. In this way, the based loop space of any

path-connected CW complex admits a simplicial group model.
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3 Representation Homology

In this section, we define representation homology as the homotopy groups of the (non-
abelian) derived representation functor associated with an affine algebraic group. We
establish the existence and basic properties of this functor as well as indicate some
generalizations. Our construction follows the approach of our earlier papers [4-6] where

we studied the representation homology of associative and Lie algebras.

3.1 Definition of representation homology

Fix an affine algebraic group scheme G over a field k of characteristic 0. Recall that G is
given by a representable functor on the category of commutative k-algebras with values

in the category of groups:
G: CommAlgy — Gr, A+ G(A). (3.1)

A commutative algebra that represents (3.1) is called the coordinate ring of G and
denoted O(G). This algebra is equipped with a coproduct A : O(G) — OG) ® O(G),
f Y ®f@, which is dual to the multiplication in G and makes O(G) a commutative
Hopf algebra.

Lemma/Definition. The functor (3.1) has a left adjoint
(-)g : Gr — CommAlg, @'~ T, (3.2)

which we call the representation functor in G.

Proof. Given a group I' € Gr define the algebra I'; by the following canonical

presentation:
I'c = Symy (k[ ®; O(G))/I,

where the ideal I of relations is generated by

YA — ) - (v f),
NYa®F —(r @F M) - (1, @ FP), (3.3)

er®f—fleg)-1 y®@1-1
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forall v, y;, v € T and f, fi.f, € OG). If A € CommAlgy, is a commutative algebra,
a group homomorphism ¢ : ' - G(A) = Hom(O(G),A) determines a linear map
kTl ® O(G) — A, which, in turn, induces—modulo the relations (3.3)—an algebra
homomorphism ¢* : T, — A. It is straightforward to check that ¢ — ¢* gives the

required bijection Homg, (I', G(A)) = Homcgppnarg, (D A). |
We remark that, for a fixed group I', the algebra I'; represents the functor
Reps(I) : CommAlg, — Set A+ Homg, (I', G(4)),

which is the functor of points of an affine k-scheme Rep;(I') parametrizing the
representations of I" in G; hence, geometrically, we can think of I'; as the coordinate
ring O[Rep(I")] of Reps(I).

Next, we embed the category of groups into the category sGr of simplicial groups
and extend the functor (3.2) to sGr in the natural way, assigning to a simplicial group
I, : A°® — Gr the simplicial commutative algebra (T',); : A°® - Gr — CommAlg,. We

will keep the notation (-). for this extended representation functor:
()¢ : sGr — sCommAlgy. (3.4)

Both categories sGr and sCommAlg; have natural (simplicial) model structures, with
weak equivalence being the weak homotopy equivalence of the underlying simplicial
sets. However, the representation functor (3.4) is not homotopy invariant—it does not
preserve weak equivalences—hence, in order to work in a homotopical context we
should replace or approximate (3.4) with a derived functor (see [65], [25]). The existence

of this derived functor is easy to establish.

Lemma 3.1. The functor (3.4) maps the weak equivalences between cofibrant objects

in sGr to weak equivalences in sCommAlg;, and hence has a total left derived functor
L(-); : Ho(sGr) — Ho(sCommAlgy). (3.5)

Proof. Suppose that f : ' — I is a weak equivalence between cofibrant simplicial
groups. Since sGr is a fibrant model category, I' and I'" are both fibrant-cofibrant
objects. By Whitehead's theorem, the map f has then a homotopy inverse g : ' — T,
such that fg ~ Id and gf ~ Id. Now, any homotopy between fibrant-cofibrant objects

can be realized using a good cylinder object in sGr. Since sGr is a simplicial model
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category, there is a natural choice of good cylinder objects for I' and I'’: namely,
Full - T x A[l] — T, and similarly for I''. For such cylinder objects, the simplicial
homotopies (see [54, Def. 5.1]) can be defined by explicit combinatorial relations that
are preserved by the functor (-);. Thus, we conclude that g; : I';; — TI'; is a homotopy
inverse of f; : I'; — I, in sCommAlg, and hence f; and g; are mutually inverse
isomorphisms in Ho(sComm2lgy;). The existence of the derived functor (3.5) follows now
from [25, Prop. 9.3]. |

Now, for a fixed simplicial group I' € sGr, we formally define the derived
representation scheme DRep;(I') as Spec L(I')., that is, the simplicial algebra L(I");
viewed as an object of the opposite category Ho(sCommalg;)°P. We call the homotopy

groups of L(I"); the representation homology of T in G and write
HR, T, G) ==, L{T)g.

By comparing the universal mapping properties, it is easy to check that the
functor (3.4) commutes with n,; hence, for any I' € sGr, there is a natural isomorphism

in CommAlgy:
HR, (T, G) = [ry(D)lg. (3.6)

In particular, if I' € Gr is a constant simplicial group, we have HRy(I', G) = I';, which
justifies our notation and terminology for DRep(I').

Next, recall the fundamental theorem of Kan [44] that identifies the homotopy
types of simplicial groups with those of pointed connected spaces. To be precise, the
Kan theorem asserts that the category of simplicial groups is Quillen equivalent to the
category sSet of reduced simplicial sets, which is, in turn, Quillen equivalent to the
category Top, , of pointed connected spaces. As a result, we have natural equivalences

of homotopy categories
Ho(Topg ,) = Ho(sSetq) = Ho(sGr). (3.7)

This leads us to the main definition.

Definition 3.1.  For a space X € Top, ,, we define the derived representation scheme
DRep;(X) to be DRep;(I'X), where I'X is alny) simplicial group model of X (i.e., a

simplicial group that corresponds to X under the Kan equivalence). The representation
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homology of X in G is then defined by
HR,(X,G) := 71, L(T'X),. (3.8)

By definition, HR, (X, G) is a graded commutative algebra, with HR;(X, G) natu-
rally isomorphic to [n; (X)]; = Ol[Reps (7, (X))], the coordinate ring of the representation
scheme Rep;[7; (X)]. The last isomorphism is the composition of (3.6) with the natural
isomorphism 7y(T'X) = m; (X).

For a reduced simplicial set X € sSet, the Kan loop group GX provides a
canonical (functorial) simplicial group model for |X|. Since this simplicial group is semi-

free (see Section 2.2), we have
HR,(X,G) = 7, (GX);. (3.9)
This formula can be used to compute representation homology in some simple cases.

Example 3.1. Let G, be the additive group over k, that is, the affine algebraic group
defined by the functor G, : CommAlgy — Gr,A — (A,+), where (4,+) denotes the
underlying abelian group of the algebra A. It is easy to see that, for any I' € Gr, there
is a natural bijection Homg, (I', G, (A)) = Hom a1, (Symg(lingI'), A), where ling (') :=
I'yp ®z k. Hence, the representation functor in G, is given by the composition (-)g, =
Symy, olin; : Gr — Vect; — CommAlg;. Using formula (3.9), for an arbitrary X € sSet,

we can now compute

12

HR,(X,G,) 7, A [(GX) 3, ® Kl

12

Ay [n*((GX)ab ®z, k)]

12

Ay [7,(GX),p, ®7 K]
Al
[

Ay

12

H,; (X,Z) ®; K]
H

12

*+1 (X’ k)] 4

where A is the graded symmetric algebra functor over k and H, ;(X,Z) :=
@0 Hi (X, 7Z) is the singular homology of X. Note that, besides (3.9), we used here
the classical isomorphism of Kan: 7, (GX),, = H,, ,(X,Z) (see, e.g., [64, Theorem
26.9]) and the well-known fact that the functor A; commutes with homology when

k has characteristic zero (see, e.g., [65, Part I, Prop. 4.5]). This example shows that
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representation homology may be viewed as a generalization of the ordinary singular

homology.

3.2 The derived representation adjunction

By definition, the representation functor (3.2) is left adjoint to (the functor of points of)

the algebraic group G. This adjunction extends automatically to simplicial categories:
(-)g : sGr & sCommAlgy : G, (3.10)

and the natural question is whether (3.10) induces an adjunction between derived
functors on the corresponding homotopy categories. The (affirmative) answer to this
question would be immediate from Quillen’s fundamental theorem [65, 1.4.5, Theorem 3]
if (3.10) were a pair of Quillen functors between model categories. However, this is not
the case. By definition, any left Quillen functor preserves cofibrations, which means,
in particular, that it maps cofibrant objects in one model category to cofibrant ones
in the other. Unfortunately, the representation functor (3.4) lacks this property even in
simplest cases. Take, for example, G = G,,,, the multiplicative group, and apply (3.4) to
the free group on one generator I' = F;, which is obviously a cofibrant object in sGr.
The resultis I'; = klx, x~!], which is not a cofibrant simplicial algebra in sCommAlg;.
Another problem is that the right adjoint functor in (3.10) is not homotopical and
hence should be replaced by a right derived functor RG. But the existence of RG is
not clear because the standard (projective) model structure on sCommAlg, is fibrant.

Nevertheless, somewhat surprisingly, we still have the following.

Theorem 3.1. The algebraic group functor G : sCommAlg; — sGr has a total right

derived functor, which is right adjoint to the derived representation functor (3.5):
L(-)g : Ho(sGr) = Ho(sCommAlgy) : RG.

Moreover, both L(-); and RG are absolute derived functors in the sense of Deligne-
Maltsiniotis [53].

The 1st statement of Theorem 3.1 shows that the simplicial adjunction (3.10)
behaves like a Quillen adjunction, and the last statement shows that the corresponding
derived functors are as “good” (well-behaved) as derived functors of Quillen functors. In

particular, like the derived functor of a left Quillen functor, the derived representation
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functor has the following important property that plays a crucial role in computations

of representation homology in Section 6.

Theorem 3.2. The derived representation functor (3.5) preserves arbitrary (small)

homotopy colimits.

The main idea behind our proof of Theorem 3.1 is to “forget” the model structure
on sGr, thinking of this category simply as a homotopical category in the sense
of [23], and then “approximate” it with another model category, which is “almost”
Quillen equivalent to sGr in the sense of [17]. For reader’'s convenience, we recall
basic definitions and the necessary results from [23] and [17] in the Appendix, where
we also prove abstract versions of Theorems 3.1 and 3.2 (see Theorems A.2 and A.3,
respectively). The proof of Theorem 3.1 will consist of verifying the conditions of
Theorem A.2; we will divide it into two cases: G = GL,, and the general case: G is an
arbitrary algebraic group. For GL,, we will provide detailed arguments, while in the
general case, we will only sketch the proof leaving technical details for our subsequent
paper.

We begin with the following observation refining the result of Lemma 3.1.

Proposition 3.1. The representation functor (3.4) is left deformable on sGr, and hence

its total left derived functor (3.5) is an absolute derived functor in the sense of [53].

Proof. Write C for sGr viewed as a homotopical category, and let C, denote its
full subcategory consisting of semi-free simplicial groups (see Definition 2.1). Then
Cq — C is a left deformation retract of C, with retraction functor Q : C — C being
the composition Q := G W and the morphism q : Q — Id, given by the counit of the Kan
loop group adjunction (2.3). Indeed, by Kan's theorem, the morphism g is a natural weak
equivalence (see [39, Prop. V.6.3.]), and its image is contained in C,. The proof of Lemma
3.1 shows that (3.4) is homotopical on C,, and hence, by definition, left deformable. The

result now follows from Proposition A.1. |

3.3 Proof of Theorem 3.1 for G = GL,,

Let sMon denote the category of simplicial monoids equipped with the standard

(projective) model structure. Consider the natural adjunction

l:sMon & sGr:r, (3.11)
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where r is the inclusion functor, and [ is the group completion (localization) functor. The

next observation is a consequence of a known theorem of Dwyer and Kan [24].

Lemma 3.2. The adjunction (3.11) is a left model approximation of sGr in the

sense of [17].

Proof. We need to verify the three conditions of Definition A.1 (see Appendix).
Condition (1) is obvious, and (2) follows from the fact that [ is a left Quillen functor
(when sMon and sGr are regarded as model categories). It suffices only to check (3).

For this, observe that any map from a simplicial monoid to a simplicial group, say

#
f:M — r(l'), can be factored as M i, rl(M) L r(I"), where n,, is the group completion

(localization) map and f# : I(M) — T is the map adjoint to f under (3.11). If f is a
weak equivalence in sMon, then M is a group-like simplicial monoid (i.e., 7y (M) = my(I")
is a group), and hence, if M is also cofibrant, by [24, Proposition 10.4], n;,; is a weak
equivalence. By 2-of-3 property, the map rf* : rl(M) — r(I') is then a weak equivalence,

and since r reflects weak equivalences, f* : (M) — I is a weak equivalence as well. W

We will apply Theorem A.2 to the representation adjunction (3.10) with G = GL,,
using the left model approximation (3.11). Note that this model approximation is
good for the representation functor (3.4) (for any algebraic group G), since the group
completion functor maps cofibrant objects in sMon, which are (retracts of) semi-free
simplicial monoids, to (retracts of) semi-free simplical groups, on which the functor
(3.4) is homotopical by Lemma 3.1.

From now on, we assume that G = GL, and write F := (—)g, @ sGr —
sCommAlg; for the corresponding representation functor. Let sMon, denote the full
subcategory of sMon consisting of group-like simplicial monoids—by the Dwyer-Kan
theorem [24], the essential image of the functor 7 : Ho(sGr) < Ho(sMon) is precisely
Ho(sMony).

The inclusion functor i : sMon, <> sMon has a right adjoint U : sMon — sMon,

defined by the pull-back diagram in sMon:

UM,) — Ulny(M,)]

.

M, —— mo(M,),

where U : Mon — Gr is the functor assigning to a monoid its subgroup of units. To

construct the functors F and G we start with the natural adjunction (k[-]),, : sMon =
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sCommAlgy : M, and compose it with i : sMon, = sMon : U, that is, define

A

F:= (k[-1),, 0i: sMon, = sCommAlgy : G:=UoM,,. (3.12)

Note that the right adjoint G in (3.12) is precisely the Waldhausen functor @n
defined in the introduction (see (1.9)). In particular, it is a homotopical functor that takes
its values in group-like simplicial monoids: thus, we have RG = G and Im(@) C Im(r),
that is, condition (iii) of Theorem A.2 holds.

The left adjoint F is obtained by restricting to sMon, the functor (k[-1),,, which
is left Quillen on sMon: hence, F is homotopical on cofibrant objects in sMong,, and
therefore Theorem A.2(i) holds.

Next, factor 7 := ryo0i : sGr <> sMon, <> sMon and observe that For, =

(k[-1),, o r is left adjoint to U o M,, = GL,,. Hence, there is a canonical isomorphism of

functors Fory = F. It remains only to show that sGr N sMon, 5 sCommAlgy is a left
deformable pair. For this, in the notation of Proposition A.2, we take C, to be the full
subcategory of semi-free simplicial groups in C := sGr and D, the full subcategory
of D := sMon, consisting of monoids M such that k[M] is a simplicial k-algebra
that is degreewise a direct limit of formally smooth k-algebras having semifree DG
resolutions with finitely many generators in each homological degree. Both C, and D,
are left deformation retracts of the corresponding homotopical categories: C, contains
the image of the deformation functor Q = G W associated with the Kan loop group
adjunction (see Proposition 3.1), while D, contains the image of Q; : sMong — sMony,
which is the restriction of the cofibrant reprelacement functor Q on sMon. Since ry
is homotopical and ry(C,) < D,, we need only to check that F is homotopical on Dj,.
Since F = (=), o k[-1 and k[-] is homotopical on sMon,), it suffices to check that (-), :
sAlg; — sCommAlg,; is homotopical on simplicial k-algebras that are degreewise (direct
limits of) formally smooth k-algebras having semifree DG resolutions with finitely many
generators in each homological degree. Now, this last fact follows from [7, Theorem
21], saying that such associative algebras are adapted for the representation functor
(=), : Algy — CommAlg, (inthe sense that L(A), = A,, for such A’s) and the well-known
abstract result from homotopical algebra saying that the simplicial objects, which are
degreewise adapted for a functor F, are actually adapted for F (see, e.g., [78, Theorem
9.2.2]).

Summing up, we showed that all three conditions of Theorem A.2 hold for the
adjoint pair (3.12), except that the left adjoint ¥ is not defined on the entire model

category sMon but rather on its full subcategory sMon,. However, this last subcategory
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is closed under weak equivalences and coincides with Im(7); hence, the result of
Theorem A.2 still holds (see Remark 2 after the proof of Theorem A.2). This completes
the proof of Theorem 3.1 for G = GL,,.

Theorem A.2 gives an explicit formula for the total derived functor R G: namely,
RGL, = Llo GL,,. (3.13)
This allows us to compute the homotopy groups RiGLn :=m;,RGL,, forall i > 0.
Proposition 3.2. For any A, € sCommAlgy,

) GL,[my(A,)] for i=0
RIGL,(4,) =
M,[r;(A)]  for i>1.

Proof. Let QGL,(A,) — GL,(A,) be a cofibrant resolution of GL, (4,) in the (model)
category sMon. By (3.13), we have RGL,(A,) = IQGL, (4,) . On the other hand, QGL,(A,)
is a group-like simplicial monoid, since so is C’in(A*). Hence, by the Dwyer-Kan
theorem, the group completion map O@n(A*) N laﬁn(A*) is a weak equivalence.

Thus, we have a zigzag of weak equivalences
GL,(A,) < QGL,(A,) = lQGL,(A,),

from which we conclude that RiGLn A, = niéin (A,). The result now is immediate from
the definition of GL,, (see [77)). [

3.4 (Sketch of) Proof of Theorem 3.1 in the general case

For a general algebraic group G, we will use a different model approximation of sGr
given by reduced simplicial spaces. By a simplicial space we mean a bisimplicial set of
which we think as a functor X, : A°® — sset, [n] — X,,, with simplicial components
X, viewed as “vertical” simplicial sets. We call X, reduced if X, = A[0] is the one-
point (discrete) simplicial set. We write sSp = sSet2™ for the category of all simplicial
spaces and sSp, for its full subcategory consisting of reduced ones. The category
sSp is known to carry several interesting model structures. We will use two of these:
the projective model structure in which the weak equivalences and fibrations are the
levelwise weak equivalences (resp., fibrations) of simplicial sets and its (left Bousfield)

localization with respect to Segal maps introduced in [67]. We denote the projective
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model structure simply by sSp and its localization by £sSp. As shown in [12], both model
structures “restrict” to reduced simplicial spaces, and we denote the corresponding
model categories by sSp, and £sSp,, respectively.

The reduced simplicial spaces are related to simplicial groups by the pair of

adjoint functors
m, : £sSp, = sGr: N, (3.14)

where N is the nerve functor applied degreewise to components of simplicial groups:
i.e., for I', € Ob(sGr),

N, (T, : A°® - sSet, [n]l— N, (T,) =T},

and z; is the fundamental group functor applied degreewise to bisimplicial sets: i.e.,

for X = {Xp,q}p,qZO'

7,X): A® - G6r [g]l+— (X, o)

The fact that m; is left adjoint to N follows from the well-known fact that the
fundamental group functor n; : sSety; — Gr on reduced simplicial sets is left adjoint
to the simplicial nerve N : Gr — sSet, on the category of groups. Now, in place of

Lemma 3.2, we have the following.
Lemma 3.3. The adjunction (3.14) is a left model approximation of sGr.

Proof. This follows from a theorem of Bergner (see [12, Theorem 1.6]) that asserts that
the model category £sSp, is Quillen equivalent to the category of simplicial monoids,
sMon, equipped with the standard (projective) model structure. In fact, one can check
that (3.14) factors as £sSp, = sMon = sGr, where the 1st adjunction is Bergner’s
Quillen equivalence, with its right adjoint being a homotopical functor, and the 2nd
adjunction is (3.11), which is, by Lemma 3.2, a left model approximation of sGr. It

follows that (3.14) is a left model approximation of sGr as well. |

Next, to define the functor G : sComm Alg, — £sSp, we will use a construction of
Galatius and Venkatesh (see [33, Section 5]). We start with the cosimplicial commutative

algebra

ON,G) : A — CommAlg, [nl— OWV,G) = O(G)®".
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Taking the cofibrant replacement of O(IV,G) in sCommAlg; in each cosimplicial degree,

we get a cosimplicial simplicial algebra c O(IV,G) € sCommAlg,ﬁ and then define G by

G:sCommAlg, — £sSp, A, Map(cOWN,G), A,), (3.15)

where “Map” stands for the standard (simplicial) function complex in sComm2lg,. Note
that @(A*)O = Map (cOWV,G), A,) = Map (k, A,) = Al0] for any A4,, so G indeed takes its
values in the category of reduced simplicial spaces.

By formal properties of function complexes, the functor G has a left adjoint given
by

F: £sSp, —» sCommAlg, X+ X®,cON,G), (3.16)

where ®, is the functor tensor product over the category A in the simplicial category
sCommAlgy (see, e.g., [66, (4.1.1)]).

Proposition 3.3. The adjoint functors F : £sSp, & sCommAlgy : G form a Quillen pair.

Proof. Sketch of proof One proves this in two steps. First, one checks that the functors
(F, G) form a Quillen pair F : sSp, — sCommAlgy : G for the projective model structure
on sSp,. Then, one shows that this Quillen pair “localizes” to a Quillen pair on £sSp,
by checking that the left derived functor LF : sSp, — Ho(sCommAlg;) maps the Segal

morphisms in sSp, to isomorphisms in Ho(sCommAlgy). |

We have now defined all ingredients of Theorem A.2. To show that this theorem
applies to the representation adjunction (3.10) we need to verify its assumptions (i),
(ii), and (iii). Condition (i))—(F, G) being a deformable adjunction—is immediate from
Proposition 3.3. Condition (iii) is not difficult to check since G is a homotopical functor
(and therefore RG = G). The main work is to verify condition (ii): in particular, to prove
that LF = LF o N. The details of this verification will appear in our subsequent paper.
Here we only mention that, as an intermediate step, we prove the following lemma that
provides an alternative way to define representation homology of spaces, without using

the Kan loop group construction.

Lemma 3.4. For any X € sSet, there is a natural isomorphism in Ho(sCommAlgy):

LF(GX) = LE(XY),
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where (-)! : sSet, <> sSp, is the “transpose” inclusion functor identifying a
simplicial set X with the simplicial space X! = {(Xt)n}nZO with discrete components
X", = X,

We conclude by pointing out that, once the conditions of Theorem A.2 are
verified and Theorem 3.1 is proved, Theorem 3.2 follows immediately from Theorem A.3,
since in our situation both ¢ = sGr and D = sCommAlg,, carry model category structures
and hence the colimits on these categories exist and are left deformable by results of
[17] (see Theorem A.4(3)).

4 Functor Homology Interpretation

In this section, we give our second definition of representation homology parallel to
Pirashvili's definition of higher Hochschild homology [60]. We begin by reviewing the

construction of [60].

4.1 Higher Hochschild homology

Let §, denote the category of finite pointed sets with objects [n] = {0,1,...,n},n > 0, and
morphisms f : [n] — [m] being arbitrary set maps such that f(0) = 0. Let F : §, — Vecty
be a covariant functor. We extend F to the category Set, of all pointed sets in a natural
way, using the left Kan extension along the inclusion §, < Set,. We keep the notation
F for the extended functor: explicitly, F : Set, — Vecty is given by F(X) = colim F([n]),
where the colimit is taken over all pointed inclusions [n] — X.

Given a pointed simplicial set X € sSet,, we define a simplicial k-vector space

F(X) as the composition of functors
. aop X F
F(X): A°P = set, — Vect,. (4.1)

We denote the homotopy groups of F(X) by 7, F(X) and recall that 7, F(X) := H,[N(F(X))],
where N is the Dold-Kan normalization functor.

Now, any commutative k-algebra A and an A-module M (viewed as a symmetric
bimodule) give rise to a functor §, — Vect, that assigns to the set [n] the vector space

M ® A®™ and to a pointed map f : [n] — [ml], the action of f on M ® A®" given by

f*(a0®a1®®an) :b0®b1®®bm,
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where bj = Hief—l(]') a; forj = 0,1,...m. Following [60], we denote this functor by
L(A,M), and for a pointed simplicial set X € sSet,, define

HH, (X, A, M) := 7, L(A, M)(X).

Thus, HH, (X, A, M) is the homology of the complex C,(X,A, M) := N[L(A, M)(X)], which

we call the Pirashvili-Hochschild complex of A with coefficients in M associated to X.

Example 4.1. Let X = S} be the simplicial circle. Recall that the set of n-simplices S},
can be identified with the set of monotone sequences of 0's and 1's of length n+1 modulo
the identification (0,0,...,0) ~ (1,1,...,1) (see Section 2.1.4). For a nonzero sequence
X€ S}l, let n(x) denote the position of the first 1. The map x — n(x)—1 identifies S}l with
[n]. Under this identification, the degeneracy map s; : [n] — [n + 1] corresponds to the
unique monotone injection skipping i+ 1 in its image and the face map d; : [n] — [n —1]
is given by d;(j) =jforj <i,d;(@) =ifori<n,d,(n) =0, and d;(j) =j—1 forj > i. From
this description of S}, it is easy to see that the Pirashvili complex C,(S!, A, M) for S is
precisely the classical Hochschild complex C, (A, M). Thus, HH,(S!,A, M) = HH, (4, M)
for any commutative algebra A and A-module M. In a similar way, one can explicitly
describe the Pirashvili complex C,(S", A, M) for the n-dimensional simplicial sphere S7.
The corresponding homology groups HH, (S", A, M) are denoted HHL”] (A, M) and called
the Hochschild homology of (A, M) of order n.

In the present paper, we will mostly deal with two cases: M = A and M = k,
where in the last case the module structure on k comes from an augmentation A — k. To
simplify the notation we will write HH_(X, A) for HH, (X, A, A) and regard X + HH_(X, A)
as a functor on the category of (pointed) simplicial sets assuming A to be fixed. We will
refer to this functor as a higher Hochschild homology of spaces.

There is another, more conceptual way to define higher Hochschild homology,
using homological algebra of functor categories over PROPs. Recall that a PROP is a
permutative category (P,X) whose set of objects is indexed by (or identified with) the
natural numbers N and whose monoidal structure X is given by addition in N (see [52]).
A k-algebra over a PROP P is a strict symmetric monoidal functor from P to the tensor
category Vecty.

To define Hochschild homology we take P to be a category § of finite sets with
monoidal structure given by disjoint union. More precisely, we let § denote the full

subcategory of Set whose objects are the sets n := {1,2,...,n} for n > 0 (where, by
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convention, 0 = @) and morphisms are arbitrary set maps. The monoidal structure on
§ is given by n X m = n 4+ m. It is well known and easy to prove (see, e.g., [61, Section
2]) that the category of k-algebras over § is equivalent to the category CommAlgy, the
equivalence being given by the functor A — [(- ® A) : n > A®"]. We will write A for the
algebra over § corresponding to the commutative algebra A € CommAlgy.

Now, let §-Mod (resp., Mod-§) denote the category of all covariant (resp., con-
travariant) functors from § to the category of vector spaces. The notation suggests
that one should think of the objects of §-Mod and Mod-§ as left and right §-modules,
respectively. These categories are both abelian with enough projective and injective

objects. Furthermore, they are related by a bifunctor
-Q®z—: Mod-§ X §-Mod — Vecty

that is right exact with respect to each argument, preserves sums, and is left balanced
(see, e.g., [60, Sect. 1.5]). Explicitly, for a right F-module A and a left F-module M,

N @z M = [ ® v ®kM(ﬂ):| /R, 4.2)
n>0

where R is the subspace spanned by the vectors of the form N (f)x®y —x® M(f)y with
x € N(n) and y € M(m) and f running over all maps in Homg,, (m, n).

Next, we consider the functor
h:§— Mod-§, n— k[Homg(—,ﬂ)], (4.3)

where k[S] denotes the vector space generated by a set S, and extend (4.3) to the category
simplicial sets in two steps. First, we define a functor Set — Mod-§ by taking the
left Kan extension of (4.3) along the natural inclusion § < Set, and then we extend
this degreewise to simplicial sets. Abusing notation, we will continue to denote the
resulting functor by h : sSet — sMod-§. Composing h with the normalization functor
N : sMod-§ — Ch.((Mod-§) assigns to every simplicial set X a chain complex and hence
an object in the derived category Z2(Mod-§) that we denote by N(h(X)).

Now, recall that any commutative algebra A defines an algebra A over the PROP
5 that can be viewed as an object in §-Mod. With this interpretation of A, we have the

following result.
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Theorem 4.1. For any X € sSet and A € CommAlgy, there is a natural isomorphism
HH, (X,A) = H,IN(h(X)) ®% Al

Although Theorem 4.1 is not explicitly stated in [60], it can be deduced from
results of this paper. We do not give a proof of Theorem 4.1 here as in the next section,

we prove the analogous theorem for representation homology (see Theorem 4.2).

4.2 Representation homology as functor homology

We now define the representation homology of a (reduced) simplicial set by mimicking
Pirashvili's definition of higher Hochshild homology. Our starting point is the known
fact that the category of commutative Hopf algebras over a field k is equivalent to the
category of k-algebras of the PROP of finitely generated free groups (see, e.g., [61, Sect.
5] and [40] for a detailed proof). To be precise, let & denote the full subcategory of Gr
whose objects are the free groups based on the sets n = {1,2,...,n} for n > 0. We
denote such groups by (n) := F(n) (where, by convention, (0) is the identity group) and
write k(n) for the corresponding group algebras over k. The category & is a PROP, with
monoidal product X being the free product of groups, so that (n) X (m) = (n + m).
A commutative Hopf algebra # over k defines the (strong monoidal) covariant functor
& — Vecty, (n) > H®", which we denote by . The assignment H +— 7 gives an
equivalence between the category of commutative Hopf algebras over k and the category
of k-algebras over the PROP &. Dually, the category of cocommutative Hopf algebras is
equivalent to the category of k-algebras over the opposite PROP &°P.

Now, observe that for any commutative Hopf algebra #, the functor X : & —
Vect; takes values in the category of commutative algebras, that is, it can be viewed as
a functor X : & — CommAlg, . We extend this last functor to the category FGr of all free
groups by taking the left Kan extension along the inclusion & < FGr. To be precise,
let FGr denote the category of based free groups whose objects are pairs (I", S), where
' = (S) is a free group with a specified generating set S, and morphisms are arbitrary
group homomorphisms I' — I'’ (not necessarily, preserving the generating sets). We have
the natural inclusion functor i : & < FGr that takes (n) to ((n), n). The Kan extension
of H along i then defines a functor FGr — CommAlg; that assigns to the free group (S)
on a set S the commutative algebra S ® H = ®;.5 H,;. We continue to denote this functor
by H.

Let X be a reduced simplicial set (or equivalently, a pointed connected topologi-

cal space). Recall that the Kan loop group construction gives a functor GX : A°? — FGr
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that takes [n] € A°P to the free group GX,, = (B,,) based on the set B, = X,, |\ 5¢(X},).

Now, given a commutative Hopf algebra #, we consider the composition of functors

GXx H
A°® — FGr = CommAlgy,

which defines a simplicial commutative algebra H(GX).

Definition 4.1. The representation homology of X in H is defined by
HR,(X,H) := 7, [H(GX)] = H,INHGX))]. (4.4)

Clearly, a morphism f : X — Y of reduced simplicial sets induces a map of
graded commutative algebras HR, (f, %) : HR, (X, H) — HR,(Y, H). Thus, representation
homology defines a covariant functor HR(—, #) : sSety — grCommAlg; . The following

proposition justifies the above definition of representation homology.

Proposition 4.1. Let G be an affine group scheme defined over k with coordinate
ring H = O(G). Then, for any X € sSet, there is a natural isomorphism of graded

commutative algebras
HR,(X,0(G)) = HR, (X, G). (4.5)
In particular, HRy(X, O(G)) = 7y (X) , where 7, (X) is the fundamental group of X.

Proof. If H = O(G), we have natural isomorphisms H((S)) = ®;.sO0G)s = ((S)¢
for any set S. This implies that H(GX) = (GX); in sCommAlg,. On the other hand, by
Proposition 2.1, the simplicial group GX is semi-free, and hence a cofibrant object in
sGr. This implies that (GX); = L(GX); in Ho(sCommAlg), which, in turn, implies the
isomorphism (4.5) in homology. The isomorphism for HR,(X, G) is the composition of

(4.5) with (3.6) and the natural isomorphism of groups 7y(GX) = 7, (X). |

Let I be a discrete group, and let X = BI" be the classifying space (i.e., the

simplicial nerve) of I'. As a simple application of Proposition 4.1, we get the following.

Corollary 4.1. HR,(BT',0(G)) = HR,(T', G) . In particular, HRy(BI', G) =T'.
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Proof. The Kan adjunction (2.3) gives the canonical cofibrant resolution GWI —
[ in sGr. Since I' is discrete, we have WI' = BI, and the result follows from

Proposition 4.1. u
Corollary 4.2. For any X,Y € sSet,, there is a natural isomorphism
HR,(X VY,G) = HR,(X,G) ® HR,(Y, G).

Proof. Recall that the wedge sum is a (categorical) coproduct in sSet. Since G is a
left adjoint functor, we have G(X v Y) = GX*GY. By Theorem 3.2, it follows that

LGEX VYY), = L(GX); ® LGY),.
The desired result is now immediate from Kiinneth's theorem and Proposition 4.1. H

4.2.1 The fundamental spectral sequence

Now, we introduce the functor categories &-Mod and Mod-®, whose objects are all
covariant (resp., contravariant) functors from & to the category of vector spaces. We
regard these objects as left and right modules over &, respectively. Both categories
are abelian with sufficiently many projective and injective objects. There is a natural

bifunctor
- Qg — : Mod-& x 6-Mod — Vecty,

which is right exact with respect to each argument, preserves sums, and is left balanced
in the sense of [16]. Explicitly, this bifunctor can be defined by formula (4.2) with §
replaced by &.

Since — ®g— is left balanced, the derived functors with respect to each argument
are naturally isomorphic, and we denote their common value by Tor® (-, -). Note that
for any left &-module M, the functor — ® M : Mod-& — Vect; is left adjoint to
the functor Hom(M, -) : Vect, — Mod-®, where Hom(M, V) is the right &-module
(n) — Homy(M((n)), V) for any vector space V. Similarly, for any right &-module NV, the
functor N ® — is left adjoint to the functor Hom(N/, -) : Vect; — ®-Mod. Hence, both
functors - ® ¢ M and N ® — commute with colimits.

To state our 1st theorem we need some notation. First, we recall that if " is
any group, k[I'] is a cocommutative Hopf algebra; thus, k[I'] defines a right &-module
in Mod-&. Now, if X is a reduced simplicial set, k[GX] defines a simplicial right &-
module in sMod-&. Applying the normalization functor N : sMod-& — Ch_(Mod-®) to
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this simplicial module, we get a chain complex of &-modules and hence an object in the

derived category Z(Mod-®). Abusing notation, we will denote this object by N(kIGX]).

Theorem 4.2. For any X € sSet, and any commutative Hopf algebra #, there is a

natural isomorphism of graded commutative algebras
HR,(X,H) = H,INKIGX])) ®% Hl.

To prove Theorem 4.2 we need a simple lemma. Recall that for n > 0, we denote
by k(n) the group algebra of the free group based on the setn = {1, 2,...,n}. Regarding it
as a cocommutative Hopf algebra, we get a right &-module that (to simplify the notation)

we also denote by k(n).
Lemma 4.1. For each n > 0, the &-module k(n) is a projective object in Mod-®.

Proof. For a fixed n > 0, let " := k[Homg(—, (n))] denote the standard right
®-module associated to the object (n) € ®. By Yoneda lemma, there is a natural
isomorphism Homy 4 ¢ (A", N) = N((n)) for any N' € Mod-&. The sequence of &-
modules 0 - N/ — N — N” — 0 is exact in Mod-® if and only if the sequence of
k-vector spaces 0 — N'({n)) — N({(n)) - N”((n)) — 0 is exact for all n > 0. It follows
that Homy,_4 (R, —) : Mod-§ — Vecty is an exact functor, and hence h" is a projective

object in Mod-®. On the other hand, for any m > 0, we have
h"((m)) = k[Homg ((m), (n)] = kl(n)*™ = [kn)I®™ = k(n)((m)),
which shows that k(n) = h" as right &-modules. This finishes the proof of the lemma.l

Proof of Theorem 4.2. By Lemma 4.1, for any n > 0, k(n) is a projective right &-
module such that k(n) ® H = H((n)). Since colimits of projective modules are flat and
commute with left Kan extensions, this implies that k(S) is a flat right &-module and
kE(S)®sH = H((S)) for any set S. Extending the last isomorphism levelwise to simplicial
sets, we get an isomorphism of simplicial vector spaces kIGX] @ H = H(GX). Further,
since each k[GX,] is a flat right &-module, the normalized chain complex N(kIGX]) is
a complex of flat &-modules; hence, we have a natural isomorphism in the derived
category Z(Mod-®):

N(KIGX]) ®% H = N(*IGX]) ® H = N(H(GX)).
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At the homology level, this induces the desired isomorphism of Theorem 4.2. |

For our next theorem we recall that the singular chain complex C,(QX; k) of the
(Moore) loop space QX of a pointed topological space X has a natural structure of a
DG Hopf algebra. The coproduct on C,(Q2X;k) is induced by the Alexander—-Whitney
diagonal, while the product comes from the structure of a topological monoid on QX
via the Eilenberg-Zilber map (see, e.g., [26, Section 26]). Thus, the homology H, (QX; k)
of QX is a graded cocommutative Hopf algebra called the Pontryagin algebra of X.

Now, any graded cocommutative Hopf algebra H defines a graded right &-
module H (i.e., a contravariant functor from & to the category of graded vector spaces).
For q € Z, we let H, denote the graded component of H of degree g; thus, H,: 6P —
Vecty is a right &-module that assigns (n) — [H®"]q, the g-th graded component of the
graded vector space H®". Note that the &-module H q depends on all graded components
of the Hopf algebra H, and not solely on H,. With this notation, we can now state our

second theorem, which is an analogue of [60, Theorem 2.4] for representation homology.
Theorem 4.3. There is a natural 1st quadrant spectral sequence
2 _ ® .
Epq, = Tor,) (H(QX; k), 1) :p> HR,(X,H) (4.6)
converging to the representation homology of X.

Proof. Recall from the proof of Theorem 4.2 that N(k[(X)]) is a nonnegatively graded
chain complex of flat right ®&-modules. Hence, for any left &-module %, there is a

standard “Hypertor” spectral sequence (see, e.g., [79,Application 5.7.8] ):
E2, = Tory (H,IN(KIGX)], 1) = Hpiq INKIGX]) ®¢ H.

By Theorem 4.2, the limit of this spectral sequence is isomorphic to HR, (X, #). To prove
the theorem we need only to show that H [N(kKIGX])] = H, (QX; k) as graded right &-
modules.

By Kan's Theorem 2.1, |GX| is weakly equivalent to the based loop space QX.
In fact, both |GX| and QX have natural structures of topological monoids, and they are
known to be weakly equivalent as an H-spaces (see, e.g., [11, Sect. 2 and Prop. 3.3(c)]).
This implies, in particular, that H,[N(kK[GX])] = H, (Q2X; k) as graded Hopf algebras, and
hence H,IN(kKIGX]] = H,(QX; k) as graded &-modules. Note that N(k[GX]) stands here
for the normalized chain complex of the simplicial Hopf algebra k[GX], while N(k[GX])
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in the above spectral sequence denotes the normalized chain complex of the simplicial
®-module k[GX]. We need to check that H_[N(kKIGX])] = H_IN(IGX])] as graded &-
modules. Now, the simplicial &-module k[GX] assigns to (m) € & the simplicial vector
space kIGX,]®™ = {k[GX,]®™},.,. By the Eilenberg-Zilber theorem, the normalized
chain complex of this simplicial vector space is homotopy equivalent to N(k[GX])®™,
while, by Kunneth's formula, the homology of N(k[GX])®™ is naturally isomorphic to
H, [N (k[GX])]®™. This shows that H, (N (k[GX]))((m)) = H,IN(k[GX])]®™ for any m > O,
completing the proof of the theorem. |

Theorem 4.3 has several interesting implications. First, we consider one impor-

tant special case when the spectral sequence (4.6) collapses at E2-term.

Corollary 4.3. Let I' be a discrete group. Then, for any affine algebraic group G, there

is a natural isomorphism

HR, (BT, G) = Tor® (kIT'l, O(G)).

In particular, HRy(BT', G) = k[l ®¢ O(G) .

Proof. The classifying space X = BT is an Eilenberg-MacLane space of type K(I', 1).
Its loop space QX is homotopy equivalent to I', where I' is considered as a discrete
topological space. Hence, Hq(QX; k) = 0 for all g > 0, while Hy(QX; k) = k[I'] as a Hopf
algebra. Thus, for X = BI', the spectral sequence (4.6) collapses on the p-axis, giving the

required isomorphism. |

Remark. Combining the isomorphisms of Corollaries 4.1 and 4.3, we can express the
representation homology of I" (originally defined as a non-abelian derived functor) in

terms of classical abelian homological algebra:

HR, (', G) = Tor® (kIT'1, O(G)).

In degree 0, we have a natural isomorphism expressing the coordinate ring of the

representation variety Rep;(I') as a functor tensor product:

OlRep; (M Z kT @y O(G).
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This last isomorphism was found in [46], and it was one of the starting points for the

present paper.

Remark. The result of Theorem 4.3 holds for any (not necessarily, monoidal) left &-
module. In particular, if we take a reductive affine algebraic group G and define a left
&-module O(G)¢ € ®-Mod by the formula (n) — [O(G)®"]¢ = O(Gx .m. xG)?, then, for

any X € sSet,, we obtain a homology spectral sequence
2 _ & ) G G
EZ, = Tory (H,(QX; k), O(6)°) = HR, (X, G) 4.7)

converging to the G-invariant part of representation homology of X. The proof of
Corollary 4.3 shows that, for X = BT, the spectral sequence (4.7) collapses on the p-

axis, giving an isomorphism
HR, (BT, G)¢ = Tor? (kIT'], O(G)°).

In degree 0, we therefore have (’)[RepG(F)]G = kM ®g O(G)C.

Remark. Using Corollary 4.3, we can write the 5-term exact sequence associated to

the spectral sequence (4.6) in the form
HR,(X, G) = HR,(7,(X), G) — H,(2X; k) ® O(G) - HR,(X,G) — HR, (,(X), G) — 0.

If the fundamental group n,(X) is f.g. virtually free (in particular, finite or f.g. free),
then, by [9, Theorem 5.1], HR;(; (X), G) vanishes for all i > 0, and hence in this case, we
get

HR, (X, G) = H,(QX; k) ®¢ O(G).

To state further consequences of Theorem 4.3 we introduce some terminology.
We will say that a map f : X — Y of pointed topological spaces is a Pontryagin
equivalence (over k) if it induces an isomorphism H, (QX; k) = H,(QY; k) of Pontryagin
algebras (or equivalently, a quasi-isomorphism C,(QX;k) — C,(QY;k) of DG Hopf
algebras). The next result is obtained by applying to (4.6) a standard comparison

theorem for homology spectral sequences (see [79, Theorem 5.1.12]).
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Corollary 44. If f : X — Y is a Pontryagin equivalence, the induced map on
representation homology f, : HR, (X, H) > HR,(Y,H) is an isomorphism for any Hopf
algebra H.

We remark that Corollary 4.4 does not say that an arbitrary isomorphism of
Hopf algebras H,(QX; k) = H,(QY; k) gives an isomorphism HR, (X, H) = HR_ (Y, H).
(Indeed, an abstract isomorphism of Pontryagin algebras need not even induce a map on
representation homology.) Still, Corollary 4.3 shows that if both X and Y are aspherical
spaces, then any isomorphism of Pontryagin algebras induces an isomorphism on
representation homology.

Next, we recall that the singular chain complex C,(X; k) of any space X is natu-
rally a DG coalgebra with comultiplication defined by the Alexander-Whitney diagonal.
Moreover, if X is path-connected, there is a quasi-isomorphism of DG coalgebras (see
[27, Theorem 6.3])

C.(X; k) ~ BIC (RX; k)],

where B is the classical bar construction. Since B preserves quasi-isomorphisms, any
Pontryagin equivalence f : X — Y of path-connected spaces is necessarily a homology
equivalence, that is, it induces an isomorphism on singular homology H,(X;k) >
H,(Y; k). The converse is not always true unless X and Y are simply connected. In the

latter case, we have the following well-known result (cf. [65, Part I, Prop. 1.1]).

Lemma 4.2. Let f:X — Y be a map of simply connected pointed topological spaces.
The following conditions are equivalent:
(1) fis arational homology equivalence: that is, f, : H (X; Q) = H (Y;Q);
(2) f is arational Pontryagin equivalence: that is, f, : H,(QX; Q) S H,(QY;Q);
(3) fis arational homotopy equivalence: that is, f, : 7,(X) ®; Q = 7,(Y) ®, Q.

Proof. The equivalence (1) < (2) follows a classical theorem of Adams [1] that asserts
that, for any simply-connected space X, there is a quasi-isomorphism of DG algebras:
C.(QX; k) ~ QI[C,(X; k)], where  is the cobar construction.

To prove that (2) < (3) we first recall that, for any simply connected X, the
Q-vector space Ly = 7,(QX)qg = 7,1(X) ® Q carries a natural bracket (called the
Whitehead product) making it a graded Lie algebra (called the homotopy Lie algebra of
X.). Thus, amap f : X — Y is a rational homotopy equivalence if and only if it induces

an isomorphism of Lie algebras f, : Ly — Ly. Then, a classical theorem of Milnor and
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Moore (see [26, Theorem 21.5]) implies that the Hurewicz homomorphism x (QX) —
H,(Q2X;Q) induces an isomorphism of graded Hopf algebras ULy > H,(Q2X;Q), where
U(Ly) is the universal enveloping algebra of Ly. This yields the equivalence (2) < (3).H

We say that a map f : X — Y of simply connected spaces is a rational homotopy

equivalence if the equivalent conditions of Lemma 4.2 hold.

Proposition 4.2. A rational homotopy equivalence induces an isomorphism on
representation homology. Thus, HR,(X,7) depends only on the rational homotopy
type of X.

Proof. By Lemma 4.2(2), a rational homotopy equivalence X — Y induces an
isomorphism H_(QX; Q) = H,(QY;Q). Since char(k) = 0, we have Q C k, and the
universal coefficient theorem implies that H,(QX; k) = H,_(Q2Y; k). The claim then follows
from Corollary 4.4. n

Next, we look at higher connected spaces. Recall that a space X is called n-
connected if X is path-connected and its 1st n homotopy groups vanish, that is, 7;(X) =

Oforl <i<n.

Proposition 4.3. Let X be an n-connected space for some n > 1, and let H = O(G).
Then

k for q= 0
HR,(X,G) = 0 for 1<g<n (4.8)
Hyp 1 (X;9") for n<g=<2n-1,

where g := Lie(G) is the Lie algebra of G and g* is its k-linear dual.
Proof. 1If a space X is n-connected, its homotopy Lie algebra Ly = T (QX)g =1 X)g

is n-reduced, that is, (LX)q =0for0 < g <n—1.Since H (Q2X;Q) = ULy and Q C k,
we have Hy(QX; k) =k, Hq(QX; k)=0forl1 <g<n-1,and

H, (X k) = (Ly)g ®g k= 1y (0, 2 Hyy (X;k) for n<g<2n-1,

where the last isomorphism is a consequence of the rational Hurewicz theorem (see,
e.g., [48]).
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Now, recall that for a fixed g > 0, the right &-module Eq(QX; k) is defined as
the functor 8 — vecty, (m) — [H (QX; k)®m]q. It follows from this definition that

k for g=0

H,(QX;k) =1 0 for 1<gq<n-1
linZ®Hq+1(X;k) for n<qg<2n-1,

where lin, is the linearization functor:
ling: & > Vecty (m)> (m)y, ®; k=k®™, (4.9)

and lin; : &°° — Vect; denotes its composition with linear duality. Thus, for X n-

connected, the E2-terms of the spectral sequence (4.6) can be identified as

k for p=0g=0
Tor® (k, f 0g=0

B2 = O k) o p=74 (4.10)
0 for p>01<qg<n

Torgj(linz,ﬂ)@HqH(X;k) for p>0n<g<n-1.

By Lemma 4.1, the right &-module k = k(0) is projective. Hence, E;2>,0 = 0forp > 0. On the
other hand, liny ® s X = g*, while Torff (ling, %) = 0 for p > 0. Hence, forn < g < 2n-1,

we have
Ej,=¢"®H,,(X;k) =H,,,(X;¢"), Eo;=0 forp=>D0. (4.11)

The vanishing of qu for all p > 0 in the range 0 < g < 2n — 1 shows that the spectral
sequence (4.6) collapses on the g-axis for these values of g. Thus, we have HR,(X, H) =
Eg,q for 0 < g <2n—1.By (4.10) and (4.11), these are the desired isomorphisms (4.8).

Remark. Proposition 4.3 shows that the representation homology of an n-connected
space in sufficiently low degrees (g < 2n—1) depends only on the Lie algebra g. The main
theorem of [10] implies a much stronger result: the whole HR, (X, G) is determined by
g if X is (at least) 1-connected. Thus, for simply connected spaces, the representation
homology with coefficients in an algebraic group G depends only on the connected
component G, of the identity element in G: that is, HR, (X, G) = HR, (X, G,) . This last
statement is not true in general, for non-simply connected spaces: indeed, already in
the simplest example X = S!, we have HR_(S!, G) = O(G).
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5 Representation Homology and Higher Hochschild Homology

In Section 4.2, we defined representation homology by analogy with Hochschild homol-
ogy, using Kan's simplicial loop group construction. In this section, we establish a direct
relation between these two homology theories using another classical construction in

simplicial homotopy theory due to Milnor [56].

5.1 Main theorems

We begin by recalling a standard simplicial model for a (reduced) suspension XX of a

space X. The suspension functor on pointed simplicial sets is defined by
Y : sSet, — sSet,, X CX)/X,

where C(X) € sSet, is the reduced cone over X. For a pointed simplicial set X = {X,,},,-,
the set of n-simplices in C(X) is given by

CX), ={x,m) : xeX 0<m<nj},

n-m/'
with all (%, m) being identified to *. The face and degeneracy maps in C(X) are defined
by

x,m-1) if 0<i<m
d;: CX), »> CX),_,. (x,m) — % ] ]
(di_m(x), m) ifm<i<n

$;j 1 CX)p = CX)pyy, X, M) > x,m+1) if0<j<m
(s @,m) i m<j<n,

where d;(x,1) = x for all x € X,,.

The embedding X — C(X) is given by x — (x,0), and XX is defined to be the
corresponding quotient set. Note that, unlike C(X), the simplicial set X is reduced,
since (x,0) = * in XX for all x € X (in particular, we have C(X), = {(x,0) : x € X} ~
{x}). Now, for any pointed simplicial set X, there is a homotopy equivalence |ZX| =~
¥|X|, where ¥|X| is reduced suspension of the geometric realization of X in the usual
topological sense.

The next two theorems constitute the main result of this section.
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Theorem 5.1. For any commutative Hopf algebra # and any pointed simplicial set X,
there is a natural isomorphism of graded commutative algebras

HR,(ZX,H) = HH, (X, H; k).

To state the next theorem, we recall that there is a natural way to make an
arbitrary simplicial set pointed by adding to it a disjoint basepoint. To be precise, the
forgetful functor sSet, — sSet has a left adjoint (-), : sSet — sSet, obtained by
extending to simplicial sets the obvious functor X — X u {x} on the category of sets.
Explicitly, if {X,},.o is a simplicial set, then (X,),, = X, U {*} for all n, and the face
and degeneracy maps of X, are the (unique) basepoint-preserving extensions of the
corresponding maps of X. Being a left adjoint, the functor (-), commutes with colimits;

in particular, we have
X, = X1,

where |X|, is the space obtained from |X| by adjoining a basepoint.

Theorem 5.2. For any commutative Hopf algebra # and any simplicial set X, there is

an isomorphism of graded commutative algebras
HR,(Z(X,),H) = HH, (X, H).

The proofs of Theorems 5.1 and 5.2 are based on a classical simplicial group

model of the spaces Q¥ X, which we now briefly review.

5.2 Milnor’s FK-construction

For a pointed simplicial set K € sSet,, we define FK := GXK. Then, by Kan's

Theorem 2.1, there is a homotopy equivalence of spaces
IFK| ~ QX|K].
The following observation is due to Milnor [56] (see also [39, Theorem V.6.15]).

Lemma 5.1 (Milnor). For any K € sSet,, FK is a semi-free simplicial group generated

by the simplicial set K with basepoint identified with 1, that is,

FK, = (GZK), = (K,)/{sg(x) =1) = (K,\s5(*)).
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The face and degeneracy maps are induced by the face and degeneracy maps of K.
Proof. By definition of the reduced suspension, we have (x,0) = % for all x € K and

So(x,m) = (x,m + 1) for all m > 0. Hence, (XK),,/5¢(2K,) = {(x,1)|x € K,}, with
(*,1) being the basepoint. It follows that

(GZK),, = ((EK)y41/50(ZKy)) = (Kp)/(x=1).
To calculate the face and degeneracy maps, we recall from Section 2.2 that
dg™(x, 1) = d;(x, 1) dy(x, D! = (dox, 1) (x,07" = (dox, 1),

and dP*(x,1) = d;,,(x,1) = (d;x, 1) for i > 0. Similarly, s;?’EK x,1) =s;;(x,1) = (s;x,1)

for all j > 0. This proves the desired lemma. |

5.2.1 Proofs of Theorems 5.1 and 5.2
Recall that, for a commutative Hopf algebra H, we denote by # the functor FGr —
CommAlgy on the category of based free groups obtained from the &-module (n) — H®"

by taking its left Kan extension along the inclusion & — FGr (see Section 4.2).

Proposition 5.1. There is an isomorphism of functors from sSet to sCommAlgy:
HoGoZo(-)y =(-®H),

where # in the right-hand side is regarded as a commutative k-algebra.

Proof. By Lemma 5.1, for any simplicial set X = {X,,},.o, there are natural isomor-

phisms of groups [GX(X,)l,, = (X,), n > 0, with structure maps on GX(X,) being

compatible with those of X. By applying the functor #, we thus get isomorphisms of

simplicial commutative algebras
HIGEZX ] = HIX)] = X, QH,
which are obviously functorial in X. This proves the proposition. |

Theorem 5.2 is an immediate consequence of the above proposition. To prove

Theorem 5.1, we first note that, although the unreduced cone on a space X coincides
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with the reduced cone on X, the corresponding suspensions differ. Instead, for any

pointed space X, there is a homotopy equivalence (see [54, p. 106])
T(X,) ~EX VS (5.1)

From this we can deduce the following.

Lemma 5.2. For a pointed topological space X, there is a natural isomorphism
HR,(2(X,), H) = HR,(ZX,H) @ H.

Proof. Applying Corollary 4.2 to (5.1), we have HR (X(X,),H) = HR,(ZX,H) ®
HR,(S!, H). Now, since S! = ¥(pt,), Theorem 5.2 implies HR,(S!, %) = HH, (pt, H) = H,
where # is concentrated in degree 0. It follows that HR, (X(X,),H) = HR, (23X, H) @ H

as desired. |

Lemma 5.2 shows that HR,(XX,H) = HR,(2(X, ), H) ®3 k. Combining this last

isomorphism with that of Theorem 5.2, we now conclude
HR,(ZX,H) = HR*(E(X+),H) Ry k= HH, (X, H) Ry k= HH, (X, H; k).

This proves Theorem 5.1.

5.3 Examples

We conclude this section with a few simple examples illustrating the use of
Theorems 5.1 and 5.2. More examples will be given in the next two sections. In what
follows, G denotes an arbitrary affine algebraic group and g = Lie(G) stands for its Lie

algebra.

5.3.1 Spheres
The representation homology of the circle S! is given by HR,(S!,G) = O(G) and
HRi(Sl, G) = 0 for i > 0. This follows, for example, from Lemma 4.1 and Corollary 4.3

(since S! = BZ). Now, for higher dimensional spheres, we have the following.

Proposition 5.2. HR,(S",G) = Ay(g*[n —1]) forall n > 2.
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Proof. Note that S® ~ ¥ S"! for all n > 2. By Theorem 5.1, we conclude
HR,(S",G) = HH,(S" 1, 0(®);k) = Ao (@ (BG)n— 1) ®pg k = A(g*ln—11),
where the 2nd isomorphism follows from [60, Section 5.5]. [ |

5.3.2 Suspensions

We now generalize the previous example to arbitrary suspensions.
Proposition 5.3. Let X be the suspension of a pointed connected space X of finite
type. Then

HR,(ZX,G) = AR [H,(X; g"), (5.2)

where ﬁ*(X; g*) stands for the reduced (singular) homology of X with constant coeffi-
cients in g*.

Consequently, by induction,

HR,(2"X,G) = Ap(H,(X;gHIn—-1]) Vn>1.

Proof. It is known (see [26, Theorem 24.5]) that XX is rationally homotopy equivalent
to a bouquet of spheres: XX~ \/;;S", where each S" have dimension n; > 2. By
Proposition 4.2, it thus suffices to compute HR (S, G) for S := \/,,;S™. Note that the
reduced homology H,(S; k) of S is isomorphic to ®,.; k- v; with trivial coproduct, where
v; is a basis element of homological degree deg(v;) = n;. Now, by Corollary 4.2 and

Proposition 5.2, we have

HR,(SX,G) = HR,(S,G) = iejl HR,(S",G) = iegIAk(g*[ni— 1)
~ D . ~ b . .
= Ay, 0 - 1) = Ak(nzzg ® H,(=X; k)n — 1])
= Ak<nejlg* ®H, (X; k)[n]) = Ak[g*@)ﬁ*(X; )] = AJHE,X; g%,

where the last isomorphism is a consequence of the Universal Coefficient Theorem. H

As a consequence of Theorem 5.2, Lemma 5.2, and Proposition 5.3, we have the
following general formula for the higher Hochschild homology of X with coefficients in

a commutative Hopf algebra.
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Corollary 5.1. For any pointed connected topological space X of finite type,
HH, (X, 0(G)) = Ap|H,X k) @ Q'(6)]. (5.3)

The isomorphism (5.3) is a refinement of Pirashvili's generalization of the
classical HKR theorem that (in our notation) asserts that HH, (X, A) = H,(X; k) ®z A

for any smooth commutative algebra A (cf. [60, Theorem 4.6]).

5.3.3 Co-H-spaces

The result of Proposition 5.3 can be seen in a more conceptual way. The key fact is
that the suspension ¥X of any pointed connected space X is a cogroup object in the
homotopy category of pointed spaces, with coproduct ¥X — XX v XX given by the
natural “pinching” map (see, e.g., [73, p. 41]). The functor HR,(-,G) : Ho(Topg ,) —
grCommAlg, preserves coproducts and hence maps cogroup objects in Ho(Top,) to
cogroup objects in grCommAlgy. The latter are precisely the graded commutative Hopf
algebras; thus, the representation homology of XX carries a natural Hopf algebra
structure for any space X. Since XX is 1-connected, HR, (XX, G) is actually a connected
graded commutative Hopf algebra, and hence, by the (dual) Milnor-Moore theorem (see
[29, Theorem 0.2]), its underlying algebra structure is free: that is, HR (XX, G) = A,V
for some graded vector space V. As shown in the proof of Proposition 5.3, the rational
equivalence XX~ \/;;S™ implies V = H,(X;g"), and it is easy to see that (5.2) is
actually an isomorphism of graded Hopf algebras.

The above argument is similar to Berstein’s “categorical” proof of the classical
Bott-Samelson theorem describing the Pontryagin algebra of the suspension X (see
[13]). This formal argument works actually for any (simply connected associative) co-H-
space, provided one replaces the homology H, (X, k) with the so-called Berstein-Scheerer
coalgebra B, (X, k) of X (see, e.g., [2]). In this way, we have the following generalization

of Proposition 5.3.

Proposition 5.4. Let X be a 1-connected, associative co-H-space. Then
HR, (X, G) = Ay[B.(X, k) ® g*],

where B, (X, k) is the Berstein—Scheerer coalgebra of X.

We remark that B, (£X,k) = ﬁ*(X, k) as coalgebras (see [2, p. 1150]), so in the

case of suspensions, Proposition 5.4 indeed reduces to Proposition 5.3.
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6 Examples: Surfaces and 3-Manifolds

In this section, using standard topological decompositions, we compute representation
homology of some classical non-simply connected spaces. Our examples include closed
surfaces (both orientable and non-orientable) as well as some three-dimensional spaces
(link complements in R3, lens spaces, and general closed orientable 3-manifolds).
The representation homology of surfaces and link complements is given in terms
of classical Hochschild homology of O(G) (or O(G™) for some n > 2) with twisted
coefficients. The representation homology of a closed 3-manifold M is expressed in
terms of a differential “Tor”, which gives rise to an (Eilenberg—Moore) spectral sequence

converging to HR, (M, G).

6.1 Surfaces

6.1.1 The torus

As a cell complex, the 2-torus T? = S! x S! can be constructed as the homotopy cofibre
(the mapping cone) of the map « : S} — S} v S}, where the subscripts on the circles
indicate the generators of the respective fundamental groups, and the map itself is

specified, up to homotopy, by its effect on these generators:
a(c) = la, bl := aba b (6.1)

Thus, T2 ~ hocolim[% « S. = Sl v Sj1, where the homotopy colimit is taken in the
category Top , of connected pointed spaces. Applying to this the Kan loop group functor
G (more precisely, the composition of G with the Eilenberg subcomplex functor S, see

Section 2.2), we get a simplicial group model for T?:
G(T?) = hocolim[1 « F, 5 F,1. (6.2)

Here IF; and F, are the free groups on the generators c and {a, b} respectively; the map
« is given by (6.1), and the homotopy colimit is taken in the category sGr of simplicial
groups.

Now, by Theorem 3.2, the derived representation functor preserves homotopy

pushouts for any algebraic group G. Hence, it follows from (6.2) that

O[DRep(T?)] = hocolim[ k < O(G) =5 O(G x G)], (6.3)
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where the homotopy colimit is taken in sCommAlgy, and the map «, : O(G) - O(G x G)
is induced by (6.1) (explicitly, «,(f)(x, y) = f(x, y]I) for f € O(G)). Since

hocolim[k < O(G) = O(G x G)] = O(G x G) @, k,
by Proposition 4.1, we conclude that
HR,(T?,G) = Tor?@(O(G x G), k), (6.4)

where O(G x G) is viewed as a (right) O(G)-module via the algebra map o,.

By standard homological algebra (see [16, Theorem 2.1, p. 185]), we can identify
the Tor-groups in (6.4) as the classical Hochschild homology of O(G) with coefficients
in the bimodule O(G x G), where the right O(G)-module structure is given via the map

o, and the left module structure via the augmentation map ¢ : O(G) — k:
HR,(T?,G) = HH,(O(G), ,0(G x G),). (6.5)

Alternatively, for classical (matrix) groups G, we can give an explicit “small” DG
algebra model for the representation homology HR, (T?, G). Specifically, let m := Ker(e)
denote the maximal (augmentation) ideal of O(G) corresponding to the identity element
e € G. Assume that m is generated by a regular sequence of elements (ry,7,,...,7y)
in O(G), so that d = dim G. Consider the free module E := O(G)®% and define the O-
module map 7 : E — OG) by n(fi. fo,....fy) == Zld:l r;f; . Then, associated to (E, ) is

the (global) Koszul complex K, (G) := (Az‘,)(G) (E),8g) with differential

n
Sleg ey AL ney) =D (=Dim(e) egA... AGA...Ney,.
i=0

Since m is generated by a regular sequence, the canonical projection K, (G) - O(G)/m =
k is a quasi-isomorphism of complexes, and therefore K, (G) is a free resolution of k over
O(G). It follows from (6.4) that

Tor® @ (O(G x G), k) = H,LA(T?,G)], (6.6)

where A(T?, G) := O(G x G) ®o(c) K. (G) is a commutative DG algebra with differential
d =1d ® 8. In particular, HR,(T?,G) =0 for all i > dimG.
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We conclude this example with a conjectural description of the G-invariant
part of representation homology HR,(T?, G)¢. Our conjecture can be viewed as a
multiplicative analogue of the derived Harish-Chandra conjecture proposed in [6].

Assume that G is a connected reductive algebraic group of rank I > 1 defined
over an algebraically closed field k of characteristic zero. Let T C G be a Cartan
subgroup (i.e., a maximal torus) in G, and let W be the corresponding Weyl group.
Note that, since T is commutative, the map «, : O(T) — O(T x T) associated to T
factors through the augmentation ¢ : O(T) — k. Hence, by (6.4), we have canonical

isomorphisms

HR, (T2, T) = Tor?D(O(T x T), k) (6.7)

12

O(T x T) @ Tor® D (k, k)

12

O(T x T) ® Aj(mp/m2)

12

O(T x T) ® AL(h*),

where m; := Ker(e) is the augmentation ideal, h = (mT/m%)* is the Lie algebra of T (i.e.,
a Cartan subalgebra of g), and A} (h*) is the (homologically) graded exterior algebra with
b* placed in degree one.

Now, by functoriality, the natural inclusion T < G induces a map of simplicial

commutative algebras

®5(T?) : OIDRep;(T%)]¢ — O[DRep,(T#)]Y, (6.8)

which is (a multiplicative analogue of) the derived Harish-Chandra homomorphism
constructed in [6]. Then, the multiplicative version of the derived Harish-Chandra

conjecture states the following.

Conjecture 1. Assume that G is one of the classical groups GL,(k), SL,(k), Spy,(k),
n > 1, or any simply connected, semi-simple(It is known that every simply connected
reductive affine algebraic group is automatically semi-simple. This follows from two
classical facts: (1) every reductive Lie algebra is a product of a semi-simple one and
an abelian one; (2) there are no nontrivial simply connected abelian reductive algebraic
groups.) affine algebraic group. Then the derived Harish-Chandra homomorphism (6.8)

is a weak equivalence in sCommAlg,. Hence, by (6.7), there is an isomorphism of graded
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commutative algebras
HR,(T?,G)° = [O(T x T) ® AL(h")1"W. 6.9)

We illustrate Conjecture 1 for G = GL,,. Since O(GL,) = k[Xij,det(Xij)*l]liilan,

the elements {x;; = form a regular sequence in O(GL,,) generating the maximal

ih<ij<n
ideal m, so we have a canonical commutative DG algebra representing HR (T2, GL,):

A(T?,GL,) = klx;j, yyj, 0 det(X) ™", det(Y) 1)y jcp-
Here the variables x;; and y;; have homological degree 0, 6;; have homological degree 1,
and det(X) and det(Y) denote the determinants of the generic matrices X := = [lxll and
Y= |yl The differential on A(T?, GL,) can be written in matrix terms as
de=xyx 'y ! -1

n’

where © := 11051 and I, is the identity n x n-matrix. The Harish—-Chandra homomorphism
Oy (T?) : A(T?,GL,)6n —>k[x1 XL yEL R g ...,en]sn

is given explicitly (on generators) by the following map:

Xjj = 5in1‘ Vij = Sijyi, 9 — 51]01,

and the derived Harish-Chandra conjecture asserts that &gy (T?) induces an isomor-

phism (cf. (6.9))
2 GL +1 1 Sn
HR,(T%, GLy) % S ks, o x v vt by 6] (6.10)
where 0, ...,0, have homological degree 1 and the symmetric group S,, acts diagonally

by permuting the variables. Note that, in the case of GL, (k), unlike for other algebraic
groups, Conjecture 1 follows from the derived Harish-Chandra conjecture for the
corresponding Lie algebra gl, (k) stated in [6]. This is because the Harish-Chandra map
gy, (T?) can be obtained by formally localizing the derived Harish-Chandra map for
the Lie algebra gl,, (k) (cf. [6, Sect. 4]). In particular, the evidence collected in [6] for gl,, (k)

also supports Conjecture 1 for GL,, (k). we list some of this evidence here.
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(1) Conjecture 1 holds for GL,(k) and GL., (k). This follows from [6, Theorems
4.1 and 4.2(ii)].

(2) For all n > 1, the map (6.10) is degreewise surjective. This follows from [6,
Theorem 4.2(i)].

3) Foralln > 1, HR;(T? GL,)% = 0 for i > n. This follows from [7, Theorem
271.

4) For any G as in Conjecture 1, the map (6.10) is an isomorphism in homo-
logical degree zero, that is, HRy(T?, G)¢ = O(T x T)W. This follows from a
theorem of Thaddeus [74] (see also [71]).

Finally, we remark that, for G = GL,(k), SL,(k), and Sp,,(k), the Harish-
Chandra map is known to be an isomorphism in homological degree 0: HRy(TV, G)¢ =
O(TY)W for all tori TV, N > 2 (see [71]). However, by results of [6, Sect. 5.2], the above
isomorphism does not extend to higher homological degrees when N > 3. In other
words, the derived Harish Chandra homomorphism &g, (TV) is not a week equivalence

for higher dimensional tori ™, N > 3.

6.1.2 Riemann surfaces

The above computation of representation homology of the 2-torus naturally generalizes
to Riemann surfaces of an arbitrary genus. To be precise, let g denote a closed

connected orientable surface of genus g > 1. As a 2-dimensional cell complex, X, can be
described as the homotopy cofibre of the map o9 : S} — Vv¥_, (S}li % Sll)i) defined by

9 (c) = lay,bylla,, byl ... [ag,bg], (6.11)

where al,bl,...,ag,bg denote the a- and b-cycles on Eg generating the fundamental
group 7y (2, *). This gives the simplicial group model G(X,) = hocolim[1 « F, LA Fayl

of Eg, which, in turn, implies
9
OIDRepg(3,)] = hocolim [k < O(G) <> O(G*)] = O(G¥) @, k.
where the map o : O(G) — O(G9) is defined by

)X, Y10 Xy V) = Fx, 1] X, 75) - [xg, ) f € OG).
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By Proposition 4.1, we conclude
HR,(Z,,G) = Tor{@(0(G%), k) = HH,(O(G), ,0(G%),), (6.12)

where SO(ng ), is the bimodule with left and and right O(G)-module structure given by
the maps ¢ and o, respectively.

In case when m C O(G) is generated by a regular sequence, we can also express
the representation homology of ¥, as the homology of the commutative DG algebra
A(Eg, G) = O(G%) R K (G), where K, (G) is the global Koszul complex constructed

in Section 6.1.1:
HR, (24, G) = H*[A(Zg,G)].

Like in the torus case, for a reductive group G with a Cartan subgroup T, there

is an algebra map induced by the derived Harish-Chandra homomorpism ®,(X;):
HR,(Z,,6)° — [0(T%) & Aj(HH1"Y,

where W operates diagonally on the target. However, in contrast to the torus case, this
map seems far from being an isomorphism in general. In fact, for g > 2, it is conjectured
in [9] that HR;(Z4,G) = 0 if i > dim Z(G), where Z(G) denotes the center of G; in
particular, this implies that HR;(2,, G) = 0 for all i > 0 if G is semisimple.

6.2 3-Manifolds

6.2.1 Link complements in R3

By a link L in R® we mean a smooth (oriented) embedding of the disjoint union S'u...uS!
of (a finite number of) copies of S! into R3. The link complement X := R3\L is then
defined to be the complement of an (open) tubular neighborhood of the image of L in R3.
To describe a simplicial group model for X we recall two classical facts from geometric
topology (cf. [14]). First, by a well-known theorem of Alexander, every link L in R® can
be obtained geometrically as the closure of a braid g in R® (we write L = 8 to indicate
this relation). Second, for each n > 1, the braids on n strands in R3 form a group B,
(the Artin braid group), which admits a faithful representation by automorphisms of

the free group F,, (the Artin representation). Specifically, the group B,, is generated by

n — 1 elements (“flips”) o,, 0y, ..., 0,,_; subject to the relations
0;0; = 0;0; Gt ji—jl =1, 0;0,0; =0;0;0; i jli—-jl=1,
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and in terms of these generators, the Artin representation B,, — Aut(F,,) is given by

-1
X; = XX X
0; 1) X4 P X (6.13)
Xj X G#£i,i+1).

To simplify the notation we will identify B,, with its image in Aut([F,,) under (6.13).
The next proposition can be viewed as a refinement of a classical theorem
of Artin and Birman [14, Theorem 2.2] describing the fundamental group of the link

complement R3\L in terms of the Artin representation (see the remark below).

Proposition 6.1. Let L = A be a link in R3 given by the closure of a braid g € B,. Then

(B,1d)

1d,Id
F ( )

n

G(R3\L) = hocolim[F, UF F,1, (6.14)

n

where g acts on F,, via the Artin representation (6.13).

Remark. Note that the homotopy pushout in (6.14) coincides with the homotopy
coequalizer [FIXGRAPHICS] of the two endomorphisms Id and g of F,. Hence, (6.14)

implies

d
7 (R3\L, %) = 75[G(R3\L)] = coeq Leoeql F,, —= F, |
B
=Xy, ..., X, | B =X, ..., B(X,) =Xy,),

which is the Artin-Birman presentation of the link group 7 (L) := 7, (R3\L, *).

Proof. The proofis based on a simple van Kampen type argument (cf. [14]). Let us place
the n-braid g in a regular position in the region x < 0 in R3, so that its starting points
{p1,py. ..., 0y} and end points {q;,q,,...,q,} are located on the z-axis with coordinates
gy <qy <...<Qqy <Pp <Pn_i1 <...<p;. The link L is the closure of 8 obtained by

joining the points p; to g; (i =1, 2,...,n) by simple arcs in the region x > 0, as shown in
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the picture

x=0

Now, let X := R3\L denote the complement of L. Define

X20 ={(x,y,2) e X : x>0} Xgo ={x,y,2eX : x<0} X,:= X20 N Xso,
with a (common) basepoint x in Xj. It is easy to see that X_, is homeomorphic to the
cylinder over Rz\{pl, ....by}, which is, in turn, homotopic to ]D)z\{pl, ....byp}, where
D? is a two-dimensional disk in (the yz-plane) R? encompassing the points {p;,...,p,}-

Similarly, we have X_y = (R?\{q,,...,q,}) x [0,11 ~D?\{(q,,...,q,}, and

Xy >~ Dz\{pl,...,pn,ql,...,qn} ~ ]D)Z\{pl,...,pn} \% ]D)z\{ql,...,qn}.

Under these identifications, the natural inclusions X_y <> X, < X_ can be identified
with

(fp,1d) (Id, fe)
D*\{qy, .-+, @p} <—— D*\{py,..., D} vV D*\{qy, ..., @y} —= D*\{p;,...,p,}, (6.15)

where the map fy is determined (uniquely up to homotopy) by the braid g and the map f,
is determined by the trivial braid connecting the points p; and g;. Thus, we can represent
X in Ho(Topy ,) as the homotopy pushout of the diagram (6.15).

Next, recall that B, can be identified with the mapping class group of D?\
{p1,....p,} comprising (the isotopy classes of) orientation-preserving homeomorphisms
that fix pointwise the boundary of D?. As a mapping class group, B,, acts naturally on
the fundamental group 7;(D?\{p;,...,p,}, *) and the latter can be identified with the
free group F,, on generators x,...,x, represented by small loops in D?\{p,,...,p,}
around the points p;. It is well known (see [14]) that the action of B, on F,, arising from
this construction is precisely the Artin representation (6.13). Now, using the map f, we

identify D?\{q,, ..., q,} with D®\{p;,...,p,,} in (6.15) and apply the loop group functor to
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this diagram of spaces. As a result, we get the equivalence (6.14), which completes the

proof of the proposition. |

To state our main theorem we introduce some notation. First, observe that, for
any algebraic group G, the Artin representation B,, — Aut(F,,) induces naturally a braid
group action B, — Aut[O(G")], which we denote by § — B,. On the standard generators,
this action is defined by

(Gi)* . O(Gn) g O(Gn)r f(gll .o rgirgi+1l .o rgn) = f(gll .o !gigi+lgi_llgil .o rgn)
Now, for a braid g € B,, we let O(G”)ﬂ denote the O(G™)-bimodule whose underlying
vector space is O(G") = O(G)®", the left action of O(G") is given by multiplication,

while the right action is twisted by the automorphism g,.

Theorem 6.1. Let L =§ be a link in R3 given by the closure of a braid g € B,,. Then
OIDRep(R*\L)] = O(G™) @ gon, O(G™)g-

Consequently,

HR,(R*\L, G) = HH,(O(G"), O(G")p). (6.16)

Proof. By Proposition 6.1 and Theorem 3.2, we have

O[DRepg(R3\L)] = hocolim[O(G™ <Y 0™ @, 06" 110 oG]
=~ hocolim[0(G") < oc2r) 141, o)
This completes the proof of the theorem. |

Remark. Theorem 6.1 exhibits an interesting analogy between the representation
homology of link complements in R? and their Legendrian contact homology in the sense
of Ng (see [58]). This analogy is explained in the recent paper [8], where a new algebraic
construction of link contact homology is given. Roughly speaking, in terminology of [8],
O[DRep(R3\L)] represents the algebraic “homotopy closure” of the braid g € B, in the

category of simplicial commutative algebras, while the Legendrian contact homology
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of R3\L can be computed from a certain DG category .«7; that represents the homotopy

braid closure of 8 € B,, in the category of (small pointed) DG k-categories.

6.2.2 Link complements in S3
Note that Theorem 6.1 computes the representation homology of the topological space
R3\L, not of the link group = (L), which is the fundamental group of R3\L. Even when L is
aknotin RS2 (i.e., a link with one component), the representation homologies HR, (R3\L, G)
and HR, (7 (L), G) differ, because R3\L is not a K(rr, 1)-space (cf. Example 6.1 below). In
knot theory, one is usually interested in representation varieties of the knot group = (L),
so it is important to understand the relation between HR, (R3\L, G) and HR,(7(L),G). A
natural way to approach this problem is to consider L as a link in S® by adding to R® one
point at infinity. If L ¢ R® ¢ S° is a knot, by Papakyriakopoulos’ sphere theorem, the
complement S®\L is an aspherical space, and M (SB\L, %) = T (R3\L, %) = 7 (L) . Hence, for
any knot L, HR, (7 (L), G) = HR, (S®\L, G), so it suffices to clarify the relation between
HR,(R3\L, G) and HR,(S?\L, G).

To this end, we observe that the natural inclusion R3\L < S3\L fits into the
cofibration sequence S? < R3 \L — S3\L, so that

S3\L = hocolim [% < S% 5 R3\L], 6.17)

where S? ¢ R? is chosen in such a way that it encloses L in R3. Applying the Kan functor

to (6.17), we get
G(S®\L) = hocolim[1 < G(S?) 5 GR3\L)]. (6.18)

To describe the induced map i,, we note that S = £ S! = hocolim[* < S! — x]; hence,
G(S?) = hocolim[1 < F; — 11. (6.19)

Now, if we identify G(R3\L) as in Proposition 6.1, then i, is determined by the morphism

of diagrams

1 F, 1
l l (6.20)
Fn <(}fi,ld) Fn I Fn (Id,1d) Fn

where the map in the middle is given (on free generators) by x — (x;x,...Xx,)
(V1Ys --- V)~ !. Note that the left square in (6.20) commutes because the product

XX, ...x, € F, stays fixed under the Artin representation for any g € B,,.
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The map i, : G(S?) — G(R®\L) induces a map of simplicial commutative algebras
i, : O[DReps(S?)] — OIDRep;(R3\L)], (6.21)
which (to simplify the notation) we denote by the same symbol. By Theorem 6.1,
OIDRepg(R*\L)] = O(G™) ®ggon) OG-
On the other hand, by (6.19),
OIDRepg(S?)] = k®p g k = Aj(m/m?) = A%(g"),
where Aj(g*) denotes the graded exterior algebra of g*, with g* being in degree one,

equipped with trivial differential. With these identifications, the map (6.21) is induced
by the algebra homomorphism

OG) — O(Gzn) &)= f(xx5 ... X)) V1V --- yn)_l). (6.22)

Now, we can regard O(G”)@Ib(Gm)O(G")ﬁ as a DG module over the DG algebra k®é(6)k =

A*(g*). As a consequence of (6.18) and Theorem 6.1, we have then the following.
Theorem 6.2. Let L = A be a link in S° given by the closure of a braid g € B,,. Then
OIDRepg(S*\L)] = k @ (gr) [O(G™) ®F gan) O(G™)gl.

Consequently, there is a natural spectral sequence

E2, = Tord @) (k, HH,(O(G"), O(G");) = HR,(S°\L, 6),
converging to the representation homology of S®\L.
Example 6.1. Let L = O be the unknot in R%. We can represent L by the trivial braid
B =1 € B,. In this case, Theorem 6.1 combined with the classical Hochschild-Kostant—

Rosenberg theorem gives

HR,(R3\O, G) = HH,(0(G), 0(G)) = Q*(G),
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where Q*(G) is the de Rham algebra of (algebraic) differential forms on the group G. On
the other hand, HR*(S3\Q, G) = HR, (@ (O), G) = O(G), since n(0) = Z. This simple
example illustrates the fact that representation homology does depend on the higher
homotopy structure of a space: in particular, it distinguishes the link complements in

R? and S, even though their fundamental groups are the same.

6.2.3 Lens spaces

Recall that, for coprime integers p and g, the lens space L(p, q) of type (p, @) is defined
as the quotient S®/Z, of the 3-sphere S® viewed as the unit sphere in C*> modulo the
(free) action of the cyclic group 7, given by (z, w) > (e?/P z, €274/P w) . This definition
shows that L(p, q) is a compact connected 3-manifold, whose universal cover is S® and
the fundamental group is Zp. Special cases include L(1,0) = S2, L(0,1) = S! x S? and
L(2,1) = RP3.

To compute the representation homology of L(p,q) we will use a well-known
topological construction of these spaces via Dehn surgery in S® (see, e.g., [68, Chap. 3B]).
Recall that if K ¢ S® is a knot in S® and p, q are two integer numbers, the p/q Dehn
surgery on K is a 3-dimensional space obtained by removing from S® the interior N(K)
of a regular tubular neighborhood N(K), which is a 3-dimensional solid torus S! x D?,
and then gluing S! x D? back to S3\N(K) in such a way that the meridional curve of
S! x D? is identified with a (p, g)-curve on the boundary of S3\N(K). For the trivial knot
K C S3, it is easy to see that the p/q Dehn surgery on K gives precisely the lens space
L(p,q). In this case, the knot complement S3\ N(K) is homeomorphic to the solid torus
S! x D?, so the space L(p, q) can be obtained by gluing together two solid tori along their
boundary.

To describe this in more concrete terms, we consider the solid torus S! x D? as a

subset in C2;
S!xD?={(z,w)eC?: |z|=1, |lw| <1}.

We identify T? = S! xS! as the boundary of S! x D? in C? and denote by i : T? «— S! xD?
the natural inclusion.
Now, for the given pair (p, g) of coprime numbers, we choose m,n € Z, so that

mq —np =1, and define the “gluing” map y : T? — S! x D? by

y(z, w) = (z2™wP, z"w?). (6.23)
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Then the p/q Dehn surgery construction of L(p,q) can be described as the pushout in

Topoy*:
L(p,q) = colim[S! x D? <& T2 <5 s x D2]. (6.24)

Since i is a cofibration in Top,,, we can replace the colimit in (6.24) by a homotopy
colimit and then replace the diagram of solid tori by a homotopy equivalent diagram of
circles:

Lp,q) = hocolim[S! & T2 % s!]. (6.25)
In this diagram, the map 7 is given by the canonical projection (z, w) — z and y is the
composition 7 o y defined by (z, w) — z™wP. Now, applying the Kan loop group functor,

we get a simplicial group model for L(p, g):

GIL(p, @) = hocolim [F, < G(T?) 5 F, 1. (6.26)

Recall (see (6.2)) that G(T?) is given in sGr by the homotopy cofibre of the commutator
map « : F;, - F,, ¢+ [a,bl, where a and b are the generators of F, corresponding to the
meridian and longitude in T?. In terms of these generators, the maps 7 and y in (6.26)

are induced by

n:Fy,—TF, (a,b)r (z1), y: Fy,—F, (a,b)— (2™, 2P), (6.27)

where z is a generator of IF;.

Now, assume that G admits a global Koszul resolution K, (G) described in
Section 6.1. Then, we have an explicit DG algebra model for HR, (T?, G) given by
A*(’]I‘Z, G) = O(G x G) ®p ) K. (G). Applying to (6.26) the derived representation functor,

we get
OIDRep(L(p, g))] = hocolim [O(G) <= A,(T?,G) &> 0G)1. (6.28)

The maps =, and y, in (6.28) are determined by (6.27); on the degree O component of the
DG algebra A,(T?, G), they are given by

T, OGxG) — OG) fx,y) — f(ze), (6.29)

Ye: OGxG) — OG) fx,y)+— f(2",2°). (6.30)

Using 7, and y,, we can make O(G) into (left and right) DG modules over the DG algebra
A, (T?, G), which we denote by O(G),, and O(G),, respectively. With this notation, we have

the following result that completes our calculation.
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Theorem 6.3. The representation homology of a 3-dimensional lens space L(p, q) is

given by
HR,(L(p, ), G) = Tor/*(O(G),, O(G),),

where Tor/"* denotes the differential Tor taken over the DG algebra A, = A, (T%,G). In

particular, there is an Eilenberg—Moore homology spectral sequence
2
EZ, = Tor;®"9(0(G),, 0(G),) = HR,(L(p,q),G)
converging to the representation homology of L(p, q).

6.2.4 Closed 3-manifolds
The above construction of lens spaces generalizes to arbitrary closed 3-manifolds.
Specifically, it is well known that every closed connected orientable 3-manifold M

admits a Heegaard decomposition H, U, H, that can be written as
~ . i Y

M= cohm[Hg < X, > Hg], (6.31)
where Hg is a handlebody of genus g > 0, i is the natural inclusion identifying Zg = aHg ,
and y is a gluing map defined as the composition Z TN Z < Hg, where y, is an
(orientation-preserving) diffeomorphism of Zy representing an element in the mapping
class group M(Eg) = JTO(Diff+ ). In particular, for g = 1, the Heegaard diagram (6.31)
becomes (6.24); in fact, the lens spaces can be characterized as (closed) 3-manifolds that
admit Heegaard decompositions of genus 1.

Since H, is homotopy equivalent as a cell complex to the bouquet of g circles

\/?ZISI, we can represent the homotopy type of M by

g g
M = hocolim |:\/S1 o \/Sl].
i=1 i=1
This gives the simplicial group model G(M) = hocolim []Fg il G(Eg) RN ]Fg ], and hence

O[DRep(M)] = hocolim [O(GY) <= A, (24, 6) L 069)] = 0(69) ®%4, 069,

where A, = A, (2, G) is an explicit DG algebra model for the representation homology
HR, (24, G) (see Section 6.1.2). As a result, we have the following generalization of

Theorem 6.3 to 3-manifolds of higher genus.
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Theorem 6.4. Let M be a closed connected orientable 3-manifold. Assume that M has
a Heegaard decomposition (6.31) determined by an element y € M(X,) in the mapping
class group of ¥,. Then the representation homology of M is given by

HR,(M,G) = Tor/*(O(G%),, 0(69),),

where Tor*A* is the differential Tor taken over the DG algebra A, = A*(EQ,G). In
particular, there is an Eilenberg—Moore homology spectral sequence

HR,(Zg,G)
*

E?, = Tor (0(G9),, 0(GY),) = HR,(M,G)

converging to the representation homology of M.

Remark. If Gis a complex semisimple group and g > 2, it is conjectured in [9] (cf. [9,
Conjecture 1.3]) that HR;(2,, G) = 0 for all i > 0. This conjecture implies, in particular,
that the spectral sequence of Theorem 6.4 degenerates for 3-manifolds of Heegaard
genus g > 2, giving an isomorphism

HR, (M, G) = Tor; ™ (0(69),, O(G9),),

where Tor, is the ordinary ‘Tor’ taken over AG(EQ) = O[RepG(Eg)] , the coordinate ring

of the classical representation scheme Repg(Zy).

7 Representation Cohomology and a Non-abelian Dennis Trace Map

In this section, we define representation homology and cohomology with coefficients
in an arbitrary bifunctor on the category of finitely generated free groups &. Following
the analogy with topological Hochschild homology, we construct a natural trace map
relating representation homology to the stable homology of automorphism groups

Aut(F,) with twisted coefficients.

7.1 Representation cohomology

7.1.1 (Co)Homology of small categories

Let ¢ be a small category. By a ¥-bimodule, we mean a bifunctor D : €°P x ¢ — Vecty,
which is contravariant in the 1st argument and covariant in the 2nd. We write Bimod(%)
for the category of ¥-bimodules. For any D € Bimod (%), one can define the (Hochschild-
Mitchell) homology HH, (¥, D) and cohomology HH*(%¥, D) of ¥ with coefficients in D.
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For a precise definition and basic properties of these classical (co)homology theories we
refer to [3, 34, 57] (a good summary can also be found in [50, Appendix C]). Here, we only
recall that HH, (¥, —) and HH*(¥, —) are functors (covariant and contravariant, respec-
tively) on the category of ¢-bimodules, such that {HH, (%, -)},-¢ and {HH"(%, -)},-¢
are universal §-sequences, with HH, (¢, D) and HHO(¥, D) being canonically isomorphic
to the coend [ CE%D(C, c¢) and the end fCE%,D(c, c¢) of the bifunctor D. Moreover, the
(co)homology theories HH, (%4, D) and HH*(¥", D) have good functorial properties with
respect to the 1st argument: in particular, any functor F : ' — ¥ between small
categories induces a natural map on homology F, : HH, (%", F*D) — HH_(%,D), where
F* : Bimod(%) — Bimod(%”) is the restriction functor on bimodules defined by F*D :=
Do (F°P x F).

7.1.2 Representation cohomology

To express representation homology in terms of Hochschild-Mitchell homology, we
need to slightly extend the above classical setting. Specifically, we will consider chain
complexes of ¢-bimodules, which are simply bifunctors D : €°? x ¢ — Ch_q(k) with
values in the category of chain complexes of k-vector spaces, and define HH, (¥, D) and
HH*(%¢, D) to be the Hochschild-Mitchell hyperhomology and the Hochschild-Mitchell
hypercohomology of D, respectively. Now, given two chain complexes of right and left
¢-modules, say M : ¢°P — Ch.4(k) and N : ¢ — Ch.y(k), we define the chain complex
of ¢-bimodules M X, N : €°P x ¢ — Ch.o(k) by assigning to (c, ) € Ob(€°P x ¥) the
tensor product M(c) ®; N(c') of the corresponding chain complexes. With this notation,

we have the following.

Lemma7.1. ForanyX € sSet,and any commutative Hopf algebra #, there is a natural

isomorphism

HR,(X,H) = HH,(6, N(kIGX]) X, ). (7.1)

Proof. For any small category ¥ and any right (resp., left) ¥-modules M and N with
values in Chzo(k), where k is a commutative ring, there is a natural (Grothendieck)

spectral sequence (see, e.g., [50, (C.10.1)]):

2 L
EZ, = HH, (¢, H,IM K Nl) = H

L
p+qlM ® NI
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When k is a field, this spectral sequence degenerates giving an isomorphism
HH, (%, M X, N) = H,[M ®L%,) N]. In our situation, we have

HH, (&, N(KIGX]) K, H) = H,INKIGX]) @ H,

which in composition with the isomorphism of Theorem 4.1 gives (7.1). |

Example 7.1. In the case when X = BT for a discrete group I' and H = O(G), formula
(7.1) reads

HR, (I',G) = HH, (&, kIl X, O(G)).
Lemma 7.1 motivates the following definition.

Definition 7.1. The representation cohomology of X in H is defined by
HR*(X,H) := HH*(&, N(kIGX]) X, H).

More generally, for any &-bimodule D : €°P x¢ — Ch. (k) , we define the representation

homology and the representation cohomology of D by
HR,(D) := HH, (6, D) HR*(D) := HH*(&, D).

In the case when D is an ordinary &-bimodule (with values in Vecty), this def-
inition says that the representation (colhomology of D is just the classical Hochschild—
Mitchell (co)homology of D.

Example 7.2. For an affine algebraic group G, consider the &-bimodule D := lin} X

O(G) , where liny is the dual linearization functor °° — vVecty, (n) — Hom,((n),,, k).

In this case, one can show that there are natural isomorphisms
HR!(D) = H*Y(G, k) Vi>0,

where H*1(G, k) stands for the classical cohomology of the affine algebraic group with

coefficients in the trivial (rational) representation.
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7.1.3 Relation to topological Hochschild homology

For an arbtirary (associative unital) ring R, denote by F(R) the full subcategory of R-
Mod whose objects are the free modules R, n > 0. For any R-bimodule N, consider the
bifunctor Hom(I, N) : F(R)°P x F(R) — Mod(Z) defined by (X, Y) — Homgz(X,N ®p Y)).
Then, a theorem of Pirashvili and Waldhausen [62] asserts that the Hochschild-Mitchell
homology HH,(F(R), Hom(I,N)) is naturally isomorphic to the topological Hochschild
homology THH, (R, N) of the ring R with coefficients in the bimodule N. It is therefore
natural to define the topological Hochschild homology of R with coefficients in an
arbitrary bifunctor B : F(R)°? x F(R) — Mod(Z) by (cf. [50, Chap. 13])

THH, (R,B) := HH_(F(R), B).

For R = Z, the category F(Z) is equivalent to the category &, of finitely generated free
abelian groups, which (as our notation suggests) is the abelianization of the category
®. The abelianization functor « : & — &, induces a natural map HR,(¢*B) —
THH, (Z,B) for any &,;,-bimodule B € Bimod(&,,), and conversely, for any &-bimodule
D € Bimod(®), associated to the functor «, there is an André-type spectral sequence (see
[34, Theorem 1.20]):

2 op
El, = THH,(Z, Ly(«°® x @),D) = HR,, (D),

converging to the representation homology of D.

Thus, representation homology may be viewed as a non-abelian analogue of
topological Hochschild homology, and it is natural to ask for “non-abelian” analogues of
various constructions known for topological Hochschild homology. In the next section,
we outline one such construction that may be thought of as a non-abelian version of the

Dennis trace map.

7.2 Non-abelian Dennis trace map

Recall (cf. [50, Sect. 13.1.8]) that the classical Dennis trace maps the stable homology of
the general linear groups of a ring R to topological Hochschild homology of R:

DTr, (R,B): H,(GL_(R), B,) — THH,(R,B), (7.2)

where B is an arbitrary bimodule over F(R). We generalize this map to the non-abelian

setting.
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Let Aut, := Aut(lF,) denote the automorphism group of the free group on
generators xp, ..., x,. We will regard Aut, as the automorphism group Autg({n)) of the
object (n) in the category &. There are obvious inclusions Aut, < Aut, ; defined by
g~ g, where g(x;) := g(x;) fori < n and g(x,,,,) = x,,,,. We set Aut, :=lim Aut, .

Now, consider an arbitrary bimodule D on the category &, that is, a bifunctor
D:8°°? x & — Vecty. For eachn > 1, let D,, := D({n), (n)) and define the linear maps

p*oi,: D, - D((n),(n+1)) - D, (7.3)

where i, := D(d,i,) and p* := D(p,,,Id) are induced by the natural inclusion i: (n) —
(n+ 1) and the natural projection p: (n + 1) — (n), respectively. Put

lim D

D, = lim D,,,
where the inductive limit is taken with respect to the linear maps (7.3).

Next, observe that each D, carries a natural Aut,-module structure: namely,
Aut, — Aut(D,), g — g*og,, where g* := D(g~!,1d) and g, := D(1d, g). Moreover, for all

g € Aut, , there is a commutative diagram

%
Dn 9 9+« Dn
D¥ix l lp*i*
9"+
Dn+1 Dn+1

where g € Aut,, ; is the image of g under the natural inclusion Aut, < Aut,  , defined
above. As a consequence, the k-vector space D, carries a natural (inductive) Aut_-
module structure. Thus, we can consider the homology groups H, (Aut,,,D,,) foralln > 1

and H, (Aut_,, D). Since homology commutes with direct limits, we can identify
H,(Auty, Dy,) = lim H, (Aut,, D,,). (7.4)

Next, we construct natural maps relating H,(Aut,, D) to the representation
homology HR,(D). Regarding each group Aut, as the category Aut, with a single

object, we consider the inclusion functors

vp o Aut, — 6,
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identifying the single object of Aut, with (n) € Ob(®). Since D,, = y,;D, these functors
induce natural maps

(v,), : HH,(Aut,, D)) — HH,(®, D) =: HR, (D). (7.5)

On the other hand, the Hochschild-Mitchell homology of the category Aut, coincides
with the usual group homology of Aut,, :

HH, (Aut,, D,) = H,(Aut,, D,,). (7.6)

Indeed, since Aut, is a category with one object, its Hochschild-Mitchell complex
C*HM(MH, D,) is isomorphic to the usual Hochschild complex C,(k[Aut,], D,) of the
group algebra of Aut,, so that

HH, (Aut,,, D,) = HH, (k[Aut,], D,),

while HH, (k[Aut,], D,)) = H,(Aut,, D,)) via the classical Mac Lane isomorphism (see,
e.g., [60, Prop. 7.4.2]). Thus, combining (7.5) and (7.6), for all n > 0, we get canonical

linear maps
DTr? (D) : H,(Aut,,D,) — HR, (D). (7.7)

As in [50, 13.1.8], it is easy to check that these maps are compatible when passing from
n ton+ 1. Hence, we can stabilize (7.7) by passing to the inductive limit as n — co. With

identification (7.4), the resulting stable map reads
DTr® (D) : H,(Aut,,D,) — HR,(D). (7.8)

This is a non-abelian analogue of the Dennis trace map (7.2). As in the classical case, it
is natural to ask: When is (7.8) an isomorphism? Motivated by a theorem of Scorichenko

(see [28]), we propose a conjectural answer.

Conjecture 2. The map (7.8) is an isomorphism if D is a polynomial bifunctor (in the
sense of [41]).

We conclude this section a few remarks related to Conjecture 2.
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Remark. A famous theorem of Galatius [32] asserts that natural maps from the

symmetric group S,, to Aut,, (defined by permuting the generators) induce isomorphisms
H;(Aut,, Z) = H(S,, Z) Vn>2i+]1.

This implies that H;(Aut,,, A) = 0 for all { > 0, where A is any constant k-module
provided k has characteristic 0 (which we always assume in this paper). Conjecture 2
implies [22, Theorem 1], which says that H;(Aut,,, D,,)) = 0 foralli > 0, when D is a
polynomial bifunctor, constant with respect to its contravariant argument. Indeed, for
such bifunctors, we have HR;(D) = HH;(®,D) = 0 for i > 0 because & has a terminal
object.

Remark. The direct analogue of Conjecture 2 is false in the abelian case. Indeed, if B
is a constant bifunctor on F(R), then THH, (R, B) vanishes in positive degrees (since F(R)
has terminal object), but H, (GL,,(R), B) may be highly nontrivial (see [28]). The correct
version of Conjecture 2 replaces the stable group homology with Waldhausen's stable
K-theory. In the non-abelian case, one can also state a version of Conjecture 2 for the
stable K-theory of automorphism groups Aut, instead of group homology; however, we
expect that the two theories are actually isomorphic. We briefly outline an argument
behind this expectation.

Let E, denote the commutator subgroup of Aut . It is known that E__ is a perfect

normal subgroup; hence, we can form the “plus construction”
VU : BAut, — BAut}.

Let FV denote the homotopy fiber of the map W. We have a canonical group homo-
morphism 7, (F¥) — 7, (BAut,,) = Aut,, that equips any Aut_ -module with a m; (FW)-
action. In particular, the Aut, -module D, arising from a &-bimodule D may be viewed
as a m;(F¥)-module, and hence defines a local system on FW. The stable K-theory
K$(Aut, D) is then defined to be H, (F¥, D), the homology of F¥ with coefficients
in the local system D, . Now, consider the Serre spectral sequence associated to the

homotopy fibration F¥ — BAut,, — BAutZ:
E), = H,(BAut, H (F¥,D_)) = H,(BAut,, D).

If Aut,, acts trivially on K3(Auty, D) = H,(F¥, D) (as it happens in the classical

case, see [50, 13.3.2]), then, since BAut., — BAut}, is a homology equivalence for trivial
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coefficients, the above spectral sequence becomes
E}, = H,(BAut, Kj(Aut, D)) = H,(BAut, D).

However, by Galatius’ theorem [32], we know that H,(Aut,,A) = 0 for p > 0 for any
constant coefficients over k. Hence, the above spectral sequence must collapse on the

p-axis, giving the desired isomorphism K$(Aut.,D.) = H,(Aut, D).

Remark. As explained in Section 7.1.3, the relation between topological Hochschild
homology and functor homology of module categories is based on the Pirashvili-
Waldhausen theorem [62]. Schwede [69] generalized this result to arbitrary algebraic
theories by associating to an algebraic PROP ‘B a ring spectrum 3° and identifying
the functor homology over 8 with topological Hochschild homology over 3° (see [69,
Theorem 6.7]). In the case B = &, Schwede's construction provides a topological

(spectral) interpretation of representation homology that may be useful for Conjecture 2.
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A Model Approximations and Derived Adjunctions

In this appendix, we collect basic definitions and prove some results in abstract homo-
topy theory concerning derived functors. We work in the framework of homotopical
categories in the sense of Dwyer, Hirschhorn, Kan, and Smith [23]. Apart from the
original reference [23], a good introduction to the subject can be found in [66] and a short
summary in [72]. The main results of this appendix—Theorem A.2 and Theorem A.3—
arise from our attempt to abstract Theorem 3.1 on derived representation adjunc-
tions. We believe that these two theorems as well as Lemma A.1 are of independent

interest.

A.1 Homotopical categories

A homotopical category is a category C equipped with a class of morphisms W (called
weak equivalences) that contains all identities of C and satisfies the following 2-of-6

property: for every composable triple of morphisms f,g,h € Mor(C), if gf and hg are
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in W, then so are f, g, h, and hgf. The 2-of-6 property formally implies, but is stronger
than, the usual 2-of-3 property. The class of weak equivalences thus forms a subcategory
that contains all objects and all isomorphisms of C. Since the isomorphisms satisfy the
2-of-6 property, any category can be viewed as a homotopical category by taking W to
be the class of all isomorphisms (in [23], such homotopical categories called minimal).
Furthermore, by forgetting the fibrations and cofibrations, any model category becomes
a homotopical category: that is, the class of weak equivalences in any model category
satisfies the 2-of-6 property (see [23, Prop. 9.2]). This is a consequence of the well-
known fact that in a model category, the class W of weak equivalences is saturated:
that is, it comprises all the arrows of C that become isomorphisms in the localized
category C[W™!]. Since the isomorphisms in C[W~!] satisfy the 2-of-6 property, it
follows immediately that the weak equivalences in a saturated category satisfy the 2-
of-6 property. Unless stated otherwise, we will assume all our homotopical categories
to be saturated. If C is a homotopical category, the category Ho(C) := C[W™!] is called
the homotopy category of C: it comes with the canonical functor y, : C — Ho(C) called
the localization of C. It is often convenient to regard Ho(C) as a homotopical category
itself by taking W to be the class of isomorphisms; in other words, to think of Ho(C) as

a minimal homotopical category.

A.2 Derived functors and deformation retracts

If C and D are homotopical categories, a functor F : C — D is called homotopical if
it preserves weak equivalences. Such a functor induces a unique functor between the
homotopy categories of C and D that we will denote by F : Ho(C) — Ho(D). In practice,
many important functors are not homotopical and hence do not descend to homotopy
categories. A standard way to deal with this problem is to replace—or “approximate”—
non-homotopical functors with their derived functors that usually come in two kinds:
“left” and “right”. We will focus on left derived functors with understanding that all
results apply mutatis mutandis to the right derived functors as well.

Following [65], we define a total left derived functor LF : Ho(C) — Ho(D) of a
functor F : C — D to be the right Kan extension of ypoF : C - D — Ho(D) along
localization y, : C — Ho(C):

c—f .p

d v |
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By the universal property of localization, LF is uniquely determined by the
homotopical functor LF = LF o y, defined on the category C. This last functor can
be characterized as a universal homotopical functor LF : C — Ho(D) that comes
together with a natural transformation (called the comparison map) ¢ : LF — ypoF
that is terminal among all natural transformations from homotopical functors to yp o F.
When they exist, both functors LF and LF are determined by F uniquely up to unique
isomorphism. Following [72], we will refer to LF as a left derived functor of F and LF
as the corresponding total left derived functor.

It was observed in [53] that a stronger universal property for derived functors—
namely, that of an absolute Kan extension—is often very useful (in the additive setting,
absolute derived functors between triangulated categories first appeared in the work
of Deligne under the name “founcteurs dérivé partout défini” (see [21])). To be precise,
a total left derived functor LF : Ho(C) — Ho(D) is called absolute if for any functor H :
Ho(D) — &, the right Kan extension of the composition Ho ypoF :C — D — Ho(D) — &
along y : C — Ho(C) coincides with H o LF:

c—f.p

oo e

Ho(C) ir Ho(D)

\ l o
Ranyc (HypF)
&

A fundamental theorem of [65] asserts that any left Quillen functor F : C — D

between model categories has a total left derived functor LF : Ho(C) — Ho(D), which
can be obtained as the composition F o Q, where Q is the cofibrant replacement functor
on C; moreover, as noticed in [53], such a left derived functor is automatically absolute.
This construction of derived functors was axiomatized and extended to homotopical
categories in [23]. We briefly recall the main definitions. If C is a homotopical category,
a left deformation retract of C is a full subcategory i : C; — C given together with a
homotopical functor Q : C — C, and natural weak equivalence g : i 0 Q — Id.. It is
easy to see that, for any left deformation retract of C, the inclusion functori: C, — C
induces an equivalence of categories Ho(C,) >~ Ho(C) with inverse induced by Q. Now,
we say that a functor F : C — D between two homotopical categories is left deformable
if there is a left deformation retract C, of the domain category such that the restriction
of F to C, is homotopical. For example, if C and D are model categories, any left Quillen

functor F : C — D is canonically left deformable: for the corresponding deformation
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retract C,, we can always take the subcategory of cofibrant objects inC, withQ : C — C,

being the cofibrant replacement functor.

Proposition A.1 ([23]). A left deformable functor F : C — D has a left derived functor
LF : C — Ho(D) given by LF = yp o F o Q with comparison map ¢ = yFq : LF — y oF.
The corresponding total left derived functor LF : Ho(C) — Ho(D) is absolute in the sense
of [53].

The 1st statement of Proposition A.1 is proved in [23,Sections 41.2-5] (see also
[66, Theorem 2.2.8]). The 2nd statement is verified in (the proof of) [66, Proposition
2.2.13].

It is well known that, for any composable pair (F;, F,) of left Quillen functors,
the derived functor L(F,; o F,) of their composition coincides with LF; o LF,. In the more
general context of homotopical categories, this is not the case even when both functors
F, and F, are left deformable. To guarantee this property one needs to impose an extra
condition on deformation retracts of the functors involved. Following [23], we say that
a composable pair (F;, F,) of left deformable functors C Bop B oeis left deformable
if F; maps the left deformation retract C,, on which it is homotopical, into the left
deformation retract D,, on which F, is homotopical: that is, F,(C,) S D,. With this

definition, we have

Proposition A.2 ([23, 42.4]). For any left deformable pair (F,, F,), there is a canonical
isomorphism of total left derived functors L(F; o F,) = LF, o LF,.

A.3 Derived adjunctions

We now turn to the important question when an adjunction between two homotopical
categories induces a derived adjunction between the corresponding homotopy cate-

gories. We begin by stating the main result of [53] (cf. [66, 2.2.15]).

Theorem A.1 ([53]). Let F : C = D : G be a pair of adjoint functors between
homotopical categories. Assume that F has a total left derived functor LF, G has a total
right derived functor RG, and both derived functors are absolute. Then LF and RG are

adjoint to each other:
LF: Ho(C) 2 Ho(D) : RG. (A1)
Following [23], let us call an adjunction F : C & D : G deformable if F is left

deformable and G is right deformable. As an immediate consequence of Theorem A.1

and Proposition A.1, we get the following.
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Corollary A.1 ([23,44.2]). If F: C = D : G is a deformable adjunction, then both total
derived functors LF and RG exist and form an adjoint pair (A.1).

This result is one of the key observations of [23], which, in particular, formally
implies Quillen’s adjunction theorem for model categories [65]. Unfortunately, the
assumption that a pair of adjoint functors is deformable is rather restrictive and
does not always hold in practice. In what follows we propose a different—somewhat
roundabout—way to produce derived adjunctions using model approximations of
homotopical categories.

We begin with the following simple lemma that can be viewed as a partial

converse of Theorem A.1

Lemma A.1. Let F: C 2 D : G be a pair of adjoint functors between homotopical
categories. Assume the following:

(1) F has an absolute total left derived functor LF : Ho(C) — Ho(D),

(2) LF has a right adjoint functor G : Ho(D) — Ho(C).
Then G is an absolute total right derived functor of G: that is, RG exists and RG = G.

Proof. Let us spell out the universal mapping property of the absolute total right
derived functor RG: for any functors E : Ho(C) — £ and H : Ho(D) — &, there is a

natural (in E and H) bijection:
Hom(E o RG, H) = Hom(Eo Yz 0 G, Ho yp), (A.2)

where by Hom's we denote the sets of natural transformations between the correspond-

ing functors. To prove the lemma it suffices to check that G satisfies this property.
First, G being right adjoint to LF implies that G* = (-) o G is left adjoint to

LF* = (-)oLF on the functor category Fun(Ho(C), £), so that there is a natural bijection

Hom(E o G, H) = Hom(E, H o LF). (A.3)

Second, the universal mapping property of LF being an absolute left derived functor of
F gives

Hom(E, Ho LF) = Hom(E o yz, Ho yp o F). (A.4)

Third, F being left adjoint to G implies that F* = (-) o F is right adjoint to G* = (=) o G;
hence,

Hom(Eoyp, HoypoF) = Hom(Eoys 0 G, Ho yp). (A.5)

Combining now (A.3)—(A.5) and comparing the result with (A.2), we see that G satisfies

the same universal mapping property as RG. Whence, RG = G. |
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Remark. There is a dual version of Lemma A.1: if the absolute total right derived
functor RG for the right adjoint in the pair F : ¢ &2 D : G exists and has a left adjoint
F :Ho(C) — Ho(D), then this left adjoint F is the absolute total left derived functor of F.

A.4 Model approximations

Next we recall the notion of a model approximation introduced in [17]. This notion plays
an important role in abstract homotopy theory allowing one to define homotopy colimits
of arbitrary diagrams in model categories. We will use it, however, for a different

purpose: to construct derived adjunctions between homotopical categories.

Definition A.1 ([17]). A left model approximation of a homotopical category C is a
model category M given together with a pair of adjoint functors [: M = C : r such that

(1) r is homotopical, that is, rOVy) € Wy

(2) 1 is homotopical on cofibrant objects of M;

(3) (I,r) is an ‘almost Quillen equivalence’ in the sense: for any A € Ob(C) and
any cofibrant X € Ob(M), if f : X — r(A) is a weak equivalence in M then the adjoint
map f# : [(X) — A is a weak equivalence in C.

The intuition behind this definition is that—from the homotopy-theoretical
point of view—being a model category or having a model approximation should not
make much difference. Our Theorem A.2 below illustrates this principle in the case of
derived adjunctions.

We will need one more definition (cf. [17, Def. 5.8]). If F : C — D is a functor
between homotopical categories, we say that a left model approximation [: M =2C:r
is good for F if the restriction Fol: M — C — D is homotopical on cofibrant objects of
M. In this case, it follows from property (3) of Definition A.1 that Q; :=1loQor: C—C
provides a left deformation for F, where Q is the cofibrant replacement functor on M.
Thus, if F admits a good left model approximation, then F is a left deformable functor
and hence, by Proposition A.1, has an absolute total left derived functor LF : Ho(C) —
Ho(D). This applies, in particular, to the functor I : M — C itself (since we can take
the identity adjunction on M as a good model approximation for l). Now, since [ is left
deformable and r is homotopical, by Corollary A.1, the adjunction [: M = C : r induces

the adjunction of derived functors
Ll: Ho(M) 2 Ho(C) : 1. (A.6)

The next lemma clarifies the properties of the derived functors (A.6); it is

essentially a reformulation of [17, Proposition 5.5].
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LemmaA.2. Letl: M =C:r bealeft model approximation of a homotopical category
C. The functor r : Ho(C) — Ho(M) induced by ris fully faithful, and the counit morphism

Llor > Idy,c) associated with (A.6) is an isomorphism.

Proof. To simplify the notation we write X € Ho(C) for the image of X € Ob(C) under
the localization functor y : C — Ho(C), and similarly for M. We need to prove that, for
any X,Y € Ob(C), the map

Ty : Homy, e (X, V) — Homy, rg) (TX), r(Y))

is bijective. For this, we will explicitly construct the inverse map.

Let Q,R : M — M denote the cofibrant and the fibrant replacement functors in
M, respectively. Since M is a model category, any morphism f : r(X) — r(¥) in Ho(M)
can be represented by a morphism f : Qr(X) — RQr(Y) in M. Moreover, we have the

following natural diagram in C:
x < 10re0 2 rary) < lary) S v (A.7)

The 1st and the last maps in (A.7) are the adjoints of the cofibrant resolutions Qr(X) >
r(X) and Qr(Y) S r(Y) in M; hence, by property (3) of Definition A.1, they are weak
equivalences in C. The 3rd map is obtained by applying the functor ! to the fibrant
resolution RQr(Y) — Qr(Y) of the (cofibrant) object Qr(Y) in M; hence, it is also a
weak equivalence, by Definition A.1(2). Now, applying the localization functor y : ¢ —
Ho(C) transforms the weak equivalences in (A.7) into isomorphisms, and by inverting
these isomorphisms, we can define a (unique) morphism &X'y(f) : X — Y in Ho(0),
which depends only on f. It is straightforward to check that the map &X,Y given by this
construction is inverse to 7y y. This proves the 1st claim of the lemma. The 2nd claim is

equivalent to the 1st by abstract properties of adjunctions (see, e.g., [31, Prop. 1.1.3]). B

We are now in position to state the main result of this appendix.
Theorem A.2. Let F: C &= D : G be a pair of adjoint functors between homotopical
categories. Assume that C admits a left model approximation [ : M & C : r together
with adjoint functors F: M=D :G,such that

) (F, @) is a deformable adjunction,

(i) (F,r) is a left deformable pair, and there is a natural weak equivalence,
For—F

(i) Im(RG) € Im(F).
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Then F and G have total (left and right) derived functors given by
LF=LFo7, RG=LloRG. (A.8)
The derived functors LF and RG are both absolute and adjoint to each other:

LF : Ho(C) 2 Ho(D) : RG.

Proof. First, note that, by (i) and Proposition A.1, the derived functors LF and RG
exist, and by Corollary A.1, the corresponding total derived functors LF and RG are
adjoint to each other. By (ii), the functor LF := L(F o r) satisfies the universal property
of a left derived functor of F provided we define the comparison map ¢ : LF — y o F to
be the composition & := y(¢) o &, where ¢ : F o r — F is the natural weak equivalence of
(it) and £ is the comparison map for the derived functor LFor). By Proposition A.2, the
total left derived functor L (For) is absolute and isomorphic to LFo7. Hence, LF = LFoF7
is an absolute total left derived functor of F. i )

Now, by (iii), we can factor RGasa composition: Ho(D) So, C i) Ho(M), where
C := Im(¥) denotes the essential image of r in Ho(M) and i is the inclusion functor. By
Lemma A.2, we can also factor 7 = i o o, where 7 : Ho(C) S Cisan equivalence, with
quasi-inverse ZO :=Lloi: C — Ho(C). Combining these two factorizations, we can write
LIoRG=Lloio (_}0 = ZO ) G’O. Then, for any objects X € Ho(C) and A € Ho(D), we have

Homy, )X, (Lo RG)(A)) = Homy, (X, [o(Gy(A)))

12

Hom(7(X), Gy(A))

12

Homy, v (7o (X)), 1(Gy(A)))

Homy, v, (F(X), RG(A))

12

= Homy,p,(LFFX)), A)
= Homy,p)(LF(X), A).

This shows that LIo RG is right adjoint to LF, which is an absolute left derived functor.
Hence, by Lemma A.1, we conclude that RG exists and RG = Llo RG. | |

Remark. 1.Under the assumptions of Theorem A.2, there is a natural isomorphism of
functors
LF = LFoLl, (A.9)

which is a priori a stronger condition than LF = LF o 7. Indeed, by Theorem A.2, the

functor LF has a right adjoint RG that can be written, using the notation introduced in
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the proof, as RG = [ o G,. Since [, is an equivalence with quasi-inverse 7, this implies
f‘oRGzl_‘oZOoéo =Zol_‘oozooé0 QZOGO = RG.

Thus, we have an isomorphism of functors RG = 7o RG, where each functor has a left
adjoint. By adjunction, this gives (A.9).

2. The main assumption of Theorem A.2—namely, the condition that the adjunc-
tion F: M = D : G is defined on the whole model category M—can be weakened. The
proof shows that it suffices to assume that F exists on a full subcategory M’ of M,
which is closed under the weak equivalences in M and whose image in Ho(M) contains
Im(r).

A.5 Homotopy colimits

Recall that any adjunction F : C = D : G extends formally to an adjunction F! : ¢f = D! :
G! of the diagram categories C! := Fun(Z,C) and D! := Fun(I, D) for any small category
I. The corresponding functors F/ and G! are given by compositions F/(X) = F o X and
GI(Y) = Go Y, where X € Ob(C!) and Y € Ob(D!). If C is a homotopical category, the
diagram category C! has a natural homotopical structure in which a morphism of I-
diagrams ¢ : X — X’ is a weak equivalence if ¢; : X(i) 5 X'(i) is a weak equivalence
in C for every object i € Ob(I). Moreover, as observed in [23], if the functor F : C — D
is left deformable, then so is F! : ¢! — DI in fact, if Q : C — C, is a left deformation
retract for F, then Q : ¢! — C} is a left deformation retract for F/. By Proposition A.1,
this implies that for any left deformable functor F : C — D, the functor F! : ¢! — DI has
an absolute total left derived functor LF! : Ho(C!) — Ho(D!) induced by LF! = y; FL Q.
Informally speaking, the left derived functor of F! is just the left derived functor of F
applied objectwise.

Now, for a small category I, let diagf : C — C! denote the diagonal functor that
assigns to an object A € Ob(C) the constant diagram diag?(A) :I - C, i~ A.Recall
that the colimit colim? : CI — (C is the left adjoint functor of diagf. If C is a homotopical
category, we define the homotopy colimit Lcolim? : C!' - Ho(C) to be the left derived
functor of colim?, and following our convention, write Lcolimf : Ho(C!) — Ho(C) for the
corresponding total left derived functor. By Proposition A.1, ]LcolimIC exists if colim?
exists and is left deformable; in that case, since the diagonal functor is homotopical, we
have a deformable adjunction Colirngz :cl=c diag%’, and hence, by Corollary A.1, the

derived adjunction

Lcolim? : Ho(Ch) =2 Ho(0) : diag; .
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After these preliminary remarks, we can state our 2nd main theorem.

Theorem A.3. LetF: C &2 D : G be a pair of adjoint functors satisfying the conditions
of Theorem A.2. Assume, in addition, that for a small category I, the functors colim? and

colim? exist and are left deformable. Then there is a natural isomorphism of functors
s C o~ D 74
LF o Lcolim; = Lcolim; o L(F"). (A.10)

In other words, the functor LF preserves homotopy colimits.

Theorem A.3 follows readily from Theorem A.2 and the main results of [17]
concerning homotopy colimits. For reader’s convenience, we will summarize these
results below, before proving Theorem A.3. We start with a simple lemma, which is
probably well known to experts, but since we could not find a reference, we provide a

quick proof.

Lemma A.3. LetF: M = D : G be a deformable adjunction between homotopical
categories. Assume that, for a small category I, the functors colimf‘/l and colimID exist

and are left deformable. Then there is a natural isomorphism

LF o Leolim™ = Lcolim? o L(F7). (A.11)

Proof. Since G is right deformable, so is G!, and there is a right deformation functor
on D, say R : D — D, such that RG = y\ 0 GoR and R(G!) = yp 0 G o Rl are the
right derived functors of G and G!, respectively. Now, since diag; is homotopical, we

have obvious isomorphisms:

diﬁlg?/1 oRG diﬁlg?/1 oYM O GoR

12

Y MmI odiagI/Vl oGoR

12

YMmI © Gl o diagID oR

12

Yl © G'oR'o diaglp

12

R(GY) o diag}),
which induce an isomorphism of the total right derived functors
diagIM oRG = R(GHo diag?. (A.12)

By lemma’s assumptions, each functor in (A.12) has a left adjoint; hence, (A.12) implies
(A.11). [ |
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Now, we briefly review the results of [17] needed for the proof of our
Theorem A.3. We warn the reader that our notation differs from that of [17] but this
should not cause confusion. For a small category I, we denote by AI the simplex category
of I, that is, the category of simplices A | N(I) of the nerve of I, and write Mﬁl for the
full subcategory (In [17], the category M, is denoted Funb(MN(), M) .) of MA! consisting
of bounded AI-diagrams in a category M. Recall that a functor X : AI - M is bounded
if it maps every degeneracy map s' : s‘c — o in AI to an isomorphism in M; thus,
modulo isomorphisms, a bounded functor is determined by its values on nondegenerate
simplices in AI. The simplex category comes together with a forgetful functorr : ATl - I
that takes an n-simplex o in AI, thatis a chaino = (i < i; < ... < i,)) of n composable
maps in I, to its target 7(o) = iy. This forgetful functor yields the restriction functor
t* : Ml — MAT whose image is in M} (in fact, it is easy to check that Im(t*) consists of
bounded functors X : AI — M which, in addition to inverting all the degeneracy maps
in AI, also invert all the boundary maps d’ : dic — o with i > 0). Now, if the category M
is closed under colimits, the functor * : M! — M3 has a left adjoint 7, : M} — M7,
which is given by restricting to Mj” the left Kan extension Lan, : M4 — M taken

along 7 : AI — I.In this way, for any cocomplete category M, we get the adjunction
T, Myl =2 M (A.13)

In M is a model category, (A.13) is called the Bousfield-Kan approximation of M!. More
generally, in [ : M = C : r is a left model approximation of a homotopical category C,

the composition of adjunctions
Por,: Mpl =2 M=l thor (A.14)

is called the Bousfield-Kan approximation of C!. Now, the main results of [17] can be

encapsulated into the following theorem.

Theorem A.4 ([17, Theorem 11.2 and Theorem 11.3]). Let I be a small category.

(1) For any model category M, the category Mﬁl has a model structure, where
the weak equivalences (resp., fibrations) are the objectwise weak equivalences (resp.,
fibrations) of bounded AI-diagrams in M.

(2) For any left model approximation [ : M = C : r, the Bousfield-Kan
approximation (A.14) is a left model approximation of C!. In particular, (A.13) is a left
model approximation of M!.

(3) If C is closed under colimits and admits a left model approximation [: M =

C : r, the corresponding Bousfield-Kan approximation (A.14) is good for colimIC = C.
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In particular, the functor Colimg” is left deformable and its left derived functor (the
homotopy colimit) Lcolimﬁj exists.

We now explain how to construct homotopy colimits using the Bousfield-Kan
model structure on Mﬁl . To this end, we need another important observation of [17]
that, for any model category M, the functor colimg\/} : M3l — M, obtained by restricting
the usual colimit to bounded diagrams, is homotopical on cofibrant objects in M2!, and
hence has a left derived functor (see [17, Cor. 13.4 and Prop. 14.2]). Following [17], we

denote this derived functor by
ocolimyf : MET — Ho(M). (A.15)

(It is important to note that the functor ocolimg\’} is not equivalent, in general, to the
usual homotopy colimit ]Lcolimﬁ}‘ restricted to Mﬁl (see [17,Remark 14.3]).) In terms of
(A.15), the homotopy colimit functor on arbitrary I-diagrams ]Lcolim{vl : M - Ho(M)
is given by

Leolim]! = ocolim)f o 7*, (A.16)

where % : M — Mﬁl is the restriction functor in the Bousfield-Kan approximation
(A.13). More generally, for a left model approximation [ : M = C : r, the homotopy

colimit ]Lcolimf : ¢l = Ho(C) is given by the composition

I ocolim/A\}l

R VI I Ho(M) 2 Ho(0),
that is

Leolim§ = Lloocolim)f o % o7, (A.17)

Combining the isomorphisms (A.16) and (A.17) and passing to total derived functors, we

arrive at the following result that we will use in the proof of Theorem A.3.

Corollary A.2. Assume that a homotopical category C admits a left model approxima-
tionl: M = C : r and is closed under colimits. Then, for any small category I, Lcolim?

exists and

Leolim¢ = Llo LeolimM o 7. (A.18)

Finally, we turn to

Proof of Theorem A.3. By Lemma A.3, we have a natural isomorphism (A.11) that yields

by restriction:

LF o Leolim o 7 = Leolim? o L(ET) o 7. (A.19)
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Now, by Theorem A.2 (see (A.9)) and Corollary A.2, the composition of functors in the
left-hand side of (A.19) is isomorphic to

LF o Llo Leolim™ o # = LF o Lcolimy .

On the other hand, by condition (ii) of Theorem A.2, the pair of functors (¥, r!) is left
deformable, and there is a natural weak equivalence FZ o ! = (F o r)Y = F!, inducing an
isomorphism

LEY o = LEF o) = LF.

Hence, the right-hand side of (A.19) is isomorphic to LcolimlD o L(FT). Combining (A.19)

with these two isomorphisms gives (A.10). |

Remark. The assumption of Theorem A.3 that colimIc is a left deformable functor is
superfluous. Indeed, thanks to Theorem A.4(3), it suffices only to assume the existence

of COlil’IlIC.
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