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In this paper, we introduce and study representation homology of topological spaces,

which is a natural homological extension of representation varieties of fundamental

groups. We give an elementary construction of representation homology parallel to the

Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a

direct geometric relation between the two theories by proving that the representation

homology of the suspension of a (pointed connected) space is isomorphic to its higher

Hochschild homology. We also construct some natural maps and spectral sequences

relating representation homology to other homology theories associated with spaces

(such as Pontryagin algebras, S1-equivariant homology of the free loop space, and stable

homology of automorphism groups of f.g. free groups). We compute representation

homology explicitly (in terms of known invariants) in a number of interesting cases,

including spheres, suspensions, complex projective spaces, Riemann surfaces, and some

3-dimensional manifolds, such as link complements in R3 and the lens spaces L(p,q).

In the case of link complements, we identify the representation homology in terms of

ordinary Hochschild homology, which gives a new algebraic invariant of links in R3.
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2 Y. Berest et al.

1 Introduction

Representation homology is an algebraic homology theory associated with derived

representation schemes, which are natural (“derived”) extensions of classical repre-

sentation varieties. The subject may be plainly viewed as part of derived algebraic

geometry (see, e.g., [75]); however, somewhat surprisingly, there are more elementary

constructions. What makes representation homology interesting (it seems) are the rela-

tions between these different constructions and interpretations coming from different

parts of mathematics.

In the present paper, we give two (equivalent) definitions of representation

homology of topological spaces: one in terms of (non-abelian) derived functors on

simplicial groups and the other in terms of classical homological algebra in functor

categories. The first definition is inspired by our earlier work on representation

homology of algebras (see [4–6]) while the second by the Loday–Pirashvili approach to

higher Hochschild homology [60]. Both definitions are conceptually very simple and

accessible to computations: in this paper, we will use them in a complementary way

to establish basic properties of representation homology and do some examples; in our

subsequent paper [10], we will look at applications. We begin with some motivation for

studying representation homology.

1.1 Representation varieties and representation homology

Let G be a finite-dimensional affine algebraic group defined over a field k of charac-

teristic zero. For any (discrete) group �, the set of all representations of � in G has

a natural structure of an affine k-scheme called the representation scheme RepG(�).

Representation schemes and associated varieties play an important role in many areas

of mathematics, most notably in representation theory and low-dimensional topology.

In representation theory, the fundamental problem is to understand the structure of

representations of � in G. One can approach this problem geometrically by studying the

natural (adjoint) action of the group G on the variety RepG(�). When k is algebraically

closed and � is finitely generated, the equivariant geometry of RepG(�) is closely related

to the representation theory of �: the equivalence classes of representations of � in G

are in bijection with the G-orbits in RepG(�), and the geometry of G-orbits determines

the algebraic structure of representations. This relation has been extensively studied

since the late ’70s, and the representation varieties have become a standard tool in

representation theory of groups (see, e.g., [51, 70]).
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Representation Homology of Topological Spaces 3

In topology, one is usually interested in global algebro-geometric invariants of

spaces defined in terms of representation varieties of fundamental groups. For example,

if K is a knot in S3, many classical invariants of K arise from its character variety

χG(K) := RepG[π1(XK)]//G, which is the (categorical) quotient of the representation

variety of the fundamental group of the knot complement XK := S3\K. These invariants

include, in particular, the classical Alexander polynomial �K(t) (in the simplest case

when G = C∗, see, e.g., [55]), the so-called A-polynomial AK(m, l) (see [19]), the Casson

invariant [20], and the famous Chern–Simons invariant [47], all of which are defined for

G = SL2(C). In fact, for G = SL2(C), the entire character variety, or rather its coordinate

ring O[χG(K)] , has a purely topological interpretation as a Kauffman bracket skein

module of XK (see [63]).

Despite being useful tools, the representation varieties have some intrinsic

deficiencies. First of all, these varieties are usually very singular, which makes it hard

to understand their geometry. Thus, in representation theory, one faces the problem

of resolving singularities of RepG(�). In topology, the use of representation varieties

is mostly limited to (compact orientable) surfaces, hyperbolic 3-manifolds, and knot

complements in S3, all of which are known to be aspherical spaces. The homotopy type

of such a space is completely determined by the isomorphism type of its fundamental

group, which makes representation varieties of these groups very strong and efficient

invariants. For more general spaces, however, one needs to take into account a higher

homotopy information, and looking at representation varieties of fundamental groups

(or even, higher homotopy groups) is not enough.

A natural way to remedy these problems is to replace the representation functor

RepG with its (non-abelian) derived functor DRepG much in the same way as one

replaces non-exact additive functors in classical homological algebra (such as “⊗”

and “Hom”) with corresponding derived functors (“⊗L ” and “RHom”). Geometrically,

passing from the representation scheme RepG(�) to the derived representation scheme

DRepG(�) amounts to desingularizing RepG(�), while topologically, this yields a new

homology theory of spaces that captures a good deal of homotopy information and

refines the classical representation varieties of fundamental groups in an interesting

and nontrivial way.

To explain this idea in more precise terms, we recall that the representation

scheme RepG(�) is defined as the functor on the category of commutative k-algebras:

RepG(�) : Comm Algk → Set A �→ HomGr(�,G(A)), (1.1)
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4 Y. Berest et al.

assigning to a k-algebra A the set of families of representations of � in G parametrized

by the k-scheme Spec(A). It is well known that the functor (1.1) is representable, and

we denote the corresponding commutative algebra by �G = O[RepG(�)]: this is the

coordinate ring of the affine k-scheme RepG(�). Varying � (while keeping G fixed), we

can now regard �G as a functor on the category of groups:

(–)G : Gr→ Comm Algk � �→ �G, (1.2)

which we call the representation functor in G. The functor (1.2) extends naturally to the

category sGr of simplicial groups, taking values in the category sCommAlgk of simplicial

commutative algebras. Both categories sGr and sCommAlgk carry standard (simplicial)

model structures, with weak equivalences being the weak homotopy equivalences of

underlying simplicial sets. The functor ( – )G : sGr → sCommAlgk is not homotopy

invariant: in general, it does not preserve weak equivalences and hence does not descend

to a functor between the homotopy categories Ho(sGr) and Ho(sCommAlgk). However, it

is easy to check that ( – )G takes weak equivalences between cofibrant objects in sGr

to weak equivalences in sCommAlgk (see Lemma 3.1). Hence, by standard homotopical

algebra, it has a (total) left derived functor

L( – )G : Ho(sGr) → Ho(sComm Algk). (1.3)

We call (1.3) the derived representation functor in G. Heuristically, L( – )G may be

thought of as the “best possible” approximation of the representation functor (1.2) at

the level of homotopy categories. When applied to a simplicial group �, the functor

(1.3) is represented by a simplicial commutative algebra that we denote by O[DRepG(�)].

The derived representation scheme DRepG(�) is then defined formally as the “Spec”

of O[DRepG(�), that is, the simplicial algebra O[DRepG(�)] viewed as an object of the

opposite category Ho(sCommAlgk)
op. The homotopy groups of O[DRepG(�)] depend only

on � and G, with π0O[DRepG(�)] being canonically isomorphic to π0(�)G. In particular,

if � is a discrete simplicial group, then π0O[DRepG(�)] ∼= �G. Extending our terminology

from [4, 6], we will refer to π∗O[DRepG(�)] as the representation homology of � in G and

denote it HR∗(�,G). We should mention that representation homology of associative and

Lie algebras was introduced and studied in [4–6]. The idea of deriving the representation

functor was motivated by noncommutative geometry, where the representation functor

plays an important role (see [38, 49] and also [7]).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa023/5766442 by Indiana U

niversity Libraries - Bloom
ington user on 22 O

ctober 2021



Representation Homology of Topological Spaces 5

Next, we recall that the model category sGr of simplicial groups is Quillen

equivalent to the category of reduced simplicial sets, sSet0, which is, in turn, Quillen

equivalent to the category Top0,∗ of pointed connected topological spaces. These

classical equivalences are given by two pairs of adjoint functors:

G : sSet0 � sGr : W , | – | : sSet0 � Top0,∗ : S,

the construction of which will be briefly reviewed in Section 2.2. Here, we only recall

that G is the Kan loop group functor that assigns to a reduced simplicial set X ∈ sSet0 a

semi-free simplicial group GX, which is a simplicial model of the based loop space �|X|
(see [44]). The Kan loop group functor preserves weak equivalences and hence induces

a functor between the homotopy categories: G : Ho(sSet0) → Ho(sGr). Combining this

last functor with (1.3), we set O[DRepG(X)] := L(GX)G and define the representation

homology of X ∈ sSet0 by

HR∗(X,G) := π∗O[DRepG(X)]. (1.4)

By definition, HR∗(X,G) is a graded commutative algebra that depends only on the

homotopy type of X and hence is a homotopy invariant of the corresponding space

|X|. In degree zero, we have HR0(X,G) ∼= (π1(X))G = O[RepG(π1(X))], where π1(X)

is the fundamental group of X. To avoid confusion, we emphasize that HR∗(X,G) �∼=
HR∗(π1(X),G) in general; however, if � is a discrete group and X is a K(�, 1)-space (e.g.,

X = B�), then we do have a natural isomorphism HR∗(X,G) ∼= HR∗(�,G), so there is no

ambiguity in our notation.

The goal of the present paper is three-fold. First, we establish basic properties

of the derived representation functor (1.3). Second, we give an elementary construction

of representation homology in terms of classical (abelian) homological algebra. Our

construction is analogous to Pirashvili’s construction of higher order Hochschild homol-

ogy, and it provides a natural interpretation of representation homology as functor

homology. This opens up the way to efficient computations and places representation

homology in one row with other classical invariants such as Hochschild and cyclic

homology. Third, we construct some spectral sequences and natural maps relating

representation homology to other homology theories associated with spaces (including

the Pontryagin algebra H∗(�X), higher Hochschild homology, and stable homology of the

automorphism groups of f.g. free groups Fn). We also compute representation homology

explicitly in a number of interesting cases, including the spheres Sn, suspensions �X,
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6 Y. Berest et al.

co-H-spaces, closed surfaces of arbitrary genus, and some classical 3-dimensional

spaces, such as the link complements in R3 and the lens spaces L(p,q). In our

subsequent paper, [10], we will extend these computations to arbitrary simply connected

topological spaces by expressing the representation homology of a 1-connected space

of finite rational type in terms of its Quillen and Sullivan models and give some

applications to representation theory.

1.2 Main results

We now proceed with a summary of the main results of the paper. Recall that an

affine algebraic group G is defined by its functor of points, which is a group-valued

representable functor on commutative algebras. This functor extends in the natural way

to simplicial commutative algebras:

G : sCommAlgk → sGr A∗ �→ G(A∗). (1.5)

By definition, the representation functor (1.2) is left adjoint to the functor of points of

G; hence, its simplicial extension is left adjoint to (1.5). Thus, for any affine algebraic

group, we have the adjunction

( – )G : sGr � sCommAlgk : G. (1.6)

Our 1st main result reads

Theorem 1.1. The functor (1.5) has a total right derived functorRG : Ho(sCommAlgk) →
Ho(sGr), which is right adjoint to the derived representation functor (1.3); thus, (1.6)

induces the derived adjunction

L( – )G : Ho(sGr) � Ho(sCommAlgk) : RG. (1.7)

Note that the categories sGr and sCommAlgk have natural (simplicial) model

structures, and the above result would be immediate from the well-known adjunction

theorem of Quillen [65] if (1.6) were Quillen functors. However, it is easy to see that the

functors (1.6) do not form a Quillen pair of model categories, nor even do they form

a deformable adjunction of homotopical categories in the sense of [23]. Theorem 1.1

is therefore an interesting and fairly nontrivial result, which is—to the best of our

knowledge—new.
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Representation Homology of Topological Spaces 7

In the special case when G = GLn, the derived functor RG can be described

explicitly as the composite of two well-known functors:

RGLn
∼= L l ◦ ĜLn. (1.8)

The functor ĜLn : sCommAlgk → sMon takes values in the category of simplicial

monoids, assigning to a simplicial algebra A∗ the simplicial monoid of (n×n)-matrices

over A∗ “invertible up to homotopy”: more precisely, ĜLn(A∗) is defined by the pull-back

diagram in the category sMon:

This functor was originally introduced by Waldhausen [77] to define a homotopy

invariant version of algebraic K-theory of simplicial rings. The second functor in (1.8)

is the total left derived functor L l : Ho(sMon) → Ho(sGr) of the group completion

(localization) of simplicial monoids: it can be viewed as a special case of the classical

Dwyer–Kan localization of simplicial categories studied in [24]. Formula (1.8) is rather

unusual as it expresses a right derived functor in terms of a left derived one.

For an arbitrary algebraic group G, we construct an explicit model for RG using

the recent work of Galatius and Venkatesh [33]. In this model, instead of simplicial

monoids, we factor RG through the reduced simplicial spaces (or reduced Segal

precategories) in the sense of Bergner [12]. This construction leads to a more general

definition of representation homology that applies to simplicial spaces and does not

use the Kan loop group equivalence (see Section 3.4).

The second main result of this paper is an interpretation of representation

homology in terms of classical homological algebra in functor categories. To this

end we consider the category G of finitely generated free groups with objects 〈n〉 :=
F〈x1, x2, . . . , xn〉 (for n ≥ 0) and morphisms being the arbitrary group homomorphisms.

This category is a PROP (i.e., a small permutative category) with monoidal structure

〈n〉 � 〈m〉 = 〈n + m〉, and it is known that the category of k-algebras over G (i.e., the

category of strict monoidal functors from G to the category Vectk of k-vector spaces) is

equivalent to the category of commutative Hopf k-algebras (see, e.g., [40].). Under this

equivalence, a commutative Hopf algebra H corresponds to the functor H : G → Vectk,

〈n〉 �→ H⊗n, which actually takes its values in the category of commutative algebras.

Note that any functor F : G → CommAlgk extends naturally (by taking the left Kan
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8 Y. Berest et al.

extension along the inclusion G ↪→ FGr) to the category of all (based) free groups,

FGr, whose objects are the free groups F〈S〉 given with a prescribed generating set S

and morphisms are the arbitrary group homomorphisms; we denote this extension by

F̃ : FGr→ CommAlgk.

Now, mimicking the Pirashvili construction of higher Hochschild homology (cf.

[60] and Section 4.1 below), for a reduced simplicial set X ∈ sSet0 and a commutative

Hopf algebra H, we consider the composition of functors

�op GX−−→ FGr
H̃−→ CommAlgk,

where GX is the Kan loop group construction of X and H̃ is the (left Kan) extension of the

strict monoidal functor H : G → Vectk corresponding to H. This defines a simplicial

commutative algebra H(GX), whose homotopy groups we denote by

HR∗(X,H) := π∗H(GX) = H∗[N(H(GX))]. (1.10)

It turns out that this definition is equivalent to our original definition of representation

homology (1.4) given in terms of the derived representation functor L( – )G. Precisely

(cf. Proposition 4.1), we have

Proposition 1.1. Let G be an affine group scheme over k with coordinate ring H =
O(G). Then, for any X ∈ sSet0, there is a natural isomorphism of graded commutative

algebras

HR∗(X,O(G)) ∼= HR∗(X,G).

Thanks to Proposition 1.1, we may (and will) use the notation HR∗(X,G) and

HR∗(X,H) interchangeably, without causing confusion. Although its proof is almost

immediate, Proposition 1.1 has a number of important implications. First, we state the

following theorem, which is the main result of Section 4 (see Theorem 4.3).

Theorem 1.2. For any X ∈ sSet0, there is a natural 1st quadrant spectral sequence

E2
pq = TorGp (Hq(�X; k),H) 
⇒

p
HRn(X,H) (1.11)

converging to the representation homology of X.
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Representation Homology of Topological Spaces 9

The spectral sequence (1.11) relates the representation homology HR∗(X,H) of

a space X to its Pontryagin algebra H∗(�X; k). To describe the E2-term of (1.11) we

recall that H∗(�X; k) has a natural structure of a graded cocommutative Hopf algebra

with coproduct induced by the Alexander–Whitney diagonal and the product by the

Eilenberg–Zilber map. For each q ∈ Z, the assignment 〈n〉 �→ [H⊗n]q, where [H⊗n]q is

the q-th graded component of the n-th tensor power of H = H∗(�X; k), defines a functor

Hq : Gop → Vectk, which is the 1st argument of the “Tor” in (1.11). The “Tor” itself is the

(abelian) derived functor of the tensor product ⊗G between covariant and contravariant

Vectk-valued functors over the (small) category G. The spectral sequence (1.11) is

a counterpart of Pirashvili’s fundamental spectral sequence for higher Hochschild

homology (cf. [60,Theorem 2.4]); however, in the case of representation homology it takes

a more geometric form.

Theorem 1.2 has several interesting implications. First of all, it shows that

the representation homology HR∗(X,H) is stable under Pontryagin equivalences (i.e.,

maps of spaces X → Y inducing isomorphisms of Pontryagin algebras H∗(�X; k)
∼→

H∗(�Y; k)), and hence, if X is simply connected, HR∗(X,H) is actually a rational

homotopy invariant of X (see Proposition 4.2). Next, if X is a K(�, 1)-space, the spectral

sequence (1.11) degenerates giving an isomorphism (cf. Corollary 4.3)

HR∗(�,G) ∼= TorG∗ (k[�],O(G)), (1.12)

where k[�] is the group algebra of � equipped with the natural (cocommutative) Hopf

algebra structure. The isomorphism (1.12) shows that the representation homology has

a natural “Tor” interpretation, similar to the classical (Connes) interpretation of the

Hochschild and cyclic homology (see [50, Chap. 6]). It is also interesting to compare

(1.12) with another natural isomorphism

H∗+1(�, k) ∼= TorG∗ (k[�], link), (1.13)

which provides a “Tor” interpretation (over G) for the ordinary homology of � as a

discrete group. Here link stands for the linearization functor G → Vectk that takes

the free group 〈n〉 to the vector space kn (see (4.9)). Note that if G = Ga is the additive

group over k, then we have a natural isomorphism of functors O(Ga) ∼= Symk(link),

which implies HR∗(�,Ga) ∼= 	k[ H∗+1(�, k)]. More generally, for any (pointed connected)
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10 Y. Berest et al.

space X, we have an isomorphism of graded commutative algebras (see Example 3.1)

HR∗(X,Ga) ∼= 	k[ H∗+1(X, k)], (1.14)

where 	k[ H∗+1(X, k)] is the symmetric algebra of the graded vector space H∗+1(X, k) =
⊕i≥0 Hi+1(X, k). Thus, we may think of representation homology as a generalization of

the ordinary (singular) homology of spaces.

In Section 5, we show that representation homology can be also viewed as a

generalization of higher Hochschild homology of spaces. The main result of this section

reads (cf. Theorems 5.1 and 5.2).

Theorem 1.3. Let H be a commutative Hopf algebra.

(a) For any simplicial set X ∈ sSet, there is a natural isomorphism

HR∗(�(X+),H) ∼= HH∗(X,H), (1.15)

where X+ = X � {∗} is a pointed simplicial set obtained from X by adjoining functorially

a basepoint, and � is the (reduced) suspension functor on the category of pointed

simplicial sets.

(b) For any pointed simplicial set X ∈ sSet∗, there is a natural isomorphism

HR∗(�X,H) ∼= HH∗(X,H; k), (1.16)

where HH∗(X,H; k) is the Pirashvili–Hochschild homology of the commutative algebra

H with coefficients in k viewed as an H-module via the Hopf algebra counit ε : H→ k.

The proof of Theorem 1.3 is based onMilnor’s classical FK-construction [56] that

gives a simple simplicial group model for the space ��|X|.
Theorem 1.3 has strong implications: in particular, it allows one to compute

the representation homology of suspensions in a completely explicit way. It is known

that �X for any pointed connected space X is rationally homotopy equivalent to a

bouquet of spheres of dimension ≥2. Since representation homology depends only

on the rational homotopy type of a space, the isomorphism (1.16), together with

Pirashvili’s computations [60] of higher Hochschild homology of spheres, implies (cf.

Proposition 5.3).
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Representation Homology of Topological Spaces 11

Proposition 1.2. For any pointed connected space X of finite type, there is an

isomorphism

HR∗(�X,G) ∼= 	k[ H∗(X; g∗)],

where 	k[ H∗(X; g∗)] is the graded symmetric algebra of the reduced (singular) homology

of X with coefficients in the dual Lie algebra of the group G.

By induction, Proposition 1.2 implies HR∗(�nX,G) ∼= 	k

(
H∗(X; g∗)[n− 1]

)
for all

n ≥ 1. In particular, for Sn ∼= �Sn−1, we have

HR∗(Sn,G) ∼= 	k(g
∗[n− 1]) n ≥ 2. (1.17)

In Section 6, we compute representation homology of some classical non-simply

connected spaces. Our examples include closed surfaces of arbitrary genus (both

orientable and non-orientable) as well as some three-dimensional spaces (the link

complements in R3 and S3, the lens spaces L(p,q), and a general closed orientable 3-

manifold). The representation homology of surfaces and link complements is expressed

in terms of classical Hochschild homology of O(G) and related commutative algebras.

For example, for the link complements in R3, we prove the following (cf. Theorem 6.1).

Theorem 1.4. Let L be a link in R3 obtained as the Alexander closure of a braid β ∈ Bn.

Then the representation homology of the complement of its (regular) neighborhood in

R3 is given by

HR∗(R3\L,G) ∼= HH∗(O(Gn), O(Gn)β). (1.18)

The right-hand side of (1.18) is the (ordinary) Hochschild homology of the asso-

ciative algebra O(Gn) with bimodule coefficients. The bimodule O(Gn)β is isomorphic

to O(Gn) = O(G)⊗n as a left module, while the right action of O(Gn) is twisted by an

element β viewed as an automorphism of O(G)⊗n via the Artin representation of the

braid group Bn.

Theorem 1.4 shows that the Hochschild homology groups HH∗(O(Gn), O(Gn)β)

are algebraic invariants of links in R3, which, to the best of our knowledge, have not

appeared in the earlier literature. We should mention, however, that the representation

homology of link complements bears a striking resemblance to knot contact homology,

which is a new geometric homology theory of knots and links in R3 defined in [58]

and studied extensively in recent years (see the remark after Theorem 6.1). We will
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12 Y. Berest et al.

discuss the relation between representation homology and knot contact homology in

our subsequent paper.

In Section 6, we also discuss a multiplicative version of the derived Harish–

Chandra conjecture proposed in [6]. If G is a connected reductive group with a maximal

torus T ⊂ G and W is the associated Weyl group, then for any space X, there is a natural

map

HR∗(X,G)G → HR∗(X,T)W , (1.19)

which we call the derived Harish–Chandra homomorphism (cf. [6, Section 7]). In view

of (1.17), by the classical Chevalley restriction theorem [18], the map (1.19) is an

isomorphism for any odd-dimensional sphere X = S2p+1. We conjecture that (1.19) is also

an isomorphism for the two-dimensional torus T2 = S1 × S1, which gives the following

explicit formula for the representation homology of T2 (see Section 6.1.1, Conjecture 1):

HR∗(T2,G)G ∼= [O(T × T)⊗	∗
k(h

∗)]W ,

where h is the Lie algebra of T (i.e., a Cartan subalgebra of g) and h∗ is its linear dual.

As for the Drinfeld homomorphism, it would be interesting to find more examples

of spaces, for which the map (1.19) is an isomorphism, and/or give an abstract

characterization of all such spaces.

In the last section of the paper, we give another interpretation of representation

homology as the Hochschild–Mitchell homology of a certain bifunctor on the category

of finitely generated free groups G. Such an interpretation is useful for several reasons.

First, it allows us to define representation cohomology in a natural way (by simply

replacing the Hochschild–Mitchell homology with the Hochschild–Mitchell cohomology

of the same bifunctor). Second, it suggests that it is natural to extend the definition of

representation (co)homology by taking the Hochschild–Mitchell (co)homology of G with

coefficients in an arbitrary bifunctor D: that is, HR(D) := HH(G,D). Third and most

important, it exhibits a close analogy with topological Hochschild homology, which is

known to be isomorphic to the Hochschild–Mitchell homology of the category Gab of

finitely generated free abelian groups (see [62]). Motivated by this analogy, we construct

functorial trace maps

DTrGn (D) : H∗(Aut(Fn), Dn) → HR∗(D) ∀n ≥ 1,

relating homology of the automorphism groups of f.g. free groups with appropriate

coefficients to representation homology. These maps are compatible with natural
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Representation Homology of Topological Spaces 13

inclusions Aut(Fn) ↪→ Aut(Fn+1) and hence have an stable limit as n → ∞. The

corresponding stable map DTrG∞(D) : H∗(Aut∞, D∞) → HR∗(D) can be viewed as a non-

abelian analogue of the classical Dennis trace relating topological Hochschild homology

to stable homology of general linear groups. We conjecture that the map DTrG∞(D) is

actually an isomorphism, whenever D is a polynomial bifunctor (cf. Conjecture 2). This

is a non-abelian analogue of a theorem of Scorichenko [28].

1.3 Relation to derived algebraic geometry

The derived representation schemes DRepG(X) are basic objects of derived algebraic

geometry. To the best of our knowledge, the first construction of this kind—the derived

moduli space RLocG(X) of G-local systems over a finite, pointed, connected CW complex

X—was proposed by Kapranov in [45]. He defined RLocG(X) using a simplicial DG

scheme RBG that played the role of a canonical “injective resolution” of the classifying

space BG of the algebraic group G in the category of simplicial DG schemes. A more

refined constructionMap(X,BG)—called the derived mapping stack of flat G-bundles on

X—was developed by Toën and Vezzosi in [76] (see also [59]), using local homotopy theory

of simplicial presheaves on the category of (derived) affine schemes. For a detailed

comparison of these two constructions with our construction of DRepG(X), we refer the

reader to the appendix of [9], where we showed that—despite different frameworks—all

three constructions are essentially equivalent.

We would like to conclude this introduction by mentioning some interesting

topological generalizations of higher Hochschild homology that appeared in recent

years, such as factorization homology (see, e.g., [36, 37]) and higher topological

Hochschild homology [15]. Our results show that representation homology, while closely

related to Hochschild homology, is a richer and somewhat more geometric theory that

blends topology and representation theory in a very natural way. It would therefore be

interesting to see if representation homology admits topological refinements similar to

those of Hochschild homology.

1.4 Appendix

The paper contains an appendix, where we collect basic facts and prove some new

results in abstract homotopy theory concerning derived functors. The main result

of the appendix—Theorem A.2—arises from our attempt to abstract the situation of

Theorem 3.1: it is a version of Quillen’s derived adjunction theorem for homotopical
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14 Y. Berest et al.

categories. This theorem as well as Theorem A.3 and Lemma A.1 are of independent

interest.

1.5 Outline of the paper

The paper is organized as follows. In Section 2, we introduce notation and recall some

basic facts about simplicial sets and spaces. In Section 3, we study basic properties of

the derived representation functor and define representation homology. In Section 4, we

give our second construction of representation homology in terms of functor homology

and derive its implications. In Section 4, we establish the isomorphism between the

representation homology of suspensions and higher Hochschild homology. In Section 6,

we give examples computing representation homology explicitly for some geometrically

interesting spaces. In Section 7, we identify representation homology in terms of

Hochschild–Mitchell homology and construct a non-abelian analogue of the Dennis

trace map relating representation homology to the stable homology of automorphism

groups of finitely generated free groups. The paper ends with an appendix where we

recall basic definitions and prove a few results from abstract homotopy theory used in

Section 3.

2 Preliminaries

In this section, we introduce notation and recall some basic definitions related to

simplicial sets. Standard references for this material are [54], [39], and [79, Chapter 8].

2.1 Simplicial objects

Let � denote the simplicial category. Recall that the objects of � are the finite-ordered

sets [n] := {0, 1, . . . ,n}, n ≥ 0, and the morphisms are the (weakly) order preserving

maps [n]→ [m]. A simplicial object in a category C is a contravariant functor from � to

C : that is, �op −→ C . The simplicial objects in C form a category, with morphisms being

the natural transformations of functors. We denote this category by sC . If X ∈ Ob(sC ),

we write Xn := X([n]).

The category � is generated by two distinguished classes of morphisms {δi}n≥10≤i≤n
and {σ j}n≥00≤j≤n, whose images under X ∈ sC are called the face and degeneracy maps of

X, respectively. The map δi : [n− 1] −→ [n] is the (unique) injection that does not contain

“ i” in its image; the corresponding face map is denoted by di := X(δi) : Xn −→ Xn−1.
Similarly, for n ≥ 0, the map σ i : [n+ 1] −→ [n] is the (unique) surjection in � that takes
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Representation Homology of Topological Spaces 15

value “ i” twice. The image of σ i under X is the degeneracy map si := X(σ i) : Xn −→ Xn+1.
The face and degeneracy maps of a simplicial object satisfy the following simplicial

relations:

didj = dj−1di if i < j

disj = sj−1di if i < j

disj = sjdi−1 if i > j+ 1 (2.1)

sisj = sj+1si if i ≤ j

disj = Id if i = j , j+ 1.

Thus, a simplicial object in sC is determined by a family X = {Xn}n≥0 of objects in C

together with morphisms di : Xn −→ Xn−1 and sj : Xn −→ Xn+1 satisfying the relations

(2.1). The object Xn is usually called the “set” of n-simplices of X, and the 0-simplices

are usually called the vertices of X.

We let sSet denote the category of simplicial sets (i.e., simplicial objects in the

category Set). A simplicial set X is called reduced if it has a single vertex, that is,

X0 = {∗}. The full subcategory of sSet consisting of reduced simplicial sets will be

denoted sSet0. A simplicial set X is called pointed if there are distinguished simplices

xn ∈ Xn, one in each degree, such that xn = s0(xn−1) for all n ≥ 1. The sequence

(x0, x1, x2, . . .) ∈
∏

n≥0 Xn is called a basepoint of X. The category of pointed simplicial

sets will be denoted sSet∗. Note that sSet0 can also be viewed as a full subcategory of

sSet∗ as every reduced simplicial set has a canonical (unique) basepoint.

Given X ∈ sSet, the set of nondegenerate n-simplices of X is defined to be

Xn := Xn \
n−1⋃
i=0

si(Xn−1).

Every element of Xn can be uniquely expressed in terms of the nondegenerate elements

of X (see [35, Lemma 11] for a precise statement). In particular, a simplicial set can be

defined by specifiying its nondegenerate simplices together with the restriction of each

face map to the set of nondegenerate simplices.

We give a few basic examples of simplicial sets that will be used in this paper.
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16 Y. Berest et al.

2.1.1 Discrete simplicial objects

To any object A ∈ C one can associate a simplicial object A∗ ∈ sC , with An = A and

di, sj being the identity map of A for all n, i, j. This gives a fully faithful embedding

C ↪→ sC . The objects of sC arising this way are called discrete simplicial objects.

2.1.2 Geometric simplices

The n-dimensional geometric simplex is the topological space

�n := {(x0, . . . , xn) ∈ Rn+1 |
n∑

i=0
xi = 1 , xi ≥ 0 }.

Let ei denote the vertex of �n with i-th coordinate 1. For any morphism f : [m] −→ [n] in

�, there is a (unique) linear map Rm+1 −→ Rn+1 sending ei to ef (i) that restricts to a map

of topological spaces f ∗ : �m −→ �n. The collection �∗ := {�n}n≥0 forms a cosimplicial

space, that is, a (covariant) functor � −→ Top, where Top denotes the category of

(compactly generated weakly Hausdorff) topological spaces. This functor is faithful:

it gives a topological realization of the simplicial category, which was historically the

first definition of �.

2.1.3 Standard simplices

Let Y : � ↪→ sSet denote the Yoneda embedding. The functor Y assigns to [n] a

simplicial set �[n]∗ called the standard n-simplex. Explicitly, �[n]∗ is given by

�[n]k := Hom�([k], [n]) ∼= {(n0, . . . ,nk) | 0 ≤ n0 ≤ . . . ≤ nk ≤ n},

where a function f : [k] −→ [n] is identified with the sequence of its values (f (0), . . . , f (k)).

Under this identification, the nondegenerate simplices correspond to strictly increasing

functions, and the face and degeneracy maps in �[n]∗ are given by

di(n0, . . . ,nk) = (n0, . . . , n̂i, . . . ,nk) , sj(n0, . . . ,nk) = (n0, . . . ,nj,nj, . . . ,nk).

By Yoneda lemma, for any simplicial set X, there is a natural bijection

HomsSet(�[n]∗,X) ∼= Xn,

which shows that �[n]∗ (co)represents the functor: sSet −→ Set , X �→ Xn.
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Representation Homology of Topological Spaces 17

2.1.4 Simplicial spheres

The Yoneda functor Y : � −→ sSet can be also regarded as a cosimplicial object in the

category of simplicial sets. In particular, for any n ≥ 1, there are n + 1 coface maps

di : �[n− 1]∗ −→ �[n]∗, 0 ≤ i ≤ n. Using these maps, we define the boundary of �[n]∗ to
be the simplicial subset

∂�[n]∗ :=
⋃

0≤i≤n
di(�[n− 1]∗) ⊂ �[n]∗,

The simplicial n-sphere is then defined to be the corresponding quotient set Sn∗ :=
�[n]∗/∂�[n]∗. It is easy to see that the only nondegenerate simplices in Sn∗ are in degree

0 and n, with S
n
0 = {∗} and S

n
n = {S}, where S is the image of the map Id ∈ �[n]n in

Snn. Note that di(S) = sn−10 (∗) for all i. Thus, the simplicial structure of Sn∗ reflects the

standard CW decomposition of the n-sphere Sn with one cell in dimension 0 and one

cell in dimension n.

The simplicial 1-sphere S1∗ is called the simplicial circle. By Example 2.1.3, we

have �[1]k ∼= {(0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

) | i = 0, 1, . . . , k + 1} and ∂�[1]k = {(0, . . . 0), (1, . . . , 1)}.

Hence, S1∗ is given explicitly by

S1k
∼= {(0, . . . , 0︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

) | i = 1, . . . , k+ 1},

with (0, . . . , 0) corresponding to the basepoint ∗.
There is an important functor | – | : sSet −→ Top assigning to each simplicial set

X a topological space |X| called the geometric realization of X. Explicitly, the space |X|
is defined by

|X| :=
⊔
n≥0

(Xn ×�n)/ ∼ ,

where each set Xn is equipped with discrete topology and the equivalence relation is

given by

(dix,p) ∼ (x,dip) for (x,p) ∈ Xn ×�n−1

(sjx,p) ∼ (x, sjp) for (x,p) ∈ Xn−1 ×�n .

More formally (see, e.g., [66, Section 1.3]), the functor | – | : sSet −→ Top can be defined as

the (left) Kan extension | – | = LanY(�∗) of the geometric simplex �∗ along the Yoneda
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18 Y. Berest et al.

embedding Y : � → sSet. It follows from this definition that |�[n]∗| ∼= �n for all

n ≥ 0, and in general, |X| ∼= colim�n, where the colimit is taken over all morphisms of

�[n]∗ −→ X , n ≥ 0. If X ∈ sSet is a simplicial set and x0 ∈ X0, we write πn(X, x0) for

the n-th homotopy group of X at x0, which is, by definition, the n-th homotopy group

πn(|X|, x0) of the geometric realization of X.

The category sSet has a standard model structure, where the weak equivalences

are the morphisms inducing weak homotopy equivalences of the corresponding geomet-

ric realizations. The cofibrations are levelwise injective maps and the fibrations are the

Kan fibrations (see [54, §7]). This structure gives a model structure on sSet0.

Let (X, ∗) be a pointed topological space. The (total) singular complex of X is a

simplicial set S∗(X) defined by Sn(X) := HomTop(�
n,X). The Eilenberg subcomplex of

S∗(X) is

Sn(X) := {f : �n −→ X : f (vi) = ∗ for all vertices vi ∈ �n }.
If X is connected, the natural inclusion S∗(X) ↪→ S∗(X) is a weak equivalence of

simplicial sets. Further, if we restrict S to the category Top0,∗ of connected pointed

spaces, we get the pair of adjoint functors

| – | : sSet0 � Top0,∗ : S, (2.2)

which induce mutually inverse equivalences of the homotopy categories: Ho(sSet0) �
Ho(Top0,∗). This equivalence justifies the following standard convention that we will

follow throughout the paper.

Convention. We shall not notationally distinguish between a reduced simplicial set

X and its geometric realization |X|. Nor shall we distinguish notationally between a

topological space and a (reduced) simplicial model of that space.

2.2 The Kan loop group construction

We will briefly review the classical construction of Kan [44] that provides a functorial

simplicial group model of the based loop space �X. For details and proofs we refer

the reader to [54, Chapter VI] and [39, Chapter V]). Let sGr denote the category of

simplicial groups. It has a standard model structure, where the weak equivalences

and fibrations of simplicial groups are the weak equivalences and fibrations of the

underlying simplicial sets. We note that, unlike sSet, the model category sGr is fibrant:

by a classical theorem of Moore, every simplicial group is a Kan complex (see [54,

Theorem 17.1]).
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Representation Homology of Topological Spaces 19

Definition 2.1. A simplicial group � = {�n}n≥0 is called semi-free if there is a sequence

of subsets Bn ⊂ �n, one in each degree, such that �n is freely generated by Bn, and the

set B = ⋃
n≥0 Bn is closed under degeneracies of �, that is, sj(Bn−1) ⊆ Bn for all 0 ≤ j ≤

n − 1 and n ≥ 1. The subset Bn := Bn\
⋃n−1

i=0 si(Bn−1) is called the set of nondegenerate

generators of � of degree n.

One can show that every element in Bn is nondegenerate (when considered as an

element of the underlying simplicial set), and a semi-free simplicial group is determined

by specifying the sets of nondegenerate generators Bn and the face elements of these

generators.

Semi-free simplicial groups are cofibrant objects in the model category sGr. The

Kan loop group construction provides an important class of semi-free simplicial groups

that arise naturally from reduced simplicial sets. To be precise, the Kan construction

defines a pair of adjoint functors:

G : sSet0 � sGr : W, (2.3)

where G is called the Kan loop group functor and W is the classifying simplicial com-

plex. The functor G preserves weak equivalences and cofibrations, while W preserves

weak equivalences and fibrations (see [39, Proposition V.6.3]). Hence, (2.3) is a Quillen

pair, which is actually a Quillen equivalence: that is, the functors G and W induce

mutually inverse equivalences between the homotopy categories of sSet0 and sGr (see

[39, Corollary V.6.4]). Combining this with the classical Quillen equivalence (2.2) between

topological spaces and simplicial sets:

Top0,∗
S−→ sSet0

G−→ sGr

we get equivalences of the homotopy categories:

Ho(Top0,∗) ∼= Ho(sSet0)
∼= Ho(sGr).

For further use, we recall the explicit construction of the functor G. Given a

reduced simplicial set X = {Xn}n≥0, the set of n-simplices of GX is defined by

GXn = 〈Xn+1〉/〈s0(x) = 1 , ∀x ∈ Xn〉 ∼= 〈Bn〉,
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20 Y. Berest et al.

where Bn := Xn+1\ s0(Xn) and the isomorphism is induced by the inclusion Bn ↪→ Xn+1.
The degeneracy maps sGX

j : GXn → GXn+1 are induced by the degeneracy maps sj+1 :

Xn+1 → Xn+2 of the simplicial set X, and the face maps dGX
i : GXn → GXn−1 are given

by

dGX
0 (x) := (d1x) · (d0x)−1 and dGX

i (x) := di+1(x) , ∀ i > 0.

Conversely, given a simplicial group � = {�n}n≥0, the simplicial set W� is defined by

W�0 := {∗} and W�n := �n−1 × �n−2 × . . . × �0 for n ≥ 0. The degeneracy and face

maps of W� are given explicitly in [54, §21]. We note that when restricted to discrete

simplicial groups, the functor W coincides with the usual nerve construction, that is,

W� = B� for any discrete group �.

Proposition 2.1. The Kan loop group GX of any reduced simplicial set X is semi-free.

More precisely, for each n > 0, the composite map τ : Xn → 〈Xn〉 � GXn−1 is injective

when restricted to the subset Xn ⊂ Xn, and the image τ(Xn) ⊂ GXn−1 forms the set of

nondegenerate generators Bn−1 = τ(Xn) in degree (n − 1) of the semi-free basis {Bn}n≥0
of GX.

The following fundamental theorem clarifies the meaning of the Kan loop group

construction.

Theorem 2.1 (Kan [44]). For any reduced simplicial set X, there is a weak homotopy

equivalence

|GX| � �|X|,

where �|X| is the (Moore) based loop space of |X|.

A detailed proof of Theorem 2.1 can be found in [54, § 26]. Its significance

becomes clear from the following considerations. Given any path-connected CW com-

plex Y one can choose a pointed connected simplicial set X ′ such that |X ′| � Y. If X

is the path-connected component of X ′ containing the basepoint, then X is a reduced

simplicial set such that |X| � |X ′| � Y because Y is connected. Hence, applying the

Kan loop group construction to X, we get |GX| � �Y. Thus, GX is a semi-free simplicial

group model of the based loop space of Y. In this way, the based loop space of any

path-connected CW complex admits a simplicial group model.
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Representation Homology of Topological Spaces 21

3 Representation Homology

In this section, we define representation homology as the homotopy groups of the (non-

abelian) derived representation functor associated with an affine algebraic group. We

establish the existence and basic properties of this functor as well as indicate some

generalizations. Our construction follows the approach of our earlier papers [4–6] where

we studied the representation homology of associative and Lie algebras.

3.1 Definition of representation homology

Fix an affine algebraic group scheme G over a field k of characteristic 0. Recall that G is

given by a representable functor on the category of commutative k-algebras with values

in the category of groups:

G : CommAlgk −→ Gr , A �→ G(A). (3.1)

A commutative algebra that represents (3.1) is called the coordinate ring of G and

denoted O(G). This algebra is equipped with a coproduct � : O(G) → O(G) ⊗ O(G),

f �→ f (1) ⊗ f (2), which is dual to the multiplication in G and makes O(G) a commutative

Hopf algebra.

Lemma/Definition. The functor (3.1) has a left adjoint

( – )G : Gr→ CommAlgk � �→ �G, (3.2)

which we call the representation functor in G.

Proof. Given a group � ∈ Gr define the algebra �G by the following canonical

presentation:

�G = Symk(k[�]⊗k O(G) )/I,

where the ideal I of relations is generated by

γ ⊗ f1f2 − (γ ⊗ f1) · (γ ⊗ f2),

γ1γ2 ⊗ f − (γ1 ⊗ f (1)) · (γ2 ⊗ f (2)), (3.3)

e� ⊗ f − f (eG) · 1 γ ⊗ 1− 1
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22 Y. Berest et al.

for all γ , γ1, γ2 ∈ � and f , f1, f2 ∈ O(G). If A ∈ CommAlgk is a commutative algebra,

a group homomorphism ϕ : � → G(A) = Hom(O(G),A) determines a linear map

k[�] ⊗ O(G) → A, which, in turn, induces—modulo the relations (3.3)—an algebra

homomorphism ϕ# : �G → A. It is straightforward to check that ϕ �→ ϕ# gives the

required bijection HomGr(�,G(A)) ∼= HomCommAlgk
(�G,A). �

We remark that, for a fixed group �, the algebra �G represents the functor

RepG(�) : CommAlgk → Set A �→ HomGr(�,G(A)),

which is the functor of points of an affine k-scheme RepG(�) parametrizing the

representations of � in G; hence, geometrically, we can think of �G as the coordinate

ring O[RepG(�)] of RepG(�).

Next, we embed the category of groups into the category sGr of simplicial groups

and extend the functor (3.2) to sGr in the natural way, assigning to a simplicial group

�∗ : �op → Gr the simplicial commutative algebra (�∗)G : �op → Gr → CommAlgk. We

will keep the notation ( – )G for this extended representation functor:

( – )G : sGr→ sCommAlgk. (3.4)

Both categories sGr and sCommAlgk have natural (simplicial) model structures, with

weak equivalence being the weak homotopy equivalence of the underlying simplicial

sets. However, the representation functor (3.4) is not homotopy invariant—it does not

preserve weak equivalences—hence, in order to work in a homotopical context we

should replace or approximate (3.4) with a derived functor (see [65], [25]). The existence

of this derived functor is easy to establish.

Lemma 3.1. The functor (3.4) maps the weak equivalences between cofibrant objects

in sGr to weak equivalences in sCommAlgk, and hence has a total left derived functor

L( – )G : Ho(sGr) −→ Ho(sCommAlgk). (3.5)

Proof. Suppose that f : � → �′ is a weak equivalence between cofibrant simplicial

groups. Since sGr is a fibrant model category, � and �′ are both fibrant–cofibrant

objects. By Whitehead’s theorem, the map f has then a homotopy inverse g : �′ → �,

such that fg ∼ Id and gf ∼ Id. Now, any homotopy between fibrant–cofibrant objects

can be realized using a good cylinder object in sGr. Since sGr is a simplicial model
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Representation Homology of Topological Spaces 23

category, there is a natural choice of good cylinder objects for � and �′: namely,

� � � → � × �[1] → �, and similarly for �′. For such cylinder objects, the simplicial

homotopies (see [54, Def. 5.1]) can be defined by explicit combinatorial relations that

are preserved by the functor ( – )G. Thus, we conclude that gG : �′G → �G is a homotopy

inverse of fG : �G → �′G in sCommAlgk and hence fG and gG are mutually inverse

isomorphisms in Ho(sCommAlgk). The existence of the derived functor (3.5) follows now

from [25, Prop. 9.3]. �

Now, for a fixed simplicial group � ∈ sGr, we formally define the derived

representation scheme DRepG(�) as SpecL(�)G , that is, the simplicial algebra L(�)G

viewed as an object of the opposite category Ho(sCommAlgk)
op. We call the homotopy

groups of L(�)G the representation homology of � in G and write

HR∗(�,G) := π∗L(�)G.

By comparing the universal mapping properties, it is easy to check that the

functor (3.4) commutes with π0; hence, for any � ∈ sGr, there is a natural isomorphism

in CommAlgk:

HR0(�,G) ∼= [π0(�)]G. (3.6)

In particular, if � ∈ Gr is a constant simplicial group, we have HR0(�,G) ∼= �G, which

justifies our notation and terminology for DRepG(�).

Next, recall the fundamental theorem of Kan [44] that identifies the homotopy

types of simplicial groups with those of pointed connected spaces. To be precise, the

Kan theorem asserts that the category of simplicial groups is Quillen equivalent to the

category sSet0 of reduced simplicial sets, which is, in turn, Quillen equivalent to the

category Top0,∗ of pointed connected spaces. As a result, we have natural equivalences

of homotopy categories

Ho(Top0,∗) ∼= Ho(sSet0)
∼= Ho(sGr). (3.7)

This leads us to the main definition.

Definition 3.1. For a space X ∈ Top0,∗, we define the derived representation scheme

DRepG(X) to be DRepG(�X), where �X is a(ny) simplicial group model of X (i.e., a

simplicial group that corresponds to X under the Kan equivalence). The representation
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24 Y. Berest et al.

homology of X in G is then defined by

HR∗(X,G) := π∗L(�X)G. (3.8)

By definition, HR∗(X,G) is a graded commutative algebra, with HR0(X,G) natu-

rally isomorphic to [π1(X)]G = O[RepG(π1(X))], the coordinate ring of the representation

scheme RepG[π1(X)]. The last isomorphism is the composition of (3.6) with the natural

isomorphism π0(�X) ∼= π1(X).

For a reduced simplicial set X ∈ sSet0, the Kan loop group GX provides a

canonical (functorial) simplicial group model for |X|. Since this simplicial group is semi-

free (see Section 2.2), we have

HR∗(X,G) ∼= π∗ (GX)G. (3.9)

This formula can be used to compute representation homology in some simple cases.

Example 3.1. Let Ga be the additive group over k, that is, the affine algebraic group

defined by the functor Ga : CommAlgk → Gr,A �→ (A,+), where (A,+) denotes the

underlying abelian group of the algebra A. It is easy to see that, for any � ∈ Gr, there

is a natural bijection HomGr(�,Ga(A)) ∼= HomCommAlgk
(Symk(link�),A), where link(�) :=

�ab ⊗Z k. Hence, the representation functor in Ga is given by the composition ( – )Ga
=

Symk ◦ link : Gr→ Vectk → CommAlgk. Using formula (3.9), for an arbitrary X ∈ sSet0,

we can now compute

HR∗(X,Ga) ∼= π∗ 	k [(GX)ab ⊗Z k]

∼= 	k

[
π∗((GX)ab ⊗Z k)

]
∼= 	k

[
π∗(GX)ab ⊗Z k

]
∼= 	k

[
H∗+1(X,Z)⊗Z k

]
∼= 	k

[
H∗+1(X, k)

]
,

where 	k is the graded symmetric algebra functor over k and H∗+1(X,Z) :=
⊕i≥0 Hi+1(X,Z) is the singular homology of X. Note that, besides (3.9), we used here

the classical isomorphism of Kan: π∗(GX)ab
∼= H∗+1(X,Z) (see, e.g., [54, Theorem

26.9]) and the well-known fact that the functor 	k commutes with homology when

k has characteristic zero (see, e.g., [65, Part I, Prop. 4.5]). This example shows that
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Representation Homology of Topological Spaces 25

representation homology may be viewed as a generalization of the ordinary singular

homology.

3.2 The derived representation adjunction

By definition, the representation functor (3.2) is left adjoint to (the functor of points of)

the algebraic group G. This adjunction extends automatically to simplicial categories:

( – )G : sGr � sCommAlgk : G, (3.10)

and the natural question is whether (3.10) induces an adjunction between derived

functors on the corresponding homotopy categories. The (affirmative) answer to this

question would be immediate from Quillen’s fundamental theorem [65, I.4.5, Theorem 3]

if (3.10) were a pair of Quillen functors between model categories. However, this is not

the case. By definition, any left Quillen functor preserves cofibrations, which means,

in particular, that it maps cofibrant objects in one model category to cofibrant ones

in the other. Unfortunately, the representation functor (3.4) lacks this property even in

simplest cases. Take, for example, G = Gm, the multiplicative group, and apply (3.4) to

the free group on one generator � = F1, which is obviously a cofibrant object in sGr.

The result is �G
∼= k[x, x−1], which is not a cofibrant simplicial algebra in sCommAlgk.

Another problem is that the right adjoint functor in (3.10) is not homotopical and

hence should be replaced by a right derived functor RG. But the existence of RG is

not clear because the standard (projective) model structure on sCommAlgk is fibrant.

Nevertheless, somewhat surprisingly, we still have the following.

Theorem 3.1. The algebraic group functor G : sCommAlgk → sGr has a total right

derived functor, which is right adjoint to the derived representation functor (3.5):

L( – )G : Ho(sGr) � Ho(sCommAlgk) : RG.

Moreover, both L( – )G and RG are absolute derived functors in the sense of Deligne–

Maltsiniotis [53].

The 1st statement of Theorem 3.1 shows that the simplicial adjunction (3.10)

behaves like a Quillen adjunction, and the last statement shows that the corresponding

derived functors are as “good” (well-behaved) as derived functors of Quillen functors. In

particular, like the derived functor of a left Quillen functor, the derived representation
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26 Y. Berest et al.

functor has the following important property that plays a crucial role in computations

of representation homology in Section 6.

Theorem 3.2. The derived representation functor (3.5) preserves arbitrary (small)

homotopy colimits.

The main idea behind our proof of Theorem 3.1 is to “forget” the model structure

on sGr, thinking of this category simply as a homotopical category in the sense

of [23], and then “approximate” it with another model category, which is “almost”

Quillen equivalent to sGr in the sense of [17]. For reader’s convenience, we recall

basic definitions and the necessary results from [23] and [17] in the Appendix, where

we also prove abstract versions of Theorems 3.1 and 3.2 (see Theorems A.2 and A.3,

respectively). The proof of Theorem 3.1 will consist of verifying the conditions of

Theorem A.2; we will divide it into two cases: G = GLn and the general case: G is an

arbitrary algebraic group. For GLn, we will provide detailed arguments, while in the

general case, we will only sketch the proof leaving technical details for our subsequent

paper.

We begin with the following observation refining the result of Lemma 3.1.

Proposition 3.1. The representation functor (3.4) is left deformable on sGr, and hence

its total left derived functor (3.5) is an absolute derived functor in the sense of [53].

Proof. Write C for sGr viewed as a homotopical category, and let CQ denote its

full subcategory consisting of semi-free simplicial groups (see Definition 2.1). Then

CQ ↪→ C is a left deformation retract of C, with retraction functor Q : C → C being

the composition Q := GW and the morphism q : Q→ IdC given by the counit of the Kan

loop group adjunction (2.3). Indeed, by Kan’s theorem, the morphism q is a natural weak

equivalence (see [39, Prop. V.6.3.]), and its image is contained in CQ. The proof of Lemma

3.1 shows that (3.4) is homotopical on CQ and hence, by definition, left deformable. The

result now follows from Proposition A.1. �

3.3 Proof of Theorem 3.1 for G = GLn

Let sMon denote the category of simplicial monoids equipped with the standard

(projective) model structure. Consider the natural adjunction

l : sMon � sGr : r, (3.11)
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Representation Homology of Topological Spaces 27

where r is the inclusion functor, and l is the group completion (localization) functor. The

next observation is a consequence of a known theorem of Dwyer and Kan [24].

Lemma 3.2. The adjunction (3.11) is a left model approximation of sGr in the

sense of [17].

Proof. We need to verify the three conditions of Definition A.1 (see Appendix).

Condition (1) is obvious, and (2) follows from the fact that l is a left Quillen functor

(when sMon and sGr are regarded as model categories). It suffices only to check (3).

For this, observe that any map from a simplicial monoid to a simplicial group, say

f : M → r(�), can be factored as M
ηM−→ rl(M)

rf #−−→ r(�), where ηM is the group completion

(localization) map and f # : l(M) → � is the map adjoint to f under (3.11). If f is a

weak equivalence in sMon, then M is a group-like simplicial monoid (i.e., π0(M) ∼= π0(�)

is a group), and hence, if M is also cofibrant, by [24, Proposition 10.4], ηM is a weak

equivalence. By 2-of-3 property, the map rf # : rl(M) → r(�) is then a weak equivalence,

and since r reflects weak equivalences, f # : l(M) → � is a weak equivalence as well. �

We will apply Theorem A.2 to the representation adjunction (3.10) with G = GLn

using the left model approximation (3.11). Note that this model approximation is

good for the representation functor (3.4) (for any algebraic group G), since the group

completion functor maps cofibrant objects in sMon, which are (retracts of) semi-free

simplicial monoids, to (retracts of) semi-free simplical groups, on which the functor

(3.4) is homotopical by Lemma 3.1.

From now on, we assume that G = GLn and write F := (— )GLn : sGr →
sCommAlgk for the corresponding representation functor. Let sMon0 denote the full

subcategory of sMon consisting of group-like simplicial monoids—by the Dwyer–Kan

theorem [24], the essential image of the functor r̄ : Ho(sGr) ↪→ Ho(sMon) is precisely

Ho(sMon0).

The inclusion functor i : sMon0 ↪→ sMon has a right adjoint Û : sMon → sMon0

defined by the pull-back diagram in sMon:

where U : Mon → Gr is the functor assigning to a monoid its subgroup of units. To

construct the functors F̂ and Ĝ we start with the natural adjunction (k[ – ])n : sMon �
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28 Y. Berest et al.

sCommAlgk : Mn and compose it with i : sMon0 � sMon : Û, that is, define

F̂ := (k[ – ])n ◦ i : sMon0 � sCommAlgk : Ĝ := Û ◦Mn. (3.12)

Note that the right adjoint Ĝ in (3.12) is precisely the Waldhausen functor ĜLn

defined in the introduction (see (1.9)). In particular, it is a homotopical functor that takes

its values in group-like simplicial monoids: thus, we have RĜ = Ĝ and Im(Ĝ) ⊆ Im(r̄),

that is, condition (iii) of Theorem A.2 holds.

The left adjoint F̂ is obtained by restricting to sMon0 the functor (k[ – ])n, which

is left Quillen on sMon: hence, F̂ is homotopical on cofibrant objects in sMon0, and

therefore Theorem A.2(i) holds.

Next, factor r := r0 ◦ i : sGr ↪→ sMon0 ↪→ sMon and observe that F̂ ◦ r0 =
(k[ – ])n ◦ r is left adjoint to U ◦Mn = GLn. Hence, there is a canonical isomorphism of

functors F̂ ◦ r0 ∼= F . It remains only to show that sGr
r0−→ sMon0

F̂−→ sCommAlgk is a left

deformable pair. For this, in the notation of Proposition A.2, we take CQ to be the full

subcategory of semi-free simplicial groups in C := sGr and DQ the full subcategory

of D := sMon0 consisting of monoids M such that k[M] is a simplicial k-algebra

that is degreewise a direct limit of formally smooth k-algebras having semifree DG

resolutions with finitely many generators in each homological degree. Both CQ and DQ

are left deformation retracts of the corresponding homotopical categories: CQ contains

the image of the deformation functor Q = GW associated with the Kan loop group

adjunction (see Proposition 3.1), while DQ contains the image of Q0 : sMon0 → sMon0,

which is the restriction of the cofibrant reprelacement functor Q on sMon. Since r0
is homotopical and r0(CQ) ⊆ DQ, we need only to check that F̂ is homotopical on DQ.

Since F̂ = ( – )n ◦ k[ – ] and k[ – ] is homotopical on sMon0, it suffices to check that ( – )n :

sAlgk → sCommAlgk is homotopical on simplicial k-algebras that are degreewise (direct

limits of) formally smooth k-algebras having semifree DG resolutions with finitely many

generators in each homological degree. Now, this last fact follows from [7, Theorem

21], saying that such associative algebras are adapted for the representation functor

( – )n : Algk → CommAlgk (in the sense that L(A)n
∼= An for such A’s) and the well-known

abstract result from homotopical algebra saying that the simplicial objects, which are

degreewise adapted for a functor F, are actually adapted for F (see, e.g., [78, Theorem

9.2.2]).

Summing up, we showed that all three conditions of Theorem A.2 hold for the

adjoint pair (3.12), except that the left adjoint F̂ is not defined on the entire model

category sMon but rather on its full subcategory sMon0. However, this last subcategory
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Representation Homology of Topological Spaces 29

is closed under weak equivalences and coincides with Im(r̄); hence, the result of

Theorem A.2 still holds (see Remark 2 after the proof of Theorem A.2). This completes

the proof of Theorem 3.1 for G = GLn.

Theorem A.2 gives an explicit formula for the total derived functor RG: namely,

RGLn = L l ◦ ĜLn. (3.13)

This allows us to compute the homotopy groups R iGLn := πiRGLn for all i ≥ 0.

Proposition 3.2. For any A∗ ∈ sCommAlgk,

R iGLn(A∗) ∼=
⎧⎨⎩GLn[π0(A∗)] for i = 0

Mn[πi(A∗)] for i ≥ 1.

Proof. Let QĜLn(A∗)
∼−→ ĜLn(A∗) be a cofibrant resolution of ĜLn(A∗) in the (model)

category sMon. By (3.13), we have RGLn(A∗) ∼= lQĜLn(A∗) . On the other hand, QĜLn(A∗)
is a group-like simplicial monoid, since so is ĜLn(A∗). Hence, by the Dwyer–Kan

theorem, the group completion map QĜLn(A∗)
∼−→ lQĜLn(A∗) is a weak equivalence.

Thus, we have a zigzag of weak equivalences

ĜLn(A∗)
∼←− QĜLn(A∗)

∼−→ lQĜLn(A∗),

from which we conclude that R iGLn(A∗) ∼= πiĜLn(A∗). The result now is immediate from

the definition of ĜLn (see [77]). �

3.4 (Sketch of) Proof of Theorem 3.1 in the general case

For a general algebraic group G, we will use a different model approximation of sGr

given by reduced simplicial spaces. By a simplicial space we mean a bisimplicial set of

which we think as a functor X∗ : �op → sSet, [n] �→ Xn, with simplicial components

Xn viewed as “vertical” simplicial sets. We call X∗ reduced if X0 = �[0] is the one-

point (discrete) simplicial set. We write sSp = sSet�op
for the category of all simplicial

spaces and sSp∗ for its full subcategory consisting of reduced ones. The category

sSp is known to carry several interesting model structures. We will use two of these:

the projective model structure in which the weak equivalences and fibrations are the

levelwise weak equivalences (resp., fibrations) of simplicial sets and its (left Bousfield)

localization with respect to Segal maps introduced in [67]. We denote the projective
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30 Y. Berest et al.

model structure simply by sSp and its localization by LsSp. As shown in [12], both model

structures “restrict” to reduced simplicial spaces, and we denote the corresponding

model categories by sSp∗ and LsSp∗, respectively.
The reduced simplicial spaces are related to simplicial groups by the pair of

adjoint functors

π1 : LsSp∗ � sGr : N, (3.14)

where N is the nerve functor applied degreewise to components of simplicial groups:

i.e., for �∗ ∈ Ob(sGr),

N•(�∗) : �op → sSet, [n] �→ Nn(�∗) = �n∗ ,

and π1 is the fundamental group functor applied degreewise to bisimplicial sets: i.e.,

for X = {Xp,q}p,q≥0,

π1(X) : �op → Gr [q] �→ π1(X∗,q).

The fact that π1 is left adjoint to N follows from the well-known fact that the

fundamental group functor π1 : sSet0 → Gr on reduced simplicial sets is left adjoint

to the simplicial nerve N : Gr → sSet0 on the category of groups. Now, in place of

Lemma 3.2, we have the following.

Lemma 3.3. The adjunction (3.14) is a left model approximation of sGr.

Proof. This follows from a theorem of Bergner (see [12, Theorem 1.6]) that asserts that

the model category LsSp∗ is Quillen equivalent to the category of simplicial monoids,

sMon, equipped with the standard (projective) model structure. In fact, one can check

that (3.14) factors as LsSp∗ � sMon � sGr, where the 1st adjunction is Bergner’s

Quillen equivalence, with its right adjoint being a homotopical functor, and the 2nd

adjunction is (3.11), which is, by Lemma 3.2, a left model approximation of sGr. It

follows that (3.14) is a left model approximation of sGr as well. �

Next, to define the functor Ĝ : sCommAlgk → LsSp∗ wewill use a construction of

Galatius and Venkatesh (see [33, Section 5]). We start with the cosimplicial commutative

algebra

O(N•G) : � → CommAlgk [n] �→ O(NnG) = O(G)⊗n.
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Representation Homology of Topological Spaces 31

Taking the cofibrant replacement of O(N•G) in sCommAlgk in each cosimplicial degree,

we get a cosimplicial simplicial algebra cO(N•G) ∈ sCommAlg�
k and then define Ĝ by

Ĝ : sCommAlgk → LsSp∗ A∗ �→Map (cO(N•G), A∗), (3.15)

where “Map” stands for the standard (simplicial) function complex in sCommAlgk. Note

that Ĝ(A∗)0 :=Map (cO(N0G), A∗) =Map (k, A∗) ∼= �[0] for any A∗, so Ĝ indeed takes its

values in the category of reduced simplicial spaces.

By formal properties of function complexes, the functor Ĝ has a left adjoint given

by

F̂ : L sSp∗ → sCommAlgk X �→ X ⊗� cO(N•G), (3.16)

where ⊗� is the functor tensor product over the category � in the simplicial category

sCommAlgk (see, e.g., [66, (4.1.1)]).

Proposition 3.3. The adjoint functors F̂ : LsSp∗ � sCommAlgk : Ĝ form a Quillen pair.

Proof. Sketch of proof One proves this in two steps. First, one checks that the functors

(F̂, Ĝ) form a Quillen pair F̂ : sSp∗ � sCommAlgk : Ĝ for the projective model structure

on sSp∗. Then, one shows that this Quillen pair “localizes” to a Quillen pair on LsSp∗
by checking that the left derived functor LF : sSp∗ → Ho(sCommAlgk) maps the Segal

morphisms in sSp∗ to isomorphisms in Ho(sCommAlgk). �

We have now defined all ingredients of Theorem A.2. To show that this theorem

applies to the representation adjunction (3.10) we need to verify its assumptions (i),

(ii), and (iii). Condition (i)—(F̂, Ĝ) being a deformable adjunction—is immediate from

Proposition 3.3. Condition (iii) is not difficult to check since Ĝ is a homotopical functor

(and therefore R Ĝ = Ĝ). The main work is to verify condition (ii): in particular, to prove

that LF ∼= L F̂ ◦ N . The details of this verification will appear in our subsequent paper.

Here we only mention that, as an intermediate step, we prove the following lemma that

provides an alternative way to define representation homology of spaces, without using

the Kan loop group construction.

Lemma 3.4. For any X ∈ sSet0, there is a natural isomorphism in Ho(sCommAlgk):

LF(GX) ∼= L F̂(Xt),
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32 Y. Berest et al.

where ( – )t : sSet0 ↪→ sSp∗ is the “transpose” inclusion functor identifying a

simplicial set X with the simplicial space Xt = {(Xt)n}n≥0 with discrete components

(Xt)n = Xn.

We conclude by pointing out that, once the conditions of Theorem A.2 are

verified and Theorem 3.1 is proved, Theorem 3.2 follows immediately from Theorem A.3,

since in our situation both C = sGr andD = sCommAlgk carry model category structures

and hence the colimits on these categories exist and are left deformable by results of

[17] (see Theorem A.4(3)).

4 Functor Homology Interpretation

In this section, we give our second definition of representation homology parallel to

Pirashvili’s definition of higher Hochschild homology [60]. We begin by reviewing the

construction of [60].

4.1 Higher Hochschild homology

Let F∗ denote the category of finite pointed sets with objects [n] = {0, 1, . . . ,n}, n ≥ 0, and

morphisms f : [n]→ [m] being arbitrary set maps such that f (0) = 0. Let F : F∗ −→ Vectk

be a covariant functor. We extend F to the category Set∗ of all pointed sets in a natural

way, using the left Kan extension along the inclusion F∗ ↪→ Set∗. We keep the notation

F for the extended functor: explicitly, F : Set∗ → Vectk is given by F(X) = colim F([n]),

where the colimit is taken over all pointed inclusions [n] ↪→ X.

Given a pointed simplicial set X ∈ sSet∗, we define a simplicial k-vector space

F(X) as the composition of functors

F(X) : �op X−→ Set∗
F−→ Vectk. (4.1)

We denote the homotopy groups of F(X) by π∗F(X) and recall that π∗F(X) := H∗[N(F(X))],

where N is the Dold–Kan normalization functor.

Now, any commutative k-algebra A and an A-module M (viewed as a symmetric

bimodule) give rise to a functor F∗ −→ Vectk that assigns to the set [n] the vector space

M ⊗ A⊗n and to a pointed map f : [n]→ [m], the action of f on M ⊗ A⊗n given by

f∗(a0 ⊗ a1 ⊗ . . .⊗ an) := b0 ⊗ b1 ⊗ . . .⊗ bm,
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Representation Homology of Topological Spaces 33

where bj := ∏
i∈f−1(j) ai for j = 0, 1, . . .m . Following [60], we denote this functor by

L(A,M), and for a pointed simplicial set X ∈ sSet∗, define

HH∗(X,A,M) := π∗L(A,M)(X).

Thus, HH∗(X,A,M) is the homology of the complex C∗(X,A,M) := N[L(A,M)(X)], which

we call the Pirashvili–Hochschild complex of A with coefficients in M associated to X.

Example 4.1. Let X = S1∗ be the simplicial circle. Recall that the set of n-simplices S1n

can be identified with the set of monotone sequences of 0’s and 1’s of length n+1 modulo

the identification (0, 0, . . . , 0) ∼ (1, 1, . . . , 1) (see Section 2.1.4). For a nonzero sequence

x ∈ S1n, let n(x) denote the position of the first 1. The map x �→ n(x)−1 identifies S1n with

[n]. Under this identification, the degeneracy map si : [n] −→ [n + 1] corresponds to the

unique monotone injection skipping i+1 in its image and the face map di : [n] −→ [n−1]

is given by di(j) = j for j < i, di(i) = i for i < n, dn(n) = 0, and di(j) = j−1 for j > i. From

this description of S1∗, it is easy to see that the Pirashvili complex C∗(S1,A,M) for S1 is

precisely the classical Hochschild complex C∗(A,M). Thus, HH∗(S1,A,M) = HH∗(A,M)

for any commutative algebra A and A-module M. In a similar way, one can explicitly

describe the Pirashvili complex C∗(Sn,A,M) for the n-dimensional simplicial sphere Sn∗ .
The corresponding homology groups HH∗(Sn,A,M) are denoted HH[n]∗ (A,M) and called

the Hochschild homology of (A,M) of order n.

In the present paper, we will mostly deal with two cases: M = A and M = k,

where in the last case the module structure on k comes from an augmentation A→ k. To

simplify the notation wewill write HH∗(X,A) for HH∗(X,A,A) and regard X �→ HH∗(X,A)

as a functor on the category of (pointed) simplicial sets assuming A to be fixed. We will

refer to this functor as a higher Hochschild homology of spaces.

There is another, more conceptual way to define higher Hochschild homology,

using homological algebra of functor categories over PROPs. Recall that a PROP is a

permutative category (P,�) whose set of objects is indexed by (or identified with) the

natural numbers N and whose monoidal structure � is given by addition in N (see [52]).

A k-algebra over a PROP P is a strict symmetric monoidal functor from P to the tensor

category Vectk.

To define Hochschild homology we take P to be a category F of finite sets with

monoidal structure given by disjoint union. More precisely, we let F denote the full

subcategory of Set whose objects are the sets n := {1, 2, . . . ,n} for n ≥ 0 (where, by
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34 Y. Berest et al.

convention, 0 = ∅) and morphisms are arbitrary set maps. The monoidal structure on

F is given by n � m = n+m. It is well known and easy to prove (see, e.g., [61, Section

2]) that the category of k-algebras over F is equivalent to the category CommAlgk, the

equivalence being given by the functor A �→ [( – ⊗A) : n �→ A⊗n]. We will write A for the

algebra over F corresponding to the commutative algebra A ∈ CommAlgk.

Now, let F-Mod (resp., Mod-F) denote the category of all covariant (resp., con-

travariant) functors from F to the category of vector spaces. The notation suggests

that one should think of the objects of F-Mod and Mod-F as left and right F-modules,

respectively. These categories are both abelian with enough projective and injective

objects. Furthermore, they are related by a bifunctor

– ⊗F – : Mod-F× F-Mod −→ Vectk

that is right exact with respect to each argument, preserves sums, and is left balanced

(see, e.g., [60, Sect. 1.5]). Explicitly, for a right F-module N and a left F-module M,

N ⊗F M =
[ ⊕
n ≥ 0

N (n)⊗k M(n)

]
/R , (4.2)

where R is the subspace spanned by the vectors of the form N (f )x⊗y−x⊗M(f )y with

x ∈ N (n) and y ∈M(m) and f running over all maps in HomSet(m,n).

Next, we consider the functor

h : F −→ Mod-F , n �→ k[HomF(–,n)], (4.3)

where k[S] denotes the vector space generated by a set S, and extend (4.3) to the category

simplicial sets in two steps. First, we define a functor Set → Mod-F by taking the

left Kan extension of (4.3) along the natural inclusion F ↪→ Set, and then we extend

this degreewise to simplicial sets. Abusing notation, we will continue to denote the

resulting functor by h : sSet −→ sMod-F. Composing h with the normalization functor

N : sMod-F→ Ch≥0(Mod-F) assigns to every simplicial set X a chain complex and hence

an object in the derived category D(Mod-F) that we denote by N(h(X)).

Now, recall that any commutative algebra A defines an algebra A over the PROP

F that can be viewed as an object in F-Mod. With this interpretation of A, we have the

following result.
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Representation Homology of Topological Spaces 35

Theorem 4.1. For any X ∈ sSet and A ∈ CommAlgk, there is a natural isomorphism

HH∗(X,A) ∼= H∗[N(h(X))⊗L
F A ].

Although Theorem 4.1 is not explicitly stated in [60], it can be deduced from

results of this paper. We do not give a proof of Theorem 4.1 here as in the next section,

we prove the analogous theorem for representation homology (see Theorem 4.2).

4.2 Representation homology as functor homology

We now define the representation homology of a (reduced) simplicial set by mimicking

Pirashvili’s definition of higher Hochshild homology. Our starting point is the known

fact that the category of commutative Hopf algebras over a field k is equivalent to the

category of k-algebras of the PROP of finitely generated free groups (see, e.g., [61, Sect.

5] and [40] for a detailed proof). To be precise, let G denote the full subcategory of Gr

whose objects are the free groups based on the sets n = {1, 2, . . . ,n} for n ≥ 0. We

denote such groups by 〈n〉 := F〈n〉 (where, by convention, 〈0〉 is the identity group) and

write k〈n〉 for the corresponding group algebras over k. The category G is a PROP, with

monoidal product � being the free product of groups, so that 〈n〉 � 〈m〉 = 〈n + m〉.
A commutative Hopf algebra H over k defines the (strong monoidal) covariant functor

G → Vectk, 〈n〉 �→ H⊗n , which we denote by H. The assignment H �→ H gives an

equivalence between the category of commutative Hopf algebras over k and the category

of k-algebras over the PROP G. Dually, the category of cocommutative Hopf algebras is

equivalent to the category of k-algebras over the opposite PROP Gop.

Now, observe that for any commutative Hopf algebra H, the functor H : G →
Vectk takes values in the category of commutative algebras, that is, it can be viewed as

a functor H : G→ CommAlgk . We extend this last functor to the category FGr of all free

groups by taking the left Kan extension along the inclusion G ↪→ FGr. To be precise,

let FGr denote the category of based free groups whose objects are pairs (�, S), where

� = 〈S〉 is a free group with a specified generating set S, and morphisms are arbitrary

group homomorphisms � → �′ (not necessarily, preserving the generating sets). We have

the natural inclusion functor i : G ↪→ FGr that takes 〈n〉 to (〈n〉,n). The Kan extension

of H along i then defines a functor FGr → CommAlgk that assigns to the free group 〈S〉
on a set S the commutative algebra S⊗H = ⊗s∈S Hs. We continue to denote this functor

by H.

Let X be a reduced simplicial set (or equivalently, a pointed connected topologi-

cal space). Recall that the Kan loop group construction gives a functor GX : �op → FGr
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36 Y. Berest et al.

that takes [n] ∈ �op to the free group GXn = 〈Bn〉 based on the set Bn = Xn+1 \ s0(Xn).

Now, given a commutative Hopf algebra H, we consider the composition of functors

�op GX−−→ FGr
H−→ CommAlgk,

which defines a simplicial commutative algebra H(GX).

Definition 4.1. The representation homology of X in H is defined by

HR∗(X,H) := π∗[H(GX)] = H∗[N(H(GX))]. (4.4)

Clearly, a morphism f : X −→ Y of reduced simplicial sets induces a map of

graded commutative algebras HR∗(f ,H) : HR∗(X,H) −→ HR∗(Y,H). Thus, representation

homology defines a covariant functor HR( – ,H) : sSet0 → grCommAlgk . The following

proposition justifies the above definition of representation homology.

Proposition 4.1. Let G be an affine group scheme defined over k with coordinate

ring H = O(G). Then, for any X ∈ sSet0, there is a natural isomorphism of graded

commutative algebras

HR∗(X,O(G)) ∼= HR∗(X,G). (4.5)

In particular, HR0(X,O(G)) ∼= π1(X)G , where π1(X) is the fundamental group of X.

Proof. If H = O(G), we have natural isomorphisms H(〈S〉) ∼= ⊗
s∈SO(G)s

∼= (〈S〉)G
for any set S. This implies that H(GX) ∼= (GX)G in sCommAlgk. On the other hand, by

Proposition 2.1, the simplicial group GX is semi-free, and hence a cofibrant object in

sGr. This implies that (GX)G
∼= L(GX)G in Ho(sCommAlgk), which, in turn, implies the

isomorphism (4.5) in homology. The isomorphism for HR0(X,G) is the composition of

(4.5) with (3.6) and the natural isomorphism of groups π0(GX) ∼= π1(X). �

Let � be a discrete group, and let X = B� be the classifying space (i.e., the

simplicial nerve) of �. As a simple application of Proposition 4.1, we get the following.

Corollary 4.1. HR∗(B�,O(G)) ∼= HR∗(�,G) . In particular, HR0(B�,G) ∼= �G .
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Representation Homology of Topological Spaces 37

Proof. The Kan adjunction (2.3) gives the canonical cofibrant resolution GW�
∼−→

� in sGr. Since � is discrete, we have W� = B�, and the result follows from

Proposition 4.1. �

Corollary 4.2. For any X,Y ∈ sSet0, there is a natural isomorphism

HR∗(X ∨ Y,G) ∼= HR∗(X,G)⊗HR∗(Y,G).

Proof. Recall that the wedge sum is a (categorical) coproduct in sSet0. Since G is a

left adjoint functor, we have G(X ∨ Y) ∼= GX∗GY. By Theorem 3.2, it follows that

L(G(X ∨ Y))G
∼= L(GX)G ⊗ L(GY)G.

The desired result is now immediate from Künneth’s theorem and Proposition 4.1. �

4.2.1 The fundamental spectral sequence

Now, we introduce the functor categories G-Mod and Mod-G, whose objects are all

covariant (resp., contravariant) functors from G to the category of vector spaces. We

regard these objects as left and right modules over G, respectively. Both categories

are abelian with sufficiently many projective and injective objects. There is a natural

bifunctor

– ⊗G – : Mod-G×G-Mod −→ Vectk,

which is right exact with respect to each argument, preserves sums, and is left balanced

in the sense of [16]. Explicitly, this bifunctor can be defined by formula (4.2) with F

replaced by G.

Since –⊗G– is left balanced, the derived functors with respect to each argument

are naturally isomorphic, and we denote their common value by TorG∗ (–, –). Note that

for any left G-module M, the functor – ⊗G M : Mod-G −→ Vectk is left adjoint to

the functor Hom(M, –) : Vectk −→ Mod-G, where Hom(M,V) is the right G-module

〈n〉 �→ Homk(M(〈n〉),V) for any vector space V. Similarly, for any right G-module N , the

functor N ⊗G – is left adjoint to the functor Hom(N , –) : Vectk −→ G-Mod. Hence, both

functors –⊗G M and N ⊗G – commute with colimits.

To state our 1st theorem we need some notation. First, we recall that if � is

any group, k[�] is a cocommutative Hopf algebra; thus, k[�] defines a right G-module

in Mod-G. Now, if X is a reduced simplicial set, k[GX] defines a simplicial right G-

module in sMod-G. Applying the normalization functor N : sMod-G → Ch≥0(Mod-G) to
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38 Y. Berest et al.

this simplicial module, we get a chain complex of G-modules and hence an object in the

derived category D(Mod-G). Abusing notation, we will denote this object by N(k[GX]).

Theorem 4.2. For any X ∈ sSet0 and any commutative Hopf algebra H, there is a

natural isomorphism of graded commutative algebras

HR∗(X,H) ∼= H∗[N(k[GX])⊗L
G H].

To prove Theorem 4.2 we need a simple lemma. Recall that for n ≥ 0, we denote

by k〈n〉 the group algebra of the free group based on the set n = {1, 2, . . . ,n}. Regarding it

as a cocommutative Hopf algebra, we get a rightG-module that (to simplify the notation)

we also denote by k〈n〉.

Lemma 4.1. For each n ≥ 0, the G-module k〈n〉 is a projective object in Mod-G.

Proof. For a fixed n ≥ 0, let hn := k[HomG( – , 〈n〉)] denote the standard right

G-module associated to the object 〈n〉 ∈ G. By Yoneda lemma, there is a natural

isomorphism HomMod-G(hn,N ) ∼= N (〈n〉) for any N ∈ Mod-G. The sequence of G-

modules 0 → N ′ → N → N ′′ → 0 is exact in Mod-G if and only if the sequence of

k-vector spaces 0 → N ′(〈n〉) → N (〈n〉) → N ′′(〈n〉) → 0 is exact for all n ≥ 0. It follows

that HomMod-G(hn, – ) : Mod-F→ Vectk is an exact functor, and hence hn is a projective

object in Mod-G. On the other hand, for any m ≥ 0, we have

hn(〈m〉) = k[HomG(〈m〉, 〈n〉)] ∼= k[〈n〉×m] ∼= [k〈n〉]⊗m = k〈n〉(〈m〉),

which shows that k〈n〉 ∼= hn as right G-modules. This finishes the proof of the lemma.�

Proof of Theorem 4.2. By Lemma 4.1, for any n ≥ 0, k〈n〉 is a projective right G-

module such that k〈n〉 ⊗G H ∼= H(〈n〉). Since colimits of projective modules are flat and

commute with left Kan extensions, this implies that k〈S〉 is a f lat right G-module and

k〈S〉⊗GH ∼= H(〈S〉) for any set S. Extending the last isomorphism levelwise to simplicial

sets, we get an isomorphism of simplicial vector spaces k[GX]⊗G H ∼= H(GX). Further,

since each k[GXn] is a flat right G-module, the normalized chain complex N(k[GX]) is

a complex of flat G-modules; hence, we have a natural isomorphism in the derived

category D(Mod-G):

N(k[GX])⊗L
G H ∼= N(k[GX])⊗G H ∼= N(H(GX)).
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Representation Homology of Topological Spaces 39

At the homology level, this induces the desired isomorphism of Theorem 4.2. �

For our next theorem we recall that the singular chain complex C∗(�X; k) of the

(Moore) loop space �X of a pointed topological space X has a natural structure of a

DG Hopf algebra. The coproduct on C∗(�X; k) is induced by the Alexander–Whitney

diagonal, while the product comes from the structure of a topological monoid on �X

via the Eilenberg–Zilber map (see, e.g., [26, Section 26]). Thus, the homology H∗(�X; k)

of �X is a graded cocommutative Hopf algebra called the Pontryagin algebra of X.

Now, any graded cocommutative Hopf algebra H defines a graded right G-

module H (i.e., a contravariant functor from G to the category of graded vector spaces).

For q ∈ Z, we let Hq denote the graded component of H of degree q; thus, Hq : Gop →
Vectk is a right G-module that assigns 〈n〉 �→ [H⊗n]q, the q-th graded component of the

graded vector space H⊗n. Note that the G-module Hq depends on all graded components

of the Hopf algebra H, and not solely on Hq. With this notation, we can now state our

second theorem, which is an analogue of [60, Theorem 2.4] for representation homology.

Theorem 4.3. There is a natural 1st quadrant spectral sequence

E2
pq = TorGp (Hq(�X; k),H) 
⇒

p
HRn(X,H) (4.6)

converging to the representation homology of X.

Proof. Recall from the proof of Theorem 4.2 that N(k[〈X〉]) is a nonnegatively graded

chain complex of flat right G-modules. Hence, for any left G-module H, there is a

standard “Hypertor” spectral sequence (see, e.g., [79,Application 5.7.8] ):

E2
pq = TorGp (Hq[N(k[GX])], H) 
⇒

p
Hp+q [N(k[GX])⊗G H].

By Theorem 4.2, the limit of this spectral sequence is isomorphic to HR∗(X,H). To prove

the theorem we need only to show that H∗[N(k[GX])] ∼= H∗(�X; k) as graded right G-

modules.

By Kan’s Theorem 2.1, |GX| is weakly equivalent to the based loop space �X.

In fact, both |GX| and �X have natural structures of topological monoids, and they are

known to be weakly equivalent as an H-spaces (see, e.g., [11, Sect. 2 and Prop. 3.3(c)]).

This implies, in particular, that H∗[N(k[GX])] ∼= H∗(�X; k) as graded Hopf algebras, and

hence H∗[N(k[GX])] ∼= H∗(�X; k) as graded G-modules. Note that N(k[GX]) stands here

for the normalized chain complex of the simplicial Hopf algebra k[GX], while N(k[GX])
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40 Y. Berest et al.

in the above spectral sequence denotes the normalized chain complex of the simplicial

G-module k[GX]. We need to check that H∗[N(k[GX])] ∼= H ∗[N(k[GX])] as graded G-

modules. Now, the simplicial G-module k[GX] assigns to 〈m〉 ∈ G the simplicial vector

space k[GX∗]⊗m = {k[GXn]
⊗m}n≥0. By the Eilenberg–Zilber theorem, the normalized

chain complex of this simplicial vector space is homotopy equivalent to N(k[GX])⊗m,

while, by Kunneth’s formula, the homology of N(k[GX])⊗m is naturally isomorphic to

H∗[N(k[GX])]⊗m. This shows that H∗(N(k[GX]))(〈m〉) ∼= H∗[N(k[GX])]⊗m for any m ≥ 0,

completing the proof of the theorem. �

Theorem 4.3 has several interesting implications. First, we consider one impor-

tant special case when the spectral sequence (4.6) collapses at E2-term.

Corollary 4.3. Let � be a discrete group. Then, for any affine algebraic group G, there

is a natural isomorphism

HR∗(B�,G) ∼= TorG∗ (k[�],O(G)).

In particular, HR0(B�,G) ∼= k[�]⊗G O(G) .

Proof. The classifying space X = B� is an Eilenberg–MacLane space of type K(�, 1).

Its loop space �X is homotopy equivalent to �, where � is considered as a discrete

topological space. Hence, Hq(�X; k) = 0 for all q > 0, while H0(�X; k) ∼= k[�] as a Hopf

algebra. Thus, for X = B�, the spectral sequence (4.6) collapses on the p-axis, giving the

required isomorphism. �

Remark. Combining the isomorphisms of Corollaries 4.1 and 4.3, we can express the

representation homology of � (originally defined as a non-abelian derived functor) in

terms of classical abelian homological algebra:

HR∗(�,G) ∼= TorG∗ (k[�],O(G)).

In degree 0, we have a natural isomorphism expressing the coordinate ring of the

representation variety RepG(�) as a functor tensor product:

O[RepG(�)] ∼= k[�]⊗G O(G).
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Representation Homology of Topological Spaces 41

This last isomorphism was found in [46], and it was one of the starting points for the

present paper.

Remark. The result of Theorem 4.3 holds for any (not necessarily, monoidal) left G-

module. In particular, if we take a reductive affine algebraic group G and define a left

G-module O(G)G ∈ G-Mod by the formula 〈n〉 �→ [O(G)⊗n]G = O(G× n. . . ×G)G , then, for

any X ∈ sSet0, we obtain a homology spectral sequence

E2
pq = TorGp (H q(�X; k), O(G)G) 
⇒ HRn(X, G)G (4.7)

converging to the G-invariant part of representation homology of X. The proof of

Corollary 4.3 shows that, for X = B�, the spectral sequence (4.7) collapses on the p-

axis, giving an isomorphism

HR∗(B�,G)G ∼= TorG∗ (k[�],O(G)G).

In degree 0, we therefore have O[RepG(�)]G ∼= k[�]⊗G O(G)G.

Remark. Using Corollary 4.3, we can write the 5-term exact sequence associated to

the spectral sequence (4.6) in the form

HR2(X,G) → HR2(π1(X), G) → H1(�X; k)⊗G O(G) → HR1(X,G) → HR1(π1(X), G) → 0.

If the fundamental group π1(X) is f.g. virtually free (in particular, finite or f.g. free),

then, by [9, Theorem 5.1], HRi(π1(X), G) vanishes for all i > 0, and hence in this case, we

get

HR1(X,G) ∼= H1(�X; k)⊗G O(G).

To state further consequences of Theorem 4.3 we introduce some terminology.

We will say that a map f : X → Y of pointed topological spaces is a Pontryagin

equivalence (over k) if it induces an isomorphism H∗(�X; k) ∼= H∗(�Y; k) of Pontryagin

algebras (or equivalently, a quasi-isomorphism C∗(�X; k)
∼→ C∗(�Y; k) of DG Hopf

algebras). The next result is obtained by applying to (4.6) a standard comparison

theorem for homology spectral sequences (see [79, Theorem 5.1.12]).
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42 Y. Berest et al.

Corollary 4.4. If f : X → Y is a Pontryagin equivalence, the induced map on

representation homology f∗ : HR∗(X,H)
∼→ HR∗(Y,H) is an isomorphism for any Hopf

algebra H.

We remark that Corollary 4.4 does not say that an arbitrary isomorphism of

Hopf algebras H∗(�X; k) ∼= H∗(�Y; k) gives an isomorphism HR∗(X,H) ∼= HR∗(Y,H).

(Indeed, an abstract isomorphism of Pontryagin algebras need not even induce a map on

representation homology.) Still, Corollary 4.3 shows that if both X and Y are aspherical

spaces, then any isomorphism of Pontryagin algebras induces an isomorphism on

representation homology.

Next, we recall that the singular chain complex C∗(X; k) of any space X is natu-

rally a DG coalgebra with comultiplication defined by the Alexander–Whitney diagonal.

Moreover, if X is path-connected, there is a quasi-isomorphism of DG coalgebras (see

[27, Theorem 6.3])

C∗(X; k) � B [C∗(�X; k)],

where B is the classical bar construction. Since B preserves quasi-isomorphisms, any

Pontryagin equivalence f : X −→ Y of path-connected spaces is necessarily a homology

equivalence, that is, it induces an isomorphism on singular homology H∗(X; k)
∼→

H∗(Y; k). The converse is not always true unless X and Y are simply connected. In the

latter case, we have the following well-known result (cf. [65, Part I, Prop. 1.1]).

Lemma 4.2. Let f : X → Y be a map of simply connected pointed topological spaces.

The following conditions are equivalent:

(1) f is a rational homology equivalence: that is, f∗ : H∗(X;Q)
∼→ H∗(Y;Q);

(2) f is a rational Pontryagin equivalence: that is, f∗ : H∗(�X;Q)
∼→ H∗(�Y;Q);

(3) f is a rational homotopy equivalence: that is, f∗ : π∗(X)⊗Z Q
∼→ π∗(Y)⊗Z Q .

Proof. The equivalence (1) ⇔ (2) follows a classical theorem of Adams [1] that asserts

that, for any simply-connected space X, there is a quasi-isomorphism of DG algebras:

C∗(�X; k) � �[C∗(X; k)] , where � is the cobar construction.

To prove that (2) ⇔ (3) we first recall that, for any simply connected X, the

Q-vector space LX := π∗(�X)Q
∼= π∗+1(X) ⊗Z Q carries a natural bracket (called the

Whitehead product) making it a graded Lie algebra (called the homotopy Lie algebra of

X.). Thus, a map f : X → Y is a rational homotopy equivalence if and only if it induces

an isomorphism of Lie algebras f∗ : LX → LY . Then, a classical theorem of Milnor and
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Representation Homology of Topological Spaces 43

Moore (see [26, Theorem 21.5]) implies that the Hurewicz homomorphism π∗(�X) →
H∗(�X;Q) induces an isomorphism of graded Hopf algebras ULX

∼→ H∗(�X;Q) , where

U(LX) is the universal enveloping algebra of LX . This yields the equivalence (2) ⇔ (3).�

We say that a map f : X → Y of simply connected spaces is a rational homotopy

equivalence if the equivalent conditions of Lemma 4.2 hold.

Proposition 4.2. A rational homotopy equivalence induces an isomorphism on

representation homology. Thus, HR∗(X,H) depends only on the rational homotopy

type of X.

Proof. By Lemma 4.2(2), a rational homotopy equivalence X → Y induces an

isomorphism H∗(�X;Q)
∼→ H∗(�Y;Q). Since char(k) = 0, we have Q ⊆ k, and the

universal coefficient theorem implies that H∗(�X; k) ∼= H∗(�Y; k). The claim then follows

from Corollary 4.4. �

Next, we look at higher connected spaces. Recall that a space X is called n-

connected if X is path-connected and its 1st n homotopy groups vanish, that is, πi(X) =
0 for 1 ≤ i ≤ n.

Proposition 4.3. Let X be an n-connected space for some n ≥ 1, and let H = O(G).

Then

HRq(X,G) =

⎧⎪⎪⎨⎪⎪⎩
k for q = 0

0 for 1 ≤ q < n

Hq+1(X; g∗) for n ≤ q ≤ 2n− 1,

(4.8)

where g := Lie(G) is the Lie algebra of G and g∗ is its k-linear dual.

Proof. If a space X is n-connected, its homotopy Lie algebra LX = π∗(�X)Q
∼= π∗+1(X)Q

is n-reduced, that is, (LX)q = 0 for 0 ≤ q ≤ n − 1. Since H∗(�X;Q) ∼= ULX and Q ⊆ k,

we have H0(�X; k) ∼= k , Hq(�X; k) = 0 for 1 ≤ q ≤ n− 1, and

Hq(�X; k) ∼= (LX)q ⊗Q k ∼= πq+1(X)k
∼= Hq+1(X; k) for n ≤ q ≤ 2n− 1,

where the last isomorphism is a consequence of the rational Hurewicz theorem (see,

e.g., [48]).
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44 Y. Berest et al.

Now, recall that for a fixed q ≥ 0, the right G-module H q(�X; k) is defined as

the functor Gop → Vectk, 〈m〉 �→ [H∗(�X; k)⊗m]q. It follows from this definition that

Hq(�X; k) =

⎧⎪⎪⎨⎪⎪⎩
k for q = 0

0 for 1 ≤ q ≤ n− 1

lin∗k ⊗Hq+1(X; k) for n ≤ q ≤ 2n− 1,

where link is the linearization functor:

link : G→ Vectk 〈m〉 �→ 〈m〉ab ⊗Z k = k⊕m, (4.9)

and lin∗k : Gop → Vectk denotes its composition with linear duality. Thus, for X n-

connected, the E2-terms of the spectral sequence (4.6) can be identified as

E2
pq
∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k for p = 0 q = 0

TorGp (k, H) for p > 0 q = 0

0 for p ≥ 0 1 ≤ q < n

TorGp (lin∗k, H)⊗Hq+1(X; k) for p ≥ 0 n ≤ q ≤ n− 1.

(4.10)

By Lemma 4.1, the rightG-module k = k〈0〉 is projective. Hence, E2
p,0 = 0 for p > 0. On the

other hand, lin∗k⊗GH ∼= g∗, while TorGp (lin∗k, H) = 0 for p > 0 . Hence, for n ≤ q ≤ 2n−1,

we have

E2
0,q = g∗ ⊗Hq+1(X; k) ∼= Hq+1(X; g∗), E2

pq = 0 for p > 0. (4.11)

The vanishing of E2
pq for all p > 0 in the range 0 ≤ q ≤ 2n − 1 shows that the spectral

sequence (4.6) collapses on the q-axis for these values of q. Thus, we have HRq(X,H) ∼=
E2
0,q for 0 ≤ q ≤ 2n− 1 . By (4.10) and (4.11), these are the desired isomorphisms (4.8). �

Remark. Proposition 4.3 shows that the representation homology of an n-connected

space in sufficiently low degrees (q ≤ 2n−1) depends only on the Lie algebra g. The main

theorem of [10] implies a much stronger result: the whole HR∗(X,G) is determined by

g if X is (at least) 1-connected. Thus, for simply connected spaces, the representation

homology with coefficients in an algebraic group G depends only on the connected

component G0 of the identity element in G: that is, HR∗(X,G) ∼= HR∗(X,G0) . This last

statement is not true in general, for non-simply connected spaces: indeed, already in

the simplest example X = S1, we have HR∗(S1,G) ∼= O(G).
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Representation Homology of Topological Spaces 45

5 Representation Homology and Higher Hochschild Homology

In Section 4.2, we defined representation homology by analogy with Hochschild homol-

ogy, using Kan’s simplicial loop group construction. In this section, we establish a direct

relation between these two homology theories using another classical construction in

simplicial homotopy theory due to Milnor [56].

5.1 Main theorems

We begin by recalling a standard simplicial model for a (reduced) suspension �X of a

space X. The suspension functor on pointed simplicial sets is defined by

� : sSet∗ −→ sSet0 , X �→ C(X)/X ,

where C(X) ∈ sSet∗ is the reduced cone over X. For a pointed simplicial set X = {Xn}n≥0,
the set of n-simplices in C(X) is given by

C(X)n := {(x,m) : x ∈ Xn−m , 0 ≤m ≤ n} ,

with all (∗,m) being identified to ∗. The face and degeneracy maps in C(X) are defined

by

di : C(X)n −→ C(X)n−1 , (x,m) �→
{

(x,m− 1) if 0 ≤ i < m

(dX
i−m(x),m) if m ≤ i ≤ n

sj : C(X)n −→ C(X)n+1 , (x,m) �→
{

(x,m+ 1) if 0 ≤ j < m

(sXj−m(x),m) if m ≤ j ≤ n,

where d1(x, 1) = ∗ for all x ∈ X0.

The embedding X ↪→ C(X) is given by x �→ (x, 0) , and �X is defined to be the

corresponding quotient set. Note that, unlike C(X), the simplicial set �X is reduced,

since (x, 0) = ∗ in �X for all x ∈ X (in particular, we have C(X)0 = {(x, 0) : x ∈ X0} ∼
{∗}). Now, for any pointed simplicial set X, there is a homotopy equivalence |�X| �
�|X|, where �|X| is reduced suspension of the geometric realization of X in the usual

topological sense.

The next two theorems constitute the main result of this section.
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46 Y. Berest et al.

Theorem 5.1. For any commutative Hopf algebra H and any pointed simplicial set X,

there is a natural isomorphism of graded commutative algebras

HR∗(�X,H) ∼= HH∗(X,H; k) .

To state the next theorem, we recall that there is a natural way to make an

arbitrary simplicial set pointed by adding to it a disjoint basepoint. To be precise, the

forgetful functor sSet∗ −→ sSet has a left adjoint ( – )+ : sSet → sSet∗ obtained by

extending to simplicial sets the obvious functor X �→ X � {∗} on the category of sets.

Explicitly, if {Xn}n≥0 is a simplicial set, then (X+)n = Xn � {∗} for all n, and the face

and degeneracy maps of X+ are the (unique) basepoint-preserving extensions of the

corresponding maps of X. Being a left adjoint, the functor ( – )+ commutes with colimits;

in particular, we have

|X+| ∼= |X|+ ,

where |X|+ is the space obtained from |X| by adjoining a basepoint.

Theorem 5.2. For any commutative Hopf algebra H and any simplicial set X, there is

an isomorphism of graded commutative algebras

HR∗(�(X+),H) ∼= HH∗(X,H) .

The proofs of Theorems 5.1 and 5.2 are based on a classical simplicial group

model of the spaces ��X, which we now briefly review.

5.2 Milnor’s FK-construction

For a pointed simplicial set K ∈ sSet∗, we define FK := G�K. Then, by Kan’s

Theorem 2.1, there is a homotopy equivalence of spaces

|FK| � ��|K| .

The following observation is due to Milnor [56] (see also [39, Theorem V.6.15]).

Lemma 5.1 (Milnor). For any K ∈ sSet∗, FK is a semi-free simplicial group generated

by the simplicial set K with basepoint identified with 1, that is,

FKn = (G�K)n
∼= 〈Kn〉/〈sn0 (∗) = 1〉 ∼= 〈Kn\sn0 (∗)〉 .
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Representation Homology of Topological Spaces 47

The face and degeneracy maps are induced by the face and degeneracy maps of K.

Proof. By definition of the reduced suspension, we have (x, 0) = ∗ for all x ∈ K and

s0(x,m) = (x,m + 1) for all m > 0. Hence, (�K)n+1/s0(�Kn) = {(x, 1) | x ∈ Kn}, with

(∗, 1) being the basepoint. It follows that

(G�K)n = 〈(�K)n+1/s0(�Kn)〉 ∼= 〈Kn〉/(∗ = 1) .

To calculate the face and degeneracy maps, we recall from Section 2.2 that

dG�K
0 (x, 1) = d1(x, 1)d0(x, 1)−1 = (d0x, 1) (x, 0)−1 = (d0x, 1) ,

and dG�K
i (x, 1) = di+1(x, 1) = (dix, 1) for i > 0. Similarly, sG�K

j (x, 1) = sj+1(x, 1) = (sjx, 1)

for all j ≥ 0. This proves the desired lemma. �

5.2.1 Proofs of Theorems 5.1 and 5.2

Recall that, for a commutative Hopf algebra H, we denote by H the functor FGr −→
CommAlgk on the category of based free groups obtained from theG-module 〈n〉 �→ H⊗n

by taking its left Kan extension along the inclusion G ↪→ FGr (see Section 4.2).

Proposition 5.1. There is an isomorphism of functors from sSet to sCommAlgk :

H ◦G ◦� ◦ ( – )+ ∼= ( – ⊗H) ,

where H in the right-hand side is regarded as a commutative k-algebra.

Proof. By Lemma 5.1, for any simplicial set X = {Xn}n≥0, there are natural isomor-

phisms of groups [G�(X+)]n ∼= 〈Xn〉 , n ≥ 0 , with structure maps on G�(X+) being

compatible with those of X. By applying the functor H, we thus get isomorphisms of

simplicial commutative algebras

H([G�(X+)]∗) ∼= H[〈X∗〉] ∼= X∗ ⊗H,

which are obviously functorial in X. This proves the proposition. �

Theorem 5.2 is an immediate consequence of the above proposition. To prove

Theorem 5.1, we first note that, although the unreduced cone on a space X coincides
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48 Y. Berest et al.

with the reduced cone on X+, the corresponding suspensions differ. Instead, for any

pointed space X, there is a homotopy equivalence (see [54, p. 106])

�(X+) � �X ∨ S1 . (5.1)

From this we can deduce the following.

Lemma 5.2. For a pointed topological space X, there is a natural isomorphism

HR∗(�(X+),H) ∼= HR∗(�X,H)⊗H.

Proof. Applying Corollary 4.2 to (5.1), we have HR∗(�(X+),H) ∼= HR∗(�X,H) ⊗
HR∗(S1,H). Now, since S1 ∼= �(pt+), Theorem 5.2 implies HR∗(S1,H) ∼= HH∗(pt,H) ∼= H,

where H is concentrated in degree 0. It follows that HR∗(�(X+),H) ∼= HR∗(�X,H) ⊗H
as desired. �

Lemma 5.2 shows that HR∗(�X,H) ∼= HR∗(�(X+),H)⊗H k . Combining this last

isomorphism with that of Theorem 5.2, we now conclude

HR∗(�X,H) ∼= HR∗(�(X+),H)⊗H k ∼= HH∗(X,H)⊗H k ∼= HH∗(X,H; k).

This proves Theorem 5.1.

5.3 Examples

We conclude this section with a few simple examples illustrating the use of

Theorems 5.1 and 5.2. More examples will be given in the next two sections. In what

follows, G denotes an arbitrary affine algebraic group and g = Lie(G) stands for its Lie

algebra.

5.3.1 Spheres

The representation homology of the circle S1 is given by HR0(S
1,G) ∼= O(G) and

HRi(S
1,G) = 0 for i > 0. This follows, for example, from Lemma 4.1 and Corollary 4.3

(since S1 ∼= BZ ). Now, for higher dimensional spheres, we have the following.

Proposition 5.2. HR∗(Sn,G) ∼= 	k(g
∗[n− 1]) for all n ≥ 2.
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Representation Homology of Topological Spaces 49

Proof. Note that Sn � � Sn−1 for all n ≥ 2. By Theorem 5.1, we conclude

HR∗(Sn,G) ∼= HH∗(Sn−1,O(G); k) ∼= 	O(G)(�
1(G)[n− 1])⊗O(G) k ∼= 	k(g

∗[n− 1]) ,

where the 2nd isomorphism follows from [60, Section 5.5]. �

5.3.2 Suspensions

We now generalize the previous example to arbitrary suspensions.

Proposition 5.3. Let �X be the suspension of a pointed connected space X of finite

type. Then

HR∗(�X,G) ∼= 	k[ H∗(X; g∗)], (5.2)

where H∗(X; g∗) stands for the reduced (singular) homology of X with constant coeffi-

cients in g∗.
Consequently, by induction,

HR∗(�nX,G) ∼= 	k

(
H∗(X; g∗)[n− 1]

) ∀n ≥ 1.

Proof. It is known (see [26, Theorem 24.5]) that �X is rationally homotopy equivalent

to a bouquet of spheres: �X �Q

∨
i∈I Sni , where each Sni have dimension ni ≥ 2. By

Proposition 4.2, it thus suffices to compute HR∗(S,G) for S := ∨
i∈ISni . Note that the

reduced homology H∗(S; k) of S is isomorphic to ⊕i∈I k · vi with trivial coproduct, where

vi is a basis element of homological degree deg(vi) = ni. Now, by Corollary 4.2 and

Proposition 5.2, we have

HR∗(�X,G) ∼= HR∗(S,G) ∼=
⊕
i ∈ I

HR∗(Sni ,G) ∼=
⊕
i ∈ I

	k(g
∗[ni − 1])

∼= 	k

⊕
i ∈ I

g∗[ni − 1]
) ∼= 	k

( ⊕
n ≥ 2

g∗ ⊗Hn(�X; k)[n− 1]
)

∼= 	k

( ⊕
n ≥ 1

g∗ ⊗Hn(X; k)[n]
) ∼= 	k

[
g∗ ⊗H∗(X; k)

] ∼= 	k[ H∗(X; g∗)],

where the last isomorphism is a consequence of the Universal Coefficient Theorem. �

As a consequence of Theorem 5.2, Lemma 5.2, and Proposition 5.3, we have the

following general formula for the higher Hochschild homology of X with coefficients in

a commutative Hopf algebra.
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50 Y. Berest et al.

Corollary 5.1. For any pointed connected topological space X of finite type,

HH∗(X,O(G)) ∼= 	O(G)

[
H∗(X; k)⊗�1(G)

]
. (5.3)

The isomorphism (5.3) is a refinement of Pirashvili’s generalization of the

classical HKR theorem that (in our notation) asserts that HH∗(X,A) ∼= H∗(X; k) ⊗F A

for any smooth commutative algebra A (cf. [60, Theorem 4.6]).

5.3.3 Co-H-spaces

The result of Proposition 5.3 can be seen in a more conceptual way. The key fact is

that the suspension �X of any pointed connected space X is a cogroup object in the

homotopy category of pointed spaces, with coproduct �X → �X ∨ �X given by the

natural “pinching” map (see, e.g., [73, p. 41]). The functor HR∗( – ,G) : Ho(Top0,∗) →
grCommAlgk preserves coproducts and hence maps cogroup objects in Ho(Top0,∗) to

cogroup objects in grCommAlgk. The latter are precisely the graded commutative Hopf

algebras; thus, the representation homology of �X carries a natural Hopf algebra

structure for any space X. Since �X is 1-connected, HR∗(�X,G) is actually a connected

graded commutative Hopf algebra, and hence, by the (dual) Milnor–Moore theorem (see

[29, Theorem 0.2]), its underlying algebra structure is free: that is, HR∗(�X,G) ∼= 	kV

for some graded vector space V. As shown in the proof of Proposition 5.3, the rational

equivalence �X �Q

∨
i∈I Sni implies V ∼= H∗(X; g∗) , and it is easy to see that (5.2) is

actually an isomorphism of graded Hopf algebras.

The above argument is similar to Berstein’s “categorical” proof of the classical

Bott–Samelson theorem describing the Pontryagin algebra of the suspension �X (see

[13]). This formal argument works actually for any (simply connected associative) co-H-

space, provided one replaces the homology H∗(X, k) with the so-called Berstein–Scheerer

coalgebra B∗(X, k) of X (see, e.g., [2]). In this way, we have the following generalization

of Proposition 5.3.

Proposition 5.4. Let X be a 1-connected, associative co-H-space. Then

HR∗(X,G) ∼= 	k

[
B∗(X, k)⊗ g∗

]
,

where B∗(X, k) is the Berstein–Scheerer coalgebra of X.

We remark that B∗(�X, k) ∼= H∗(X, k) as coalgebras (see [2, p. 1150]), so in the

case of suspensions, Proposition 5.4 indeed reduces to Proposition 5.3.
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6 Examples: Surfaces and 3-Manifolds

In this section, using standard topological decompositions, we compute representation

homology of some classical non-simply connected spaces. Our examples include closed

surfaces (both orientable and non-orientable) as well as some three-dimensional spaces

(link complements in R3, lens spaces, and general closed orientable 3-manifolds).

The representation homology of surfaces and link complements is given in terms

of classical Hochschild homology of O(G) (or O(Gn) for some n ≥ 2) with twisted

coefficients. The representation homology of a closed 3-manifold M is expressed in

terms of a differential “Tor”, which gives rise to an (Eilenberg–Moore) spectral sequence

converging to HR∗(M,G).

6.1 Surfaces

6.1.1 The torus

As a cell complex, the 2-torus T2 = S1 × S1 can be constructed as the homotopy cofibre

(the mapping cone) of the map α : S1c → S1a ∨ S1b , where the subscripts on the circles

indicate the generators of the respective fundamental groups, and the map itself is

specified, up to homotopy, by its effect on these generators:

α(c) = [a,b] := aba−1b−1. (6.1)

Thus, T2 � hocolim[ ∗ ← S1c
α−→ S1a ∨ S1b] , where the homotopy colimit is taken in the

category Top0,∗ of connected pointed spaces. Applying to this the Kan loop group functor

G (more precisely, the composition of G with the Eilenberg subcomplex functor S, see

Section 2.2), we get a simplicial group model for T2:

G(T2) ∼= hocolim[ 1← F1
α−→ F2 ]. (6.2)

Here F1 and F2 are the free groups on the generators c and {a, b} respectively; the map

α is given by (6.1), and the homotopy colimit is taken in the category sGr of simplicial

groups.

Now, by Theorem 3.2, the derived representation functor preserves homotopy

pushouts for any algebraic group G. Hence, it follows from (6.2) that

O[DRepG(T2)] ∼= hocolim[k← O(G)
α∗−→ O(G× G) ], (6.3)
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52 Y. Berest et al.

where the homotopy colimit is taken in sCommAlgk, and the map α∗ : O(G) → O(G × G)

is induced by (6.1) (explicitly, α∗(f )(x, y) = f ([x, y]) for f ∈ O(G)). Since

hocolim [k← O(G)
α∗−→ O(G× G) ] ∼= O(G× G)⊗L

O(G) k,

by Proposition 4.1, we conclude that

HR∗(T2,G) ∼= TorO(G)∗ (O(G× G), k), (6.4)

where O(G× G) is viewed as a (right) O(G)-module via the algebra map α∗.
By standard homological algebra (see [16, Theorem 2.1, p. 185]), we can identify

the Tor-groups in (6.4) as the classical Hochschild homology of O(G) with coefficients

in the bimodule O(G × G), where the right O(G)-module structure is given via the map

α∗ and the left module structure via the augmentation map ε : O(G) → k :

HR∗(T2,G) ∼= HH∗(O(G), εO(G× G)α). (6.5)

Alternatively, for classical (matrix) groups G, we can give an explicit “small” DG

algebra model for the representation homology HR∗(T2,G). Specifically, let m := Ker(ε)

denote the maximal (augmentation) ideal of O(G) corresponding to the identity element

e ∈ G. Assume that m is generated by a regular sequence of elements (r1, r2, . . . , rd)

in O(G), so that d = dimG. Consider the free module E := O(G)⊕d and define the O-

module map π : E → O(G) by π(f1, f2, . . . , fd) := ∑d
i=1 rifi . Then, associated to (E,π) is

the (global) Koszul complex K∗(G) := (	∗
O(G)

(E), δK) with differential

δK(e0 ∧ e1 ∧ . . . ∧ en) =
n∑

i=0
(−1)i π(ei) e0 ∧ . . . ∧ êi ∧ . . . ∧ en.

Since m is generated by a regular sequence, the canonical projection K∗(G) � O(G)/m ∼=
k is a quasi-isomorphism of complexes, and therefore K∗(G) is a free resolution of k over

O(G). It follows from (6.4) that

TorO(G)∗ (O(G× G), k) ∼= H∗[A(T2,G)], (6.6)

where A(T2,G) := O(G × G) ⊗O(G) K∗(G) is a commutative DG algebra with differential

d = Id⊗ δK . In particular, HRi(T
2,G) = 0 for all i > dimG .
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Representation Homology of Topological Spaces 53

We conclude this example with a conjectural description of the G-invariant

part of representation homology HR∗(T2,G)G. Our conjecture can be viewed as a

multiplicative analogue of the derived Harish–Chandra conjecture proposed in [6].

Assume that G is a connected reductive algebraic group of rank l ≥ 1 defined

over an algebraically closed field k of characteristic zero. Let T ⊂ G be a Cartan

subgroup (i.e., a maximal torus) in G, and let W be the corresponding Weyl group.

Note that, since T is commutative, the map α∗ : O(T) → O(T × T) associated to T

factors through the augmentation ε : O(T) → k. Hence, by (6.4), we have canonical

isomorphisms

HR∗(T2,T) ∼= TorO(T)∗ (O(T × T), k) (6.7)

∼= O(T × T)⊗ TorO(T)∗ (k, k)

∼= O(T × T)⊗	∗
k(mT/m2

T)

∼= O(T × T)⊗	∗
k(h

∗),

where mT := Ker(ε) is the augmentation ideal, h = (mT/m2
T)∗ is the Lie algebra of T (i.e.,

a Cartan subalgebra of g), and 	∗
k(h

∗) is the (homologically) graded exterior algebra with

h∗ placed in degree one.

Now, by functoriality, the natural inclusion T ↪→ G induces a map of simplicial

commutative algebras

�G(T2) : O[DRepG(T2)]G → O[DRepT(T2)]W , (6.8)

which is (a multiplicative analogue of) the derived Harish–Chandra homomorphism

constructed in [6]. Then, the multiplicative version of the derived Harish–Chandra

conjecture states the following.

Conjecture 1. Assume that G is one of the classical groups GLn(k), SLn(k), Sp2n(k) ,

n ≥ 1 , or any simply connected, semi-simple(It is known that every simply connected

reductive affine algebraic group is automatically semi-simple. This follows from two

classical facts: (1) every reductive Lie algebra is a product of a semi-simple one and

an abelian one; (2) there are no nontrivial simply connected abelian reductive algebraic

groups.) affine algebraic group. Then the derived Harish–Chandra homomorphism (6.8)

is a weak equivalence in sCommAlgk. Hence, by (6.7), there is an isomorphism of graded
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commutative algebras

HR∗(T2,G)G ∼= [O(T × T)⊗	∗
k(h

∗)]W . (6.9)

We illustrate Conjecture 1 for G = GLn. Since O(GLn) ∼= k[xij, det(xij)
−1]1≤i,j≤n ,

the elements {xij − δij}1≤i,j≤n form a regular sequence in O(GLn) generating the maximal

ideal m, so we have a canonical commutative DG algebra representing HR∗(T2, GLn) :

A(T2, GLn) ∼= k[xij, yij, θij; det(X)−1, det(Y)−1]1≤i,j≤n.

Here the variables xij and yij have homological degree 0, θij have homological degree 1,

and det(X) and det(Y) denote the determinants of the generic matrices X := ‖xij‖ and

Y := ‖yij‖. The differential on A(T2, GLn) can be written in matrix terms as

d� = XYX−1Y−1 − In,

where � := ‖θij‖ and In is the identity n×n-matrix. The Harish–Chandra homomorphism

�GLn(T2) : A(T2, GLn)GLn → k
[
x±11 , . . . , x±1n , y±11 , . . . , y±1n , θ1, . . . , θn

]Sn
is given explicitly (on generators) by the following map:

xij �→ δijxi yij �→ δijyi, θij �→ δijθi,

and the derived Harish–Chandra conjecture asserts that �GLn(T2) induces an isomor-

phism (cf. (6.9))

HR∗(T2, GLn)GLn
∼→ k

[
x±11 , . . . , x±1n , y±11 , . . . , y±1n , θ1, . . . , θn

]Sn
, (6.10)

where θ1, . . . , θn have homological degree 1 and the symmetric group Sn acts diagonally

by permuting the variables. Note that, in the case of GLn(k), unlike for other algebraic

groups, Conjecture 1 follows from the derived Harish–Chandra conjecture for the

corresponding Lie algebra gln(k) stated in [6]. This is because the Harish–Chandra map

�GLn(T2) can be obtained by formally localizing the derived Harish–Chandra map for

the Lie algebra gln(k) (cf. [6, Sect. 4]). In particular, the evidence collected in [6] for gln(k)

also supports Conjecture 1 for GLn(k). we list some of this evidence here.
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(1) Conjecture 1 holds for GL2(k) and GL∞(k). This follows from [6, Theorems

4.1 and 4.2(ii)].

(2) For all n ≥ 1, the map (6.10) is degreewise surjective. This follows from [6,

Theorem 4.2(i)].

3) For all n ≥ 1, HRi(T
2, GLn)GLn = 0 for i > n . This follows from [7, Theorem

27].

4) For any G as in Conjecture 1, the map (6.10) is an isomorphism in homo-

logical degree zero, that is, HR0(T
2,G)G ∼= O(T × T)W . This follows from a

theorem of Thaddeus [74] (see also [71]).

Finally, we remark that, for G = GLn(k) , SLn(k), and Sp2n(k), the Harish–

Chandra map is known to be an isomorphism in homological degree 0: HR0(T
N ,G)G ∼=

O(TN)W for all tori TN , N ≥ 2 (see [71]). However, by results of [6, Sect. 5.2], the above

isomorphism does not extend to higher homological degrees when N ≥ 3. In other

words, the derived Harish Chandra homomorphism �GLn(TN) is not a week equivalence

for higher dimensional tori TN , N ≥ 3.

6.1.2 Riemann surfaces

The above computation of representation homology of the 2-torus naturally generalizes

to Riemann surfaces of an arbitrary genus. To be precise, let �g denote a closed

connected orientable surface of genus g ≥ 1. As a 2-dimensional cell complex, �g can be

described as the homotopy cofibre of the map αg : S1c → ∨g
i=1

(
S1ai ∨ S1bi

)
defined by

αg(c) = [a1, b1] [a2, b2] . . . [ag, bg], (6.11)

where a1, b1, . . . ,ag, bg denote the a- and b-cycles on �g generating the fundamental

group π1(�g, ∗). This gives the simplicial group model G(�g)
∼= hocolim[ 1← F1

αg−→ F2g ]

of �g, which, in turn, implies

O[DRepG(�g)] ∼= hocolim [k← O(G)
α
g∗−→ O(G2g) ] ∼= O(G2g)⊗L

O(G) k,

where the map α
g
∗ : O(G) → O(G2g) is defined by

α
g
∗ (f )(x1, y1, . . . , xg, yg) := f ([x1, y1] [x2, y2] . . . [xg, yg]) f ∈ O(G).
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By Proposition 4.1, we conclude

HR∗(�g,G) ∼= TorO(G)∗ (O(G2g), k) ∼= HH∗(O(G), εO(G2g)α), (6.12)

where εO(G2g)α is the bimodule with left and and right O(G)-module structure given by

the maps ε and α
g
∗ , respectively.

In case when m ⊂ O(G) is generated by a regular sequence, we can also express

the representation homology of �g as the homology of the commutative DG algebra

A(�g,G) := O(G2g) ⊗O(G) K∗(G), where K∗(G) is the global Koszul complex constructed

in Section 6.1.1:

HR∗(�g,G) ∼= H∗[A(�g,G) ].

Like in the torus case, for a reductive group G with a Cartan subgroup T, there

is an algebra map induced by the derived Harish–Chandra homomorpism �G(�G) :

HR∗(�g,G)G → [O(T2g)⊗	∗
k(h

∗)]W ,

where W operates diagonally on the target. However, in contrast to the torus case, this

map seems far from being an isomorphism in general. In fact, for g ≥ 2, it is conjectured

in [9] that HRi(�g,G) = 0 if i > dim Z(G), where Z(G) denotes the center of G; in

particular, this implies that HRi(�g,G) = 0 for all i > 0 if G is semisimple.

6.2 3-Manifolds

6.2.1 Link complements in R3

By a link L in R3 we mean a smooth (oriented) embedding of the disjoint union S1�. . .�S1
of (a finite number of) copies of S1 into R3. The link complement X := R3 \L is then

defined to be the complement of an (open) tubular neighborhood of the image of L in R3.

To describe a simplicial group model for X we recall two classical facts from geometric

topology (cf. [14]). First, by a well-known theorem of Alexander, every link L in R3 can

be obtained geometrically as the closure of a braid β in R3 (we write L = β̂ to indicate

this relation). Second, for each n ≥ 1, the braids on n strands in R3 form a group Bn

(the Artin braid group), which admits a faithful representation by automorphisms of

the free group Fn (the Artin representation). Specifically, the group Bn is generated by

n− 1 elements (“flips”) σ1, σ2, . . . , σn−1 subject to the relations

σi σj = σj σi (if |i− j| > 1), σi σj σi = σj σi σj (if |i− j| = 1),
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and in terms of these generators, the Artin representation Bn → Aut(Fn) is given by

σi :

⎧⎪⎪⎨⎪⎪⎩
xi �→ xi xi+1 x

−1
i

xi+1 �→ xi
xj �→ xj (j �= i, i+ 1).

(6.13)

To simplify the notation we will identify Bn with its image in Aut(Fn) under (6.13).

The next proposition can be viewed as a refinement of a classical theorem

of Artin and Birman [14, Theorem 2.2] describing the fundamental group of the link

complement R3\L in terms of the Artin representation (see the remark below).

Proposition 6.1. Let L = β̂ be a link in R3 given by the closure of a braid β ∈ Bn. Then

G(R3\L) ∼= hocolim [Fn
(β, Id)←−−−− Fn � Fn

(Id, Id)−−−−→ Fn ], (6.14)

where β acts on Fn via the Artin representation (6.13).

Remark. Note that the homotopy pushout in (6.14) coincides with the homotopy

coequalizer [FIXGRAPHICS] of the two endomorphisms Id and β of Fn. Hence, (6.14)

implies

π1(R
3\L, ∗) ∼= π0[G(R3\L)] ∼= coeq

∼= 〈x1, . . . , xn | β(x1) = x1, . . . , β(xn) = xn〉,

which is the Artin–Birman presentation of the link group π(L) := π1(R
3\L, ∗).

Proof. The proof is based on a simple van Kampen type argument (cf. [14]). Let us place

the n-braid β in a regular position in the region x < 0 in R3, so that its starting points

{p1,p2, . . . ,pn} and end points {q1, q2, . . . , qn} are located on the z-axis with coordinates

q1 < q2 < . . . < qn < pn < pn−1 < . . . < p1. The link L is the closure of β obtained by

joining the points pi to qi (i = 1, 2, . . . ,n) by simple arcs in the region x > 0, as shown in
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the picture

Now, let X := R3\L denote the complement of L. Define

X≥0 := {(x, y, z) ∈ X : x ≥ 0} X≤0 := {(x, y, z) ∈ X : x ≤ 0} X0 := X≥0 ∩ X≤0,

with a (common) basepoint ∗ in X0. It is easy to see that X≥0 is homeomorphic to the

cylinder over R2 \ {p1, . . . ,pn} , which is, in turn, homotopic to D2 \ {p1, . . . ,pn}, where

D2 is a two-dimensional disk in (the yz-plane) R2 encompassing the points {p1, . . . ,pn}.
Similarly, we have X≤0 ∼= (R2\{q1, . . . , qn})× [0, 1] � D2\{q1, . . . , qn} , and

X0 � D2\{p1, . . . ,pn, q1, . . . , qn} � D2\{p1, . . . ,pn} ∨ D2\{q1, . . . , qn}.

Under these identifications, the natural inclusions X≤0 ←↩ X0 ↪→ X≥0 can be identified

with

D2\{q1, . . . , qn}
(fβ , Id)←−−−− D2\{p1, . . . ,pn} ∨ D2\{q1, . . . , qn}

(Id, fe)−−−−→ D2\{p1, . . . ,pn}, (6.15)

where the map fβ is determined (uniquely up to homotopy) by the braid β and the map fe
is determined by the trivial braid connecting the points pi and qi. Thus, we can represent

X in Ho(Top0,∗) as the homotopy pushout of the diagram (6.15).

Next, recall that Bn can be identified with the mapping class group of D2 \
{p1, . . . ,pn} comprising (the isotopy classes of) orientation-preserving homeomorphisms

that fix pointwise the boundary of D2. As a mapping class group, Bn acts naturally on

the fundamental group π1(D
2 \{p1, . . . ,pn}, ∗) and the latter can be identified with the

free group Fn on generators x1, . . . , xn represented by small loops in D2 \ {p1, . . . ,pn}
around the points pi. It is well known (see [14]) that the action of Bn on Fn arising from

this construction is precisely the Artin representation (6.13). Now, using the map fe we

identify D2\{q1, . . . , qn} with D2\{p1, . . . ,pn} in (6.15) and apply the loop group functor to
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Representation Homology of Topological Spaces 59

this diagram of spaces. As a result, we get the equivalence (6.14), which completes the

proof of the proposition. �

To state our main theorem we introduce some notation. First, observe that, for

any algebraic group G, the Artin representation Bn ↪→ Aut(Fn) induces naturally a braid

group action Bn → Aut[O(Gn)], which we denote by β �→ β∗. On the standard generators,

this action is defined by

(σi)∗ : O(Gn) → O(Gn), f (g1, . . . , gi, gi+1, . . . , gn) �→ f (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

Now, for a braid β ∈ Bn, we let O(Gn)β denote the O(Gn)-bimodule whose underlying

vector space is O(Gn) = O(G)⊗n, the left action of O(Gn) is given by multiplication,

while the right action is twisted by the automorphism β∗.

Theorem 6.1. Let L = β̂ be a link in R3 given by the closure of a braid β ∈ Bn. Then

O[DRepG(R3\L)] ∼= O(Gn)⊗L
O(G2n)

O(Gn)β .

Consequently,

HR∗(R3\L,G) ∼= HH∗(O(Gn), O(Gn)β). (6.16)

Proof. By Proposition 6.1 and Theorem 3.2, we have

O[DRepG(R3\L)] ∼= hocolim [O(Gn)
(β∗, Id)←−−−− O(Gn)⊗k O(Gn)

(Id, Id)−−−−→ O(Gn) ]

∼= hocolim [O(Gn)
(β∗, Id)←−−−− O(G2n)

(Id, Id)−−−−→ O(Gn) ]

∼= O(Gn)⊗L
O(G2n)

O(Gn)β .

This completes the proof of the theorem. �

Remark. Theorem 6.1 exhibits an interesting analogy between the representation

homology of link complements in R3 and their Legendrian contact homology in the sense

of Ng (see [58]). This analogy is explained in the recent paper [8], where a new algebraic

construction of link contact homology is given. Roughly speaking, in terminology of [8],

O[DRepG(R3\L)] represents the algebraic “homotopy closure” of the braid β ∈ Bn in the

category of simplicial commutative algebras, while the Legendrian contact homology
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of R3\L can be computed from a certain DG category AL that represents the homotopy

braid closure of β ∈ Bn in the category of (small pointed) DG k-categories.

6.2.2 Link complements in S3

Note that Theorem 6.1 computes the representation homology of the topological space

R3\L , not of the link group π(L), which is the fundamental group of R3\L. Even when L is

a knot in R3 (i.e., a link with one component), the representation homologies HR∗(R3\L,G)

and HR∗(π(L),G) differ, because R3\L is not a K(π , 1)-space (cf. Example 6.1 below). In

knot theory, one is usually interested in representation varieties of the knot group π(L),

so it is important to understand the relation between HR∗(R3\L,G) and HR∗(π(L),G). A

natural way to approach this problem is to consider L as a link in S3 by adding to R3 one

point at infinity. If L ⊂ R3 ⊂ S3 is a knot, by Papakyriakopoulos’ sphere theorem, the

complement S3\L is an aspherical space, and π1(S
3\L, ∗) ∼= π1(R

3\L, ∗) = π(L) . Hence, for

any knot L, HR∗(π(L),G) ∼= HR∗(S3 \L,G) , so it suffices to clarify the relation between

HR∗(R3\L,G) and HR∗(S3\L,G).

To this end, we observe that the natural inclusion R3 \L ↪→ S3 \L fits into the

cofibration sequence S2
i

↪→ R3\L ↪→ S3\L , so that

S3\L ∼= hocolim [ ∗ ← S2
i−→ R3\L ], (6.17)

where S2 ⊂ R3 is chosen in such a way that it encloses L in R3. Applying the Kan functor

to (6.17), we get

G(S3\L) ∼= hocolim [ 1 ← G(S2)
i∗−→ G(R3\L) ]. (6.18)

To describe the induced map i∗, we note that S2 ∼= � S1 ∼= hocolim [ ∗ ← S1 → ∗ ] ; hence,

G(S2) ∼= hocolim [ 1 ← F1 → 1 ]. (6.19)

Now, if we identify G(R3\L) as in Proposition 6.1, then i∗ is determined by the morphism

of diagrams

where the map in the middle is given (on free generators) by x �→ (x1 x2 . . . xn)

(y1 y2 . . . yn)−1. Note that the left square in (6.20) commutes because the product

x1x2 . . . xn ∈ Fn stays fixed under the Artin representation for any β ∈ Bn.
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The map i∗ : G(S2) → G(R3\L) induces a map of simplicial commutative algebras

i∗ : O[DRepG(S2)]→ O[DRepG(R3\L)], (6.21)

which (to simplify the notation) we denote by the same symbol. By Theorem 6.1,

O[DRepG(R3\L)] ∼= O(Gn)⊗L
O(G2n)

O(Gn)β .

On the other hand, by (6.19),

O[DRepG(S2)] ∼= k⊗L
O(G) k

∼= 	∗
k(m/m2) ∼= 	∗

k(g
∗),

where 	∗
k(g

∗) denotes the graded exterior algebra of g∗, with g∗ being in degree one,

equipped with trivial differential. With these identifications, the map (6.21) is induced

by the algebra homomorphism

O(G) → O(G2n) f (x) �→ f ((x1 x2 . . . xn) (y1y2 . . . yn)−1). (6.22)

Now, we can regard O(Gn)⊗L
O(G2n)

O(Gn)β as a DGmodule over the DG algebra k⊗L
O(G)

k ∼=
	∗(g∗). As a consequence of (6.18) and Theorem 6.1, we have then the following.

Theorem 6.2. Let L = β̂ be a link in S3 given by the closure of a braid β ∈ Bn. Then

O[DRepG(S3\L)] ∼= k⊗L
	∗(g∗) [O(Gn)⊗L

O(G2n)
O(Gn)β ].

Consequently, there is a natural spectral sequence

E2∗,∗ = Tor	∗(g∗)∗ (k, HH∗(O(Gn), O(Gn)β) 
⇒ HR∗(S3\L, G),

converging to the representation homology of S3\L .

Example 6.1. Let L = © be the unknot in R3. We can represent L by the trivial braid

β = 1 ∈ B1. In this case, Theorem 6.1 combined with the classical Hochschild–Kostant–

Rosenberg theorem gives

HR∗(R3\©, G) ∼= HH∗(O(G),O(G)) ∼= �∗(G),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa023/5766442 by Indiana U

niversity Libraries - Bloom
ington user on 22 O

ctober 2021



62 Y. Berest et al.

where �∗(G) is the de Rham algebra of (algebraic) differential forms on the group G. On

the other hand, HR∗(S3 \©, G) ∼= HR∗(π(©), G) ∼= O(G) , since π(©) ∼= Z . This simple

example illustrates the fact that representation homology does depend on the higher

homotopy structure of a space: in particular, it distinguishes the link complements in

R3 and S3, even though their fundamental groups are the same.

6.2.3 Lens spaces

Recall that, for coprime integers p and q, the lens space L(p,q) of type (p,q) is defined

as the quotient S3/Zp of the 3-sphere S3 viewed as the unit sphere in C2 modulo the

(free) action of the cyclic group Zp given by (z,w) �→ (e2π i/p z, e2π iq/p w) . This definition

shows that L(p,q) is a compact connected 3-manifold, whose universal cover is S3 and

the fundamental group is Zp. Special cases include L(1, 0) ∼= S3, L(0, 1) ∼= S1 × S2 and

L(2, 1) ∼= RP3.

To compute the representation homology of L(p,q) we will use a well-known

topological construction of these spaces via Dehn surgery in S3 (see, e.g., [68, Chap. 3B]).

Recall that if K ⊂ S3 is a knot in S3 and p,q are two integer numbers, the p/q Dehn

surgery on K is a 3-dimensional space obtained by removing from S3 the interior
◦
N(K)

of a regular tubular neighborhood N(K), which is a 3-dimensional solid torus S1 × D2,

and then gluing S1 × D2 back to S3 \ ◦
N(K) in such a way that the meridional curve of

S1 ×D2 is identified with a (p,q)-curve on the boundary of S3\ ◦
N(K). For the trivial knot

K ⊂ S3, it is easy to see that the p/q Dehn surgery on K gives precisely the lens space

L(p,q). In this case, the knot complement S3\ ◦
N(K) is homeomorphic to the solid torus

S1×D2, so the space L(p,q) can be obtained by gluing together two solid tori along their

boundary.

To describe this in more concrete terms, we consider the solid torus S1×D2 as a

subset in C2 :

S1 × D2 = {(z,w) ∈ C2 : |z| = 1 , |w| ≤ 1}.

We identify T2 = S1×S1 as the boundary of S1×D2 in C2 and denote by i : T2 ↪→ S1×D2

the natural inclusion.

Now, for the given pair (p,q) of coprime numbers, we choose m,n ∈ Z , so that

mq− np = 1 , and define the “gluing” map γ : T2 → S1 × D2 by

γ (z, w) := (zmwp, znwq). (6.23)
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Then the p/q Dehn surgery construction of L(p,q) can be described as the pushout in

Top0,∗:

L(p,q) ∼= colim [S1 × D2 i←↩ T2 γ
↪→ S1 × D2 ]. (6.24)

Since i is a cofibration in Top0,∗, we can replace the colimit in (6.24) by a homotopy

colimit and then replace the diagram of solid tori by a homotopy equivalent diagram of

circles:

L(p,q) ∼= hocolim [S1
π
� T2 γ̄→ S1 ]. (6.25)

In this diagram, the map π is given by the canonical projection (z,w) �→ z and γ̄ is the

composition π ◦ γ defined by (z,w) �→ zmwp. Now, applying the Kan loop group functor,

we get a simplicial group model for L(p,q):

G[L(p,q)] ∼= hocolim [F1
π←− G(T2)

γ−→ F1 ]. (6.26)

Recall (see (6.2)) that G(T2) is given in sGr by the homotopy cofibre of the commutator

map α : F1 → F2, c �→ [a,b] , where a and b are the generators of F2 corresponding to the

meridian and longitude in T2. In terms of these generators, the maps π and γ in (6.26)

are induced by

π : F2 → F1 (a,b) �→ (z, 1), γ : F2 → F1 (a,b) �→ (zm, zp), (6.27)

where z is a generator of F1.

Now, assume that G admits a global Koszul resolution K∗(G) described in

Section 6.1. Then, we have an explicit DG algebra model for HR∗(T2,G) given by

A∗(T2,G) = O(G× G)⊗O(G) K∗(G). Applying to (6.26) the derived representation functor,

we get

O[DRepG(L(p,q))] ∼= hocolim [O(G)
π∗←− A∗(T2,G)

γ∗−→ O(G) ]. (6.28)

The maps π∗ and γ∗ in (6.28) are determined by (6.27); on the degree 0 component of the

DG algebra A∗(T2,G), they are given by

π∗ : O(G× G) → O(G) f (x, y) �→ f (z, e), (6.29)

γ∗ : O(G× G) → O(G) f (x, y) �→ f (zm, zp). (6.30)

Using π∗ and γ∗, we can make O(G) into (left and right) DG modules over the DG algebra

A∗(T2,G), which we denote byO(G)π andO(G)γ respectively. With this notation, we have

the following result that completes our calculation.
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Theorem 6.3. The representation homology of a 3-dimensional lens space L(p,q) is

given by

HR∗(L(p,q),G) ∼= TorA∗∗ (O(G)π , O(G)γ ),

where TorA∗∗ denotes the differential Tor taken over the DG algebra A∗ = A∗(T2,G). In

particular, there is an Eilenberg–Moore homology spectral sequence

E2∗,∗ = TorHR∗(T2,G)∗ (O(G)π , O(G)γ ) 
⇒ HR∗(L(p,q),G)

converging to the representation homology of L(p,q).

6.2.4 Closed 3-manifolds

The above construction of lens spaces generalizes to arbitrary closed 3-manifolds.

Specifically, it is well known that every closed connected orientable 3-manifold M

admits a Heegaard decomposition Hg ∪γ Hg that can be written as

M ∼= colim [Hg
i←↩ �g

γ
↪→ Hg ], (6.31)

where Hg is a handlebody of genus g ≥ 0 , i is the natural inclusion identifying �g = ∂Hg ,

and γ is a gluing map defined as the composition �g
γA−→ �g

i
↪→ Hg , where γA is an

(orientation-preserving) diffeomorphism of �g representing an element in the mapping

class group M(�g) := π0(Diff
+ �g). In particular, for g = 1, the Heegaard diagram (6.31)

becomes (6.24); in fact, the lens spaces can be characterized as (closed) 3-manifolds that

admit Heegaard decompositions of genus 1.

Since Hg is homotopy equivalent as a cell complex to the bouquet of g circles

∨g
i=1S

1, we can represent the homotopy type of M by

M ∼= hocolim

[ g∨
i=1

S1 ← �g →
g∨

i=1
S1

]
.

This gives the simplicial group model G(M) ∼= hocolim [Fg
π←− G(�g)

γ−→ Fg ] , and hence

O[DRepG(M)] ∼= hocolim [O(Gg)
π∗←− A∗(�g,G)

γ∗−→ O(Gg) ] ∼= O(Gg) ⊗L
A∗ O(Gg),

where A∗ = A∗(�g,G) is an explicit DG algebra model for the representation homology

HR∗(�g,G) (see Section 6.1.2). As a result, we have the following generalization of

Theorem 6.3 to 3-manifolds of higher genus.
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Theorem 6.4. Let M be a closed connected orientable 3-manifold. Assume that M has

a Heegaard decomposition (6.31) determined by an element γ ∈ M(�g) in the mapping

class group of �g. Then the representation homology of M is given by

HR∗(M,G) ∼= TorA∗∗ (O(Gg)π , O(Gg)γ ),

where TorA∗∗ is the differential Tor taken over the DG algebra A∗ = A∗(�g,G). In

particular, there is an Eilenberg–Moore homology spectral sequence

E2∗,∗ = Tor
HR∗(�g,G)
∗ (O(Gg)π , O(Gg)γ ) 
⇒ HR∗(M,G)

converging to the representation homology of M.

Remark. If G is a complex semisimple group and g ≥ 2, it is conjectured in [9] (cf. [9,

Conjecture 1.3]) that HRi(�g,G) = 0 for all i > 0. This conjecture implies, in particular,

that the spectral sequence of Theorem 6.4 degenerates for 3-manifolds of Heegaard

genus g ≥ 2, giving an isomorphism

HR∗(M,G) ∼= Tor
AG(�g)∗ (O(Gg)π , O(Gg)γ ),

where Tor∗ is the ordinary ‘Tor’ taken over AG(�g) := O[RepG(�g)] , the coordinate ring

of the classical representation scheme RepG(�g).

7 Representation Cohomology and a Non-abelian Dennis Trace Map

In this section, we define representation homology and cohomology with coefficients

in an arbitrary bifunctor on the category of finitely generated free groups G. Following

the analogy with topological Hochschild homology, we construct a natural trace map

relating representation homology to the stable homology of automorphism groups

Aut(Fn) with twisted coefficients.

7.1 Representation cohomology

7.1.1 (Co)Homology of small categories

Let C be a small category. By a C -bimodule, we mean a bifunctor D : C op×C −→ Vectk,

which is contravariant in the 1st argument and covariant in the 2nd. We write Bimod(C )

for the category of C -bimodules. For any D ∈ Bimod(C ), one can define the (Hochschild–

Mitchell) homology HH∗(C ,D) and cohomology HH∗(C ,D) of C with coefficients in D.
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66 Y. Berest et al.

For a precise definition and basic properties of these classical (co)homology theories we

refer to [3, 34, 57] (a good summary can also be found in [50, Appendix C]). Here, we only

recall that HH∗(C , – ) and HH∗(C , – ) are functors (covariant and contravariant, respec-

tively) on the category of C -bimodules, such that {HHn(C , – )}n≥0 and {HHn(C , – )}n≥0
are universal δ-sequences, with HH0(C , D) and HH0(C , D) being canonically isomorphic

to the coend
∫ c∈C D(c, c) and the end

∫
c∈C D(c, c) of the bifunctor D. Moreover, the

(co)homology theories HH∗(C , D) and HH∗(C , D) have good functorial properties with

respect to the 1st argument: in particular, any functor F : C ′ −→ C between small

categories induces a natural map on homology F∗ : HH∗(C ′, F∗D) −→ HH∗(C ,D) , where

F∗ : Bimod(C ) → Bimod(C ′) is the restriction functor on bimodules defined by F∗D :=
D ◦ (Fop × F).

7.1.2 Representation cohomology

To express representation homology in terms of Hochschild–Mitchell homology, we

need to slightly extend the above classical setting. Specifically, we will consider chain

complexes of C -bimodules, which are simply bifunctors D : C op × C −→ Ch≥0(k) with

values in the category of chain complexes of k-vector spaces, and define HH∗(C ,D) and

HH∗(C ,D) to be the Hochschild–Mitchell hyperhomology and the Hochschild–Mitchell

hypercohomology of D, respectively. Now, given two chain complexes of right and left

C -modules, say M : C op → Ch≥0(k) and N : C → Ch≥0(k) , we define the chain complex

of C -bimodules M �k N : C op × C → Ch≥0(k) by assigning to (c, c′) ∈ Ob(C op × C ) the

tensor product M(c)⊗k N(c′) of the corresponding chain complexes. With this notation,

we have the following.

Lemma 7.1. For any X ∈ sSet0 and any commutative Hopf algebraH, there is a natural

isomorphism

HR∗(X,H) ∼= HH∗(G, N(k[GX]) �k H ). (7.1)

Proof. For any small category C and any right (resp., left) C -modules M and N with

values in Ch≥0(k), where k is a commutative ring, there is a natural (Grothendieck)

spectral sequence (see, e.g., [50, (C.10.1)]):

E2
pq = HHp(C , Hq[M �L

k N]) 
⇒ Hp+q[M ⊗L
C N].
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When k is a field, this spectral sequence degenerates giving an isomorphism

HH∗(C , M �k N) ∼= H∗[M ⊗L
C N] . In our situation, we have

HH∗(G, N(k[GX]) �k H ) ∼= H∗[N(k[GX])⊗L
G H],

which in composition with the isomorphism of Theorem 4.1 gives (7.1). �

Example 7.1. In the case when X = B� for a discrete group � and H = O(G), formula

(7.1) reads

HR∗(�,G) ∼= HH∗(G, k[�]�k O(G) ).

Lemma 7.1 motivates the following definition.

Definition 7.1. The representation cohomology of X in H is defined by

HR∗(X,H) := HH∗(G, N(k[GX]) �k H ).

More generally, for anyG-bimodule D : C op×C −→ Ch≥0(k) , we define the representation

homology and the representation cohomology of D by

HR∗(D) := HH∗(G, D) HR∗(D) := HH∗(G, D).

In the case when D is an ordinary G-bimodule (with values in Vectk), this def-

inition says that the representation (co)homology of D is just the classical Hochschild–

Mitchell (co)homology of D.

Example 7.2. For an affine algebraic group G, consider the G-bimodule D := lin∗k �
O(G) , where lin∗k is the dual linearization functor Gop → Vectk , 〈n〉 �→ HomZ(〈n〉ab, k) .

In this case, one can show that there are natural isomorphisms

HRi(D) ∼= Hi+1(G,k) ∀ i > 0,

where Hi+1(G,k) stands for the classical cohomology of the affine algebraic group with

coefficients in the trivial (rational) representation.
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7.1.3 Relation to topological Hochschild homology

For an arbtirary (associative unital) ring R, denote by F(R) the full subcategory of R-

Mod whose objects are the free modules Rn, n ≥ 0. For any R-bimodule N, consider the

bifunctor Hom(I,N) : F(R)op × F(R) → Mod(Z) defined by (X,Y) �→ HomR(X,N ⊗R Y)).

Then, a theorem of Pirashvili and Waldhausen [62] asserts that the Hochschild–Mitchell

homology HH∗(F(R), Hom(I,N)) is naturally isomorphic to the topological Hochschild

homology THH∗(R,N) of the ring R with coefficients in the bimodule N. It is therefore

natural to define the topological Hochschild homology of R with coefficients in an

arbitrary bifunctor B : F(R)op × F(R) → Mod(Z) by (cf. [50, Chap. 13])

THH∗(R,B) := HH∗(F(R), B).

For R = Z, the category F(Z) is equivalent to the category Gab of finitely generated free

abelian groups, which (as our notation suggests) is the abelianization of the category

G. The abelianization functor α : G → Gab induces a natural map HR∗(α∗B) −→
THH∗(Z,B) for any Gab-bimodule B ∈ Bimod(Gab), and conversely, for any G-bimodule

D ∈ Bimod(G), associated to the functor α, there is an André-type spectral sequence (see

[34, Theorem 1.20]):

E2
pq = THHp(Z, Lq(α

op × α)∗D) 
⇒ HRp+q(D),

converging to the representation homology of D.

Thus, representation homology may be viewed as a non-abelian analogue of

topological Hochschild homology, and it is natural to ask for “non-abelian” analogues of

various constructions known for topological Hochschild homology. In the next section,

we outline one such construction that may be thought of as a non-abelian version of the

Dennis trace map.

7.2 Non-abelian Dennis trace map

Recall (cf. [50, Sect. 13.1.8]) that the classical Dennis trace maps the stable homology of

the general linear groups of a ring R to topological Hochschild homology of R :

DTr∞(R,B) : H∗(GL∞(R), B∞) −→ THH∗(R,B), (7.2)

where B is an arbitrary bimodule over F(R). We generalize this map to the non-abelian

setting.
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Representation Homology of Topological Spaces 69

Let Autn := Aut(Fn) denote the automorphism group of the free group on

generators x1, . . . , xn. We will regard Autn as the automorphism group AutG(〈n〉) of the
object 〈n〉 in the category G. There are obvious inclusions Autn ↪→ Autn+1 defined by

g �→ g̃ , where g̃(xi) := g(xi) for i ≤ n and g̃(xn+1) = xn+1. We set Aut∞ := lim−→ Autn .

Now, consider an arbitrary bimodule D on the category G, that is, a bifunctor

D : Gop ×G→ Vectk . For each n ≥ 1, let Dn := D(〈n〉, 〈n〉) and define the linear maps

p∗◦ i∗ : Dn → D(〈n〉, 〈n+ 1〉) → Dn+1, (7.3)

where i∗ := D(Id, in) and p∗ := D(pn, Id) are induced by the natural inclusion i : 〈n〉 ↪→
〈n+ 1〉 and the natural projection p : 〈n+ 1〉 � 〈n〉 , respectively. Put

D∞ := lim−→ Dn,

where the inductive limit is taken with respect to the linear maps (7.3).

Next, observe that each Dn carries a natural Autn-module structure: namely,

Autn −→ Aut(Dn), g �→ g∗◦ g∗, where g∗ := D(g−1, Id) and g∗ := D(Id,g). Moreover, for all

g ∈ Autn , there is a commutative diagram

where g̃ ∈ Autn+1 is the image of g under the natural inclusion Autn ↪→ Autn+1 defined

above. As a consequence, the k-vector space D∞ carries a natural (inductive) Aut∞-

module structure. Thus, we can consider the homology groups H∗(Autn,Dn) for all n ≥ 1

and H∗(Aut∞,D∞). Since homology commutes with direct limits, we can identify

H∗(Aut∞,D∞) ∼= lim−→ H∗(Autn,Dn). (7.4)

Next, we construct natural maps relating H∗(Aut∞,D∞) to the representation

homology HR∗(D) . Regarding each group Autn as the category Autn with a single

object, we consider the inclusion functors

γn : Autn → G,
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identifying the single object of Autn with 〈n〉 ∈ Ob(G). Since Dn = γ ∗nD , these functors

induce natural maps

(γn)∗ : HH∗(Autn, Dn) → HH∗(G, D) =: HR∗(D). (7.5)

On the other hand, the Hochschild–Mitchell homology of the category Autn coincides

with the usual group homology of Autn :

HH∗(Autn, Dn) ∼= H∗(Autn, Dn). (7.6)

Indeed, since Autn is a category with one object, its Hochschild–Mitchell complex

CHM∗ (Autn, Dn) is isomorphic to the usual Hochschild complex C∗(k[Autn], Dn) of the

group algebra of Autn, so that

HH∗(Autn, Dn) ∼= HH∗(k[Autn], Dn),

while HH∗(k[Autn], Dn) ∼= H∗(Autn, Dn) via the classical Mac Lane isomorphism (see,

e.g., [50, Prop. 7.4.2]). Thus, combining (7.5) and (7.6), for all n ≥ 0 , we get canonical

linear maps

DTrGn (D) : H∗(Autn,Dn) −→ HR∗(D). (7.7)

As in [50, 13.1.8], it is easy to check that these maps are compatible when passing from

n to n+1. Hence, we can stabilize (7.7) by passing to the inductive limit as n→∞ . With

identification (7.4), the resulting stable map reads

DTrG∞(D) : H∗(Aut∞,D∞) −→ HR∗(D). (7.8)

This is a non-abelian analogue of the Dennis trace map (7.2). As in the classical case, it

is natural to ask: When is (7.8) an isomorphism? Motivated by a theorem of Scorichenko

(see [28]), we propose a conjectural answer.

Conjecture 2. The map (7.8) is an isomorphism if D is a polynomial bifunctor (in the

sense of [41]).

We conclude this section a few remarks related to Conjecture 2.
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Remark. A famous theorem of Galatius [32] asserts that natural maps from the

symmetric group Sn to Autn (defined by permuting the generators) induce isomorphisms

Hi(Autn, Z) ∼= Hi(Sn, Z) ∀n > 2i+ 1.

This implies that Hi(Aut∞, A) = 0 for all i > 0, where A is any constant k-module

provided k has characteristic 0 (which we always assume in this paper). Conjecture 2

implies [22, Theorem 1], which says that Hi(Aut∞, D∞) = 0 for all i > 0, when D is a

polynomial bifunctor, constant with respect to its contravariant argument. Indeed, for

such bifunctors, we have HRi(D) = HHi(G,D) = 0 for i > 0 because G has a terminal

object.

Remark. The direct analogue of Conjecture 2 is false in the abelian case. Indeed, if B

is a constant bifunctor on F(R), then THH∗(R,B) vanishes in positive degrees (since F(R)

has terminal object), but H∗(GL∞(R), B) may be highly nontrivial (see [28]). The correct

version of Conjecture 2 replaces the stable group homology with Waldhausen’s stable

K-theory. In the non-abelian case, one can also state a version of Conjecture 2 for the

stable K-theory of automorphism groups Autn instead of group homology; however, we

expect that the two theories are actually isomorphic. We briefly outline an argument

behind this expectation.

Let E∞ denote the commutator subgroup of Aut∞. It is known that E∞ is a perfect

normal subgroup; hence, we can form the “plus construction”

� : BAut∞ −→ BAut+∞.

Let F� denote the homotopy fiber of the map �. We have a canonical group homo-

morphism π1(F�) −→ π1(BAut∞) ∼= Aut∞ that equips any Aut∞-module with a π1(F�)-

action. In particular, the Aut∞-module D∞ arising from a G-bimodule D may be viewed

as a π1(F�)-module, and hence defines a local system on F�. The stable K-theory

Ks∗(Aut∞,D∞) is then defined to be H∗(F�, D∞) , the homology of F� with coefficients

in the local system D∞. Now, consider the Serre spectral sequence associated to the

homotopy fibration F� −→ BAut∞ −→ BAut+∞ :

E2
pq = Hp(BAut+∞, Hq(F�,D∞)) 
⇒ Hn(BAut∞, D∞).

If Aut∞ acts trivially on Ks
q(Aut∞, D∞) = Hq(F�, D∞) (as it happens in the classical

case, see [50, 13.3.2]), then, since BAut∞ −→ BAut+∞ is a homology equivalence for trivial
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coefficients, the above spectral sequence becomes

E2
pq = Hp(BAut∞, Ks

q(Aut∞, D∞)) 
⇒ Hn(BAut∞, D∞).

However, by Galatius’ theorem [32], we know that Hp(Aut∞,A) = 0 for p > 0 for any

constant coefficients over k. Hence, the above spectral sequence must collapse on the

p-axis, giving the desired isomorphism Ks∗(Aut∞,D∞) ∼= H∗(Aut∞,D∞).

Remark. As explained in Section 7.1.3, the relation between topological Hochschild

homology and functor homology of module categories is based on the Pirashvili–

Waldhausen theorem [62]. Schwede [69] generalized this result to arbitrary algebraic

theories by associating to an algebraic PROP P a ring spectrum Ps and identifying

the functor homology over P with topological Hochschild homology over Ps (see [69,

Theorem 6.7]). In the case P = G, Schwede’s construction provides a topological

(spectral) interpretation of representation homology that may be useful for Conjecture 2.
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A Model Approximations and Derived Adjunctions

In this appendix, we collect basic definitions and prove some results in abstract homo-

topy theory concerning derived functors. We work in the framework of homotopical

categories in the sense of Dwyer, Hirschhorn, Kan, and Smith [23]. Apart from the

original reference [23], a good introduction to the subject can be found in [66] and a short

summary in [72]. The main results of this appendix—Theorem A.2 and Theorem A.3—

arise from our attempt to abstract Theorem 3.1 on derived representation adjunc-

tions. We believe that these two theorems as well as Lemma A.1 are of independent

interest.

A.1 Homotopical categories

A homotopical category is a category C equipped with a class of morphisms W (called

weak equivalences) that contains all identities of C and satisfies the following 2-of-6

property: for every composable triple of morphisms f , g,h ∈ Mor(C), if gf and hg are
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in W, then so are f , g,h, and hgf . The 2-of-6 property formally implies, but is stronger

than, the usual 2-of-3 property. The class of weak equivalences thus forms a subcategory

that contains all objects and all isomorphisms of C. Since the isomorphisms satisfy the

2-of-6 property, any category can be viewed as a homotopical category by taking W to

be the class of all isomorphisms (in [23], such homotopical categories called minimal).

Furthermore, by forgetting the fibrations and cofibrations, any model category becomes

a homotopical category: that is, the class of weak equivalences in any model category

satisfies the 2-of-6 property (see [23, Prop. 9.2]). This is a consequence of the well-

known fact that in a model category, the class W of weak equivalences is saturated:

that is, it comprises all the arrows of C that become isomorphisms in the localized

category C[W−1] . Since the isomorphisms in C[W−1] satisfy the 2-of-6 property, it

follows immediately that the weak equivalences in a saturated category satisfy the 2-

of-6 property. Unless stated otherwise, we will assume all our homotopical categories

to be saturated. If C is a homotopical category, the category Ho(C) := C[W−1] is called

the homotopy category of C: it comes with the canonical functor γC : C → Ho(C) called

the localization of C. It is often convenient to regard Ho(C) as a homotopical category

itself by taking W to be the class of isomorphisms; in other words, to think of Ho(C) as

a minimal homotopical category.

A.2 Derived functors and deformation retracts

If C and D are homotopical categories, a functor F : C → D is called homotopical if

it preserves weak equivalences. Such a functor induces a unique functor between the

homotopy categories of C and D that we will denote by F̄ : Ho(C) → Ho(D). In practice,

many important functors are not homotopical and hence do not descend to homotopy

categories. A standard way to deal with this problem is to replace—or “approximate”—

non-homotopical functors with their derived functors that usually come in two kinds:

“left” and “right”. We will focus on left derived functors with understanding that all

results apply mutatis mutandis to the right derived functors as well.

Following [65], we define a total left derived functor LF : Ho(C) → Ho(D) of a

functor F : C → D to be the right Kan extension of γD ◦ F : C → D → Ho(D) along

localization γC : C → Ho(C) :
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By the universal property of localization, LF is uniquely determined by the

homotopical functor LF = LF ◦ γC defined on the category C. This last functor can

be characterized as a universal homotopical functor LF : C → Ho(D) that comes

together with a natural transformation (called the comparison map) ε : LF → γD ◦ F

that is terminal among all natural transformations from homotopical functors to γD ◦F.
When they exist, both functors LF and LF are determined by F uniquely up to unique

isomorphism. Following [72], we will refer to LF as a left derived functor of F and LF

as the corresponding total left derived functor.

It was observed in [53] that a stronger universal property for derived functors—

namely, that of an absolute Kan extension—is often very useful (in the additive setting,

absolute derived functors between triangulated categories first appeared in the work

of Deligne under the name “founcteurs dérivé partout défini” (see [21])). To be precise,

a total left derived functor LF : Ho(C) → Ho(D) is called absolute if for any functor H :

Ho(D) → E , the right Kan extension of the composition H ◦ γD ◦ F : C → D → Ho(D) → E
along γC : C → Ho(C) coincides with H ◦ LF:

A fundamental theorem of [65] asserts that any left Quillen functor F : C → D
between model categories has a total left derived functor LF : Ho(C) → Ho(D), which

can be obtained as the composition F ◦Q, where Q is the cofibrant replacement functor

on C; moreover, as noticed in [53], such a left derived functor is automatically absolute.

This construction of derived functors was axiomatized and extended to homotopical

categories in [23]. We briefly recall the main definitions. If C is a homotopical category,

a left deformation retract of C is a full subcategory i : CQ ↪→ C given together with a

homotopical functor Q : C → CQ and natural weak equivalence q : i ◦ Q → IdC . It is

easy to see that, for any left deformation retract of C, the inclusion functor i : CQ ↪→ C
induces an equivalence of categories Ho(CQ) � Ho(C) with inverse induced by Q. Now,

we say that a functor F : C → D between two homotopical categories is left deformable

if there is a left deformation retract CQ of the domain category such that the restriction

of F to CQ is homotopical. For example, if C and D are model categories, any left Quillen

functor F : C → D is canonically left deformable: for the corresponding deformation
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retract CQ, we can always take the subcategory of cofibrant objects in C, with Q : C → CQ
being the cofibrant replacement functor.

Proposition A.1 ([23]). A left deformable functor F : C → D has a left derived functor

LF : C → Ho(D) given by LF = γD ◦ F ◦ Q with comparison map ε = γFq : LF → γ ◦ F.
The corresponding total left derived functor LF : Ho(C) → Ho(D) is absolute in the sense

of [53].

The 1st statement of Proposition A.1 is proved in [23,Sections 41.2–5] (see also

[66, Theorem 2.2.8]). The 2nd statement is verified in (the proof of) [66, Proposition

2.2.13].

It is well known that, for any composable pair (F1, F2) of left Quillen functors,

the derived functor L(F1 ◦ F2) of their composition coincides with LF1 ◦LF2. In the more

general context of homotopical categories, this is not the case even when both functors

F1 and F2 are left deformable. To guarantee this property one needs to impose an extra

condition on deformation retracts of the functors involved. Following [23], we say that

a composable pair (F1, F2) of left deformable functors C F1−→ D F2−→ E is left deformable

if F1 maps the left deformation retract CQ, on which it is homotopical, into the left

deformation retract DQ, on which F2 is homotopical: that is, F1(CQ) ⊆ DQ. With this

definition, we have

Proposition A.2 ([23, 42.4]). For any left deformable pair (F1, F2), there is a canonical

isomorphism of total left derived functors L(F1 ◦ F2) ∼= LF1 ◦ LF2 .

A.3 Derived adjunctions

We now turn to the important question when an adjunction between two homotopical

categories induces a derived adjunction between the corresponding homotopy cate-

gories. We begin by stating the main result of [53] (cf. [66, 2.2.15]).

Theorem A.1 ([53]). Let F : C � D : G be a pair of adjoint functors between

homotopical categories. Assume that F has a total left derived functor LF, G has a total

right derived functor RG, and both derived functors are absolute. Then LF and RG are

adjoint to each other:

LF : Ho(C) � Ho(D) : RG. (A.1)

Following [23], let us call an adjunction F : C � D : G deformable if F is left

deformable and G is right deformable. As an immediate consequence of Theorem A.1

and Proposition A.1, we get the following.
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Corollary A.1 ([23, 44.2]). If F : C � D : G is a deformable adjunction, then both total

derived functors LF and RG exist and form an adjoint pair (A.1).

This result is one of the key observations of [23], which, in particular, formally

implies Quillen’s adjunction theorem for model categories [65]. Unfortunately, the

assumption that a pair of adjoint functors is deformable is rather restrictive and

does not always hold in practice. In what follows we propose a different—somewhat

roundabout—way to produce derived adjunctions using model approximations of

homotopical categories.

We begin with the following simple lemma that can be viewed as a partial

converse of Theorem A.1

Lemma A.1. Let F : C � D : G be a pair of adjoint functors between homotopical

categories. Assume the following:

(1) F has an absolute total left derived functor LF : Ho(C) → Ho(D),

(2) LF has a right adjoint functor G̃ : Ho(D) → Ho(C).

Then G̃ is an absolute total right derived functor of G: that is, RG exists and RG ∼= G̃.

Proof. Let us spell out the universal mapping property of the absolute total right

derived functor RG : for any functors E : Ho(C) → E and H : Ho(D) → E , there is a

natural (in E and H) bijection:

Hom(E ◦ RG, H) ∼= Hom(E ◦ γC ◦ G, H ◦ γD), (A.2)

where by Hom’s we denote the sets of natural transformations between the correspond-

ing functors. To prove the lemma it suffices to check that G̃ satisfies this property.

First, G̃ being right adjoint to LF implies that G̃∗ = ( – ) ◦ G̃ is left adjoint to

LF∗ = ( – )◦LF on the functor category Fun(Ho(C), E) , so that there is a natural bijection

Hom(E ◦ G̃, H) ∼= Hom(E, H ◦ LF). (A.3)

Second, the universal mapping property of LF being an absolute left derived functor of

F gives

Hom(E, H ◦ LF) ∼= Hom(E ◦ γC , H ◦ γD ◦ F). (A.4)

Third, F being left adjoint to G implies that F∗ = ( – ) ◦ F is right adjoint to G∗ = ( – ) ◦ G;
hence,

Hom(E ◦ γC , H ◦ γD ◦ F) ∼= Hom(E ◦ γC ◦ G, H ◦ γD). (A.5)

Combining now (A.3)–(A.5) and comparing the result with (A.2), we see that G̃ satisfies

the same universal mapping property as RG. Whence, RG = G̃. �
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Remark. There is a dual version of Lemma A.1: if the absolute total right derived

functor RG for the right adjoint in the pair F : C � D : G exists and has a left adjoint

F̃ : Ho(C) → Ho(D), then this left adjoint F̃ is the absolute total left derived functor of F.

A.4 Model approximations

Next we recall the notion of a model approximation introduced in [17]. This notion plays

an important role in abstract homotopy theory allowing one to define homotopy colimits

of arbitrary diagrams in model categories. We will use it, however, for a different

purpose: to construct derived adjunctions between homotopical categories.

Definition A.1 ([17]). A left model approximation of a homotopical category C is a

model category M given together with a pair of adjoint functors l : M � C : r such that

(1) r is homotopical, that is, r(WC) ⊆WM;

(2) l is homotopical on cofibrant objects of M;

(3) (l, r) is an ‘almost Quillen equivalence’ in the sense: for any A ∈ Ob(C) and

any cofibrant X ∈ Ob(M) , if f : X → r(A) is a weak equivalence in M then the adjoint

map f # : l(X) → A is a weak equivalence in C.
The intuition behind this definition is that—from the homotopy-theoretical

point of view—being a model category or having a model approximation should not

make much difference. Our Theorem A.2 below illustrates this principle in the case of

derived adjunctions.

We will need one more definition (cf. [17, Def. 5.8]). If F : C → D is a functor

between homotopical categories, we say that a left model approximation l : M � C : r

is good for F if the restriction F ◦ l : M→ C → D is homotopical on cofibrant objects of

M. In this case, it follows from property (3) of Definition A.1 that QC := l◦Q◦ r : C → C
provides a left deformation for F, where Q is the cofibrant replacement functor on M.

Thus, if F admits a good left model approximation, then F is a left deformable functor

and hence, by Proposition A.1, has an absolute total left derived functor LF : Ho(C) →
Ho(D). This applies, in particular, to the functor l : M → C itself (since we can take

the identity adjunction on M as a good model approximation for l). Now, since l is left

deformable and r is homotopical, by Corollary A.1, the adjunction l : M � C : r induces

the adjunction of derived functors

L l : Ho(M) � Ho(C) : r̄. (A.6)

The next lemma clarifies the properties of the derived functors (A.6); it is

essentially a reformulation of [17, Proposition 5.5].
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Lemma A.2. Let l : M � C : r be a left model approximation of a homotopical category

C. The functor r̄ : Ho(C) → Ho(M) induced by r is fully faithful, and the counit morphism

L l ◦ r̄ ∼−→ IdHo(C) associated with (A.6) is an isomorphism.

Proof. To simplify the notation we write X̄ ∈ Ho(C) for the image of X ∈ Ob(C) under

the localization functor γ : C → Ho(C), and similarly for M. We need to prove that, for

any X,Y ∈ Ob(C), the map

r̄X,Y : HomHo(C)(X̄, Ȳ) → HomHo(M)(r(X), r(Y))

is bijective. For this, we will explicitly construct the inverse map.

Let Q,R : M→M denote the cofibrant and the fibrant replacement functors in

M, respectively. Since M is a model category, any morphism f̄ : r(X) → r(Y) in Ho(M)

can be represented by a morphism f : Qr(X) → RQr(Y) in M. Moreover, we have the

following natural diagram in C:

X
∼←− lQr(X)

l(f )−−→ lRQr(Y)
∼←− lQr(Y)

∼−→ Y. (A.7)

The 1st and the last maps in (A.7) are the adjoints of the cofibrant resolutions Qr(X)
∼
�

r(X) and Qr(Y)
∼
� r(Y) in M; hence, by property (3) of Definition A.1, they are weak

equivalences in C. The 3rd map is obtained by applying the functor l to the fibrant

resolution RQr(Y)
∼−→ Qr(Y) of the (cofibrant) object Qr(Y) in M; hence, it is also a

weak equivalence, by Definition A.1(2). Now, applying the localization functor γ : C →
Ho(C) transforms the weak equivalences in (A.7) into isomorphisms, and by inverting

these isomorphisms, we can define a (unique) morphism ψ̄X,Y(f̄ ) : X̄ → Ȳ in Ho(C),

which depends only on f̄ . It is straightforward to check that the map ψ̄X,Y given by this

construction is inverse to r̄X,Y . This proves the 1st claim of the lemma. The 2nd claim is

equivalent to the 1st by abstract properties of adjunctions (see, e.g., [31, Prop. I.1.3]). �

We are now in position to state the main result of this appendix.

Theorem A.2. Let F : C � D : G be a pair of adjoint functors between homotopical

categories. Assume that C admits a left model approximation l : M � C : r together

with adjoint functors F̂ : M � D : Ĝ, such that

(i) (F̂, Ĝ) is a deformable adjunction,

(ii) (F̂, r) is a left deformable pair, and there is a natural weak equivalence,

F̂ ◦ r ∼−→ F

(iii) Im(R Ĝ) ⊆ Im(r̄).
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Then F and G have total (left and right) derived functors given by

LF = L F̂ ◦ r̄, RG = L l ◦ RĜ. (A.8)

The derived functors LF and RG are both absolute and adjoint to each other:

LF : Ho(C) � Ho(D) : RG.

Proof. First, note that, by (i) and Proposition A.1, the derived functors LF̂ and RĜ

exist, and by Corollary A.1, the corresponding total derived functors L F̂ and R Ĝ are

adjoint to each other. By (ii), the functor LF := L(F̂ ◦ r) satisfies the universal property

of a left derived functor of F provided we define the comparison map ε : LF → γ ◦ F to

be the composition ε := γ (ϕ) ◦ ε̂, where ϕ : F̂ ◦ r → F is the natural weak equivalence of

(ii) and ε̂ is the comparison map for the derived functor L(F̂ ◦ r). By Proposition A.2, the

total left derived functor L(F̂ ◦r) is absolute and isomorphic to L F̂ ◦ r̄. Hence, LF = L F̂ ◦ r̄
is an absolute total left derived functor of F.

Now, by (iii), we can factor R Ĝ as a composition: Ho(D)
Ḡ0−→ C̄ ī

↪→ Ho(M) , where

C̄ := Im(r̄) denotes the essential image of r̄ in Ho(M) and ī is the inclusion functor. By

Lemma A.2, we can also factor r̄ = ī ◦ r̄0, where r̄0 : Ho(C)
∼→ C̄ is an equivalence, with

quasi-inverse l̄0 := L l ◦ ī : C̄ → Ho(C) . Combining these two factorizations, we can write

L l ◦ R Ĝ = L l ◦ ī ◦ Ḡ0 = l̄0 ◦ Ḡ0. Then, for any objects X ∈ Ho(C) and A ∈ Ho(D), we have

HomHo(C)(X, (L l ◦ R Ĝ)(A)) = HomHo(C)(X, l̄0(Ḡ0(A)))

∼= HomC̄(r̄0(X), Ḡ0(A))

∼= HomHo(M)(ī(r̄0(X)), ī(Ḡ0(A)))

∼= HomHo(M)(r̄(X), R Ĝ(A))

∼= HomHo(D)(L F̂(r̄(X)), A)

∼= HomHo(D)(LF(X), A).

This shows that L l ◦R Ĝ is right adjoint to LF, which is an absolute left derived functor.

Hence, by Lemma A.1, we conclude that RG exists and RG ∼= L l ◦ R Ĝ. �

Remark. 1. Under the assumptions of Theorem A.2, there is a natural isomorphism of

functors

L F̂ ∼= LF ◦ L l, (A.9)

which is a priori a stronger condition than LF ∼= L F̂ ◦ r̄. Indeed, by Theorem A.2, the

functor LF has a right adjoint RG that can be written, using the notation introduced in
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the proof, as RG = l̄0 ◦ Ḡ0. Since l̄0 is an equivalence with quasi-inverse r̄0, this implies

r̄ ◦ RG = r̄ ◦ l̄0 ◦ Ḡ0 = ī ◦ r̄0 ◦ l̄0 ◦ Ḡ0
∼= ī ◦ Ḡ0 = R Ĝ.

Thus, we have an isomorphism of functors R Ĝ ∼= r̄ ◦ RG, where each functor has a left

adjoint. By adjunction, this gives (A.9).

2. The main assumption of Theorem A.2—namely, the condition that the adjunc-

tion F̂ : M � D : Ĝ is defined on the whole model category M—can be weakened. The

proof shows that it suffices to assume that F̂ exists on a full subcategory M′ of M,

which is closed under the weak equivalences in M and whose image in Ho(M) contains

Im(r̄).

A.5 Homotopy colimits

Recall that any adjunction F : C � D : G extends formally to an adjunction FI : CI � DI :

GI of the diagram categories CI := Fun(I, C) and DI := Fun(I,D) for any small category

I. The corresponding functors FI and GI are given by compositions FI(X) = F ◦ X and

GI(Y) = G ◦ Y, where X ∈ Ob(CI) and Y ∈ Ob(DI). If C is a homotopical category, the

diagram category CI has a natural homotopical structure in which a morphism of I-

diagrams ϕ : X → X ′ is a weak equivalence if ϕi : X(i)
∼−→ X ′(i) is a weak equivalence

in C for every object i ∈ Ob(I). Moreover, as observed in [23], if the functor F : C → D
is left deformable, then so is FI : CI → DI : in fact, if Q : C → CQ is a left deformation

retract for F, then QI : CI → CIQ is a left deformation retract for FI . By Proposition A.1,

this implies that for any left deformable functor F : C → D, the functor FI : CI → DI has

an absolute total left derived functor LFI : Ho(CI) → Ho(DI) induced by LFI = γDI FI QI .

Informally speaking, the left derived functor of FI is just the left derived functor of F

applied objectwise.

Now, for a small category I, let diagCI : C → CI denote the diagonal functor that

assigns to an object A ∈ Ob(C) the constant diagram diagCI (A) : I → C, i �→ A . Recall

that the colimit colimC
I : CI → C is the left adjoint functor of diagCI . If C is a homotopical

category, we define the homotopy colimit LcolimC
I : CI → Ho(C) to be the left derived

functor of colimC
I , and following our convention, write LcolimC

I : Ho(CI) → Ho(C) for the

corresponding total left derived functor. By Proposition A.1, LcolimC
I exists if colimC

I

exists and is left deformable; in that case, since the diagonal functor is homotopical, we

have a deformable adjunction colimC
I : CI � C : diagCI , and hence, by Corollary A.1, the

derived adjunction

LcolimC
I : Ho(CI) � Ho(C) : diag

C
I .
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After these preliminary remarks, we can state our 2nd main theorem.

Theorem A.3. Let F : C � D : G be a pair of adjoint functors satisfying the conditions

of Theorem A.2. Assume, in addition, that for a small category I, the functors colimC
I and

colimD
I exist and are left deformable. Then there is a natural isomorphism of functors

LF ◦ LcolimC
I
∼= LcolimD

I ◦ L(FI). (A.10)

In other words, the functor LF preserves homotopy colimits.

Theorem A.3 follows readily from Theorem A.2 and the main results of [17]

concerning homotopy colimits. For reader’s convenience, we will summarize these

results below, before proving Theorem A.3. We start with a simple lemma, which is

probably well known to experts, but since we could not find a reference, we provide a

quick proof.

Lemma A.3. Let F̂ : M � D : Ĝ be a deformable adjunction between homotopical

categories. Assume that, for a small category I, the functors colimM
I and colimD

I exist

and are left deformable. Then there is a natural isomorphism

L F̂ ◦ LcolimM
I

∼= LcolimD
I ◦ L(F̂I). (A.11)

Proof. Since Ĝ is right deformable, so is ĜI , and there is a right deformation functor

on D, say R : D → D , such that RĜ = γM ◦ Ĝ ◦ R and R(ĜI) = γMI ◦ ĜI ◦ RI are the

right derived functors of Ĝ and ĜI , respectively. Now, since diagI is homotopical, we

have obvious isomorphisms:

diag
M
I ◦ RĜ = diag

M
I ◦ γM ◦ Ĝ ◦ R

∼= γMI ◦ diagMI ◦ Ĝ ◦ R
∼= γMI ◦ ĜI ◦ diagDI ◦ R
∼= γMI ◦ ĜI ◦ RI ◦ diagDI
∼= R(ĜI) ◦ diagDI ,

which induce an isomorphism of the total right derived functors

diag
M
I ◦ R Ĝ ∼= R(ĜI) ◦ diagDI . (A.12)

By lemma’s assumptions, each functor in (A.12) has a left adjoint; hence, (A.12) implies

(A.11). �
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Now, we briefly review the results of [17] needed for the proof of our

Theorem A.3. We warn the reader that our notation differs from that of [17] but this

should not cause confusion. For a small category I, we denote by �I the simplex category

of I, that is, the category of simplices � ↓ N(I) of the nerve of I, and write M�I
b for the

full subcategory (In [17], the categoryM�I
b is denoted Funb(N(I),M) .) ofM�I consisting

of bounded �I-diagrams in a category M. Recall that a functor X : �I →M is bounded

if it maps every degeneracy map si : siσ → σ in �I to an isomorphism in M; thus,

modulo isomorphisms, a bounded functor is determined by its values on nondegenerate

simplices in �I. The simplex category comes together with a forgetful functor τ : �I → I

that takes an n-simplex σ in �I, that is a chain σ = (i0 ← i1 ← . . . ← in) of n composable

maps in I, to its target τ(σ ) = i0. This forgetful functor yields the restriction functor

τ ∗ : MI →M�I whose image is inM�I
b (in fact, it is easy to check that Im(τ ∗) consists of

bounded functors X : �I → M which, in addition to inverting all the degeneracy maps

in �I, also invert all the boundary maps di : diσ → σ with i > 0). Now, if the categoryM
is closed under colimits, the functor τ ∗ : MI →M�I

b has a left adjoint τ∗ : M�I
b →MI ,

which is given by restricting to M�I
b the left Kan extension Lanτ : M�I → MI taken

along τ : �I → I . In this way, for any cocomplete category M, we get the adjunction

τ∗ : M�I
b � MI : τ ∗. (A.13)

InM is a model category, (A.13) is called the Bousfield-Kan approximation ofMI . More

generally, in l : M � C : r is a left model approximation of a homotopical category C,
the composition of adjunctions

lI ◦ τ∗ : M�I
b � MI � CI : τ ∗ ◦ rI (A.14)

is called the Bousfield–Kan approximation of CI . Now, the main results of [17] can be

encapsulated into the following theorem.

Theorem A.4 ([17, Theorem 11.2 and Theorem 11.3]). Let I be a small category.

(1) For any model category M, the category M�I
b has a model structure, where

the weak equivalences (resp., fibrations) are the objectwise weak equivalences (resp.,

fibrations) of bounded �I-diagrams in M.

(2) For any left model approximation l : M � C : r , the Bousfield–Kan

approximation (A.14) is a left model approximation of CI . In particular, (A.13) is a left

model approximation of MI .

(3) If C is closed under colimits and admits a left model approximation l : M �
C : r , the corresponding Bousfield–Kan approximation (A.14) is good for colimC

I : CI → C.
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In particular, the functor colimC
I is left deformable and its left derived functor (the

homotopy colimit) LcolimC
I exists.

We now explain how to construct homotopy colimits using the Bousfield–Kan

model structure on M�I
b . To this end, we need another important observation of [17]

that, for any model categoryM, the functor colimM
�I : M�I

b →M, obtained by restricting

the usual colimit to bounded diagrams, is homotopical on cofibrant objects inM�I
b , and

hence has a left derived functor (see [17, Cor. 13.4 and Prop. 14.2]). Following [17], we

denote this derived functor by

ocolimM
�I : M�I

b → Ho(M). (A.15)

(It is important to note that the functor ocolimM
�I is not equivalent, in general, to the

usual homotopy colimit LcolimM
�I restricted to M�I

b (see [17,Remark 14.3]).) In terms of

(A.15), the homotopy colimit functor on arbitrary I-diagrams LcolimM
I : MI → Ho(M)

is given by

LcolimM
I

∼= ocolimM
�I ◦ τ ∗, (A.16)

where τ ∗ : MI → M�I
b is the restriction functor in the Bousfield–Kan approximation

(A.13). More generally, for a left model approximation l : M � C : r , the homotopy

colimit LcolimC
I : CI → Ho(C) is given by the composition

CI rI−→MI τ∗−→M�I
b

ocolimM
�I−−−−−−→ Ho(M)

L l−→ Ho(C),

that is

LcolimC
I
∼= L l ◦ ocolimM

�I ◦ τ ∗ ◦ rI . (A.17)

Combining the isomorphisms (A.16) and (A.17) and passing to total derived functors, we

arrive at the following result that we will use in the proof of Theorem A.3.

Corollary A.2. Assume that a homotopical category C admits a left model approxima-

tion l : M � C : r and is closed under colimits. Then, for any small category I, LcolimC
I

exists and

LcolimC
I
∼= L l ◦ LcolimM

I ◦ r̄I . (A.18)

Finally, we turn to

Proof of Theorem A.3. By Lemma A.3, we have a natural isomorphism (A.11) that yields

by restriction:

L F̂ ◦ LcolimM
I ◦ r̄I ∼= LcolimD

I ◦ L(F̂I) ◦ r̄I . (A.19)
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Now, by Theorem A.2 (see (A.9)) and Corollary A.2, the composition of functors in the

left-hand side of (A.19) is isomorphic to

LF ◦ L l ◦ LcolimM
I ◦ r̄I ∼= LF ◦ LcolimC

I .

On the other hand, by condition (ii) of Theorem A.2, the pair of functors (F̂I , rI) is left

deformable, and there is a natural weak equivalence F̂I ◦ rI = (F̂ ◦ r)I ∼−→ FI , inducing an

isomorphism

L(F̂I) ◦ r̄I ∼= L(F̂I ◦ rI) ∼= L(FI).

Hence, the right-hand side of (A.19) is isomorphic to LcolimD
I ◦ L(FI). Combining (A.19)

with these two isomorphisms gives (A.10). �

Remark. The assumption of Theorem A.3 that colimC
I is a left deformable functor is

superfluous. Indeed, thanks to Theorem A.4(3), it suffices only to assume the existence

of colimC
I .
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