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Abstract

Simulated images of a black hole surrounded by optically thin emission typically display two main features: a
central brightness depression and a narrow “photon ring” consisting of strongly lensed images superimposed over
the direct emission. The photon ring closely tracks a theoretical curve on the image plane corresponding to light
rays that asymptote to bound photon orbits. The size and shape of this critical curve are purely governed by the
Kerr geometry; in contrast, the size, shape, and depth of the observed brightness depression depend on the details
of the emission region. For instance, images of spherical accretion models display a distinctive dark region—the
“black hole shadow”—that completely fills the photon ring. By contrast, in models of equatorial disks extending to
the event horizon, the darkest region in the image is restricted to a much smaller area—an inner shadow—whose
edge lies near the direct lensed image of the equatorial horizon. Using both general relativistic MHD simulations
and semi-analytic models, we demonstrate that the photon ring and inner shadow may be simultaneously visible in
submillimeter images of M87

*

, where magnetically arrested disk simulations predict that the emission arises in a
thin region near the equatorial plane. We show that the relative size, shape, and centroid of the photon ring and
inner shadow can be used to estimate the black hole mass and spin, breaking degeneracies in measurements of
these quantities from the photon ring alone. Both features may be accessible to direct observation via high-
dynamic-range images with a next-generation Event Horizon Telescope.

Unified Astronomy Thesaurus concepts: Black holes (162); Astrophysical black holes (98); Black hole physics
(159); Event horizons (479); Kerr black holes (886); General relativity (641); Accretion (14); Jets (870);
Gravitational lensing (670); Magnetohydrodynamical simulations (1966); Plasma astrophysics (1261); Radiative
transfer (1335)

1. Introduction

The Event Horizon Telescope (EHT) has recently produced
the first resolved images of a black hole (The Event Horizon
Telescope Collaboration et al. 2019a, 2019b, 2019c, 2019d,
2019e, 2019f, 2021a, 2021b). These 230 GHz images resolve
the emission surrounding the supermassive black hole M87

*

(M= 6.5± 0.7× 109M
e
; The Event Horizon Telescope

Collaboration et al. 2019f) at the center of the giant elliptical
galaxy M87. The EHT resolution of≈ 20 μas (≈5GM/Dc2 for
M87

*

at a distance D≈ 16.8 Mpc) only just reveals the horizon-
scale structure in M87

*

. The EHT images display a ring with a
diameter of≈40 μas with a north–south brightness asymmetry
and a relatively dim interior.

In models where the accretion flow onto a Kerr black hole is
spherically symmetric and the emission is optically thin, the
central brightness depression in the observed image coincides
precisely with those light rays that terminate on the event
horizon when traced backwards from the observer’s image plane
into the black hole spacetime (Falcke et al. 2000; Narayan et al.
2019). This dark region—the “black hole shadow”—is bounded
by a “critical curve” consisting of light rays that asymptote to
unstably bound photon orbits around the black hole (Bardeen
1973). Motivated by these models, the critical curve is
sometimes also called the “shadow edge.” Approaching the
shadow edge, the path length through the emission region
diverges logarithmically as null geodesics wrap around the black
hole multiple times (Luminet 1979; Ohanian 1987; Gralla et al.
2019; Gralla & Lupsasca 2020a; Johnson et al. 2020). Hence, in

models featuring a spherically symmetric and optically thin
emission region, the image brightness also diverges logarith-
mically at the critical curve, resulting in a bright “photon ring”
encircling the black hole shadow.
By contrast, in models where the emission region is confined

to an equatorial disk that extends down to the event horizon,
the edge of the observed central brightness depression does not
generically correspond to the critical curve (e.g., Beckwith &
Done 2005; Broderick & Loeb 2006; Gralla et al. 2019).
Nevertheless, as long as the emission is optically thin, these
models still feature a photon ring with logarithmically
divergent brightness at the critical curve. Contrary to the case
of spherical accretion, however, the brightness increase is not
continuous; rather, it is broken up into a sequence of strongly
lensed images of the disk stacked on top of each other. These
images arise from rays with deflection angles >180 deg that
execute an increasing number of half-orbits around the black
hole (Luminet 1979; Gralla et al. 2019; Johnson et al. 2020).
In reality, the hot (T> 1010 K), collisionless plasma that

produces the submillimeter emission in M87
*

is expected to be
turbulent, with a more complex structure than can be captured in
either of these simple geometric pictures (Figure 1). The primary
numerical tools for investigating the structure and dynamics of
hot accretion flows are general relativistic magnetohydro-
dynamic (GRMHD) simulations (e.g., Komissarov 1999;
Gammie et al. 2003). To constrain the properties of M87

*

,
analyses of EHT images in both total intensity (The Event
Horizon Telescope Collaboration et al. 2019e, 2019f) and in
polarization (The Event Horizon Telescope Collaboration et al.
2021b) made use of a library of these GRMHD simulations
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spanning a range of different parameters, including the black
hole spin, accumulated magnetic flux on the black hole, and ion-
to-electron temperature ratio. Significantly, The Event Horizon
Telescope Collaboration et al. (2021b) found that, among the
GRMHD simulation models in the EHT library, the currently
favored models for M87

*

all fall into the class of magnetically
arrested disks (MADs; Igumenshchev et al. 2003; Narayan et al.
2003). In addition to producing images that are consistent with
those observed by the EHT, MAD simulations naturally produce
powerful jets (e.g., Tchekhovskoy et al. 2011; Chael et al. 2019)
similar in both observed shape and total power to the prominent
jet in M87

*

(e.g., Junor et al. 1999; Stawarz et al. 2006;
Abramowski et al. 2012; Hada et al. 2016; Walker et al. 2018;
EHT MWL Science Working Group et al. 2021).

Analyses of GRMHD simulation images have generally
focused on the mathematical shadow edge, i.e., the critical curve
(e.g., Dexter et al. 2012; Psaltis et al. 2015; Mościbrodzka et al.
2016; Bronzwaer et al. 2021). Because this curve only depends
on the black hole mass and spin vector, inferring its size and
shape would provide information about the black hole’s intrinsic
parameters and enable tests of the validity of the Kerr metric
(e.g., Takahashi 2004; Johannsen & Psaltis 2010; The Event
Horizon Telescope Collaboration et al. 2019f). However, in
performing these tests with limited-resolution observations, it is
critical to account for the systematic uncertainty in relating
observed image features such as the emission ring and central
brightness depression to gravitational properties such as the size
and shape of the critical curve (e.g., The Event Horizon
Telescope Collaboration et al. 2019f; Bronzwaer et al. 2021).
These systematic uncertainties may be dramatically reduced via
future observations using an enhanced ground or space-based
array capable of distinguishing lensed subrings within the
photon ring (e.g., Doeleman et al. 2019; Johnson et al.
2019, 2020; Pesce et al. 2019; Gralla et al. 2020; Broderick
et al. 2021).

In this paper, we show that MAD models of M87
*

naturally
exhibit a deep flux depression whose edge is contained well
within the photon ring and critical curve. This darkest region in
an MAD simulation image corresponds to rays that terminate
on the event horizon before crossing the equatorial plane even
once (Figure 2). We refer to this feature as the “inner shadow”
of the black hole. This lensing feature was previously studied
by Dokuchaev & Nazarova (2019, 2020a, 2020b). As long as
the emission is equatorial and extends all the way to the
horizon, the darkest region in the observed image will
correspond to the inner shadow, with a boundary defined by
the direct, lensed image of the event horizon’s intersection with
the equatorial plane. The MAD GRMHD models that we
consider satisfy these criteria, with their submillimeter emission
originating in the equatorial plane close to the event horizon (as
seen in The Event Horizon Telescope Collaboration et al.
2019e). Due to the effects of increasing gravitational redshift,
the image brightness falls off rapidly near the edge of the inner
shadow. As a result, the correspondence between the lensed
image of the equatorial horizon and the edge of the central
brightness depression in an image is only apparent in faint
image features viewed at high dynamic range.
The inner shadow of a Kerr black hole has a significantly

different dependence on its parameters than the critical curve
(Takahashi 2004). For instance, the photon ring and critical
curve of a Schwarzschild black hole are circular and
independent of the viewing inclination, while the inner shadow
is only circular when viewed face-on and has a size, shape, and
centroid that are highly sensitive to the viewing inclination.
The photon ring and inner shadow provide complementary
information. When considered independently, each is subject to
degeneracies in its size and shape as a function of black hole
mass, spin, and viewing angle, yet these degeneracies can be
broken via simultaneous observations of both features.
In simple toy models, spherical accretion flows produce a

central brightness depression that completely fills the critical

Figure 1. (Left) Snapshot image from a magnetically arrested radiative GRMHD simulation of M87
*

(Model R17; Chael et al. 2019), convolved with a circular
Gaussian blurring kernel with an FWHM of 15 μas. The features of the simulated image at this resolution qualitatively match those seen in the first images of M87

*

from the EHT (The Event Horizon Telescope Collaboration et al. 2019d). (Middle) The simulation snapshot at native resolution. The simulation is viewed at an
inclination θo = 163 deg (Mertens et al. 2016; The Event Horizon Telescope Collaboration et al. 2019e); the black hole spin vector is oriented to the left and into the
page. The snapshot image shows filamentary, turbulent structures, a central brightness depression, and a narrow, bright photon ring that closely tracks the theoretical
critical curve (cyan curve). (Right) The same simulation snapshot in a gamma color scale that accentuates low-brightness features. In this scale, the central brightness
depression corresponds to the black hole’s inner shadow, or the direct lensed image of the equatorial event horizon (white curve). The EHT images released thus far do
not resolve the inner shadow of M87

*

, as they lack the requisite resolution and dynamic range. These requirements may be met with a next-generation EHT.

2
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curve, but they do not give rise to an inner shadow (e.g., Falcke
et al. 2000; Narayan et al. 2019). By contrast, thin-disk
accretion models with emission extending to the horizon and a
large optical depth present a precisely observable inner shadow,
but they do not display any visible feature near the critical
curve, since the lensed images that would produce a photon
ring are blocked by the optically thick disk (e.g., Beckwith &
Done 2005, Figure 5). As a result, past work has generally
analyzed these two features independently under the expecta-
tion that only one or the other will be relevant to the observed
image (see, e.g., Takahashi 2004; Dokuchaev & Nazarova
2020b). Remarkably, we find that in both GRMHD simulations
with strong magnetic fields and in semi-analytic, optically thin-
disk models with a radially dependent emissivity, the photon
ring and the inner shadow are both prominent as potentially
observable features (Figure 1). Thus, in the future, it may
become possible to simultaneously measure both features
in images of a black hole and thereby derive tighter, joint
constraints on its parameters.

In this paper, we explore how the inner shadow may appear
in images from realistic simulations and models of M87

*

, we
assess the information contained in the relative size and shape
of the inner shadow compared to the critical curve, and we
discuss the prospects for direct observation of this feature using
submillimeter very long baseline interferometry (VLBI). In
Section 2, we review the basic properties of null geodesics and
radiative transfer in the Kerr spacetime that give rise to the
photon ring and inner shadow. In Section 3, we discuss the
appearance of the inner shadow in images simulated from
GRMHD and semi-analytic models. In Section 4, we discuss
geometric properties of both the critical curve and inner

shadow, including their relative size, shape, and centroid
positions, and we provide convenient analytic approximations
for these quantities. Throughout the paper, we only consider
the inner shadow arising from equatorial emission near the
event horizon of a Kerr black hole; in Section 5 we discuss
some of the factors—including jet emission, disk thickness and
tilt, and alternative spacetime geometries—that could affect if
or how this feature appears in black hole images. We
summarize our conclusions in Section 6.

2. Black Hole Images

In this section, we review key features of the Kerr metric and
the multiple lensed images of emission surrounding a black
hole. We argue that the curve marking the direct image of the
equatorial event horizon should be visible as the edge of an
“inner shadow” if the emission region is sufficiently equatorial
and extends down to the event horizon. From here on, we work
in units normalized such that G= c= 1.

2.1. Kerr Metric

In Boyer–Lindquist coordinates (t, r, θ, f), the metric of a
Kerr black hole of mass M and angular momentum J= aM
(0� a�M) is

( )

[( ) ] ( )

q f

q
q

f

=-
D
S

- +
S
D

+ S +
S

+ -

ds dt a d dr

d r a d adt

sin

sin
, 1

2 2 2 2

2
2

2 2 2

Figure 2. (Left) Photon trajectories around the black hole that reach a distant observer located to the far right (see also Johannsen & Psaltis 2010; Gralla et al. 2019).
The black hole is nonrotating (a* = 0), with an event horizon at r+ = 2M (black disk) and a photon sphere at rc = 3M (dashed yellow circle). Photon trajectories are
colored according to the number of times they cross the equatorial plane (green line), which is inclined at θo = 17 deg from the observer. Most trajectories cross the
equatorial plane once (blue), but photons that appear close to the critical curve on the image plane wrap around the black hole and cross the plane twice (purple), three
times (red), or more, with photons appearing exactly on the critical curve describing trajectories that asymptote to unstably bound orbits ruling the photon sphere. The
inner shadow is defined by the trajectories that do not cross the equatorial plane ( =N 0max ) before intersecting the event horizon (black disk). (Right) The maximum
number of equatorial crossings Nmax for null geodesics as a function of the coordinates (α, β) in the image plane for a black hole of spin a* = 0 observed at an
inclination angle of θo = 17 deg. Rings with an increasing number of equatorial crossings Nmax become increasingly narrow and exponentially approach the critical
curve (dashed yellow circle). Inside the contour of the lensed equatorial horizon (solid white line), light rays do not cross the equatorial plane even once. In models of
equatorial emission extending to the horizon, these rays are therefore dark, resulting in an “inner shadow” feature. The “unlensed” outline of the event horizon
r+ = 2M is indicated with the dotted white line.
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where

( )qD º - + S º +r Mr a r a2 , cos . 22 2 2 2 2

We frequently use the dimensionless spin 0� a*≡ a/M� 1.
The (outer) event horizon is located at radius

( )= + -+r M M a . 32 2

Unstable bound null geodesics, which neither escape to infinity
nor intersect the event horizon, form a “photon shell”
(Bardeen 1973; Teo 2003; Johnson et al. 2020) outside of the
outer event horizon. Each bound orbit exists at a fixed Boyer–
Lindquist radius rc in the range rc,−� rc� rc,+, where

⎡
⎣

⎛⎝ ⎞⎠
⎤
⎦( ) ( )= + r M a2 1 cos

2

3
arccos . 4c, *

The bound orbits at r= rc,± are confined to the equatorial plane
(θ= π/2). At intermediate radii rc,−< rc< rc,+, the bound
orbits oscillate between two fixed polar angles θ± (see
Equation (A4)). In the case of a nonrotating Schwarzschild
black hole (a= 0), the photon shell reduces to a single “photon
sphere” at rc= 3M.

There exist time-like, equatorial geodesics forming stable
prograde circular orbits around the black hole for all radii
r� rISCO, where rISCO denotes the radius of the “Innermost
Stable Circular Orbit,”

[ ( )( ) ] ( )= + - - + +r M Z Z Z Z3 3 3 2 , 5ISCO 2 1 1 2

with

( ) [( ) ( ) ] ( )= + - + + -Z a a a1 1 1 1 , 6a1
2 1 3 1 3 1 3
* * *

( )= +Z a Z3 . 6b2
2

1
2

*

For Schwarzschild, rISCO= 6M.

2.2. Lensed Images and the Critical Curve

We consider a distant observer (ro→∞) viewing the black
hole at an inclination angle 0� θo< π with respect to its spin
axis. We parameterize the observer’s image plane using
“Bardeen coordinates” (α, β), given in units of M, defined
such that the β-axis corresponds to the black hole spin axis
projected onto the plane perpendicular to the “line of sight.”

Each point in the image plane is associated with a null
geodesic extending into the Kerr spacetime and labeled by two
conserved quantities: the energy-rescaled angular momentum λ
and Carter constant η. For a point (α, β) in the image plane,
these constants are

( )l a q= - sin , 7ao

( ) ( )h a q b= - +a cos . 7b2 2 2
o

2

The covariant four-momentum kμ of the null geodesic at any
point in the spacetime is given in terms of λ, η and the photon
energy-at-infinity E as

( )l= - =fk E k E, , 8at

( )=  Dk E , 8br

( )=  Qqk E , 8c

where ( ) r and Θ(θ) are the radial and angular potentials

( ) ( ) [ ( ) ] ( )l h l= + - - D + - r r a a a , 92 2 2 2

( ) ( )q h q l qQ = + -a cos cot . 102 2 2 2

By integrating the null geodesic Equation 8(a), we can solve for
the trajectory xμ(τ) through the Kerr spacetime of a photon shot
back from position (α, β) on the observer’s image plane.
Such trajectories can be divided into three classes: those that

eventually cross the event horizon (photon capture), those that
are deflected by the black hole but return to infinity (photon
escape), and those that asymptote to unstable bound orbits
around the black hole. The latter form a closed curve (αc, βc) in
the image plane—the critical curve—delineating the region of
photon capture (the curve’s interior) from that of photon escape
(its exterior). Critical photons have conserved quantities (λc,
ηc) equal to those of a photon on a bound orbit. For a given
photon orbit radius rc,−� rc� rc,+, these are

⎡
⎣⎢

⎤
⎦⎥

( )
( )l = + -

D
-

a
r

a
r

r

r M

2
, 11ac

c
c

c

c

⎡
⎣⎢

⎤
⎦⎥

( )

( )
( )h =

D
-

-
r

a

M r

r M
r

4
. 11bc

c
3

2

c

c
2 c

The critical curve in the image plane is obtained by inverting
Equation 7(a) to find (α, β) for all rc,−� rc� rc,+. Each bound
photon orbit at constant radius rc maps to two points in the
image plane corresponding to the two signs± β allowed for a
given pair (λ, η). As a result, the critical curve is symmetric
about the α-axis perpendicular to the projected spin.
The interior of the critical curve corresponds to geodesics

that connect the observer to the event horizon and is often
referred to as the “black hole shadow.” This name is motivated
by the observation that, for a black hole that is immersed within
an optically thin accretion flow with a spherically symmetric
emissivity, light rays inside the critical curve (which terminate
on the horizon) have a shorter path length along which to
accumulate brightness than those in the exterior (which extend
to infinity and can pick up more photons as they pass through
the emission region); as a result, in such configurations, the
critical curve’s interior displays a brightness depression (Falcke
et al. 2000; Narayan et al. 2019).
Tracing back from the image plane, light rays that originate

very near the critical curve approach the photon shell of bound
orbits and execute many oscillations in θ between the turning
points θ± (Equation (A4)) before either terminating on the
event horizon or escaping to infinity. The number of
oscillations (and the path length of the null geodesic) diverge
logarithmically as the image-plane coordinate approaches a
point on the critical curve. If the black hole is surrounded by a
uniform, optically thin emission region, this divergence in path
length manifests as a logarithmic increase in the image
brightness surrounding the critical curve: the “photon ring”
(Gralla & Lupsasca 2020a; Johnson et al. 2020).
If instead the black hole has an optically thin emission region

that does not fully surround it (e.g., one concentrated near the
equatorial plane, in a tilted plane, or in a “jet sheath” region),
then each oscillation in θ corresponds to an additional pass of
the null geodesic through the emission region. In this case, the
photon ring is still present but exhibits additional substructure:
its brightness profile increases in steps, forming exponentially
narrow subrings that converge to the critical curve, with each

4
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ring assigned a label n corresponding to the number n− 1 of
passes its light rays execute through the emission region
(Johnson et al. 2020).5

2.3. Equatorial Images and the Lensed Horizon

We now focus on emission that is concentrated in the black
hole’s equatorial plane (θ= π/2). A geodesic ending at
position (α, β) in the image plane crosses the equatorial plane
a maximum number of times ( )a bN ,max outside of the event
horizon (an analytic procedure from Gralla & Lupsasca 2020a
for calculating the equatorial crossings is reviewed in
Appendix A; in particular, see Equation (A14)). In most of
the image plane, =N 1;max that is, geodesics cross the equator
only once and project a direct (but still lensed) image of the
equatorial emission on the observer sky. In parts of the image
plane that form increasingly narrow rings around the black
hole, we instead have = ¼N 2, 3,max These concentric regions
are the “lensed subrings” carrying contributions from geodesics
that wrap around the black hole and cross its equatorial plane
multiple times. Figure 2 shows how Nmax varies across the
image plane for the case of a Schwarzschild black hole viewed
at θo= 17 deg.

For each ( )a b< n N0 ,max , one can calculate the radius
req(α, β; n) where the geodesic impinging on the observer’s
image plane at position (α, β) crosses the equatorial plane for the
(n+ 1)th time. This computation can be done either analytically
(e.g., using the analytic method described in Gralla &
Lupsasca 2020a and reviewed in Appendix A) or numerically
(e.g., using a GR ray tracing code like grtrans; Dexter 2016;
or ipole; Mościbrodzka & Gammie 2018).

One can also invert req(α, β; n) to determine the successive
lensed images of equatorial circles of constant source radius
rs= req. These contours are convex curves in the image plane
and can be described in image-plane polar coordinates (ρ, j) as
curves ρ(j; rs, n) with− π� j< π defined by6

( ) ( )a r j b r j= = = =r n rcos , sin ; 0 . 12eq s

For any fixed radius rs� r+, the curves ρ(j; rs, n) approach the
critical curve exponentially fast with increasing n. For small
observing angles θo≈ 0, the n= 0 image of an equatorial ring of
constant radius rs is lensed by approximately one gravitational
radius; that is, ρ≈ rs+M (Gralla & Lupsasca 2020a; Gates et al.
2020).

While most of the image plane has N 1max , it also has a
small region with =N 0max wherein geodesics do not cross the
equatorial plane even once, but instead pierce the event horizon
before ever reaching θ= π/2 (right panel of Figure 2). This

=N 0max region corresponds exactly to the interior of the
direct (n= 0) lensed image of the equatorial event horizon, and
is therefore bounded by the curve

( ) ( ) ( )r j r j= +r; , 0 , 13h

defined by Equation (12) with rs= r+. Like the critical curve,
this curve divides the image plane into two qualitatively distinct

regions. Inside the critical curve, all geodesics terminate on the
event horizon, while inside ρh(j), all geodesics terminate on the
horizon without crossing the equator (left panel of Figure 2).
Thus, if the black hole is surrounded by an emission region that
is predominantly equatorial and extends all the way down to the
horizon, we should expect the interior of ρh(j) to show up as a
dark region in the image, thereby forming an “inner shadow” of
low brightness.
In Figure 3, we plot the critical curve ρc(j) and the direct,

lensed equatorial horizon image ρh(j) for a range of black hole
spins and observer inclinations, on top of an image generated
from the analytic model described in Section 3.2 below. In this
model, the emission is purely equatorial and extends to the
horizon; thus, the interior of ρh(j)—the black hole’s “inner
shadow”—is visible in each image as a deep brightness
depression contained within the critical curve.

3. Models for M87*

In this section, we investigate the appearance of the lensed
equatorial horizon in images of synchrotron emission from a
radiative GRMHD simulation of M87

*

. We find that the lensed
horizon image is visible in GRMHD simulation images of this
magnetically arrested disk model for M87

*

because its emission
region is primarily equatorial. We compare images from the
simulation with images from an analytic model that assumes all
emission originates in the equatorial plane.
We scale all images of M87

*

throughout this paper so that
the angular gravitational size is (The Event Horizon Telescope
Collaboration et al. 2019f)

( )m=
M

D
3.78 as. 14

We also scale the total flux density at 230 GHz to 0.6 Jy (The
Event Horizon Telescope Collaboration et al. 2019c).7

3.1. Radiative GRMHD Simulation

In this paper, we consider images of a radiative GRMHD
simulation of M87

*

; specifically, we use simulation R17 from
Chael et al. (2019). This simulation was performed using the
radiative GRMHD code KORAL (Sądowski et al. 2013, 2014,
2017). Unlike most GRMHD codes, which evolve a single
combined electron-ion fluid and must apply a model for the
electron-to-ion temperature ratio in post-processing, the KORAL
code directly evolves the temperature of the emitting electrons
under radiative cooling and dissipative heating. The primary
cooling mechanism in the simulation is from synchrotron
radiation at submillimeter wavelengths. The electron heating
fraction in the simulation is provided by the Rowan et al. (2017)
subgrid prescription fit to simulations of collisionless, transre-
lativistic magnetic reconnection.
The simulation used a black hole mass of M= 6.2× 109M

e

and spin a*= 0.9375. The initial magnetic field was set up so
that the magnetic flux saturates on the black hole, putting the
system in the MAD accretion state (Igumenshchev et al. 2003;
Narayan et al. 2003; Tchekhovskoy et al. 2011). Polarimetric
EHT observations of M87

*

favor this accretion state over one

5 Following Johnson et al. (2020), we assign a number n to each subring such
that light rays appearing on that ring describe at least n librations in θ, or at
least n + 1 passes through the emission region. Thus, n = 0 refers to the “direct
image” formed by rays passing through the emission region once.
6 We take the polar angle j = 0 in the image plane to lie along the + α-axis:
a r j= cos , b r j= sin . Because the lensed images of equatorial rings are
convex curves containing the origin, there is a unique ρ satisfying this equation
for each j ä [ − π, π), so the curves ρ(j; rs, n) are well defined.

7 Note that the simulation images used here originally had an average flux
density of ≈1 Jy based on observations of M87

*

prior to 2017 (Akiyama et al.
2015). Here, we have scaled down the simulation’s total flux density to match
the updated value that better fits the 2017 EHT images.

5
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with weaker, turbulent magnetic fields (The Event Horizon
Telescope Collaboration et al. 2021b). The simulation produces
a relativistic jet of power≈1043 erg s−1, satisfying measure-
ments of the jet power from M87 (e.g., Stawarz et al. 2006).
Furthermore, the jet opening angle in 43 GHz images from this
simulation is large. When observed at an inclination angle
θo= 163 deg (Mertens et al. 2016), the apparent opening angle
is≈50 deg, similar to that observed in VLBI images of M87
(Walker et al. 2018). The extended jet in the simulation is in
steady state out to≈2500M≈ 1 pc, while the disk in the
midplane is in steady state out to≈40M.

The GRMHD simulation is turbulent and time variable. To
investigate the persistent features of the GRMHD fluid data, we
computed profiles of the key plasma quantities (e.g., the density
ρ, electron temperature Te, magnetic field B i, and velocity uμ

) in
the poloidal (r, θ) plane after averaging in time and azimuth. We

also generated images of the 230 GHz and 86 GHz synchrotron
emission from this simulation using the GR ray tracing and
radiative transfer code grtrans (Dexter 2016). The images
were generated at an observer inclination angle of θo= 163 deg
and rotated so that the black hole spin points to the east, opposite
to the direction of the approaching jet (The Event Horizon
Telescope Collaboration et al. 2019e). The snapshot images
from this simulation exhibit small-scale structure from plasma
turbulence and magnetic filaments (Figure 1). In this paper, we
focus on time-averaged images generated from the collection of
snapshot images of the simulation; both the time-averaged
images and the time-averaged simulation data were produced
from simulation snapshots spanning 5000M in time at a cadence
of 10M.
Radiatively inefficient simulations with weak magnetic flux

form geometrically thick disks supported by the gas pressure.

Figure 3. Analytic models of emission from a Kerr black hole’s equatorial plane covering a range of black hole spins and observer inclinations. Columns from left to
right display models with dimensionless spins a* = (0, 0.5, 0.75, 0.99) and rows from top to bottom display inclinations θo = (0, 30, 60, 89) deg. The intensity in each
panel is normalized independently: all images are plotted in a gamma color scale with index γ = 1/4. For each model, we show the critical curve (cyan), the direct
(primary, n = 0) lensed image of the equatorial horizon (solid white), and the backside (secondary, n = 1) lensed image of the equatorial horizon (dashed white).
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By contrast, in the high-magnetic-flux MAD state, the magnetic
pressure exceeds the gas pressure in the “disk” near the black
hole. In the time-averaged simulation data, the near-horizon
material forms a thin, highly magnetized structure in the
equatorial plane; this thin structure is the source of the observed
230 GHz emission. Note that the thickness of the equatorial
“disk” in these simulations is limited by the resolution; in very-
high-resolution simulations, the emission region is even
thinner, and it occasionally collapses to a current sheet that
may source very high-energy emission (e.g., Ripperda et al.
2020).

In Figure 4, we investigate the 230 GHz emissivity from the
time- and azimuth-averaged R17 simulation data. The true rest-
frame emissivity used in the radiative transfer (e.g., that given
in Appendix A1 of Dexter 2016) depends on the combined
special-relativistic and gravitational redshift of the geodesic at
the source, as well as the orientation of the magnetic field with
respect to the wavevector in the fluid rest frame. As a result, it
is nontrivial to directly extract an emissivity profile from the
time-averaged simulation data that would correspond mean-
ingfully to the time-averaged images generated by grtrans.
Here, we use the proxy for the 230 GHz emissivity defined in
the EHT GRMHD code comparison project (Porth et al. 2019).
This function follows the characteristic behavior of the true
synchrotron emissivity (e.g., Leung et al. 2011) with the
density ρ, electron pressure pe, and magnetic field strength |B|.
The emissivity proxy is
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We follow Porth et al. (2019) in setting the free constant
C= 0.2 so that the 230 GHz emission is contained within a
characteristic radius rem� 5M.

From the left panel of Figure 4, it is apparent that near the
black hole, the emissivity proxy predicts that emission from the
Chael et al. (2019) simulation is predominately located in the
equatorial plane. In the right panel, we extract the simulation
emissivity in the equatorial plane (θ= π/2) and compare with
the emissivity function we use in the analytic model described
in the next section, Equation (17). The simulation emissivity
satisfies two criteria necessary for the lensed equatorial event
horizon, or black hole inner shadow, to be visible as an image
feature at 230 GHz:

1. The simulation emissivity is predominately concentrated
in the equatorial plane (Figure 4, left panel).

2. The simulation emissivity extends to the event horizon,
and is not truncated at any earlier radius such as the
innermost stable circular orbit (Figure 4, right panel).

We also investigate the time-averaged simulation velocity
profile in the equatorial plane. Figure 5 shows profiles of the
specific angular momentum ℓ≡ uf/ut and covariant infall
velocity vr= ur/ut computed from the average simulation data.
Notably, the average angular momentum in the equatorial plane
is significantly below the Keplerian value at all radii (as also
seen in, e.g., Narayan et al. 2003). These sub-Keplerian
velocities significantly reduce the total Doppler+gravitational
redshift factor for emission close to the event horizon. As a
result of this reduced redshift factor, the brightness of the
emission falls off less severely near the lensed horizon curve
than it would in a Keplerian model with infall inside the ISCO
(e.g, Cunningham 1975).

3.2. Equatorial Emission Model

Because the time-averaged emissivity of the GRMHD
simulation is predominantly equatorial (Figure 4), it is reason-
able to compare time-averaged images from this simulation with
those from a simple model with the emission confined to the

Figure 4. (Left) Map of 230 GHz synchrotron emissivity proxy (Equation (15)) in the poloidal plane for time- and azimuth-averaged data from an MAD radiative
GRMHD simulation of M87

*

. (Right) Equatorial slice of the simulation emissivity proxy (solid), compared with the emissivity profile used in the analytic model
(dashed), both normalized to unity at the horizon. The simulation emissivity proxy is concentrated in the equatorial plane and does not truncate at the Innermost Stable
Circular Orbit (ISCO), but rather continues increasing with decreasing radius all the way to the event horizon.

7

The Astrophysical Journal, 918:6 (21pp), 2021 September 1 Chael, Johnson, & Lupsasca



equatorial plane. Gralla et al. (2020) introduced a convenient,
analytic model for computing images of equatorial emission
around a black hole. These images are specified by the black
hole spin a* and observer inclination θo (which determine the
lensed subring structure), the four-velocity of the emitting
material in the equatorial plane uμ

(r) (which determines the
redshift of the emission), and the rest-frame emissivity in the
equatorial plane jmodel(r). The emissivity and velocity are
assumed to be constant in azimuth.

In this model, the observed intensity at a point (α, β) on the
image plane is

( ) ( ) ( ) ( )åa b a b=
=

-

I f j r g r, , , , 16
n

N

n n n

0

1

model
3

maxn

where rn= req(α, β; n) is the radius at which the geodesic
crosses the equatorial plane for the (n+ 1)th time (see
Section 2.3), ( )a b=N N ,max max is the maximum number of
equatorial crossings, jmodel(rn) is the equatorial emissivity at rn,
and g is the redshift factor computed from the emitted photon
wavevector kμ and the four-velocity uμ of the emitting material
at radius rn. The factor fn is a “fudge” that can enhance or
diminish the brightness of higher-order rings: we set f0= 1 and
fn= 2/3 for n> 0 to best match the time-averaged images from
the radiative GRMHD simulation.

Note that while Equation (16) is of the same general form
introduced in Gralla et al. (2020), we use a factor of g3 to
represent the redshift of the specific 230 GHz intensity
(assuming a flat emission spectrum in Equation (17)) rather
than the g4 redshift factor they use for bolometric intensity. We
also use a “fudge” factor fn< 1 for n> 0, while Gralla et al.
(2020) uses fn= 1.5, as we find it necessary to slightly suppress
the contributions from higher-order subrings to match our model
images to the time-averaged simulation images used here.

For the emissivity jmodel(r), we use a second-order
polynomial in log-space; that is,

[ ( )] [ ] ( [ ]) ( )= ++ +j r p r r p r rlog log log . 17model 1 2
2

For the 230 GHz images shown throughout this paper, we set
p1=−2, and p2=−1/2.8 The overall scale of the emissivity in
Equation (17) is arbitrary; in computing images of M87

*

, we
normalize the emission so that the 230 GHz flux density is
0.6 Jy (The Event Horizon Telescope Collaboration et al.
2019c). The right panel of Figure 4 compares the parameter-
ization from Equation (17) to the equatorial emissivity profile
from the time-averaged GRMHD simulation (Equation (15)).
The redshift factor is given by
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where we assume u
θ
= 0. The sign of the   term is equal

to the sign of the radial component of the null wavevector, k r.
The factor of g3 in Equation (16) suppresses the n= 0 emission
rapidly with decreasing radius toward the lensed horizon
image. Different models for the velocity uμ will feature
different rates of suppression, with different implications for
how close the observable brightness depression on the sky is to
the analytic solution for the inner shadow edge ρh(j).
While Gralla et al. (2020) follow Cunningham (1975) and

define the velocity uμ to be on Keplerian circular orbits for
r> rISCO and infalling for r< rISCO, we instead model uμ

with sub-Keplerian angular velocities so as to mimic the

Figure 5. (Left) Equatorial value of the specific angular momentum ℓ ≡ uf/ut taken from the time- and azimuth-averaged simulation data (black curve). At all radii,
the averaged simulation angular momentum is well below the Keplerian value (red dashed curve). We use a simple power-law fit to the GRMHD data in our analytic
equatorial model (dotted green curve, Equation (19)). (Right) Equatorial value of the covariant infall velocity vr = ur/ut taken from the averaged simulation data
(black curve). We fit the average simulation data with a broken power law (dotted green curve, Equation (20)). This broken power-law fit is safely below the maximum
infall velocity permitted for time-like geodesics by our power-law fit for ℓ (dashed green line).

8 Note that for the analytic model to match the change in the image structure
with frequency observed in the GRMHD simulation, the emissivity profile
parameters must change with the observation frequency; in the 86 GHz images
in Figure 6, we set p1 = 0, p2 = −3/4.
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characteristic behavior of magnetically arrested disks in
GRMHD simulations. In particular, we use a simple power-
law fitting function to the covariant angular momentum
ℓ≡ uf/ut, and a broken power-law fitting function to the infall
velocity vr≡ ur/ut derived from the GRMHD simulation:
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We set ℓISCO= 1, VISCO= 2, q1=−6, q2=−2, and δ= 1/5.
Figure 5 compares these fitting functions to the values obtained
from the time-averaged GRMHD data.

3.3. 230 GHz and 86 GHz Images

Figure 6 compares time-averaged images from the M87
*

simulation at 230 and 86 GHz with images generated using the
modified analytic model described in Section 3.2. We see that
the direct lensed image of the equatorial event horizon is
apparent as a deep central brightness depression—the inner
shadow—in both the time-averaged images from the simulation
and the equatorial model. The brightness of the emission
surrounding the horizon image is suppressed by the gravita-
tional redshift; nonetheless, when looking at the image in a
gamma color scale9 (bottom row of Figure 6), the apparent
edge of the central brightness depression in the simulation and

model image approaches the exact location of the lensed
equatorial horizon contour within a microarcsecond.
At 86 GHz, the increasing optical depth of the accretion flow

washes out the images of the higher-order (n= 1, 2, K)

subrings in the simulation image, except for part of the n= 1
ring on the northern half of the image. We mimic this effect in
the image from the analytic equatorial model by suppressing
the higher-order rings and only showing the direct, n= 0
emission. Despite the optical depth suppressing the appearance
of the lensed subrings, the central “inner shadow” depression is
still visible at 86 GHz. This is because in the simulation, the
emitting material contributing to the increased total optical
depth is still contained within the equatorial plane; the optical
depth through the jet material in front of the event horizon
remains low. As a result, the direct geometrical effect of the
equatorial emission being truncated at the event horizon is still
visible at this frequency. At lower frequencies (<40 GHz in
this simulation), the jet material becomes optically thick and
obscures both the equatorial emission and the inner shadow.
The transition between the optically thick opaque jet and
optically thin transparent jet regimes occurs at the frequency
above which the image “core” no longer moves along the jet,
but rather stabilizes at the location of the black hole (Hada et al.
2016; Chael et al. 2019, Figure 11 therein).

3.4. Observability with the EHT

In Figure 7, we show profiles from the simulation and
analytic model 230 GHz images in Figure 6 extracted along the
β= 0 (red; north–south) and α= 0 (blue; east–west) axes. The
time-averaged simulation image and the equatorial model
image show the same characteristic features: a ring of direct

Figure 6. Top: (Left) 230 GHz image from an analytic, equatorial model for emission from M87
*

. (Middle left) Time-averaged 230 GHz GRMHD image. (Middle
right) Equatorial model tuned to match the 86 GHz simulation image, with higher-order image subrings suppressed to mimic optical depth. (Right) Time-averaged
86 GHz GRMHD image. Bottom: The same images in a gamma color scale with index γ = 0.25. All images were generated with dimensionless black hole spin
a* = 0.9375 and observer inclination θo = 163 deg. Both the 230 GHz and 86 GHz analytic model images had the parameters in their emissivity profile
(Equation (17)) separately fixed to best match the corresponding simulation images. The black hole spin (positive β-axis) points to the left, as indicated by the arrow in
the left column images. Each panel displays the critical curve (cyan) and the direct image of the equatorial horizon (white line). In the left column, we also indicate the
centroid of the critical curve (cyan square marker), the centroid of the direct equatorial horizon image (white circular marker), and the origin (α = 0, β = 0) of the
Bardeen coordinate system (white cross).

9 In the gamma scale, I γ is plotted in the linear color scale instead of I, where
I is the image brightness, and we set γ = 1/4.
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n= 0 emission that peaks at a radius of≈15–20 μas from the
origin, n= 1 and n= 2 subring images that approach the
critical curve at a radius of≈20 μas, and a central brightness
depression corresponding to the lensed image of the equatorial
horizon, i.e., an inner shadow. The exact position of the
horizon image on these slices is indicated by the vertical lines.
The equatorial analytic model has no emission outside the
equatorial plane; its brightness plunges toward zero with
increasing redshift as the projected radius approaches the direct
lensed image ρh(j) of the equatorial horizon on the sky. The
simulation image features faint foreground emission from the
approaching relativistic jet, which lies in front of the bulk of
the emission in the equatorial plane. The approaching jet
provides a finite brightness “floor” inside the main n= 0
emission ring. In this simulation, the edges of the floor
correspond to the analytic location of the horizon image to
within about a microarcsecond. In other simulations, the exact
location of the emission floor will depend on the equatorial
emissivity profile, the velocity/redshift of the equatorial fluid,
and the intensity of the foreground emission.

The cyan line on Figure 7 indicates the dynamic range of the
EHT in 2017; the limited interferometric (u,v) coverage of the
array in this first observation of M87

*

makes it impossible to
extract dim features below≈10% of the peak brightness (The
Event Horizon Telescope Collaboration et al. 2019d). The
magenta line is an approximate forecast for the dynamic range
of the next-generation EHT (ngEHT) array (Doeleman et al. 2019;
Raymond et al. 2021). With the addition of new sites and short
interferometric baselines, the dynamic range of the ngEHT array
should improve to be sensitive to emission that is a factor 10−3

dimmer than the beam emission. In this simulation, the emission
“floor” that fills the lensed horizon image is a factor of 10−2

dimmer than the peak of the emission. As a result, in this scenario,
we would expect an ngEHT array with improved coverage to be

able to directly image the inner shadow feature down to the floor
set by the foreground emission.
In Figure 8, we investigate the ability of the EHT and

ngEHT arrays to recover the inner shadow feature with
simulated image reconstructions. We generate synthetic VLBI
data from the time-averaged 230 GHz simulation image using
the (u,v) coverage on 2017 April 11 (The Event Horizon
Telescope Collaboration et al. 2019d). We also generate a
synthetic ngEHT observation using an example array explored
in Raymond et al. (2021). This ngEHT concept array adds 12
telescopes to the current EHT, dramatically filling in the EHT’s
(u,v) coverage and increasing its imaging dynamic range. In
both cases, we generated synthetic data including thermal noise
and completely randomized station phases from atmospheric
turbulence. We did not include the time-variable amplitude
gain errors that complicate real EHT imaging (The Event
Horizon Telescope Collaboration et al. 2019b, 2019c).
The left column of Figure 8 shows the simulation image blurred

to half of the nominal ngEHT resolution at 230GHz (using a
circular Gaussian blurring kernel of 10 μas FWHM). The middle
column shows the reconstruction from EHT2017 synthetic data,
and the right column shows the ngEHT reconstruction. Both
reconstructions were performed using the eht-imaging library
(Chael et al. 2018); in particular, the settings used in imaging the
2017 data were the same as those used in eht-imaging in the
first publication of the M87 results in The Event Horizon
Telescope Collaboration et al. (2019d). While the EHT2017
reconstruction shows a central brightness depression, its size and
brightness contrast cannot be constrained or associated with the
inner shadow. However, the increased (u, v) coverage of the
ngEHT array dramatically increases the dynamic range, and
the image reconstruction recovers the position and size of the
high-dynamic-range “inner shadow” depression that is visible in
the simulation image blurred to the equivalent resolution.

Figure 7. Slices along the β = 0 (red) and α = 0 axes (blue) of the time-averaged 230 GHz images from the M87
*

GRMHD simulation (solid curves) and the
corresponding analytic equatorial disk model (dashed curves). Solid vertical lines indicate the exact location of the direct image of the equatorial horizon on these
slices. An approximate dynamic range for the EHT2017 array is indicated by the cyan horizontal line, while the width of the cyan rectangle shows one-half of the
nominal resolution of the 2017 array. Likewise, the dynamic range for a next-generation EHT (ngEHT) concept array is indicated by the magenta line, and the
magenta rectangle indicates one-half of the ngEHT concept’s nominal resolution. In the time-averaged simulation image, the brightness inside the lensed horizon
contour levels off at a finite floor value produced by foreground jet emission. In this simulation, the position of this dark depression inside the main emission ring—the
“inner shadow”—coincides with the image of the lensed equatorial horizon to within a microarcsecond. In this model, the photon ring contains ≈10% of the total flux
in the image.
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This imaging test is idealized. First, neither the ngEHT nor
EHT2017 directly image the time-averaged structure in M87

*

,
so an imaging test using a GRMHD snapshot would be more
realistic. However, the inner shadow is prominent in simulation
snapshots as well as in the time-averaged image (Figure 1).
Furthermore, we neglect realistic station amplitude gains and
polarimetric leakage factors that complicate image inversion
from EHT data. However, M87

*

is weakly polarized, making
accurate recovery of the total intensity image possible with no
leakage correction (The Event Horizon Telescope Collabora-
tion et al. 2019d, 2021a), and image reconstruction of EHT
data with even very large amplitude gain factors is possible
with a relatively small degradation of the reconstruction quality
using eht-imaging (Chael et al. 2018).

This example demonstrates that the candidate ngEHT array
from Raymond et al. (2021) could constrain the presence of an
inner shadow in M87

*

if it is indeed present in the image. In
particular, detecting this feature does not require dramatic
increases in imaging resolution (which, in the absence of a
230 GHz VLBI satellite, is limited by the size of the Earth), but
is instead limited by the imaging dynamic range, which is
limited by the sparse number of baselines in the EHT array.
Once its presence is established via imaging, parametric
visibility domain modeling could recover the size and shape
of the inner shadow to higher accuracy than is possible from
imaging alone (e.g., The Event Horizon Telescope Collabora-
tion et al. 2019f).

4. Geometric Description of the Lensed Horizon Image

In this section, we describe the behavior of the lensed
equatorial horizon contour as a function of black hole spin and
observer inclination using image moments. While not a
complete description of the horizon image shape (particularly
at high inclination), the moment description captures important
properties of the horizon image that may be observable by the
EHT or future VLBI experiments.
In the procedure outlined in Section 2.3, we compute the

n= 0 lensed horizon image as a closed curve ρh(j) in the (α, β)
image plane. Given ρh, we can compute image moments in a
standard way (explicitly described in Appendix B). The zeroth
moment is the area Ah of the inner shadow. The first moment is
the centroid vector μh defined with respect to the (α, β) axes.
The second central moment is the covariance matrix Σh. By
diagonalizing Σh, we can compute the lengths ah and bh of the
principal axes (where ah� bh), as well as the orientation angle
χh between the first principal axis and the positive α-axis. We
can then define the mean radius r̄h and the eccentricity eh of the
lensed horizon as
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In addition to computing these image moments for the lensed
horizon, we also compute the area, centroid, average radius,
eccentricity, and orientation angle of the critical curve
( ¯m cA r e, , , ,c c c c c). Note that our definition of the average

Figure 8. (Left) Time-averaged GRMHD images blurred to an approximate ngEHT imaging resolution of 10 μas. (Middle) Reconstruction of the simulation model
from synthetic data generated on EHT2017 baselines. (Right) Reconstruction of the simulation model from synthetic data generated from an example ngEHT array.
The top row shows images in a linear color scale, and the bottom row shows the same images in gamma scale. In all images, the white curve corresponds to the lensed
equatorial horizon, while the cyan contour is the critical curve.
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critical curve radius r̄c differs from that introduced in Johannsen
& Psaltis (2010). In Appendix B, we compare results for the
average critical curve radius from these two methods and find
that they agree within 1% for all values of black hole spin and
observer inclination.

4.1. Centroid

In Figure 9, we plot the relative centroid displacement between
the lensed horizon and the critical curve Δμ=μh−μc.
Measuring the absolute centroid displacement of either the lensed
horizon or the critical curve would require precise prior knowl-
edge of the location of the black hole on the sky; by contrast, the
relative centroid displacement Δμ could in principle be observed
by simply measuring the two curves and determining the direction
of the black hole spin to set the orientation of the+ β-axis (in
M87, for instance, these axes can be inferred from the direction of
the large-scale jet).

The critical curve is symmetric about the β= 0 axis for all
values of spin and inclination, so the vertical displacementΔμβ is
purely due to the offset of the inner shadow’s centroid. The
direction of the vertical offset is set by the hemisphere that the
observer lies in: ( ) ( )m qD =bsign sign cos o . Both the critical
curve and the lensed horizon image have a horizontal displace-
ment Δμα that is approximately linear with spin. The sign of this
displacement follows that of the spin: sign(Δμα)= sign(a*).10 In
general, the mapping (a*, θo)→ (Δμα, Δμβ) is one-to-one and
fairly linear up to high spin and nearly edge-on inclination.
There is an abrupt transition in Δμ at θo= 90 deg, where the
n= 0 and n= 1 images are degenerate.

The geometric centroids of the inner shadow and the critical
curve are well approximated by
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where ( ) ( )m q=bsign sign cos o . For q <sin 1 2o and ∣ ∣<a*

1 2, these centroid approximations have a maximum absolute
error less than 0.03M.
If the inclination and mass are known a priori, then it is

possible to estimate the spin by
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the jet inclination, we expect that ∣ ∣mD <a M0.53 and
∣ ∣m< D <bM M0.31 0.44 for M87
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. The narrow range in
allowedΔμβ is useful to assess whether features detected in the
image can be associated with the equatorial horizon image or
critical curve.
Likewise, if the inclination is unknown but there is an

a priori spin estimate, then it is possible to estimate the
inclination using
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Hence, a measured centroid offset along the spin direction
Δμβ determines a narrow range of possible inclinations:
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9
. For instance, measuring an offset

Δμβ= 1.5 μas in M87
*

would give a constraint 15 deg<
θo< 21 deg.

4.2. Radius, Orientation, Eccentricity

Figure 10 shows the variation of the quantities that define the
second moment of the lensed horizon image—the mean radius
r̄h, the orientation angle χh, and the eccentricity eh—with the
inclination θo (in the range 0� θo� π/2) for several values of
the black hole spin a*. At low inclinations (θo 30 deg), the
mean radius rh and image orientation angle χh are approxi-
mately independent of the inclination and hence directly probe
the spin. By contrast, the eccentricity eh is almost entirely
independent of spin over the whole range and thus provides a
direct probe of the inclination. Measuring eh or χh at
inclinations θo 30 deg would require extremely high-preci-
sion measurements of the lensed horizon shape; since the
eccentricity eh< 0.4 for these inclinations, the relative sizes of
the major and minor image axes differ by8%.
At these low inclinations, the mean image radius varies

by≈20% from zero to maximal spin. Figure 11 shows, for
several fixed values of the black hole spin, the dependence on
inclination of the ratio ¯ ¯r rh c of the lensed horizon mean radius
to the critical curve mean radius. Again, for θo 30 deg, ¯ ¯r rh c

is approximately independent of the inclination and hence

Figure 9. Relative centroid displacement (Δμα, Δμβ) of the direct equatorial
horizon image with respect to the critical curve. For all values of black hole
spin and inclination, sign(Δμα) = sign(a*) and ( ) ( )m qD =bsign sign cos o . An
abrupt transition occurs at θo = 90 deg, where the n = 0 and n = 1 equatorial
horizon images are degenerate. The mapping (a*, θo) → (Δμα, Δμβ) is one-to-
one and fairly linear up to high spin and nearly edge-on inclination.

10 The projected spin direction is along the β-axis: a positive spin is aligned
with the +β-axis and a negative spin with the −β-axis.
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provides a direct measurement of the spin. In the low-
inclination case, ¯ ¯r rh c shrinks from≈55% at zero spin
to≈45% at maximal spin. Importantly, measuring ¯ ¯r rh c for
an astrophysical black hole would not require accurate
measurements of the black hole mass M or distance D.

Referencing the lensed horizon image directly to the critical
curve would require detecting a lensed subring of the order of
n 1, which for M87

*

only becomes visible on very-high-
resolution baselines20 Gλ (Johnson et al. 2020). However, it
should be possible to constrain the location of the critical curve
with measurements of the n= 0 and n= 1 rings by determining
systematic calibration factors (and associated systematic
uncertainties) that relate the size of the EHT image to the
critical curve size in a library of astrophysical models, as was

done in The Event Horizon Telescope Collaboration et al.
(2019e, 2019f) to measure the mass of M87

*

. Alternatively,
parametric modeling with priors on the image structure may
constrain the n= 1 and higher subring images from measure-
ments at lower spatial frequencies rings using parametric model
fits (Broderick et al. 2020).
For all spins at low and moderate inclinations, the lensed

horizon image is well approximated by an ellipse, and the first
three image moments give a fairly complete description of the
curve. At higher inclinations, the structure becomes more
complex, with more information in the full curve shape than is
captured in the first three moments. In particular, at a*= 0 and
θo= 90 deg, the horizon image becomes a semicircle, degen-
erate with the n= 1 horizon image semicircle in the other half
plane (at higher spins, the image is not a perfect semicircle, but
is still a mirror image of the degenerate n= 1 image; see
Figure 3). In this case, the curve is probably better described by
the single radius of the combined n= 0 and n= 1 circle, rather
than the second moment parameters of just the n= 0 image.
Figure 12 demonstrates how a simultaneous measurement of

the radius of the critical curve and the lensed horizon could be
used to constrain the mass and spin in M87

*

when the
inclination is fixed at θo= 17 deg (Mertens et al. 2016). These
simultaneous constraints are analogous to those discussed in
Broderick et al. (2021), which considers constraints from
measuring multiple lensed images from a single face-on
emitting ring. The blue line shows the space of mass-to-
distance ratios M/D and spins a* that give the same mean
lensed horizon radius for an image of M87

*

; the red line shows
the same for the critical curve. The red and blue lines intersect
in only one location corresponding to the input black hole mass
M/D= 3.78 μas and spin a*= 0.94. The shaded bands around
the intersecting lines show absolute errors in the radius
measurements of 0.1, 0.5, and 1 μas. Given a reported EHT
radius measurement uncertainty of 1.5 μas from geometric
modeling of the EHT2017 data in The Event Horizon
Telescope Collaboration et al. (2019f), measurements of the
ring and inner shadow radius and centroid locations at1 μas
precision may be feasible with the ngEHT. In addition to
reducing uncertainty in the image size measurement itself,
precisely constraining both features will depend on reducing

Figure 10. (Left) The mean radius r̄h of the inner shadow as a function of inclination θo for several values of the black hole spin: from top to bottom, a* = (0.01, 0.25,
0.5, 0.75, 0.99). (Middle) The orientation angle χh with respect to the + α-axis as a function of inclination for the same spin values; the orientation angle increases
with spin at low and moderate inclination. (Right) The eccentricity eh for the same spin values; the eccentricity of the inner shadow is nearly independent of spin and
depends primarily on the inclination.

Figure 11. The ratio of the mean radius of the lensed horizon r̄h to the mean
radius of the critical curve r̄c. In the low-inclination case, ¯ ¯r rh c shrinks
from ≈55% at zero spin to ≈45% at maximal spin.
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systematic uncertainty in the relationship between the gravita-
tional features and images from a set of plausible astrophysical
models (e.g., The Event Horizon Telescope Collaboration et al.
2019f).

The right panel of Figure 12 shows a similar image for a
simultaneous measurement of the centroid offset along the α-
(Δμα, in green) and β-axes (Δμβ, in orange). Because the
centroid offsets are relatively small, an absolute error of 1 μas
in the measurement of the centroid offsets is less constraining
than the corresponding radius measurement. However, measur-
ing the offset Δμα to 1 μas precision could put a lower limit on
the spin a* 0.5 independent of the mass. Measurements that
jointly constrain the image size and eccentricity could even
more precisely constrain the mass and spin in M87

*

.
In Sgr a*, the mass-to-distance ratio is known to high

precision, M/D= 5.011± 0.016 μas (Gravity Collaboration
et al. 2019), but the inclination is unconstrained. In
Figure 13, we show similar simultaneous constraints on θo
and a* for Sgr a* from measurements of the inner shadow and
critical curve radii (left panel) and centroid offset (right panel).
The inner shadow and critical curve radii poorly constrain the
inclination, and constraining the spin with these radii and an
unknown inclination requires a measurement precision finer
than 1 μas. By contrast, as discussed in Section 4.1, the
centroid offset is highly constraining of both θo and a* if M/D
is known (right panel of Figure 13). Note that the constraints
shown in the right panels of Figures 12 and 13 require the α-
and β-axes to be known a priori; in practice, this could be
informed with reference to the jet at large scales in M87

*

, or by
reference to the location of the brightness asymmetry from
Doppler beaming in 230 GHz images of M87

*

or Sgr a*.
Figures 12 and 13 are idealized examples; in practice, the
orientation of the α- and β-axes would likely have to be fit to
observations along with a*, θo, and other model parameters that
relate the critical curve and lensed equatorial horizon shapes to

their corresponding features in the observed image (e.g., the
emissivity and redshift profiles in the model described in
Section 3.2).

4.3. Semi-analytic Description of the Lensed Horizon

Here, we attempt to derive an approximate parameterization
for the general shape of the lensed equatorial event horizon,
starting with a nonrotating (a*= 0) Schwarzschild black hole.
As is the case for the critical curve, such approximations are
useful for easily exploring the behavior of the shape with spin
and inclination and to identify parameter degeneracies (e.g., de
Vries 2003; Cunha & Herdeiro 2018; Farah et al. 2020; Gralla
& Lupsasca 2020b). Gates et al. (2020) provide an analytic
formula for the equatorial radius req(ρ, j, θo; n) that a light ray
shot back from position (ρ, j) on the image plane will cross on
its (n+ 1)th equatorial crossing. While the dependence of this
transfer function on the impact radius ρ is rather complicated,
its dependence on the impact angle j and observer inclination
θo only enter through the particular combination

[ ( ) ( )] ( )j q=x arctan sin tan . 26o

In this paper, we are only interested in the direct image n= 0.11

It is tempting to expand

( ) ( ) ( ) ( ) ( )r r r= = - + r x n Mf Mf x x, ; 0 , 27eq 0 1
2

where Mf0(ρ)= req(ρ, x= 0; n= 0) is the exact, axisymmetric
transfer function for a polar observer at x= θo= 0. Gates et al.
(2020) derived its asymptotic expansion in large impact radius

Figure 12. (Left) Simultaneous constraints on the black hole mass-to-distance ratio M/D and spin a* enabled by measuring the mean radius of the lensed horizon
(blue, r̄h) and critical curve (red r̄c) in M87

*

, when the inclination is fixed θo = 17 deg (Mertens et al. 2016). Without fixing the mass, multiple values of a* provide the
same result for the size of each feature, but combining a measurement of both features breaks the degeneracy. The shaded regions show errors on the radius
measurement of 0.1, 0.5, and 1 μas. The input mass scale and spin are M/D = 3.78 μas and a* = 0.94, respectively. (Right) Simultaneous constraints on M/D and a*

from measurements of the centroid offset μh − μc in the α-direction (green) and the β-direction (orange).

11 Lensed images with higher n lie in the photon ring, and one may set up a
large-n expansion, as in Gralla & Lupsasca (2020a), to obtain a simple
asymptotic formula for req(ρ, j; n), given in Appendix A of Hadar et al.
(2021).
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Equation (28) is already an excellent approximation even when
truncated after the first two terms (Gralla & Lupsasca 2020a).
Likewise, f1(ρ) admits the expansion
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Inverting Equation (27) results in an expression of the form

( ) ( ) ( ) ( ) ( )r = = + + x r n g r g r x x; , 0 , 30eq 0 eq 1 eq
2

which unfortunately is not as good an approximation as its
inverse Equation (27). In particular, this expansion breaks
down at large inclination, where the higher-order terms in x

grow more relevant. Nonetheless, we empirically observe that
an excellent semi-analytic fit to the lensed equatorial horizon
(req= r+) for Schwarzschild (r+= 2M) is provided by the
expression

⎡
⎣

⎛⎝ ⎞⎠
⎤
⎦( ) ( )r q» + += x M x2 2 1

1

2
cos . 31ah, 0

2
o*

Note that the Schwarzschild approximation ( ) =+g r M2 20

follows from an analytic approximation for Schwarzschild
geodesics given by Beloborodov (2002).

Finally, we note that this expression can be simply extended
to the rotating Kerr case with nonzero spin a*> 0 to obtain a
general fitting function ρh,fit(j) for the shape of the direct

lensed equatorial horizon image:

⎡
⎣

⎛⎝ ⎞⎠
⎤
⎦( ) ( )r q= + ++

x M
r

M
x2 1

1

2
cos . 32h,fit

2
o

In particular, for a face-on observer, the radius of the lensed
equatorial horizon is well fit by

( ) ( )r q = » +M r M0 2 . 33h o

Figure 14 shows the quality of the approximation ρh,fit(x)

(Equation (32)) to the lensed equatorial horizon image for a
black hole of spin a*= 0.5 at several inclinations. The fitting
function breaks down at high inclinations, where it develops an
artificial “bump” on the part of the curve below the α-axis.

5. Discussion

Images from the radiative GRMHD simulations of M87
*

from Chael et al. (2019) display a deep central brightness
depression. For these simulations of synchrotron-emitting
plasma around a Kerr black hole, the edge of this image
feature is the lensed image of the event horizon’s intersection
with the equatorial plane; the brightness depression is the
“inner shadow” of the black hole. Because the gravitational
redshift diverges for emission approaching the event horizon,
this inner shadow is only visible at high dynamic range in the
simulation images. Nonetheless, if it is present in M87

*

images,
this feature could be observable with the ngEHT, which will
increase the dynamic range of the current EHT by a factor
of≈100.
An inner shadow bounded by the image of the equatorial

event horizon is only visible in images of a black hole if the
emission region

1. is concentrated in the equatorial plane,

Figure 13. (Left) Simultaneous constraints on the black hole spin a* and inclination θo enabled by measuring the mean radius of the lensed horizon (blue, r̄h) and
critical curve (red r̄c) in Sgr a*, fixing the mass-to-distance ratio M/D = 5.01 μas (Gravity Collaboration et al. 2019). The shaded regions show errors on the radius
measurement of 0.1, 0.5, and 1 μas. The input spin and inclination are a* = 0.75 and θo = 30 deg. (Right) Simultaneous constraints on a* and θo from measurements of
the centroid offset μh − μc in the α-direction (green) and the β-direction (orange). The absolute errors in the centroid measurement depicted by the shaded regions are
the same as in the left panel. When M/D is fixed, the relative sizes of the lensed horizon and critical curve poorly constrain θo, but the centroid offset strongly
constrains both a* and θo.
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2. is not obscured by foreground emission (e.g., from the
approaching jet), and

3. extends to the event horizon.

This scenario is realized by 230 GHz emission from the MAD
simulations of M87

*

considered in this paper; however, there
are other plausible scenarios for the distribution of emitting
plasma.

If the emission is spherically symmetric and extends to the
horizon, the direct outline of the horizon is not visible; the only
brightness depression in this case occurs inside the critical
curve (e.g., Falcke et al. 2000; Narayan et al. 2019). Because
GRMHD simulations of hot accretion flows produce geome-
trically thick accretion disks, one might think that these
simulations are better approximated by a spherically symmetric
emissivity distribution than an equatorial model. On the
contrary, however, even geometrically thick accretion disks
in GRMHD simulations are better approximated by the
equatorial emission model than a spherically symmetric one.
Figure 15 shows time-averaged images from a GRMHD
simulation of Sgr a* in the low-magnetic-flux accretion state at
several observer inclinations θo. At low inclination, the images
from this simulation look qualitatively similar to the magne-
tically arrested M87

*

simulation images in Figure 6; they
display both a bright photon ring near the critical curve, and an
inner shadow marking the equatorial event horizon. Despite the
effects of significant disk thickness, the horizon image is still
visible up to moderate inclinations (θo≈ 50 deg) in this
simulation. At higher inclinations, emission from the disk in
front of the black hole blocks the appearance of the horizon
inner shadow, and it is not visible.

Some GRMHD simulations produce 230 GHz emission
predominantly in the black hole jet or along the “jet sheath”
(e.g., The Event Horizon Telescope Collaboration et al. 2019e,
Figure 4 therein). Because the observed emission in these
simulations is not predominantly equatorial, the inner shadow
seen in the simulations presented in this paper will not be
present in this scenario. Funnel emission in The Event Horizon
Telescope Collaboration et al. (2019e) is most often seen in
simulations with weak magnetic flux, while The Event Horizon

Telescope Collaboration et al. (2021b) shows that polarimetric
EHT observations strongly prefer MAD models with strong
magnetic flux for M87

*

. While the MAD models in this paper
and in The Event Horizon Telescope Collaboration et al.
(2019e) show 230 GHz emission that originates predominantly
from the equatorial plane, a larger survey over different
GRMHD images should be performed to assess how generic
this behavior is with respect to different simulation parameters
and electron heating/acceleration models.
Even in the Chael et al. (2019) MAD models explored here,

in which the 230 GHz emission is predominantly equatorial,
nonzero brightness from the forward jet adds a finite “floor” to
the inner shadow (Figure 7). While this emission is dim at
230 GHz and even 86 GHz in these simulations, at even lower
frequencies, the forward jet becomes optically thick and
eventually obscures the equatorial emission, and hence the
inner shadow. Furthermore, the precise size of the observed
brightness depression in these models depends on where the
foreground emission becomes as bright as emission from the
equatorial plane, which falls off rapidly due to the increasing
gravitational redshift incurred as the emission radius
approaches the horizon. As a result, in these models, the area
of the observed brightness depression is larger than the inner
shadow of the equatorial emission. By contrast, emission from
a thick disk without forward jet emission could produce a
central brightness depression with a slightly smaller area than
the equatorial inner shadow, as the emission region intersects
with the event horizon at a higher latitude above the equatorial
plane.
The GRMHD simulation considered in this paper assumes

that the plasma angular momentum is aligned with the black
hole spin; however, alignment may not be generic in black hole
accretion flows. Relatively few “tilted” or misaligned disk
GRMHD simulations have been conducted (e.g., Dexter &
Fragile 2013; White et al. 2019; Chatterjee et al. 2020). Both
White et al. (2019) and Chatterjee et al. (2020) found that in
misaligned simulations, new image features can emerge due to
shocks and gravitational lensing that change the appearance of
the 230 GHz image relative to the images seen from aligned-
disk simulations. In particular, tilted simulations can show peak

Figure 14. Examples of the semi-analytic fitting function ρh,fit(x) (Equation (32)) to the lensed equatorial horizon curve for a black hole with spin a* = 0.5 viewed at
inclination θo = 10 deg (left), 45 deg (middle), and 80 deg (right). In each panel, we indicate the “unlensed” image of the black hole event horizon r = r+ (black
dashed line), the direct lensed image of the equatorial horizon (black solid line), the critical curve (cyan solid line), and the approximate parameterization of the
horizon image ρh,fit(x) (dashed magenta line). The approximate parameterization matches the horizon image well at low inclination, but deviates from the truth in the
β < 0 part of the curve at high inclination.
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brightness contours that are farther from the black hole (and at
shifted azimuthal angles) compared to what is typically seen in
aligned simulations. Because our definition of the inner shadow
in this paper requires equatorial emission, the feature as
discussed in this paper would not be visible if the accretion disk
feeding the black hole were tilted. However, if the emission
extends to the horizon, a similar inner shadow—corresponding
to the intersection of the event horizon with an inclined plane—
may be present in images from tilted disks. Chatterjee et al.
(2020) showed time-averaged simulation images at several
observing frequencies from their tilted-disk MAD simulations
(their Figure 6). In all of these images from Chatterjee et al.
(2020), there is a prominent central brightness depression
inside the photon ring that most likely marks the event horizon
image from emission concentrated in an inclined plane. In a
forthcoming work, we will investigate the visibility of the
lensed horizon image in tilted-disk simulations, and explore the
dependence of the shape and size of the horizon image when
varying the orientation θ of the emission plane.

While we have focused on the Kerr metric, exotic compact
objects with horizons will also produce an analogous inner
shadow. For instance, Mizuno et al. (2018) presented GRMHD
simulations of a dilation black hole, which exhibits a prominent
inner shadow (their Figure 2). The parameterized non-Kerr
metrics explored in Medeiros et al. (2020) all have well-defined
horizons and so will likely display an inner shadow feature
when illuminated by emitting plasma in the equatorial plane.
Thus, observing an inner shadow feature from M87

*

or Sgr a*

would not constrain the metric to be Kerr; nevertheless, if the
properties of the emission region are well constrained, then the
relationship between the inner shadow and the photon ring can
be used as a null hypothesis test of the Kerr metric. For
instance, in Kerr, an inner shadow must have diameter

¯ ¯< <r r0.45 0.7h c (see Figure 11). Non-Kerr metrics such
as those explored in Medeiros et al. (2020) may show different

relationships between the inner shadow and critical curve sizes
and shapes that depend on the deviation parameters, enabling
these parameters to be constrained in fits to future observations.
In addition, horizonless compact objects may also exhibit a
feature analogous to the inner shadow if their interior is
evacuated (see, e.g., Vincent et al. 2016; Olivares et al. 2020);
however, in this case, the properties of the inner shadow will be
primarily determined by the structure of the emission region
rather than the gravitational lensing of the compact object.

6. Conclusions

In this paper, we have examined the appearance of the direct
image of a Kerr black hole’s equatorial event horizon. This
lensed feature always lies within the critical curve and is
sensitive to the black hole spin and viewing inclination
(Takahashi 2004; Dokuchaev & Nazarova 2020b). Using
GRMHD and analytic models of the submillimeter emission
from M87

*

, we have shown that:

1. The direct (n= 0) lensed image of the equatorial event
horizon marks the boundary of an “inner shadow” that
should be observable in future images of M87

*

if the
submillimeter or radio emission is both equatorial and
extends to the horizon.

2. The radiative GRMHD simulations of M87
*

from Chael
et al. (2019) have emissivity profiles that extend to the
horizon and sub-Keplerian flows that result in a relatively
weak redshift near the horizon. The “inner shadow” is
prominent in images of these simulations.

3. Analytic equatorial emission models show some of the
main features we see in time-averaged images from these
GRMHD simulations, including the photon ring structure
and the inner shadow.

4. The ngEHT should have the dynamic range necessary to
observe the inner shadow in M87

*

, if it is present. This

Figure 15. Time-averaged 230 GHz images of a Sgr a* simulation with weak magnetic flux and a* = 0.9375 at different inclinations: from left to right, θo = (10, 30,
50, 70, 90) deg. The top row shows images in a linear scale, and the bottom row displays images in a gamma scale with γ = 1/4. The different panels are each
normalized to their own peak brightness, since the total flux density increases with increasing inclination. The critical curve is indicated in cyan, the direct image of the
equatorial horizon is indicated by the solid white curve, and the n = 1 image of the equatorial horizon is displayed with the dashed white curve. In this low-magnetic-
flux simulation, the 230 GHz emission is concentrated in a geometrically thick disk extending to the horizon. The lensed equatorial horizon image is visible at low
inclinations, but is blocked by direct emission from the disk when viewed at edge-on inclinations.
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feature could also be visible at other frequencies, even if
the optical depth of the accretion disk is high at those
frequencies (as it is in the GRMHD simulation we
consider at 86 GHz).

5. The radius and centroid offset of the direct lensed
equatorial horizon image can be used to measure the
black hole spin and inclination, and to break degeneracies
in estimating both the black hole mass and spin from only
one image feature.

6. The presence and observability of this feature in M87
*

is
contingent on the emission being predominantly equator-
ial and extending to the event horizon. If instead the
accretion disk is tilted, then there may be an analogous
low-brightness feature corresponding to an image of the
event horizon’s intersection with an inclined plane. Non-
Kerr spacetimes may produce an inner shadow with a
different size relative to the photon ring than predicted in
Kerr, potentially enabling tests of the spacetime using
both features.
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Appendix A
Analytic Ray Tracing in Kerr

In this Appendix, we review the analytic ray tracing method we
use in computing the shape of the lensed horizon image in
Section 2.2 and the emission from the analytic equatorial model
used in Section 3.2. Our method is taken directly from Gralla &
Lupsasca (2020a, 2020c), and we only summarize the most
important steps here. We restrict our attention to geodesics with
positive Carter constant η> 0; the region of “vortical” geodesics
with η< 0 is always interior to the lensed equatorial horizon curve
and thus within the inner shadow (Gralla & Lupsasca 2020a).

To solve the Kerr null geodesic of Equation 8(a), we
parameterize the geodesic in terms of the Mino time τ, such
that

( )
t
=
Sm
mdx

d E
k . A1

The total Mino time τ elapsed between emission from a source
at (rs, θs) and detection by an observer at (ro, θo) is
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The above integrals are along the photon trajectory, which can
oscillate in both r and θ; the directions in r and θ correspond to
the± factors in the denominator of the integrands. In particular,
the geodesic oscillates in θ between two turning points
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A geodesic shot back from a location (α, β) in the image
plane with corresponding conserved quantities (λ, η)
(Equation 7(a)) intersects the black hole’s equatorial plane
(θ= π/2) for the (n+ 1)th time when the Mino time is (Gralla
& Lupsasca 2020a, Equation (81))
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where

( ) ( )b= +m n H A7

is the number of turning points in θ that generate the image of
the order of n.12 Here, H(β) denotes the Heaviside step
function; Equation (A7) indicates, for example, that photons
emitted on the far side of the equatorial plane (β> 0) must
make one reversal in θ before reaching the observer in the
direct, n= 0 image, while direct photons emitted from the near
side of the disk (β< 0) make no reversals in θ. The K and Fo

factors in Equation (A6) are given by elliptic integrals of the
first kind F(u|k):
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Given Gθ for the (n+ 1)th equatorial crossing from
Equation (A6), we need to apply Equation (A2) and find the
equatorial radius req(Ir) for which Ir=Gθ. The inversion req(Ir)
depends on the roots r1, r2, r3, and r4 of the radial potential ( ) r
(Equation (9)). The character (real or complex) and number of
unique roots is different in different regions of the (λ, η) plane
(e.g., Gralla & Lupsasca 2020c, Figure 2). Nonetheless, Gralla &
Lupsasca (2020c) provide a unified inversion formula req(Ir) that

12 Note that Gralla & Lupsasca (2020a) use m̄ to refer to the image order we
call n, while we both use m to refer to the number of angular turning points.
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holds in all cases (their Equation (B119)):
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where rij= ri− rj for ri in the set of (real or complex) radial
roots { }r r r r, , ,1 2 3 4 , ( ∣ )u ksn is the Jacobi elliptic sine function,
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Note that, in practice, a numerical implementation of
Equation (A10) may give a complex result in certain regimes
where some of the radial roots { }r r r r, , ,1 2 3 4 are complex. In
such cases, it is more useful to use the formulae in Gralla &
Lupsasca (2020c), Appendix B, which give manifestly real
expressions for req(Ir) in the different regimes of the radial
roots’ behavior.

For completeness, the radial roots are computed with the
following expressions (Gralla & Lupsasca 2020c, Section IV.A):
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Note that Equation (A10) only applies where the Mino time
τ= Ir is less than its maximum value for a given geodesic:
< <I I0 r r

total. The total Mino time Ir
total elapsed along a

trajectory is given by Gralla & Lupsasca (2020a, Equation (29)):
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The first case of Equation (A13) corresponds to light rays
appearing outside the critical curve, which encounter a radial
turning point at r4 outside of the event horizon, while the second
case corresponds to light rays appearing inside the critical curve,
which terminate at the horizon. Appendix B of Gralla & Lupsasca
(2020c) provides expressions for Ir

total in terms of elliptic integrals
for the different regimes of the radial roots’ behavior.
Combining Equations (A6) and (A13), we can obtain an

expression for ( )a bN ,max , the maximal number of times a
geodesic terminating at the image-plane position (α, β) crosses
the equatorial plane:

⎢
⎣
⎢ ⎥

⎦
⎥( )

( ) ( )
b

b=
- +

- +-
N

I u a F

K
H

sign

2
1. A14r

max

total 2
o

Recall that =N 0max inside the direct lensed image of the
equatorial horizon; geodesics inside this region do not cross the
equatorial plane even once.

Appendix B
Image Moments

In this Appendix, we define the second moment used to
characterize both the lensed horizon and critical curve in Section 4.
For a closed convex curve ρ(j) enclosing the origin in the (α, β)
coordinate system, the zeroth image moment is the area A:

( ) ( )ò r j j=A d
1

2
. B12

The first moment is the centroid vector μ= (μα, μβ):

( ) ( )òm r j j j=a
A

d
1

3
cos , B2a3

( ) ( )òm r j j j=b
A

d
1

3
sin . B2b3

The second central moment is equivalent to the covariance
matrix, or moment of inertia tensor Σ. In the (α, β) coordinate
system, it has components Σαα, Σββ, and Σαβ=Σβα, where

( ) ( )ò r j j j mS = -aa aA
d

1

4
cos , B3a4 2 2

( ) ( )ò r j j j mS = -bb bA
d

1

4
sin , B3b4 2 2

( ) ( )ò r j j j j m mS = -ab a b
A

d
1

4
cos sin . B3c4

We can diagonalize Σ to find the lengths of the principal
axes a, b and their orientation angle χ relative to the+ α-axis.
Explicitly:

( ) ( )= S + S +aa bb Sa D2 , B4a

( ) ( )= S + S -aa bb Sb D2 , B4b

⎜ ⎟⎛
⎝

⎞
⎠ ( )c =

Sab
SD

1

2
arcsin

2
, B4c
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where

( ) ( )= S - S + Saa bb abSD 4 . B52 2

The mean radius and eccentricity are then defined by
Equation (21) in the same manner as for an ellipse with
semimajor axis a and semiminor axis b. That is, the mean radius

is ¯ ( )= +r a b 22 2 and the eccentricity is = -e b a1 2 2 .
This definition for the average radius of the critical curve in

terms of the image second moment differs from the definition
introduced in Johannsen & Psaltis (2010), Equation (4). In
Figure 16, we compare the average radii of the critical curve for
different black hole spins as a function of inclination angle as
determined by these two methods. The second moment method
used here for calculating the average radius of the critical curve
agrees with the results of the Johannsen & Psaltis (2010)
method within 1% for all values of spin and inclination, with
the only noticeable discrepancies occurring when both the spin
and inclination are large (and the critical curve is at its least-
circular).
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