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We develop a simple toy model for polarized images of synchrotron emission from an equatorial

source around a Kerr black hole by using a semianalytic solution of the null geodesic equation and

conservation of the Penrose-Walker constant. Our model is an extension of Narayan et al., which

presented results for a Schwarzschild black hole, including a fully analytic approximation. Our model

includes an arbitrary observer inclination, black hole spin, local boost, and local magnetic field

configuration. We study the geometric effects of black hole spin on photon parallel transport and

isolate these effects from the complicated combination of relativistic, gravitational, and electromag-

netic processes in the emission region. Expanding in 1=rs, we find an analytic approximation,

consistent with previous work, for the geometric effect of spin on observed face-on polarization

rotation in the direct image: ΔEVPA ∼ −2a=r2s , where a is the black hole spin and rs is the emission

radius. We further show that spin introduces an order unity effect on face-on subimages:

ΔEVPA ∼�a=
ffiffiffiffiffi

27
p

. We also use our toy model to analyze polarization “loops” observed during

flares of orbiting hot spots. Our model provides insight into polarimetric simulations and observations

of black holes such as those made by the EHT and GRAVITY.

DOI: 10.1103/PhysRevD.104.044060

I. INTRODUCTION

The first polarized images of the black hole M87*, which
reveal a bright ring of emission with twisting polarization
pattern, have recently been released by the Event Horizon
Telescope (EHT) collaboration [1–8]. The polarization
structure in black hole images depends on propagation
effects, plasma emission, magnetic field geometry, and
spacetime curvature. Simulations of polarized emission are
an important tool that have been used to study astrophysical
and geometric properties of black hole accretion flows, and
as an aid for interpreting observations [9–29]. Detailed
simulations that simultaneously incorporate astrophysical
and relativistic effects are physically realistic but are
generally computationally expensive. Furthermore, disen-
tangling astrophysical and relativistic effects in these
models can be challenging.
Toy models offer an efficient pathway to decouple and

characterize different effects on black hole images over a
broad range of simplified emission configurations. An
exact description of polarized images from emission around
black holes requires a numerical solution of the geodesic

equation, even in the spherically symmetric Schwarzschild
geometry (see, e.g., [30]). The description of polarized
images in both Schwarzschild and Kerr is greatly simplified
by conservation of the Penrose-Walker constant [31].
Recently, a simplified toy model of synchrotron emission
around a Schwarzschild black hole was presented in [32],
which took advantage of an additional simplification: an
approximation developed by Beloborodov [33] with which
the polarized image can be computed analytically. Here,
we extend the toy model of [32] using tools developed in
[34–37] to include the effects of spin by generalizing to the
Kerr geometry, for which a Beloborodov-like approxima-
tion is not available.
Our model consists of an equatorial ring of magnetized

fluid orbiting a Kerr black hole. The images of axisym-
metric rings of radiating fluid are described by analyzing
the local frame of an emitting point source in the Kerr
geometry. The semianalytic description of an unpolarized
image from such an emitter has a long history going back to
the 1970s with Cunningham and Bardeen, [38,39] and has
recently been discussed in specific contexts such as the
near-horizon-extreme-Kerr emission [40–42]. The polar-
ized image has also been treated analytically for the high-
spin case in [43].
A semianalytic treatment of the geometric effects of

spin on the polarized image of orbiting geodesic rings at
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arbitrary emission radius and inclination was performed in
the seminal work of Connors, Piran, and Stark [9], as well
as the PhD thesis of Eric Agol [44]. Our model genera-
lizes this work to semianalytically compute the polarized
image given an arbitrary spin, emission radius, magnetic
field geometry, equatorial fluid velocity, and observer
inclination.
Using conservation of the Penrose-Walker constant

[31], our model generates predictions for linear polari-
zation angle and relative polarized intensity, providing
insight into how the accretion flow and spacetime
geometry affect the polarized image. In this paper, we
provide illustrative examples of polarized images for a
variety of physical configurations. Our model includes
the image of direct emission as well the corresponding
lensed indirect emission, or “subimages.” Though we
consider only emission from a single radius, the image
of a disk with finite radial extent can be modeled by
simply summing contributions from individual radii; this
was performed by [44], which noted that the sum gave
rise to a net depolarization effect, since adding polari-
zation vectors at different angles reduces the polariza-
tion. An analogous depolarization can arise from
summing contributions of direct and indirect emission,
as seen in simulations [45].
For face-on black holes, we find an analytic expression

for the effect of spin on polarization rotation, which is

subleading in 1=rs in the direct image (ΔEVPA ∼ −2a=r2s )
but order unity in subimages (ΔEVPA ∼ a=

ffiffiffiffiffi

27
p

), where a
is the black hole spin and rs is the emission radius. The
specific effects of frame dragging on the rotation of the
polarization plane have been studied extensively in the past
and have been interpreted as a gravitational analog of
Faraday rotation [46–51]. In this work, we use our model to
rederive earlier results using simple techniques that avoid
ambiguities about local reference frames. We further build
on prior work by examining the effects of parallel transport
on photon ring subimages.
An important EHT observing target is the black hole

Sgr A* at the center of our own galaxy. The polarization
of Sgr A* has significant time variability in both sub-
millimeter [52–54] and near-infrared [55–58] observations,
with particularly rapid variability in near-infrared flares.
The flares are likely born out of various plasma and MHD
effects such as magnetic reconnection [59,60]. Simulations
are a powerful tool used to understand these polarized flares
and have a long history also going back to the 1970s,
including the work of [9], which presents time-dependent
electric vector position angle (EVPA) in the direct emission
from an orbiting hot spot. More advanced recent simula-
tion studies include [13–16], which attribute certain time-
varying features to an emission from a localized orbiting
hot spot. These features may be manifested as loops in
the linear Stokes Q, U polarization. Our toy semianalytic
model, which can isolate geometric effects from the

simulated astrophysical processes, complements these
efforts. Our model also isolates the effects of individual
subimages and the ways in which they affect observed
polarization patterns.
Using analytic results in the Kerr geometry, we can

model the effects of spin on the image of hot spot emission
and generate images of Q, U time variation in direct and
indirect images that reproduce observed polarization loops.
Our model can be directly compared to simulated and
observed values for the case of near-infrared flares, in
which the influence of Faraday effects, absorption, and
background emission are insignificant [32].
In particular, using infrared interferometry, the

GRAVITY collaboration has recently reported the first

resolved centroid motion and polarization during flares

of Sgr A* [57]. Both the centroid and polarization traced

loops over time, which were interpreted using a model of an

orbiting equatorial hot spot [57,58]. In simulations of

motion of a small Gaussian hot spot, [57] (see the

Appendix D therein) found that the presence of a single

polarization loop in Q, U, in which the orbital period

in polarization is the same as the orbital period of the hot

spot, is a signature of magnetic fields perpendicular to the

orbital plane (i.e., vertical). In contrast, for a toroidal field

(i.e., equatorial) they found that the orbital period of

polarization is half that of the hot spot, corresponding to

two loops in Q, U. The Q, U data for the observed July 28,

2018, flare were consistent with a single polarization loop

observed at low inclination, as in a poloidal field configu-

ration [57]. Follow-up work in [58] considered the July 28

flare in further detail, and compared observations to

simulations of a Gaussian hot spot as well as a simplified

nonrelativistic analytic model of a point emitter, finding

that a single loop in Q, U arises only from fields with a

nonzero vertical component, with the best fit to the July 28

flare having a vertical plus azimuthal field. We substantiate

the same claims in [57,58] about single (double) loops

arising from vertical (equatorial) magnetic fields using

analytic results in the Kerr geometry, providing additional

physical insight into GRAVITY observations and the

general observational distinction between vertical and

equatorial fields.
Our work can also be further developed to future

extensions that include nonequatorial emission, and to
studies of circular polarization (Stokes V) [19,23,29,
61–64]. These extensions will be useful in comparisons
to general-relativistic magnetohydrodynamic (GRMHD)
simulations and will further our understanding of the extent
to which fluid configuration and magnetic field geometries
can be inferred using polarized images. Comparing our
model to ray-traced GRMHD simulations will also pro-
vide insight into whether Faraday effects prevent such
inferences.
This paper is organized as follows. Section II describes

our simple model for fluid orbiting a Kerr black hole.
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Section III reviews the calculation of the observed appear-
ance of polarized emission around a Kerr black hole.
Section IV presents and discusses sample polarized images
produced by our model for a variety of magnetic fields,
observer inclinations, and fluid configurations. Section V
considers the observed EVPA for black holes viewed on
axis, quantifying the effects of spin on EVPA. Section VI
considers the application of our model to the polarized
images of orbiting hot spots and provides additional details
of comparisons with [57,58]. Section VII gives a brief
summary of our conclusions and directions for future
investigation. We present explicit details of the orbiting
fluid model in Appendix A, details of the semianalytic
solution of the geodesic equation in Appendix B, a general
discussion of image symmetries in Appendix C, and details
of cusp formation in direct emission Q, U loops in
Appendix D.

II. ORBITING FLUID MODEL

This section introduces our model of accreting fluid
around a Kerr black hole using an orbiting emitter.

A. Circular orbiting emitter in Kerr

The Kerr line element for a black hole of mass M and
angular momentum J ¼ aM in Boyer-Lindquist coordi-
nates ðt; r; θ;ϕÞ is [65,66]

ds2 ¼ −
ΔΣ

Ξ
dt2 þ Σ

Δ
dr2 þ Σdθ2 þ Ξ sin2 θ

Σ
½dϕ − ωdt�2;

ð1Þ

where

ΔðrÞ ¼ r2 − 2Mrþ a2; Σðr; θÞ ¼ r2 þ a2cos2θ;

ω ¼ 2aMr

Ξ
; Ξ ¼ ðr2 þ a2Þ2 − Δa2sin2θ: ð2Þ

Note that ω is the angular momentum of the zero-angular-
momentum-observer (ZAMO), which vanishes in the
Schwarzschild limit a → 0.
Consider a point source at radius rs on an equatorial

ðθs ¼ π
2
Þ circular orbit of zero angular momentum with

angular velocity ωs ¼ ωðrs; θs ¼ π
2
Þ.1 The tetrad that

describes the ZAMO local rest frame consists of its

four-velocity uμ ¼ e
μ

ðtÞ ðuμuμ ¼ −1Þ and three orthogonal

unit spacelike vectors:

eðtÞ ¼
1

rs

ffiffiffiffiffi

Ξs

Δs

s

ð∂t þ ωs∂ϕÞ;

eðrÞ ¼
1

rs

ffiffiffiffiffi

Δs

p

∂r;

eðϕÞ ¼
rs
ffiffiffiffiffi

Ξs

p ∂ϕ;

eðθÞ ¼ −
1

rs
∂θ: ð3Þ

Note that the minus sign in the last line implies that the

local ðθ̂Þ and Boyer-Lindquist θ̂ are antialigned. Here and
below, the subscript s denotes a quantity evaluated at the
source rs; θs ¼ π

2
. The local orthonormal frame has the flat

Minkowski metric ηðaÞðbÞ, and the frame components of
four-vectors are given by

VðaÞ ¼ ηðaÞðbÞeμðbÞVμ: ð4Þ

The orientation is such that ðx̂; ŷ; ẑÞ ↔ ððr̂Þ; ðϕ̂Þ; ðθ̂ÞÞ. The
tetrad is given explicitly as a matrix in Appendix A.

B. Boosted emitter

From the local orthonormal ZAMO frame, consider
boosting the emitter in the ðrÞ; ðϕÞ plane with velocity

β⃗ ¼ βvðcos χðr̂Þ þ sin χðϕ̂ÞÞ: ð5Þ

Vectors are boosted via a Lorentz transformation ΛðaÞ
ðbÞ. To

transform from the ZAMO frame to the boosted ortho-
normal frame, denoted by primed quantities, take

V 0ðaÞ ¼ Λ
ðaÞ

ðbÞV
ðbÞ;

¼ Λ
ðaÞ

ðbÞη
ðbÞðcÞeμðcÞVμ; ð6Þ

using Eq. (4). This defines a new tetrad

e0μðdÞ ¼ ηðdÞðaÞΛ
ðaÞ

ðbÞη
ðbÞðcÞeμðcÞ ¼ ΛðdÞ

ðcÞeμðcÞ; ð7Þ

with components given by matrix multiplication (recall that

for Λ ¼ Λ
ðaÞ

ðbÞ, the inverse matrix Λ
−1 ¼ ΛðaÞ

ðbÞ). For

concreteness, the explicit tetrad components are given in
Appendix A. An inverse transformation from the local
frame to the vector in Kerr is given by

Vμ ¼ e0μðaÞV
0ðaÞ: ð8Þ

The next section uses the local emitter motion to compute
its polarized image seen by a distant observer.

1
Angular velocity is defined relative to the asymptotic rest

frame by dϕ
dt
¼ uϕ

ut
, where uμ is the four-velocity of the emitting

source.
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III. IMAGE INTENSITY AND POLARIZATION

This section describes how to compute the observed
location and polarization of the direct image of an axisym-
metric equatorial disk of emitting matter at radius rs around
a Kerr black hole with arbitrary spin a, local magnetic field

B⃗, and observer inclination θo. We briefly summarize the
important steps in the calculation, details of which are
included in the following subsections:
(1) Sections III A and III B: for photons emitted by a

source at position rs; θs ¼ π
2
, we find the arrival

position on the screen (and corresponding conserved
quantities) by solving the geodesic connecting the
source rs; θs ¼ π

2
, and observer.

(2) Section III C: the photon conserved quantities give
its initial momentum at the source. Using the initial
momentum and magnetic field, we calculate the
polarization in the emitter frame and the Penrose-
Walker constant at the source.

(3) Section III D: using the conserved Penrose-Walker
constant and the photon’s arrival position, we
calculate its polarization on the observer screen,
taking redshift and path length effects into account.

(4) Subsection III E then reviews simplifying aspects of
the calculation in the special case of an on axis
observer.

A. Light propagation in Kerr

We review photon propagation and polarization in Kerr
following [37]. From the geodesic equation, a photon’s
(energy-rescaled) four-momentum is given in terms of its
position and conserved quantities (λ, η) corresponding to
the energy-rescaled angular momentum parallel to the axis
of symmetry and Carter integral, respectively:

pμdx
μ ¼ −dt�r

ffiffiffiffiffiffiffiffiffiffi

RðrÞ
p

ΔðrÞ dr�θ

ffiffiffiffiffiffiffiffiffiffi

ΘðθÞ
p

dθ þ λdϕ; ð9Þ

given in terms of the radial and angular potentials

RðrÞ ¼ ðr2 þ a2 − aλÞ2 − Δ½ηþ ða − λÞ2�;
ΘðθÞ ¼ ηþ a2cos2θ − λ2cot2θ: ð10Þ

The photon trajectory is determined by its initial position,
conserved quantities ðλ; ηÞ, and signs �r;�θ of its initial
motion. The photon’s linear polarization fμ is parallel
transported along its trajectory,

fμpμ ¼ 0; pμ∇μf
ν ¼ 0: ð11Þ

From the photon momentum and polarization, one can
construct the Penrose-Walker constant κ, a complex con-
stant conserved along the photon trajectory [31,66]:

κ ¼ κ1 þ iκ2 ¼ ðA − iBÞðr − ia cos θÞ;
A ¼ ðptfr − prftÞ þ asin2θðprfϕ − pϕfrÞ;
B ¼ ½ðr2 þ a2Þðpϕfθ − pθfϕÞ − aðptfθ − pθftÞ� sin θ:

ð12Þ

Given the Penrose-Walker constant, one can solve for the
polarization fμ at any point along the photon path.

B. Screen coordinates and conserved quantities

For a photon with conserved quantities (λ, η), its arrival
position is given by the screen coordinates [39]

α ¼ −
λ

sin θo
; β ¼ �o

ffiffiffiffiffiffiffiffiffiffi

ΘðθÞ
p

; ð13Þ

where θo is the observer’s polar inclination from the spin

axis and �o is the sign of pθ at the observer.
Conversely, the photon’s arrival position on the screen

determines its corresponding conserved quantities:

λ ¼ −α sin θo;

η ¼ ðα2 − a2Þcos2θo þ β2: ð14Þ

For time-averaged, axisymmetric images of an equatorial
disk, the relevant photon motion is in ðr; θÞ. Photon
trajectories from an initial position ðrs; θs ¼ π

2
Þ to a final

position ðro → ∞; θoÞ are given by the null geodesic
equation [34]:

Ir ¼
Z

�
ro

rs

dr

�r

ffiffiffiffiffiffiffiffiffiffi

RðrÞ
p ¼

Z

�
θo

θs

dθ

�r

ffiffiffiffiffiffiffiffiffiffi

ΘðθÞ
p ¼ Gθ; ð15Þ

where the slash denotes a monotonic path integral with the
signs �r;�θ changing at radial and angular turning points,
respectively. These have closed-form solutions in terms of
elliptic integrals, which have been described in a variety of
formalisms by many authors, including [44,67–69]. We
follow the conventions of [36] (see references therein and
Appendix B 1 for definitions). Following (81) of [35], for a
trajectory with m turning points in θ and θs ¼ π

2
the

geodesic equation becomes
2

Ir ¼ Gm
θ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

−u−a2
p

�

2mK

�

uþ
u−

�

− signðβÞFo

�

; ð17Þ

2
When a ¼ 0 exactly [for which (15) is not well defined] the

geodesic equation reduces to (see, e.g., Eq. B1 of [41]):

Ir ¼ Gθ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ λ2
p

"

mπ − signðβÞ arcsin
 

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2

η

s

cos θo

!#

:

ð16Þ
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where

Fo ¼ F

�

arcsin
cos θo
ffiffiffiffiffiffi

uþ
p

�

�

�

�

uþ
u−

�

; ð18Þ

and

u� ¼ Δθ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2

θ þ
η

a2

r

; Δθ ¼
1

2

�

1 −
ηþ λ2

a2

�

: ð19Þ

Givenm and rs, (17) defines a relationship between λ and η
and therefore between image α and β via (13).

3

The geodesic equation (17) can be inverted [see, e.g.,
(30) of [35] ] to find rsðIr ¼ Gm

θ Þ, which gives

rsðIrÞ ¼
r4r31 − r3r41sn

2ð1
2

ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p

Ir − F ojkÞ
r31 − r41sn

2ð1
2

ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p

Ir − F ojkÞ
; ð20Þ

where

F o ¼ F

�

arcsin

ffiffiffiffiffiffi

r31

r41

r
�

�

�

�

k

�

; ð21Þ

and

k ¼ r32r41

r31r42
; rij ¼ ri − rj; ð22Þ

with the roots frig of RðrÞ (given below in Appendix B 2
as well as Appendix A of [35]). Because (17) defines a
relation for rsðGm

θ Þ, andGm
θ can be written in terms of ðλ; ηÞ

or equivalently ðα; βÞ, (20) defines an equation rsðα; βÞ,
which can be solved numerically to find the allowed curves
of ðα; βÞ that describe a source at radius rs.
In practice, (20) is computed using specified values of

a; sin θo; rs;φ≡ arctanðβ=αÞ and a test value(s) of b≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ β2
p

to solve for the corresponding impact parameter
using FINDROOT in Mathematica 12 or SCIPY.OPTIMIZE in
PYTHON 3.

4
Here and throughout, φ is the phase of αþ iβ.

Results of this calculation are displayed for a variety of a
and θo in Fig. 6 of [35].
After computing the set of allowed screen positions

ðα; βÞ for a photon emitted at a given equatorial radius rs,
(14) is used to determine the corresponding conserved
quantities ðλ; ηÞ, which specify the photon momentum at

the source and can be used to determine its polarization, as
described in the next section.

C. Polarization in the local frame

Having determined ðλ; ηÞ for rs; a; θo as described in the
previous section, the photon (energy-rescaled) momentum
at the source is given by (9)

pt ¼ −1;

pr ¼ �r;

ffiffiffiffiffiffiffiffiffiffiffiffi

RðrsÞ
p

Δs

;

pϕ ¼ λ;

pθ ¼ �s

ffiffiffi

η
p

; ð23Þ

where the sign of pθ at the source is �s ¼ ð−1Þm�o.
5

The sign �r depends on fλ; η; rs; a; θo; mg and must be
computed semianalytically as described in Appendix B 3.
With the sign of pr determined, we compute the compo-
nents of the four-momenta at the source as

pt ¼ 1

r2s

�

−aða − λÞ þ ðr2s þ a2Þðr2s þ a2 − aλÞ
Δs

�

;

pr ¼ �r

1

r2s

ffiffiffiffiffiffiffiffiffiffiffiffi

RðrsÞ
p

;

pϕ ¼ 1

r2s

�

−ða − λÞ þ a

Δs

ðr2s þ a2 − aλÞ
�

;

pθ ¼ �s

ffiffiffi

η
p

r2s
: ð24Þ

To compute the local photon polarization at the source, pμ

is transformed to the local frame of the emitter via (6). In

the local frame fðtÞ ¼ 0, and the spatial components f⃗ ¼
ðfðrÞ; fðϕÞ; fðθÞÞ are given by a cross product of the local

three-momentum p⃗ ¼ ðpðrÞ; pðϕÞ; pðθÞÞ with the local mag-

netic field B⃗ ¼ ðBðrÞ; BðϕÞ; BðθÞÞ:

f⃗ ¼ p⃗ × B⃗

jp⃗j ; ð25Þ

as expected for synchrotron radiation [32,70]. Note that the

axes ðr̂Þ; ðϕ̂Þ, and ðθ̂Þ are orthogonal in the fluid frame with

ðr̂Þ × ðϕ̂Þ ¼ ðθ̂Þ, so the cross product has its standard form

in R3. For later reference, we record explicitly:

fðrÞ ∝ pðϕÞBðθÞ − pðθÞBðϕÞ;

fðϕÞ ∝ −pðrÞBðθÞ þ pðθÞBðrÞ;

fðθÞ ∝ pðrÞBðϕÞ − pðϕÞBðrÞ: ð26Þ
3
For θo > π=2, (82) of [35] generalizes to m̄ ¼ m−

Hðβ cos θoÞ. If θo < π=2, then the observer is above the mid-
plane, so geodesics with oddm arrive on the top half of the image,
while geodesics with even m arrive on the bottom. For θo > π=2,
the observer is below the midplane, so the parity of m switches.
See Fig. 7 of [35].

4
Notebooks available upon request to the corresponding

author.

5
For θo <

π
2
, �s ¼ −1 for both m ¼ 0 on the bottom of the

image (where �o ¼ −1) and m ¼ 1 on the top (where �o ¼ 1).
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The intensity of synchrotron radiation emitted along p⃗
depends on sin ζ, where ζ is the pitch angle between p⃗ and

B⃗ [32]:

sin ζ ¼ jp⃗ × B⃗j
jp⃗jjB⃗j

: ð27Þ

By construction, the intensity has magnitude

fμfμ ¼ sin2 ζjB⃗j2: ð28Þ

We model idealized axisymmetric pointlike emission,
following [1]. Our model therefore predicts relative values
of the polarized intensity across an image varying only due
to non-constant pitch angle and redshift factor, and does
not capture the variations present due to the electron dis-
tribution function and changing plasma properties. Our
model does not contain an absolute scale for the polarized

intensity, as we later take jB⃗j ¼ 1. Moreover, we do not
consider the partial incoherence of synchrotron radiation,
and we treat factors that contribute to the emissivity as
constant (such as variations in the plasma density or
temperature). This effectively predicts the polarized inten-
sities up to proportionality constants. Since no polarized
radiative transfer occurs outside of the pointlike emitters,
we further disregard all Faraday effects, setting the polari-
zation fraction to unity.
Our model predicts relative values of the polarized

intensity across an image varying only due to nonconstant
pitch angle and redshift factor. In this way, our model
does not capture the variations present due to the electron
distribution function and changing plasma properties. The
model does not contain an absolute scale for the polarized

intensity, as we later take jB⃗j ¼ 1. Moreover, we discard
the partial incoherence of synchrotron radiation; in our
idealized, axisymmetric model of pointlike emission fol-
lowing [32], we treat factors that contribute to the emis-
sivity as constant (such as variations in the plasma density
or temperature), effectively predicting the polarized inten-
sities up to proportionality constants. Since no polarized
radiative transfer occurs outside of the pointlike emitters,
we further disregard all Faraday effects, setting the polari-
zation fraction to unity.

Given fðaÞ in the local frame, fμ in Boyer-Lindquist
coordinates is computed via (8). Then, the Penrose-Walker
constant (12) for the trajectory is computed from fμ and pμ

at the source rs; θs ¼ π
2
[see (24)], which simplifies to

κ ¼ κ1 þ iκ2 ¼ rsðA − iBÞ;
A ¼ ðptfr − prftÞ þ aðprfϕ − pϕfrÞ;
B ¼ ½ðr2s þ a2Þðpϕfθ − pθfϕÞ − aðptfθ − pθftÞ�; ð29Þ

giving the simple relation

ðκ1; κ2Þ ¼ rsðA;−BÞ ð30Þ

for equatorial sources.
6

D. Observed polarization and redshift

Given the photon arrival position ðα; βÞ and its Penrose-
Walker constant κ, computed as described in the previous
subsections, the observed polarization (direction of electric
field transverse to photon momentum) is computed from
the components of fμ at large radius projected along the

α̂ and β̂ directions on the observer screen [37]:

ðfα; fβÞ ¼ 1

μ2 þ β2
ðβκ2 − μκ1; βκ1 þ μκ2Þ;

μ ¼ −ðαþ a sin θoÞ: ð31Þ

Here, (fα, fβÞ is a two-vector on the asymptotic observer
screen (see Appendix A of [37] for details).
The photon conserved energy E ¼ 1 is the energy

measured by stationary observers at infinity. The energy
measured in the rest frame of the emitting source is

Es ¼ pðtÞ ¼ −pμu
μ; ð32Þ

and the ratio of these two energies is the redshift,

g ¼ E

Es

¼ 1

pðtÞ : ð33Þ

Since Iν=ν
3 is invariant along a geodesic, the specific

intensity is Doppler boosted by a factor of g3 when it
reaches the observer.
The emitted intensity varies with frequency ν as

Iν ∼ ν−αν , with angular dependence ðsin ζÞ1þαν . A nonzero
spectral index in turn causes specific intensity to be boosted
by an additional factor of gαν when it reaches the observer,

7

giving Iν;o ¼ Iν;sg
3þαν . Note that, in this paper, “intensity”

(“flux”) always refers to specific intensity (flux). For an
optically and geometrically thin disk, which we assume
throughout Sec. IV, intensity grows linearly with the
geodesic path length lp through the emitting material [32]:

6
An analogous calculation to analytically compute geodesics

and parallel transport f is implemented in the ray-tracing code
GRTRANS [21]. Our model differs from this code because we
ray-trace forwards from a fixed emission radius, as opposed
to backwards from a fixed impact parameter. Furthermore, we
use the Legendre elliptic formalism presented by [35] as opposed
to the Carlson elliptic formalism presented by [71], and we
formulate the fluid-frame tetrad entirely in terms of Lorentz
boosts as opposed to using the results of a Gram-Schmidt
orthogonalization.

7
For a spectral index αν, the invariance of Iν=ν

3 implies that

Iν;o=ν
3
o ¼ Iν;s=ν

3
s ¼ ν

−ð3þανÞ
s , where o denotes observer and s

denotes source. Since ν ∝ pðtÞ, one has Iν;o ¼ ν3o=ν
3þαν
s ¼

E
−ð3þανÞ
s ¼ g3þαν .
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lp ¼ p
ðtÞ
s

p
ðzÞ
s

H; ð34Þ

with H the height of the disk, taken to be a constant. Since
the intensity is proportional to the square of the electric
field (i.e., the square of the polarization vector), the
observed components of the polarization vector are propor-
tional to the square root of the path length lp and Doppler

boost of g3þαν :

ðfαobs; f
β
obsÞ ∝

ffiffiffiffi

lp

q

g
3þαν
2 ðfα; fβÞ: ð35Þ

Note that following [37], we measure the EVPA counter-

clockwise from þβ̂:

EVPA≡ arctan

�

−
fαobs

f
β
obs

�

: ð36Þ

Our model assumes pure synchrotron radiation with a
constant polarization fraction of 1. Additionally, in this
paper, we take αν ∼ 1, which is consistent with M87*
observed at 230 GHz [32] and with the range of values
αν ∼ 0.5–1.5 that describe very bright flares ðαν ∼ 0.5Þ to
the average lower-flux density state ðαν ∼ 1.5Þ of Sgr A*
(see [72] and references therein).

E. Face-on coordinates and EVPA

This subsection reviews the special case of an on axis
observer. For a black hole viewed face on ðθo ¼ 0°Þ, the
coordinates ðα; βÞ on the screen degenerate because the β̂

axis becomes a point. Still, the radial screen coordinate

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ β2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ λ2 þ a2 cos2 θ0

q

→

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ a2
q

ð37Þ

remains well defined. There is a single spherical photon
orbit radius that crosses the spin axis, corresponding to

photons with λ ¼ 0. Taking ðb;φ ¼ arctan β

α
Þ in the

limit λ → 0 ðθo → 0Þ defines Cartesian coordinates
ðb cosφ; b sinφÞ that smoothly interpolate to the usual
definition for observers with θo > 0. The polarization
components are

ðfα; fβÞ ∝ ðb sinφκ2 þ b cosφκ1; b sinφκ1 − b cosφκ2Þ;
ð38Þ

and the EVPA is given by

EVPA ¼ arctan

�

−
κ2 sinφþ κ1 cosφ

κ1 sinφ − κ2 cosφ

�

: ð39Þ

The direct image of an axisymmetric source for a face-on
observer is entirely described bym ¼ 0 with�s ¼ −1, and

the geodesic equation for all spins is approximated well by
the simple relation of “just adding 1,” b ≈ rs þ 1 ðM ¼ 1Þ
[35]. Including subleading terms [see Eq. (10) of [41]],

rs ¼ b − 1þ 1 − a2

2b
þ 3ð5π − 16Þ

4b2
þOð1=b3Þ; ð40Þ

which may be inverted to yield

b ¼ rs þ 1þ a2 − 1

2rs
þ 50 − 2a2 − 15π

4r2s
þOð1=r3s Þ: ð41Þ

We will make use of this analytic expansion to quantify the
effects of spin on observed EVPA in Sec. V.

IV. POLARIZATION VISUALIZATIONS

In this section, we use our model to compute the polarized
image of equatorial emitting sources at a variety of different
spins, magnetic fields, and inclination angles. Using (35), we
compute the polarized intensity of various configurations
and present the resulting images as “tick plots” as in [32]. To
draw comparisons to M87*, we consider a < 0, θo <

π
2
,

corresponding to the clockwise fluid motion on the sky seen
around M87*.

8
In each tick plot we display a ¼ −0.99 to

represent the extremal Kerr limit, as exact expressions for
jaj ¼ 1 and θo ¼ π

2
require additional care (see, e.g., [41]).

The relationship between positive and negative spin is
discussed in detail in Appendix C.

A. On axis observers

Three sample tick plots for on axis observers of purely
radial, azimuthal, and vertical magnetic fields are presented
respectively in the left, middle, and right panels of Fig. 1.
We emphasize that these purely radial, azimuthal, and
vertical magnetic field geometries are idealized and are
specified pointwise. They have been chosen to probe the
breadth of potential magnetic field geometries that could be
present in realistic horizon-scale black hole accretion flows
or subsections of accretion flows. In reality, physical
magnetic fields vary throughout the accretion region and
contain nonzero radial, azimuthal, and vertical components.
Each tick has orientation aligned with the EVPA of the
arriving photon and length proportional to intensity (square
of the electric field). In each panel, the inner and outer
circles correspond to emission radii of rs ¼ 3 and rs ¼ 6,
respectively, and the boost parameter from (5) is taken to be

β⃗v ¼ 0. As expected from the axisymmetric model viewed
face-on, all three panels of Fig. 1 are rotationally sym-
metric. The ticks in the rightmost panel, which displays a

8
Note that this terminology differs from that used in EHT

Paper V [5], in which a < 0 corresponds to retrograde accretion
flow (counterclockwise on the sky). For us, a < 0 corresponds to
a prograde accretion flow (clockwise on the sky) with the spin
axis pointed away from the observer.
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vertical magnetic field, are significantly shorter than those
in the cases of radial and azimuthal fields; for purely

vertical fields B⃗ ¼ BðθÞ in (27), j sin ζj ∝ p⃗ × B⃗ ≪ 1 and is
only nonzero due to relativistic effects [58].
In addition to the direct image, our model includes

general subimages, also referred to as indirect images,
which are indexed by number of radial turning points m.
For largem in the face-on case, the impact parameter b will
approach the critical impact parameter bc, up to exponen-
tially suppressed corrections [35,73]. The definition of
critical parameters and the critical curve corresponding to
bound photon orbits are presented in Appendix B 4. For
illustration, tick plots for the first subimage corresponding
to the direct image in Fig. 1 are shown in Fig. 2, now
displayed for clarity for just a single emission radius

rs ¼ 6. The critical impact parameters bc are also shown
as dashed lines. Note that all of the tick plots display
relative polarized intensity from (35). The polarized flux
from subimages is suppressed by a demagnification factor,
which is described in Appendix B 6. When direct and
indirect images are summed, this can cause depolarization
in the total image [45].
The low-spin and high-spin signatures in Fig. 1 show-

case relatively similar EVPAs. The effect of spin becomes
slightly more visible at smaller emission radii due to the
stronger lensing effects of the higher curvature nearer to the
black hole. Relative to Fig. 1, the photon arrival positions in
Fig. 2 have all been pushed closer to the critical curve, and
the distinction between the low-spin and high-spin EVPAs
is consequently more pronounced in the indirect image than

FIG. 2. Polarized intensity tick plots for the indirect image corresponding to the direct image shown in Fig. 1 for θo ¼ 0 and βv ¼ 0,
now displayed for the single emission radius rs ¼ 6, and with critical impact parameters shown as dashed lines.

FIG. 1. Polarized intensity tick plots for three idealized magnetic field configurations: from left to right, radial B ¼ BðrÞ, azimuthal

B ¼ BðϕÞ, and vertical B ¼ BðθÞ, in the case the direct image seen by an on-axis observer θo ¼ 0. The fluid is modeled by an unboosted
ZAMO emitter (βv ¼ 0 in (5)). Each plot shows two spins (a ¼ 0 and a ¼ −0.99 in red and blue, respectively), as well as two emission
radii (rs ¼ 3 and rs ¼ 6, corresponding to the inner and outer rings, respectively).
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in the direct image. We quantify these effects for the face-
on case in Sec. V.

B. Inclined observers

The effects of spin on the observed polarization
pattern become more pronounced with increasing observer
inclination θo, as one may intuitively expect from the
appearance of a sin θo in (31). An illustrative example is
shown in Fig. 3, which displays tick plots for the direct

image of various equatorial field configurations B⃗ ¼ ðBðrÞ;
BðϕÞ; BðθÞÞ and boost directions χ [see (5)] observed at a
moderately high inclination ðθo ¼ 50°Þ and boost parameter
ðβv ¼ 0.3Þ. Again, the inner and outer circles correspond to

emission radii of rs ¼ 3 and rs ¼ 6, respectively. The fluid
rotation and boost configurations are taken, from left to right,
tomatch those in the top left, top right, and bottom left of Fig. 5
of [32]. The boost direction is chosen so that it is parallel to the
magnetic field. As in the face-on case, the effect of spin
becomes stronger at smaller emission radii. Due to the
moderately high observer inclination, in all three panels,
the bottom half of the image (corresponding to emission from
the near half of themidplane) is pushed towards the α axis and
has significantly lower intensity.
Note that for the cases of purely radial and toroidal fields

(left two panels) the polarized intensity at rs ¼ 6 is greater
than at rs ¼ 3, while the reverse holds for vertical fields
(right panel). This is due to the stronger lensing effects at

FIG. 3. Polarized intensity tick plots for direct image with θo ¼ 50° and boost parameter βv ¼ 0.3, shown for various equatorial field

configurations B⃗ ¼ ðBðrÞ; BðϕÞ; BðθÞÞ and fluid velocities χ [see (5)]. The fluid configurations are taken, from left to right, to match those
in the top left, top right, and bottom left of Fig. 5 of [32], with boost direction antiparallel to the magnetic field. Each plot shows two
spins (a ¼ 0;−0.99 in red and blue, respectively) and two emission radii (rs ¼ 3, 6, the inner and outer rings, respectively).

FIG. 4. Polarized intensity tick plots for the indirect images corresponding to the direct images shown in Fig. 3 for θo ¼ 50° and
βv ¼ 0.3, displayed for the single emission radius rs ¼ 6 with critical impact parameters shown as dashed lines.
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smaller radii, which increase the relative local pðrÞ and

therefore decrease the pitch angle (27) for B ¼ BðrÞ; BðϕÞ

and increase it for B ¼ BðθÞ [see (26)].
In Fig. 4, we also show the corresponding tick plots for

the first subimage (m ¼ 1 for bottom half of image and
m ¼ 2 for top half of image), now displayed for clarity for
only a single emission radius rs ¼ 6. As in Fig. 2, we
overlay the critical curves for the low-spin and high-spin
geometries as dashed lines. The high-spin critical curve is
substantially displaced from the image origin, significantly
affecting the photon arrival position. The corresponding
polarization is altered both by the change in arrival position
and the explicit dependence of polarization on spin in (31).
Because the photon arrival positions are closer to the
critical curve, the subimage shows a much higher degree
of symmetry across the α̂ axis than the direct image. Note
that compared with the direct image, the intensity in the
indirect image is no longer diminished for vertical fields
because photons in the indirect image experience stronger
lensing effects and their emission angle (27) relative to the
vertical magnetic field no longer must be small.

V. EVPA OF ON AXIS OBSERVERS

This section presents an approximate analytic expression
for the effect of spin on EVPA in face-on images, and
demonstrates the accuracy of this approximation using the
toy model.

A. Direct image

As described in Sec. III E, the direct image seen by an
on axis observer corresponds to source momenta with
λ ¼ 0 and is parametrized by the impact parameter

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ a2
p

. To leading order, b is related to the source
radius rs by “just adding 1” with subleading corrections
given in (41). Computing ðκ1; κ2Þ as described in Sec. III C
with ðλ ¼ 0; η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − a2
p

Þ yields an expression for the
EVPA as a function of b and rs, which may be a series
expanded in rs using (41). Applying this expansion to (39)
with βv ¼ 0, we obtain

EVPA

¼ ηe þφþBðθÞ sinηe
Beqr

−
2a

r2

þ sinηeð16cosηeðB2
eq þ 2ðBðθÞÞ2Þ þ 3BeqB

ðθÞð5π − 16ÞÞ
8B2

eqr
2

þO

�

1

r3s

�

; ð42Þ

with B⃗eq ≡ Beqðcos ηeðr̂Þ þ sin ηeðϕ̂ÞÞ (as in [32]). The

leading order correction to EVPA due to spin is −2a=r2,
which is independent of the magnetic field and hence a
purely geometric effect. The effect of spin is suppressed by
two orders of magnitude compared to the leading order

term, explaining the similarity between the low-spin and
high-spin EVPAs seen in Fig. 1.
As discussed in detail in [32], the Schwarzschild impact

parameter is extremely well approximated by the
Beloborodov relation [33], which for a face-on black hole

is [compare b2 ¼ r2s þ 2rs þ a2 þOðr−1s Þ using (41)]:

bBelo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsð2þ rsÞ
p

: ð43Þ

Defining EVPABelo ≡ EVPAðbBeloÞ, this implies
9

EVPA ≈ EVPAbelo −
2a

r2s
; ð44Þ

which holds in the limit where Beq → 0, even though (42)

will not be well defined. One can also show that this
relation holds for nonzero βv, indicating that the primary
effect of frame dragging on polarization does not depend on
the orbital speed of the accreting material. Note that the
minus sign in (44) implies that increasing a will cause the
EVPA to rotate in the opposite direction of the spin.

The − 2a=r2s correction matches the calculations per-
formed by [47–49] and first termed “gravitational Faraday
rotation” by [50].

10
Past work derived this result by

analyzing local reference frames/directions at every point
on the geodesic in question. Because such reference frames
are not unique, the ambiguity historically led to disagree-
ments about the effects of spin on parallel transport [48].
By combining conservation of κ with the “just add one”
approximation, we entirely overstep this issue, providing a
clean approximation of the gravitational Faraday effect that
is recast in terms of only the emitter and observer frames.
In Fig. 5, we test the accuracy of (44) by plotting the

EVPA as a function of emission radius (scaled in units of

M) at φ ¼ 0, on the image for purely radial B ¼ BðrÞ,
toroidal B ¼ BðϕÞ, and vertical B ¼ BðθÞ magnetic fields.
By axisymmetry, the EVPA at an arbitrary angle φ ¼ ϑ is
offset by exactly ϑ from the EVPA at φ ¼ 0. The numeri-
cally computed values are shown for a ¼ 0 and a ¼ −0.99
in blue and green, respectively, and the approximations for
a ¼ 0 (Beloborodov) and a ¼ 1 in (44) are shown as
dashed yellow and purple lines, respectively. The approxi-
mation (44) is demonstrated to hold reasonably well in all
cases for r≳ 6M. In the case of radial and toroidal fields
with ηe ¼ 0 and ηe ¼ π, respectively, the EVPA will
asymptote to ηe þ φ (up to additive factors of π). For
the purely vertical field, the EVPA asymptotes to φ.

9
We also remark that we have not yet found an accurate series

expansion akin to (44) for arbitrary inclinations.
10
The setup of our problem is slightly different than that of

[47–49]. While we fix φ, they effectively fix ϕ. The results that
appear within the calculation, however, still match. If one instead
fixes ϕ, then the arrival coordinate φ will shift by ∼2a=r2s and the
net polarization rotation will be Oðr−3s Þ [47,48]. Weak-field
expansions performed by [50,51] show a leading order correction
of Oðr−3minÞ, with rmin the largest root of the radial potential.
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Note that the Schwarzschild EVPA is constant over the
emission radius due to spherical symmetry of the
Schwarzschild solution, which implies that fixed screen
angle φ corresponds to fixed emission angle ϕ [see (49)
below]. In this case, the EVPA at fixed φ remains
unchanged as a function of rs for magnetic fields that
are aligned with the local frame axes.
Since the effect of spin is to rotate all polarization ticks

by an equal amount ð−2a=r2s Þ, the geometric imprint of
spin on polarization is indistinguishable from that of elec-
tromagnetic Faraday rotation by a coherent external screen
at a fixed observing frequency. Therefore, single-frequency
observations at the resolution of the EHT will likely be
unable to determine black hole spin from the geometric
rotation alone. However, because the geometric rotation is
achromatic while Faraday effects are chromatic, it could be
isolated by observations at multiple frequencies. In addi-
tion, if the magnetic field and spin of the black hole can be
determined via other methods, deviations from the uniform
geometric rotation could provide information about internal
Faraday rotation, which causes differential relative rotation
across the image.
While the geometric effect of spin on photon trajectories

is subleading, spin can strongly influence the accretion
dynamics and emissivity profile of the plasma surrounding
the black hole. For instance, the location of the innermost
stable circular orbit (ISCO) depends strongly on spin and in
some cases may control where the accretion disk truncates,
altering the resultant appearance of the black hole. This
principle has helped guide numerous measurements of
black hole spin using both x-ray reflection spectroscopy
and continuum fitting [74–77]). Comparison of the simple
geometric approximation (44) with observed data and
GRMHD simulations could provide additional ways to
distinguish geometric effects of spin from these astrophysi-
cal effects of spin. These phenomena, which cannot be

disentangled in observed data, are also difficult to disen-
tangle in GRMHD simulations. The GRMHD simulations
are evolved from initial conditions in a fully general
relativistic framework, allowing the effects of spin simul-
taneously change the geometry, the distribution of matter,
and the magnetic field configurations therein [5].
It is instructive to compare the results of (44) to the work

of [27], which analyzed the EHT GRMHD library by
examining rotational modes of images with low-inclination
ð17°Þ and found that the phase of the second rotational
Fourier mode (which describes rotational symmetry and is
denoted β2 [27]) shifted by over 40° from a ¼ 0 to
a ¼ 0.94. By contrast, (44) suggests that for an emission
radius of, e.g., rs ¼ 6 (the Schwarzschild ISCO), β2 should

only rotate by 4a=r2s ∼ 6°. The spin-dependent effects
present in the images analyzed by [27] are therefore likely
a result of the spin-dependent accretion dynamics and not
of the changing underlying geometry in which the geo-
desics propagate.

B. Subimages

The preceding face-on EVPA approximation may be
generalized to subimages using the fact that for largem, the
impact parameter b approaches the critical impact param-
eter bc up to exponentially suppressed corrections [35,73].

Performing the series expansion of (39) in r−1s with the
replacement b → bc, one finds that the frame dragging
produces an Oð1Þ effect on the subimage EVPA:

EVPAm ≈ EVPAm;Sch þ ð−1Þmþ1 sin−1ða=bcÞ þO

�

1

rs

�

;

ð45Þ

where EVPAm;Sch is the Schwarzschild face-on subimage

ðm > 0Þ EVPA. The critical impact parameter bc has a
closed form expression in terms of a, M (given by e.g.,

FIG. 5. Face-on EVPA as a function of emission radius (in units of M) at φ ¼ 0 on the image for purely radial B ¼ BðrÞ, toroidal
B ¼ BðϕÞ, and vertical B ¼ BðθÞ magnetic fields. The numerically computed values are shown for a ¼ 0 and a ¼ −0.99 in blue and
green, respectively, and the approximations for zero-spin (Beloborodov) and high spin in (44) are shown as dashed yellow and purple
lines, respectively.
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Eq. (67) of [35]). Note that sin−1ða=bcÞ is approximated

by a=
ffiffiffiffiffi

27
p

to within 8% for all spins −1 ≤ a ≤ 1,

and sin−1ða=bcÞja¼1 ≈ 12°.
Like the approximation (42) for the direct image, (45)

holds for any magnetic field configuration and boost

parameter. The correction sin−1ða=bcÞ is analogous to the
“gravitational Faraday rotation” in the indirect image, thus
extending the work of [46–51] to the strongly lensed regime.
Unlike in the direct case, the effects of spin on the

indirect image remain important even at large emission
radii since the trajectory of a photon in the indirect image
includes a radial turning point, which implies that the
photon must move towards the black hole at some point
after its emission into regions of higher curvature in which
geometrical effects are important.
We demonstrate this effect in Fig. 6, which displays

subimage EVPA as a function of emission radius (scaled in
units of M) at φ ¼ 0. Again, by axisymmetry, the EVPA at
an arbitrary angle φ ¼ ϑ is offset by exactly ϑ from the
EVPA at φ ¼ 0. For maximal spin a ¼ −0.99 the numeri-
cally computed m ¼ 1, 2, 3 subimage EVPAs are shown in
red, green, and blue, respectively. The Schwarzschild
EVPA, which does not depend onm at fixed φ for magnetic
fields aligned with the local frame axes (see discussion of
Fig. 5 in the previous subsection), is shown in black, and

the approximation (45) of EVPASch � sin−1ða=bcÞ is
shown with a dashed black line. In Fig. 6, the higher order
subimages near a high-spin black hole oscillate in m about
the Schwarzschild EVPA before asymptoting to

EVPASch � sin−1ða=bcÞ at large rs and m.
11

VI. ORBITING HOT SPOTS

An important application of our model is the computa-
tion of the polarization of an orbiting “hot spot.” As
discussed in the introduction, such hot spots are frequently
invoked to explain the observed flares in near-infrared and
sub-millimeter frequencies near Sgr A*. These flares can be
tracked on short timescales.

A. Setup

In our framework, the hot spot can be modeled as a
point-source emitter orbiting on a circular, prograde,
equatorial geodesic. Our simple model of point-source
emission neglects any effects associated with the internal
structure of the hot spot, such as shearing and cooling.
Simulations of hot spots that include shearing and other
plasma effects can be found in, e.g., [78,79].
Measured from the ZAMO (which is not on a geodesic),

the geodesic emitter has apparent boost [see (5) and, e.g.,
Eq. (13) of [41]]:

βv ¼
a2 − 2jaj ffiffiffirp þ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ rðr − 2Þ
p

ðjaj þ r3=2Þ
; χ ¼ −π=2; ð46Þ

where we explicitly include the absolute value to emphasize
that under a → −a, the boost remains in the same direction
relative to the ZAMO. To track hot spot polarization, it is
useful to work with the Stokes parametersQ andU, defined
following [37] by

Q ¼ ðfβÞ2 − ðfαÞ2; U ¼ −2fαfβ: ð47Þ

As a reminder to the reader, fα and fβ are individual
components of the screen polarization vector. Note that our
model of pure synchrotron radiation has a polarization

fraction of 1, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ U2
p

¼ I.

FIG. 6. Face-on EVPA at φ ¼ 0 as a function of emission radius (in units of M) for the first three subimages. The columns are

displayed for purely radial ðB ¼ BðrÞ; ηe ¼ 0Þ, toroidal ðB ¼ BðϕÞ; ηe ¼ πÞ, and vertical ðB ¼ BðθÞÞ magnetic fields. For a ¼ −0.99 the
numerically computedm ¼ 1, 2, 3 subimage EVPAs are shown in red, green, and blue, respectively. The Schwarzschild EVPA is shown

in black and the approximation EVPASch � sin−1ða=bcÞ is shown with a dashed line.

11
Note that at small radii, the EVPA of the a ¼ −0.99, m ¼ 1,

2, 3 subimages shown in Fig. 6 is closer to the Schwarzschild
value than the corresponding a ¼ −0.99 direct m ¼ 0 image
shown in Fig. 5. We have yet to find an intuitive explanation
for this.
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Tracking the motion of the hot spot in the Q, U plane
gives rise to polarization loops that trace the screen
polarization pattern over time. The phase in Q, U space
tracks the EVPA via the relation

EVPA ¼ 1

2
arctan

�

U

Q

�

; ð48Þ

following (36), and the magnitude in Q, U space tracks the
polarized flux of the hot spot image. To convert intensity to
flux, we multiply by a magnification factor that relates a

differential area element on the observer’s screen to a
differential area element on the emitter’s screen (described
in detail in Appendix B 6).
Figures 7 and 8 illustrate Q, U loops produced by our

semianalytic model for the intensity of direct emission of a
hot spot in a purely vertical magnetic field and a purely
equatorial field, respectively. Each panel of these figures
shows spins of a ¼ 0;−0.99 in red and blue, respectively,
as well as the three inclinations of θo ¼ 20°; 45°; 70° in
rows from top to bottom, and three emission radii of rs ¼
6M; 8M; 10M in columns from left to right. Note that radii

FIG. 7. Polarized fluxQ vsU for equatorial magnetic fields. Plots are shown for spins of a ¼ 0;−0.99 in red and blue, respectively, as
well as three inclinations of θo ¼ 20°; 45°; 70° in rows from top to bottom, and three emission radii of rs ¼ 6M; 8M; 10M in columns
from left to right. The top left panel uses black dots to indicate four azimuthal emission coordinates ϕ on the Schwarzschild loop, spaced
by 90°. Black crosshairs indicate the origin of each plot.
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rs ≥ 6 are outside (or at) the ISCO and admit stable orbits
for all spins. The top left panel of each figure also indicates
the location of four azimuthal emission coordinates ϕ,
spaced by 90° on the Schwarzschild loop, computed using
the fact that Schwarzschild geodesics lie in a plane and
taking ϕ ¼ φ ¼ 0 aligned on the sky [32],

tanðφ − nπÞ ¼ tanϕ cos θo; ð49Þ

where n denotes a subimage number (recall that n ¼ 0 has
m ¼ 1 for β > 0 and m ¼ 0 for β < 0; see footnote 5).

As discussed in Secs. IV and V, the differences between
polarization emitted from an orbiter of fixed boost for high
and low spin black holes is generally small at rs ≥ 6, with
the largest differences appearing at high inclination. For the
geodesic orbiter (46) considered in this section, the boost
parameter βv depends strongly on a, which is the primary
source of differences seen in the Q, U loops for low and
high spins in Figs. 7 and 8.
The Q, U loops arising from equatorial and vertical

magnetic field configurations have different topological
structure. In particular, the equatorial field configuration
gives rise to Q, U plots with two loops enclosing the origin

FIG. 8. Polarized flux Q vs U for vertical magnetic field. Plots are shown for spins of a ¼ 0;−0.99 in red and blue, respectively, as
well as three inclinations of θo ¼ 20°; 45°; 70° in rows from top to bottom, and three emission radii of rs ¼ 6M; 8M; 10M in columns
from left to right. The top left panel uses black dots to indicate four azimuthal emission coordinates ϕ on the Schwarzschild loop, spaced

by 90°. Black crosshairs indicate the origin of each plot.
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at all spins, emission radii, and inclination angles, while
two loops are only present for low observer inclinations in
the case of vertical fields. We explore the variations inQ,U
loop topology in more detail in the following section.
TheQ,U loop topology produced by ourmodel, shown in

Figs. 7 and 8, is qualitatively consistent with the results of
polarization loop studies for Sgr A* by GRAVITY [57,58].
In particular, we find that purely equatorial fields always give
rise to two origin-enclosing Q, U loops, while fields with a
nonzero vertical component can give rise to a single loop.

12

Note that the double loops in the ray-traced and observed
figures presented in [57,58] do not encircle the origin. A shift
in observed or simulatedQ,U loops relative to the results of
our simple geometricmodel of a point emitter could be due to
the inclusion of indirect images, as we illustrate in Sec. VI C.
A shift could also arise as a result of Faraday conversion of
StokesQ, U to circularly polarized Stokes V and could also
arise for hot spots with physical extent large enough for

p⃗ × B⃗ to vary significantly over the emitting region. Any
stable polarized background will also add an offset (possibly
ϕ dependent) in Q, U.
The lack of strong dependence on spin in Figs. 7 and 8

parallels prior studies of both simulations and data. The
work of [14] ray-traced hot spots around Sgr A* in both
NIR and radio frequencies and found minimal spin-
dependence of the hot spot light curve for fixed orbital
radius. Similarly, [58] fit data for the July 22 Sgr A* flare
using three values of a and saw minimal discrepancies.

13

B. Q, U loop topology

1. Equatorial fields

For the equatorial fields BðθÞ ¼ 0 shown in Fig. 7, the Q,
U loops in the direct emission all wrap twice around the
origin, corresponding to ψnet ¼ 2π, where ψnet is the net
rotation of the EVPA over the course of one hot spot orbit.
To explain this feature, we first note that for θo ¼ 0,
axisymmetry dictates that the Q, U diagram will consist
of two identical loops stacked on top of each other, both of
which encircle the origin. Note that axisymmetry also
implies that the EVPA will rotate in the same direction as
the hot spot orbit. As θo increases, the two loops will
become distinct. Suppose for contradiction that one loop
were to disappear; by continuity, one of its points must

pass through the origin ðQ ¼ U ¼ 0Þ. But this is impos-

sible for BðθÞ ¼ 0 since pðzÞ ≠ 0 implies that locally
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þU2
p

∝ jB⃗ × p⃗j ≠ 0, which in the absence of
Faraday conversion is directly proportional to the
observed value.
Thus, two origin-enclosing Q, U loops are always

present in our geometric model with axisymmetric
equatorial field configurations. In Fig. 7, the inner loop
dramatically shrinks at high inclinations due to Doppler
deboosting and small pitch angles [see (27)], but always
encircles the origin. With two nested loops present in the
image, the direction of EVPA rotation matches the direction
of motion of the hot spot on the sky.

2. Vertical fields

In nonzero vertical fields BðθÞ ≠ 0, Q, U loops can
deform more dramatically. In particular, as the observer
inclination θo increases, the inner loop may contract to a
point and then vanish altogether, as demonstrated in each
column of Fig. 8 and also noted in [58].
In images with two Q, U loops, ψnet ¼ 2π, and the

direction of EVPA rotation never changes over the hot spot
orbit. In images with one Q, U loop, the EVPA rotation
direction instead changes twice over the hot spot orbit
before the EVPA returns to its initial value.
At moderate inclinations, the Q, U curve in Fig. 8 at

θo ¼ 45° with r ¼ 10M displays a lemniscate (figure-
eight) shape that crosses over itself due to strong
Doppler effects, but it has the same EVPA rotation behavior
as a single loop. In general, these lemniscates can form and
then pull all the way through themselves as θo increases,
producing the patterns seen in Fig. 8 at θo ¼ 70°.
For illustration, in Fig. 9, we plot the Schwarzschild

EVPA as a function of orbital azimuth [again using (49)]

FIG. 9. Schwarzschild EVPA as a function of azimuth ϕ for a
hot spot orbiting in a purely vertical field. Two inclinations
θo ¼ 38°; 42° are shown in blue and red, respectively.

12
Results of [57,58] are displayed in intensity-normalized

polarization fraction Q=I; U=I and therefore cannot be quanti-
tatively compared to our Q, U (we assume a polarization fraction
of 1). However, normalization does not affect the observed phase
in Q, U space, so it is still meaningful to compare topological
features of our loops.

13
While the polarization pattern of a pointlike emitter orbiting

on a fixed radius depends negligibly on the spin of the black hole,
unpolarized observations of physical hot spots do provide an
important observational target for the interferometric experiments
that can constrain spin very well [79].
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for a hot spot in a purely vertical field at two observer
inclinations, θo ¼ 38°; 42°. The EVPA continuously rotates
in the same direction at θo ¼ 38°, corresponding to two Q,
U loops, while the EVPA changes rotation direction twice
at θo ¼ 42°, corresponding to one loop.
When considering only the direct image in our model,

the inner Q, U loop always contracts to the origin as θo
increases, as it must for ψnet ¼ 2π to change to ψnet < 180°;
the single loop with a point at the origin corresponds to
the boundary case of ψnet ¼ 180°. We remark that the
point to which the inner Q, U loop contracts always
appears as a cusp in Q, U space, where the curvature of
the Q, U curve diverges. Though the cusp is smoothed out
in physical observations with finite resolution, it is instruc-
tive to consider its geometric interpretation, included in
Appendix D.
When the inner loop of a double-loop configuration is

shifted off the origin, it no longer has ψnet ¼ 2π. But
as long as the outer loop encircles the origin, then
ψnet ≥ 180°. In [57], the observed single Q, U loop for
the July 28, 2018, flare had ψnet ≥ 180°, implying that it
encircles the Q, U origin. For the range of inferred radii,
their simulations required a certain range of observer
inclination θo ∼ 15 − 30° for a loop enclosing the origin
to form (see [57] Appendix D). This is consistent with our
analysis: for Q, U loops of direct images in vertical fields,
we find loops enclosing the origin only at low-to-moderate
inclinations. There is a single origin-enclosing (and for us,
origin-intersecting) loop for which the polarization and hot
spot orbital periods are equal, only present at a (radius-
dependent) critical inclination. Physical effects, discussed
in the previous and following subsections, that shift the
loops would only function to modify these ranges.
We note additionally that for fields with zero azimuthal

component (such as those that best fit the July 28 flare in
[58]), if ψnet ≤ 180°, then increasing θo will never cause
ψnet > 180°. To prove this, note that for a fixed a, rs, and

nonazimuthal B⃗ field, there is only one pair of conserved
quantities ðη; λÞ that satisfyQ ¼ U ¼ 0 in the direct image,
so there is only one inclination angle that satisfies Q ¼
U ¼ 0 (see Appendix D for further justification). Hence
loops of the direct image can pass through the origin at
most once; if ψnet ≤ 180°, then increasing θo cannot cause
ψnet > 180° again.

C. Including subimages

Relative to the direct image, subimages appear both time
delayed and demagnified due to the longer path length of
the corresponding photon trajectories. These effects are
reviewed in Appendixes B 5 and B 6, respectively, and
must be taken into account to compute the contribution of
indirect images to the polarized flux of an orbiting hot spot.
A sample polarized flux loop including the direct and

first indirect image is displayed in Fig. 10 for a hot spot
orbiting a Schwarzschild black hole with rs ¼ 6; θo ¼ 11°,

and B⃗ ¼ 1
ffiffi

6
p ð1; 1; 2Þ. As discussed in the previous sub-

section, the secondary loops in the direct emission are
origin enclosing. Figure 10 illustrates that the time-delayed
and demagnified Q, U contribution from subimages can
generally displace the secondary loop from encircling the
origin.
When the direct and indirect images are summed,

this can cause depolarization; in this case, the depolariza-
tion will be strongest when the subimage has the largest
relative flux [14]. Future investigations may reveal whether
depolarization in the total image could be used as a
robust signature of photon subrings, and could be an
interesting future application of our model and traditional
ray-tracing codes.

VII. SUMMARY

In this paper, we developed a semianalytic toy model for
polarized equatorial synchrotron emission in the Kerr
geometry. We computed the polarized images of axisym-
metric fluid orbiting in various magnetic field configura-
tions. Our simple model allowed us to isolate the individual
effects of spin, magnetic field, and observer inclination on
polarization signatures of the direct image and photon ring.
In the face-on case, we found that an analytic approxi-

mation to photon trajectories yields a series expansion for

the face-on EVPA, revealing a Oð1=r2s Þ correction from
spin to the EVPA of the direct image but a Oð1Þ correction
to the EVPA of the indirect image. These calculations
confirm results from previous studies of “gravitational

FIG. 10. Polarized Q, U flux loop for an orbiting hot spot at

rs ¼ 6; a ¼ 0; θo ¼ 11°; B⃗ ¼ 1
ffiffi

6
p ð1; 1; 2Þ, including the direct

image (solid line) and the sum of the direct plus first indirect
image (dashed line).
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Faraday rotation” [46–51] and extend prior work to the
strongly lensed regime.
Our results bear direct relevance to observations and

simulations of the supermassive black hole M87*, which is
believed to be viewed at nearly face-on inclination [80].
Our model suggests that differences between images of
low-spin and high-spin simulations of M87* arise primarily
from differences in accretion dynamics, as opposed to the
frame dragging of null geodesics. In the future, we hope to
extend our calculations of analytic approximations to
inclined observers as well.
As an additional application of our toy model, we

computed the polarized image of orbiting hot spots and
provided an analytical framework for interpreting the top-
ology ofQ,U loops observed in Sgr A* flares. In particular,
we explained how the magnetic field direction and observer
inclination individually control the number and shape of Q,
U loops present, consistent with the interpretation provided
by the GRAVITY collaboration [57,58].
While our toy models provide insight through simplicity,

more complicated astrophysical effects are necessary to
fully describe observed polarization patterns. For example,
a realistic accretion model that includes turbulence cannot
be modeled by axisymmetric rings of matter orbiting in a
constant magnetic field, and Faraday effects can scramble
the observed polarization pattern. Our work does not
attempt to provide a complete, physically realistic model;
many highly developed ray-tracing codes already exist for
this purpose (such as [21,26,81]). Instead, our simple toy
model provides intuition for the geometric effects of the
Kerr spacetime on photon propagation and its imprint on
polarized images.
We have disentangled the roles of astrophysics and

geometry, paving the way for a more complete under-
standing of polarimetric observations and how they are
affected by a multitude of competing factors. Simple toy
models have already played a key role in interpreting
polarized black hole images (e.g., [8,32]), and we hope that
our model and its future developments—such as extensions
to include nonequatorial emission and circular polarization
—will continue to provide new insights into polarimetric
observations and simulations.
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APPENDIX A: DETAILS IN ORBITING

FLUID MODEL

In this Appendix, we include for concreteness the
explicit expressions for the ZAMO tetrad and boost
matrices described in Sec. II. The ZAMO tetrad appearing
in (4) can be arranged into a matrix

ðeZÞμðaÞ ¼

0

B

B

B

B

B

B

@

1

rs

ffiffiffiffi

Ξs

Δs

q

0
ωs

rs

ffiffiffiffi

Ξs

Δs

q

0

0

ffiffiffiffi

Δs

p

rs
0 0

0 0
rs
ffiffiffiffi

Ξs

p 0

0 0 0 − 1

rs

1

C

C

C

C

C

C

A

; ðA1Þ

so that

0

B

B

B

@

VðtÞ

VðrÞ

VðϕÞ

VðθÞ

1

C

C

C

A

¼ eZ

0

B

B

B

@

Vt

Vr

Vϕ

Vθ

1

C

C

C

A

: ðA2Þ

The Lorentz transformation Λ
ðaÞ

ðbÞ corresponding to (5)

is given by the matrix

Λ¼

0

B

B

B

@

γ −βγ cosχ −βγ sinχ 0

−βγ cosχ ðγ−1Þcos2χþ1 ðγ−1Þsinχ cosχ 0

−βγ sinχ ðγ−1Þsinχ cosχ ðγ−1Þsin2χþ1 0

0 0 0 1

1

C

C

C

A

ðA3Þ

The explicit components of the tetrad (7) relating the
boosted local frame to Kerr are

e0ðtÞ ¼
γ

rs

ffiffiffiffiffi

Ξs

Δs

s

∂t þ
βγ cos χ

rs

ffiffiffiffiffi

Δs

p

∂r

þ
 

γωs

rs

ffiffiffiffiffi

Ξs

Δs

s

þ rsβγ sin χ
ffiffiffiffiffi

Ξs

p
!

∂ϕ;

e0ðrÞ ¼
βγ cos χ

rs

ffiffiffiffiffi

Ξs

Δs

s

∂t þ
1þ ðγ − 1Þcos2χ

rs

ffiffiffiffiffi

Δs

p

∂r

þ
 

βγωs cos χ

rs

ffiffiffiffiffi

Ξs

Δs

s

þ rsðγ − 1Þ cos χ sin χ
ffiffiffiffiffi

Ξs

p
!

∂ϕ;

e0ðϕÞ ¼
βγ sin χ

rs

ffiffiffiffiffi

Ξs

Δs

s

∂t þ
ðγ − 1Þ cos χ sin χ

rs

ffiffiffiffiffi

Δs

p

∂r

þ
 

βγωs sin χ

rs

ffiffiffiffiffi

Ξs

Δs

s

þ rsððγ − 1Þsin2χ þ 1Þ
ffiffiffiffiffi

Ξs

p
!

∂ϕ;

e0ðθÞ ¼ −
1

rs
∂θ: ðA4Þ
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APPENDIX B: DETAILS OF SEMIANALYTIC

CALCULATION

1. Definition of special functions

The special functions in Sec. III B are defined as follows:

FðxjkÞ ¼
Z

x

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ksin2θ
p ¼

Z

sin x

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − t2Þð1 − kt2Þ
p ;

KðkÞ ¼ F

�

π

2

�

�

�

�

k

�

;

snðujkÞ ¼ sin ðF−1ðxjkÞÞ; ðB1Þ

compatible with Mathematica 12 [69]. Elliptic functions
are computed in PYTHON using the package MPMATH [82].

2. Radial roots

See Appendix A of [35]. We introduce

A ¼ a2 − η − λ2;

B ¼ 2M½ηþ ðλ − aÞ2�;
C ¼ −a2η;

P ¼ −
A2

12
− C;

Q ¼ −
A

3

��

A

6

�

2

− C

�

−
B2

8
; ðB2Þ

and

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2ð31=3PÞ þ 21=3H2=3

2ð62=3H1=3Þ −
A

6

s

> 0;

H ¼ −9Qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12P3 þ 81Q2

p

: ðB3Þ

In terms of these definitions, the four roots are

r1 ¼ −z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
A

2
− z2 þ B

4z

r

;

r2 ¼ −zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
A

2
− z2 þ B

4z

r

;

r3 ¼ z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
A

2
− z2 −

B

4z

r

;

r4 ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
A

2
− z2 −

B

4z

r

: ðB4Þ

Note that we have altered the root of the resolvent cubic
from [36] so that all cube roots can be taken as principal

[i.e., we take ð−1Þ1=3 ¼ eiπ=3 as opposed to −1]. This
convention is default in Mathematica 12 and NUMPY.

3. Sign �r of initial radial motion

The sign �r in (9) depends on fλ; η; rs; a; θo; mg and
must be computed semianalytically. To do so, one must first
check whether a given geodesic contains a radial turning
point (equivalently, whether the geodesic terminates inside
or outside the critical curve [35]). Geodesics that do not
contain a turning point (and thus fall inside the critical
curve) must have �r ¼ þ1 to reach infinity. For geodesics
that do contain a turning point, one must check whether a
ray shot backwards encounters the turning point before or
after the desired emission coordinates. For geodesics with a
turning point, the radial integral Ir has antiderivative given
by (A9) of [36]:

Z

dr
ffiffiffiffiffiffiffiffiffiffi

RðrÞ
p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p F

�

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r − r4

r − r3

r31

r41

r

jk
�

: ðB5Þ

The turning point is located at r4, at which point the
antiderivative vanishes. Following [35], the radial integral
Iturnr for the portion of the geodesic connecting the turning
point to the observer is simply the limit of Eq. (B5) with
r → ∞, as we assume the observer is located at infinity,

Iturnr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p F

�

arcsin

ffiffiffiffiffiffi

r31

r41

r
�

�

�

�

k

�

: ðB6Þ

Since Ir ¼ Gθ is strictly increasing along the geodesic
[35], then rays with Gm

θ < Iturnr will not encounter the

turning point, and rays with Gm
θ > Iturnr will encounter the

turning point. We therefore have

�r ¼
�þ1 b < bc

signðIturnr −Gm
θ Þ b > bc

: ðB7Þ

As m grows, the boundary between rays with �r ¼ 1 and
�r ¼ −1 approaches the critical curve; rays with m ≫ 1

that terminate outside the critical curve must be emitted
with �r ¼ −1 so that they can asymptote to a spherical
photon orbit before escaping to infinity. Thus �r →

signðb − bcÞ as m → ∞.

4. Critical parameters and critical curve

We follow [35], to which we refer readers for more
details and discussion. Tildes denote “critical” parameters,
evaluated at radii r̃ at which the Kerr geometry admits
bound photon orbits, lying within r̃− ≤ r̃ ≤ r̃þ, with

r̃� ¼ 2M

�

1þ cos

�

2

3
arccos

�

� a

M

���

: ðB8Þ

Photons on orbits with radius r̃ have critical parameters
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λ̃ ¼ aþ r̃

a

�

r̃ −
2Δ̃

r̃ −M

�

;

η̃ ¼ r̃3

a2

�

4MΔ̃

ðr̃ −MÞ2 − r̃

�

: ðB9Þ

On the observer screen, these parameters define a closed
“critical curve” parametrized by r̃. Note that each radius r̃
defines two points on the critical curve corresponding to the
two possible values �o (two possible values �β).

5. Schwarzschild subimage time delay

Due to longer path lengths between the source and
observer, subimages of an emitting source appear at a time
delay relative to the direct image. The expression for time
elapsed between source and observer follows from the
geodesic equation [see, e.g., (7c) of [35]], and in the
Schwarzschild ða → 0Þ case is given by

Δtn ¼ to;n − ts;n ¼
Z

�dr
r3

ðr − 2Þ
ffiffiffiffiffiffiffiffiffiffi

RðrÞ
p ; ðB10Þ

where ts;m and to;m denote the times of source emission and

observation, respectively, for the nth subimage. To incor-
porate time delay between the direct and indirect image in
the hot spot model, we suppose that the hot spot is located
at ϕ ¼ 0 when ts ¼ 0. In the a ¼ 0 case, we may use (49)
to obtain

tanðφ − nπÞ ¼ tan½ωsðto;n − ΔtnÞ� cos θo; ðB11Þ

where ωs ¼ −r−3=2s is the angular velocity of the equatorial
geodesic in Schwarzschild [40] [corresponding to (46)
with a ¼ 0], and we have added the minus sign to be
consistent with clockwise motion on the sky ðχ ¼ −π=2Þ.
Using (B10)–(B11), we numerically compute to;nðφÞ,
and interpolate the inverse function φðto;nÞ to find

Qðφðto;nÞÞ; Uðφðto;nÞÞ as a function of to;n. We sum the

Stokes parameters of distinct subimages arriving at the
same to to obtain the total observed intensity or flux.

6. Magnification and flux

To compute the image flux, we must consider a bundle of
null geodesics with infinitesimal but nonzero area emanat-
ing from the emitting source. The total flux from such a
bundle of null rays is the integral of the observer intensity
over the projection of the area of the bundle of rays on the
observer’s screen. In practice, this involves computing
the Jacobian relating differential area elements between
the emitter and observer screen, which is outlined in, e.g.,
[39,40]. The area element of the solid angle corresponding
to the bundle of rays of the observer screen at radius ro in

Bardeen coordinates is dαdβ=r2o, so the Stokes linearly
polarized flux is the area integral

∯ dαdβ

r2o
ðQ;UÞ ¼ ðQ;UÞ

r2o
A; A ¼∯ dαdβ; ðB12Þ

whereA is the area of the image on the observer screen, and
Q, U are defined using (35) and (47), including the redshift
but without including the path length, as the hot spot is an
isotropic circular emitter rather than a thin disk. In (B12)
we take Q, U (along with ro) to be constant over the image
of an infinitesimal bundle of rays. We compute the area A
directly following [40], defining the local “source screen”
ðtÞ ¼ ðrÞ ¼ 0 in the frame of the orbiting geodesic emitter

[corresponding to boost (46)]. Note that the factor of r2o
drops out of the ratio of direct and indirect image flux.

APPENDIX C: IMAGE SYMMETRIES

This Appendix records changes in the polarized image
under various parameter sign flips. Such transformations
correspond to symmetries of geodesics, which only in
certain fluid and magnetic field configurations correspond
to symmetries of the polarized image.

1. Observer inclination θo → π − θo

Consider a photon arriving at position ðα; βÞ for an
observer at inclination θo <

π
2
relative to the positive black

hole spin axis. The observer at location π − θo will observe
photons with an opposite sign momentum along the spin
axis, �o → ∓o, and the arrival position in β will corre-
spondingly flip: β → −β. By inspection of (14) the geo-
desic conserved quantities are invariant.

14

For the polarized image with a nonvertical field

ðBðθÞ ¼ 0Þ, the sign flip �o will cause fðrÞ and fðϕÞ to
flip sign by inspection of (26). In this case, κ1 flips sign and

the polarization corresponding to ðfα; fβÞ at ðα; βÞ for an
observer at θo <

π
2
will appear as ð−fα; fβÞ at position

ðα;−βÞ for an observer at π − θo. For fields that contain

nonzero BðθÞ, the same result is produced under the addi-

tional transformation BðθÞ
→ −BðθÞ.

Furthermore, an observer at π − θo with flipped values of

the equatorial magnetic field B⃗eq → −B⃗eq corresponds to a

flip fθ → −fθ, which complex conjugates κ → κ̄. With this

flip in fields, the polarization corresponding to ðfα; fβÞ at
ðα; βÞ for an observer at θo <

π
2
will appear as ðfα;−fβÞ at

position ðα;−βÞ for an observer at π − θo.
Since the polarization on the screen is defined up to an

overall sign, in all of the cases above we find that the
polarized image will be reflected across the α axis. Note

14
The direct image observed at inclination π − θo will thus

have m ¼ 0 for photons arriving on the top half of the image and
m ¼ 1 for photons arriving on the bottom half of the image. Note
that Eq. (82) of [35] generalizes to m̄ ¼ m −Hðβ cos θoÞ, mean-
ing the direct image with m̄ ¼ 0 is unchanged by the trans-
formation θo → π − θo; β → −β.
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also that at π − θo, the apparent direction of clockwise/
counterclockwise fluid motion flips.
Finally, we note that θo → −θo corresponds to a rotation

in ϕo, which will not change the image position of
axisymmetric configurations or the polarization pattern
of axisymmetric magnetic field configurations.

2. Spin direction a → − a

Consider again a photon arriving at position ðα; βÞ for an
observer at inclination θo <

π
2
relative to the positive black

hole spin axis, which is defined as ẑ. If the spin flips sign,
then its angular momentum changes to be aligned with −ẑ,
so the definition of β̂ changes orientation and the observer
will be at an angle π − θo relative to the spin vector. In
this new coordinate system, rotation in ϕ changes from
counterclockwise to clockwise on the screen, and the image

that appeared at αα̂þ ββ̂ in the old coordinates will appear

at ð−αÞα̂þ ð−βÞð−β̂Þ in the new coordinates, i.e., with α

flipped relative to the old image position. By inspection of

(14), λ flips sign and η is invariant; thus pϕ flips sign.
For the polarized image of unboosted ZAMO emission,

if BðϕÞ ¼ 0, the sign flip in pϕ will cause fðrÞ and fðθÞ to flip
sign by inspection of (26). In this case, κ1 flips sign and μ

also flips sign, so the polarization ðfα;−fβÞ at ðα; βÞ for an
observer of spin þa aligned with þẑ will appear as the

polarization ðfα; fβÞ to an observer with spin aligned −a at
position ð−α; βÞ in the original coordinates. For fields with

BðϕÞ ≠ 0, the same result is produced under the additional

transformation BðϕÞ
→ −BðϕÞ.

Furthermore, the transformation with unboosted emis-

sion a; BðrÞ; BðθÞ
→ −a;−BðrÞ;−BðθÞ corresponds to a flip

fϕ → −fϕ, which complex conjugates κ → κ̄. Hence,
under this transformation, the polarization corresponding

to ðfα; fβÞ at screen coordinates ðα; βÞ and spinþa aligned

with þẑ will appear as polarization ð−fα; fβÞ to an
observer with spin aligned −a at position ð−α; βÞ.
Since the EVPA is defined up to a sign in �ðfα; fβÞ, for

all the a → −a cases above, the polarized image will be
reflected across the β axis. Note also that with a → −a, the
direction of ZAMO motion changes direction and will
appear clockwise on the observer screen, with the boost χ

now in the opposite direction of the ZAMO motion. The
transformation a; χ → −a;−χ leaves the fluid frame tetrad

e
μ

ðaÞ invariant, so the above transformations for a → −a
apply to boosted emission as well if the azimuthal boost
direction flips χ → −χ.

3. Combined symmetries

Since the polarization symmetries for θo → π − θo
reflect the image across the α axis while the polarization
symmetries for a; χ → −a;−χ flip the image across the β

axis, the two sets of transformations will produce images
that are rotated by π relative to each other.
We note additionally that Q and U are invariant under a

symmetry transformation if and only if the arrival positions
of the geodesics are unchanged and the pitch angle (27) is
unchanged, which is equivalent to preserving I. Hence I,Q,
U all obey the same set of symmetry relations.
The effect of a variety of the symmetry transformations

on arrival position, boost factor, and polarization presen-
ted in this section are listed in Table I. A sample image

with rs ¼ 6; a¼ −0.5;θo ¼ 30°; B⃗¼ 1
ffiffi

3
p ð1;1;1Þ, and boost

parameters corresponding to a prograde geodesic (46) is
explicitly transformed to showcase these symmetries
in Fig. 11.

4. Circular polarization

Our model can naturally be extended to include circular
polarization, which is encoded in Stokes V and is invariant
on geodesics in the absence of Faraday effects. At the

source, V is a complicated function of B⃗ such that the
sign of the magnetic field components enters only into the

sign of V via the relation signðVÞ ¼ signðp⃗ · B⃗Þ [64]. With
this relation, we can derive the effect of the same sym-
metry transformations, which only affect V through sign(V)
(assuming the circular polarization is entirely intrinsic). As
previously stated, the transformation a; α; χ → −a;−α;−χ
flips the sign of pðϕÞ, so taking a; α; χ; BðϕÞ

→ −a;
−α;−χ;−BðϕÞ leaves p⃗ · B⃗ and hence sign(V) and V
unchanged. Similarly, the transformation θo; β →

π − θo;−β flips the sign of pðθÞ, so taking θo; β; B
ðθÞ

→

π − θo;−β;−BðθÞ also leaves sign(V) and V unchanged.

TABLE I. Effects of various parameter transformations on geodesic arrival position, Doppler boost factor, and the
Stokes parameters I, Q, U, V in our model of equatorial emission. A check ✓(✗) indicates that a quantity is (is not,

generically) invariant under the given transformation.

a; α
↓

−a;−α

a; α; χ
↓

−a;−α;−χ

a; α; χ; BðϕÞ

↓

−a;−α;−χ;−BðϕÞ

θo; β
↓

π − θo;−β

θo; β; B
ðθÞ

↓

π − θo;−β;−BðθÞ

Arrival position ✓ ✓ ✓ ✓ ✓

Doppler boost ✗ ✓ ✓ ✓ ✓

I, Q, U, V ✗ ✗ ✓ ✗ ✓
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These symmetries are also listed in Table I. The other
transformations listed in Table I flip the sign of only certain

components of the dot product p⃗ · B⃗, so the effect on sign
(V) cannot be generically determined.

5. Universal subimage symmetries

Our result (45) is also consistent with the subimage
polarization symmetry relations derived in [37]. In par-

ticular, suppose that B⃗ ¼ BðθÞ so that equatorial sources

have fθm ¼ −fθmþ1
. Together with pθ

m ¼ −pθ
mþ1

, this

implies that κ is complex conjugated across subrings (as
shown in [37]). Then Eqs. (29), (38), and (45) imply

fαm þ fαmþ1

f
β
m þ f

β
mþ1

∝
cosðEVPAschÞ a

bc

sinðEVPAschÞ a
bc

¼ cotðEVPAschÞ;

f
β
m − f

β
mþ1

fαm − fαmþ1

∝
�ð−1Þm cosðEVPAschÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2

b2c

q

∓ð−1Þm sinðEVPAschÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2

b2c

q ; ðC1Þ

¼ − cotðEVPAschÞ; ðC2Þ

Noting that

cotðEVPAschÞ ¼ cotφ; ðC3Þ

the result agrees with Eqs. (36) and (37) of [37]. In
rederiving these relations, we have used the additional fact

that the screen polarization vector ðfα; fβÞ flips sign across
subrings for the specific case of a ¼ 0, B ¼ BðθÞ.

APPENDIX D: Q, U CUSP FORMATION

IN VERTICAL FIELDS

This Appendix discusses an interesting feature of the Q,
U loop topology (Sec. VI B) for vertical fields displayed in
Fig. 8: as θo increases, the point to which the inner loop of
the direct image contracts always appears as a cusp in Q, U
space, where the curvature of the Q, U curve diverges. The
cusp will not appear in physical observations with finite

resolution, but it is still instructive to examine the geometric
origin of Q, U loop cusp formation.
To gain intuition for this phenomenon, note as in

Sec. VI B that for two Q, U loops, one has ψnet ¼ 2π

with constant rotational direction, while for one Q, U loop,
ψnet ≠ 2π; in the latter case, the EVPA rotation direction
changes twice over the orbit before the EVPA returns to its
initial value. As the observer inclination increases, a cusp
forms at θcusp at the boundary between these two types of

EVPA behavior.
Figure 9 plots the Schwarzschild EVPA as a function of

orbital azimuth for a hot spot in a purely vertical field at two
observer inclinations θo ¼ 42°; 38° slightly above and
below θcusp. As noted in Sec. VI B, the EVPA continuously

rotates in the same direction at θo ¼ 38°, corresponding to
twoQ,U loops, while the EVPA changes rotation direction
twice at θo ¼ 42°, corresponding to one Q, U loop. At
θcusp, which lies between these two values, the EVPA

changes discontinuously, i.e., its derivative becomes sin-
gular, as Fig. 9 suggests. In the case of Fig. 9, θcusp ¼ 40.7°,

which can be calculated explicitly as described below.
As noted above, when an origin-enclosing loop con-

tracts, by continuity one of its points must pass through the
origin ðQ ¼ U ¼ 0Þ. For vertical fields, we observe that the
cusp formed when a loop contracts is always located at
the origin, where the EVPA is not well defined (i.e., rotates
infinitely quickly). TheQ, U cusp and theQ, U origin both
reflect a singularity in EVPA rotation, and we intuitively
expect that they coincide; i.e., that there is always a cusp in
the Q, U loop if Q ¼ U ¼ 0.

15

Thus, given B⃗, a, and rs, one can solve for the “cusp
angle” θcusp simply by solving Q ¼ U ¼ 0 for θo. In

general, this entails solving three nonlinear equations:
Qðαcusp; βcusp; θcuspÞ ¼ 0, Uðαcusp; βcusp; θcuspÞ ¼ 0, and

the geodesic equation. However, the calculation for purely
vertical fields can be done analytically, and we present it

FIG. 11. Sample images produced under various transformations of the “original image” in the leftmost panel, aligned with the
corresponding symmetry transformation in Table I. The original image has rs ¼ 6; a ¼ −0.5; θo ¼ 30°; B⃗ ¼ 1

ffiffi

3
p ð1; 1; 1Þ, and boost

parameters corresponding to a prograde geodesic (46).

15
We are able to prove this explicitly in the specific case of a

purely vertical field. We expect that we should be able to extend
the proof to any field configuration with nonzero field, and that
the converse also holds. We leave this to future work.
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here.Observe from (29) that κ1 ¼ κ2 ¼ 0 for a purely vertical

field only if pr ∝ RðrsÞ ¼ 0 and fðrÞ ¼ 0. Expanding the
fluid-frame components (26), the latter condition is equiv-

alent to pðϕÞ ¼ 0. Solving pðϕÞðrs; λcusp; ηcuspÞ ¼ 0 (with

�s ¼ −1 for the direct image) and Rðrs; λcusp; ηcuspÞ ¼ 0

gives the conserved quantities λcusp and ηcusp at which the

cusp will form. θcusp is then found from the constraint that

λcusp and ηcusp must be a solution to the geodesic equation for

rs and θs ¼ π
2
. Following [35] [see (73) therein] the geodesic

equation can be inverted to find

θcusp ¼ arccos

�

� ffiffiffiffiffiffi

uþ
p

sn

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

−u−a2
q

Iturnr j uþ
u−

��

; ðD1Þ

where we have used Iturnr (B6) because by construction
pr
sðλcusp; ηcuspÞ ¼ 0, so the ray must begin at a radial turning

point. To compare with (73) of [35], note that η > 0, Itotalr

therein is 2Iturnr , and use (17) for m ¼ 0.
16

We introduce the explicit � in (D1) to allow for
θo > π=2. Note that the � indicates that for purely vertical
fields, one loop in Q, U space will exist for all observer
inclinations that satisfy θcusp < θo < π − θcusp. This fol-

lows additionally from Appendix C, wherein we show that
the polarization pattern for a purely vertical field will be
reflected across the α axis upon taking θo → π − θo.
More generally, fields with both vertical and equatorial

components require a numerical solution for λcusp; ηcusp,

which can be substituted into (73) of [35] to solve for θcusp
(now without the explicit �).
Figure 12 illustrates some features of the direct image

polarization corresponding to θcusp for a sample magnetic

field B⃗ ¼ ð0; 1; 1Þ around a Schwarzschild black hole,
for which θcusp must be computed numerically. The left

panel displays θcusp as a function of emission radius rs,

with dashed lines intersecting at rs ¼ 8, θcusp ¼ 32.95°.

The central panel displays the Q, U loop at rs ¼ 8,
θcusp ¼ 32.95°, in which a cusp forms at the origin. The

right panel displays the EVPA as a function of orbital
azimuth for observer inclinations of θo ¼ θcusp � 2° in

green and blue, respectively. As in Fig. 9, the EVPA
rotates 2π for θo < θcusp and less than 2π for θo > θcusp.

Finally, note that as the inclination continues to
increase beyond θcusp, the lemniscate (figure-eight) that

develops in the Q, U curves and pulls through itself in
Fig. 8 at very large inclinations does not represent a
singularity in EVPA.
As remarked in Sec. VI, the location of the cusp can be

shifted off the origin by including subimages (as suggested
by Fig. 10) and by Faraday conversion of Stokes Q, U to
circularly polarized Stokes V. It will also be shifted for hot

spots with physical extent large enough for p⃗ × B⃗ to vary
significantly over the emitting region.

16
For the exact case of a ¼ 0, (D1) reduces to

θcusp ¼ arccos

2

6

6

6

4

� sin
	

Iturnr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2cusp þ ηcusp

q 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2cusp
ηcusp

r

3

7

7

7

5

:

FIG. 12. Polarization at θcusp for a hot spot orbiting in a magnetic field B⃗ ¼ 1
ffiffi

2
p ð0; 1.0; 1.0Þ around a Schwarzschild black hole. Left

panel: θcusp as a function of emission radius rs, with dashed lines intersecting at rs ¼ 8, θcusp ¼ 32.95°. Center panel: polarization Q, U

loop at rs ¼ 8, θcusp ¼ 32.95°. Right panel: EVPA as a function of orbital azimuth for observer inclinations of θo ¼ θcusp � 2° in green

and blue, respectively.
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