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Abstract

The EventHorizon Telescope recently produced the first images of a black hole.

These images were synthesized by measuring the coherent correlation function

of the complex electric field measured at telescopes located across the Earth.

This correlation function corresponds to the Fourier transform of the image

under the assumption that the source emits spatially incoherent radiation. How-

ever, black holes differ from standard astrophysical objects: in the absence of

absorption and scattering, an observer sees a series of increasingly demagni-

fied echos of each emitting location. These echos correspond to rays that orbit

the black hole one or more times before reaching the observer. This multi-path

propagation introduces spatial and temporal correlations into the electric field

that encode properties of the black hole, irrespective of intrinsic variability.

We explore the coherent temporal autocorrelation function measured at a sin-

gle telescope. Specifically, we study the simplified toy problem of scalar field

correlation functions 〈Ψ(t)Ψ(0)〉 sourced by fluctuating matter located near a

Schwarzschild black hole. We find that the correlation function is peaked at

times equal to integer multiples of the photon orbit period; the corresponding

power spectral density vanishes like λ/rg where rg = GM/c2 is the gravita-

tional radius of the black hole and λ is the wavelength of radiation observed.

For supermassive black holes observed at millimeter wavelengths, the power

in echos is suppressed relative to direct emission by ∼10−13λmm/M6, where

λmm = λ/(1 mm) and M6 = M/(106M�). Consequently, detecting multi-path

propagation near a black hole using the coherent electric field autocorrelation

is infeasible with current technology.

∗Author to whom any correspondence should be addressed.

1361-6382/21/125006+13$33.00 © 2021 IOP Publishing Ltd Printed in the UK 1



Class. Quantum Grav. 38 (2021) 125006 P M Chesler et al

Keywords: black holes, multi-path propagation, correlations

(Some figures may appear in colour only in the online journal)

1. Introduction

LIGO’s discovery of binary black hole mergers [1–6] and the EHT’s first images of the shadow

of a supermassive black hole [7–12] provide an unprecedented opportunity to study the near-

horizon spacetime geometry of black holes and test general relativity in extreme conditions.

General relativity predicts the existence of bound null orbits in the black hole’s photon shell

[14, 15]. The bound orbits are unstable, meaning light from nearby orbits can escape to infinity

and contribute to the black hole’s image. In particular, light propagating along trajectories

close to bound orbits produces a sharp feature in the image, the photon ring, with light rays

asymptotically close to bound orbits forming the edge of the black hole shadow, the ‘critical

curve’ [13, 14, 16, 17].

While the photon shell can manifest itself in black hole images, it also imparts time-

dependent signatures. Namely, suppose a burst of light is emitted just outside the photon shell,

as depicted in figure 1. Light from the burst can takemultiple paths to a distant observer, includ-

ing a direct path (blue), a partial orbit (yellow), or complete orbits (green or maroon). A distant

observer would therefore see a primary burst from the direct light, a delayed lensed burst com-

ing from light that partially orbited the black hole, and a series of echoed bursts from light that

orbited the black hole one or more times [18]. The echoed bursts are approximately separated

in time by multiples of the photon orbit period and are exponentially attenuated in amplitude

due to successive demagnification [16, 19, 20].

Due to the fact that accretion flows around supermassive black holes are continuously emit-

ting light, it is natural to look for signs of multi-path propagation and light echos in correlation

functions. A reasonable expectation is the correlation functions should contain structure at

integermultiples of the photon orbit period. To comparewith observations, there are two funda-

mental correlation functions to consider. The first is the correlation of the quasimonochromatic

and complex scalar electric field measured at an observing frequency ν, 〈Eν(t)E
∗
ν(t

′)〉, which
is related to the power spectral density by a Fourier transform. The second is the correlation of

the flux density Iν ∼ 〈|Eν |2〉 (i.e. the ‘light-curve’), 〈Iν(t)Iν(t′)〉 [21]. While many astrophys-

ical processes can introduce correlation structure in light curves, astrophysical sources emit

spatially and temporally incoherent radiation, giving a temporally incoherent signal for a dis-

tant observer: 〈Eν(t)E
∗
ν(t

′)〉 ∼ δ∆ν(t − t′), where the delta response has a width comparable to

the inverse bandwidth 1/∆ν. Thus, multi-path propagation from the photon shell of a black

hole imprints unmistakable signatures in the electric field autocorrelation structure, even for

a static source3. Measuring non-zero autocorrelation at a large delay∆t � 1/∆ν would then

demonstrate that the received light had executed wraps around a compact object, demonstrat-

ing that the object’s mass lies within its photon orbit, and measuring the delay spectrum of the

object would give new constraints on the underlying spacetime metric.

In this paper, we explore the expected autocorrelation signal from a black hole encoded in

the electric field. In particular, millimeter telescopes routinely record the complex field when

participating in very long baseline interferometry experiments, such as the EHT, as the spatial

3While some physical effects, such as scattering, introduce non-trivial correlation structure in the electric field, the

correlations introduced by multi-path propagation near a black hole would be unmistakable, appearing as strongly

delayed and discrete peaks above a vanishing background.
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Figure 1. Four light rays shown to illustratemulti-path propagation in the Schwarzschild
spacetime. The solid black disc denotes the black hole while the dashed circle denotes its
photon sphere, which is located at r = 3M. Each light ray is emitted at the red star and
eventually propagates to a distant observer to the right. The path the light takes depends
on the direction of emission. Light rays can propagate directly to the observer (albeit
along lensed trajectories) or can orbit the black hole several times before escaping, with
the associated orbits lying close to the photon sphere. Light rays that orbit the black hole
arrive at the observer delayed relative to direct trajectories.

correlations in this field are used to produce images. We instead propose to study the temporal

correlations in this field, which could be done by analyzing recorded baseband data at a single

telescope. To derive estimates for the expected correlation structure, we wish to study light

echos in the simplest possible setting. To this end, instead of studying electrodynamics sourced

by fluctuating electric currents, we study a toy model composed of a massless scalar field Ψ

sourced by a stochastic field ρ localized near the black hole. Furthermore, since the photon shell

of Kerr black holes contains a distribution of photon orbit periods whose observation depends

on one’s inclination [17, 22], we choose to restrict our attention to Schwarzschild black holes,

where there is a single photon orbit period

T = 2πrγ(1− 2M/rγ)
−1/2

= 6π
√
3M, (1)

associated with the photon sphere located at the radius rγ = 3M. We note that multi-path prop-

agation of massless scalar fields in the Schwarzschild spacetime was also studied in references

[23, 24].

We numerically construct scalar field correlation functions and find that they are peaked

at integer multiples of T. We also study the power spectral density, which encodes the power

in echos at a given angular frequency ω = 2πν. We find that the power in echos decays like

1/(Mω), where M is the mass of the black hole. The 1/(Mω) decay is a consequence of can-

cellations from different emission points and makes observing the signature of echos in field

correlators challenging, if not impossible, for supermassive black holes.

An outline of our paper is as follows. In section 2 we present the setup of the problem we

wish to solve. In section 3 we outline our numerical procedures. In section 4 we present our

results, and in section 5 we discuss our results within the framework of geometric optics.

2. Setup

We work in geometric units where G = c = 1 and employ Schwarzschild coordinates, where

the metric takes the form

ds2 = − f dt2 +
1

f
dr2 + r2[dθ2 + sin2 θ dφ2], f = 1− 2M

r
, (2)

3
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for a black hole of mass M. The equation of motion for the scalar field Ψ is just the wave

equation,

−∇2
Ψ = ρ. (3)

We assume that the source ρ is a spatially and temporally incoherent random field,

〈ρ(t, r)ρ(t′, r′)〉 = χ(r)√
g
δ(t − t′)δ3(r− r

′), (4)

for some radial profile function χ(r) � 0, which characterizes the strength of fluctuations in ρ.
We shall assume that χ(r) is localized near the black hole.

To study echos we employ the correlation function,

C(t, r) ≡ 〈Ψ(t, r)Ψ(0, r)〉, (5)

and the power spectral density,

C̃(ω, r) ≡ 〈|Ψ̂(ω, r)|2〉, (6)

where the mode amplitude Ψ̂(ω, r) is given by the windowed Fourier transform,

Ψ̂(ω, r) ≡ 1√
twin

∫ twin/2

−twin/2
dtΨ(t, r)eiωt, (7)

with twin the window duration. C(t, r) measures how signals separated by time t are correlated

whereas C̃(ω, r)measures the amplitude ofmodeswith frequencyω.We shall consider the limit

twin →∞, in which case the correlation function and the power spectral density are related by

Fourier transform,

C̃(ω, r) =

∫
dt C(t, r)eiωt. (8)

Additionally, we shall consider the limit r→∞, meaning the limit where observations are

made arbitrarily far from the black hole.

The equation of motion (3) is solved by

Ψ(t, r) =

∫ √−g dt′ d3r′ G(t − t′, r, r′)ρ(t′, r′), (9)

where the retarded Green’s function G(t, r, r′) satisfies

−∇2G(t, r, r′) =
1√−gδ(t)δ

3(r− r
′). (10)

From the solution (9) and the statistics (4), it follows that the correlation function (5) is

given by

C(t, r) =

∫ √−g dt′ d3r′ G(t − t′, r, r′)G(−t′, r, r′)χ(r′). (11)

Taking the Fourier transform then yields

C̃(ω, r) =

∫ √−g d3r′ |G̃(ω, r, r′)|2χ(r′), (12)

4
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where

G̃(ω, r, r′) =

∫
dt G(t, r, r′)eiωt, (13)

is the frequency space Green’s function. The problem of computing C̃(ω, r) and hence C(t, r)
therefore reduces to computing G̃(ω, r, r′).

Rotational invariance of the Schwarzschild geometry implies G̃ can be expanded in a

spherical harmonic expansion in angles,

G̃(ω, r, r′) =
∑

�m

y�m(r̂)y
∗
�m(r̂

′)G�(r, r
′), (14)

where y�m are spherical harmonics and r̂ = r

r
. The Green’s function equation of motion (10)

requires the radial function G�(r, r
′) satisfy the ODE,

[
d

dr
r2 f

d

dr
+
r2ω2 − �(�+ 1) f

f

]
G�(r, r

′) = δ(r − r′). (15)

Substituting (14) into (12) and using the orthogonality of the spherical harmonics as well as

the spherical harmonic addition theorem,

∑

m

|y�m(r̂)|2 =
2�+ 1

4π
, (16)

one obtains

C̃(ω, r) =
1

4π

∑

�

(2�+ 1)

∫
r′2 dr′ χ(r′)|G�(r, r

′)|2. (17)

We now turn to constructing G�(r, r
′). When r �= r′ the rhs of equation (15) vanishes. It

follows that when r �= r′ the function G�(r, r
′) must be a linear combination of solutions h±� (r)

to the homogeneous equation of motion,

[
d

dr
r2 f

d

dr
+
r2ω2 − �(�+ 1) f

f

]
h±� (r) = 0. (18)

The function h−� satisfies incoming boundary conditions at the horizon, so the black hole does

not radiate, whereas h+� satisfies outgoing boundary conditions at r = ∞. Explicitly,

h+� (r)→
eiωr

r
as r→∞ and h−� (r)→ e−2iωM log f (r) as r→ 2M. (19)

The appropriate linear combination of h±� is fixed by the requirement thatG�(r, r
′) is continuous

across r = r′, but has a discontinuous first derivative, which is necessary to obtain the delta

function of the rhs of equation (15). A short exercise shows

G�(r, r
′) =

1

r′2 f (r′)W(r′)

{
h−� (r

′)h+� (r), r > r′,

h+� (r
′)h−� (r), r < r′,

(20)

whereW is the Wronksian of h±� ,

W = h−�
dh+�
dr

− h+�
dh−�
dr

. (21)
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Figure 2. The function χ(r), given by equation (23), with rmax = 5M.

With the solution (20) and the boundary condition (19), in the large r limit equation (17)

becomes

C̃(ω, r) =
1

4πr2

∑

�

(2�+ 1)

∫
r′2 dr′ χ(r′)

∣∣∣∣
h−� (r

′)

r′2 f (r′)W(r′)

∣∣∣∣
2

. (22)

Note that the only r dependence in (22) appears in the 1
4πr2

prefactor. In contrast, the integration

in (22) only involves quantities evaluated near the black hole. This decomposition is convenient

for numerical evaluation.

3. Numerics

For simplicity, in our numerics below we consider

χ(r) =
1

2

[
1+ erf

(
r − rmax√

2∆r

)]
, (23)

where erf(z) is the error function. χ(r) is a smoothed step function, approaching unity when

r − rmax � −∆r and exponentially small when r − rmax � ∆r. We choose smoothing width

∆r = M
3
and maximum radii rmax = 4M, 5M, 6M. The function χ(r) is plotted in figure 2 for

rmax = 5M.

We determine the functions h±� (r) numerically. To this end it is useful to define

H±
� (r) ≡ h±� (r) exp

[
∓iω

∫
dr

1

f (r)

]
. (24)

The functions H±
� (r) are just ingoing and outgoing wave functions in ingoing and outgoing

Bondi–Sachs coordinates. In particular the boundary conditions (19) imply that near the hori-

zon H−
� (r) ∼ const. and at large distancesH+

� (r) ∼ 1/r. Removing the oscillatory behavior of

h+� at large distances and that of h−� near the horizon hastens the numerical computation of

these functions.

To computeH+
� we integrate in from r = ∞. We accomplish this by breaking the computa-

tional domain into two pieces: r ∈ (r+,∞) and r ∈ (2M, r+) for some r+. In the outer domain

we employ an inverse radial coordinate z ≡ 1
r
and solve the equation of motion (18) using

6
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Figure 3. The location of turning points in the ODE (18), given by equation (25). At
radii inside the outermost turning point, the summand in equation (22) is exponentially
small.

pseudospectral methods (see e.g. [25, 26]). With the outer solution constructed, we then inte-

grate inwards from r = r+ to r = 2M using a fourth order Runge–Kutta solver, with boundary

data determined by the outer solution. We choose r+ = 40M.

We follow a similar procedure to computeH−
� . We break the computational domain up into

two segments: r ∈ (2M, r−) and r ∈ (r−, r+). In the inner domain we solve the equations of

motion using pseudospectral methods. With the inner solution constructed, we then integrate

outwards from r = r− using a fourth order Runge–Kutta solver,with boundarydata determined

by the interior solution. We choose r− = 2(1+ 10−4)M.

The homogeneous equation of motion (18) contains ‘turning points’ at radii satisfying

r2ω2 − �(�+ 1) f (r) = 0. (25)

In figure 3 we plot the location of the turning points.With the exception of a single turning point

at r = 3M when ω2 = �(�+ 1)/27M2, the turning points always come in pairs. AWKB analy-

sis demonstrates that inside the outer turning point h−� decreases exponentially with decreasing

r. Since the outer turning point diverges like �/ω, and χ(r) is localized at r � rmax, it follows

that the summand in equation (22) becomes exponentially small as �→∞. Correspondingly,

in our numerics we truncate the sum over � at

�max = max(16Mω, 30). (26)

We have verified that our results below are insensitive to this angular momentum cutoff. For

example, decreasing the cutoff by 20% produces differences which are smaller than the line

width of all the plots presented below.

4. Results

In the left panel of figure 4, we plot the power spectral density C̃(ω, r) for rmax = 5M. At large

frequenciesC(ω, r) approaches a constantCo, which we have normalized all our plots by. Also

7
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Figure 4. Left: the power spectral density C̃(ω, r) with rmax = 5M. At large frequencies
the spectral density approaches a constant Co, which we have normalized the plot by.
The oscillations arise from multi-path propagation and roughly have phase ωT, with T
the photon orbit period. Right: the envelope of the oscillations. At large frequencies the
envelope decays like 1

ω .

Figure 5. The correlation function C(t, r) for rmax = 4M (left), 5M (middle), and 6M
(right). In all plots there are peaks at integer multiples of the photon orbit period T,
which alternate in sign. These peaks are signatures of light echos in the Schwarzschild
spacetime.

seen in the plots are oscillations, which are most prevalent at low frequencies. As we shall

elaborate on below in the discussion section, the constant offset Co arises from direct light

propagation from the source to the observer, whereas the oscillations arise from multi-path

propagation—light echos. The phase of the oscillations is roughly ωT, where T is the black

hole’s photon orbit period (equation (1)). In the right panel of figure 4 we plot the envelope of

the oscillations on a logarithmic scale4. Also shown for comparison is the line 1
ω
. As is evident

from the figure, our numerics are consistent with the envelope decaying like 1
ω
as ω →∞.

To compute the real time correlator C(t, r), we first construct the difference (C̃ − Co). Sub-

tracting Co results in a Fourier integrand which decays like 1/ω at large ω, and only changes

the resulting Fourier transform by a delta function,Coδ(t). To ameliorate potential logarithmic

divergences arising from the 1/ω decay, we also multiply by a window functionW(ω), which
is identical in functional form to equation (23) with the replacements r→ ω, rmax → ωmax and

∆r→∆ω. We employ maximum frequency ωmax = 15/M and width∆ω = 2.5/M. We then

4We use Matlab’s envelope function to compute the envelope.

8
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Fourier transform (C̃(ω, r)− Co)W(ω). Note that employing a window function means our

plots of C(t, r) below lack resolution over temporal scales � 1
ωmax

= M
15
.

In figure 5 we plot C(t, r)/Co (minus the delta function at t = 0) for rmax = 4M (left)

rmax = 5M (middle) and rmax = 6M (right). In all plotsC(t, r) is generally nonzero at all times.

The most striking feature in the plots is the existence of peaks at t = T and t = 2T. The peaks

have alternating signs, with those at t = 2T having smaller amplitude than those at t = T .

Notice that the peaks broaden as rmax is increased. As we elaborate on below, these peaks are

signatures of light echos in the Schwarzschild spacetime.

5. Discussion

At wavelengths small compared to the local curvature scale, which for the Schwarzschild

spacetime is set by M, solutions to the scalar wave equation (3) are governed by geometric

optics (for a pedagogical review see [27]). It follows that the high frequency behavior of C̃(ω, r)
and the short-time structure of the peaks in C(t, r) are governed by geometric optics.

At frequencies ω � 1/M, the Green’s function G̃ can be factored into a slowly varying

amplitude and a rapidly varying phase [27],

G̃(ω, r, r′) =
∑

p

Lp(r, r
′)eiωτp(r,r

′). (27)

The sum is over all null geodesics p which connect the emission point r′ to the observation

point r, with τ p(r, r
′) the associated retarded time. For a black hole geometry there are infinitely

many such geodesics, since a geodesic can encircle the black hole an arbitrary number of times

before escaping to the observation point r. Examples of such geodesics are shown in figure 1.

The slowly varying amplitudesLp(r, r
′) encode the expansion of null geodesics emanating from

r
′ (i.e. demagnification). Scaling relations for Lp can easily be obtained by matching onto the

dispersion relation of quasinormal modes (see e.g. [28]). At high angular momentum �, the
longest lived quasinormal modes have frequencies [29]

ωQNM = ±2π

T

(
� +

1

2

)
− iπ

T
. (28)

Notice that this is simply the large � limit of the dispersion relation of a damped two dimen-

sional wave equation on a sphere. The dampening reflects the fact that photon orbits are

unstable: up to a factor of−1/T, the imaginarypart ofωQNM coincideswith the Lyapunovexpo-

nent of the photon orbit geodesics [20]. Owing to the fact that e−iωQNM(t+T) = −e−π e−iωQNMt,

it follows that

Lp ∼ (−1)n e−πn, (29)

where n is the number of times the associated light ray orbits the black hole.

Substituting equation (27) into equation (12), the resulting power spectral density reads,

C̃(ω, r) = C̃direct(ω, r)+ C̃multi−path(ω, r), (30)

where

C̃direct(ω, r) =
∑

p

∫ √−g d3r′χ(r′)Lp(r, r′)2, (31)

9
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and

C̃multi−path(ω, r) =
∑

p�=p′

∫ √−g d3r′χ(r′)Lp(r, r′)Lp′(r, r′)eiωτpp′ (r,r
′)
, (32)

with τ pp′ ≡ τ p − τ p′ the relative propagation time lag between geodesics p and p′.

The direct contribution, C̃direct, is independent of ω, meaning Co = C̃direct. In contrast, the

multi-path contribution, C̃multi−path, oscillates and decays as ω increases. It turns out that the

decay envelope scales like

C̃multi−path(ω, r) ∼
1

Mω
, (33)

which is consistent with the high frequency limit of C̃ shown in figure 4.

To understand the scaling (33), first consider geodesics which encircle the black hole at

most order one time. The time delay τ pp′ (r, r
′) varies by order M as the emission point r′ is

varied. In the limit ω � 1/M, the phase ωτ pp′ therefore varies rapidly, leading to cancellations
fromdifferent emission points. The integration is therefore dominated by regions near emission

points where the phase is stationary,
∂τpp′
∂r′
i
= 0. In fact cylindrical symmetry dictates that the

stationary points must form rings. Since the second derivatives of τ pp′ evaluated on a ring

must be order 1/M, it follows that cancellations begin to occur at distances ∼ (Mω)−1/2 from

the rings. Cylindrical symmetry then means that the integral in (32) vanishes like 1
Mω

. Next

consider pairs of geodesics which encircle the black hole n and n+ m times, with

n ∼ 1

2π
log Mω. (34)

The geodesic equation implies

τpp′ = ±mT[1+ O(e−2πn)]. (35)

For such geodesics it follows that the phase ωτ pp′ varies by order 1 as the emission point is

varied. However, equations (29) and (34) imply LpLp′ ∼ e−2πn ∼ 1
Mω

. Hence such geodesics

also yield contributions to C̃multi−path which decay like
1
Mω .

We now turn to C(t, r). Equation (32) Fourier transforms to

Cmulti−path(t, r) =
∑

p�=p′

∫ √−g d3r′χ(r′)Lp(r, r′)Lp′(r, r′)δ(t − τpp′(r, r
′)). (36)

This is generically nonzero for all t, since τ pp′ varies continuously from 0 to ∞. However, for

pairs of geodesics which encircle the black hole 0 and n times, τ pp′ ≈ ±nT. Correspondingly,
C(t, r) should be peaked at integer multiples of the photon orbit period, with exponentially

decreasing amplitude ∼ e−nπ and alternating sign (−1)n, which is in qualitative agreement

with figure 5. Moreover, emission from points farther from the black hole increases the delay

time, since it takes longer for light to propagate from the emission point to the photon sphere.

This means the widths of the peaks should be broader as rmax is increased, just as observed in

figure 5.

The fact that the power in echos decays like 1
Mω

makes observing field correlations chal-

lenging. For example, at an observing wavelength of λ = 1 mm and for Sgr A∗, whose mass

isM ≈ 4× 106M� and total flux density is F ≈ 2 Jy, we have a peak non-zero correlation of

C̃multi−path(ω) ≈
F

Mω
∼ 10−14 Jy, (37)

10
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indicating that the echo power in field correlators is minuscule relative to direct light. This is a

consequence of the fact that field correlations are sensitive to phase information and susceptible

to cancellations, while the total flux density is the incoherent sum of power throughout the

source. Simply put, echos manifest themselves most strongly in C(t, r) at wavelengths on the

order of the horizon radius.

For observationsof supermassive black holes, a better optionmay be to consider correlations

in flux density, which is not sensitive to coherent destructive interference. The accretion flow

around Sgr A∗ is highly variable, with macroscopic fluctuations occurring over horizon scales

[30–33]. These fluctuations—and their echos—should manifest themselves in light curves of

flux density [18, 34–37], although these measurements are also sensitive to correlations from

the evolving accretion flow.

While we have focused on classical fluctuations, the effects of multi-path propagation are

also present in Hawking radiation [38], which arises via quantummechanical fluctuations near

the horizon [39]. Hawking radiation itself is encoded in (quantum mechanical) correlation

functions 〈Ψ(t, r)Ψ(t′, r′)〉Q, which for a non-interacting scalar field theory satisfy the wave

equation in both arguments,

∇2〈Ψ(t, r)Ψ(t′, r′)〉Q = ∇′2〈Ψ(t, r)Ψ(t′, r′)〉Q = 0. (38)

It is therefore reasonable to surmise that there should exist echos of Hawking radiation in

〈Ψ(t, r)Ψ(0, r′)〉Q. Namely, in the coincident point limit r′ → r, 〈Ψ(t, r)Ψ(0, r′)〉Q should exhibit
a series of peaks at times equal to integer multiples of the photon orbit period. While observ-

ing Hawking radiation from Earth is challenging at best, observables that are sensitive to this

correlation structure during the course of black hole evaporation could provide much stronger

evidence for Hawking radiation than the burst alone [40]. We leave a detailed study of echos

in Hawking radiation for a future analysis.

Finally, while we have analyzed the case of a scalar field near a Schwarzschild black hole,

the strong suppression C̃multi−path ∼ 1/(Mω) does not depend on either of these simplifica-

tions. Specifically, cancellation occurs because the phase coherence scale is comparable to

the wavelength while the expected emitting region size (and, hence, the spread in multipath

delay) is comparable toM. In contrast, the shape of the correlation function (e.g. figure 5) will

depend on the spacetime and emission assumptions. While the coherent autocorrelation func-

tion is unlikely to be detectable for incoherent emission regions (such as synchrotron emission

near a supermassive black hole), coherent emission from much smaller regions could produce

detectable autocorrelation from multipath propagation. Such emission is seen in astronomical

sources including pulsars and fast radio bursts.
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