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In the presence of a black hole, light sources connect to observers along multiple paths. As a result,
observed brightness fluctuations must be correlated across different times and positions in black hole
images. Photons that execute multiple orbits around the black hole appear near a critical curve in the
observer sky, giving rise to the photon ring. In this paper, a novel observable is proposed: the two-point
correlation function of intensity fluctuations on the photon ring. This correlation function is analytically
computed for a Kerr black hole surrounded by stochastic equatorial emission, with source statistics
motivated by simulations of a turbulent accretion flow. It is shown that this two-point function exhibits a
universal, self-similar structure consisting of multiple peaks of identical shape: while the profile of each
peak encodes statistical properties of fluctuations in the source, the locations and heights of the peaks are
determined purely by the black hole parameters. Measuring these peaks would demonstrate the existence of
the photon ring without resolving its thickness, and would provide estimates of black hole mass and spin.
With regular monitoring over sufficiently long timescales, this measurement could be possible via

interferometric imaging with modest improvements to the Event Horizon Telescope.
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I. INTRODUCTION

The remarkable first image of a black hole (BH),
obtained last year by the Event Horizon Telescope
(EHT) Collaboration using very-long-baseline interferom-
etry (VLBI) [1-6], was the culmination of a decades-long
effort to peer deeper into the neighboring galaxy M87 and
image the supermassive black hole M87* at its center. This
breakthrough marks the start of a new era in which we
expect to obtain progressively better images of increasingly
many BHs. It is therefore of great interest to theorists to
provide detailed predictions: What do we expect to see in
BH images? How can we distinguish features of these
images that depend on the complex astrophysical environ-
ment of the BH from universal properties that depend only
on the BH itself? And how can we use these universal
features to test general relativity and measure the mass and
spin of the BH?

The propagation of light around a BH was first studied a
century ago [7], immediately following the discovery of the
Schwarzschild metric. Basic features of BH images and
their dependence on BH spin have been investigated over
the ensuing decades [8—12]. In recent years, increasingly
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complex simulations have produced sophisticated models
of the astrophysical environment around a BH, enabling
detailed numerical studies of BH images [5,13,14]. The
past year has witnessed a flurry of activity in the analytic
study of the time-averaged image (I(p, ¢)) of a BH, where
[ is the specific intensity at polar coordinates (p, @)
centered about the BH’s position in the observer sky
[15-22]. When a BH is surrounded by optically thin
emitting material, its image displays a narrow ring of
enhanced brightness: the photon ring. This ring is a
(formally infinite) sum of increasingly demagnified subr-
ings, each a strongly lensed image of the direct emission.
These subrings asymptote to a critical curve in the observer
sky, first derived by Bardeen [9]. The demagnification
factor at every angle in the sky is related to properties of the
photon shell, a region of spacetime in the vicinity of the BH
that admits (unstable) bound photon orbits; more specifi-
cally, to the Lyapunov exponent y characterizing the orbital
instability of these geodesics [16]. Two additional critical
exponents of photon shell orbits, 7 and o, characterize their
temporal and azimuthal periods, respectively [17].

In this paper, we explore a new BH observable: the two-
point correlation function (2PF) of intensity fluctuations on
the photon ring, C = (AI(t,p)AI(f, ¢')), where t is the
observation time and ¢ the angle around the ring. Intensity
fluctuations in the observer sky depend on one time and
two spatial dimensions; we propose, however, to integrate
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FIG. 1. Universal structure in the autocorrelation function C(7', @) of intensity fluctuations in the photon ring, as a function of the
separation in time 7 and azimuthal angle @ around the ring. This particular plot corresponds to polar observations of random
fluctuations in an equatorial disk surrounding a Kerr BH with spin a/M = 94% [Eq. (5.1)]; the same structure holds to leading order in
small observer inclination [Eq. (7.18)] and for all spin. Strong lensing by the BH enables a single source to connect to a given observer
along multiple paths (Fig. 2, left), giving rise to correlations within the photon ring (Fig. 2, right). These correlations display a universal
structure governed by the critical exponents y, §, and 7 [Eqs. (2.8)] that govern BH lensing. Two light rays that are emitted from the same
source and circumnavigate the BH k and &’ times, respectively, before reaching the observer contribute to a peak in the autocorrelation
C(T,®) labeled by m = k — k. Here, we display the |m| = 0, 1, 2, 3 peaks in red, blue, green and purple, respectively. The dashed grey
lines (with @ = +180° identified) connect peaks with neighboring values of m. All the peaks share an identical profile that depends on
the source statistics. In particular, the peak width is set by the correlation length of fluctuations in the source; for this plot, we used the
correlation lengths ¢, and 7, [Eq. (5.2)] inferred from the GRMHD-simulated accretion flow in Fig. 3. On the other hand, the locations
and relative heights of the peaks are fixed by the BH parameters, with each successive peak an echo of its predecessor, suppressed by e™
and translated by (z, §) (colored arrows). Observations of this correlation structure in the photon ring of a BH could therefore provide a
measurement of its critical exponents 7 and §, which would in turn produce estimates of its mass and spin.

out the direction perpendicular to the critical curve and
effectively view the BH as a fluctuating (1 4 1)-dimen-
sional (unresolved) ring in the sky, on which we study the
2PF. This correlation function depends on properties of
both the BH and its surrounding emission, and exhibits a
universal (i.e., matter-independent) structure that is gov-
erned by the triplet of critical exponents {7, z, 5}. Previous
studies have explored ways to infer BH mass and spin from

The rest of this paper is organized as follows. In Sec. II,
we briefly review some essential properties of null geo-
desics in the Kerr geometry, with an emphasis on the
photon shell and ring. In Sec. III, we present and discuss
general properties of the 2PF of intensity fluctuations.
Then, in Sec. IV, we numerically compute the source
emissivity 2PF in a full general-relativistic magnetohy-
drodynamic (GRMHD) simulation and estimate its

multiple correlated images of localized sources such as
compact infalling or orbiting emitters [23-29]. Here, we
consider the case of stochastic emission from an extended
source as a model for emission from the turbulent accretion
flow onto a BH [30,31]. We analytically compute the 2PF
for a toy model of stochastic equatorial emission and show
how to separate astrophysical features related to fluctua-
tions in the source from universal features related to the
BH (Fig. 1).

characteristic correlation length in Boyer-Lindquist
radius, azimuthal angle, and time. Next, in Sec. V, we
analytically compute the intensity fluctuation 2PF in the
case of a polar observer. We generalize to an observer at
arbitrary inclination in Sec. VI, before expanding to first
order in small inclination in Sec. VII. Finally, in Sec. VIII,
we discuss the prospects for measuring the intensity
fluctuation 2PF with the EHT, taking its observational
limitations into account.
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FIG. 2. Left: Kerr black hole with spin a/M = 94%, surrounded by a geometrically and optically thin equatorial accretion disk
terminating at the innermost stable circular orbit (ISCO) radius r,,. Right: image of the disk seen by a far observer at an inclination
0, = 17°, assuming a simple stationary and axisymmetric source profile [22]. Light rays that execute multiple orbits around the black
hole intersect the emission region multiple times, accruing additional intensity at every crossing (orange dots on the left) according to
Eq. (2.12), and resulting in a brightness enhancement near the critical curve: the photon ring. The polar coordinates (2.10), illustrated on
the right image, are generically offset from the ring centroid. Due to the strong lensing in the photon shell, light rays shot back from
different times and positions on the photon ring can connect to the same spacetime event in the bulk (blue and green dots on the right
image, corresponding to blue and green rays in the bulk). As a result, black hole images display autocorrelations in the photon ring.
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II. PHOTON RING, PHOTON SHELL, AND
CRITICAL EXPONENTS

In this section, we present a brief overview of the basic
concepts that we will need for our calculation. We recently
reviewed the photon shell in Ref. [16] and illustrated it in
Fig. 2 therein. Its existence implies that images of sources
near a BH will generically feature a bright, narrow ring of
light: the photon ring. In the optically thin limit, this ring is
composed of an infinite (in principle) sequence of subrings
with a universal (i.e., matter-independent) structure con-
trolled by three critical exponents y, d, and 7, which were
recently derived in Refs. [16,17]. After summarizing these
facts, we introduce the polar coordinates (p, @) on the sky
of a distant observer in terms of which our results will be
expressed. Finally, we review how BH images are recon-
structed from the electric field 2PF, which is the observable
that a radio interferometer directly measures, and discuss
higher-point correlations.

A. The Kerr geometry and its photon shell

In Boyer-Lindquist coordinates (z,r,6,¢), the Kerr
metric has line element’

'We use geometric units G = ¢ =1 and assume 0 <a <M
throughout.

A by
ds* = — S (dt — asin®0d¢)? + Ker + Xde?

sin%@

(7 + a?)dep — add]?, (2.1)

A(r)=r*=2Mr+a*, X(r,0)=r*+a*cos’0. (2.2)
Kerr geodesics admit four independent conserved quantities:
the invariant mass u, the energy — p, (which is conserved due
to stationarity), the azimuthal angular momentum p, (which
is conserved due to axisymmetry), and Carter’s constant
Q= p—cos*6la’(p; —u*) - pjese’d]. Geodesic motion in
the Kerr spacetime is therefore completely integrable. Null
geodesics (1 = 0) are independent of energy and charac-
terized only by their energy-rescaled azimuthal angular
momentum 4 = —p,/p, and Carter constant 7 = o/ p?.

The Kerr geometry admits a special family of unstable,
bound photon orbits [32], which span a region of spacetime
known as the photon shell [16]. In Boyer-Lindquist
coordinates, each of these orbits is at a fixed radius
7_ <7 <7,, where

Py =2M [1 + cos @ arccos <i Ac/l[) ﬂ - (23)
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The photon shell radius 7 determines both of the conserved
quantities for these special geodesics:

Z:a+?<?—2A<?)), ﬁ:i(%—;). (2.4)

a F—M a

Regardless of BH spin, the photon shell always contains
spherical bound orbits that can reach the pole. These have

vanishing angular momentum A(7,) = 0 and orbital radius

a? 1 -2
Fo=M+2 Mz—?cos[garccos((—ﬁwwﬂ. (2.5)

1—317)

While bound orbits in the photon shell correspond to a
measure zero set in the phase space of all geodesics, it is
useful to consider geodesics that are nearly bound in the
sense that their conserved quantities A and 7 are close to
the critical values given in Eq. (2.4). These near-critical
geodesics undergo multiple half-orbits” within the photon
shell and display simple behavior whenever they are
close to their associated critical radius 7. We will use n
to denote the number of half-orbits. In the region r =~ 7, the
orbital motion is governed by three critical exponents
{y(7),z(7),8(7)} for each photon shell radius 7 [16,17]:
(i) Near-critical geodesics spend a long time near their
associated critical radius 7. For a null geodesic that is
approaching 7, the ratio of coordinate distances from
the critical radius is

Oy v
— e, 2.6
67"k ¢ ( )

where 6r; = r; — 7 denotes the radial deviation of
the photon after undergoing k half-orbits. For a
geodesic receding from the critical radius, one needs
to flip k <> (k+ 1) in Eq. (2.6).

(i) Even as they stay close to their critical radius 7, near-
critical geodesics continue to traverse the ¢, 8, and ¢
directions. The time elapsed At and azimuth swept
A¢ per half-orbit approach a constant for high half-
orbit number k:

A[%T—i—éfk, A¢N§+5¢k, (27)

with 8t;, 6¢p; ~ e — 0 as k — co.
The critical exponents were analytically computed in
Refs. [16,17] and are given by

S A WYCA

*An orbit is defined by a full oscillation in the polar
angle 0 [16].

+270(F — Fy), (2.8b)
-
b)) e

where K, E, and I1, respectively, denote the complete elliptic
integrals of the first, second, and third kinds, while ® denotes
the Heaviside theta function and 7. are the quantities

/ 1 2
Mi:Agi Aé-‘—%, Ag—-(l—”+2 >, (29)

2 a
evaluated on their critical values, obtained by plugging
in Eq. (2.4).

B. The observer sky and the photon ring

Bardeen [9] introduced a convenient choice of Cartesian
coordinates (a, #) on the sky of a distant observer at large
radius r, — oo and polar inclination 6, from the spin axis
of a BH. Following Ref. [16], in this paper, we will prefer to
use the associated polar coordinates (p, ¢) (Fig. 2, right). A
photon reaching the observer with conserved quantities
(4,n) appears in the sky at position

| A
p= @00, ) 2 cosp=— S

(2.10)

Via this map, the critical curve {A(7),7(7)} in the space of
photon conserved quantities defines a closed curve
{p(7),@(7)} in the observer sky. This curve separates
those light rays that, when shot backwards from the
observer sky into the geometry, eventually cross the event
horizon (inside the curve) from those that escape to
asymptotic null infinity (outside the curve). Strongly lensed
images of emission surrounding the BH, which arise from
photons that execute multiple half-orbits n, appear expo-
nentially close in # to this critical curve. While the critical
curve is almost a circle at low spin and/or low inclination,
the origin of the coordinate system (2.10) is displaced from
its center [21,33,34].

The intensity of light received at a particular time and
location in the sky (7, p, @) is computed as follows. In the
absence of emission (or absorption), the specific intensity
I, varies as the third power of the frequency v along a beam
of radiation [35], so I,/v* is conserved along the beam.’

The description of radiation by light rays is valid to leading
order in the eikonal approximation. In the case of EHT obser-
vations of MS&7%*, the ratio of the observation wavelength
(1.3 mm) to the BH size is ~10714.

104038-4
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As such, the observed and emitted specific intensities 7,
and [, are related by radiative transport as

1, =¢1,, (2.11)

where the redshift g = v, /v, which is the ratio of observed
to emitted frequency of the radiation, depends on both the
trajectory of the beam and the four-velocity of the emitting
matter it intersects. The emitted specific intensity 1,
follows from the radiative transfer equation. For optically
thin sources, absorption effects may be neglected and the
invariant radiative transfer equation is [36]

d (1, J,

do <y3> e
where o is an affine parameter along the null geodesic
x*(o, 1, p, @) ray-traced back from time 7 and position (p, ¢)
in the observer sky and J, is the source emissivity, which
depends only on local properties of the accretion flow. For
simplicity, we take J, to be a scalar, which is akin to
assuming isotropic emission at every point. In general, the
emissivity J, varies with frequency, but we will assume
throughout this paper that J =J, is frequency-indepen-
dent, i.e., that the source is broadband with a flat spectrum.4
By this, we mean that the emissivity does not vary
significantly over roughly an order of magnitude in
frequency for both noncritical and near-critical photons.
We have verified this assumption both numerically, using a
selection of GRMHD simulations, and analytically in the
context of a circularly orbiting equatorial disk, using
the methods of Ref. [40]. Integrating Eq. (2.12) over the
portion of a light ray that intersects the source results in the
specific intensity loaded onto the ray,

I, —/vada—/st,

where ds is the infinitesimal spatial distance traversed by a
photon with local frequency v, in affine interval do as
measured in the rest frame of the source. In summary, to
compute the observed intensity at a given time and location
on the sky, we shoot a null geodesic back into the BH
geometry with conserved quantities (4,7) determined by
the sky position (p,¢), and whenever the light ray
intersects the emission region, we load photons onto it
according to the local emissivity J, weighting all contri-
butions with a redshift-dependent factor (Fig. 2).

(2.12)

(2.13)

C. Electric field correlation functions
and black hole images

Currently, producing an image I(¢, p, ¢) of a BH is only
feasible using VLBI. In this technique, an astronomical

*Because the 230 GHz images of Sgr A* and M87* have sizes
comparable to the expected diameters of their photon rings [4,37],
both are likely optically thin at this frequency. In addition, both
sources have a relatively flat spectrum at this frequency [6,38,39].

source emitting radiation is assumed to be spatially and
temporally incoherent. Despite this intrinsic incoherence,
the electric field measured by an observer far from the
source exhibits spatial coherence and encodes the source’s
brightness distribution. More precisely, a radio interferom-
eter measures the time-averaged cross-spectrum of the two
circularly polarized electric fields at different sites, sam-
pling the “complex visibility” of the source (e.g., Ref. [41]),

1

Vijw = 5 (EiroEiry) T {EiL Eir )
where L and R refer to the polarization of the feeds, the
indices 7 and j label the elements of the interferometer (i.e.,
the telescopes in the VLBI array), the asterisk means
complex conjugation of the complex electric field, which
is sampled at frequency v, and the angle brackets denote a
time average. Because we focus on broadband emission
near black holes, we will suppress the frequency subscript
for the remainder of this discussion.

Under very mild assumptions, the van Cittert—Zernike
theorem guarantees that this radio visibility is equal to the
Fourier transform of a snapshot image of the source in
the sky,

(2.14)

V(i) = / I(®)e-27 2%, (2.15)
where X is a dimensionless image coordinate measured in
radians, while # = i;; is the dimensionless vector baseline:
the distance |X; — X;| between two telescope sites, projected
in the plane perpendicular to the line of sight, and measured
in units of the observation wavelength 1/v. The three
other choices of cross-correlation functions in Eq. (2.14)
recover the Fourier transforms of the three other Stokes
parameters Q, U, and V describing the polarimetric image
of the source.

An immediate question presents itself: Why not measure
higher-point correlation functions of the electric field?
While the firstimage of M87* occupies only a few kilobytes,
the EHT had to record petabytes of data in order to produce
it. In particular, it recorded the local electric field E;(X;, t) at
every telescope site; it is therefore tempting to ask what
further information may be encoded in higher-point func-
tions of the electric field, (E| E, - - - E,,) forn > 2.In orderto
answer this question, one must be careful to distinguish
between microscopic and macroscopic fluctuations in the
source and their associated timescales.

Light rays that cross the source sample many uncorre-
lated microscopic (thermal) fluctuations, which emit band-
limited noise with a characteristic timescale of the inverse
observing bandwidth (1/Av ~ 1072 s). As a result, the
complex electric field E;(X;, #) measured at each site is a
sum of many independent emitters and is therefore (by the
central limit theorem) a zero-mean Gaussian random field.
Hence, the two-point function (2.14) fully encodes the

104038-5
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statistical properties of the source over these microscopic
timescales. In particular, higher-point functions of the
electric field are given by Wick’s theorem as sums of
products of the 2PF (provided that the brackets denote a
time average over timescales that are not sufficiently long
to probe the macroscopic fluctuations).

In contrast, macroscopic fluctuations in the emitting
material, such as changes in the plasma properties, produce
variations in the image /(X). Near a BH and on scales
comparable to the photon ring, these fluctuations will have

an associated timescale on the order of M ~ 5( 106MM ) s.
[©]

They also have a nontrivial spatial correlation structure and
have coupled spatial and temporal variations that reflect
bulk evolution of the emitting material. The remainder of
this paper will focus on these macroscopic fluctuations and
the corresponding time-dependent image /(X,1); accord-
ingly, all time averages will from now on be performed over
macroscopic timescales of order 2M.

III. TWO-POINT FUNCTION OF INTENSITY
FLUCTUATIONS

The main proposal of this paper is to measure and study
the 2PF of intensity fluctuations in the observer sky, which
is parametrized by time and polar coordinates (¢, p, ). The
three-dimensional (3D) correlator is defined in terms of
image fluctuations AI(t,p, ) = I(t,p, ) — (I(t,p, @)) as
C3D(t’ t/’ @, (plv P p/) = <A1<t7p7 ¢)Al<t/’ plv ¢/>> (31)
This two-point correlator is expected to display an intricate
structure that encodes information about the BH parame-
ters, since a single spacetime event in the vicinity of a BH
produces multiple (formally, an infinite number of) images
in the observer sky that are significantly separated both
temporally and spatially. This phenomenon occurs because
any source point in the bulk connects to every observer via
an infinite number of different null geodesics that complete
an arbitrary number of half-orbits in the photon shell before
reaching the observer.

These strongly lensed light rays approach the critical
curve {p(7),p(7)} in the sky exponentially fast in the
half-orbit number n. The high-order, indirect images can
therefore be treated collectively as a single narrow ring.
Operationally, such a treatment is implemented in the
correlator by integrating over the radial extent of the photon
ring in the observer sky, effectively treating it as an
unresolved ring. Assuming that the fluctuations are sta-
tionary (i.e., have time-independent statistics), the resulting
photon ring correlator depends only on the autocorrelation
time 7T =1 -1

C(T.p.¢) = //)d/)//"dﬂl@l(f’ﬂ’(ﬂ)AI(t+T7/’/,§0')>-

(3.2)

It is possible to further integrate over the angles around the
photon ring, effectively treating the source as pointlike and
focusing only on autocorrelations in the time domain:

Cip(T) = /dco/dcp’C(T,(p,fﬂ’). (3.3)

IV. SOURCE FLUCTUATIONS

The time-dependent intensity in the observer sky is
computed by evaluating Egs. (2.11) and (2.13) for a given
source distribution. In order to compute C(T, ¢, ¢), there-
fore, we need information about the source statistics. In
Sec. V, we will consider a simple, analytically tractable toy
model for random equatorial emission, with a specific
(Gaussian) profile for the emissivity two-point correlation
function in the ¢, r, and ¢ directions. In this section, we
guide our choice of parameters for this emissivity 2PF by
considering a GRMHD BH accretion flow simulation.
We are particularly interested in the correlation lengths in
the different spacetime directions on which the source
profile depends. In contrast, previous studies of correlations
in GRMHD accretion flows have focused on density,
temperature, and magnetic field (rather than emissivity),
especially in the context of convergence studies [42,43].

The simulation was produced with the THARM3D code
[13] and was initialized to correspond to a magnetically
arrested disk accretion flow [44,45] around a BH of spin
a/M = 94%. The synchrotron emissivity at 230 GHz was
computed according to Ref. [46] assuming a thermal
electron distribution function. Electron temperatures were
computed from the bulk fluid internal energy according to
the prescription described in Ref. [S] with ry;g, = 40. We
scale the mass and length units of the GRMHD simulation
to target an M8&7-like observation with compact 230 GHz
flux ~0.7 Jy, as in Ref. [5]. We evaluate the emissivity J in
the midplane of the simulation on snapshots spaced at time
intervals of 0.5M. In addition to depending on the plasma
number density and electron temperature, J is also a
function of the angles between the line of sight and both
the magnetic field (pitch angle) as well as the fluid velocity
(fluid-frame frequency)—hence, it is a tensorial quantity.
Since we focus on the low-inclination regime and assume
that all statistical properties of the accretion flow inherit the
axisymmetry of the underlying Kerr geometry, we will
neglect corrections due to ¢» dependence of the emissivity
on the pitch angle and the fluid-frame frequency.

°In general, emissivity depends on frequency, so redshift
effects (due to the gravitational field of the BH and Doppler
beaming from the motion of the fluid) may be significant. In our
simulation, however, we find that the redshift factors between the
local frame of emission and the observer are of order two and,
moreover, that correlation statistics do not vary significantly over
the corresponding range of frequencies near the 230 GHz
observing frequency. As a result, we may neglect the frequency
dependence of the emissivity 2PF, as described in Sec. II B.
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Normalized correlation function S of fluctuations in 230 GHz synchrotron emissivity computed in the midplane of a numerical

GRMHD simulation. The configuration consists of a magnetically arrested disk accreting onto a Kerr BH of spin a/M =~ 94%. Top left:
correlation function in 7 assuming q}ﬁ = Ar = 0. Top right: azimuthal correlation in g?) for T = Ar = 0. Both panels in the top row are
evaluated at 7 = 7, & 2.5M. Bottom row: radial correlation in Ar evaluated at two different radii 7 = 7, and 7 = 4M. The emissivity is
set to zero behind the event horizon r = r,, so correlations vanish for Ar > 2(7 — r, ). This occurs in the shaded region in the bottom
left panel. For a unit-height Gaussian, the standard deviation width (1) is achieved at height e~'/? &~ 60.65%. The correlation lengths at
7 =7 are £, ~3.0M, £, ~43° and ¢, ~ 0.4M (while £, ~ 0.3M at ¥ = 4M).

We study the emissivity 2PF as a function of four
variables:

T=r7-1, ¢

¢/_¢’
r +7‘2

Ar=v—-r, 7= (4.1)
In simulations, the emissivity is often a sharp function of
radius, and so the properties of the correlation function may
depend on 7. We compare the statistics of the T, ¢, and Ar

correlations for different values of 7. We effectively assume

separability6 by computing the correlations in 7" and g% at
fixed radius (so that r; = ry).

We evaluate the synchrotron emissivity in the midplane
J(t,r, ) =J(t,r,¢;0 = n/2) directly from the numerical

®We assume that S(T', b, Ar, 7) is separable in Boyer-Lindquist
coordinates in order to obtain crude estimates for the correlation
length in emissivity fluctuations. We expect a more refined
analysis to show that this simplistic assumption breaks down
because of various effects; for instance, the flow velocity defines
a special radius-dependent direction in the (z,¢) plane. We
consider potential observational consequences of this assumption
in Sec. VIIL

simulation. Note that J(t,r,¢) = J(t,r,¢ + 2x) by the
azimuthal periodicity of the domain. The normalized
emissivity 2PF is given by
S(T,$,Ar,7)
(AT(t+T,p+ 7+ Ar/2) AT (1,0, 7~ Ar/2)) 42)
([AT(1.0.7)]%) S
where the mean-subtracted emissivity AJ =J —(J), , enc-
odes the fluctuations about (J), ;, the time-and-azimuthal-
average of the emissivity in the simulation.

In Fig. 3, we plot S(7,0,0,7) as a function of T,
S(0, (25 0,7) as a function of (25 and S(0,0,Ar,7) as a
function of Ar, for various fixed values of 7. We define the
correlation length as the width away from the maximum at
aheight of e~!/2, which for a Gaussian would correspond to
1 standard deviation ¢. At 7 = 7,, we extract from our
simulation the correlation lengths #, ~3.0M, ¢, ~4.3°,
and 7, ~ 0.4M (Fig. 3 also displays the correlation length
¢, ~0.3M found at 7 = 4M).

Note that, although we compute its correlation function
in the midplane, the emissivity is a volumetric quantity with
support in the geometrically thick disk. In the remainder of
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this paper, we will consider an equatorial thin disk model
with volumetric emissivity J(t,r,$)5(60 —z/2), corre-
sponding to an effective surface emissivity J(z, r,¢) that
is designed to reproduce the observable statistics of the
thick disk model. We will assume that the correlation
structure of J (the emissivity in the midplane of a
geometrically thick disk) is a reasonable proxy for corre-
lations in J. A finite thickness would introduce partial
cancellation of fluctuations that would reduce the 2PF for
all separations, including C(7T = 0,¢ = ¢').

V. TOY EMISSION MODEL: POLAR OBSERVER

In this section, we focus on the special case of a polar
observer, in which the large-n contribution to the autocor-
relation (3.2) (from light rays that circumnavigate the BH
multiple times) is especially simple. Since this configura-
tion preserves axisymmetry, the correlator depends only on

D =¢ —:
C(T@)=/pdp/p’dp’<A1(t,p,rﬂ)AI(I+ T.p' \p+@)).

(5.1)

We consider an optically thin annular emission region
localized in the equatorial plane 6 = z/2 with local
emissivity J(z, r, ¢)6(0 —5) satistying

(AJ(t,r,p)AJ(T,F,¢))
_{ij,(t_tl)Gf,(r_r/)Gofd,((b_gb/) ifrmlnsr r < Fmaxs

0 otherwise.
(5.2)

Here, rpa — Fmin = W is the width of the annular equato-
rial disk, AJ(t,r,¢p) = J(t.r, ) — (J(t. 1, p)) is the source
fluctuation, and we introduced the distributions

Gy(z) = ¢,
¢(2) ro
1 —lsinz(ﬂ)
y = e 2, 5.3
f(¢) 27[[0(1/f2)e_1/f2 ( )

These are, respectively, the Gaussian distribution and its
analog for a periodic variable, known as the von Mises
distribution,” with normalization chosen to ensure that

/_: Gy(z)dz = Ah

The parameters 7, £,, and £, are the correlation lengths of
the fluctuating source in the #, r, and ¢ directions,

Gip)dp=1.  (54)

"Whenever 0 < ¢ = |¢p — ¢/| mod 27 < 1, the von Mises and
Gaussian distributions agree to leading order in e.

respectively. Our goal is to analytically compute the
contribution to the correlator (5.1) from photons under-
going multiple half-orbits around the BH. Such near-
critical geodesics are close to the photon shell and display
the universal properties discussed in Sec. IT A, with a
significant simplification due to setting 6, = 0. In this
special case, only photons with zero angular momentum,
which execute multiple orbits near the radius 7, in the
photon shell, may reach the observer. We assume here the
emission region contains the photon shell, so that
Fmin < 7o < 'max- In the observer sky, the near-critical
regime is defined by p = p, + dp with dp/py < 1, where

,..3 ~
. _ R AMA(7y) . )
p¢ [(%—M)Z o] T4

is the radius of the perfectly circular critical curve in the
sky. Minding a subtlety in 6 [Eq. (66) of Ref. [17]], the
critical exponents corresponding to the single observable
photon shell radius 7, are

(5.5)

47'0 - MA(T()) K( 612

— |, 5.6a
pi—a’ Fo(Fo — M)? az—/’%) (56

50:71'+

2 M 2
c <f°+ )K( - ~2>, (5.6b)
,/ﬁ%—az rO—M a” —py

2 o (Fo+3M a’
Po—a 0 a” =/

Py [E(azajﬁ(z)) - K(aza—zﬁéﬂ }

The observed specific intensity of the equatorial disk is
obtained via the procedure outlined in Sec. IIB. The
radiative transport equation (2.11) implies that a light
ray shot back from position (p, ) in the observer sky
collects photons only when it crosses the disk, so

2931 ?)),

where the sum is taken over the n equatorial crossings of
the light ray, which intersects the disk at radii i (p, @) for
ke {0,1,...,n} (see Appendix A for an exact formula).
The emitted specific intensity at each crossing is
computed using the radiative transfer equation (2.12) as
follows. Let ® denote the emission angle of the light ray
relative to the local zenith (8 direction) in the rest frame of

the source. For a light ray crossing the equatorial plane
perpendicularly (© = 0), we have ds = /ggpd0 = VZdo =
V1 +a*cos*|,_,,d0=rd0. More generally, if it
crosses at an angle ® > 0 from the zenith in the rest
frame, then

(5.6¢)

1, (t.p. @) (5.7)
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r
ds = do. 5.8
s cos® (5-8)

Evaluating Eq. (2.12) in the rest frame of the source, where
J, = J(t,r,¢)8(0 = %), it follows that®

IDS(r)z/J(t,r,gb) (9_2> %dez

Since the effective surface emissivity J is by assumption
independent of the emission frequency v, in the rest frame
of the source, we will from now on omit the frequency
subscripts. In general, the precise forms of the redshift g
and direction cosine cos ® depend on the relative velocity
of the emitting matter in the disk. In the model presented
here, we will assume that this velocity field is equatorial
and axisymmetric. For example, in the particular case of
emitters on corotating circular equatorial orbits, one obtains
the simple expression [26,48]

J(t,r, ).
(5.9)

r
cos®

cos®::|:g—\r/’_7, (5.10)
where the upper or lower sign is chosen according to
whether the light ray with conserved quantities (4,7) is
emitted upwards or downwards from the disk and the
redshift factor g(r, 1), whose form depends on the stability
of the orbit, is given in Appendix B. Together, Egs. (5.7)
and (5.9) imply that

(5.11)

(k)
Itp(ﬂ Zg c0s O ts ,rs ,¢s )7

where each term in the sum is to be evaluated at the
spacetime coordinates of the corresponding equatorial
crossing. Note that for circularly orbiting emitters, the
redshift factor in cos ® [Eq. (5.10)] effectively reduces the
power of ¢* to ¢g*. In particular, for a near-critical light ray
reaching the polar observer, we have g ~ g, = g(7y,,4 = 0)
and cos ® = cos (:)0 = cos O(7y, 1 = 0),9 and thus

1(t, py + 6p, J(t — Aty — kg — Sty T
(1.0 + op. ) gozcos 8, 0 0 ko
+ 61, 0 — Apg — kbo — ¢pi),  (5.12)
8In the covariant formalism for radiative transfer,
1, (r) =v, [J(do/d0)dl, where |db/do| = |p°| =v,\/n/r*

[eg by Eq. (6b) of Ref. [47] evaluated at 6 = z/2 with
= v,]. Hence, 1, (r) = J(t,r,$)r*/(g\/n), which agrees with
Eq (5.9) in light of Eq. (5.10).
°For circularly orbiting emitters, cos @, = +30r\/71(Fo)/ Fo-

where n(dp) is the number of half-orbits executed, which
obeys10 n ~ —1nédp/py. The deviations ¢, 6ry, and 5¢; all
vanish as k — oo; for large 1 < k < n, they give small
corrections that account for the fact that the geodesic is
slightly near-critical (off the photon shell). The azimuthal
winding Ag¢, = const + O(5p) is a ¢-independent angle
accumulated between the observer and the first equatorial
crossing (when ray-tracing backwards from the observer sky)
that is spin-dependent but irrelevant for the photon ring
contribution to the two-point function, as it is also approx-
imately the same for all near-critical photons. Similarly, the
time lapse Az, = const + O(Jp) is the time elapsed along a
photon trajectory from the last crossing of the equatorial plane
to the observer (evolving the ray forward in time), which is
approximately the same for all near-critical photons.

The intensity fluctuations in the photon ring are obtained
by subtracting from both sides of Eq. (5.12) their average,
resulting in

Al(t,po+dp, @) goz
—0 OS o

+0r, 0 — Ao —kdy — Oy ),

AJ I—Ato—kTO —5tk,r0
(5.13)

where AJ is the fluctuation of the effective surface
emissivity of the disk. Now we can plug Eq. (5.13) into
Eq. (5.1), and use Eq. (5.2) to obtain the following formula
for the photon ring autocorrelations:

VAT
e(r.@) =235 [ patap) [ paton)
o
n(dp) n'(8p')
X Z Z Gy, (6ry — ory)
=0 K=
X Gf/[ - To(kl - k) - (Stk/ + 6tk]
X Gy [0 = 8y(K — k) =6y + 6. (5.14)

One may now interchange the order of integration and
summation, thereby replacing the sum over crossings with
a sum over subrings. Recalling that n(5p) — oo as §p — 0,
this results in

< [ a6 6 = o)
s.r.k’

X Gfx[T - To(k/ - k)
x Gy, [® = 8o(K' = k)

— Sty + 6ty

—6¢p + o). (5.15)

"The subleading (dp-independent) correction to this relation
was computed analytically in Ref. [17].
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where the limits of integration in the integral |, are the
boundaries of the kth subring. The integrations over dp and
Sp’ may now be evaluated as follows. First, we will make
the approximation

5tk — 5tk’ ~ 5¢k —

S ~ 0, (5.16)

which holds for large enough k <n, where k =k if
|k —n/2| < |k—n/2|, and k = k' otherwise; more pre-
cisely, due to the exponential falloff of 6z, 6¢;, Eq. (5.16)
is valid when

n/2,

Me—iﬂ/o < ft and e—i(}’o < f(ﬁ for 1 <« /% <
<k<
(

Me~ =0 « £,and =R < £, for n/2

17)

In contrast, to leading order as k — oo, the argument of the
radial Gaussian function vanishes identically; hence, we
must keep track of the next order in 6ry, as described in
detail below.

Finally, we can also approximate the measure near the
photon shell as pd(Sp) ~ pyd(Sp). Under these approxima-
tions, the only dp-dependence of the integrand comes in via
Oryi» s0 we only need to compute the contribution

Ay — / dop) / A@)Gy, (or = ony). - (5.18)

This factor determines the amplitude of the contribution of
the {k,k'} summand in (5.15). We prove in Appendix A
that

d(8p) = ye *r0d(5ry), (5.19)
where
2772 e MA(7
_ e oy MATD) s )
Po(1+V¥)A(F) Fo(Fo—M)

The radial integral (5.18) that we wish to compute is
therefore of the form

Ww/2 W2
IC:/ dx/ dyGy(x —y+ C),
-w/2 w/2

(5.21)

with C = 0 (but we will use the generalization to nonzero C
later). Assuming £ < W, this integral evaluates to

c
Ie=WA(=).
=)

(5.22)

where

AGz) = erzerf<x/1§;/zw> -3 rf(f ;/W>

4 2 _z+|/z7
+ <W> (7 =1)Grpwlz) + (z = -2,
(5.23)

and erf(z) = (2/v/x) [§ ¢~"dr denotes the standard error
function. Note that A(z) achieves its peak value (which is
less than unity) at the origin and falls off monotonically in
|z], tending to zero as |z| = oo. In particular,

A(O)—erf(\%ﬂ) %(%)[1—e-<w/f>z/2]. (5.24)

Also, note that for 7 < W,

A(z) ¥ max(1 —|z|,0). (5.25)

Using these identities, Eq. (5.18) evaluates to
Ay = e 0 EHIWA(0). (5.26)

Now we can change the order of summation, defining m =
k—k' and s = k + k' to obtain

5 = 23\ 2
o(T. @) = <M> TWA(0)

cos B

X Z Z e Gy (T + mz) Gy (P + mby)

m=—00 s=|m|

(5.27)
_ <lo,5070§<3)> > JWA(0)
cos 0, I —e0

x Y enGy (T 4 meg)Gy (© + mdy).  (5.28)

m=—00

This expression describes a train of peaks in the autocor-
relation plane (7,®), localized around (mzy, md,) for
integer m, and with exponentially decaying amplitude as
|m| grows. It is clear that the function C(7,®) enjoys a
discrete symmetry, or self-similarity: it is invariant under

T—)T—FT(),

+
C - e*(C,

CD—)(D+50,

+ = sign(m). (5.29)

The correlator has both universal and nonuniversal features,
but the simple form of the result in Eq. (5.28) allows us to
separately extract them from C(7, ®@): the location of the
peaks in the (7, ®) autocorrelation plane, and the ratios
between their amplitudes, are determined by universal
features of the Kerr geometry: the critical exponents y,
09, and 7. On the other hand, the shape of a single peak,
and its width in particular, are determined by the
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astrophysical details of the accretion flow. For example, we
could have chosen to model the source 2PF in Eq. (5.2) by
Lorentzians instead of Gaussians. Each peak would have
then changed its shape but not its location in the (7, ®)
plane. We illustrate the universal self-similar structure of
C(T,®) in Fig. 1.

The formula (5.28) and its generalization to inclined
observers obtained below present promising prospects for
observation (see Sec. VIII for further discussion). Upon
measuring C(7, @), it would be extremely interesting to see
whether more than one peak can be observed. In fact,
observing two or more clearly separated peaks would
already provide strong evidence of the photon ring: strongly
lensed photons that execute multiple orbits around the BH.
Moreover, these peaks must be arranged in the autocorre-
lation plane in a way that respects the self-similarity
described above, a fact that could provide a highly nontrivial
test of strong-field general relativity. Most interestingly, a
measurement of the locations of these peaks provides anovel
method to measure BH parameters: both mass and spin. This
would be done as follows: the peaks’ locations provide
information on 7z, and &,. The critical exponent 7, depends
weakly on spin [17] and thus is a good measure of the BH
mass.'' On the other hand, 0p does depend strongly on spin
and could thus be used to measure it.

)7 (»)

Al(t,p+ 6p, @)
cos@

ZAJ (p)) —

Finally, we can also integrate over the angular depend-
ence @ to isolate the time autocorrelations:

Cip(T) = /d(p/d(p’C(T, (D)
PoFode \ 2 TWA(O
_ 2mﬂ{p<0ﬂo 990> ( )
cos O

1 —e0
(o]
X Z e MG, (T + mry).

m=—00

(5.30)

This observable has the advantage of being measurable
even if the ring’s diameter is not resolved.

VI. GENERALIZATION TO INCLINED OBSERVER

For an observer at nonzero inclination 6, > 0, the
axisymmetry in the observer sky is broken but time-trans-
lation symmetry is preserved at the statistical level. The
correlation function will therefore have the general form

CT.0.0")= / pd(dp) / p'd(dp")

x(AI(1.p+6p.@)AI(1+T.p+3p".¢")).  (6.1)

Generalizing the analysis of Sec. V, we can write the
intensity fluctuation as

ke(F(9)). H(@) + 6ri. o — AP(F(9)) — k(F(@))].  (6.2)

where ¢, is the azimuth of the observer, while A¢(7(¢)) and At(7(¢)), respectively, denote the O(k") pieces of the
azimuthal angle and time accumulated along the photon’s trajectory from disk to observer, which may be computed

analytically using the asymptotic formulas (A32).
Plugging Eq. (6.2) into Eq. (6.1) yields

d(sp') ZZG;

k=0 k'=

C(T.0.9") =N (9.¢) / pd(dp) /

)+5rk 5rk/]

X Gy, [T+A1(Ho)) = At(F(¢) + ke (7)) = K'2(F(¢))IG7, [AD(r(@)) = Ad(r(7")) +k6(F(9)) = K'6(F(¢))],

where we introduced a prefactor

Npo) =2 Fo)H )7 ()7 (@)

(6.3)

cos O(¢) cos B(¢')

(6.4)

We wish to emphasize that the precise form of this prefactor depends on the specific assumptions of our toy model and more
specifically, the motion of the emitters in the disk. Nonetheless, the autocorrelation will still exhibit universal features.

As in Sec. V above, we have kept in Eq. (6.3) only O(5p°) terms in A¢ and At and ignored subleading corrections. In
contrast to the polar case of Sec. V, however, here these terms are generically nontrivial functions of ¢. Following the same
approach as before, we can interchange integration and summation in Eq. (6.3), and approximate near the photon shell
p = p(@) and for large enough k < n,

d(8p) = 1(@)e T @)d(5r),. (6.5)

"Of course, there are already quite good independent mass estimates for certain BHs such as M87*.
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where 1(¢) is computed in Appendix A and given in Eq. (A18). Using Eq. (5.22) to integrate over radii, we obtain

C(T.0.¢") = N(p.¢')

t

s
[]s

x Gy [Ap(F(p)) — Ad(H(¢")) + ko(F(e)) — K'6(F(¢'))].

¢

with A(z) as given in Eq. (5.23). Equation (6.6) describes the
intensity fluctuation 2PF on the photon ring for general
inclination. The argument of A in Eq. (6.6) shows that, for
nonzero BH spin, correlations between angles ¢ and ¢’
around the ring are significant (compared to correlations
measured by a polar observer) only if the corresponding
photon shell radii satisfy 7(¢) —7(¢') S W. One clear
implication is that observations at small inclination are
favorable for measuring correlation around the ring at
significant angular separation. Note also that the relation
(2.10) defines 7(¢), but there is no closed-form expression
for its inverse; thus, it could sometimes be more convenient
to view the radius 7 as a parameter along the ring in Eq. (6.6),
without direct reference to ¢. In the next section, however,
we will approximate Eq. (6.6) for small observer inclinations
by perturbatively inverting the relation 7(¢), allowing us to
directly express C(T, ¢, ¢') in terms of its arguments.

VII. EXPANSION IN SMALL INCLINATION

In the case of small observer inclination 0 < sinf, < 1,
we can significantly simplify Eq. (6.6). Expanding
Eq. (2.10) to first order in inclination, we obtain a relation
between the photon shell radii accessible to the observer
and the angle on the sky,

7 =T+ Easinf, cos ¢, (7.1)
where, noting that 73 = 3M73 — a*(Fy + M),
- (AF) 4751/ A(7o)
— \Fo—-M 3M? (7 + a?) + a®[A(Fy) —6M Ty
(7.2)

Equation (7.1) is useful for expanding many of the
quantities appearing in Eq. (6.6). We can write

Y =Y, + Y,asind,cos g, Y, =E[0;Y];;,,  (7.3)
for each of the quantities Y € {y,é,7,1, 7, cos @}. The
functions y(7), =(7), 6(7) are explicitly given in Eq. (2.8),
while ¢(7) is given in Eq. (A18), g(7) in Eq. (B2), and cos ®
in Eq. (5.10). Here, we provide only an implicit definition of
these expansion coefficients in order to avoid clutter, but it is
straightforward to take the derivative and obtain their

()P (@) (@)@ )WA (W)

eI G [T+ Ar(Fg) = Ar(F{) + ke(F(9) = Ke(F ()]

(6.6)

|

explicit, albeit quite lengthy, expressions. Note that for
low spins, §; ~ 1/a, so that the leading correction in small
inclination to the redshift in Eq. (7.3) is a independent.
Physically, the redshift is corrected at first order in inclina-
tion even for a nonrotating BH (with @ = 0), since radiation
emitted from circular orbiters still exhibits Doppler shift
even in the absence of BH spin. This can be seen by
expanding the general formula for A(7), which enters
through the formula (B2) for g(7), in small inclination,

2[a®(Fy + 2M) — 3M?¥)
(7o — M)?

AR Esin 6, cos ¢, (7.4)

and noting that it has a finite, generically nonzero limit as
a — 0. We further note that the argument of A in Eq. (6.6) is
O(sind,). Since A(z) = A(—z), to leading order in small z,
A(z) = A(0) + O(z?), and so A does not admit corrections
at O(sin@,). Using Eq. (7.1), we can expand

Ap(F(p)) — Ap(F(¢))

=@+ fy(cos g —cosg')asinb, + O(sin’d,), (7.5)
Ar(F(g)) — At(F(¢'))
= f.(cosg — cos ¢')asin6, + O(sin?0,),  (7.6)
where
fo =El0:(AP)]i—s,.  fi=El0:(AD]5m,-  (7.7)

At first order in inclination, the critical curve is still a
perfect circle, though its center is horizontally shifted from
the origin of the coordinate system (p, @), from p =0 to
p = piXasin6, with ¢ = 0, where [21]

2(a’pf—2TM* - a*)

X=- .
3(M?—a?)pg—2(2TM* =30M?a® — a*)p3 —96 M*a*
(7.8)
We can therefore write, to first order in inclination,
P(p) ~ py + piXasinb, cos ¢. (7.9)

Putting everything together, and defining m = k — k’ and
s =k + Kk, Eq. (6.6) becomes, to O(sin6,),
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- - +¢! +¢!
C(T, O, 9+ §0/) ~ C(q), @+ (P/) § E e—Srotriasing, cosF cos?5)+myyasin 6, sing sinf 5>

m=—o0o s:|m\

P+

/ q) /
(p+(p> —asin@,(st; + 2f,) sin—sin ]

2

. o
X Gy, [T+m<ro + 7,asinf, coszcos 3 >

/ /

0] o
X G;¢ {d) +m(50 +51asinﬁocos§cos¢;¢> —asinf,(s6, +2f,) sinzsin(p—;(p], (7.10)

where we introduced

2 g ) 6 @
) JWA(0) [1 +2asiné, <3€1+l|+~_cos ! +f)0X> COS —COS
Jo W To cos@ 2

~ = =3
10P0" 09y
cos O

C(¢’¢+¢’)=< (7.11)

9+ qo’}
If the conditions sz asinf, < ¢, séjasind, <, fasinf, <7, and f asinf, < £, are satisfied,'” then we can
approximate Eq. (7.10) using

€20

esinz
G (20 €) ® Gy, (20) (1 - 7>’ Gy,(z0 +€) ~ Gy (20) <1 B 0)- (7.12)
! ¢

In turn, this allows us to explicitly perform the sum over s, resulting in

(D, / Sl . . . /
C(]_Le_—'_y;p) Z e—|m|y0+my|asm(),,sm%sm@[] + asin&,,bm(T,tb,(p +(/7/)]

m=—0o

C(T,®,p+¢ )~

/

o
]G;w {@—f—mﬁo—i-asinﬁomél coszcos(p—g(p}, (7.13)

o+q
2

. )
X Gy, [T +mzy+ asin@,mt, coszcos
where we introduced

(DN . [(o+¢\[T+mz sin(® + mé o p+q¢ 1
bm<T,<D,g0+g0/)=SIH<5>SIH< > ){ ) o, + (fi, O)T¢]—cos<5>cos< 5 n e70—1+|m| ;

(7.14)

1 1
T, = <em —+ |m|>71 +2f,  Yy= <em —+ |m|>61 +2f,. (7.15)

An additional approximation can be made for low enough m, or more precisely, when the conditions |m|zr;asinf, < ¢,,
|m|6yasin@, < £,, and |mly;asin@, < 1 are satisfied as well. If we let m,,,, > 0 denote the maximal m for which the
above conditions hold, then the contribution of the 2m,,, + 1 peaks around m = 0 to the 2PF is given by

c(@g+) R

C(T.®.9+¢)~ Y emiofl +asing,B,,(T,®,¢ + ¢)|Gy, (T + mz)Gy, (© +méy),  (7.16)

I —e™ &
where
q) /
B, (T.®.0p+ ¢') = b, (T.®.p + ¢') + my, sin (E) sin<¢ Z ¢ )
® @+ ¢\ [T+ mz sin(® + mé,
- mcos<5) cos( 7 P 07 + ( f?s 0)61 . (7.17)

It is natural to integrate over ¢ + ¢’ to obtain an “effective” 2D correlator that can be compared to the one obtained for a
polar observer in Sec. V. More explicitly, we would like to compute

12Fonnally, s assumes arbitrarily large values, but since large-s contributions are exponentially suppressed, we can safely use this
approximation when we sum over all s below.
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/
o(T, @) = i/d((p + (p)C(T,<I>,(p+(p’). (7.18)
2n 2

This quantity is trivial to first order in small inclination
since all the pieces of Eq. (7.16) that depend nontrivially on
@ + ¢'—which are also O(sinf,)—integrate to zero.
Therefore, Eq. (7.18) integrates precisely to Eq. (5.28) to
first order in inclination, inclusive, and is corrected only at
O(sin?@,). This is an encouraging fact from an observa-
tional perspective, since it means that for small inclinations,
the results of Sec. V are robust against changes of
inclination once ¢ + ¢’ is integrated out.

VIII. OBSERVATIONAL PROSPECTS AND
CONSIDERATIONS

We conclude by briefly commenting on the observatio-
nal prospects for measuring C(7, ¢, ¢'). Observing several
clearly separated maxima in C(T,q,¢') would provide
strong evidence that some of the arriving photons were very
strongly lensed by the BH. Such an observation could also
provide a test of general relativity, since the theory makes a
universal prediction for the self-similar structure, locations,
and relative heights of these peaks. Deviations from general
relativity can modify our results for C(T, ¢, ¢') in many
different ways; to fully understand the effects of such
potential deviations on the fluid evolution and ray-tracing
would require significant work beyond the scope of this
paper. Assuming general relativity, the 2PF on the ring
could be used to estimate both the mass and spin of the BH,
as well as statistical properties of the accretion flow. A
successful measurement would not require specialized
emission conditions, such as a compact hot spot; we only
require that the image be variable. Because sources such as
Sgr A* and M87* are known to exhibit horizon-scale
variability [3,4,49-51], measuring C(T, ¢, ¢') is simply a
question of achieving the required sensitivity. We will now
derive rough estimates for the sensitivity requirements.

We will first consider an observation in which images are
measured perfectly, with unlimited angular and temporal
resolution. In this case, the required sensitivity is deter-
mined solely by the source stochasticity. An observation
that continuously spans a timescale of 7., will sample N, ~
tons/€; stochastic realizations in time and N, ~2x/7,
stochastic realizations in angle. The mth correlation peak
will have an amplitude that depends on the fraction fiy,, of
the image flux that is fluctuating, the partial reduction in
correlation amplitude from radial averaging, and reductions
for the finite-delay envelope along null geodesics passing
through the emitting region. We can approximate the
magnitude of the (dimensionless) correlation peak as
C(T, ®)/Ig ~e "2, where I, is the average flux
density of the ring.

Given N independently sampled pairs of image intensity
with respective lags (7, @), the signal-to-noise ratio (SNR)

for their correlation is approximately N'!/2|C(T,®)/
C(0,0)|. Hence, even in the idealized case of infinite
resolution, there will be a finite SNR at a fixed angle,

SNR, (¢p) ~ e~I™lro @’
2

while the SNR when combining information from all

angles is
27t oo
SNR_, ~ e~lmlro, [Z220bs
£yt

A real observation will also have limitations from finite
angular resolution 6, limited temporal sampling cadence
At,,s, and additional image noise that is related to details of
the instrument and observation (e.g., finite baseline cover-
age or calibration uncertainties for an interferometer).
Finite angular resolution is likely to be the most significant
of these limitations; if the resolution is insufficient to
resolve 7, then it will reduce the measured correlation and
will decrease the number of statistical realizations that can
be combined to improve sensitivity. Letting 6, denote the
angular radius of the photon ring, the image azimuthal
resolution is g,/ > £, and the SNR becomes

(8.1)

(8.2)

2ty 0% £
SNR ~ e~Imlro w (8.3)
gobsff
£ 40,
= PP oNR.,. (8.4)

obs

The effects of coarse temporal sampling Atg,, > ¢, are

identical: SNR « A’f’b_SNRm. Finally, errors in a recon-

structed image will have nontrivial correlation structure
across the image (e.g., related to systematic calibration
errors) and across time (e.g., related to limited baseline
coverage that may be the same in different observing
epochs). We can crudely represent these as a source of
added stochastic noise, which effectively serves to reduce
the correlation by some factor fqp,~ fizmg. Hence, we
expect it to be more difficult to detect the correlation
structure in the case of weak image fluctuations, even if the
normalized correlation is large.

MS87* is a natural target to consider. The EHT has
already demonstrated that daily horizon-scale snapshot
images of M87* are feasible and has already measured
horizon-scale intrinsic variability on a timescale of
~10GM/c? [3,4]. Significant variability is also seen in
longer-wavelength monitoring [52]. Moreover, MS87*
anchors a prominent kpc-scale jet; measurements of the
jet/counterjet brightness ratio, kinematics, and differential
limb brightening are all consistent with a viewing
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inclination of 17° 4 3° [52]. Thus, under the assumption
that the black hole spin vector is aligned with the jet, the
black hole in M87* is viewed at small inclination and the
approximations in Sec. VII are appropriate. This super-
massive BH has M/D ~ 4 pas and GM/c* ~ 9 h [6], while
the EHT currently has an angular resolution of ~20 pas.
Thus, Oy /O ~ 102, We then obtain, for the m = 1 peak
in the autocorrelation,

M87x:

N\ (E\S(C \ (S fobs \?

& t obs obs
SNR ~ 0.7 )
< )<5> <1day) (0.1><1 yr)
f¢ ft % fobs Tobs %

NR ~ 0.02 - —

> 00 < )( °> (1da}’> (0‘1 Lyr

% < eobs >_ (Atobs >_l‘ (85)
20 pas 3 days

Here, we set an optimistic characteristic value of 3 days for
Aty,, Which accounts for limitations that may impede
continuous observations, such as poor weather. Thus, even
with a perfect instrument and continuous monitoring,
detecting a strong signal in C for M87* will likely require
some combination of rapid BH spin (increasing e™7° by a
factor of ~2), a high fraction of the image that is variable,
and many months or years of observation. Current obser-
vations lose another factor of ~35 in sensitivity from the
combination of limited sampling in time (~3x) and the
limited image resolution (~10x). Nevertheless, observa-
tions of M87* with the EHT every few days over a span of a
few months or years would allow first estimates of C.

A second possible target for observations is the Galactic
Center supermassive BH, Sgr A*. This supermassive BH
has M/D ~5 pas and GM/c® ~ 21 s [53,54]. While the
mass and distance are tightly constrained, Sgr A* does not
have an observed jet, and the black hole inclination has no
firm constraints. If the inclination of Sgr A* is large, our
estimate for the SNR may need to be significantly modi-
fied. As with M87%, Sgr A* shows ~20% variability in its
total flux density [38], thereby implying significant image
variability. In addition, the gravitational timescale is shorter
than Earth rotation timescales. Nevertheless, extensions of
the EHT that are sufficient to reconstruct movies of Sgr A*
would allow estimates of C with continuous observations
[55-58]. We then obtain

SgrA*:

- 1
~30(e—°)< ) () <°—“)<
e” min 1 yr
e’ ft obs Obb %
e" 1 min
% eobs - Al‘obs -
20 pas 5 min

ul|%
\_/
/\
p—
|

L%I&

SNR ~ 0.6(

(8.6)

Here, we set an optimistic characteristic value of 5 min for
Aty While the Aty for M87* depends on logistics
related to conducting observations, Az, for Sgr A* instead
corresponds to the minimum time required to form an
image. The expected SNR for Sgr A* is significantly higher
than M87* for the same observing duration, primarily
because of the significantly shorter coherence timescales
expected: Myig7./Msgra. = 1500.

In both cases, we can quantify the improvement afforded
by using imaging rather than analysis of the “light-curve”
measured for an unresolved source. The latter has the
advantage of requiring only one telescope rather than an
entire interferometric array. However, the SNR is signifi-
cantly higher with imaging than with a light-curve analysis,
SNRLC:

SNR 2
X ~—x70 8.7
SNREC 7, 8.7)

SNR 270
"Toh 6. (8.8)

SNRIC ™ g,

Thus, image analysis with the resolution of the EHT
decreases the required observing time by a factor of
~40, while observing with a significantly enhanced array
would decrease the required observing time by a factor of
~5x 10°. An image analysis also has the advantage of
identifying azimuthal structure in the correlation function,
which provides information about the BH spin. However,
detecting signatures of the m = 2 and higher-order corre-
lation peaks is unlikely with our approach; even with an
image-based analysis and perfect resolution for Sgr A*, a
significant detection of m = 2 signatures would require
many years of continuous observations. Studies of unusual
events, such as flares from compact emission regions, are
more likely to yield the requisite SNR.

A separate issue for detecting C is to distinguish the
universal correlation structure that reflects properties of the
photon shell from the astrophysical correlation structure
that reflects properties of the emitting plasma (see, e.g.,
Fig. 4). In particular, a plasma with relativistic rotation may
have significant nontrivial correlation structures even at the
same values (7,®) at which the lensing gives peaks.
Nevertheless, we expect this contamination to be insig-
nificant when the astrophysical correlation is small at the
location of the lensing peaks because the correlations from
astrophysics and lensing are approximately additive.
However, if the astrophysical correlation is comparable
to the correlation from lensing, then the lensing signature
will be much more difficult to detect.

Although we have only considered fluctuations in the
Stokes intensity /, a similar universal structure will be
imprinted in the 2PF of observed fluctuations in the other
Stokes parameters Q, U, and V. However, while the image
correlation structure will be governed by the same critical
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FIG. 4. Universal structure in the time autocorrelation function
Cip(T) [Eq. (3.3)], with T the time separation, for polar
observations of random fluctuations in an equatorial disk sur-
rounding a Kerr BH with spin a/M = 94%. Universal aspects of
Cip(T) are governed by the critical exponents y and 7 [Egs. (2.8)].
The autocorrelation function consists of a sum (displayed with
orange shading) of self-similar peaks localized around 7" = mz,,
for every integer m, differing only by an overall demagnification
factor eI, Here, we show the |m| = 0, 1, 2 peaks in red, blue,
and green, respectively. The profile of each peak, which is
nonuniversal, depends on statistical properties of the flow and is
taken here to correspond to our toy model (5.2). This structure
may be obtained by integrating over ® in Fig. 1.

exponents as [ (determined solely by the achromatic
lensing of the BH), the correlation structure of the emis-
sivity may differ because changes in the magnetic field
direction affect polarization differently than total intensity.
Moreover, the fluctuations may highlight differential
Faraday effects among the different interfering paths, which
can potentially be quite strong for sources such as M87*
and Sgr A*, even when the source is optically thin [59-61].
It would be interesting (and likely difficult) to understand
the correlation structure of source fluctuations in the linear
polarization Q and U, and we defer this question to
future work.
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APPENDIX A: LENSED IMAGES OF AN
EQUATORIAL DISK

In this Appendix, we use the analytic techniques
developed in Ref. [17,47] to present a proof of
Eq. (5.19) and derive an expression for the quantity v

introduced therein. The simplest approach relies on the
method of matched asymptotic expansions, which was
applied to near-critical geodesics in Appendix B of
Ref. [17]. An alternative method would be to use the exact
solution of the null geodesic equation in Kerr obtained in
Ref. [47] and expand it near criticality. We will first employ
the simple approach and then briefly explain how one can
confirm that it agrees with the second.

1. Matched asymptotic expansion for
near-critical geodesics

The (r,0) component of the null geodesic equation in
Kerr can be recast in integral form as

o dr 6, do
Ir :f =R Jo 500 " (AD)
R(r) = [(r* +a*) —al]> = A(r)ln + (A - a)?],
0O(0) = n + a*cos?0 — >cot?d), (A2)

with the slashed integrals indicating that the signs =+, 4
switch at every radial and polar turning point, respectively.
In this paper, we consider photons received by a fixed
observer at inclination 6, and large radius r, — oo after
being emitted from radius on the surface of an equatorial
disk 8, = z/2. We wish to invert Eq. (A1) in order to obtain
the radial trajectory r,(Gy) as a function of the conserved
quantities (4,7) parametrizing the observer sky via
Eq. (2.10). This can be done exactly, but in this section
we will obtain a simplified formula for r, that holds near the
photon shell for near-critical geodesics with conserved
quantities (4,7) close to the critical values (2.4). Such
geodesics must appear very close to the critical curve and
may be parametrized by (7, d), where 0 < |d| < 1 denotes
their small perpendicular distance from the closest point
(p(7), (7)) on the critical curve (see Fig. 3 of Ref. [17]).

As an intermediate step in our calculation, we follow
Appendix B of Ref. [17] and replace d by a quantity &r
defined in terms of Bardeen’s coordinates (a,f) =

(pcosg,psing) as

d:2?4f( ord

A(F) /B + 7
(M - MA(F)
w—a—<7_M>as1n60, =1 FF M) (A3)

For light rays outside the critical curve with d o« 6r3 > 0,
the radius of closest approach to the BH is r.;, =
7(1 + 8ry). A near-critical light ray traced backwards from
a position outside/inside the critical curve in the observer
sky to a radius r, = 7(1 4 &r,) near the photon shell has a
radial geodesic integral /, given by Eqs. (B30) and (B32) in
Ref. [17], respectively,
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sri=org\ 1. (1-7%
I[;f,out( Sry, 00) = > \/_ {arctanh\/’ + arctanh (@) + Elog ( (8;?))5 5&%)} ) (A4)
' 1 or 1 -
ofin Sr,, 00 [arctanh + arctanh (73) +=lo (f 5r2 )} A5
( )= T2 7 vt i-on) 2 (8)()2| i »

where we took dr, — oo in both expressions since we only consider far observers. Solving I, = G, for the portion of the

trajectory in the photon shell results in
re = F(1 + 8oy,

with

1—7
T =27 /7 Gy + arctanh /7 + = log< )gér%)

Sro" = Srycoshr,

Expanding the hyperbolic functions in small 0 < §r3 < 1 results in the single expression

5}" =5 1n/out 1+ \/_5 2 2’\/)769 2 4)(

16y

Finally, plugging in for d yields

- 1+ . .- 47 s
rs(Ge) - r|:1 + 32”4\/2_\/ﬂ27 (r)deZ \/)?G("FT\/)?e 2iVZGo | |

This formula describes the portion of a near-critical geo-
desic’s radial motion near the photon shell, as a function of
its angular geodesic integral Gy (equal to the elapsed Mino
time) and position (7, d) near the critical curve in the
observer sky.

In the case of a polar observer, Eq. (78) of Ref. [17]
implies that such a geodesic intersects the equatorial plane
whenever [recalling Eq. (5.5) for the definition of pg]

B 2m+1
WAL

Yo=

4707
(5

~2
Pp—a

5 < 2) (A10)

a~=po

for some integer m labeling equatorial crossings. As such,
noting that for a polar observer, & = & and therefore
P4t = po, the radius of the mth equatorial crossing is

(m) _ ~ \/—.. ~ (m+4 4)?
) 514 A(F)delm+ro 4+
I r 32.,4 AA=4~2P0 (}") e 1 \/)?

e_(m+%>70:| .
(A11)
More generally, for an equatorial source but observer at

general inclination 6, > 0, we have from Egs. (20) and (43)
of Ref. [17]

orin = — /—6rj sinh, (A6)
(A7)
(8%)

e P VI, A8
1+ (A%)
(A9)

2m 477 -
Gy=——= , = K, Al2
[ 47 \/):(7/ Fo fo 4 av/—i. ( )

where 4+, = signf and using Eq. (12) of Ref. [17],
1 0s 0,

=——7F — . (A13
fo T <arcs1n< u+> ﬁ_) (A13)

Hence, we obtain the general expression

+ ll/ A( )de:‘:027\/)?foemy

(m) _ 1+%
Iy |:1+32~42

+ L einz; \/)?fo e_m7:| .

Y (Al14)

We define the polar tangential angle ¥(¢) to the critical
curve as the angle 0 < ¥ < 7 such that

()
()

St

tan ¥(p) = (A15)

t

This angle is such that d = &p sin'¥P, and so we obtain the
following general relation for polar curves:
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d . 0
—— =sin[¥P(p)] =—. Al
S = Sl (A16)
This implies that
ori™
I——=2¢"" + O(e™™), Al7
e () (A17
where
L LEVE s e aer i sinlf(g)],  (AlS)
1 327

a fact we use in our computation of the two-point correlator
of intensity fluctuations in Sec. V above.

2. Near-critical expansion of the exact
transfer function

Recently [47], the null geodesic equation in the Kerr
spacetime was completely solved analytically in terms of
elliptic functions. Using these results, Ref. [17] showed that
the radial trajectory of a light ray shot backwards into the
geometry from radial infinity is exactly given by

_ rqr3)p — 73”415”2(% V1317427 — ~7:o|k)
r3; — r413n2(%\/r3lr427—Fo|k)

with 7 denoting the Mino time along the trajectory from
emission point to observer, and

ry(t) . (A19)

F, = F(arcsin ALl k>, =120 (A20)
r'41 31742
Here, we introduced the notation
rij:ri—rj, (AZI)

with {r|,r,, r3,r4} denoting the roots of the quartic
potential R(r) appearing in the radial geodesic integral
I,. Analytic expressions for these roots are derived
in Ref. [47].

Plugging in 7 = Gy, with Gy as given in Eq. (A10) or
Eq. (A12) (according to whether the observer is polar or
inclined, respectively) defines the exact transfer functions
describing the optical appearance of an equatorial disk,

1" (p.0) = r,(Gy p.9)): (A22)
Contours of the transfer functions for the direct and first
lensed image of the disk are shown in Fig. 6 of Ref. [17]
and in Figs. 3 and 4 of Ref. [62].

It is possible to derive the formula (A14) for the radius of
equatorial crossings by expanding the exact transfer func-
tion (A19) near the critical curve. For near-critical light rays

with small 0 < 6r§ < 1, the radial roots {ry, r,, r3, 4} are
approximately

rp=F(=1-2y/1-%)+ O(5r3), (A23)
r=H-1+2/1-7)+0(6r3),  (A24)
ry = (1 = 6rg) + O(5r), (A25)
ry = F(1 + 8rg) + O(513). (A26)

Plugging these expressions into Eq. (A19) and expanding
in small or, reproduces the formula (A14). However, this
expansion is difficult and crucially requires the use of a
nontrivial asymptotic expansion of the incomplete elliptic
integral of the first kind, derived in Appendix C of
Ref. [62],

F(g—e 1—A€2>

e—0 1 1
~ ——log(Ae?) +logd —1o <—+
3 g(Ae”) +log g Ta

1 +%>. (A27)

3. Time lapse and azimuth swept

In general, the time elapsed and azimuth swept along a
light ray are given by

At=t,—t,=I,+a*G,, (A28)

A¢ = ¢0 - ¢S = I(/) + /IG(/,, (A29)
with the geodesic integrals I, I, G,, and G, defined in
Egs. (13) of Ref. [47]. The angular geodesic integrals G,
and G, do not simplify near criticality, and their general
expression for near-critical rays shot back into the geometry
is given in Sec. Il A of Ref. [17]. On the other hand, the
radial geodesic integrals /; and I, may be computed by the
method of matched asymptotic expansions, resulting in
the simplified formulas given in Eqgs. (B34) and (B36) of
Ref. [17],

(A30)

Iy = a<f - Z) 1 =2 10y(0r) - Q0. (A31)

where 6r, — oo for a distant observer and the auxiliary
quantities Q, and Q, are defined in Appendix B of
Ref. [17]. Using I, = Gy, this implies that
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[Qi(67,) = 2(0)],

(A32a)

P+ 3M F
Ar=7 Gy + @G, — ——=
r<7”—M> oT T

A — (j_ﬂf‘j) Go+1G, - TM)? 10,(67,) - Q,(0)].

(A32b)

The d dependence drops out entirely at leading order.
While the azimuth swept A¢ remains finite in the limit
or, — oo, the time elapsed along the trajectory from photon
shell to observer naturally diverges linearly as or, — oo.
However, for the computations in this paper, we only care
about the difference in time delay between received signals,
so we may replace At for a light ray by its difference with
the time elapsed along a reference trajectory, such as the
one providing the first image of any given bulk fluctuation.

APPENDIX B: REDSHIFT FACTOR FOR
EMISSION FROM AN EQUATORIAL DISK

The Kerr geometry only admits stable circular orbits
down to the radius of the ISCO at

Fme = M3 +2,-/(3-2))3+2+22,)),  (Bla)
Zy =1+ \1=-a[J1+a, +V1-a,,
Z, =B+ 72, a, ==, (B1b)

M

Beyond this radius, orbiters must necessarily plunge.
Following Cunningham [48], we consider an equatorial
disk consisting of emitters on prograde circular orbits
for ry > e and emitters on infalling timelike geodesics
with the same conserved quantities as the ISCO for

ry <rg < rps. This same model was used in Ref. [22]
to produce the BH image in the right panel of Fig. 2. Here,
we provide formulas for the observed redshift g of photons
received by a distant observer from such an equatorial disk.
This redshift depends only on the emission radius r, and
energy-rescaled angular momentum A of the photon, and is
given by

it 72> T,
g(rs,ﬂ) _ {gorblt ms (BZ)

Ginfall < Tns

where
\/rﬁ - 3Mr2 + Za\/ﬁri/z
Ydisk =
s r?/z + \/A_l(a -2)
1

Yinfall = (B3)

o =l = WA T VR(]

with + = sign(p}) corresponding to the radial direction of
emission from the source, and

2 M [ry 3/2 Ym:
ur = _,/gr—Im(%_ 1) =Tt an),
S N N

2M

rs
H_ZMrS—aAmS P _\/A_d(r?m—2a\/Mrms+a2)
A(r) T R -2 SR taVM

(BS)

_ 1M
Yms = 3r
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