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In the presence of a black hole, light sources connect to observers along multiple paths. As a result,

observed brightness fluctuations must be correlated across different times and positions in black hole

images. Photons that execute multiple orbits around the black hole appear near a critical curve in the

observer sky, giving rise to the photon ring. In this paper, a novel observable is proposed: the two-point

correlation function of intensity fluctuations on the photon ring. This correlation function is analytically

computed for a Kerr black hole surrounded by stochastic equatorial emission, with source statistics

motivated by simulations of a turbulent accretion flow. It is shown that this two-point function exhibits a

universal, self-similar structure consisting of multiple peaks of identical shape: while the profile of each

peak encodes statistical properties of fluctuations in the source, the locations and heights of the peaks are

determined purely by the black hole parameters. Measuring these peaks would demonstrate the existence of

the photon ring without resolving its thickness, and would provide estimates of black hole mass and spin.

With regular monitoring over sufficiently long timescales, this measurement could be possible via

interferometric imaging with modest improvements to the Event Horizon Telescope.

DOI: 10.1103/PhysRevD.103.104038

I. INTRODUCTION

The remarkable first image of a black hole (BH),
obtained last year by the Event Horizon Telescope
(EHT) Collaboration using very-long-baseline interferom-
etry (VLBI) [1–6], was the culmination of a decades-long
effort to peer deeper into the neighboring galaxy M87 and
image the supermassive black hole M87* at its center. This
breakthrough marks the start of a new era in which we
expect to obtain progressively better images of increasingly
many BHs. It is therefore of great interest to theorists to
provide detailed predictions: What do we expect to see in
BH images? How can we distinguish features of these
images that depend on the complex astrophysical environ-
ment of the BH from universal properties that depend only
on the BH itself? And how can we use these universal
features to test general relativity and measure the mass and
spin of the BH?
The propagation of light around a BH was first studied a

century ago [7], immediately following the discovery of the
Schwarzschild metric. Basic features of BH images and
their dependence on BH spin have been investigated over
the ensuing decades [8–12]. In recent years, increasingly

complex simulations have produced sophisticated models

of the astrophysical environment around a BH, enabling

detailed numerical studies of BH images [5,13,14]. The

past year has witnessed a flurry of activity in the analytic

study of the time-averaged image hIðρ;φÞi of a BH, where
I is the specific intensity at polar coordinates ðρ;φÞ
centered about the BH’s position in the observer sky

[15–22]. When a BH is surrounded by optically thin

emitting material, its image displays a narrow ring of

enhanced brightness: the photon ring. This ring is a

(formally infinite) sum of increasingly demagnified subr-

ings, each a strongly lensed image of the direct emission.

These subrings asymptote to a critical curve in the observer

sky, first derived by Bardeen [9]. The demagnification

factor at every angle in the sky is related to properties of the

photon shell, a region of spacetime in the vicinity of the BH

that admits (unstable) bound photon orbits; more specifi-

cally, to the Lyapunov exponent γ characterizing the orbital

instability of these geodesics [16]. Two additional critical

exponents of photon shell orbits, τ and δ, characterize their

temporal and azimuthal periods, respectively [17].
In this paper, we explore a new BH observable: the two-

point correlation function (2PF) of intensity fluctuations on
the photon ring, C ¼ hΔIðt;φÞΔIðt0;φ0Þi, where t is the
observation time and φ the angle around the ring. Intensity
fluctuations in the observer sky depend on one time and
two spatial dimensions; we propose, however, to integrate
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out the direction perpendicular to the critical curve and
effectively view the BH as a fluctuating (1þ 1)-dimen-
sional (unresolved) ring in the sky, on which we study the
2PF. This correlation function depends on properties of
both the BH and its surrounding emission, and exhibits a
universal (i.e., matter-independent) structure that is gov-
erned by the triplet of critical exponents fγ; τ; δg. Previous
studies have explored ways to infer BH mass and spin from
multiple correlated images of localized sources such as
compact infalling or orbiting emitters [23–29]. Here, we
consider the case of stochastic emission from an extended
source as a model for emission from the turbulent accretion
flow onto a BH [30,31]. We analytically compute the 2PF
for a toy model of stochastic equatorial emission and show
how to separate astrophysical features related to fluctua-
tions in the source from universal features related to the
BH (Fig. 1).

The rest of this paper is organized as follows. In Sec. II,
we briefly review some essential properties of null geo-
desics in the Kerr geometry, with an emphasis on the
photon shell and ring. In Sec. III, we present and discuss
general properties of the 2PF of intensity fluctuations.
Then, in Sec. IV, we numerically compute the source
emissivity 2PF in a full general-relativistic magnetohy-
drodynamic (GRMHD) simulation and estimate its
characteristic correlation length in Boyer-Lindquist
radius, azimuthal angle, and time. Next, in Sec. V, we
analytically compute the intensity fluctuation 2PF in the
case of a polar observer. We generalize to an observer at
arbitrary inclination in Sec. VI, before expanding to first
order in small inclination in Sec. VII. Finally, in Sec. VIII,
we discuss the prospects for measuring the intensity
fluctuation 2PF with the EHT, taking its observational
limitations into account.

FIG. 1. Universal structure in the autocorrelation function CðT;ΦÞ of intensity fluctuations in the photon ring, as a function of the
separation in time T and azimuthal angle Φ around the ring. This particular plot corresponds to polar observations of random
fluctuations in an equatorial disk surrounding a Kerr BH with spin a=M ¼ 94% [Eq. (5.1)]; the same structure holds to leading order in
small observer inclination [Eq. (7.18)] and for all spin. Strong lensing by the BH enables a single source to connect to a given observer
along multiple paths (Fig. 2, left), giving rise to correlations within the photon ring (Fig. 2, right). These correlations display a universal
structure governed by the critical exponents γ, δ, and τ [Eqs. (2.8)] that govern BH lensing. Two light rays that are emitted from the same
source and circumnavigate the BH k and k0 times, respectively, before reaching the observer contribute to a peak in the autocorrelation
CðT;ΦÞ labeled by m ¼ k − k0. Here, we display the jmj ¼ 0, 1, 2, 3 peaks in red, blue, green and purple, respectively. The dashed grey
lines (with Φ ¼ �180° identified) connect peaks with neighboring values of m. All the peaks share an identical profile that depends on
the source statistics. In particular, the peak width is set by the correlation length of fluctuations in the source; for this plot, we used the
correlation lengths lt and lϕ [Eq. (5.2)] inferred from the GRMHD-simulated accretion flow in Fig. 3. On the other hand, the locations

and relative heights of the peaks are fixed by the BH parameters, with each successive peak an echo of its predecessor, suppressed by e−γ

and translated by ðτ; δÞ (colored arrows). Observations of this correlation structure in the photon ring of a BH could therefore provide a
measurement of its critical exponents τ and δ, which would in turn produce estimates of its mass and spin.
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II. PHOTON RING, PHOTON SHELL, AND

CRITICAL EXPONENTS

In this section, we present a brief overview of the basic
concepts that we will need for our calculation. We recently
reviewed the photon shell in Ref. [16] and illustrated it in
Fig. 2 therein. Its existence implies that images of sources
near a BH will generically feature a bright, narrow ring of
light: the photon ring. In the optically thin limit, this ring is
composed of an infinite (in principle) sequence of subrings
with a universal (i.e., matter-independent) structure con-
trolled by three critical exponents γ, δ, and τ, which were
recently derived in Refs. [16,17]. After summarizing these
facts, we introduce the polar coordinates ðρ;φÞ on the sky
of a distant observer in terms of which our results will be
expressed. Finally, we review how BH images are recon-
structed from the electric field 2PF, which is the observable
that a radio interferometer directly measures, and discuss
higher-point correlations.

A. The Kerr geometry and its photon shell

In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the Kerr
metric has line element

1

ds2 ¼ −
Δ

Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ

Σ
½ðr2 þ a2Þdϕ − adt�2; ð2:1Þ

ΔðrÞ¼ r2−2Mrþa2; Σðr;θÞ¼ r2þa2cos2θ: ð2:2Þ

Kerr geodesics admit four independent conserved quantities:
the invariant mass μ, the energy−pt (which is conserved due
to stationarity), the azimuthal angular momentumpϕ (which

is conserved due to axisymmetry), and Carter’s constant

Q¼p2
θ−cos

2θ½a2ðp2
t −μ

2Þ−p2
ϕcsc

2θ�. Geodesic motion in

the Kerr spacetime is therefore completely integrable. Null
geodesics (μ ¼ 0) are independent of energy and charac-
terized only by their energy-rescaled azimuthal angular

momentum λ ¼ −pϕ=pt and Carter constant η ¼ Q=p2
t .

The Kerr geometry admits a special family of unstable,
bound photon orbits [32], which span a region of spacetime
known as the photon shell [16]. In Boyer-Lindquist
coordinates, each of these orbits is at a fixed radius
r̃− ≤ r̃ ≤ r̃þ, where

r̃� ¼ 2M

�

1þ cos

�

2

3
arccos

�

� a

M

���

: ð2:3Þ

FIG. 2. Left: Kerr black hole with spin a=M ¼ 94%, surrounded by a geometrically and optically thin equatorial accretion disk
terminating at the innermost stable circular orbit (ISCO) radius rms. Right: image of the disk seen by a far observer at an inclination
θo ¼ 17°, assuming a simple stationary and axisymmetric source profile [22]. Light rays that execute multiple orbits around the black
hole intersect the emission region multiple times, accruing additional intensity at every crossing (orange dots on the left) according to
Eq. (2.12), and resulting in a brightness enhancement near the critical curve: the photon ring. The polar coordinates (2.10), illustrated on
the right image, are generically offset from the ring centroid. Due to the strong lensing in the photon shell, light rays shot back from
different times and positions on the photon ring can connect to the same spacetime event in the bulk (blue and green dots on the right
image, corresponding to blue and green rays in the bulk). As a result, black hole images display autocorrelations in the photon ring.

1
We use geometric units G ¼ c ¼ 1 and assume 0 ≤ a < M

throughout.
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The photon shell radius r̃ determines both of the conserved
quantities for these special geodesics:

λ̃¼ aþ r̃

a

�

r̃−
2Δðr̃Þ
r̃−M

�

; η̃¼ r̃3

a2

�

4MΔðr̃Þ
ðr̃−MÞ2− r̃

�

: ð2:4Þ

Regardless of BH spin, the photon shell always contains
spherical bound orbits that can reach the pole. These have

vanishing angular momentum λ̃ðr̃0Þ ¼ 0 and orbital radius

r̃0¼Mþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2−
a2

3

r

cos

�

1

3
arccos

�

1− a2

M2

ð1− a2

3M2Þ3=2
��

: ð2:5Þ

While bound orbits in the photon shell correspond to a
measure zero set in the phase space of all geodesics, it is
useful to consider geodesics that are nearly bound in the
sense that their conserved quantities λ and η are close to
the critical values given in Eq. (2.4). These near-critical
geodesics undergo multiple half-orbits

2
within the photon

shell and display simple behavior whenever they are
close to their associated critical radius r̃. We will use n
to denote the number of half-orbits. In the region r ≈ r̃, the
orbital motion is governed by three critical exponents
fγðr̃Þ; τðr̃Þ; δðr̃Þg for each photon shell radius r̃ [16,17]:

(i) Near-critical geodesics spend a long time near their
associated critical radius r̃. For a null geodesic that is
approaching r̃, the ratio of coordinate distances from
the critical radius is

δrkþ1

δrk
≈ e−γ; ð2:6Þ

where δrk ¼ rk − r̃ denotes the radial deviation of
the photon after undergoing k half-orbits. For a
geodesic receding from the critical radius, one needs
to flip k ↔ ðkþ 1Þ in Eq. (2.6).

(ii) Even as they stay close to their critical radius r̃, near-
critical geodesics continue to traverse the t, θ, and ϕ
directions. The time elapsed Δt and azimuth swept
Δϕ per half-orbit approach a constant for high half-
orbit number k:

Δt ≈ τ þ δtk; Δϕ ≈ δþ δϕk; ð2:7Þ

with δtk; δϕk ∼ e−kγ → 0 as k → ∞.
The critical exponents were analytically computed in
Refs. [16,17] and are given by

γ ¼ 4r̃

a
ffiffiffiffiffiffiffiffiffi

−ũ−
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
MΔðr̃Þ

r̃ðr̃ −MÞ2

s

K

�

ũþ
ũ−

�

; ð2:8aÞ

δ ¼ 2
ffiffiffiffiffiffiffiffiffi

−ũ−
p

�

r̃þM

r̃ −M
K

�

ũþ
ũ−

�

þ λ̃

a
Π

�

ũþ;
ũþ
ũ−

��

þ 2πΘðr̃ − r̃0Þ; ð2:8bÞ

τ ¼ 2

a
ffiffiffiffiffiffiffiffiffi

−ũ−
p

�

r̃2
�

r̃þ 3M

r̃ −M

�

K

�

ũþ
ũ−

�

− a2ũ−

�

E

�

ũþ
ũ−

�

− K

�

ũþ
ũ−

���

; ð2:8cÞ

whereK,E, andΠ, respectively, denote the complete elliptic
integrals of the first, second, and third kinds, whileΘ denotes
the Heaviside theta function and ũ� are the quantities

u�¼△θ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

△2
θþ

η

a2

r

; △θ ¼
1

2

�

1−
ηþλ2

a2

�

; ð2:9Þ

evaluated on their critical values, obtained by plugging
in Eq. (2.4).

B. The observer sky and the photon ring

Bardeen [9] introduced a convenient choice of Cartesian
coordinates ðα; βÞ on the sky of a distant observer at large
radius ro → ∞ and polar inclination θo from the spin axis
of a BH. Following Ref. [16], in this paper, we will prefer to
use the associated polar coordinates ðρ;φÞ (Fig. 2, right). A
photon reaching the observer with conserved quantities
ðλ; ηÞ appears in the sky at position

ρ¼ 1

ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ðcos2θo−uþu−Þþλ2
q

; cosφ¼−
λ

roρsinθo
:

ð2:10Þ

Via this map, the critical curve fλ̃ðr̃Þ; η̃ðr̃Þg in the space of
photon conserved quantities defines a closed curve
fρ̃ðr̃Þ; φ̃ðr̃Þg in the observer sky. This curve separates
those light rays that, when shot backwards from the
observer sky into the geometry, eventually cross the event
horizon (inside the curve) from those that escape to
asymptotic null infinity (outside the curve). Strongly lensed
images of emission surrounding the BH, which arise from
photons that execute multiple half-orbits n, appear expo-
nentially close in n to this critical curve. While the critical
curve is almost a circle at low spin and/or low inclination,
the origin of the coordinate system (2.10) is displaced from
its center [21,33,34].
The intensity of light received at a particular time and

location in the sky ðt; ρ;φÞ is computed as follows. In the
absence of emission (or absorption), the specific intensity
Iν varies as the third power of the frequency ν along a beam

of radiation [35], so Iν=ν
3 is conserved along the beam.

3

2
An orbit is defined by a full oscillation in the polar

angle θ [16].

3
The description of radiation by light rays is valid to leading

order in the eikonal approximation. In the case of EHT obser-
vations of M87*, the ratio of the observation wavelength
(1.3 mm) to the BH size is ∼10−14.
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As such, the observed and emitted specific intensities Iνo
and Iνs are related by radiative transport as

Iνo ¼ g3Iνs ; ð2:11Þ
where the redshift g ¼ νo=νs, which is the ratio of observed
to emitted frequency of the radiation, depends on both the
trajectory of the beam and the four-velocity of the emitting
matter it intersects. The emitted specific intensity Iνs
follows from the radiative transfer equation. For optically
thin sources, absorption effects may be neglected and the
invariant radiative transfer equation is [36]

d

dσ

�

Iν

ν3

�

¼ Jν

ν2
; ð2:12Þ

where σ is an affine parameter along the null geodesic
xμðσ; t; ρ;φÞ ray-traced back from time t and position ðρ;φÞ
in the observer sky and Jν is the source emissivity, which
depends only on local properties of the accretion flow. For
simplicity, we take Jν to be a scalar, which is akin to
assuming isotropic emission at every point. In general, the
emissivity Jν varies with frequency, but we will assume
throughout this paper that J ≡ Jν is frequency-indepen-
dent, i.e., that the source is broadband with a flat spectrum.

4

By this, we mean that the emissivity does not vary
significantly over roughly an order of magnitude in
frequency for both noncritical and near-critical photons.
We have verified this assumption both numerically, using a
selection of GRMHD simulations, and analytically in the
context of a circularly orbiting equatorial disk, using
the methods of Ref. [40]. Integrating Eq. (2.12) over the
portion of a light ray that intersects the source results in the
specific intensity loaded onto the ray,

Iνs ¼
Z

Jνsdσ ¼
Z

Jds; ð2:13Þ

where ds is the infinitesimal spatial distance traversed by a
photon with local frequency νs in affine interval dσ as
measured in the rest frame of the source. In summary, to
compute the observed intensity at a given time and location
on the sky, we shoot a null geodesic back into the BH
geometry with conserved quantities ðλ; ηÞ determined by
the sky position ðρ;φÞ, and whenever the light ray
intersects the emission region, we load photons onto it
according to the local emissivity J, weighting all contri-
butions with a redshift-dependent factor (Fig. 2).

C. Electric field correlation functions

and black hole images

Currently, producing an image Iðt; ρ;φÞ of a BH is only
feasible using VLBI. In this technique, an astronomical

source emitting radiation is assumed to be spatially and
temporally incoherent. Despite this intrinsic incoherence,
the electric field measured by an observer far from the
source exhibits spatial coherence and encodes the source’s
brightness distribution. More precisely, a radio interferom-
eter measures the time-averaged cross-spectrum of the two
circularly polarized electric fields at different sites, sam-
pling the “complex visibility” of the source (e.g., Ref. [41]),

Vij;ν ¼
1

2
ðhEi;R;νE

�
j;R;νi þ hEi;L;νE

�
j;L;νiÞ; ð2:14Þ

where L and R refer to the polarization of the feeds, the
indices i and j label the elements of the interferometer (i.e.,
the telescopes in the VLBI array), the asterisk means
complex conjugation of the complex electric field, which
is sampled at frequency ν, and the angle brackets denote a
time average. Because we focus on broadband emission
near black holes, we will suppress the frequency subscript
for the remainder of this discussion.
Under very mild assumptions, the van Cittert–Zernike

theorem guarantees that this radio visibility is equal to the
Fourier transform of a snapshot image of the source in
the sky,

Vðu⃗Þ ¼
Z

Iðx⃗Þe−2πiu⃗·x⃗d2x⃗; ð2:15Þ

where x⃗ is a dimensionless image coordinate measured in
radians, while u⃗ ¼ u⃗ij is the dimensionless vector baseline:

the distance jx⃗i − x⃗jj between two telescope sites, projected
in the plane perpendicular to the line of sight, and measured
in units of the observation wavelength 1=ν. The three
other choices of cross-correlation functions in Eq. (2.14)
recover the Fourier transforms of the three other Stokes
parameters Q, U, and V describing the polarimetric image
of the source.
An immediate question presents itself: Why not measure

higher-point correlation functions of the electric field?
While the first image ofM87* occupies only a fewkilobytes,
the EHT had to record petabytes of data in order to produce
it. In particular, it recorded the local electric field Eiðx⃗i; tÞ at
every telescope site; it is therefore tempting to ask what
further information may be encoded in higher-point func-
tions of the electric field, hE1E2 � � �Eni for n > 2. In order to
answer this question, one must be careful to distinguish
between microscopic and macroscopic fluctuations in the
source and their associated timescales.
Light rays that cross the source sample many uncorre-

lated microscopic (thermal) fluctuations, which emit band-
limited noise with a characteristic timescale of the inverse
observing bandwidth (1=Δν ∼ 10−9 s). As a result, the
complex electric field Eiðx⃗i; tÞ measured at each site is a
sum of many independent emitters and is therefore (by the
central limit theorem) a zero-mean Gaussian random field.
Hence, the two-point function (2.14) fully encodes the

4
Because the 230 GHz images of Sgr A* and M87* have sizes

comparable to the expected diameters of their photon rings [4,37],
both are likely optically thin at this frequency. In addition, both
sources have a relatively flat spectrum at this frequency [6,38,39].
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statistical properties of the source over these microscopic
timescales. In particular, higher-point functions of the
electric field are given by Wick’s theorem as sums of
products of the 2PF (provided that the brackets denote a
time average over timescales that are not sufficiently long
to probe the macroscopic fluctuations).
In contrast, macroscopic fluctuations in the emitting

material, such as changes in the plasma properties, produce
variations in the image Iðx⃗Þ. Near a BH and on scales
comparable to the photon ring, these fluctuations will have

an associated timescale on the order of M ≈ 5ð M
106 M⊙

Þ s.
They also have a nontrivial spatial correlation structure and
have coupled spatial and temporal variations that reflect
bulk evolution of the emitting material. The remainder of
this paper will focus on these macroscopic fluctuations and
the corresponding time-dependent image Iðx⃗; tÞ; accord-
ingly, all time averages will from now on be performed over
macroscopic timescales of order ≳M.

III. TWO-POINT FUNCTION OF INTENSITY

FLUCTUATIONS

The main proposal of this paper is to measure and study
the 2PF of intensity fluctuations in the observer sky, which
is parametrized by time and polar coordinates ðt; ρ;φÞ. The
three-dimensional (3D) correlator is defined in terms of
image fluctuations ΔIðt; ρ;φÞ≡ Iðt; ρ;φÞ − hIðt; ρ;φÞi as

C3Dðt; t0;φ;φ0; ρ; ρ0Þ ¼ hΔIðt; ρ;φÞΔIðt0; ρ0;φ0Þi: ð3:1Þ

This two-point correlator is expected to display an intricate
structure that encodes information about the BH parame-
ters, since a single spacetime event in the vicinity of a BH
produces multiple (formally, an infinite number of) images
in the observer sky that are significantly separated both
temporally and spatially. This phenomenon occurs because
any source point in the bulk connects to every observer via
an infinite number of different null geodesics that complete
an arbitrary number of half-orbits in the photon shell before
reaching the observer.
These strongly lensed light rays approach the critical

curve fρ̃ðr̃Þ; φ̃ðr̃Þg in the sky exponentially fast in the
half-orbit number n. The high-order, indirect images can
therefore be treated collectively as a single narrow ring.
Operationally, such a treatment is implemented in the
correlator by integrating over the radial extent of the photon
ring in the observer sky, effectively treating it as an
unresolved ring. Assuming that the fluctuations are sta-
tionary (i.e., have time-independent statistics), the resulting
photon ring correlator depends only on the autocorrelation
time T ¼ t0 − t:

CðT;φ;φ0Þ ¼
Z

ρdρ

Z

ρ0dρ0hΔIðt; ρ;φÞΔIðtþ T; ρ0;φ0Þi:

ð3:2Þ

It is possible to further integrate over the angles around the
photon ring, effectively treating the source as pointlike and
focusing only on autocorrelations in the time domain:

C1DðTÞ ¼
Z

dφ

Z

dφ0CðT;φ;φ0Þ: ð3:3Þ

IV. SOURCE FLUCTUATIONS

The time-dependent intensity in the observer sky is
computed by evaluating Eqs. (2.11) and (2.13) for a given
source distribution. In order to compute CðT;φ;φ0Þ, there-
fore, we need information about the source statistics. In
Sec. V, we will consider a simple, analytically tractable toy
model for random equatorial emission, with a specific
(Gaussian) profile for the emissivity two-point correlation
function in the t, r, and ϕ directions. In this section, we
guide our choice of parameters for this emissivity 2PF by
considering a GRMHD BH accretion flow simulation.
We are particularly interested in the correlation lengths in
the different spacetime directions on which the source
profile depends. In contrast, previous studies of correlations
in GRMHD accretion flows have focused on density,
temperature, and magnetic field (rather than emissivity),
especially in the context of convergence studies [42,43].

5

The simulation was produced with the IHARM3D code
[13] and was initialized to correspond to a magnetically
arrested disk accretion flow [44,45] around a BH of spin
a=M ¼ 94%. The synchrotron emissivity at 230 GHz was
computed according to Ref. [46] assuming a thermal
electron distribution function. Electron temperatures were
computed from the bulk fluid internal energy according to
the prescription described in Ref. [5] with rhigh ¼ 40. We

scale the mass and length units of the GRMHD simulation
to target an M87-like observation with compact 230 GHz
flux ≈0.7 Jy, as in Ref. [5]. We evaluate the emissivity J in
the midplane of the simulation on snapshots spaced at time
intervals of 0.5M. In addition to depending on the plasma
number density and electron temperature, J is also a
function of the angles between the line of sight and both
the magnetic field (pitch angle) as well as the fluid velocity
(fluid-frame frequency)—hence, it is a tensorial quantity.
Since we focus on the low-inclination regime and assume
that all statistical properties of the accretion flow inherit the
axisymmetry of the underlying Kerr geometry, we will
neglect corrections due to ϕ dependence of the emissivity
on the pitch angle and the fluid-frame frequency.

5
In general, emissivity depends on frequency, so redshift

effects (due to the gravitational field of the BH and Doppler
beaming from the motion of the fluid) may be significant. In our
simulation, however, we find that the redshift factors between the
local frame of emission and the observer are of order two and,
moreover, that correlation statistics do not vary significantly over
the corresponding range of frequencies near the 230 GHz
observing frequency. As a result, we may neglect the frequency
dependence of the emissivity 2PF, as described in Sec. II B.
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We study the emissivity 2PF as a function of four
variables:

T ¼ t0− t; ϕ̂¼ϕ0−ϕ;

Δr¼ r0− r; r̄¼ r1þ r2

2
: ð4:1Þ

In simulations, the emissivity is often a sharp function of
radius, and so the properties of the correlation function may
depend on r̄. We compare the statistics of the T, ϕ̂, and Δr
correlations for different values of r̄. We effectively assume

separability
6
by computing the correlations in T and ϕ̂ at

fixed radius (so that r1 ¼ r2).
We evaluate the synchrotron emissivity in the midplane

J̄ðt; r;ϕÞ≡ J̄ðt; r;ϕ; θ ¼ π=2Þ directly from the numerical

simulation. Note that J̄ðt; r;ϕÞ ¼ J̄ðt; r;ϕþ 2πÞ by the
azimuthal periodicity of the domain. The normalized
emissivity 2PF is given by

SðT;ϕ̂;Δr;r̄Þ

¼hΔJ̄ðtþT;ϕþ ϕ̂; r̄þΔr=2ÞΔJ̄ðt;ϕ; r̄−Δr=2Þi
h½ΔJ̄ðt;ϕ; r̄Þ�2i ; ð4:2Þ

where the mean-subtracted emissivity ΔJ̄≡ J̄− hJ̄it;ϕ enc-

odes the fluctuations about hJ̄it;ϕ, the time-and-azimuthal-

average of the emissivity in the simulation.
In Fig. 3, we plot SðT; 0; 0; r̄Þ as a function of T,

Sð0; ϕ̂; 0; r̄Þ as a function of ϕ̂, and Sð0; 0;Δr; r̄Þ as a
function of Δr, for various fixed values of r̄. We define the
correlation length as the width away from the maximum at

a height of e−1=2, which for a Gaussian would correspond to
1 standard deviation σ. At r̄ ¼ r̃0, we extract from our
simulation the correlation lengths lt ≈ 3.0M, lϕ ≈ 4.3°,

and lr ≈ 0.4M (Fig. 3 also displays the correlation length
lr ≈ 0.3M found at r̄ ¼ 4M).
Note that, although we compute its correlation function

in the midplane, the emissivity is a volumetric quantity with
support in the geometrically thick disk. In the remainder of

FIG. 3. Normalized correlation function S of fluctuations in 230 GHz synchrotron emissivity computed in the midplane of a numerical
GRMHD simulation. The configuration consists of a magnetically arrested disk accreting onto a Kerr BH of spin a=M ≈ 94%. Top left:

correlation function in T assuming ϕ̂ ¼ Δr ¼ 0. Top right: azimuthal correlation in ϕ̂ for T ¼ Δr ¼ 0. Both panels in the top row are
evaluated at r̄ ¼ r̃0 ≈ 2.5M. Bottom row: radial correlation in Δr evaluated at two different radii r̄ ¼ r̃0 and r̄ ¼ 4M. The emissivity is
set to zero behind the event horizon r ¼ rþ, so correlations vanish for Δr ≥ 2ðr̄ − rþÞ. This occurs in the shaded region in the bottom

left panel. For a unit-height Gaussian, the standard deviation width (1σ) is achieved at height e−1=2 ≈ 60.65%. The correlation lengths at
r̄ ¼ r̃0 are lt ≈ 3.0M, lϕ ≈ 4.3°, and lr ≈ 0.4M (while lr ≈ 0.3M at r̄ ¼ 4M).

6
We assume that SðT; ϕ̂;Δr; r̄Þ is separable in Boyer-Lindquist

coordinates in order to obtain crude estimates for the correlation
length in emissivity fluctuations. We expect a more refined
analysis to show that this simplistic assumption breaks down
because of various effects; for instance, the flow velocity defines
a special radius-dependent direction in the ðt;ϕÞ plane. We
consider potential observational consequences of this assumption
in Sec. VIII.
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this paper, we will consider an equatorial thin disk model
with volumetric emissivity Jðt; r;ϕÞδðθ − π=2Þ, corre-
sponding to an effective surface emissivity Jðt; r;ϕÞ that
is designed to reproduce the observable statistics of the
thick disk model. We will assume that the correlation

structure of J̄ (the emissivity in the midplane of a
geometrically thick disk) is a reasonable proxy for corre-
lations in J. A finite thickness would introduce partial
cancellation of fluctuations that would reduce the 2PF for
all separations, including CðT ¼ 0;φ ¼ φ0Þ.

V. TOY EMISSION MODEL: POLAR OBSERVER

In this section, we focus on the special case of a polar
observer, in which the large-n contribution to the autocor-
relation (3.2) (from light rays that circumnavigate the BH
multiple times) is especially simple. Since this configura-
tion preserves axisymmetry, the correlator depends only on
Φ ¼ φ0 − φ:

CðT;ΦÞ¼
Z

ρdρ

Z

ρ0dρ0hΔIðt;ρ;φÞΔIðtþT;ρ0;φþΦÞi:

ð5:1Þ

We consider an optically thin annular emission region
localized in the equatorial plane θ ¼ π=2 with local
emissivity Jðt; r;ϕÞδðθ − π

2
Þ satisfying

hΔJðt;r;ϕÞΔJðt0;r0;ϕ0Þi

¼
�

JGlt
ðt−t0ÞGlr

ðr−r0ÞG∘
lϕ
ðϕ−ϕ0Þ if rmin≤r;r0≤rmax;

0 otherwise:

ð5:2Þ

Here, rmax − rmin ¼ W is the width of the annular equato-
rial disk, ΔJðt; r;ϕÞ≡ Jðt; r;ϕÞ − hJðt; r;ϕÞi is the source
fluctuation, and we introduced the distributions

GlðzÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi

2πl2
p e

−
z2

2l2 ;

G∘
l
ðϕÞ ¼ 1

2πI0ð1=l2Þe−1=l
2
e
−

2

l
2
sin2ðϕ

2
Þ
: ð5:3Þ

These are, respectively, the Gaussian distribution and its
analog for a periodic variable, known as the von Mises
distribution,

7
with normalization chosen to ensure that

Z

∞

−∞

GlðzÞdz ¼
Z

2π

0

G∘
l
ðϕÞdϕ ¼ 1: ð5:4Þ

The parameters lt, lr, and lϕ are the correlation lengths of

the fluctuating source in the t, r, and ϕ directions,

respectively. Our goal is to analytically compute the
contribution to the correlator (5.1) from photons under-
going multiple half-orbits around the BH. Such near-
critical geodesics are close to the photon shell and display
the universal properties discussed in Sec. II A, with a
significant simplification due to setting θo ¼ 0. In this
special case, only photons with zero angular momentum,
which execute multiple orbits near the radius r̃0 in the
photon shell, may reach the observer. We assume here the
emission region contains the photon shell, so that
rmin < r̃0 < rmax. In the observer sky, the near-critical
regime is defined by ρ ¼ ρ̃0 þ δρ with δρ=ρ̃0 ≪ 1, where

ρ̃0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̃30
a2

�

4MΔðr̃0Þ
ðr̃0 −MÞ2 − r̃0

�

þ a2

s

ð5:5Þ

is the radius of the perfectly circular critical curve in the
sky. Minding a subtlety in δ [Eq. (66) of Ref. [17] ], the
critical exponents corresponding to the single observable
photon shell radius r̃0 are

γ0 ¼
4r̃0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̃20 − a2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
MΔðr̃0Þ

r̃0ðr̃0 −MÞ2

s

K

�

a2

a2 − ρ̃20

�

; ð5:6aÞ

δ0 ¼ π þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̃20 − a2
p

�

r̃0 þM

r̃0 −M

�

K

�

a2

a2 − ρ̃20

�

; ð5:6bÞ

τ0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̃20 − a2
p

�

r̃20

�

r̃0 þ 3M

r̃0 −M

�

K

�

a2

a2 − ρ̃20

�

− 2a2
�

E

�

a2

a2 − ρ̃20

�

− K

�

a2

a2 − ρ̃20

���

: ð5:6cÞ

The observed specific intensity of the equatorial disk is
obtained via the procedure outlined in Sec. II B. The
radiative transport equation (2.11) implies that a light
ray shot back from position ðρ;φÞ in the observer sky
collects photons only when it crosses the disk, so

Iνoðt; ρ;φÞ ¼
X

n

k¼0

g3Iνsðr
ðkÞ
s ðρ;φÞÞ; ð5:7Þ

where the sum is taken over the n equatorial crossings of

the light ray, which intersects the disk at radii r
ðkÞ
s ðρ;φÞ for

k ∈ f0; 1;…; ng (see Appendix A for an exact formula).
The emitted specific intensity at each crossing is
computed using the radiative transfer equation (2.12) as
follows. Let Θ denote the emission angle of the light ray
relative to the local zenith (θ direction) in the rest frame of
the source. For a light ray crossing the equatorial plane

perpendicularly (Θ ¼ 0), we have ds¼ ffiffiffiffiffiffi

gθθ
p

dθ¼
ffiffiffi

Σ
p

dθ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þa2cos2θ
p

jθ¼π=2dθ¼ rdθ. More generally, if it

crosses at an angle Θ > 0 from the zenith in the rest
frame, then

7
Whenever 0 < ϵ ¼ jϕ − ϕ0j mod 2π ≪ 1, the von Mises and

Gaussian distributions agree to leading order in ϵ.
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ds ¼ r

cosΘ
dθ: ð5:8Þ

Evaluating Eq. (2.12) in the rest frame of the source, where
Jν ¼ Jðt; r;ϕÞδðθ − π

2
Þ, it follows that8

IνsðrÞ ¼
Z

Jðt; r;ϕÞδ
�

θ −
π

2

�

ds

dθ
dθ ¼ r

cosΘ
Jðt; r;ϕÞ:

ð5:9Þ

Since the effective surface emissivity J is by assumption
independent of the emission frequency νs in the rest frame
of the source, we will from now on omit the frequency
subscripts. In general, the precise forms of the redshift g
and direction cosine cosΘ depend on the relative velocity
of the emitting matter in the disk. In the model presented
here, we will assume that this velocity field is equatorial
and axisymmetric. For example, in the particular case of
emitters on corotating circular equatorial orbits, one obtains
the simple expression [26,48]

cosΘ ¼ � g
ffiffiffi

η
p

r
; ð5:10Þ

where the upper or lower sign is chosen according to
whether the light ray with conserved quantities ðλ; ηÞ is
emitted upwards or downwards from the disk and the
redshift factor gðr; λÞ, whose form depends on the stability
of the orbit, is given in Appendix B. Together, Eqs. (5.7)
and (5.9) imply that

Iðt; ρ;φÞ ¼
X

n

k¼0

g3
r
ðkÞ
s

cosΘ
JðtðkÞs ; r

ðkÞ
s ;ϕ

ðkÞ
s Þ; ð5:11Þ

where each term in the sum is to be evaluated at the
spacetime coordinates of the corresponding equatorial
crossing. Note that for circularly orbiting emitters, the
redshift factor in cosΘ [Eq. (5.10)] effectively reduces the

power of g3 to g2. In particular, for a near-critical light ray
reaching the polar observer, we have g ≈ g̃0 ¼ gðr̃0; λ ¼ 0Þ
and cosΘ ≈ cos Θ̃0 ¼ cosΘðr̃0; λ ¼ 0Þ,9 and thus

Iðt; ρ̃0 þ δρ;φÞ ≈ g̃30

X

n

k¼0

r̃0

cos Θ̃0

Jðt − Δt0 − kτ0 − δtk; r̃0

þ δrk;φ − Δϕ0 − kδ0 − δϕkÞ; ð5:12Þ

where nðδρÞ is the number of half-orbits executed, which
obeys

10
n ∼ − ln δρ=ρ̃0. The deviations δtk, δrk, and δϕk all

vanish as k → ∞; for large 1 ≪ k < n, they give small
corrections that account for the fact that the geodesic is
slightly near-critical (off the photon shell). The azimuthal
winding Δϕ0 ¼ constþOðδρÞ is a φ-independent angle
accumulated between the observer and the first equatorial
crossing (when ray-tracing backwards from the observer sky)
that is spin-dependent but irrelevant for the photon ring
contribution to the two-point function, as it is also approx-
imately the same for all near-critical photons. Similarly, the
time lapse Δt0 ¼ constþOðδρÞ is the time elapsed along a

photon trajectory from the last crossing of the equatorial plane

to the observer (evolving the ray forward in time), which is

approximately the same for all near-critical photons.

The intensity fluctuations in the photon ring are obtained

by subtracting from both sides of Eq. (5.12) their average,

resulting in

ΔIðt; ρ̃0þδρ;φÞ≈ g̃30

X

n

k¼0

r̃0

cosΘ̃0

ΔJðt−Δt0−kτ0−δtk; r̃0

þδrk;φ−Δϕ0−kδ0−δϕkÞ; ð5:13Þ

where ΔJ is the fluctuation of the effective surface

emissivity of the disk. Now we can plug Eq. (5.13) into

Eq. (5.1), and use Eq. (5.2) to obtain the following formula

for the photon ring autocorrelations:

CðT;ΦÞ ≈ J r̃20g̃
6
0

cos2Θ̃0

Z

ρdðδρÞ
Z

ρ0dðδρ0Þ

×
X

nðδρÞ

k¼0

X

n0ðδρ0Þ

k0¼0

Glr
ðδrk0 − δrkÞ

×Glt
½T − τ0ðk0 − kÞ − δtk0 þ δtk�

×G∘
lϕ
½Φ − δ0ðk0 − kÞ − δϕk0 þ δϕk�: ð5:14Þ

One may now interchange the order of integration and

summation, thereby replacing the sum over crossings with

a sum over subrings. Recalling that nðδρÞ → ∞ as δρ → 0,

this results in

CðT;ΦÞ ≈ J r̃20g̃
6
0

cos2Θ̃0

X

∞

k¼0

X

∞

k0¼0

Z

s:r:k

ρdðδρÞ

×

Z

s:r:k0
ρdðδρ0ÞGlr

ðδrk0 − δrkÞ

×Glt
½T − τ0ðk0 − kÞ − δtk0 þ δtk�

×G∘
lϕ
½Φ − δ0ðk0 − kÞ − δϕk0 þ δϕk�; ð5:15Þ

8
In the covariant formalism for radiative transfer,

IνsðrÞ ¼ νs
R

Jðdσ=dθÞdθ, where jdθ=dσj ¼ jpθj ¼ νo
ffiffiffi

η
p

=r2

[e.g., by Eq. (6b) of Ref. [47] evaluated at θ ¼ π=2 with
E ¼ νo]. Hence, IνsðrÞ ¼ Jðt; r;ϕÞr2=ðg ffiffiffi

η
p Þ, which agrees with

Eq. (5.9) in light of Eq. (5.10).
9
For circularly orbiting emitters, cos Θ̃0 ¼ �g̃0

ffiffiffiffiffiffiffiffiffiffi

η̃ðr̃0Þ
p

=r̃0.

10
The subleading (δρ-independent) correction to this relation

was computed analytically in Ref. [17].

PHOTON RING AUTOCORRELATIONS PHYS. REV. D 103, 104038 (2021)

104038-9



where the limits of integration in the integral
R

s:r:k are the

boundaries of the kth subring. The integrations over δρ and

δρ0 may now be evaluated as follows. First, we will make

the approximation

δtk − δtk0 ≈ δϕk − δϕk0 ≈ 0; ð5:16Þ

which holds for large enough k̂ < n, where k̂ ¼ k if

jk0 − n=2j < jk − n=2j, and k̂ ¼ k0 otherwise; more pre-

cisely, due to the exponential falloff of δtk, δϕk, Eq. (5.16)

is valid when

(

Me−k̂γ0 ≪ lt and e
−k̂γ0 ≪ lϕ for 1 ≪ k̂ ≤ n=2;

Me−ðn−k̂Þγ0 ≪ lt and e−ðn−k̂Þγ0 ≪ lϕ for n=2 ≤ k̂ ≤ n:

ð5:17Þ

In contrast, to leading order as k̂ → ∞, the argument of the

radial Gaussian function vanishes identically; hence, we

must keep track of the next order in δrk, as described in

detail below.
Finally, we can also approximate the measure near the

photon shell as ρdðδρÞ ≈ ρ̃0dðδρÞ. Under these approxima-
tions, the only δρ-dependence of the integrand comes in via
δrk=k0 , so we only need to compute the contribution

Ak;k0 ¼
Z

s:r:k

dðδρÞ
Z

s:r:k0
dðδρ0ÞGlr

ðδrk0 − δrkÞ: ð5:18Þ

This factor determines the amplitude of the contribution of
the fk; k0g summand in (5.15). We prove in Appendix A
that

dðδρÞ ¼ ι0e
−kγ0dðδrkÞ; ð5:19Þ

where

ι0¼
32r̃40χ̃

2e−
1
2
γ0

ρ̃0ð1þ
ffiffiffi

χ̃
p ÞΔðr̃0Þ

; χ̃¼ 1−
MΔðr̃0Þ

r̃0ðr̃0−MÞ2 : ð5:20Þ

The radial integral (5.18) that we wish to compute is
therefore of the form

IC ¼
Z

W=2

−W=2

dx

Z

W=2

−W=2

dyGlðx − yþ CÞ; ð5:21Þ

with C ¼ 0 (but we will use the generalization to nonzeroC
later). Assuming l < W, this integral evaluates to

IC ¼ WΛ

�

C

W

�

; ð5:22Þ

where

ΛðzÞ ¼ 1þ z

2
erf

�

1þ z
ffiffiffi

2
p

l=W

�

−
z

2
erf

�

z
ffiffiffi

2
p

l=W

�

þ
�

l

W

�

2	

e
−

zþ1=2

ðl=WÞ2 − 1




Gl=WðzÞ þ ðz → −zÞ;

ð5:23Þ

and erfðzÞ ¼ ð2= ffiffiffi

π
p Þ

R

z
0 e

−t2dt denotes the standard error

function. Note that ΛðzÞ achieves its peak value (which is
less than unity) at the origin and falls off monotonically in
jzj, tending to zero as jzj → ∞. In particular,

Λð0Þ ¼ erf

�

W
ffiffiffi

2
p

l

�

−

ffiffiffi

2

π

r

�

l

W

�

½1 − e−ðW=lÞ2=2�: ð5:24Þ

Also, note that for l ≪ W,

ΛðzÞ ≈maxð1 − jzj; 0Þ: ð5:25Þ

Using these identities, Eq. (5.18) evaluates to

Ak;k0 ¼ ι20e
−γ0ðkþk0ÞWΛð0Þ: ð5:26Þ

Now we can change the order of summation, defining m ¼
k − k0 and s ¼ kþ k0 to obtain

CðT;ΦÞ ¼
�

ι0ρ̃0r̃0g̃
3
0

cos Θ̃0

�

2

JWΛð0Þ

×
X

∞

m¼−∞

X

∞

s¼jmj
e−γ0sGlt

ðT þmτ0ÞG∘
lϕ
ðΦþmδ0Þ

ð5:27Þ

¼
�

ι0ρ̃0r̃0g̃
3
0

cos Θ̃0

�

2 JWΛð0Þ
1 − e−γ0

×
X

∞

m¼−∞

e−γ0jmjGlt
ðT þmτ0ÞG∘

lϕ
ðΦþmδ0Þ: ð5:28Þ

This expression describes a train of peaks in the autocor-
relation plane ðT;ΦÞ, localized around ðmτ0; mδ0Þ for
integer m, and with exponentially decaying amplitude as
jmj grows. It is clear that the function CðT;ΦÞ enjoys a
discrete symmetry, or self-similarity: it is invariant under

T → T þ τ0; Φ → Φþ δ0;

C → e�γ0C; � ¼ signðmÞ: ð5:29Þ

The correlator has both universal and nonuniversal features,
but the simple form of the result in Eq. (5.28) allows us to
separately extract them from CðT;ΦÞ: the location of the
peaks in the ðT;ΦÞ autocorrelation plane, and the ratios
between their amplitudes, are determined by universal
features of the Kerr geometry: the critical exponents γ0,
δ0, and τ0. On the other hand, the shape of a single peak,
and its width in particular, are determined by the
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astrophysical details of the accretion flow. For example, we
could have chosen to model the source 2PF in Eq. (5.2) by
Lorentzians instead of Gaussians. Each peak would have
then changed its shape but not its location in the ðT;ΦÞ
plane. We illustrate the universal self-similar structure of
CðT;ΦÞ in Fig. 1.
The formula (5.28) and its generalization to inclined

observers obtained below present promising prospects for
observation (see Sec. VIII for further discussion). Upon
measuring CðT;ΦÞ, it would be extremely interesting to see
whether more than one peak can be observed. In fact,
observing two or more clearly separated peaks would
already provide strong evidence of the photon ring: strongly
lensed photons that execute multiple orbits around the BH.
Moreover, these peaks must be arranged in the autocorre-
lation plane in a way that respects the self-similarity
described above, a fact that could provide a highly nontrivial
test of strong-field general relativity. Most interestingly, a
measurement of the locations of these peaks provides a novel
method tomeasureBHparameters: bothmass and spin. This
would be done as follows: the peaks’ locations provide
information on τ0 and δ0. The critical exponent τ0 depends
weakly on spin [17] and thus is a good measure of the BH
mass.

11
On the other hand, δ0 does depend strongly on spin

and could thus be used to measure it.

Finally, we can also integrate over the angular depend-
ence Φ to isolate the time autocorrelations:

C1DðTÞ ¼
Z

dφ

Z

dφ0CðT;ΦÞ

¼ 2πlφ

�

ι0ρ̃0r̃0g̃
3
0

cos Θ̃0

�

2 JWΛð0Þ
1 − e−γ0

×
X

∞

m¼−∞

e−γ0jmjGlt
ðT þmτ0Þ: ð5:30Þ

This observable has the advantage of being measurable
even if the ring’s diameter is not resolved.

VI. GENERALIZATION TO INCLINED OBSERVER

For an observer at nonzero inclination θo > 0, the
axisymmetry in the observer sky is broken but time-trans-
lation symmetry is preserved at the statistical level. The
correlation function will therefore have the general form

CðT;φ;φ0Þ¼
Z

ρdðδρÞ
Z

ρ0dðδρ0Þ

×hΔIðt;ρ̃þδρ;φÞΔIðtþT;ρ̃þδρ0;φ0Þi: ð6:1Þ
Generalizing the analysis of Sec. V, we can write the

intensity fluctuation as

ΔIðt; ρ̃þ δρ;φÞ ≈ r̃ðφÞg̃3ðφÞ
cos Θ̃ðφÞ

X

n

k¼0

ΔJ½t − Δtðr̃ðφÞÞ − kτðr̃ðφÞÞ; r̃ðφÞ þ δrk;ϕo − Δϕðr̃ðφÞÞ − kδðr̃ðφÞÞ�; ð6:2Þ

where ϕo is the azimuth of the observer, while Δϕðr̃ðφÞÞ and Δtðr̃ðφÞÞ, respectively, denote the Oðk0Þ pieces of the
azimuthal angle and time accumulated along the photon’s trajectory from disk to observer, which may be computed
analytically using the asymptotic formulas (A32).
Plugging Eq. (6.2) into Eq. (6.1) yields

CðT;φ;φ0Þ≈N ðφ;φ0Þ
Z

ρdðδρÞ
Z

ρ0dðδρ0Þ
X

nðδρÞ

k¼0

X

n0ðδρ0Þ

k0¼0

Glr
½r̃ðφÞ− r̃ðφ0Þþδrk−δrk0 �

×Glt
½TþΔtðr̃ðφÞÞ−Δtðr̃ðφ0ÞÞþkτðr̃ðφÞÞ−k0τðr̃ðφ0ÞÞ�G∘

lϕ
½Δϕðrðφ̃ÞÞ−Δϕðrðφ̃0ÞÞþkδðr̃ðφÞÞ−k0δðr̃ðφ0ÞÞ�;

ð6:3Þ
where we introduced a prefactor

N ðφ;φ0Þ ¼ J r̃ðφÞr̃ðφ0Þg̃3ðφÞg̃3ðφ0Þ
cos Θ̃ðφÞ cos Θ̃ðφ0Þ

: ð6:4Þ

Wewish to emphasize that the precise form of this prefactor depends on the specific assumptions of our toy model and more
specifically, the motion of the emitters in the disk. Nonetheless, the autocorrelation will still exhibit universal features.
As in Sec. V above, we have kept in Eq. (6.3) only Oðδρ0Þ terms in Δϕ and Δt and ignored subleading corrections. In

contrast to the polar case of Sec. V, however, here these terms are generically nontrivial functions of φ. Following the same
approach as before, we can interchange integration and summation in Eq. (6.3), and approximate near the photon shell
ρ ≈ ρ̃ðφÞ and for large enough k < n,

dðδρÞ ≈ ιðφÞe−kγðr̃ðφÞÞdðδrÞk; ð6:5Þ

11
Of course, there are already quite good independent mass estimates for certain BHs such as M87*.
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where ιðφÞ is computed in Appendix A and given in Eq. (A18). Using Eq. (5.22) to integrate over radii, we obtain

CðT;φ;φ0Þ ≈N ðφ;φ0Þρ̃ðφÞρ̃ðφ0ÞιðφÞιðφ0ÞWΛ

�

r̃ðφÞ − r̃ðφ0Þ
W

�

×
X

∞

k¼0

X

∞

k0¼0

e−kγðr̃ðφÞÞe−k
0γðr̃ðφ0ÞÞGlt

½T þ Δtðr̃ðφÞÞ − Δtðr̃ðφ0ÞÞ þ kτðr̃ðφÞÞ − k0τðr̃ðφ0ÞÞ�

×G∘
lϕ
½Δϕðr̃ðφÞÞ − Δϕðr̃ðφ0ÞÞ þ kδðr̃ðφÞÞ − k0δðr̃ðφ0ÞÞ�; ð6:6Þ

withΛðzÞ as given inEq. (5.23). Equation (6.6) describes the
intensity fluctuation 2PF on the photon ring for general
inclination. The argument of Λ in Eq. (6.6) shows that, for
nonzero BH spin, correlations between angles φ and φ0

around the ring are significant (compared to correlations
measured by a polar observer) only if the corresponding
photon shell radii satisfy r̃ðφÞ − r̃ðφ0Þ≲W. One clear
implication is that observations at small inclination are

favorable for measuring correlation around the ring at
significant angular separation. Note also that the relation
(2.10) defines r̃ðφÞ, but there is no closed-form expression
for its inverse; thus, it could sometimes be more convenient
to view the radius r̃ as a parameter along the ring in Eq. (6.6),
without direct reference to φ. In the next section, however,
wewill approximateEq. (6.6) for small observer inclinations
by perturbatively inverting the relation r̃ðφÞ, allowing us to
directly express CðT;φ;φ0Þ in terms of its arguments.

VII. EXPANSION IN SMALL INCLINATION

In the case of small observer inclination 0 < sin θo ≪ 1,
we can significantly simplify Eq. (6.6). Expanding
Eq. (2.10) to first order in inclination, we obtain a relation
between the photon shell radii accessible to the observer
and the angle on the sky,

r̃ ¼ r̃0 þ Ξa sin θo cosφ; ð7:1Þ

where, noting that r̃30 ¼ 3Mr̃20 − a2ðr̃0 þMÞ,

Ξ¼
�

Δðr̃0Þ
r̃0−M

−M

�

4r̃20
ffiffiffiffiffiffiffiffiffiffiffiffi

Δðr̃0Þ
p

3M2ðr̃20þa2Þþa2½Δðr̃0Þ−6Mr̃0�
:

ð7:2Þ

Equation (7.1) is useful for expanding many of the
quantities appearing in Eq. (6.6). We can write

Y ¼ Y0 þ Y1a sin θo cosφ; Y1 ¼ Ξ½∂ r̃Y�r̃¼r̃0
; ð7:3Þ

for each of the quantities Y ∈ fγ; δ; τ; ι; g̃; cos Θ̃g. The
functions γðr̃Þ, τðr̃Þ, δðr̃Þ are explicitly given in Eq. (2.8),
while ιðr̃Þ is given in Eq. (A18), gðr̃Þ in Eq. (B2), and cosΘ
in Eq. (5.10). Here, we provide only an implicit definition of
these expansion coefficients in order to avoid clutter, but it is
straightforward to take the derivative and obtain their

explicit, albeit quite lengthy, expressions. Note that for
low spins, g̃1 ∼ 1=a, so that the leading correction in small
inclination to the redshift in Eq. (7.3) is a independent.
Physically, the redshift is corrected at first order in inclina-
tion even for a nonrotating BH (with a ¼ 0), since radiation
emitted from circular orbiters still exhibits Doppler shift
even in the absence of BH spin. This can be seen by

expanding the general formula for λ̃ðr̃Þ, which enters
through the formula (B2) for gðr̃Þ, in small inclination,

λ̃ ≈
2½a2ðr̃0 þ 2MÞ − 3M2r̃0�

ðr̃0 −MÞ2 Ξ sin θo cosφ; ð7:4Þ

and noting that it has a finite, generically nonzero limit as
a → 0. We further note that the argument ofΛ in Eq. (6.6) is
Oðsin θoÞ. SinceΛðzÞ ¼ Λð−zÞ, to leading order in small z,

ΛðzÞ ≈ Λð0Þ þOðz2Þ, and so Λ does not admit corrections
at Oðsin θoÞ. Using Eq. (7.1), we can expand

Δϕðr̃ðφÞÞ − Δϕðr̃ðφ0ÞÞ
¼ Φþ fϕðcosφ − cosφ0Þa sin θo þOðsin2θoÞ; ð7:5Þ

Δtðr̃ðφÞÞ − Δtðr̃ðφ0ÞÞ
¼ ftðcosφ − cosφ0Þa sin θo þOðsin2θoÞ; ð7:6Þ

where

fϕ ¼ Ξ½∂ r̃ðΔϕÞ�r̃¼r̃0
; ft ¼ Ξ½∂ r̃ðΔtÞ�r̃¼r̃0

: ð7:7Þ

At first order in inclination, the critical curve is still a
perfect circle, though its center is horizontally shifted from
the origin of the coordinate system ðρ;φÞ, from ρ ¼ 0 to

ρ ¼ ρ̃20Xa sin θo with φ ¼ 0, where [21]

X¼−
2ða2ρ̃20−27M4−a4Þ

3ðM2−a2Þρ̃40−2ð27M4−30M2a2−a4Þρ̃20−96M2a4
:

ð7:8Þ

We can therefore write, to first order in inclination,

ρ̃ðφÞ ≈ ρ̃0 þ ρ̃20Xa sin θo cosφ: ð7:9Þ

Putting everything together, and defining m ¼ k − k0 and
s ¼ kþ k0, Eq. (6.6) becomes, to Oðsin θoÞ,
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CðT;Φ;φþ φ0Þ ≈ cðΦ;φþ φ0Þ
X

∞

m¼−∞

X

∞

s¼jmj
e−sðγ0þγ1a sin θo cos

Φ

2
cos

φþφ0
2

Þþmγ1a sin θo sin
Φ

2
sin

φþφ0
2

× Glt

�

T þm

�

τ0 þ τ1a sin θo cos
Φ

2
cos

φþ φ0

2

�

− a sin θoðsτ1 þ 2ftÞ sin
Φ

2
sin

φþ φ0

2

�

× G∘
lϕ

�

Φþm

�

δ0 þ δ1a sin θo cos
Φ

2
cos

φþ φ0

2

�

− a sin θoðsδ1 þ 2fϕÞ sin
Φ

2
sin

φþ φ0

2

�

; ð7:10Þ

where we introduced

cðΦ;φþ φ0Þ ¼
�

ι0ρ̃0r̃0g̃
3
0

cos Θ̃0

�

2

JWΛð0Þ
�

1þ 2a sin θo

�

3
g̃1

g̃0
þ ι1

ι0
þ Ξ

r̃0
−
cos Θ̃1

cos Θ̃0

þ ρ̃0X

�

cos
Φ

2
cos

φþ φ0

2

�

: ð7:11Þ

If the conditions sτ1a sin θo ≪ lt, sδ1a sin θo ≪ lϕ, fta sin θo ≪ lt, and fϕa sin θo ≪ lϕ are satisfied,
12
then we can

approximate Eq. (7.10) using

Glt
ðz0 þ ϵÞ ≈Glt

ðz0Þ
�

1 −
ϵz0

l
2
t

�

; G∘
lϕ
ðz0 þ ϵÞ ≈G∘

lϕ
ðz0Þ

�

1 −
ϵ sin z0

l
2
ϕ

�

: ð7:12Þ

In turn, this allows us to explicitly perform the sum over s, resulting in

CðT;Φ;φþφ0Þ≈cðΦ;φþφ0Þ
1−e−γ0

X

∞

m¼−∞

e−jmjγ0þmγ1asinθo sin
Φ

2
sin

φþφ0
2 ½1þasinθobmðT;Φ;φþφ0Þ�

×Glt

�

Tþmτ0þasinθomτ1 cos
Φ

2
cos

φþφ0

2

�

G∘
lϕ

�

Φþmδ0þasinθomδ1 cos
Φ

2
cos

φþφ0

2

�

; ð7:13Þ

where we introduced

bmðT;Φ;φþφ0Þ¼ sin

�

Φ

2

�

sin

�

φþφ0

2

��

Tþmτ0

l
2
t

ϒtþ
sinðΦþmδ0Þ

l
2
ϕ

ϒϕ

�

−cos

�

Φ

2

�

cos

�

φþφ0

2

�

γ1

�

1

eγ0 −1
þjmj

�

;

ð7:14Þ

ϒt ¼
�

1

eγ0 − 1
þ jmj

�

τ1 þ 2ft; ϒϕ ¼
�

1

eγ0 − 1
þ jmj

�

δ1 þ 2fϕ: ð7:15Þ

An additional approximation can be made for low enoughm, or more precisely, when the conditions jmjτ1a sin θo ≪ lt,
jmjδ1a sin θo ≪ lϕ, and jmjγ1a sin θo ≪ 1 are satisfied as well. If we let mmax > 0 denote the maximal m for which the

above conditions hold, then the contribution of the 2mmax þ 1 peaks around m ¼ 0 to the 2PF is given by

CðT;Φ;φþ φ0Þ ≈ cðΦ;φþ φ0Þ
1 − e−γ0

X

mmax

m¼−mmax

e−jmjγ0 ½1þ a sin θoBmðT;Φ;φþ φ0Þ�Glt
ðT þmτ0ÞG∘

lϕ
ðΦþmδ0Þ; ð7:16Þ

where

BmðT;Φ;φþ φ0Þ ¼ bmðT;Φ;φþ φ0Þ þmγ1 sin

�

Φ

2

�

sin

�

φþ φ0

2

�

−m cos

�

Φ

2

�

cos

�

φþ φ0

2

��

T þmτ0

l
2
t

τ1 þ
sinðΦþmδ0Þ

l
2
ϕ

δ1

�

: ð7:17Þ

It is natural to integrate over φþ φ0 to obtain an “effective” 2D correlator that can be compared to the one obtained for a
polar observer in Sec. V. More explicitly, we would like to compute

12
Formally, s assumes arbitrarily large values, but since large-s contributions are exponentially suppressed, we can safely use this

approximation when we sum over all s below.
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C̄ðT;ΦÞ ¼ 1

2π

Z

d

�

φþ φ0

2

�

CðT;Φ;φþ φ0Þ: ð7:18Þ

This quantity is trivial to first order in small inclination
since all the pieces of Eq. (7.16) that depend nontrivially on
φþ φ0

—which are also Oðsin θoÞ—integrate to zero.
Therefore, Eq. (7.18) integrates precisely to Eq. (5.28) to
first order in inclination, inclusive, and is corrected only at

Oðsin2 θoÞ. This is an encouraging fact from an observa-
tional perspective, since it means that for small inclinations,
the results of Sec. V are robust against changes of
inclination once φþ φ0 is integrated out.

VIII. OBSERVATIONAL PROSPECTS AND

CONSIDERATIONS

We conclude by briefly commenting on the observatio-
nal prospects for measuring CðT;φ;φ0Þ. Observing several
clearly separated maxima in CðT;φ;φ0Þ would provide
strong evidence that some of the arriving photons were very
strongly lensed by the BH. Such an observation could also
provide a test of general relativity, since the theory makes a
universal prediction for the self-similar structure, locations,
and relative heights of these peaks. Deviations from general
relativity can modify our results for CðT;φ;φ0Þ in many
different ways; to fully understand the effects of such
potential deviations on the fluid evolution and ray-tracing
would require significant work beyond the scope of this
paper. Assuming general relativity, the 2PF on the ring
could be used to estimate both the mass and spin of the BH,
as well as statistical properties of the accretion flow. A
successful measurement would not require specialized
emission conditions, such as a compact hot spot; we only
require that the image be variable. Because sources such as
Sgr A* and M87* are known to exhibit horizon-scale
variability [3,4,49–51], measuring CðT;φ;φ0Þ is simply a
question of achieving the required sensitivity. We will now
derive rough estimates for the sensitivity requirements.
We will first consider an observation in which images are

measured perfectly, with unlimited angular and temporal
resolution. In this case, the required sensitivity is deter-
mined solely by the source stochasticity. An observation
that continuously spans a timescale of tobs will sample Nt ∼

tobs=lt stochastic realizations in time and Nϕ ∼ 2π=lϕ
stochastic realizations in angle. The mth correlation peak
will have an amplitude that depends on the fraction fimg of

the image flux that is fluctuating, the partial reduction in
correlation amplitude from radial averaging, and reductions
for the finite-delay envelope along null geodesics passing
through the emitting region. We can approximate the
magnitude of the (dimensionless) correlation peak as

CðT;ΦÞ=I20 ∼ e−jmjγ0f2img, where I0 is the average flux

density of the ring.
Given N independently sampled pairs of image intensity

with respective lags ðT;ΦÞ, the signal-to-noise ratio (SNR)

for their correlation is approximately N1=2jCðT;ΦÞ=
Cð0; 0Þj. Hence, even in the idealized case of infinite
resolution, there will be a finite SNR at a fixed angle,

SNR∞ðϕÞ ∼ e−jmjγ0
ffiffiffiffiffiffiffi

tobs

lt

r

; ð8:1Þ

while the SNR when combining information from all
angles is

SNR∞ ∼ e−jmjγ0

ffiffiffiffiffiffiffiffiffiffiffiffi

2πtobs

lϕlt

s

: ð8:2Þ

A real observation will also have limitations from finite
angular resolution θobs, limited temporal sampling cadence
Δtobs, and additional image noise that is related to details of
the instrument and observation (e.g., finite baseline cover-
age or calibration uncertainties for an interferometer).
Finite angular resolution is likely to be the most significant
of these limitations; if the resolution is insufficient to
resolve lϕ, then it will reduce the measured correlation and

will decrease the number of statistical realizations that can
be combined to improve sensitivity. Letting θph denote the

angular radius of the photon ring, the image azimuthal
resolution is θobs=θph ≥ lϕ, and the SNR becomes

SNR ∼ e−jmjγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πtobsθ
2
phlϕ

θ2obslt

s

ð8:3Þ

¼ lϕθph

θobs
SNR∞: ð8:4Þ

The effects of coarse temporal sampling Δtobs ≥ lt are

identical: SNR ∝
lt

Δtobs
SNR∞. Finally, errors in a recon-

structed image will have nontrivial correlation structure
across the image (e.g., related to systematic calibration
errors) and across time (e.g., related to limited baseline
coverage that may be the same in different observing
epochs). We can crudely represent these as a source of
added stochastic noise, which effectively serves to reduce

the correlation by some factor fobs ∼ f2img. Hence, we

expect it to be more difficult to detect the correlation
structure in the case of weak image fluctuations, even if the
normalized correlation is large.
M87* is a natural target to consider. The EHT has

already demonstrated that daily horizon-scale snapshot
images of M87* are feasible and has already measured
horizon-scale intrinsic variability on a timescale of

∼10GM=c3 [3,4]. Significant variability is also seen in
longer-wavelength monitoring [52]. Moreover, M87*
anchors a prominent kpc-scale jet; measurements of the
jet/counterjet brightness ratio, kinematics, and differential
limb brightening are all consistent with a viewing
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inclination of 17°� 3° [52]. Thus, under the assumption
that the black hole spin vector is aligned with the jet, the
black hole in M87* is viewed at small inclination and the
approximations in Sec. VII are appropriate. This super-

massive BH hasM=D ∼ 4 μas andGM=c3 ≈ 9 h [6], while
the EHT currently has an angular resolution of ∼20 μas.
Thus, θobs=θph ∼ 10lϕ. We then obtain, for the m ¼ 1 peak

in the autocorrelation,

M87�∶

SNR∞ ∼ 0.7

�

e−γ0

e−π

��

lϕ

5°

�

−
1
2

�

lt

1 day

�

−
1
2

�

fobs

0.1

��

tobs

1 yr

�1
2

;

SNR ∼ 0.02

�

e−γ0

e−π

��

lϕ

5°

�1
2

�

lt

1 day

�1
2

�

fobs

0.1

��

tobs

1 yr

�1
2

×

�

θobs

20 μas

�

−1
�

Δtobs

3 days

�

−1

: ð8:5Þ

Here, we set an optimistic characteristic value of 3 days for
Δtobs, which accounts for limitations that may impede
continuous observations, such as poor weather. Thus, even
with a perfect instrument and continuous monitoring,
detecting a strong signal in C for M87* will likely require
some combination of rapid BH spin (increasing e−γ0 by a
factor of ∼2), a high fraction of the image that is variable,
and many months or years of observation. Current obser-
vations lose another factor of ∼35 in sensitivity from the
combination of limited sampling in time (∼3×) and the
limited image resolution (∼10×). Nevertheless, observa-
tions of M87* with the EHTevery few days over a span of a
few months or years would allow first estimates of C.
A second possible target for observations is the Galactic

Center supermassive BH, Sgr A*. This supermassive BH
has M=D ∼ 5 μas and GM=c3 ≈ 21 s [53,54]. While the
mass and distance are tightly constrained, Sgr A* does not
have an observed jet, and the black hole inclination has no
firm constraints. If the inclination of Sgr A* is large, our
estimate for the SNR may need to be significantly modi-
fied. As with M87*, Sgr A* shows ∼20% variability in its
total flux density [38], thereby implying significant image
variability. In addition, the gravitational timescale is shorter
than Earth rotation timescales. Nevertheless, extensions of
the EHT that are sufficient to reconstruct movies of Sgr A*
would allow estimates of C with continuous observations
[55–58]. We then obtain

Sgr A�∶

SNR∞ ∼ 30

�

e−γ0

e−π

��

lϕ

5°

�

−
1
2

�

lt

1 min

�

−
1
2

�

fobs

0.1

��

tobs

1 yr

�1
2

;

SNR ∼ 0.6

�

e−γ0

e−π

��

lϕ

5°

�1
2

�

lt

1 min

�1
2

�

fobs

0.1

��

tobs

1 yr

�1
2

×

�

θobs

20 μas

�

−1
�

Δtobs

5 min

�

−1

: ð8:6Þ

Here, we set an optimistic characteristic value of 5 min for
Δtobs. While the Δtobs for M87* depends on logistics
related to conducting observations,Δtobs for Sgr A* instead
corresponds to the minimum time required to form an
image. The expected SNR for Sgr A* is significantly higher
than M87* for the same observing duration, primarily
because of the significantly shorter coherence timescales
expected: MM87�=MSgrA� ≈ 1500.

In both cases, we can quantify the improvement afforded
by using imaging rather than analysis of the “light-curve”
measured for an unresolved source. The latter has the
advantage of requiring only one telescope rather than an
entire interferometric array. However, the SNR is signifi-
cantly higher with imaging than with a light-curve analysis,

SNRLC:

SNR∞

SNRLC
∞

∼
2π

lϕ

≈ 70; ð8:7Þ

SNR

SNRLC
∼
2πθph

θobs
≈ 6: ð8:8Þ

Thus, image analysis with the resolution of the EHT
decreases the required observing time by a factor of
∼40, while observing with a significantly enhanced array
would decrease the required observing time by a factor of

∼5 × 103. An image analysis also has the advantage of
identifying azimuthal structure in the correlation function,
which provides information about the BH spin. However,
detecting signatures of the m ¼ 2 and higher-order corre-
lation peaks is unlikely with our approach; even with an
image-based analysis and perfect resolution for Sgr A*, a
significant detection of m ¼ 2 signatures would require
many years of continuous observations. Studies of unusual
events, such as flares from compact emission regions, are
more likely to yield the requisite SNR.
A separate issue for detecting C is to distinguish the

universal correlation structure that reflects properties of the
photon shell from the astrophysical correlation structure
that reflects properties of the emitting plasma (see, e.g.,
Fig. 4). In particular, a plasma with relativistic rotation may
have significant nontrivial correlation structures even at the
same values ðT;ΦÞ at which the lensing gives peaks.
Nevertheless, we expect this contamination to be insig-
nificant when the astrophysical correlation is small at the
location of the lensing peaks because the correlations from
astrophysics and lensing are approximately additive.
However, if the astrophysical correlation is comparable
to the correlation from lensing, then the lensing signature
will be much more difficult to detect.
Although we have only considered fluctuations in the

Stokes intensity I, a similar universal structure will be
imprinted in the 2PF of observed fluctuations in the other
Stokes parameters Q, U, and V. However, while the image
correlation structure will be governed by the same critical

PHOTON RING AUTOCORRELATIONS PHYS. REV. D 103, 104038 (2021)

104038-15



exponents as I (determined solely by the achromatic
lensing of the BH), the correlation structure of the emis-
sivity may differ because changes in the magnetic field
direction affect polarization differently than total intensity.
Moreover, the fluctuations may highlight differential
Faraday effects among the different interfering paths, which
can potentially be quite strong for sources such as M87*
and Sgr A*, even when the source is optically thin [59–61].
It would be interesting (and likely difficult) to understand
the correlation structure of source fluctuations in the linear
polarization Q and U, and we defer this question to
future work.
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APPENDIX A: LENSED IMAGES OF AN

EQUATORIAL DISK

In this Appendix, we use the analytic techniques
developed in Ref. [17,47] to present a proof of
Eq. (5.19) and derive an expression for the quantity ν

introduced therein. The simplest approach relies on the
method of matched asymptotic expansions, which was
applied to near-critical geodesics in Appendix B of
Ref. [17]. An alternative method would be to use the exact
solution of the null geodesic equation in Kerr obtained in
Ref. [47] and expand it near criticality. We will first employ
the simple approach and then briefly explain how one can
confirm that it agrees with the second.

1. Matched asymptotic expansion for

near-critical geodesics

The ðr; θÞ component of the null geodesic equation in
Kerr can be recast in integral form as

Ir ¼
Z

ro

rs

dr

�r

ffiffiffiffiffiffiffiffiffiffi

RðrÞ
p ¼

Z

θo

θs

dθ

�θ

ffiffiffiffiffiffiffiffiffiffi

ΘðθÞ
p ¼ Gθ; ðA1Þ

RðrÞ ¼ ½ðr2 þ a2Þ − aλ�2 − ΔðrÞ½ηþ ðλ − aÞ2�;
ΘðθÞ ¼ ηþ a2cos2θ − λ2cot2θ; ðA2Þ

with the slashed integrals indicating that the signs �r;θ

switch at every radial and polar turning point, respectively.
In this paper, we consider photons received by a fixed
observer at inclination θo and large radius ro → ∞ after
being emitted from radius on the surface of an equatorial
disk θs ¼ π=2. Wewish to invert Eq. (A1) in order to obtain
the radial trajectory rsðGθÞ as a function of the conserved
quantities ðλ; ηÞ parametrizing the observer sky via
Eq. (2.10). This can be done exactly, but in this section
wewill obtain a simplified formula for rs that holds near the
photon shell for near-critical geodesics with conserved
quantities ðλ; ηÞ close to the critical values (2.4). Such
geodesics must appear very close to the critical curve and
may be parametrized by ðr̃; dÞ, where 0 < jdj ≪ 1 denotes
their small perpendicular distance from the closest point
ðρ̃ðr̃Þ; φ̃ðr̃ÞÞ on the critical curve (see Fig. 3 of Ref. [17]).
As an intermediate step in our calculation, we follow

Appendix B of Ref. [17] and replace d by a quantity δr0
defined in terms of Bardeen’s coordinates ðα; βÞ ¼
ðρ cosφ; ρ sinφÞ as

d¼ 2r̃4χ̃

Δðr̃Þ
δr20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β̃2þ ψ̃2
p ;

ψ̃ ¼ α̃−

�

r̃þM

r̃−M

�

asinθo; χ̃¼ 1−
MΔðr̃Þ

r̃ðr̃−MÞ2 : ðA3Þ

For light rays outside the critical curve with d ∝ δr20 > 0,

the radius of closest approach to the BH is rmin ¼
r̃ð1þ δr0Þ. A near-critical light ray traced backwards from
a position outside/inside the critical curve in the observer
sky to a radius rs ¼ r̃ð1þ δrsÞ near the photon shell has a
radial geodesic integral Ir given by Eqs. (B30) and (B32) in
Ref. [17], respectively,

FIG. 4. Universal structure in the time autocorrelation function
C1DðTÞ [Eq. (3.3)], with T the time separation, for polar
observations of random fluctuations in an equatorial disk sur-
rounding a Kerr BH with spin a=M ¼ 94%. Universal aspects of

C1DðTÞ are governed by the critical exponents γ and τ [Eqs. (2.8)].
The autocorrelation function consists of a sum (displayed with
orange shading) of self-similar peaks localized around T ¼ mτ0
for every integer m, differing only by an overall demagnification

factor e−jmjγ0. Here, we show the jmj ¼ 0, 1, 2 peaks in red, blue,
and green, respectively. The profile of each peak, which is
nonuniversal, depends on statistical properties of the flow and is
taken here to correspond to our toy model (5.2). This structure
may be obtained by integrating over Φ in Fig. 1.
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Inf;outr ðδrs;∞Þ ¼ −
1

2r̃
ffiffiffi

χ̃
p

�

arctanh
ffiffiffi

χ̃
p

þ arctanh

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δr2s − δr20
p

δrs

�

þ 1

2
log

�

1 − χ̃

ð8χ̃Þ2 δr
2
0

��

; ðA4Þ

Inf;inr ðδrs;∞Þ ¼ −
1

2r̃
ffiffiffi

χ̃
p

�

arctanh
ffiffiffi

χ̃
p

þ arctanh

�

δrs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δr2s − δr20
p

�

þ 1

2
log

�

1 − χ̃

ð8χ̃Þ2 jδr
2
0j
��

; ðA5Þ

where we took δrb → ∞ in both expressions since we only consider far observers. Solving Ir ¼ Gθ for the portion of the
trajectory in the photon shell results in

rs ¼ r̃ð1þ δr
in=out
s Þ; δrouts ¼ δr0 cosh τ; δrins ¼ −

ffiffiffiffiffiffiffiffiffiffi

−δr20

q

sinh τ; ðA6Þ

with

τ ¼ 2r̃
ffiffiffi

χ̃
p

Gθ þ arctanh
ffiffiffi

χ̃
p

þ 1

2
log

�

1 − χ̃

ð8χ̃Þ2 δr
2
0

�

: ðA7Þ

Expanding the hyperbolic functions in small 0 < δr20 ≪ 1 results in the single expression

δrs ¼ δr
in=out
s ¼ 1þ ffiffiffi

χ̃
p

16χ̃
δr20e

2r̃
ffiffi

χ̃
p

Gθ þ 4χ̃

1þ ffiffiffi

χ̃
p e−2r̃

ffiffi

χ̃
p

Gθ : ðA8Þ

Finally, plugging in for d yields

rsðGθÞ ¼ r̃

�

1þ 1þ ffiffiffi

χ̃
p

32r̃4χ̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β̃2 þ ψ̃2

q

Δðr̃Þde2r̃
ffiffi

χ̃
p

Gθ þ 4χ̃

1þ ffiffiffi

χ̃
p e−2r̃

ffiffi

χ̃
p

Gθ

�

: ðA9Þ

This formula describes the portion of a near-critical geo-
desic’s radial motion near the photon shell, as a function of
its angular geodesic integral Gθ (equal to the elapsed Mino
time) and position ðr̃; dÞ near the critical curve in the
observer sky.
In the case of a polar observer, Eq. (78) of Ref. [17]

implies that such a geodesic intersects the equatorial plane
whenever [recalling Eq. (5.5) for the definition of ρ̃0]

Gθ ¼
2mþ1

4r̃0
ffiffiffi

χ̃
p γ0; γ0¼

4r̃0
ffiffiffi

χ̃
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̃20−a2
p K

�

a2

a2− ρ̃20

�

; ðA10Þ

for some integer m labeling equatorial crossings. As such,
noting that for a polar observer, ψ̃ ¼ α̃ and therefore

β̃2 þ ψ̃2 ¼ ρ̃20, the radius of the mth equatorial crossing is

r
ðmÞ
s ¼ r̃

�

1þ1þ ffiffiffi

χ̃
p

32r̃4χ̃2
ρ̃0Δðr̃Þdeðmþ1

2
Þγ0 þ 4χ̃

1þ ffiffiffi

χ̃
p e−ðmþ1

2
Þγ0
�

:

ðA11Þ

More generally, for an equatorial source but observer at
general inclination θo > 0, we have from Eqs. (20) and (43)
of Ref. [17]

Gθ ¼
2m

4r̃
ffiffiffi

χ̃
p γ ∓o fo; γ ¼ 4r̃

ffiffiffi

χ̃
p

a
ffiffiffiffiffiffiffiffiffi

−ũ−
p K̃; ðA12Þ

where �o ¼ signβ and using Eq. (12) of Ref. [17],

fo ¼
1

a
ffiffiffiffiffiffiffiffiffi

−ũ−
p F

�

arcsin

�

cos θi
ffiffiffiffiffiffi

ũþ
p

��

�

�

�

ũþ
ũ−

�

: ðA13Þ

Hence, we obtain the general expression

r
ðmÞ
s ¼ r̃

�

1þ 1þ ffiffiffi

χ̃
p

32r̃4χ̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β̃2 þ ψ̃2

q

Δðr̃Þde∓o2r̃
ffiffi

χ̃
p

foemγ

þ 4χ̃

1þ ffiffiffi

χ̃
p e�o2r̃

ffiffi

χ̃
p

foe−mγ

�

: ðA14Þ

We define the polar tangential angle Ψ̃ðφÞ to the critical

curve as the angle 0 ≤ Ψ̃ ≤ π such that

tan Ψ̃ðφÞ ¼ ρ̃ðφÞ
ρ̃0ðφÞ : ðA15Þ

This angle is such that d ¼ δρ sin Ψ̃, and so we obtain the
following general relation for polar curves:
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∂

∂ðδρÞ ¼ sin½Ψ̃ðφÞ� ∂
∂d

: ðA16Þ

This implies that

ι
∂r

ðmÞ
s

∂ðδρÞ ¼ emγ þOðe−mγÞ; ðA17Þ

where

1

ι
¼ 1þ ffiffiffi

χ̃
p

32r̃3χ̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β̃2 þ ψ̃2

q

Δðr̃Þe∓o2r̃
ffiffi

χ̃
p

fo sin½Ψ̃ðφÞ�; ðA18Þ

a fact we use in our computation of the two-point correlator
of intensity fluctuations in Sec. V above.

2. Near-critical expansion of the exact

transfer function

Recently [47], the null geodesic equation in the Kerr
spacetime was completely solved analytically in terms of
elliptic functions. Using these results, Ref. [17] showed that
the radial trajectory of a light ray shot backwards into the
geometry from radial infinity is exactly given by

rsðτÞ ¼
r4r31 − r3r41sn

2ð1
2

ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p

τ − F ojkÞ
r31 − r41sn

2ð1
2

ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p

τ − F ojkÞ
; ðA19Þ

with τ denoting the Mino time along the trajectory from
emission point to observer, and

F o ¼ F

�

arcsin

ffiffiffiffiffiffi

r31

r41

r
�

�

�

�

k

�

; k ¼ r32r41

r31r42
: ðA20Þ

Here, we introduced the notation

rij ¼ ri − rj; ðA21Þ

with fr1; r2; r3; r4g denoting the roots of the quartic
potential RðrÞ appearing in the radial geodesic integral
Ir. Analytic expressions for these roots are derived
in Ref. [47].
Plugging in τ ¼ Gθ, with Gθ as given in Eq. (A10) or

Eq. (A12) (according to whether the observer is polar or
inclined, respectively) defines the exact transfer functions
describing the optical appearance of an equatorial disk,

r
ðmÞ
s ðρ;φÞ ¼ rsðGm

θ ðρ;φÞÞ: ðA22Þ

Contours of the transfer functions for the direct and first
lensed image of the disk are shown in Fig. 6 of Ref. [17]
and in Figs. 3 and 4 of Ref. [62].
It is possible to derive the formula (A14) for the radius of

equatorial crossings by expanding the exact transfer func-
tion (A19) near the critical curve. For near-critical light rays

with small 0 < δr20 ≪ 1, the radial roots fr1; r2; r3; r4g are
approximately

r1 ¼ r̃ð−1 − 2
ffiffiffiffiffiffiffiffiffiffiffi

1 − χ̃
p

Þ þOðδr20Þ; ðA23Þ

r2 ¼ r̃ð−1þ 2
ffiffiffiffiffiffiffiffiffiffiffi

1 − χ̃
p

Þ þOðδr20Þ; ðA24Þ

r3 ¼ r̃ð1 − δr0Þ þOðδr20Þ; ðA25Þ

r4 ¼ r̃ð1þ δr0Þ þOðδr20Þ: ðA26Þ

Plugging these expressions into Eq. (A19) and expanding
in small δr0 reproduces the formula (A14). However, this
expansion is difficult and crucially requires the use of a
nontrivial asymptotic expansion of the incomplete elliptic
integral of the first kind, derived in Appendix C of
Ref. [62],

F

�

π

2
− ϵ

�

�

�

�

1−Aϵ2
�

≈
ϵ→0

−
1

2
logðAϵ2Þþ log4− log

�

1
ffiffiffiffi

A
p þ

ffiffiffiffiffiffiffiffiffiffiffi

1þ 1

A

r

�

: ðA27Þ

3. Time lapse and azimuth swept

In general, the time elapsed and azimuth swept along a
light ray are given by

Δt ¼ to − ts ¼ It þ a2Gt; ðA28Þ

Δϕ ¼ ϕo − ϕs ¼ Iϕ þ λGϕ; ðA29Þ

with the geodesic integrals It, Iϕ, Gt, and Gϕ defined in
Eqs. (13) of Ref. [47]. The angular geodesic integrals Gt

and Gϕ do not simplify near criticality, and their general

expression for near-critical rays shot back into the geometry
is given in Sec. II A of Ref. [17]. On the other hand, the
radial geodesic integrals It and Iϕ may be computed by the

method of matched asymptotic expansions, resulting in
the simplified formulas given in Eqs. (B34) and (B36) of
Ref. [17],

It ¼ r̃2
�

r̃þ 3M

r̃ −M

�

Ir −
r̃

2
ffiffiffi

χ̃
p ½QtðδroÞ −Qtð0Þ�; ðA30Þ

Iϕ ¼ a

�

r̃þM

r̃ −M

�

Ir −
aM

r̃
ffiffiffi

χ̃
p ½QϕðδroÞ −Qϕð0Þ�; ðA31Þ

where δro → ∞ for a distant observer and the auxiliary
quantities Qt and Qϕ are defined in Appendix B of

Ref. [17]. Using Ir ¼ Gθ, this implies that
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Δt ¼ r̃2
�

r̃þ 3M

r̃ −M

�

Gθ þ a2Gt −
r̃

2
ffiffiffi

χ̃
p ½QtðδroÞ −Qtð0Þ�;

ðA32aÞ

Δϕ ¼ a

�

r̃þM

r̃ −M

�

Gθ þ λGϕ −
aM

r̃
ffiffiffi

χ̃
p ½QϕðδroÞ −Qϕð0Þ�:

ðA32bÞ

The d dependence drops out entirely at leading order.
While the azimuth swept Δϕ remains finite in the limit
δro → ∞, the time elapsed along the trajectory from photon
shell to observer naturally diverges linearly as δro → ∞.
However, for the computations in this paper, we only care
about the difference in time delay between received signals,
so we may replace Δt for a light ray by its difference with
the time elapsed along a reference trajectory, such as the
one providing the first image of any given bulk fluctuation.

APPENDIX B: REDSHIFT FACTOR FOR

EMISSION FROM AN EQUATORIAL DISK

The Kerr geometry only admits stable circular orbits
down to the radius of the ISCO at

rms ¼ Mð3þ Z2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3 − Z1Þð3þ Z1 þ 2Z2Þ
p

Þ; ðB1aÞ

Z1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2⋆
3

q

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a⋆
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a⋆
3
p

�;

Z2 ¼ ð3a2⋆ þ Z2
1Þ1=2; a⋆ ¼ a

M
: ðB1bÞ

Beyond this radius, orbiters must necessarily plunge.
Following Cunningham [48], we consider an equatorial
disk consisting of emitters on prograde circular orbits
for rs ≥ rms, and emitters on infalling timelike geodesics
with the same conserved quantities as the ISCO for

rþ ≤ rs < rms. This same model was used in Ref. [22]
to produce the BH image in the right panel of Fig. 2. Here,
we provide formulas for the observed redshift g of photons
received by a distant observer from such an equatorial disk.
This redshift depends only on the emission radius rs and
energy-rescaled angular momentum λ of the photon, and is
given by

gðrs; λÞ ¼
�

gorbit r ≥ rms;

ginfall r < rms;
ðB2Þ

where

gdisk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3s − 3Mr2s þ 2a
ffiffiffiffiffi

M
p

r
3=2
s

q

r
3=2
s þ

ffiffiffiffiffi

M
p

ða − λÞ
;

ginfall ¼
1

ut − uϕλ − ur½ΔðrsÞ�−1½�
ffiffiffiffiffiffiffiffiffiffiffiffi

RðrsÞ
p

�
; ðB3Þ

with � ¼ signðpr
sÞ corresponding to the radial direction of

emission from the source, and

ur ¼ −

ffiffiffiffiffiffiffiffiffiffi

2

3

M

rms

s

�

rms

rs
− 1

�

3=2

; uϕ ¼ γms

r2s
ðλms þ aHÞ;

ut ¼ γms

�

1þ 2M

rs
ð1þHÞ

�

; ðB4Þ

H¼ 2Mrs−aλms

ΔðrsÞ
; λms¼

ffiffiffiffiffi

M
p

ðr2ms−2a
ffiffiffiffiffiffiffiffiffiffiffi

Mrms

p þa2Þ
r
3=2
ms −2M

ffiffiffiffiffiffiffi

rms

p þa
ffiffiffiffiffi

M
p ;

γms¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
2

3

M

rms

s

: ðB5Þ

[1] K. Akiyama, A. Alberdi et al. (Event Horizon Telescope

Collaboration), First M87 event horizon telescope results. I.

The shadow of the supermassive black hole, Astrophys. J.

Lett. 875, L1 (2019).
[2] K. Akiyama, A. Alberdi et al. (Event Horizon Telescope

Collaboration), First M87 event horizon telescope results. II.

Array and instrumentation, Astrophys. J. Lett. 875, L2

(2019).
[3] K. Akiyama, A. Alberdi et al. (Event Horizon Telescope

Collaboration), First M87 event horizon telescope

results. III. Data processing and calibration, Astrophys. J.

Lett. 875, L3 (2019).
[4] K. Akiyama, A. Alberdi et al. (Event Horizon Telescope

Collaboration), First M87 event horizon telescope

results. IV. Imaging the central supermassive black hole,

Astrophys. J. Lett. 875, L4 (2019).
[5] K. Akiyama, A. Alberdi et al. (Event Horizon Telescope

Collaboration), First M87 event horizon telescope results. V.

Physical origin of the asymmetric ring, Astrophys. J. Lett.

875, L5 (2019).
[6] K. Akiyama, A. Alberdi et al. (Event Horizon Telescope

Collaboration), First M87 event horizon telescope results.

VI. The shadow and mass of the central black hole,

Astrophys. J. Lett. 875, L6 (2019).
[7] D. Hilbert, Die Grundlagen der Physik (Zweite Mitteilung),

Nachr. Ges.Wiss. Gottingen,Math. Phys. Kl 1917, 53 (1917).
[8] C. Darwin, The gravity field of a particle, Proc. R. Soc. Ser.

A 249, 180 (1959).

PHOTON RING AUTOCORRELATIONS PHYS. REV. D 103, 104038 (2021)

104038-19



[9] J. M. Bardeen, Timelike and null geodesics in the Kerr

metric, in Black Holes (Les Astres Occlus), edited by C.

Dewitt and B. S. Dewitt (Gordon and Breach Science

Publishers, New YorK, 1973), pp. 215–239.
[10] J. P. Luminet, Image of a spherical black hole with thin

accretion disk, Astron. Astrophys. 75, 228 (1979).
[11] H. Falcke, F. Melia, and E. Agol, Viewing the shadow of the

black hole at the galactic center, Astrophys. J. Lett. 528, L13

(2000).
[12] K. Beckwith and C. Done, Extreme gravitational lensing

near rotating black holes, Mon. Not. R. Astron. Soc. 359,

1217 (2005).
[13] C. F. Gammie, J. C. McKinney, and G. Tóth, HARM: A

numerical scheme for general relativistic magnetohydrody-

namics, Astrophys. J. 589, 444 (2003).
[14] O. Porth, K. Chatterjee, R. Narayan et al., The event horizon

general relativistic magnetohydrodynamic code comparison

project, Astrophys. J. Suppl. Ser. 243, 26 (2019).
[15] S. E. Gralla, D. E. Holz, and R. M. Wald, Black hole

shadows, photon rings, and lensing rings, Phys. Rev. D

100, 024018 (2019).
[16] M. D. Johnson, A. Lupsasca, A. Strominger et al., Universal

interferometric signatures of a black hole’s photon ring, Sci.

Adv. 6, eaaz1310 (2020).
[17] S. E. Gralla and A. Lupsasca, Lensing by Kerr black holes,

Phys. Rev. D 101, 044031 (2020).
[18] R. Narayan, M. D. Johnson, and C. F. Gammie, The shadow

of a spherically accreting black hole, Astrophys. J. Lett. 885,

L33 (2019).
[19] S. E. Gralla, Measuring the shape of a black hole photon

ring, Phys. Rev. D 102, 044017 (2020).
[20] J. R. Farah, D.W. Pesce, M. D. Johnson, and L. Blackburn,

On the approximation of the black hole shadow with a

simple polar curve, Astrophys. J. 900, 77 (2020).
[21] S. E. Gralla and A. Lupsasca, On the observable shape of

black hole photon rings, Phys. Rev. D 102, 124003 (2020).
[22] S. E. Gralla, A. Lupsasca, and D. P. Marrone, The shape of

the black hole photon ring: A precise test of strong-field

general relativity, Phys. Rev. D 102, 124004 (2020).
[23] A. E. Broderick and A. Loeb, Imaging bright-spots in the

accretion flow near the black hole horizon of Sgr A*, Mon.

Not. R. Astron. Soc. 363, 353 (2005).
[24] K. Moriyama and S. Mineshige, New method for black-hole

spin measurement based on flux variation from an infalling

gas ring, Publ. Astron. Soc. Jpn. 67, 106 (2015).
[25] H. Saida, How to measure a black hole’s mass, spin, and

direction of spin axis in the Kerr lens effect 1: Test case with

simple source emission near a black hole, Prog. Theor. Exp.

Phys. 2017, 053E02 (2017).
[26] S. E. Gralla, A. Lupsasca, and A. Strominger, Observational

signature of high spin at the Event Horizon Telescope, Mon.

Not. R. Astron. Soc. 475, 3829 (2018).
[27] K. Moriyama, S. Mineshige, M. Honma, and K. Akiyama,

Black hole spin measurement based on time-domain VLBI

observations of infalling gas clouds, Astrophys. J. 887, 227

(2019).
[28] P. Tiede, H.-Y. Pu, A. E. Broderick, R. Gold, M. Karami,

and J. A. Preciado-López, Spacetime tomography using the

Event Horizon Telescope, Astrophys. J. 892, 132 (2020).

[29] G. N. Wong, Black hole glimmer signatures of mass, spin,

and inclination, Astrophys. J. 909, 217 (2021).
[30] S. A. Balbus and J. F. Hawley, A powerful local shear

instability in weakly magnetized disks. I. Linear analysis,

Astrophys. J. 376, 214 (1991).
[31] F. Yuan and R. Narayan, Hot accretion flows around black

holes, Annu. Rev. Astron. Astrophys. 52, 529 (2014).
[32] E. Teo, Spherical photon orbits around a Kerr black hole,

Gen. Relativ. Gravit. 35, 1909 (2003).
[33] R. Takahashi, Shapes and positions of black hole shadows in

accretion disks and spin parameters of black holes, As-

trophys. J. 611, 996 (2004).
[34] T. Johannsen and D. Psaltis, Testing the no-hair theorem

with observations in the electromagnetic spectrum. II. Black

hole images, Astrophys. J. 718, 446 (2010).
[35] R. W. Lindquist, Relativistic transport theory, Ann. Phys.

(N.Y.) 37, 487 (1966).
[36] S.W. Davis and C. F. Gammie, Covariant radiative transfer

for black hole spacetimes, Astrophys. J. 888, 94 (2020).
[37] S. S. Doeleman, J. Weintroub, A. E. E. Rogers et al., Event-

horizon-scale structure in the supermassive black hole

candidate at the Galactic Centre, Nature (London) 455,

78 (2008).
[38] G. C. Bower, S. Markoff, J. Dexter et al., Radio and

millimeter monitoring of Sgr A*: Spectrum, variability,

and constraints on the G2 encounter, Astrophys. J. 802, 69

(2015).
[39] A. Chael, R. Narayan, and M. D. Johnson, Two-temper-

ature, Magnetically arrested disc simulations of the jet from

the supermassive black hole in M87, Mon. Not. R. Astron.

Soc. 486, 2873 (2019).
[40] D. E. A. Gates, S. Hadar, and A. Lupsasca, Photon emission

from circular equatorial Kerr orbiters, Phys. Rev. D 103,

044050 (2021).
[41] A. R. Thompson, J. M. Moran, and G.W. Swenson, Inter-

ferometry and Synthesis in Radio Astronomy, 3rd ed.

(Springer International Publishing, 2017).
[42] X. Guan and C. F. Gammie, Radially extended, stratified,

local models of isothermal disks, Astrophys. J. 728, 130

(2011).

[43] H. Shiokawa, J. C. Dolence, C. F. Gammie, and S. C. Noble,

Global general relativistic magnetohydrodynamic simula-

tions of black hole accretion flows: A convergence study,

Astrophys. J. 744, 187 (2012).
[44] I. V. Igumenshchev, R. Narayan, and M. A. Abramowicz,

Three-dimensional magnetohydrodynamic simulations of

radiatively inefficient accretion flows, Astrophys. J. 592,

1042 (2003).
[45] R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz,

Magnetically arrested disk: An energetically efficient ac-

cretion flow, Publ. Astron. Soc. Jpn. 55, L69 (2003).
[46] P. K. Leung, C. F. Gammie, and S. C. Noble, Numerical

calculation of magnetobremsstrahlung emission and absorp-

tion coefficients, Astrophys. J. 737, 21 (2011).
[47] S. E. Gralla and A. Lupsasca, Null geodesics of the Kerr

exterior, Phys. Rev. D 101, 044032 (2020).
[48] C. T. Cunningham, The effects of redshifts and focusing on

the spectrum of an accretion disk around a Kerr black hole,

Astrophys. J. 202, 788 (1975).

HADAR, JOHNSON, LUPSASCA, and WONG PHYS. REV. D 103, 104038 (2021)

104038-20



[49] V. L. Fish, S. S. Doeleman, C. Beaudoin et al., 1.3 mm
wavelength VLBI of Sagittarius A*: Detection of time-
variable emission on event horizon scales, Astrophys. J.
Lett. 727, L36 (2011).

[50] M. D. Johnson, V. L. Fish, S. S. Doeleman et al., Resolved
magnetic-field structure and variability near the event
horizon of Sagittarius A*, Science 350, 1242 (2015).

[51] R. Abuter, A. Amorim et al. (Gravity Collaboration),
Detection of orbital motions near the last stable circular
orbit of the massive black hole SgrA*, Astron. Astrophys.
618, L10 (2018).

[52] R. C. Walker, P. E. Hardee, F. B. Davies, C. Ly, and W.
Junor, The structure and dynamics of the subparsec jet in
M87 based on 50 VLBA observations over 17 years at
43 GHz, Astrophys. J. 855, 128 (2018).

[53] T. Do, A. Hees, A. Ghez et al., Relativistic redshift of the
star S0-2 orbiting the Galactic Center supermassive black
hole, Science 365, 664 (2019).

[54] R. Abuter, A. Amorim et al. (Gravity Collaboration),
Detection of the Schwarzschild precession in the orbit of
the star S2 near the Galactic centre massive black hole,
Astron. Astrophys. 636, L5 (2020).

[55] M. D. Johnson, K. L. Bouman, L. Blackburn, A. A. Chael, J.
Rosen, H. Shiokawa, F. Roelofs, K. Akiyama, V. L. Fish,
and S. S. Doeleman, Dynamical imaging with interferom-
etry, Astrophys. J. 850, 172 (2017).

[56] K. L. Bouman, M. D. Johnson, A. V. Dalca et al.,
Reconstructing video of time-varying sources from radio
interferometric measurements, IEEE Trans. Comput. Imag.
4, 512 (2018).

[57] D. C. M. Palumbo, S. S. Doeleman, M. D. Johnson,
K. L. Bouman, and A. A. Chael, Metrics and motiva-
tions for Earth-Space VLBI: Time-resolving Sgr A* with
the Event Horizon Telescope, Astrophys. J. 881, 62
(2019).

[58] L. Blackburn, S. Doeleman, J. Dexter et al., Studying
black holes on horizon scales with VLBI ground arrays,
arXiv:1909.01411.

[59] M. Mościbrodzka, J. Dexter, J. Davelaar, and H. Falcke,
Faraday rotation in GRMHD simulations of the jet launch-
ing zone of M87, Mon. Not. R. Astron. Soc. 468, 2214
(2017).
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