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Abstract

The recent advent of the Event Horizon Telescope (EHT) has made direct imaging of supermassive black holes a
reality. Simulated images of black holes produced via general relativistic ray tracing and radiative transfer provide
a key counterpart to these observational efforts. Black hole images have a wide range of physically interesting
image structures, ranging from extremely fine scales in their lensed “photon rings” to the very large scales in their
relativistic jets. The multiscale nature of the black hole system is therefore suitable for a multiscale approach to
generate simulated images that capture all key elements of the system. Here, we present a prescription for adaptive
ray tracing, which enables efficient computation of extremely high-resolution images of black holes. Using the
polarized ray-tracing code IPOLE, we image a combination of semianalytic and general relativistic
magnetohydrodynamic (GRMHD) models, and we show that images can be reproduced with a mean squared
error of less than 0.1% even after tracing 12× fewer rays. We then use adaptive ray tracing to explore the
properties of the photon ring. We illustrate the behavior of individual subrings in GRMHD simulations, and we
explore their signatures in interferometric visibilities.

Unified Astronomy Thesaurus concepts: Black holes (162); Radiative transfer simulations (1967); Gravitational
lensing (670); Radio interferometry (1346)

1. Introduction

When surrounded by emitting material, black holes imprint
distinctive properties of their spacetimes on the image seen by a
distant observer. Black hole images can then offer valuable
insights into the astrophysical processes that govern the accretion
and outflow, the physical processes that produce heating and
dissipation in the nearby plasma, and the geometrical lensing of
light. Over the past few decades, images of black holes have
evolved from being studied primarily for their rich theoretical
features (Luminet 1979; Bardeen 1973) to being directly
accessible via very long-baseline interferometry (Event Horizon
Telescope Collaboration et al. 2019a, 2019b, 2019c, 2019d,
2019e, 2019f). With progressively sharper images of black holes
expected as these observations continue to improve, increasingly
accurate simulated images of black holes are imperative to guide
analysis and interpretation.

One limitation of image accuracy is related to finite image
sampling at discrete points on the screen. Namely, the intensity
at each point on an image is computed by ray-tracing the path
of the corresponding null geodesic and computing the radiative
transfer along the trajectory. The computational expense of
forming an image then increases with the number of rays at
which this intensity function is sampled. A crucial question is
how to efficiently distribute a finite sample of rays across an
image to reach a prescribed image fidelity.

Black hole ray-tracing programs typically distribute rays on
an evenly spaced grid (see, e.g., Gold et al. 2020). In this
approach, regions of the image with sharp, bright features are
sampled with the same density of rays as the faint regions of
only diffuse structure. Black hole images are expected to have
regions of both categories. Near the black hole, the accretion
flow is turbulent and bright, requiring high resolution to
adequately resolve. Far from the black hole, tightly collimated

outflows or “jets” produce narrow regions with significant flux.
The strong lensing of Kerr black holes is manifest in the
“photon ring,” a bright ring with a self-similar substructure that
emerges in the limit of no absorption and scattering (see, e.g.,
Luminet 1979; de Vries 2000; Takahashi 2004; Beckwith &
Done 2005; Johannsen & Psaltis 2010; Gralla et al. 2019;
Johnson et al. 2020). Apart from these distinctive parts of the
image, black hole images often have the bulk of their flux
density concentrated in a small fraction of the image.
In this paper, we develop a recursive scheme for black hole ray

tracing. We begin, in Section 2, by summarizing previous work
related to adaptive and high-resolution black hole imaging. Next,
in Section 3, we describe expected interpolation errors in black
hole images and present a recursive algorithm for efficiently
generating high-resolution images. In Section 4, we evaluate the
performance of our adaptive ray-tracing algorithm and explore the
properties of extremely high-resolution features in the image and
interferometric visibility domains. We consistently generate
images with >12× fewer rays and <0.1% mean squared error
(MSE) compared to their truth counterparts. In Section 5, we
study the specific case of photon subrings in images from general
relativistic magnetohydrodynamic (GRMHD) simulations and
semianalytic models, and we explore how different averaging
prescriptions suppress stochastic image features. In Section 6, we
summarize our results.

2. Background and Literature Review

Mathematical and computational techniques in general
relativistic radiative transfer have seen tremendous develop-
ments during the past century (see, e.g., Connors & Stark 1977;
Luminet 1979; Rybicki & Lightman 1979; Broderick &
Blandford 2003, 2004; Shcherbakov & Huang 2011; Gammie
& Leung 2012; Krawczynski 2012; Beheshtipour et al. 2017).
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In order to use these techniques to render the appearance of
black holes, the actual conditions of the surrounding plasma/
emitting material are often simulated via GRMHD (see, e.g.,
Gammie et al. 2003; Narayan et al. 2012). Ray-tracing codes
can then combine the output of GRMHD simulations with a
radiative transfer scheme to produce black hole images under
various astrophysical conditions (see, e.g., Schnittman et al.
2006; Noble et al. 2007; Dolence et al. 2009; Shcherbakov
et al. 2012).

Among the GRMHD simulations, adaptive refinement
techniques have been used extensively in the past for EHT-
related work. Because GRMHD simulations evolve the
accretion dynamics in individual “cells” surrounding a black
hole, codes can adaptively alter the size of these cells to better
capture the relevant physical processes (Porth et al. 2019).
However, methods of spatial refinement in the subsequent ray-
tracing analysis are not as well documented, despite this
method’s ability to improve both image generation speed and
quality.

Refinement strategies have already found some applications
among ray-tracing programs. Many of the ray-tracing packages
compared by Gold et al. (2020) use adaptive step sizes to boost
efficiency during numerical integration of the geodesic or
radiative transfer equation (see, e.g., Chan et al. 2013;
Dexter 2016; Pu et al. 2016; Mościbrodzka & Gammie 2017;
Bronzwaer et al. 2018).

Chan et al. (2015) implemented a multiscale sampling
procedure by separately ray-tracing images with uniform
gridding but different pixel sizes and then combining them.
In their three-layer scheme, each successive layer had the same
number of pixels but increased the field of view by a factor of
4, providing relatively high resolution near the black hole
(Δx=M/8) and also giving a complete estimate for the X-ray
flux from the simulated domain.

Owing to their computational expense, high-resolution images
of black holes are sparse in the growing literature related to black
hole images. Notable exceptions include Bronzwaer et al. (2018),
who compared their RAPTOR code with BHOSS (Younsi et al.
2020) using images with 4096× 4096 pixels over a field of view
of 60M. Similarly, Davelaar et al. (2018) used RAPTOR to
generate a high-resolution, virtual reality simulation near a black
hole with 2000× 1000 pixels per snapshot.

To systematically produce high-resolution images, especially
with a resolution to better resolve the substructure of the photon
ring, a fully adaptive ray-tracing approach is advisable. Such an
algorithm has been studied in the context of cosmological
simulations (e.g., Abel & Wandelt 2002; Wise & Abel 2011).
Our approach to adaptive ray-tracing more closely parallels the
one implemented in the VRT

2 package within THEMIS

(Broderick & Blandford 2003, 2004; Broderick et al. 2020),
which chooses whether to ray-trace or interpolate on a pixel-
by-pixel basis. Examples of high-resolution black hole images
with this adaptive ray-tracing scheme can be seen in, e.g.,
Broderick & Loeb (2006). Parkin (2011) also presented an
analogous refinement model for adaptive ray tracing, although
it was not developed for black hole images. Wong (2021)
presented an adaptive approach that uses only the path length
of null geodesics, giving a spacetime-dependent grid that
is independent of the image structure. We will next present a
new method for adaptive ray tracing, which differs from these
previous methods in its sampling methodology, and we will

evaluate its performance using numerical simulations of black
holes.

3. Interpolation and Adaptive Image Refinement

The emission from a black hole produces a smooth intensity
distribution on the screen of a distant observer, which we
denote I(x), where x is position. Ray tracing discretely samples
I(x) at a set of specified locations xi{ }. An output image xI ( )
depends on the set of sampled rays xi{ } and the interpolation
method used to estimate a smooth distribution from this finite
set. We now evaluate the expected interpolation errors for black
hole images, and we present a recursive sampling approach that
enables efficient estimates of high-resolution images.

3.1. Continuous Error Approximations

The simplest interpolation scheme to generate a full image
from a discrete set of rays is a nearest-neighbors approach.
Given a ray sampled at x1, x2,K,xn, the nearest-neighbors
intensity distribution simply finds the closest sampled ray at
every location: º -x x xI I arg minx ii

( ) ( ∣ ∣) . A second inter-
polation scheme is a linear/bilinear approach, which is defined
so that xI ( ) is an average of its nearest surrounding rays that is
weighted by distance. For a smooth intensity distribution, the
errors in these two schemes are given by the first and second
image spatial derivatives, respectively.
Specifically, consider a point x lying equidistant from four

rays spaced evenly around x. Then, to leading order, the
interpolation residuals will be (see Appendices A.1 and A.2 for
full derivation)
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where Δx denotes the distance between x and each of its four
surrounding rays.
In Figure 1, we plot the gradients and Laplacians for

ray-traced images of both a semianalytic model and a model
from the EHT GRMHD library (Event Horizon Telescope
Collaboration et al. 2019e). In particular, the GRMHD model
is a Magnetically Arrested Disk (MAD; Yuan & Narayan
2014) of M87*, with dimensionless spin a*=+0.94, inclination
angle i= 17°, and a field of view of 160 μas (corresponding
to∼ 44.17M/D). We also use the electron heating parameter
Rhigh= 20 (for details, see Mościbrodzka et al. 2016; Event
Horizon Telescope Collaboration et al. 2019e).
The semianalytic model mirrors Test 1 of Gold et al. (2020)

and models a spherically symmetric fluid distribution around a
black hole located at a distance D= 7.78 kpc and with mass
M= 4× 106M

e
. Additional parameters for this semianalytic

model include spin a*= 0.9, inclination angle i= 60°, and a field
of view of∼ 152.289 μas (30M/D). For both models, we use a
camera distance of rcam= 106M to mitigate small errors that may
arise from the use of a pinhole camera.
In all cases, the gradient and Laplacian of the intensity

increase sharply near the photon ring because of strong
gravitational lensing. Indeed, Psaltis et al. (2015) proposed
using sharp image gradients as a way to localize the photon
ring; the Laplacian would also be an effective choice.

2
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3.2. Adaptive Ray Tracing by Recursive Subdivision

The highly localized regions of Figure 1 with large
derivatives suggest that judicious sampling can be used to
significantly improve image generation speed and quality
relative to a uniform grid. We will now describe an efficient
recursive sampling procedure that is defined by a pair of error
tolerances: abs and rel.

To begin, we ray-trace an image on a grid at a coarse initial
resolution, n0x× n0y, where n0x and n0y are any two integers.
Next, we selectively populate an image with finer resolution by
a factor of two: (2n0x− 1)× (2n0y− 1). For each point, we
either ray-trace or interpolate based on the expected relative
and absolute interpolation errors:

=
- x

x x

x

I I

I
, 2rel ( )

( ) ( )

( )
( )



=
- x

x xI I

I
. 3abs( )

( ) ( )
( )



Both òabs and òrel are dimensionless, but they differ in their
normalization: òrel uses the local image intensity I(x), while
òabs uses the image-averaged intensity I . If > abs abs and
> rel rel, then I(x) is computed by ray tracing. Otherwise,

I(x) is computed by interpolation. Hence, rays are computed
only where interpolation residuals are expected to be large.
This procedure can then be repeated arbitrarily, giving an
effective final image resolution that is nx× ny, with

= - +
= - +

n n

n n

2 1 1

2 1 1. 4

x
N

x

y
N

y

0

0

( )

( ) ( )

Our recursive approach relies on computing estimates  xrel ( )
and  xrel ( ) for the interpolation residuals, and these estimates
change for different configurations of pixels. As shown in

Figure 2, each point x lying on the (n+ 1)th grid will fall into
one of four categories:

1. Category 1 (Black): x had its intensity computed at the
nth refinement level; there is no interpolation residual.

2. Category 2 (Blue): x lies in between two points located
above and below, each of whose intensities were computed
at the nth refinement level.

Figure 1. Simulated black hole images (left), their gradients (center), and their Laplacians (right). The top panels show a GRMHD snapshot, while the bottom panels
show a semianalytic model (Test 1 of Gold et al. 2020). All panels are rescaled to have units of brightness temperature (by multiplying by an appropriate power of
Δx ≈ 0.156 μas); the center and right panels then give the expected interpolation residual over this interval (Equation (1)).

Figure 2. Recursive gridding approach. Black dots show points sampled at
the nth refinement level; colored dots show additional points sampled at the
(n + 1)th refinement level. Distinct colors represent distinct cases for
interpolation error estimation.
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3. Category 3 (Red): x lies in between two points located to
left and right, each of whose intensities were computed at
the nth refinement level.

4. Category 4 (Green): x lies in between four equidistant
corner points, each of whose intensities were computed at
the nth refinement level.

For cases 2–4, we use finite differences to estimate
derivatives and then take the appropriate leading term in the
Taylor series approximation to evaluate interpolation uncer-
tainties (see, e.g., Appendix A of Pedrola 2015). For example,
consider estimating the intensity at the central point of
Figure 2, whose location we will call x. Defining º xI Ii i( ) 
and labeling the points as in Figure 3, we find
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Here, the nearest neighbor is chosen (arbitrarily) to be I1.
Additionally, Iint is defined as the interpolated average intensity
after the first pass of ray tracing (with resolution n0x× n0y). For a
detailed derivation of Equations (5) and (6), see Appendices A.1
and A.2.

While we have derived estimates for  xabs( ) and  xrel ( ) using
the simplified approximation of a smooth image with
interpolation residuals dominated by low-order derivatives,
these estimates are also useful for the more general case of
images with small-scale structure and sharp gradients. For
example, if the small-scale image structure is stochastic with a
power-law spectrum, then we can compare the ensemble-
average properties of the exact (Equation (2)) and estimated
(Equation (5)) interpolation residuals. For 1D interpolation, we
find
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where β is the power-law exponent. GRMHD simulations often
have β∼ 2.5, giving ratios á ñ á ñ abs

2
abs
21

2
1
2 of 0.59 and 0.27 for

the 1D nearest and linear interpolation, respectively. Thus, even
in this generalized case of stochastic image fluctuations with a
power-law spectrum (for which a local Taylor series expansion
is poor), our approximate estimates for interpolation error will
still provide useful refinement criteria. For additional discus-
sion of the interpolation errors for images with power-law
spectra, see Appendix B.
Previous uses of adaptive ray tracing have used more

complicated refinement criteria than the ones we have selected.
Parkin (2011) also implemented a second-order criterion (the
Löhner 1987 criterion), which uses multiple cross derivatives.
Similarly, VRT2 employs a bicubic interpolator. However, we
expect the benefit of these higher-order schemes to be marginal
in the case of an image with a turbulent power spectrum (see
Appendix B). For the remainder of this paper, we use the linear
interpolation scheme.

4. Results

4.1. Models and Implementation

We implement the recursive ray-tracing scheme described
above into the polarized general relativistic radiative transfer
(GRRT) code IPOLE

6
(Mościbrodzka & Gammie 2017). This

implementation allows us to assess the performance of our
algorithm and subsequently generate extremely high-resolution
images of black holes.
In addition to the MAD model and spherical semianalytic

model used in Figure 1, we also generate images using a
Standard and Normal Evolution (SANE) model from the EHT
GRMHD library (Yuan & Narayan 2014; Event Horizon
Telescope Collaboration et al. 2019e), as well as a semianalytic
model of a geometrically thin, rotating disk (Test 5 of Gold
et al. 2020).
Before generating images, however, we must first determine

suitable error tolerancesabs andrel. To evaluate the effect of
different tolerances on the resultant image, we use the
following three metrics (the second and third of which are
also used in Gold et al. 2020):

º
#

´n n
Interpolation Fraction

pixels interpolated
, 8

x y

( )

Figure 3. Corner pixels used to compute the interpolation uncertainties òabs(x)

and òrel(x). For nearest-neighbor interpolation, only points 1−4 are needed,
while linear interpolation requires points 5 − 8 as well.

6 https://github.com/moscibrodzka/ipole. Our adaptive tools were devel-
oped at https://github.com/AFD-Illinois/ipole.
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Here, F≡ ∫d2x I(x) is the image flux associated with the model
intensity distribution, and òº x xF d I2 ( ) is the image flux
associated with the estimated intensity distribution. We note
that while a high flux error necessarily implies a high MSE, we
include the former metric because it has a clear physical
interpretation and bears more relevance in potential applica-
tions to light curves.

Our goal is to maximize the interpolation fraction (IF) while
minimizing the flux error (FE) and MSE, as this achieves both
efficiency and accuracy. To this end, we run our adaptive
scheme on a single GRMHD snapshot (the same snapshot/
parameters used in Figure 1) with a wide variety of error
tolerances, and we evaluate the IF/FE/MSE for each. The
contours in Figure 4 show how the error metrics each depend
on rel and abs. For this comparison, we take n0x= n0y= 65
pixels and nx= ny= 1025 pixels, and we compute the model
intensity distribution I(x) by ray-tracing each pixel on a
1025× 1025 grid.

As expected, as rel and abs increase, the adaptively
sampled image xI ( ) increasingly deviates from the fully
sampled I(x). As  ¥rel and  ¥abs , all adaptive
refinement will cease and the image will be given by the initial
sampling. For the initial 65× 65 sampling of this snapshot,
MSE≈ 0.22≈ 10−0.65 and FE≈ 0.029≈ 10−1.54. These serve
as reference values to compare against iterations of the scheme
with more stringent tolerances.

The contours in Figure 4 can be used for practical image
generation purposes—for the desired accuracy, one can select
abs andrel such that the interpolation fraction and hence the
efficiency are maximized. For our subsequent analysis of
GRMHD images, we choose = 0.025abs and = 0.001rel

(the red star in Figure 4), as this set of tolerances allows for

>90% interpolation while constraining the MSE and FE
to <0.1%.
For subsequent analysis of the semianalytic models, we

choose = =  0.001abs rel , as we find that the semianalytic
models are slightly more sensitive to the absolute tolerance.

4.2. High-resolution Images and Analysis

Using the tolerances selected described above, we adaptively
ray-trace in IPOLE at resolutions of 1025× 1025 and
4097× 4097 pixels. Images of the four models for the latter
resolution are shown in Figure 5, along with their respective
“ray-density plots,” illustrating where the program is concen-
trating rays in each image. The ray-density plots are generally
consistent with Figure 1—the majority of ray tracing takes
place in an annulus about the photon ring, while the
background and shadow are predominantly interpolated. As
with Figure 1, the annuli for the semianalytic models are
significantly thinner and more pronounced.
The corresponding residual images (fully ray-traced images

subtracted from adaptively ray-traced images and normalized

by the image-averaged intensity: -x xI I

I

( ) ( )
) are shown in

Figure 6. In all images, the residual amplitudes are relatively
constant, which reflects the refinement goal of òabs. In portions
of the image that correspond to rays that have been traced, the
residuals are zero. In particular, all images contain a base grid
of 65× 65 evenly spaced rays, giving evenly spaced nulls in
the residuals that align with this grid. This feature is most
evident in the semianalytic models, where the smooth intensity
distribution allows significant interpolation.
The resultant error statistics (Equations (8)–(10)) for these

adaptively ray-traced images are presented in Table 1. The
1025× 1025 images match the predictions from the contours in
Figure 4: both the MSE and FE are lower than 0.1%, while the
interpolation fraction exceeds 90%. In Table 1, we also list the
total number of rays traced in each image: (1− IF)× nx× ny,
which is roughly proportional to computational expense.
While these statistics were generated for a specific choice of

image parameters, we obtain similar results for other models.
We ray-trace with the same tolerances on all combinations of

Figure 4. Contour plots representing how the error metrics depend on the tolerancesrel andabs for the MAD GRMHD snapshot traced with 1025 × 1025 pixels on
160 μas FOV. Colors represent interpolation fraction while dashed lines represent the error (flux error on left and mean squared error on right). The star indicates the
error tolerances we choose to generate the subsequent GRMHD images in this paper = 0.001rel( and = 0.025abs ).
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Figure 5. Adaptively ray-traced images, shown with ray-density plots to the right. Rays are concentrated near the photon ring, with occasional rays scattered across the
diffuse emission. To compute the ray density, we use a kernel size equal to the spacing between pixels at the zeroth refinement level: 17 × 17 pixels for the lower-
resolution image and 65 × 65 pixels for the higher-resolution image.

Figure 6. Normalized residual images for the 4097 × 4097 snapshots of the GRMHD models and semianalytic models. Regions with a high concentration of rays
have particularly small residuals, as do regions with a diffuse structure. For reference, the image-averaged intensities I for the four images are (after converting to
brightness temperature): 5.2 × 108 K, 7.0 × 108 K, 1.6 × 109 K, and 2.5 × 107 K, from left to right.
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MAD/SANE, a*=−0.94, 0, + 0.94, and Rhigh= 20, 40, 80.
We find that among these images, IF ranges from 0.877 to
0.929, FE ranges from 3.02× 10−5 to 8.59× 10−4, and MSE
ranges from 2.82× 10−4 to 5.55× 10−4.

We may further vary the magnetization (σ) cut (see, e.g.,
Chael et al. 2019), which is a quantity designed to restrict
emission to regions where the fluid density has not been
physically invalidated. Regenerating the MAD image from
Figure 1 with σ= 1, 5, 10, and 50, we find that IF ranges from
0.917 to 0.931, FE ranges from 2.50× 10−4 to 7.50× 10−4,
and MSE ranges from 2.79× 10−4 to 4.69× 10−4. Thus, for
these GRMHD simulations, the accuracy and efficacy of the
adaptive refinement criteria are relatively insensitive to the
choice of accretion and radiation model parameters.

The semianalytic models have lower errors than the
GRMHD models and higher interpolation fractions. This is
likely because the smooth underlying structure in semianalytic
models is better suited to interpolation.

While IF is a useful metric to quantify sampling efficiency, it
does not directly correspond to the reduction in image
generation time. Namely, rays near the photon ring are more
expensive to trace, as their geodesics have longer paths through
the emitting material and thus require more calculations to
perform the radiative transfer. Nevertheless, even though our
adaptive scheme predominantly samples in this computation-
ally expensive region, we find that the reduction in image
generation time is similar to the interpolation fraction (see
Figure 7). In general, the relationship between interpolation
fraction and computational expense will depend on details of
the underlying model and of the GRRT implementation.

We note additionally from Table 1 that as resolution
increases, IF increases as well. This behavior is expected
because the error estimates decrease at smaller separations,
allowing more pixels to satisfy the error tolerances required for
interpolation. Indeed, Figure 5 shows that the density of rays in
the diffuse parts of the image quickly saturates—upon
increasing the spatial resolution from 1025× 1025 to
4097× 4097, the sampled ray density only increases in the
photon ring region.

Unlike the IF, however, the MSE and FE do not depend
strongly on resolution. These quantities instead depend on the
tolerances rel and abs. Thus, even though more pixels are

interpolated at a resolution of 4097× 4097 compared to a
resolution of 1025× 1025, the output images have comparable
accuracy by these two metrics.

4.3. Visibility-domain Analysis

VLBI directly measures interferometric visibilities, which
correspond to complex Fourier components of the sky image
(Thompson et al. 2017). Hence, visibility-domain tests are
appropriate to assess suitability for direct comparisons with
observables. In this section, we analyze the visibility spectra of
our adaptively ray-traced images and show that they exhibit the
universal properties expected for black hole images.

4.3.1. Expected Visibility Signatures

For all images (both GRMHD and semianalytic), we expect
the visibility spectra to reflect signatures of the strong
gravitational lensing of light. Namely, in the Kerr spacetime,
photons can complete spherical orbits at a fixed set of Boyer–
Lindquist radii, and null geodesics near these orbits approach a
“critical curve” on an observer’s screen upon eventual escape
(Bardeen 1973; Teo 2003). Rays that terminate increasingly
near the critical curve make increasingly many revolutions
around the black hole, producing a bright “photon ring” when
the emitting material is optically thin. The visibility spectrum
of such a ring should exhibit damped oscillatory behavior with
a characteristic period of 1/d, where d is the photon ring’s
screen diameter projected along the baseline direction (Johnson
et al. 2020).
A photon that ends up within the photon ring may be further

labeled by a number n representing the number of half-orbits

Table 1

Statistics for 1025 × 1025 and 4097 × 4097 Images

Model—10252 IF FE MSE # Rays

GRMHD—MAD 0.92 2.5 × 10−4 4.6 × 10−4 8.7 × 104

GRMHD—SANE 0.92 2.3 × 10−4 2.5 × 10−4 9.0 × 104

SEMI—SPHERICAL 0.97 1.5 × 10−5 5.6 × 10−7 2.9 × 104

SEMI—DISK 0.96 1.5 × 10−4 1.3 × 10−5 4.3 × 104

Model—40972 IF FE MSE # Rays

GRMHD—MAD 0.96 4.2 × 10−4 1.5 × 10−4 7.1 × 105

GRMHD—SANE 0.95 2.5 × 10−4 8.3 × 10−5 7.9 × 105

SEMI—SPHERICAL 0.99 2.1 × 10−5 1.8 × 10−7 1.0 × 105

SEMI—DISK 0.99 1.3 × 10−4 3.7 × 10−6 1.9 × 105

Note. Here, FE and MSE give the values for an adaptively ray-traced image at
the specified resolution relative to a fully ray-traced image at that resolution.
The last column shows the number of rays traced in the simulation. All
GRMHD images used = 0.001rel and = 0.025abs , while semianalytic
images used = =  0.001rel abs .

Figure 7. Adaptive ray-tracing speedup factor as a function of image resolution
for the MAD GRMHD model shown in Figure 1. The red line shows the full-
to-adaptive ratio of runtime, while the blue line shows the full-to-adaptive ratio
of the number of rays. This latter quantity represents the idealized speedup
factor if all pixels took equally long to ray-trace. Here, “full” refers to an image
that was ray-traced at every pixel (i.e., =x xI I( ) ( ) at all pixels on the image).
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the photon has taken around the black hole between emission
and reception at the observer. In the case of a geometrically
thin disk of emitting plasma, the photon ring naturally
decomposes into a series of overlapping, self-similar “subr-
ings” indexed by n, where each subring comprises the set of all
photons labeled n. Because the subrings are exponentially
demagnified, the flux from each successive subring will
dominate the visibility spectrum for a range of baselines that
sample angular scales matched to those of the subring (Johnson
et al. 2020).

In addition to the effects of gravitational lensing, we also
expect to identify the signature of accretion turbulence present
in GRMHD images. These will produce stochastic visibility
noise that may be described by their power spectrum (i.e., the
squared visibility amplitude).

4.3.2. Visibility Spectra of High-resolution Images

We now explore the expected long-baseline visibility
signatures using our high-resolution images computed with
adaptive ray tracing. While short interferometric baselines will
have a complex visibility structure that depends on the overall
image morphology, the visibility signatures from the photon
ring and from turbulence will emerge on baselines that heavily

resolve the image. Specifically, to accurately estimate the
visibility on a baseline with dimensionless length u requires
angular resolution qD ~ u1/ (Thompson et al. 2017). For our
images of both the GRMHD and semianalytic models, the
visibility spectra can thus be computed to baselines of

lu 5000 Gmax . This value is approximately 600 times larger
than the longest current EHT baselines (Event Horizon
Telescope Collaboration et al. 2019b). However, in the
following analysis, to minimize errors from finite pixel size,
we only analyze baselines shorter than 1000 Gλ.
Figure 8 shows visibility amplitudes for the adaptively ray-

traced MAD model, the spherically symmetric semianalytic
model, and the disk semianalytic model. Because the semianalytic
images have significant emission extending beyond our specified
FOV, the sharp artificial cutoffs at the edges of the FOV produce
spurious high-frequency visibility power. To suppress this
artificial power, we double the FOV and pixel number (keeping
the image resolution fixed) and then apply a Gaussian taper with
FWHM of FOV/4 before computing visibilities. Figure 8 also
shows the visibility errors resulting from the adaptive ray tracing,
demonstrating that these errors are a small fraction of the visibility
amplitudes on all baselines. Specifically, these errors correspond
to the Fourier amplitudes of the residual images defined in
Section 4.2.

Figure 8. Visibilities for the adaptively ray-traced MAD model, spherical semianalytic model, and disk semianalytic models. Left: |V(u, 0)| versus u on a log-linear
scale. Middle: |V(u, 0)| versus u on a log–log scale. Right: |V(u, v)| as a 2D plot. Visibility residuals are shown in red.
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The MAD visibility spectrum (top row) possesses many
kinks and does not display a clear-cut pattern. Although a
characteristic periodicity may be evident, small-scale image
power from turbulence exceeds that of the lensed emission.
This turbulent power gives a visibility “noise” that decays on
long baselines approximately as V(u)∼ u− p with p≈ 1.2.

The spherical semianalytic model (middle row), on the other
hand, displays a smooth, turbulence-free spectrum. Just as
distinct subrings are not visible in the images of this model due
to the spherical symmetry of the fluid distribution (e.g.,
Narayan et al. 2019), distinct subrings are not visible in the
visibilities of this model.

In contrast, the disk semianalytic model (bottom row) does
show clear signs of distinct photon subrings in both the images
and visibilities. The spectrum falls steeply around∼ 500 Gλ
before flattening again shortly thereafter, corresponding to the
transition between the n= 1 and n= 2 subrings.

5. Applications to High-resolution Science

In this section, we discuss specific applications of adaptive
ray tracing to larger problems in black hole simulations. In
particular, we show that by generating images with extremely
fine resolution, adaptive ray tracing presents a useful tool to
examine the substructure of the photon ring and to explore
signatures of turbulence in simulations.

5.1. Images of Subrings

Resolving the photon subrings in the image domain is
difficult in practice due to the exponential radial demagnifica-
tion of each successive subimage (Darwin 1959; Luminet 1979;
Ohanian 1987). In particular, per Johnson et al. (2020), the
width of each subring on the screen scales as wn∼w0e

− γ n,
where the Lyapunov exponent γ is defined as

g º


- -

+

-

 r

u a E
K

u

u

2
. 11

c

2 2
⎛⎝ ⎞⎠

( )
( )

Here, K is the complete elliptic integral of the first kind (with
squared modulus u+/u−),  r( ) is the radial effective potential
for null geodesics in Kerr, E is the conserved energy, rc is the
corresponding radius of the spherical orbit, and u± denote roots
of the angular effective potential. Furthermore, the radial curve
ρn of each successive subring exponentially approaches the
critical curve ρc: δρn≈ ρce

− γ n. Hence, the image resolution

Figure 9. Visibilities along u and v axes for subring-decomposed disk
semianalytic model.

Figure 10. Adaptively ray-traced MAD model decomposed into subrings.
Images for n = 1, 2, and 3 have resolution 32,769 × 32,769 across a field of
view of 80 μas, while the n = 0 image has a resolution of 16385 × 16385. The
sum of all four subrings is shown in the lower panel. All rings are visible,
although the colorbar for the n = 3 image needs a larger range of values so that
we can see dim pixels. At this resolution, artifacts related to limitations in the
underlying simulation are apparent in the n = 0 image.
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required to resolve each successive subring thus grows
exponentially for a fixed FOV.

To explore the properties of photon subrings explicitly, we
combine our adaptive scheme with a subring decomposition
code. The decomposition code can generate images corresp-
onding to the nth subring by only including emission from the
appropriate segment of the full geodesic. Notice that this
definition of subrings differentiates between photons that may
follow the same geodesic: the geodesic for a photon that makes
n half-orbits will overlap with the geodesic for some other
photon that makes n− 1 half-orbits. Thus, a pixel that is
illuminated in the n= 2 image may also be illuminated in the
n= 1 one, and the total pixel brightness will have contributions
from the second and first subrings, respectively (see, e.g.,
Figure 3 of Johnson et al. 2020).

Figure 9 shows the visibility spectra of the disk semianalytic
model decomposed into contributions from individual subrings.
These reveal a new feature in the subring visibilities: the
different subring widths between the top and bottom of the
image lead to intermittent beating along the v axis between
the n and n+ 1 subrings. When the former is resolved, the
beating vanishes, and the visibilities smoothly decay until
reaching the level of power from the next subring. This
phenomenon does not appear on the u axis, as the ring does not
have significant thickness asymmetry on the horizontal axis.

To illustrate the presence of subrings at high resolutions, we
again use the adaptive subring decomposition code to generate
32769× 32769 images of the n= 1, 2 and 3 subrings of the

MAD model, now with a FOV of 80 μas. We show these
images along with a lower-resolution image of n= 0 in
Figure 10. Figure 11 shows stacked cross sections of the
brightness profiles and zoom in on four points of the image
(bottom, top, left, right). Individual subrings become thinner,
with approximately constant peak brightness. Thus, the peak
brightness of the sum of the first n subimages is approximately
proportional to (n+ 1).

5.2. Time and Visibility Averaging

We can use adaptive ray tracing to generate high-resolution
movies, which can be used to study how various averaging
techniques reduce the turbulent noise present in GRMHD
visibility spectra. Reducing turbulent noise is necessary to
reveal universal signatures of the lensed emission surrounding
the black hole, which reflect the purely geometrical properties
of the spacetime. Additionally, by quantifying the amount of
turbulence present in these simulations, we can obtain a better
understanding of the accretion dynamics surrounding black
holes and the timescales over which they vary.
In Figure 12, we show the visibility spectra for the MAD

model with tavg= 0M (i.e., a single snapshot), as well as
tavg= 100M and tavg= 500M. The images were generated with
a resolution of 1025× 1025 and are thus capable of resolving
the n= 0 and n= 1 subrings, whose individual visibility
spectra are shown in green and blue, respectively.
We see that by an averaging scale of tavg= 100M, the

visibility spectrum of the full image has mostly converged to

Figure 11. Stacked intensities at four locations on the ring for the same snapshot as Figure 10. Different colors show subrings for n = 0 (red), 1 (blue), 2 (green), and 3
(yellow), illustrating a realization of the photon ring substructure. The contributions from individual subrings most clearly align on the bottom and right sides of the
image, although the right half of the image is Doppler deboosted due to the orientation of the black hole spin.
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that of the n= 1 subring for u 100 Gλ. However, the n= 0
spectrum still neighbors that of n= 1, indicating that turbulent
noise is still significant. By 500M, the n= 0 spectrum falls
below the n= 1 spectrum in the region where we expect n= 1
to dominate the time-averaged spectrum.

6. Summary

In this paper, we have presented a recursive algorithm for
adaptive ray tracing, with natural applications to current and
future high-resolution black hole imaging efforts. Whereas
most conventional ray-tracing programs spread rays evenly
across a uniform grid, our method preferentially samples rays
in regions of an image with small-scale structure. When applied
to both GRMHD and semianalytic models, we find that our
algorithm reduces the time required to generate images by an
order of magnitude or more.

We then use this code to generate images with resolutions of
1025× 1025, 4097× 4097, and 32,769× 32,769 pixels. These
images directly visualize the fine structure present in both the
accretion flow and the photon ring, revealing the n= 1, 2, and
3 subrings. Finally, we explored the utility of time-averaging in
reducing stochastic noise in high-resolution images.

While our algorithm reduces the computational expense
required to produce high-resolution images, significant limita-
tions in the physical modeling remain. Although we verified
that the magnetization (σ) cut negligibly alters the MSE of the
adaptively ray-traced image, a sharp cut on σ may introduce a
spurious high-frequency image power. Moreover, for the
images generated in Section 5, we cut at σ= 1, but this
excludes emission near the jet in MAD models and requires
additional study (see, e.g., Chael et al. 2019).

We are also fundamentally limited in resolution by the MHD
cell size. For the MAD model, we use a GRMHD simulation
on a spherical polar grid with a resolution of 384× 192× 192
in the radial, polar, and azimuthal directions, respectively
(zones are compressed exponentially toward the event horizon
and lightly toward the midplane). For the SANE model, we use
a resolution of 288× 128× 128. The finite MHD cell size may
introduce an unphysical, high-power noise from sharp
boundaries and will not reproduce subgrid turbulent power.

Future applications of adaptive ray tracing could extend our
results to selectively sample the time and frequency domains.
For the purposes of this study, we used one frequency
(230 GHz), but fine-scale frequency structure is expected from
GRMHD simulations (Ricarte et al. 2020). Adaptive sampling

in time would allow efficient generation of high-resolution
movies from numerical simulations.
We have integrated this approach into IPOLE, but it should be

compatible with any GRRT scheme that ray-traces on a
rectangular grid. And while we have used unpolarized transport
to generate the images in this paper, the approach generalizes to
polarized images as well by simply replacing the total intensity
I(x) with Stokes parameters Q(x), U(x), and V(x). Highly
lensed structure near the critical curve resolved with adaptive
ray tracing may show interesting, spin-dependent symmetries
in the polarization (Himwich et al. 2020).

We thank Chi-Kwan Chan for helpful suggestions on our
manuscript, and we thank Avery Broderick for useful discussions.
We thank the National Science Foundation (AST-1716536, AST-
1440254, AST-1935980, OISE-1743747) and the Gordon and
Betty Moore Foundation (GBMF-5278) for financial support of
this work. G.N.W. was supported by a Donald C. and F. Shirley
Jones Fellowship. This work was supported in part by the Black
Hole Initiative, which is funded by grants from the John
Templeton Foundation and the Gordon and Betty Moore
Foundation to Harvard University. Funding for this project was
provided in part by the Harvard College Program for Research in
Science and Engineering.
Software: eht-imaging library (Chael et al. 2016), IPOLE

(Mościbrodzka & Gammie 2017), Numpy (Harris et al. 2020),
Matplotlib (Hunter 2007).

Appendix A
Estimating Relative and Absolute Errors

Here, we derive the approximations for òabs(x) and òrel(x)

presented in Equations (5) and (6), respectively. For conve-
nience, we refer to the nearest-neighbor errors as ò

NN and to the
linear errors as ò

lin.

A.1. Nearest-neighbors Interpolation

Suppose we wish to interpolate the intensity at x directly
from its nearest neighbor at x1. Because I(x) and xI ( ) are
smooth in between x and x1, then we may apply Taylor’s
theorem (or in this case, just the mean value theorem) to see
that

- =  -p x xI I I , A11( ) · ( ) ( ) 

Figure 12. Single snapshot visibilities, along with time-averaged visibilities for scales of t = 100M and t = 500M. The image cadence for this simulation is 5M.

11

The Astrophysical Journal, 912:39 (14pp), 2021 May 1 Gelles et al.



for a point p lying on the line segment connecting x to x1. To
leading order in |x− x1|, we may replace p with x, giving

- »  -x x xI I I . A21( ) · ( ) ( ) 

Let us now restrict our attention to the rectangular gridding
scheme presented in Figure 2. On this grid, Equation (A2) is
ambiguous, as x will be adjacent to multiple equidistant pixels,
rendering the location of x1 ill defined. Regardless of where we
choose to set x1, however, the interpolation residual will be
extremized by the quantity  -x x xI 1∣ ( )∣∣ ∣ . So, defining
Δx≡ |x− x1|, we take

- ~  Dx x xI I I x, A3∣ ( ) ( )∣ ∣ ( )∣ ( ) 

which is the first half of Equation (1). This expression is now
symmetric—it does not depend on which of the equidistant
pixels we define to be xʼs nearest neighbor.

Because we only have access to I(x) at discretely sampled
rays, we approximate the gradient using finite differences,
which requires an examination of each of the four categories of
pixel locations listed in Section 3.2. Let us suppose that x falls
into Category 4, as Categories 1–3 are just simplifications
thereof. The arrangement of pixels for Category 4 is shown in
Figure 3.

Because |∇I| is rotationally invariant, we may evaluate the
partial derivatives along rotated axes ¢x and ¢y that are aligned
with the corner pixels. Then adopting the same notation as
Figure 3, the central difference approximations to the
derivatives are (e.g., Appendix A of Pedrola 2015)
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which are the first half of Equations (5) and (6).

A.2. Linear Interpolation

For linear interpolation on an arbitrary 2D grid, the error
estimate does not reduce to an equation as simple as A2.
However, by restricting our attention again to the specific
gridding scheme in Figure 2, we are able to derive a
straightforward error estimate as follows.

Suppose that x falls into Category 4, as once again,
Categories 1–3 will just be simplifications thereof. Adopting
the same labels as Figure 3, the linear interpolation residual is

explicitly given by
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We recognize this quantity as the average of two 1D linear
interpolation residuals along the ¢x and ¢y axes. In 1D, linear
interpolation residuals scale with the second spatial derivative
(see, e.g., Theorem 4.3 of Epperson 2013), with the leading

order expansion - »  DxI I I x1D
1

2

2∣ ∣ ∣ ( )∣  . Plugging this into
the numerator of (A6), the 2D residual becomes
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where in the last step, we used the rotational invariance of the
Laplacian. This is the second half of Equation (1).
The final task is now to approximate the Laplacian with

finite differences. In doing so, we must be careful not to break
the symmetry of the error approximation, and we must rely
only on the pixels in Figure 3. To this end, we approximate the
second derivatives by averaging the second-order central
differences on either side of x. This gives
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which is the second half of Equations (5) and (6).
Appropriate modifications to the scheme are made when the

pixels are close to the edge of the image. In this region, we may
not have access to -I I1 8

  .

Appendix B
Interpolation Errors for Images with a Power-law

Fluctuation Spectrum

Our analysis above is appropriate for functions that are
smooth and are dominated by linear or quadratic variations in a
neighborhood comparable to the final pixel size. More
generally, we can describe intensity fluctuations ΔI(x) by their
power spectrum, º á D ñu uQ V 2( ) ∣ ( )∣ , and we can quantify
expected interpolation errors statistically. By the Wiener–
Khinchin theorem, the power spectrum of the intensity
fluctuations is related to the two-point correlation function
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C(x) via a Fourier transform:
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It is also convenient to define the second-order structure
function of the intensity fluctuations,
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For a power spectrum determined by a single, unbroken power
law, Q(u)∝ |u|−β and D(x)∝ |x|β−2.

We can express interpolation errors under various schemes
in terms of these functions. For instance, the rms absolute error
for nearest-neighbor interpolation over a displacement x is
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For comparison, if a function is smooth and is dominated by
linear errors, then µ x xabs

NN ( ) ∣ ∣ (see Equation (1)). Hence,
when β< 4, turbulent fluctuations will dominate over errors
from interpolating the smooth underlying image in the limit
that |x|→ 0. On angular scales that are relevant for interpola-
tion, black hole images are expected to show a shallower
spectrum due to turbulent fluctuations in the accretion flow
(see, e.g., Balbus & Hawley 1991). For β∼ 2.5, one has

µ x xabs
NN 1 4( ) ∣ ∣ , in contrast to the factor of |x| predicted by
Equation (1).

We can also compare the relative error for linear and nearest
interpolation strategies. For 1D linear interpolation, we have
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In the case of a power-law spectrum, for the limit |x|→ 0, we
obtain
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Thus, for turbulent spectra, the improvement of linear
interpolation relative to nearest interpolation is rather modest
and (unlike the Taylor series analysis) is independent of the
interpolated distance x. For β∼ 2.5, the linear interpolation
error is only smaller than the nearest-neighbor interpolation
error by a factor of - »-1 2 0.83 2 1 2( ) .

In short, small-scale turbulence in black hole accretion flows
may lead to departures from the error estimates expected for a
smooth image, with higher-order interpolation schemes giving
less improvement than expected. For instance, while increasing
the image resolution by a factor of 10 would decrease residuals
by a factor of ∼10 for nearest-neighbor interpolation and ∼100
for linear interpolation of a smooth image, it may only decrease
residuals by a factor of ∼2 in turbulent regions of a GRMHD
image.
Unlike this statistically isotropic noise model, black hole

images are restricted to a finite domain, their stochastic noise is
not isotropic, and their power spectra are scale dependent. The
primary effect of a finite domain is to introduce correlations
among different frequencies (i.e., different baselines will
measure correlated fluctuations, with a correlation length given
roughly by the inverse spatial extent of the image structure).
The effect of position-dependent power spectra will be to blend
physically distinct sources of image noise in the visibility
domain. A scale-dependent power law will give interpolation
errors over an angular interval x that are primarily sensitive to
the behavior near =u xQ x( ˆ ∣ ∣). Thus, we do not expect any of
these effects to seriously modify our conclusions about
interpolation errors from image stochasticity.
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