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Abstract

In this paper we present DMC, a model and associated tool for polarimetric imaging of very long baseline
interferometry data sets that simultaneously reconstructs the full-Stokes emission structure along with the station-
based gain and leakage calibration terms. DMC formulates the imaging problem in terms of posterior exploration,
which is achieved using Hamiltonian Monte Carlo sampling. The resulting posterior distribution provides a natural
quantification of uncertainty in both the image structure and the data calibration. We run DMC on both synthetic
and real data sets, the results of which demonstrate its ability to accurately recover both the image structure and
calibration quantities, as well as to assess their corresponding uncertainties. The framework underpinning DMC is
flexible, and its specific implementation is under continued development.

Unified Astronomy Thesaurus concepts: Radio interferometry (1346); Very long baseline interferometry (1769);
Polarimetry (1278); Interferometry (808)

1. Introduction

Interferometric observations in radio astronomy natively access
the so-called “visibility domain,” with each visibility determined
by the complex correlation between the electric fields incident at a
pair of telescopes (Thompson et al. 2017, hereafter TMS). These
visibilities provide information about the Fourier transform of the
incident flux distribution via the van Cittert–Zernike theorem, and
radio interferometric imaging—i.e., the process by which the
visibility measurements are translated into a sky-plane image—
presents an example of an ill-posed inverse problem. The
combination of sparse Fourier-plane sampling and uncertain
calibration, both of which are exacerbated for very long baseline
interferometric (VLBI) observations, prevents a direct inversion of
the visibilities to produce a unique image. Instead, images must be
“reconstructed” with the aid of additional assumptions about the
image structure (e.g., flux positivity, source sparsity) to overcome
this nonuniqueness.

A variety of algorithms exist for reconstructing images in
radio interferometry, and these algorithms can be broadly
classified into the two categories established in Event Horizon
Telescope Collaboration et al. (2019a). “Inverse modeling”
schemes, exemplified by the CLEAN algorithm and its variants
(Högbom 1974; Clark 1980; Schwab 1984), operate directly
with the inverse Fourier transform of the visibility measure-
ments and seek to iteratively deconvolve the effects of the finite
sampling from the reconstructed image. “Forward modeling”
schemes, such as the maximum entropy (e.g., Nityananda &
Narayan 1982; Cornwell & Evans 1985) and regularized
maximum likelihood (e.g., Chael et al. 2016; Akiyama et al.
2017) methods, instead parameterize the image structure
(typically using a grid of pixels) and Fourier transform it to
predict the values of the visibility measurements. The image
parameters are then varied so as to optimize some objective
function, typically consisting of a data comparison term (e.g., a
χ2 metric), along with one or more regularization terms.

From the perspective of computational speed, the CLEAN
approach has historically been a clear favorite for VLBI
imaging. The forward modeling schemes, though generally

more computationally taxing, benefit from the ability to enforce
various nonlinear constraints (such as flux positivity) on the
image and to fit directly to nonvisibility data products (such as
closure quantities; e.g., Chael et al. 2018). Typical implemen-
tations of both classes of algorithm, however, share a mixed
relationship with data calibration whereby image reconstruction
steps are iterated with interleaving “self-calibration” steps that
attempt to solve for station-based calibration terms (e.g.,
Readhead et al. 1980). Furthermore, both the inverse and
forward modeling classes of image reconstruction algorithm
classically lack a natural quantification of uncertainty in the
image.
Recent developments have yielded a new class of image

reconstruction algorithms, based on posterior exploration or
parameterization techniques, that aim to overcome the afore-
mentioned shortcomings (e.g., Cai et al. 2018a, 2018b; Arras
et al. 2019; Broderick et al. 2020b). From the perspective of
statistical integrity, an image reconstruction algorithm should
solve simultaneously for the ensemble of both sky-plane
emission structures and requisite calibration terms that are
permissible, given the uncertainties in the data and any sources
of prior knowledge about the parameters. In this paper we
present such an algorithm in terms of a model for simultaneous
calibration and full-Stokes imaging of VLBI data, along with
an implementation of this model within a generic posterior
exploration framework. An implementation of an analogous
model within THEMIS (Broderick et al. 2020a) is presented in a
separate paper, A. E. Broderick et al. (2021, in preparation).
This paper is organized as follows. In Section 2 we provide a

detailed description of the model, specify our likelihood
construction, and describe its software implementation. In
Section 3 we demonstrate the results of fitting this model to
both synthetic and real VLBI data sets. We summarize and
conclude in Section 4.

2. Model Specifications

For the compact sources and small fields of view typically
considered in VLBI, the observed visibilities are related to the
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Fourier transform of the sky brightness distribution by the van
Cittert–Zernike theorem (TMS),

= p- +I u v I x y e dxdy, , , 1i ux vy2∬˜( ) ( ) ( )( )

where we use a tilde (˜) to denote a transformed quantity. In

this section and throughout the paper, unless otherwise

specified, we consider observations made with only a single

frequency channel.
We have developed a new publicly available D-term

Modeling Code (DMC)3 that implements the polarimetric
image model detailed in this section. DMC is implemented in
Python, and it fits the model using a Bayesian formalism in
which the posterior distribution Q( ) of the parameter vector
Θ is related to the likelihood Q( ) and prior π(Θ) via Bayes’s
theorem,

pQ Q Qµ  . 2( ) ( ) ( ) ( )

Model parameters and their associated priors are aggregated
in Table 1. DMC uses the eht-imaging library (Chael et al.
2016, 2018) for internal organization and manipulation of
VLBI data, and it uses the PyMC3 library (Salvatier et al.
2016) for sampling. Because it uses a Markov Chain Monte
Carlo (MCMC) sampler, the output of running DMC on a
VLBI data set is an ensemble of images that are drawn from the
posterior distribution of the model. From this ensemble it is
possible to compute various useful statistics (e.g., means,
variances), which we demonstrate in Section 3.

2.1. Image Model

We model the image as a Cartesian grid of Npix pixels, with
the grid axes aligned with the equatorial coordinate axes. Each
pixel has a location (xj, yj) and a Stokes I intensity Ij. These
intensities are constrained to sum to a total flux density F,
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=

F I , 3
j

N

j

1

pix

( )

with F specifiable but by default sampled from a normal prior

truncated at zero to ensure positivity. The constrained sum in

Equation (3) is imposed via a Dirichlet prior on the pixel

intensity values,

~
I

a
F

NDir , , 4pix( ) ( )

where = ¼I I I I, , , N1 2 pix
( ) is the vector of pixel intensities. The

concentration parameter vector a is specifiable but defaults to

= º ¼a 1 1, 1, ,1( ), which corresponds to a flat Dirichlet prior
with the flux-normalized pixel intensities sampled uniformly on

the (Npix− 1)-dimensional simplex. Setting smaller values for

the concentration parameters encourages sparsity in the image,

while setting larger values encourages diffuse flux.
In each pixel, we can relate the Stokes I intensity Ij to the

other Stokes parameters by the inequality
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where we have introduced the polarization fraction pj� 1. This

spherical relationship lends itself naturally to a Poincaré

parameterization in terms of angular variables,

a b

a b

b

=

I

Q

U

V

I
p

p

p

1
cos sin

sin sin

cos

, 6

j

j

j

j

j

j j j

j j j

j j

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

( ) ( )

( ) ( )

( )

( )

where−π� αj� π is an azimuthal angle and 0� βj� π is a

polar angle. The angle αj determines the orientation of the

polarization ellipse, and it is related to the usual electric vector

Table 1

Model Parameters and Priors

Parameter Description Default Prior

F Image-integrated Stokes I flux density  F F, 0.10
2( [ ] ) 

Ij / F Fraction of Stokes I flux density

contained in pixel j

Dir(Npix, 1)

pj Polarization fraction in pixel j  0, 1( )
αj Azimuthal angle Poincaré coordinate in

pixel j

p p- ,per( )

βj Polar angle Poincaré coordinate in pixel j b ~ -cos 1, 1j( ) ( )

Σ FWHM of Gaussian blurring kernel,

in μas

d S - S( )

x0 Overall image centroid shift along the

R.A. axis, in μas

d -x x0 0( )

y0 Overall image centroid shift along the

decl. axis, in μas

d -y y0 0( )

gR,a Right-hand gain amplitude for station a s 1, R a0 ,
2( )

θR,a Right-hand gain phase for station a p p- ,per( )

gL,a Left-hand gain amplitude for station a s 1, L a0 ,
2( )

θL,a Left-hand gain phase for station a p p- ,per( )

dR,a Right-hand leakage amplitude for sta-

tion a

 0, 1( )

δR,a Right-hand leakage phase for station a p p- ,per( )

dL,a Left-hand leakage amplitude for station a  0, 1( )
δL,a Left-hand leakage phase for station a p p- ,per( )

f Fractional systematic uncertainty  0, 1( )

Nx Number of image pixels along the

R.A. axis

L

Ny Number of image pixels along the

decl. axis

L

FOVx Field of view along the R.A. axis, in μas L

FOVy Field of view along the decl. axis, in μas L

Note. A list of the model parameters and their corresponding prior

distributions. The top portion of the table lists the parameters associated with

the image, the middle portion lists parameters associated with the calibration,

and the bottom portion lists the hyperparameters. We use a breve ( ) to denote

user-specified quantities. We use a number of different prior classes: δ(x − a)

denotes a Dirac delta prior over x such that it takes on the fixed value a,  a b,( )
denotes a uniform prior on the range [a, b],  a b,per( ) denotes a periodic (or

“wrapped”) uniform prior on the range [a, b], m s , 2( ) denotes a normal

(Gaussian) distribution with mean μ and variance σ2, m s ,0
2( ) denotes a

normal distribution (with mean μ and variance σ2) that has a lower-bound

truncation at zero, m s ,c
2( ) denotes a circularly symmetric complex normal

distribution with (complex) mean μ and variance σ2 along both the real and

imaginary directions, and Dir(N, a) denotes a Dirichlet distribution in N

dimensions with concentration parameter vector a.

3
https://github.com/dpesce/eht-dmc
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position angle (EVPA) χj by
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The angle βj determines the degree of circular polarization,
with purely linear polarization having βj= π/2 and purely
circular polarization having βj= 0 or βj= π. We sample pj
from a unit uniform distribution, and we sample the angular
variables uniformly on the unit sphere. Our polarized image
model thus consists of the four quantities (Ij, pj, αj, βj) for every
pixel, which, together with the total flux F, amount to 4Npix

model parameters.
From the parameters (Ij, pj, αj, βj), we determine the Stokes

parameters in each pixel using Equation (6). We then compute
the Fourier transforms of these Stokes parameters via
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where

p= - - + -A i u x x v y yexp 2 9jk k j k j0 0( [ ( ) ( )]) ( )

are elements of the discrete Fourier transform matrix, (uk, vk)

are the Fourier-plane coordinates for visibility measurement k

in units of the observing wavelength, (x0, y0) are the image-

plane coordinates of the image origin (or “phase center”), and

p
= -

S +
S

u v
exp

4 ln 2
10k

k k
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⎤

⎦
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( )

( )
( )

is a circularly symmetric Gaussian smoothing kernel with

FWHM Σ in the image plane that serves to maintain image

continuity.

2.2. Corruption Model

For an array observing with circularly polarized feeds, the
measured quantities are parallel- and cross-hand correlation
products; we denote the parallel-hand visibilities as ºRR12
á ñE ER R,1 ,2* and º á ñLL E EL L12 ,1 ,2* , and we denote the cross-hand

visibilities as º á ñRL E ER L12 ,1 ,2* and º á ñLR E EL R12 ,1 ,2* . The
measured visibilities on a baseline ab are related to the Stokes
visibilities on that same baseline by

=

+
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In real interferometric observations, the measured visibilities
are corrupted by a combination of a priori unknown signal
propagation effects. Following the radio interferometer mea-
surement equation (RIME) formalism developed by Hamaker
et al. (1996)—and in particular the 2× 2 matrix extension
described in Hamaker (2000)—we relate the incident and
measured visibilities using Jones matrix transformations of the

“coherency matrix,”4

º
RR RL

LR LL
V . 12ab

ab ab

ab ab

⎛
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⎟ ( )

Within the RIME formalism, the (complex) Jones matrix Ja
captures all linear transformations undergone by the incident

astrophysical signal at a station a, such that

= J V JV , 13ab a ab b
ˆ ( )†

where a dagger (†) denotes a conjugate transpose and a hat (ˆ)
denotes an observed quantity.
DMC incorporates a minimal but standard (see, e.g., TMS)

threefold decomposition of Ja,

= G D FJ , 14a a a a ( )
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contains the polarimetric leakage terms, and
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applies the feed rotation angle, fa. Note that this decomposition

incorporates only station-based corruptions, and it does not

account for direction-dependent effects (e.g., Smirnov 2011) or

for other baseline-based corruptions. The feed rotation angle fa
depends on the station mount properties and on the source

parallactic and elevation angles as a function of time, but for

most radio interferometers it is well known a priori; we thus

assume the fa to be given and therefore do not incorporate

them as model parameters. The station gain and leakage terms,

however, are typically imperfectly calibrated, and so we retain

both as model parameters.
We parameterize the complex station gains using amplitude

and phase,

= qG g e , 18aR a R a
i

, ,
R a, ( )

= qG g e . 18bL a L a
i

, ,
L a, ( )

Our priors on the gain amplitudes are normal with a lower-

bound truncation at zero, and we impose periodic uniform5

priors on the gain phases with the range (−π, π). For each

observation we select a single “reference station” for which

both the right and left gain phases are fixed to be zero (i.e.,

θR= θL).
6 We permit all gains other than those of the reference

station to be independent across stations and across time

4
This particular (sky-intrinsic) coherency matrix is also referred to in the

literature as the “brightness matrix,” and its measured counterpart has been
referred to as the “visibility matrix” (Smirnov 2011).
5

A periodic uniform distribution is one that is uniformly distributed on the
unit circle.
6

Note that if the reference station does not actually have a zero-valued phase
difference between its right- and left-hand gains, this treatment will result in an
overall image EVPA rotation that must be absolutely calibrated (Brown et al.
1989).
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stamps. We note that in real-world arrays the station gain

amplitudes are not expected to fluctuate wildly from one time

stamp to the next. In this sense, DMC aims to provide a

conservative treatment of the gain behavior; i.e., DMC permits

—though it does not impose—large gain amplitude fluctuations

between time stamps, such as may occur when a telescope is

repointed.
We use an analogous parameterization for the complex

leakage terms,

= dD d e , 19aR a R a
i

, ,
R a, ( )

= dD d e . 19bL a L a
i

, ,
L a, ( )

We impose unit uniform priors on the leakage amplitudes and

periodic uniform priors on the leakage phases with the range

(−π, π). We assume that the leakage terms are constant in time

(see, e.g., Conway & Kronberg 1969; Roberts et al. 1994) and

so assign only a single Da for every station.
We note that the default priors described in this section for

the gain and leakage terms may be overridden when running
DMC to incorporate any a priori knowledge of the station
properties.

2.3. Likelihood Construction

The thermal noise in any single visibility measurement
depends on various factors, including the collecting area of the
telescopes constituting the baseline and the averaging time and
bandwidth of the observation, but for the vast majority of
sources of interest7 this thermal noise is normally distributed
and statistically independent across different baselines (TMS).
In the absence of any other corruptions, a measured visibility is
drawn from a circularly symmetric complex normal distribu-
tion, e.g.,

s~  RR , , 20k c k RR kth, ,
2ˆ ( ) ( )

where k is the “true” visibility value on baseline k and

s RR kth, ,
2 is the thermal variance in the corresponding visibility

measurement. Note that the presence of gain corruptions does

introduce covariance between visibility measurements, but by

explicitly modeling these gains, we account for this covariance

and ensure that the remaining differences between modeled and

observed visibilities will be independently distributed (Black-

burn et al. 2020).
Though we explicitly incorporate a number of known

corrupting effects into the model (see Section 2.2), we also
permit an additional multiplicative systematic noise comp-
onent,
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where f is sampled from a unit uniform distribution. This

systematic component aims to account for any uncalibrated

nonclosing errors that cannot be described by thermal noise or

leakage. We then construct the likelihood of a particular set of

model visibilities given the visibility measurements using
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where the products are taken over all visibility measurements.

The final likelihood expression is then simply the product of

the individual visibility likelihoods,

=     . 23RR LL RL LR ( )

2.4. Sampler and Tuning

DMC uses the Hamiltonian Monte Carlo (HMC; Duane et al.
1987) No U-Turn Sampler (NUTS; Hoffman & Gelman 2014)
implemented within the PyMC3 Python package (Salvatier
et al. 2016) to explore the posterior space. HMC is an MCMC
method whose output product is an ensemble of samples from
the posterior distribution. Detailed descriptions of the HMC
method can be found in, e.g., Neal (2011) and Betancourt
(2017). PyMC3 is a probabilistic programming tool that
leverages Theano (Bergstra et al. 2010; Bastien et al. 2012)
to automatically differentiate the posterior density when
computing model gradients.
As an HMC sampler, PyMC3 exploits model gradient

information to efficiently explore the high-dimensional poster-
ior space presented by the polarized image model. The number
of tunable hyperparameters is minimized through the use of
NUTS, but there remain two key hyperparameters that need to
be adaptively tuned during sampling itself: a “step size”
hyperparameter that sets the discretization interval for trajec-
tory integrations, and a “mass matrix” hyperparameter (actually
a collection of hyperparameters, the elements of the matrix)
that determines the Gaussian distribution from which the
momentum parameters are sampled. PyMC3 natively adapts
the step size hyperparameter during sampling (see Hoffman &
Gelman 2014), but its default functionality only adapts the
diagonal elements of the mass matrix. Strong correlations in the
posterior distribution can therefore lead to decreased sampling
efficiency.
To mitigate this potential deficiency, we divide the sampling

period into multiple tuning windows during which both the step
size and (dense) mass matrix are adaptively determined. We
have designed these windows to mimic the “warm-up epochs”
used in the Stan package (Carpenter et al. 2017). An initial
“fast” window is used to tune the step size parameter, after
which a series of increasingly heavily sampled “slow” windows
are used to estimate the mass matrix using the parameter
covariances measured from the set of posterior samples in the
previous window. Each slow window is preceded by a brief

7
The “self-noise” of Kulkarni (1989) introduces statistical dependence in the

noise measured across multiple baselines, but this contribution only becomes
relevant for extremely bright sources.
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fast window to permit the step size to adapt to the new mass
matrix. A final fast window follows the last slow window, after
which the main sampling phase proceeds using the tuned
values for both hyperparameters. This tuning procedure is
illustrated in Figure 1.

In practice, we find that tuning of both the step size and the
mass matrix is essential for polarized imaging using DMC. If,
e.g., the mass matrix tuning is restricted to only the diagonal
elements, parameter autocorrelation times are liable to increase
by several orders of magnitude and the sampler will effectively
stall.

3. Demonstrations

In this section we demonstrate the imaging capabilities of
DMC on both synthetic and real data.

3.1. Synthetic Data Construction

We first run DMC on a synthetic data set constructed to have
properties similar to the 2017 observations of the M87 black
hole with the EHT (Event Horizon Telescope Collaboration
et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f). The baseline
coverage and signal-to-noise ratio distribution for this data set
are shown in Figure 2, and the input source model Stokes
images are shown in the left panels of Figure 3. The visibility
data are generated in a circular polarization basis, corresp-
onding to the state of the real EHT data after fringe fitting has
been performed (Event Horizon Telescope Collaboration et al.
2019d).

The input source structure is a circular crescent with a
diameter of 40 μas and a Gaussian FWHM of 10 μas, oriented
such that the brightest region of the crescent is located toward
the north. The image-integrated flux density is 1.0 Jy, and it is
polarized at the 10% level in linear polarization and at the 2%
level in circular polarization. We construct the linear polariza-
tion structure to have an approximately threefold azimuthal
symmetry (see the left panel of Figure 6), corresponding to
nonzero β

−1 and β1 modes in the decomposition developed by
Palumbo et al. (2020, hereafter PWP).

In addition to the thermal noise, we add gain and leakage
corruptions to each of the seven stations in the synthetic data
set. The gain amplitudes are permitted to vary at the 10% level,
while the gain phases are unconstrained (i.e., they are sampled

uniformly on the unit circle); each station has independent
gains, but these gains are drawn from the same distribution and
thus share the same magnitude of fluctuations. The same gain
corruptions are used for both right- and left-hand polarization.
Each station has an associated complex station leakage in both
right- and left-hand polarization that is at the level of 0%–10%.
The station gain amplitudes and phases are independently
generated for each station at each observing time stamp, while
the complex right- and left-hand leakage terms are held
constant for each station across the synthetic observation.

3.2. Imaging Synthetic Data

We use DMC to image the synthetic data set described in the
previous section, setting FOVx= FOVy= 60 μas, Nx=Ny= 30,

= =x y 00 0  μas, and Σ= 6 μas. The initial total flux estimate F
is set equal to the visibility amplitude on the shortest baseline, and
the gain amplitude prior standard deviations are fixed to
s s= = 0.1R L  for all stations. We select the ALMA station to
be our reference antenna, both because it is present at every time
stamp and because it provides an absolute EVPA standard (Event

Figure 1. Example set of parameter traces from a DMC fit to the EHT-like synthetic data set described in Section 3.1, showing the Stokes I intensity of a pixel located
toward the edge of the image (in blue), a pixel situated on the ring (in green), and a pixel located in the center of the ring (in red). The shaded regions highlight the
different tuning windows described in Section 2.4; the dark-gray shading indicates a “fast” tuning window (one example is labeled as “I”), the light-gray shading
indicates a “slow” tuning window (one example is labeled as “II”), and the unshaded region indicates the main sampling phase (labeled as “III”).

Figure 2. (u, v)-coverage for the EHT-like synthetic data set, with points
colored by the base-10 logarithm of their Stokes I signal-to-noise ratio.
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Figure 3. DMC image reconstructions of the polarized EHT-like synthetic data set described in Section 3.1. Each row shows the results for a different Stokes
parameter. The same field of view is used for all plots and is explicitly labeled in the bottom left panel. The left column shows the ground-truth input images, the
middle column shows the mean posterior images for each of the Stokes parameters, and the right column shows the standard deviations of the image posteriors.
Because these data sets included arbitrary gain phase corruptions, absolute position information is not uniquely recovered, and so the reconstructed images have been
shifted to the location that maximizes the normalized cross-correlation between the ground-truth Stokes I image and the mean of the Stokes I image posterior. The
6 μas FWHM of the Gaussian smoothing kernel (i.e., Σ from Equation (10)) is shown in the lower right corner of the top middle panel. Note that this kernel does not
represent a typical “restoring beam” that gets applied after imaging has been completed; rather, it is a convolving function that gets self-consistently applied during the
imaging process itself (see Section 2.1).
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Horizon Telescope Collaboration et al. 2019d; Goddi et al.
2019).8

DMC is able to find good fits to this data set, with
reduced-χ2 values near unity and an additional systematic
noise parameter consistent with zero (i.e., the model is able to
describe the data to within thermal errors without requiring an
additional source of systematic uncertainty). The image-
integrated linear polarization fraction is recovered as
9.96%± 0.03% (compared to an input value of 10%), while
the image-integrated circular polarization fraction is found to
be 1.3%± 1.0% (compared to an input value of 2%).

In Figure 3, we show maps of both the mean and the
standard deviation of the image ensemble output from DMC—

where each image in the ensemble corresponds to a single
sample from the posterior distribution—and we compare these
against the input images of all four Stokes parameters. Because
DMC produces an estimate of the posterior distribution for
every image pixel, arbitrarily complicated single- or multipoint
statistics may be computed that self-consistently capture the
uncertainties and correlations between pixels. For instance,
image-domain feature extraction techniques—such as those
employed in Event Horizon Telescope Collaboration et al.
(2019a, 2019f) to measure the properties (e.g., diameter, width,
orientation) of the ring-like structure seen in M87—can be
applied to the ensemble of images in the DMC posterior to
yield corresponding distributions for any derived values.

We demonstrate an example of the latter capability in
Figure 4, which shows the derived posteriors for the PWP β1
and β

−1 parameters. In this paper, we adopt

b j= + j-

F
Q iU e rdrd

1
24m

im∬ ( ) ( )

as our working definition for βm, with F the total image flux

density and the integral taken over the entire range of image-

domain spatial coordinates (r, j). The PWP βm decomposition

permits a quantitative characterization of the polarization

structure on a ring, and for the input synthetic data set only

β1 and β
−1 modes are nonzero. As shown in Figure 4, we find

that the DMC fits return posteriors on these two modes that are

consistent with the input values.
Furthermore, because DMC simultaneously models both the

image structure and the station-based corruptions, we are also
able to investigate the posterior behavior of the latter. Of most
interest for polarimetric reconstructions are the leakage terms,
which we list in Table 2. Figure 5 shows the leakage posterior
distributions for each station in the array. We see that DMC is
able to recover the correct leakages for all stations and to
determine which stations are most well constrained.

We also compare the DMC results with those of
THEMIS (Broderick et al. 2020a), an independent code capable
of producing simultaneous image and leakage posteriors for
VLBI data sets (A. E. Broderick et al. 2021, in preparation). In
Figures 5 and 6, the DMC posteriors are compared against
those from THEMIS for the station leakages and image
structure, respectively. Although the two softwares employ

distinct model specifications and exploration schemes, we find
that the posterior reconstructions from both codes nevertheless
show good agreement. The THEMIS fit typically shows only
small (1σ) shifts in posterior mean relative to the DMC fit,
and the systematically wider posterior widths from the
DMC fit stem from the more permissive station gain priors
(DMC permits the right- and left-hand station gains to vary
independently, while THEMIS enforces equality between both
hands).

Figure 4. Posterior distributions for the β1 (in blue) and β
−1 (in orange) values

corresponding to the DMC reconstruction of the EHT-like synthetic data set.
The top two panels show the amplitudes of both quantities, while the bottom
two panels show their phases. In all panels, the value derived from the input
image is shown as a vertical line.

8
We note that for this synthetic data set all of the stations are effectively

calibrated in absolute EVPA. For real EHT data only the ALMA station has
this property, which it inherits from application of the PolConvert

procedure (Martí-Vidal et al. 2016) that gets applied after correlation to
convert the mixed-basis polarization products on ALMA baselines to the
circular polarization products used by the rest of the array (Event Horizon
Telescope Collaboration et al. 2019d; Goddi et al. 2019).
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3.3. Imaging Real Data

We also apply DMC to a real data set, for which we use a
polarimetric VLBI observation of the blazar OJ 287 obtained
from the Boston University Blazar Research Group (Jorstad &
Marscher 2016; Jorstad et al. 2017). A fully calibrated version
of this data set is publicly available,9 but we wish to
demonstrate DMC’s ability to perform calibration itself along-
side image reconstruction. Furthermore, applying DMC to a
precalibrated data set may violate our assumption that the
leakage terms are constant in time (see the Appendix). In this
paper we thus use an earlier version of the OJ 287 data set for
which only the a priori amplitude and phase calibrations have
been applied (S. Jorstad 2020, private communication), but for
which the full set of gain and leakage corruptions have not yet

been removed. The observation was carried out with the Very
Long Baseline Array (VLBA) on 2020 January 3 at an
observing frequency of 43 GHz, and the data reduction
procedure is described in Jorstad et al. (2005). The original
data set is split into four separate frequency bands, but we
combine bands during imaging to produce a single image and
set of leakage terms. To reduce data volume, we coherently
average the visibilities on a per-scan basis prior to imaging; the
(u, v)-coverage of the resulting data set is shown in Figure 7.
We run DMC on the OJ 287 data set using FOVx=

FOVy= 2 mas, Nx=Ny= 20, = =x y 00 0  mas, and Σ= 0.2
mas. As with the synthetic data set, we take the initial total flux

estimate F to be equal to the visibility amplitude on the shortest
baseline. The gain amplitude prior standard deviations are fixed
to s s= = 0.05R L  for all stations, and we select the Pie Town
(PT) station as our reference antenna.

Table 2

Station Leakages for Synthetic Data

Station Input DR Posterior DR ± 1σ Input DL Posterior DL ± 1σ

ALMA 8.0 − 5.0i (7.97 − 4.94i) ± (0.14 + 0.11i) 2.0 + 7.0i (2.11 + 7.06i) ± (0.11 + 0.11i)

APEX −6.0 + 7.0i (−5.93 + 7.00i) ± (0.11 + 0.12i) −6.0 + 3.0i (−6.09 + 3.04i) ± (0.12 + 0.10i)

SMT 4.0 − 5.0i (4.02 − 5.03i) ± (0.16 + 0.16i) 6.0 + 5.0i (6.14 + 5.08i) ± (0.19 + 0.18i)

JCMT −4.0 + 5.0i (−4.34 + 5.08i) ± (0.35 + 0.37i) −4.0 − 5.0i (−4.22 − 4.69i) ± (0.33 + 0.33i)

LMT −4.0 + 3.0i (−4.07 + 3.08i) ± (0.22 + 0.22i) 6.0 − 3.0i (6.29 − 3.01i) ± (0.23 + 0.26i)

IRAM 30 m 2.0 + 3.0i (1.75 + 2.13i) ± (0.43 + 0.43i) −2.0 − 7.0i (−1.63 − 6.97i) ± (0.43 + 0.41i)

SMA −8.0 + 1.0i (−8.23 + 1.01i) ± (0.34 + 0.40i) −2.0 + 1.0i (−2.02 + 1.48i) ± (0.29 + 0.32i)

Note. A list of the leakage values derived from the DMC fit to the EHT-like synthetic data set, compared against the input values for all stations. The second and

fourth columns list the input values, while the third and fifth columns list the posterior values for the right- and left-hand leakage terms, respectively. The leakage

values in the third and fifth columns are quoted as posterior means, with the posterior standard deviation in both the real and imaginary components following

the ± symbol. All leakage values are quoted as percentages.

Figure 5. Leakage posteriors for the DMC fit to the EHT-like synthetic data set described in Section 3.1; each panel shows the result for an individual station, and
ground-truth input values are marked using solid vertical and horizontal lines. The same axis ranges are used for all panels and are explicitly labeled in the bottom left
panel. Blue contours show the right-hand leakage posteriors, and red contours show the left-hand leakage posteriors. In all panels, the plotted contours enclose 50%,
90%, and 99% of the posterior probability. For comparison, we have overplotted the leakage posteriors from THEMIS as black ellipses, with the sizes of the ellipses
along each axis corresponding to the posterior standard deviation.

9
http://www.bu.edu/blazars/VLBAproject.html
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DMC is able to find good fits to this data set, achieving a
reduced-χ2 value near unity without requiring any additional
systematic noise; i.e., f from Equation (21) has a 90% confidence
upper limit of f< 0.2% and is consistent with being zero. Figure 8
shows our reconstructed images for each Stokes parameter, and
Figure 9 shows the derived station leakages and compares them
against the results from LPCAL. The LPCAL leakages were
determined separately for each of the four frequency bands in the
original data set and are the result of averaging leakage solutions
across 15 different observational targets (including OJ 287). We
find that the leakage posteriors recovered by DMC—which are
determined by solving for only a single leakage term for all four
frequency bands at once—behave similarly to the LPCAL values
for all stations and are largely consistent with the average of the
LPCAL values across bands.

Figure 10 shows a comparison between the DMC and
CLEAN image reconstructions for the OJ 287 data set, after
restoring both with the CLEAN beam. We see good agreement

between both the Stokes I and linearly polarized image

structures across most of the image, with noticeable deviations

manifesting only at the 1% Stokes I contour level (which, as

can be seen in Figure 8, is at the level of the uncertainty in the

DMC Stokes I map).

Figure 6. Comparison of the linear polarization structure in the EHT-like data set as recovered using DMC (middle) and THEMIS (right), with the input image shown
in the left panel. The Stokes I structure is marked using blue contours, with the outermost contour levels starting at 5% of the peak intensity and increasing inward by
factors of 2. The background color map indicates the linearly polarized intensity, and the overlaid tick marks show the EVPA direction. All three panels share a
common field of view (explicitly labeled in the left panel), and all three images have been convolved with the EHT beam (circular Gaussian of width 18 μas; Event
Horizon Telescope Collaboration et al. 2019a) shown in the lower right corner of the left panel.

Figure 7. Same as Figure 2, but showing the (u, v)-coverage for the OJ 287
data set used in Section 3.3.

Figure 8. Similar to Figure 3, but for the DMC fit to the OJ 287 data set (for
which we have no ground-truth image). No significant Stokes V signal is
detected in this data set, so we show here only the Stokes I, Q, and U maps. The
0.2 mas FWHM of the Gaussian smoothing kernel is shown in the lower right
corner of the top left panel, and we note again that this kernel does not
represent a “restoring beam” but rather a convolving function that is self-
consistently applied during imaging.
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4. Summary

In this paper we have presented DMC, a Python-based

software package for performing polarimetric imaging of VLBI

data. DMC simultaneously reconstructs the full-Stokes image

structure and solves for the station-based gain and leakage

calibration terms within a probabilistic formalism. The output

of DMC is a sample of parameter values drawn from the

posterior distribution, such that instead of a single image and

associated set of calibration quantities one obtains an ensemble

of images and sets of calibration quantities. DMC explores this

posterior space using the NUTS HMC sampler implemented

within PyMC3. Using this posterior distribution, it is possible

to determine not only a best-fit value but also a self-consistent

measure of uncertainty in any of the modeled parameters,

including the sky-plane emission structure in all four Stokes

parameters, as well as the aforementioned calibration quan-

tities. DMC therefore provides a tool for combining the

information across different regions of an image (e.g., for

averaging low-flux regions) or across multiple images (e.g., for

spectral index or Faraday rotation analyses) in a manner that

properly accounts for the associated uncertainties and

correlations.
We have demonstrated the effectiveness of DMC on both

synthetic and real data. The results from running DMC on an

EHT-like synthetic data set show that DMC is capable of

accurately recovering both the image structure and the ground-

truth calibration quantities. Our results are compatible with

those of THEMIS, which is also capable of exploring the full

posterior space and returns distributions that are consistent with

DMC’s. Similarly, we find that running DMC on a real VLBA

Figure 9. Similar to Figure 5, but for the DMC fit to the OJ 287 data set; as in Figure 5, the blue contours correspond to right-hand leakages and the red contours to
left-hand leakages. The overplotted blue and red crosses indicate the right- and left-hand leakage solutions, respectively, derived from the same data set using CLEAN
and LPCAL (S. Jorstad 2020, private communication). There are four crosses associated with each leakage term because the original CLEAN analysis imaged each of
the four frequency bands separately, while for the current DMC analysis we image all bands simultaneously and solve for a single set of leakages.

Figure 10. Analogous to Figure 6, but showing a comparison of the linear polarization structure in the OJ 287 data set as recovered using CLEAN (left) and
DMC (right). The outermost Stokes I contour levels start at 0.5% of the peak intensity, and the contoured value increases inward by factors of 2. Both images have
been convolved with the CLEAN beam (dimensions 0.33 × 0.16 mas, position angle −10° east of north) shown in the lower right corner of the left panel.
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data set recovers an image structure and leakage terms that

agree well with those derived from an independent analysis

using CLEAN and LPCAL.
DMC is built on a highly flexible modeling framework, and

it continues to be developed. Future DMC capabilities may

include more sophisticated priors on both the image and

calibration terms, a more physically motivated calibration

model, hybrid imaging (i.e., simultaneous imaging and

modeling), compound sampling options, and time-, fre-

quency-, and scale-dependent imaging.
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Appendix
Residual Jones Matrices

In this section we explore the notion of a “residual” Jones

matrix; i.e., what is the form of the Jones matrix for the

remaining calibrations after an imperfect calibration has been

applied? Consider a data set that has had such an attempted (but

imperfect) calibration applied to it. The true Jones matrix J

looks like (see Equation (14))

=
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but the applied inverse Jones matrix Ĵ has some imperfections

in it. We can assume that these imperfections manifest in the
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The act of applying the imperfect calibration corresponds to

attempting to “invert” J using
-
J

1ˆ , which yields a residual

Jones matrix,
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We see that while the residual Jones matrixR can be cast in the

form of the original Jones matrix, the residual gain and leakage

terms may no longer adhere to the same set of assumptions that

apply to the true gains and leakages. In particular, the residual

leakages depend on the fractional gain residuals, r, which may

not be constant in time. It may therefore be preferable to redo

calibration entirely rather than attempting to incrementally

calibrate a partially calibrated data set; in Section 3.3, we

pursue the former strategy.
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