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ABSTRACT: Neural networks are a promising technique for parameterizing subgrid-scale physics (e.g., moist atmospheric

convection) in coarse-resolution climate models, but their lack of interpretability and reliability prevents widespread

adoption. For instance, it is not fully understood why neural network parameterizations often cause dramatic instability

when coupled to atmospheric fluid dynamics. This paper introduces tools for interpreting their behavior that are customized

to the parameterization task. First, we assess the nonlinear sensitivity of a neural network to lower-tropospheric stability and

the midtropospheric moisture, two widely studied controls of moist convection. Second, we couple the linearized response

functions of these neural networks to simplified gravity wave dynamics, and analytically diagnose the corresponding phase

speeds, growth rates, wavelengths, and spatial structures. To demonstrate their versatility, these techniques are tested on

two sets of neural networks, one trained with a superparameterized version of the Community Atmosphere Model

(SPCAM) and the second with a near-global cloud-resolving model (GCRM). Even though the SPCAM simulation has a

warmer climate than the cloud-resolving model, both neural networks predict stronger heating/drying in moist and unstable

environments, which is consistent with observations. Moreover, the spectral analysis can predict that instability occurs when

GCMs are coupled to networks that support gravity waves that are unstable and have phase speeds larger than 5m s21. In

contrast, standing unstable modes do not cause catastrophic instability. Using these tools, differences between the SPCAM-

trained versus GCRM-trained neural networks are analyzed, and strategies to incrementally improve both of their coupled

online performance unveiled.
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1. Introduction

Global climate models (GCMs) still cannot both explicitly

resolve convective-scale motions and perform decadal or lon-

ger simulations (IPCC 2014). To permit grid spacings of 25 km

or larger, important physical processes operating at smaller

spatial scales, such as moist atmospheric convection, must be

approximated. This task is known as subgrid-scale parame-

terization and is one of the largest sources of uncertainty in

estimating the future magnitude and spatial distribution of

climate change (Schneider et al. 2017).

Owing to advances in both computing and available

datasets, machine learning (ML) is now a viable alternative

for traditional parameterization. Viewed from the per-

spective of ML, parameterization is a straightforward re-

gression problem. A parameterization maps a set of inputs,

namely, atmospheric profiles of humidity and temperature,

to some outputs, profiles of subgrid heating and moistening.

Krasnopolsky et al. (2005) and Chevallier et al. (1998)

pioneered this growing subfield by training emulators of

atmospheric radiation parameterizations. O’Gorman and

Dwyer (2018) trained a random forest (RF) to emulate the

convection scheme of an atmospheric GCM and were able

to reproduce its equilibrium climate. More recently, neural

networks (NNs) have been trained to predict the total

heating and moistening of more realistic datasets including

the Superparameterized Community Atmosphere Model

(SPCAM) (Rasp et al. 2018; Gentine et al. 2018) and a near-

global cloud-resolving model (GCRM) (Brenowitz and

Bretherton 2018, 2019). Most ML parameterizations are

deterministic, a potentially harmful approximation (Palmer

2001), but stochastic extensions of these techniques have been

proposed (Krasnopolsky et al. 2013).

RFs appear robust to coupling: their output spaces

are bounded since their predictions for any given input

are averages over actual samples in the training data

(O’Gorman and Dwyer 2018). In contrast, NNs are often

numerically unstable when coupled to atmospheric fluid

mechanics. In the case of coarse-grained GCRM data,

Brenowitz and Bretherton (2019) eliminated an instability

by ablating (i.e., removing) the upper-atmospheric hu-

midity and temperature, which are controlled by convective

processes below, from the input space. Rasp et al. (2018)

also encountered instability problems, which they solved by

using deeper architectures and intensive hyperparameter

tuning, but instabilities returned when they quadrupled the

number of embedded cloud-resolving columns within each
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coarse-grid cell of SPCAM, albeit without substantial re-

tuning of the NN.

These sensitivities suggest that numerical instability can be

related to noncausal correlations in the input data or imper-

fect choices of network architecture and hyperparameters.

Consistent with the former view, Brenowitz and Bretherton

(2018) argue that a NN may detect a strong correlation be-

tween upper-atmospheric humidity and precipitation, which

is used by the parameterization in a causal way (humidity

affects precipitation) when the true causality is likely re-

versed. On the other hand, the instabilities in SPCAM do not

appear to be sensitive to this causal ambiguity and are not yet

fully understood, but sensitivities to hyperparameter tuning

are suggestive. Regardless of its origin, for NNs, the numer-

ical stability problem is catastrophic because current archi-

tectures can predict unbounded heating and moistening rates

once they depart the envelope of the training data, motivating

our first question: can we unambiguously predict the stability

of NN parameterizations of convection before coupling them

to GCMs?

Predicting the behavior of NNs is tied to the difficult prob-

lem of interpreting NN emulators of physical processes. While

many interpretability techniques can be applied to NNs, such

as permutation importance or layer-wise relevance propaga-

tion (e.g., McGovern et al. 2019; Toms et al. 2019; Montavon

et al. 2018; Samek et al. 2017; Molnar et al. 2018), we need to

adapt these techniques to interpret NN parameterizations of

convection. This motivates our second question: How can we

tailor ML interpretability techniques, such as partial-dependence

plots and saliency maps, for the particular purpose of interpreting

NN parameterizations of convection?

In atmospheric sciences, a common way to analyze convec-

tive dynamics utilizes the linearized response of parameterized

or explicitly resolved convection to perturbations from equi-

librium (Beucler et al. 2018; Kuang 2018, 2010; Herman and

Kuang 2013). These linearized response functions (LRFs) are

typically computed by perturbing inputs in some basis and

reading the outputs (appendixBofBeucler 2019) or by perturbing

the forcing and inverting the corresponding operator (Kuang

2010). If the input/output bases are of finite dimension, then the

LRF can be represented by a matrix. LRFs can also be directly

computed from data, for instance, by fitting a linear regression

model between humidity/temperature and heating/moistening,

or likewise by automatic differentiation of nonlinear regres-

sion models (Brenowitz and Bretherton 2019).

Visualizing the LRF as a matrix does not predict the con-

sequences of coupling the scheme to atmospheric fluid me-

chanics (i.e., the GCM’s ‘‘dynamical core’’). Kuang (2010)

takes this additional step by coupling CRM-derived LRFs

with linearized gravity wave dynamics and further developing

a vertically truncated ordinary differential equation model

(Kuang 2018). He discovered convectively coupled wave

modes that differ from the linearly unstable eigenmodes of the

LRFs. This 2D linearized framework has long been used to

study the instability of tropical plane waves (Hayashi 1971;

Majda and Shefter 2001; Khouider and Majda 2006; Kuang

2008), but typically by analyzing a vertically truncated set of

equations for two to three vertical modes. Coupling the full

LRF generalizes this theoretical plane wave analysis to a fully

resolved basis of vertical structures. When the LRF is com-

puted from a machine-learned parameterization, the resulting

wave spectra will hint at the stability of a coupled simulation

using that parameterization, but at a much lower computa-

tional expense.

While LRFs provide a complete perspective on the sensi-

tivity of a given parameterization, they can still be difficult to

interpret because they have high-dimensional input and output

spaces. Each side of the LRF matrix is equal to the number of

vertical levels times the number of variables. However, the

dominant process parameterized by ML schemes is moist at-

mospheric convection, which has well-known sensitivities to

two environmental variables: the midtropospheric moisture

and the lower-tropospheric stability (LTS). On the one hand,

the intensity of convection increases exponentially with the

former (Bretherton et al. 2004; Rushley et al. 2018), perhaps

because the buoyancy of an entraining plume is strongly con-

trolled by the environmental moisture (Ahmed and Neelin

2018). On the other hand, convection will fail to penetrate

stable air, so a sufficiently large LTS is a prerequisite for

forming stratocumulus cloud layers (Wood and Bretherton

2006). While the motions in shallow turbulently driven clouds

are not resolved at the 1 to 4 km resolution of SPCAM or

GCRM training datasets, we still expect lower stability to in-

crease the depth of convection.

In this study, we probe the behavior of the NN parameter-

izations from our past work using these interpretability tech-

niques. The main goals of this study are to 1) build confidence

that ML parameterizations behave like realistic moist con-

vection and 2) introduce a diagnostic framework that can

predict if a NN will cause numerical instability. We will subject

two sets of NN parameterizations to this scrutiny. The first set

was trained by coarse graining aGCRM simulation (Brenowitz

and Bretherton 2019) while the second set was trained using

SPCAM (Rasp et al. 2018). We will use the interpretable ML

toolkit to compare the sensitivities of these two schemes and by

extension the SPCAM and GCRM models.

The outline of the paper follows. In section 2, we introduce

the GCRM and SPCAM training datasets, and briefly sum-

marize our corresponding ML parameterizations, which are

quite similar in form. Then, section 3 introduces the LTS-

moisture sensitivity framework (section 3a) and the wave-

coupling methodology (section 3c). The latter is used to assess

the stability of NN parameterizations, so we need to describe

the techniques we use to stabilize such schemes (section 4).

Then, we present the results in section 5. Section 5a compares

how changes in LTS and moisture control the NN parameter-

izations, while sections 5b and 5c apply the wave-coupling

framework to predict coupled instabilities. We conclude in

section 6.

2. Machine-learning parameterizations

a. Global cloud-resolving model

Brenowitz and Bretherton (2018, 2019) trained their NNs

with a near-global aquaplanet simulation performed with the
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System for Atmospheric Modeling (SAM), version 6.10

(Khairoutdinov and Randall 2003). This simulation is run

in a channel configuration (from 468S to 468N) with a hori-

zontal grid spacing of 4 km and 34 vertical levels of varying

thickness, over a zonally symmetric ocean surface with a sea

surface temperature of 300.15 K at the equator and 278.15 K

at the poleward boundaries. These GCRM training data

consist of 80 days of instantaneous three-dimensional fields

from this simulation, sampled every 3 h.

The NN scheme parameterizes the apparent heating and

moistening over 160 km grid boxes, a 40-fold downsampling of

the original 4 km data. This resolution is large enough that the

precipitation still has significant autocorrelation at a lag of 3 h,

so the data are sampled at a high enough frequency to resolve

some of the relevant moist dynamics. The apparent heatingQ1

and moistening Q2 are defined in terms of SAM’s prognostic

variables: the total nonprecipitating water mixing ratio qT
(kg kg21) and the liquid–ice static energy sL (J kg21). On the

coarse grid, these variables are advected by the large-scale flow

and forced by the apparent heating Q1 (Wkg21) and moist-

ening Q2 (kg kg
21 s21). These dynamics are described by

›s
L

›t
5

�
›s

L

›t

�
GCM

1Q
1
, (1)

›q
T

›t
5

�
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T

›t

�
GCM

1Q
2
, (2)

where the overbar denotes a coarse-grid average.

Unlike with SPCAM (see below), the apparent sources for

the GCRM are defined as budget residuals by estimating the

terms in (1) and (2). The storage terms on the left-hand side are

estimated using a finite difference rule in time with the 3-

hourly data. The tendencies due to the coarse-resolution GCM

are given by (›sL/›t)GCM and (›qT /›t)GCM. They are estimated

by initializing our GCM, the coarse-resolution SAM (cSAM)

at a grid spacing of 160 km with the coarse-grained data, run-

ning it forward ten 120 s time steps without any parameterized

physics, and computing the time derivative by finite differ-

ences. cSAM is run with a resolution of 160 km as the coarse-

graining time scale. For more details about this complex

workflow, we refer the interested reader to Brenowitz and

Bretherton (2019).

b. Superparameterized climate model

To complement the NN parameterization trained on the

SAMglobal cloud-resolvingmodel, we analyze NNs trained on

the SPCAM, version 3.0 (Khairoutdinov and Randall 2001;

Khairoutdinov et al. 2005). SPCAM embeds eight columns of

SAM (spatiotemporal resolution of 4 km 3 20 s) in each grid

column of the Community Atmosphere Model (CAM; spa-

tiotemporal resolution of 28 3 30min) in place of its usual deep

convection and boundary layer parameterizations to improve

the representation of convection, turbulence andmicrophysics.

In essence, SPCAM is a compromise between the numerically

expensive global SAM and the overly coarse CAM, which

struggles to represent convection (e.g., Oueslati and Bellon

2015). The goal of the NN parameterization (Rasp et al. 2018;

Gentine et al. 2018) is to emulate how the embedded SAM

models vertically redistribute temperature (approximatelyQ1)

and water vapor (approximately Q2) in response to given

coarse-grained conditions from the host model’s primitive

equation dynamical predictions (i.e., temperature profile, wa-

ter vapor profile, meridional velocity profile, surface pressure,

insolation, surface sensible heat flux, and surface latent heat

flux; all prior to convective adjustment). The NN also includes

the effects of cloud-radiative feedback by predicting the total

diabatic tendency (convective plus radiative). Notable differ-

ences from the NN parameterization of SAM (section 2a) in-

clude training on higher-frequency data (30min instead of

3 hourly) of a different form, in which an unambiguous sepa-

ration between gridscale drivers and subgrid-scale responses

can be exploited. This facilitates the NN parameterization’s

definition by avoiding the challenges of coarse graining. The

lower computational cost of SPCAM, through its strategic

undersampling of horizontal space, also allows a longer dura-

tion training dataset (2 years instead of 80 days for SAM) and

the spherical dynamics of its host model permit fully global

(including extratropical) effects. We took advantage of this

longer training set by using its first year to train the NN,

amounting to approximately 140 million samples, and the

second year to cross validate theNN. Themain disadvantage of

SPCAM-based NNs is that superparameterization by defi-

nition draws an artificial scale separation that inhibits some

modes of dynamics, and the idealizations of its embedded

CRMs (e.g., 2D dynamics and limited extent of each em-

bedded array) compromise aspects of the emergent dy-

namics (Pritchard et al. 2014). We refer the curious reader to

section 2 of Rasp (2019) for an extensive comparison of

various ML parameterizations of convection.

c. Neural network parameterization

The parameterizations for both SPCAM and the GCRM

take a similar form. A neural network predicts Q1 and Q2 as

functions of the thermodynamic state within the same atmo-

spheric column. The parameterizations therefore have the

following functional form

Q5 f(x, y;u); (3)

whereQ5 [Q1(z1), . . . ,Q1(zn),Q2(z1), . . . ,Q2(zn)]
T is a vector

of the heating and moistening for a given atmospheric column;

x is similarly concatenated vector of the thermodynamic

profiles—qT and sL in the case of GCRM, or humidity and

temperature for SPCAM; y are auxiliary variables such as sea

surface temperature, the insolation at the top of atmosphere

for theGCRM, or surface enthalpy fluxes for SPCAM. TheML

will not prognose the source of these auxiliary variables.

Both Rasp et al. (2018) and Brenowitz and Bretherton

(2019) represent f as a simple multilayer feed-forward NN.

The hyperparameters and structures of their respective

networks differ slightly (e.g., number of layers, activation

functions), but in this article, we will only rely on the fact that

NNs are almost-everywhere differentiable, a key advantage

of NNs over other techniques (e.g., tree-based models). NNs

are almost-everywhere differentiable because they compose

several affine transformations with nonlinear activations in
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between. One ‘‘layer’’ of such an NN transforms the hidden

values xn at the nth layer into the next layer’s ‘‘activations’’

using the following functional form:

xn11 5s(Anxn 1bn) , (4)

where An is ‘‘weight’’ matrix, bn is a ‘‘bias’’ with the same size

as xn, and s is a nonlinear activation function that is applied

elementwise on its input vector. The inputs feed into the first

layer—x0 5 x—and the outputs read out from the final layer

xm 5Q. The parameters of the NN are the collection of weight

matrices and bias vectors that we mathematically denote

using a single vector u 5 {A1, . . . , Am, b1, . . . , bm}, where m is

the total number of layers.

The parameters u are tuned by minimizing a cost function

J(u), typically a weighted mean-squared error, using stochastic

gradient descent. Modern NN libraries such as TensorfFlow

(Abadi et al. 2015) or PyTorch (Paszke et al. 2019) enable

such a training procedure by automatically computing deriva-

tives of functions like (3) with respect to their parameters. In

this paper, we will also use this capability to explore the line-

arized sensitivity of a NN parameterization to its inputs

across a wide array of base states.

For the GCRM, we analyze a NN that initially includes in-

puts from all vertical levels of humidity and temperature, a

configuration that causes a prognostic simulation to crash after

6 days (Brenowitz and Bretherton 2019). The network has

three hidden layers of 256 nodes each and uses ReLU activa-

tion, and is trained for 20 epochs using the Adam optimizer to

minimize the mass-weighted mean-squared error of predicting

theQ1 andQ2 estimated by budget residuals of (1) and (2). The

training loss includes a regularization term ensuring that the

NN converges to a stable equilibrium. The PyTorch library is

used, the input data scaled by the mean and variance, and we

used identical hyper-parameters as Brenowitz and Bretherton

(2019). The interested reader should refer to that paper for

more details.

To avoid overfitting the GCRM NN, the western half of the

data is used for training and the eastern half is reserved for

testing. After 20 epochs of training, the mass-weighted root-

mean-squared error (MSE) ofQ1 over the training and testing

regions are 3.46 and 3.47K day21, respectively; for Q2 the

scores are 1.51 and 1.48 g kg21 day21, respectively. The test and

training errors are nearly identical, suggesting that overfitting

is not occurring. This is not surprising given the large number

of samples (millions) compared to free parameters in this

network configuration (100 000 s). Having ruled out overfitting,

the analyses below are based on the full dataset.

For SPCAM, we analyze two NNs with identical architec-

tures and training conditions (9 fully connected layers of 256

nodes each trained for 20 epochs using the Adam optimizer):

‘‘NN-stable’’ and ‘‘NN-unstable.’’ The TensorFlow library is

used. Although both NNs were trained using ;140million

samples from aquaplanet simulations, the training simulation

for NN-stable used 8 SAM columns per grid cell and under-

went manual hyperparameter tuning (see SI of Rasp et al.

2018) while the training simulation for NN-unstable used 32

SAM columns per grid cell and the NN was less intensively

tuned. Helpfully for our purposes, NN-stable led to successful

multiyear climate simulations once prognostically coupled to

CAM (Rasp et al. 2018), but NN-unstable proved prone to

producing moist midlatitude instabilities that led all prognostic

simulations to crash within 2–15 days (see movie S1).While the

time to crash was sensitive to initial condition details, no sim-

ulations with NN-unstable proved capable of running more

than 2 weeks. Unlike for the GCRM simulation, the SPCAM

interpretability analyses below are based only on data from the

validation period.

In the following sections, we show how physically motivated

diagnostic tools help anticipate, explain, and begin to resolve

these problematic instabilities.

3. Interpreting ML parameterizations

a. Variation of inputs

A few important parameters control the strength and

height of moist atmospheric convection. Any parameteri-

zation, including a machine-learning parameterization, should

capture the dependence of convection to these parameters.

One such parameter is the LTS:

LTS5 u(700 hPa)2 SST,

where u is the potential temperature and SST is the sea surface

temperature. Low LTS indicates the lower troposphere is

conditionally unstable, favoring deep convection.

A second controlling parameter is the midtropospheric

moisture, defined by

Q5

ð550hPa
850hPa

q
T

dp

g
.

Cumulus updrafts entrain surrounding air as they rise through

the lower troposphere. If that air is dry (low Q), the entrained

air induces considerable evaporative cooling as it mixes into

the cloudy updraft, impeding deep precipitating convection.

Hence, moist columns tend to precipitate exponentially more

than dry ones (Bretherton et al. 2004; Neelin et al. 2009;

Ahmed and Neelin 2018; Rushley et al. 2018).

To see how the NNs depend on these important control

parameters, both theGCRMand SPCAM training datasets are

partitioned into bins of LTS and Q. For the GCRM training

dataset, we partition the points in the tropics and subtropics

(238S–238N); the humidity bins are 2mm wide, and the LTS

bins are 0.5K wide. For SPCAM, we use 20 bins evenly spaced

between 0 and 40mm for midtropospheric moisture and from 7

to 23K for LTS. These ranges are chosen to roughly span the

observed ranges of samples within the tropics (see Figs. 1a,b).

In both cases, the NN’s inputs x are averaged over these bins.

Denote this average by E[xjQ, LTS]. In the SP-CAM case, these

averages are performed over the validation set. A parameteriza-

tion’s sensitivity to the variables Q and LTS is given by

f (Q, S)5 f (E[xjQ, LTS];u), (5)

where u are the parameters of the neural network. Because f is

nonlinear, this is not equivalent to taking the average of the
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NN’s outputs over the bins. Rather, it tests the nonlinear sensi-

tivity to systematic changes in its inputs. In the sections below, we

will also plot the bin averages of the ‘‘true’’ apparent heating E

[Q1jQ, LTS] and moistening E[Q2jQ, LTS] to indicate the frac-

tion the true variability across bins the NN is able to predict

successfully.

b. Linear response functions

The method above shows how a ML parameterization de-

pends nonlinearly on a few inputs, but it is difficult to extend to

the full input space of a parameterization. To do this, we in-

stead use the LRF or saliency map. The LRFs in this study will

be computed from the output of an NN. By using a nonlinear

continuous (and almost everywhere differentiable) model such

as a NN, we can compute the local linear response of convec-

tion for a variety of base states.

LRFs have already been employed to develop machine-

learning parameterizations. For instance, Brenowitz and

Bretherton (2019) computed LRFs to analyze what was

causing their neural network parameterizations to produce

unstable dynamics when coupled to a GCM. For most of this

analysis, we linearize the GCRM-trained NN about the

tropical mean profile since this is a region where the coupled

GCM-NN instabilities of this scheme develop. This state is not a

radiative-convective equilibrium (RCE), so some positive modes

of the linearized response function likely represent a decay to a

true RCE state. However, we assume this equilibration process

is slower than the coupled GCM-NN blowups, so that LRFs

can still reveal mechanisms behind the latter. Developing

machine-learning parameterizations with a stable radiative-

convective equilibrium is a task for future research.

c. Coupling to two-dimensional linear dynamics

While LRFs provide insights into how a parameterization

affects a single atmospheric column in radiative convective

equilibrium, they cannot alone predict the feedbacks that will

occur when coupled to the environment. This coupling is

thought to play a critical role in the catastrophic instability

because NNs that produce accurate single column model

simulations (Brenowitz and Bretherton 2018) can still blow up

when coupled to the wind field simulated in aGCM (Brenowitz

and Bretherton 2019). While we ultimately suspect that non-

linearity causes coupled simulations to catastrophically blow

up once the NNs are forced to make predictions outside of the

training set, we hypothesize that the initial movement toward

the edge of the training manifold is inherently linear. In par-

ticular, we suspect it arises from interactions between the pa-

rameterization and small-scale gravity waves, which are the

fastest modes present in large-scale atmospheric dynamics.

This interaction has been extensively studied in the literature

(Hayashi 1971; Majda and Shefter 2001) and is known to cause

deleterious effects such as gridscale storms when using tradi-

tional parameterizations based on a moisture convergence

closures (Emanuel 1994).

We now derive the linearized dynamics of a ML parame-

terization coupled to gravity waves. Like many past works in

convectively coupled waves, we assume that the flow is two-

dimensional (vertical and horizontal) and neglect the influence

FIG. 1. Binning in LTS and moisture space. For GCRM, (a) the population of each LTS/Q bin, (b) the predicted net precipitation, and

(c) the2hQ2i’ P2 E from the training dataset. The angle brackets h i denote the mass-weighted vertical integral. (d)–(f) As in (a)–(c),

but for the corresponding results for SPCAM.
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of rotation. We further assume the dynamics are anelastic and

hydrostatic. Further assuming that the mean winds are zero,

the linearized anelastic equations in terms of humidity q, static

energy s, and vertical velocity w perturbations are written as

q
t
1 q

z
w5Q0

2 ,

s
t
1 s

z
w5Q0

1 ,

w
t
52(A21B)

xx
2 dw . (6)

The final equation is obtained by taking the divergence of the

horizontal momentum equation and eliminating the pressure

gradient term using hydrostatic balance and the anelastic non-

divergence condition (see appendix, section a, for more details).

Here, A is a continuous elliptical vertical differential oper-

ator defined by Aw 5 (›/›z)[(1/r0)(›/›z)(r0w)]. When en-

dowed with rigid-lid boundary conditions, w(0) 5 w(H) 5 0,

this linear operator can be inverted to giveA21. In practice, we

discretize these continuous operators using finite differences so

that these operations can be performed with matrix algebra.

Since we are focused on free-tropospheric dynamics, we

have neglected the virtual effect of water vapor and approxi-

mated the buoyancy byB5 gs/s. The momentum damping rate

is fixed at d 5 1/(5d). We discretize this equation using cen-

tered differences (more details in section b of the appendix),

and assume rigid-lid (w5 0) boundary conditions at the surface

and top of the atmosphere like Kuang (2018).

The perturbation heatingQ0
1 and moisteningQ0

2 are a linear

transformation of the perturbed state that could be nonlocal in

the vertical direction. In particular,

Q0
1(z)5

1

H

ðH
0

�
›Q

1
(z)

›q(z0)
q(z0)1

›Q
1
(z)

›s(z0)
s(z0)

�
dz0 ,

and similarly forQ0
2. Upon discretizing this integral onto a fixed

height grid and concatenating the s and q fields into vectors s5
[s(z1), . . . , s(zn)]

T, and similarly for q, Q1, and Q2, this con-

tinuous formula can be written as

�
Q

1

Q
2

�
5

 
M

ss
M

sq

M
qs

M
qq

!�
s

q

�
.

The subblocks of the matrix (e.g., Mqq) encode the linearized

response function for the fixed height grid z1, . . . , zn. Then,

assuming the solution is a plane wave in the horizontal direc-

tion with a wavenumber k, (6) can be encoded using the fol-

lowing matrix form

›

›t

0
@ q

s

w

1
A5T

0
@ q

s

w

1
A , (7)

where the linear response operator T for total water, dry static

energy, and vertical velocity is given by

T5

0
BBB@

M
qq

M
qs

diag(q
z
)

M
sq

M
ss

diag(s
z
)

0 2gk2A21diag(s)21 2dI

1
CCCA . (8)

Here, I is the identity matrix, and diag creates a matrix with a

diagonal given by its vector argument.

The spectrum of (8) can be computed numerically for each

wavenumber k to obtain a dispersion relationship. Appendix

section b derives the discretization we use for the elliptic

operator A. The real component of any eigenvalue l of T is

the growth rate, and the phase speed can be recovered using

the formula cp 52Jl/k. The eigenvectors of T describe the

vertical structure of the wave mode in terms of s, q, andw. Let

v be such an eigenvector, then the wave’s structure over a

complete phase of oscillation can be conveniently plotted in

real numbers by showing <fv exp ifg for 0 # f , 2p. In the

sections below, we will show the phase speed and growth rates

for every single eigenmode over a range of wavenumbers.

Then, we can visualize the vertical structures of a few par-

ticularly interesting modes, such as unstable propagating

modes or standing waves.

4. Regularization

As we have seen, NNs are often numerically unstable

when coupled to atmospheric fluid dynamics, and much

of our recent work has focused on solving this central

challenge. One reason in the case of training data from

coarse-grained simulations may be causality issues. In the

GCRM, there is a strong correlation between an input

variable—upper-tropospheric total water—and an output

variable—precipitation. This correlation would be expected

because deep convection lofts moisture high into the at-

mosphere and total water includes cloud water and ice.

However, using it as a closure assumption would violate

a physical causality argument that moist atmospheric con-

vection is triggered by lower-atmospheric thermodynamic

properties.

Brenowitz and Bretherton (2019) found that reducing the

potential for spurious causality by ablating both the temper-

ature above level 15 (375 hPa) and humidity above level 19

(226 hPa) from the input features of an NN parameterization

results in a stable scheme. We will refer to these ablated in-

puts as ‘‘upper-atmospheric data.’’ It is ad hoc but works

consistently. This was discovered using a LRF analysis (see

section 3b), which demonstrates that ML interpretability

techniques have already significantly aided the development

of ML parameterizations.

For SPCAM trained NNs, stability has also been a lingering

challenge. Unfortunately, removing upper-atmospheric inputs

as prescribed by Brenowitz and Bretherton (2019) did not

stabilize these NNs (see, e.g., supplemental movie S2). We

speculate that the instabilities from SPCAM are linked to in-

evitable imperfections of NN fit, exacerbated by limited hy-

perparameter tuning. Nonetheless, using some of the same

interpretability techniques described above, we have devel-

oped an ‘‘input regularization’’ technique for stabilizing SP-

trained NNs.

Just as with the upper-atmospheric ablation for the

GCRM NNs, this technique was discovered using a LRF

analysis. We noticed that directly calculating the LRF of

SPCAM-trained NNs via automatic differentiation results
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in noisy, hard-to-interpret LRFs (top line of Fig. S2 in the

online supplemental material). When coupled to 2D dy-

namics, these LRFs produce unphysical stability dia-

grams, with unstable modes with phase speeds greater

than 300 m s21 even for the NN-stable network (bottom

line of Fig. S2).

The LRF’s noisiness indicates that the NN responds non-

linearly to small changes in its inputs.While this behavior could

be a desirable aspect of the NN convective parameterization

(Palmer 2001), it prevents a clean interpretation of the NN

parameterization through automatic differentiation about an

individual basic state alone. On the other hand, the SAM-

trained NNs have a much smoother response, a discrepancy

that could be due to differences in the network architecture,

training strategy, or the underlying training data. Understanding

this discrepancy between two networks with the same function

trained on datasets with obvious similarities is an important future

challenge.

The NN-stable SPCAM network performs stably when in-

teractively coupled to GCM dynamics, suggesting it is not

overly sensitive to larger perturbations. This motivates feeding

an ensemble (X) of randomly perturbed inputs to the SPCAM

NN parameterization, which then outputs an ensemble (Y) of
predictions that we may average to more cleanly understand

the NN’s behavior.

For concreteness, we now apply ‘‘input regularization’’ to

our initial problem, that is, the unstable behavior of NN-

unstable. This requires 5 steps:

1) We track the (longitude, latitude) coordinates of the insta-

bility (see movie S1) back in time to identify the base state

xunstable leading to the instability. For simplicity, we choose

the earliest time step for which the perturbation responsible

for the crash produces a maximum in the convective

moistening field (Q2).

2) We construct an input ensemble fx(i)i51,2,...,ng of nmembers by

perturbing the input xunstable producing the instability

using a normal distribution N of mean 0 and standard

deviation sreg:

x
(i)
j 5 (11 z

(i)
j )xunstablej , z

(i)
j ;N (0,s

reg
).

We refer to sreg as ‘‘regularization amplitude’’ (in %): the

larger sreg is, the broader the ensemble of exact inputs x

will be in the input ensemble.

3) We feed each member x(i) of the input ensemble into the

NN parameterization, producing an ensemble of out-

puts {y(i)}i51,. . .,n.

4) We calculate the LRF about the input ensemble by auto-

matically differentiating each input–output pair before

taking the ensemble-mean of the resulting LRFs:

LRF
reg

5
1

n
�
n

i51

›y(i)

›x(i)
.

5) We couple the ‘‘regularized’’ LRF to our two-dimensional

wave coupler to calculate a stability diagram representative

of the NN’s behavior near the ‘‘regularized’’ set of in-

puts fx(i)i51,2,...,ng.

Adding significant spread to the input vector may push the NN

outside of its training set where large biases are expected, so we

do not advocate for such an approach as a general strategy to

stabilize SPCAM-based NNs. That being said, we will exploit

this regularization technique to investigate the robustness of

our interpretability framework by comparing offline predic-

tions to online prognostic failure modes. That said, adding

Gaussian noise to inputs is commonly used to regularize NNs

during training.

5. Results

a. The onset of deep convection in ML parameterizations

Figure 1 shows the two dimensional binning of the

combined tropical and subtropical data in midtropospheric

humidity Q and LTS space for all latitudes equatorward of

22.58. For the GCRM simulation, the distribution is bimodal,

with many high-moisture low-stability samples—presumably

from the tropics—and another peak for lower moistures of

about 7 mm from the subtropics. The SPCAM simulation

is moister, with a modal Q around 30 mm compared to less

than 20 mm in the GCRM simulation. This is not sur-

prising because the peak SST of the SPCAM simulation is

2–3 K warmer.

We use net precipitation—surface precipitation (P) mi-

nus evaporation (E)—as a proxy for deep convection, be-

cause it is predicted by both NNs as the column integral of

the apparent drying 2Q2, and because it clearly distin-

guishes between regimes of little precipitation (P , E) and

substantial precipitation (P . E). The GCRM results are

for an unablated NN. Both training datasets, and the ML

parameterizations trained from them, predict that the net

precipitation increases dramatically with midtropospheric

humidity. A similarly nonlinear dependence has been

documented in numerous studies (Bretherton et al. 2004;

Neelin et al. 2009; Rushley et al. 2018). The net precipita-

tion depends less strongly on LTS, but for intermediate

values of moisture around 15–20 mm, the stability is an

important control. The difference between the bin-averaged

net precipitation and theNNs predictions with the bin averages

are relatively small (;10mmday21). We conclude that the

machine-learning parameterizations depend smoothly and re-

alistically on Q and LTS.

How does the vertical structure of the input variables and

the predicted heating and moistening vary with Q and LTS?

Fig. 2 shows vertical profiles of these quantities for varying LTS

binned over tropical grid columns with 20#Q, 22mm for the

GCRM simulation while Fig. 3 shows the LTS dependence for

33.7 # Q , 35.7mm for the moister SPCAM simulation. The

humidity reaches much higher in the atmosphere for low sta-

bilities, and the lower-tropospheric humidity must offset these

gains to maintain a constant Q. For the GCRM, the predicted

heating and moistening switch from shallow to deep profiles as

LTS decreases. However, the overall magnitude of moistening

is relatively unchanged, consistent with Fig. 1c. Thus, LTS

controls the height of the predicted convection more than its

overall strength. That said, it is unclear whether these changes
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are a direct response to the lower-tropospheric temperature

structure or controlled by the simultaneous changes in the

humidity profile (Figs. 2a and 3a). On the other hand, the

SPCAM NNs fail to predict such a clear deepening of con-

vectionwith decreased stability. This could owe to theQ bin we

selected for this analysis, a more fundamental difference in

moist convection between the SPCAMandGCRM simulations,

or the substantially warmer SSTs in the former. Nonetheless,

each NN faithfully represents the convective sensitivity of its

own training dataset.

The predicted heating and moistening vary in a similar

way to the bin-averagedQ1 andQ2 profiles, but the latter are

more sensitive to the LTS than the NN. Note that the NNs

make their predictions with a single input profile whereas the

bin-averaged Q1 and Q2 are statistical averages of many in-

dividual heating and moistening profiles. Thus, these figures

FIG. 2. Deepening of convection for SAM, varying the LTS with midtropospheric humidity between 20 and 22mm. Shows conditional

averages E[�jQ, LTS] over the data of (a) specific humidity, (b) heating Q1, (c) moistening Q2, and (d) temperature. The predicted

(e) heating and (f) moistening for the conditionally averaged input data are also shown.

4364 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 10/23/21 03:06 AM UTC



demonstrate how the NN’s prediction are sensitive to sys-

tematic changes in the input variables, whereas the bin-

averaged heating andmoistening show a statistical, but potentially

noncausal link between heating, moistening, midtropospheric hu-

midity, and LTS in the data.

Figures 4 and 5 show how the midtropospheric humidity

controls the vertical structure of the input and response

variables, for the GCRM and SPCAM data, respectively.

The LTS is fixed between 9 and 10 K for the GCRM run and

11 and 12 K for SPCAM, both of which are unstable ranges.

The overall amount of water changes dramatically for this

change in both simulations because Q is highly correlated

with the total precipitable water in an atmospheric column.

Both NNs predict cooling and moistening near the top of

the boundary layer for the drier profiles (z 5 2000 km21)

due to shallow clouds. Once a threshold Q is reached, the

FIG. 3. As in Fig. 2, but for deepening of convection for SPCAM, varying the LTS with midtropospheric humidity between 33.7

and 35.7mm.
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sign flips and the machine-learning parameterization pre-

dicts increasingly deep heating and moistening. For the

three moistest profiles, the heating and moistening dra-

matically strengthen with little change in vertical structure.

The predicting tendencies are again similar to their bin

averages.

b. Stabilizing via ablation of inputs

Brenowitz and Bretherton (2019) obtained a stable scheme

by training their NNwithout input from the upper-atmospheric

temperature or humidity. However, they did not examine

whether it was ablating the atmospheric temperature, humidity

or both that prevented numerical instability. The term ‘‘ab-

late’’ is used as an analogy to neuroscience research on how

removing (i.e., ablating) brain tissue affects animal behavior.

In this section, we use the wave-coupling framework intro-

duced in section 3c to explore the independent effects of

ablating temperature and humidity. Because this wave

coupling is performed for one wavenumber at a time, it is

much more computationally affordable than a full nonlinear

FIG. 4. As in Fig. 2, but for strengthening of convection for SAM, varying midtropospheric moisture Q for LTS between 9.0 and 9.5K.
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simulation but still hints at how the NN will perform in

coupled simulations.

To study this further, we first compute the LRF of an

NN trained with all atmospheric inputs (Brenowitz and

Bretherton 2019, cf. Fig. 1). Brenowitz and Bretherton

(2019) chose a lower humidity level because the humidity in

the upper troposphere is vanishingly small, while the

temperature remains of the same order of magnitude.

Then, the upper-atmospheric humidity and/or tempera-

ture inputs are sequentially knocked out by inserting 0 in

the corresponding entries of the LRF. This section studies the

following configurations:

d All atmospheric inputs (unablated).
d No humidity above level 15 (375 hPa).
d No temperature above level 19 (226 hPa).
d No humidity above level 15 nor temperature above level 19

(fully ablated).

Figure 6 shows the dispersion relationships resulting after each

of these ablations, a zoomed-in version of which is shown in

FIG. 5. As in Fig. 2, but for strengthening of convection for SPCAM, varying midtropospheric moisture Q for LTS between 11 and 12K.
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Fig. 7. With all atmospheric inputs, there are numerous propa-

gating modes with phase speeds between 10 and 25ms21 with

positive growth rates. Thesemodes become increasingly unstable

for shorter wavelengths. When the upper-atmospheric humidity

is ablated, there still remain numerous unstable modes, including

an ultrafast 100m s21 propagating instability. The results when

the upper-atmospheric temperatures are ablated, but not the

upper moisture, are similar to the full atmospheric input. Finally,

ablating both the temperature and humidity inputs from the

upper atmosphere removes many unstable propagating modes.

The remaining unstable modes are either stationary or have very

slow phase speeds. This suggests that ablating both humidity and

temperature is necessary for nonlinear simulations to be stable

when using anML trained on coarse-grainedGCRMdata that are

at 3-hourly time resolution. Table 1 summarizes these results.

Thephase-space structure of twomodes is shown inFigs. 8 and 9 .

Figure 8 shows a standingmodeof theLRF-wave system in the fully

ablated case. For a wavelength of 628km this mode has an e-folding

time of 1/0.32 ’ 3 day and zero phase speed. It primarily couples

vertical velocity (Fig. 8a) to the total water mixing ratio (Fig. 8c),

with upward velocity (negative v) corresponding to anomalous

moistening andmoisture (Fig. 8c). The heating and cooling (Fig. 8d)

nearly perfectly compensates for the vertical motions.

The free-tropospheric heating and temperature are relatively

uninvolved, but boundary layer heating and temperature anom-

alies do have a largemagnitude. Thus, the standingmode appears

to be mostly a moisture mode. Similar modes are responsible for

convective self-aggregation in large-domain CRM simulations of

radiative-convective equilibrium (Bretherton et al. 2005) and are

thought to be important for large-scale organized convection

such as the Madden–Julian oscillation (Sobel andMaloney 2013;

Adames andKim 2016). Kuang (2018) found that a similarmode

is unstable only when the LRF includes radiative effects. In

contrast to Kuang’s study, a NN trained to predict Q1 2 Qrad,

where Qrad is the coarse-grained radiative tendency of the 4km

model, also predicted an unstable standing mode (not shown).

However, it is not clear that this method reliably separates the

convection from the radiation because of the noisiness inherent

in the GCRM budget residuals and training method.

The LRF-wave analysis can also identify spurious wave-like

modes that could contribute to numerical instability in coupled

simulations. Figure 9 shows a mode of the unablated model

that has planetary-scale wavelength of 6283 km, phase speed of

44m s21 and fast growth rate of 1.29 day21. This mode is stable

for shorter waves, so we have chosen a longer wavelength. The

moisture, humidity, moistening, and drying tendencies are in

FIG. 6. Wave spectra with and without upper-atmospheric input for theGCRM-trained NN. (a) Full atmospheric

input, (b) lower-tropospheric humidity, (c) lower-tropospheric temperature, and (d) lower-tropospheric humidity

and temperature. The light blue background indicates where the phase speed jcpj . 5m s21 and the growth rate is

positive. The wavelength is defined as 2p/k. This box is more visible in the zoomed-in plot (cf. Fig. 7). Waves inside

of this region are likely responsible for instability.
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phase with each other but in quadrature with the v. The ver-

tical motion tilts upward and away from the direction of

propagation. Both humidity and temperature anomalies con-

tribute significantly to the wave’s structure but have strange

vertical structures. The upper-atmosphere temperature anom-

alies are strongly coupled to moisture anomalies in the free

troposphere, which have a complex vertical structure. These

structure are not reminiscent of known modes of convective

organization, and such a mode could explain the instability this

scheme causes when coupled to a GCM.

c. Stabilizing gravity wave modes via regularization of

inputs

It is natural to wonder whether the wave-coupling frame-

work successfully applied to the GCRM data can also predict

prognostic-mode failures in the SPCAM simulation. The

answer is not obvious since ML climate models trained on

vastly different datasets exhibit different forms of instability.

For instance, the SPCAM-trained NN-unstable model tends to

go unstable outside of the tropics, and more gradually than the

GCRM-trained climate model diagnosed above. This suggests

that different ML-based models go unstable for different root

causes. Consistent with this view, despite successfully stabiliz-

ing the GCRM-trained NN, input ablation does not stabilize

the SPCAM-trained NN-unstable: that NN still crashes after

;3 days when coupled to CAM, even after ablating the input

vector’s top half components (15 first components of water

vapor and temperature profiles, from p5 0 hPa to p5 274 hPa,

see, e.g., movie S2). As an alternative to ablation, we introduce a

new empirical technique, ‘‘input regularization,’’ that can im-

prove the SPCAM-trained NN’s prognostic performance. We

then show that the computationally affordable wave-coupling

FIG. 7. As in Fig. 6, but only showing modes with a phase speeds less than 10m s21.

TABLE 1. Summary of stability issues related to removing upper-atmospheric inputs. The fourth column shows the maximum phase speed

over all modes with growth rates larger than 0.05 day21.

Upper-atmospheric humidity input

(above level 15)

Upper-atmosphere temperature input

(above level 19)

Coupled

blowup

Maximum

phase speed

Standing

instabilities

Yes Yes Yes 50m s21 Yes

Yes No — 50m s21 Yes

No Yes — 100m s21 Yes

No No No 1m s21 Yes
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introduced in section 3c can predict how much regularization is

required to stabilize coupled GCM-NN simulations.

We begin by revisiting the physical credibility of NN-unstable

compared to NN-stable using the diagnostics that previously

revealed the causal ambiguity endemic to the GCRM-trained

NN. From this view, we expect NN-unstable to struggle in

prognosticmode, since it exhibits significant positive heating and

moistening biases (see Fig. S1) for large midtropospheric mois-

ture (;20mm) and low LTS (;12K), conditions favorable for

deep convection. Positive convective moistening biases in moist

regionsmay then lead to instability through spurious moistening

of growing water vapor perturbations.

Next, we study the effect of increased input regularization as

described in section 4, focusing on the relation between offline

prediction and online performance. Figure 10 shows that input

regularization effectively controls stability properties. The top

row shows the regularized LRFs calculated about the base

state xunstable for regularized amplitudes of 1%, 10%, and 20%.

A preliminary stability analysis, including direct eigenvalue

analysis and simple dynamical coupling using the strict weak

temperature gradient approximation (Beucler et al. 2018), in-

dicates that NN-unstable’s damping rates are closer to 0 than

NN-stable’s damping rates. Although these results suggest that

NN-unstable is unable to damp developing instabilities quickly

enough, the stability diagram from our wave coupler (Fig. 10f)

can provide a more extensive description of developing insta-

bilities if we use an input ensemble tightly regularized (1%)

about the base state xunstable. While NN-stable only has a few

FIG. 8. Slow-moving instability reminiscent of amoisturemode. The vertical–horizontal structure for a single period of oscillation is shown

for the (a) pressure-velocity v, (b) static energy s, (c) humidity, (d) heating, and (e) moistening.

FIG. 9. As in Fig. 8, but for the structure of a spurious unstable propagating mode.
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slowly growing modes about the unstable base state (Fig. 10e),

NN-unstable exhibits a myriad of fast-growing (;1 day21)

modes (Fig. 10f) propagating at phase speeds between 5 and

20m s21, indicated with the light blue background. Hence our

wave-coupling framework can anticipate the instability arising

from coupling NN-unstable to CAM.

Interestingly, our wave-coupling framework further predicts

that more input regularization should stabilize NN-unstable.

The largest propagating growth rates decrease from ;1 day21

for a 1% regularization amplitude to ;1023 day21 for a 25%

regularization amplitude (Fig. 10h). To test this prediction, we

run a suite of CAM simulations in which the host climate

model’s grid columns are each coupled to the mean prediction

of a 128-member ensemble of NN predictions, formed via

Gaussian-perturbed inputs, instead of the typical single NN

prediction per grid cell. The amount of input spread is varied

between 1% and 25% standard deviation across five experi-

ments. To provide a measure of internal variability, each ex-

periment is repeated across a four-member miniensemble

launched from different SPCAM-generated initial conditions

spaced five days apart. Figure 11 shows the time to failure of

these runs for increasing regularization.With 15% or less input

regularization, none of these simulations is able to run more

than 21 days, consistent with the existence of many unstable

modes in the 2D wave-coupler diagnostic; instead, variants of

the same extratropical failure mode eventually occur. But

when 20% spread is used to seed sufficient diversity in the input

conditions, longer-term prognostic tests become possible.

Interestingly, the most dramatic effect of the input regulari-

zation in delaying the time to instability happens between

spread magnitudes between 15% and 20%—this is consistent

with the fact that the offline 2D wave coupler tests indicate an

especially prominent shutdown of unstable modes in the vi-

cinity of a 16% regularization magnitude. While we do not

expect a simple linear model neglecting rotation to accurately

predict nonlinear, midlatitude instabilities of a full-physics

general circulation model, our results suggest that the offline

diagnostics tools developed in this study apply to a wide range

of instability situations.

6. Conclusions

Machine-learning parameterizations promise to resolve

many of the structural biases present in current traditional

parameterizations by greatly increasing the number of

tuning parameters. This massive increase in flexibility has

two main drawbacks: 1) ML parameterizations are not

interpretable a priori, and 2) neural network parameteri-

zations are often unstable when coupled to atmospheric

fluid dynamics. This study addresses both of these points by

developing an interpretability framework specialized for

ML parameterizations of convection, and deepening anal-

ysis of the relationship between offline skill versus online

coupled prognostic performance.

FIG. 10. (top) Regularized (› _qy /›qy) linear response functions (in units of day21) of (a) NN-stable and (b)–(d) NN-unstable for various

regularization amplitudes (in units of %). (bottom) Corresponding stability diagrams obtained by coupling the linear response functions

to simple two-dimensional dynamics. As in Figs. 6 and 7, the light blue background indicates where the phase speed jcpj. 5m s21 and the

growth rate is positive.
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By systematically varying input variables in a two-dimensional

thermodynamic space, we have demonstrated that two inde-

pendent ML parameterizations behave as our intuition would

expect. Increases in midtropospheric moisture tend to greatly

increase the predicting heating and moistening, a widely docu-

mented fact (Bretherton et al. 2004), while increasing the lower-

tropospheric stability effectively controls the depth of convection.

These changes are consistent with the actual sensitivity present in

our training dataset, and both the SPCAM and GCRM neural

networks behave somewhat consistently, demonstrating the ro-

bustness of the machine-learning approach to parameterizations.

They both predict that net precipitation increases for moist and

unstable columns, although the precise vertical structures of their

heating and moistening profiles differ. Future work in a similar

spirit could easily build on these methods. For instance, a

limitation of our approach here is that lower-tropospheric

stability and midtropospheric moisture covary strongly be-

cause stable columns tend to be warmer and therefore carry

more moisture. Therefore, the sensitivities we demonstrate

are not entirely independent. Instead of stability and mois-

ture, the estimated inversion strength (Wood and Bretherton

2006) and lower-tropospheric buoyancy (Ahmed and Neelin

2018) may control convection more orthogonally, which

would further ease the interpretation of such results, and is

recommended in future diagnostics of this vein.

We have also developed an offline technique that shows

some skill in predicting whether a given ML parameterization

will be stable online (i.e., when coupled to atmospheric fluid

dynamics) in both the GCRM-trained and SPCAM-trained

limits, despite their many intrinsic differences. By coupling

gravity wave dynamics to the linearized response functions of

an ML parameterization, one can compute the growth rates,

phase speeds, and physical structure of the gravity wave modes

associated with the parameterizations. We find that, in both

SPCAM and SAM, propagating unstable modes are associated

with the numerical instability in online coupled runs, and likely

one root cause of instability. In stabilized versions of both

schemes (using ‘‘input ablation’’ for SAM and ‘‘input regula-

rization’’ for SPCAM), the propagating modes are all stable

and prognostic tests run more stably. That said, these stabili-

zation schemes are rather crude and may cause bias in climate

modeling applications. That this framework does not include

rotation or background shear indicates that interactions be-

tween gravity waves and the parameterized heating play a role

in numerical instability. We speculate such instability causes

coupled simulations to drift toward the boundary of their

training datasets. Once they reach this boundary, the neural

networks are forced to extrapolate to unseen input data, which

causes the final rapid blowup.

Since this is also the first study to comprehensively compare

NNs trained on coarse-grained GCRM data versus SPCAM

data, some comments on interesting differences worthy of fu-

ture analysis are appropriate. Fully understanding why the

SPCAM LRFs are so much noisier than the SAM LRFs will

require further study of the many factors that could be in-

volved, beyond obvious differences in the nature of the training

data (e.g., hyperparameter settings and neural network archi-

tecture and optimization settings), especially since computing

LRFs from traditional parameterizations typically requires

some degree of regularization (e.g., Beucler 2019; Kuang

2010). Multiple techniques have been developed to smooth

neural network Jacobians, including averaging Jacobians de-

rived from an ensemble of neural networks (Krasnopolsky

2007), taking the Jacobian of a single mean profile (Chevallier

and Mahfouf 2001), or even multiplying the Jacobian by a

‘‘weight smoothing’’ regularization matrix (Aires et al. 1999).

Here, we have introduced ‘‘input regularization’’ as an al-

ternative strategy to ensemble-average Jacobians without

having to train multiple networks. The regularized SPCAM

LRFs are smoother, making them attractive for physical in-

terpretation and easier to compare to GCRM LRFs, as well

as easier to analyze using our wave-coupling framework. But

we caution that, while incrementally helpful for full prog-

nostic stability, ‘‘input regularization’’ should not be viewed

as a solution to the instability problems in SPCAM-trained

models. More attention on other strategies like formal hy-

perparameter tuning to efficiently uncover optimally skillful

fits, which may be even more likely to perform stably online,

is also warranted.

This wave-coupling analysis also has potentially interesting

physical implications, but more work is required to compare

and contrast NN-derived LRFs with other approaches (e.g.,

Kuang 2010). Unlike Kuang (2010), our analysis is not con-

ducted about radiative-convective equilibrium (RCE) profiles,

but rather about base states close to the regions where we saw

numerical instabilities. For a fair comparison, we should

compute our spectra about an equilibrium state, if such exists

for our schemes. Finally, the robustness of our spectra is hard

to quantify, especially for phase speeds and growth rates

near zero. This is acceptable for discovering the spurious

unstable propagating waves above but making inferences

about true physical modes will require a more rigorous sta-

tistical framework.

In summary, this manuscript has presented a pair of tech-

niques that allow for peering into the inner workings of two sets

FIG. 11. Time to failure for an ensemble of prognostic tests

(ensemble mean in black and standard deviation in gray) with

varying ‘‘input regularization’’ spread magnitude (see text) com-

pared to (blue) offline predictions from the most unstable mode

derived from the 2D wave coupler, defined as the maximal growth

rate from the stability diagram that propagates with a phase speed

of absolute value greater than 5m s21.
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machine-learning parameterizations. These tools have led to

the development of new regularization techniques and could

allow domain experts to assess the physical plausibility of an

ML parameterization. Reassuringly, ML parameterizations

appear to behave according to our physical intuition, creat-

ing the potential to accelerate current parameterizations and

develop more accurate data-driven parameterizations. We

hope that these interpretability techniques will aid in dis-

covering more elegant solutions to the coupled stability

problem and facilitate a more detailed exploration of neural

network hyperparameters (e.g., depth) than has been possi-

ble in the past.
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APPENDIX

Derivation of 2D Anelastic Wave Dynamics

a. Continuous equations

The linearized hydrostatic anelastic equations in the hori-

zontal direction x and height z are given by

q
t
1q

z
w5Q0

2 ,

s
t
1 s

z
w5Q0

1, and

u
t
1f

x
52du .

The prognostic variables are humidity q, dry static energy s 5
T 1 (g/cp)z, horizontal velocity u, and vertical velocity w.

These are assumed to be perturbations from a large-scale state

denoted by an overbar. The anelastic geopotential term is

given by f 5 p0/r0, where r0(z) is a reference density profile

specified for the full nonlinear model.

These prognostic equations are completed by assuming hy-

drostatic balance and mass conservation. Hydrostatic balance

is given by

f
z
5B ,

where the B5 gT/T is the buoyancy. Mass conservation is

defined by

u
x
1

1

r
0

›
z
r
0
w .

We now combine these diagnostic relations and zonal mo-

mentum equation into a single prognostic equation for w.

For convenience, we define two differentiable operators,

L 5 ›z and H5 (1/r0)›zr0. Taking the x derivative of the

momentum equation, and applying the divergence-free

condition gives

Hw
t
1 dHw2f

xx
5 0:

Then, applying L gives

LH(›
t
1d)w5B

xx
.

We let A5LH, and manipulate the equations to obtain

w
t
52›

xx
A21B2dw .

Because A is an elliptic operator in the vertical direction, it

requires two boundary conditions. In this case, we assume

these are given by a rigid lid and impenetrable surface [e.g.,

w(0) 5 w(HT) 5 0], where HT is the depth of the atmosphere.

b. Vertical discretization

Solving (6) numerically requires discretizing the elliptic

operatorA. To do this, we assume thatw, s, and q are vertically

collocated. Then, in the interior of the domain, the operator A

can be discretized as the following tridiagonal matrix:

(Aw)
k
5 a

k
w

k21
1b

k
w

k
1 c

k
w

k11
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k
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#
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k
5

r
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(z
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2 z
k
)(z
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2 z
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)r

k11/2

.

The index k ranges from 1 to N, the number of vertical grid

cells, and z is the height.

The rigid-lid boundary conditions are satisfied by: w052w1

and wn11 5 2wn. It is not simply w0 because the vertical ve-

locity should be located at the cell center. These boundary

conditions can be implemented by modifying the matrix rep-

resentation of A to satisfy

(Aw)
1
52a

1
w

1
1b

1
w

1
1 c

1
w

2
,

(Aw)
n
5 a

n
w

n21
1 b

n
w

n
2 c

n
w

n

at the lower and upper boundaries.
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