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ABSTRACT
While cloud-resolving models can explicitly simulate the details of
small-scale storm formation and morphology, these details are often
ignored by climatemodels for lack of computational resources. Here,
we explore the potential of generative modeling to cheaply recreate
small-scale storms by designing and implementing a Variational
Autoencoder (VAE) that performs structural replication, dimension-
ality reduction, and clustering of high-resolution vertical velocity
fields. Trained on ∼ 6 · 106 samples spanning the globe, the VAE
successfully reconstructs the spatial structure of convection, per-
forms unsupervised clustering of convective organization regimes,
and identifies anomalous storm activity, confirming the potential
of generative modeling to power stochastic parameterizations of
convection in climate models.
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1 INTRODUCTION
Boxed in by computational limits, many of the details of our at-
mosphere remain too minute to explicitly resolve in climate mod-
els [14, 27, 29]. Key physics driving convection and cloud formation
occur on the scale of meters to a few kilometers, while typical
modern climate models have a resolution of 100 − 200km2 horizon-
tally - meaning important sub-grid processes are parameterized.
Computational capabilities are advancing, and climate models are
increasingly common, in particular those with three-dimensional
explicit resolution of clouds systems. However, the capability to
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run these models for the ∼100-year timescales needed is often im-
practical [13, 15, 21] and the information content they generate
about the details of cloud and storm organization are frequently
overwhelming to analyze at its native scale. This has left signifi-
cant gaps in knowledge about many of the details of cloud-climate
feedbacks and the relationship between storm organization and its
thermodynamic environment [21, 27]. However, deep learning, and
in particular generative models, may provide a path to a better un-
derstanding of these phenomena and their role driving the weather
and climate of our world.

The application of machine learning in the physical sciences has
increased exponentially in recent years but with important avenues
still largely unexplored. In climate modeling, deep neural networks
have been re-purposed to emulate the large-scale consequences of
storm-level heating and moistening over the atmospheric column
to replicate mean climate and expected precipitation patterns and
extremes [8, 21, 24, 25, 28]. However, much of this work has been
confined to deterministic neural networks that ignore the interest-
ing stochastic details of eddy and storm organization. The recent
application of Generative Adversarial Networks (GANs, [10]) to
the Lorenz ’96 Model suggests a potential, under-explored role for
generative models in atmospheric sciences – particularly towards
stochastic parameterizations [5, 7]. There have also been initial suc-
cesses using various types of GAN architectures to generate plau-
sible Rayleigh-Bernard convection. In particular, adding informed
physical constraints to GAN loss functions seem to improve the gen-
eration of these non-linear fluid flow systems [30, 33, 35, 36]. While
promising, such techniques have thus far been restricted to ideal-
ized turbulent flows of reduced dimension and complexity; there
is ample room to explore generative modeling methods for repre-
senting convective details amidst settings of realistic geographic
complexity. Meanwhile, generative modeling besides GANs have
not been as thoroughly considered for turbulent flow emulation
and could potentially power climate models down the line.

VAEs may prove more appropriate than GANs for these climate
applications given their design containing both a generative and
representational model, their often superior log-likelihoods and re-
construction simulations, and practical advantages including stabler
training results, easier performance benchmarking, and more inter-
pretable latent manifold representations [12, 22, 34]. Modified VAEs
can reconstruct plausible two-dimensional laminar flow with com-
putational efficiency beyond what is common when numerically
solving linear differential equations [6]. There has been preliminary
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Layer Filters Kernel Stride Activation

2D Conv 64 3x3 2 relu
2D Conv 128 3x3 2 relu
2D Conv 512 3x3 2 relu
2D Conv (µ) 64 3x3 2 relu
2D Conv (σ ) 64 3x3 2 relu

Table 1: Our Encoder architecture. Conv refers to a convolu-
tional hidden layer. The first hidden Conv layer receives an
input vector of 32x128 (30x128 expanded by padding) repre-
senting a vertical velocity snapshot.

work using VAEs for the clustering of atmospheric dynamics – a
gain again relying on simplified Lorenz ’96 model data as well as
potential vorticity fields and geopotential heights [31, 32]. This
application of representation learning across a variety of simplified
simulations suggests VAEs offer great potential as both an engi-
neering tool to help escape computational limits on the generative
side and may provide the ability to learn and extract hidden organi-
zational details in atmospheric dynamics on the representation side.
However, to the best of our knowledge, this is the first study to use
a VAE for representational learning on the details of convective
organization and associated gravity wave radiation1 as revealed by
spatial snapshots of vertical velocity – an inherently chaotic and
bimodal variable [9] – across a dataset large enough to nonetheless
encompass the spatiotemporal diversity of turbulence regimes in
the atmosphere. As far as we know, this is also the first study to con-
strain a VAE’s output statistics by adding a covariance constraint
term to its loss function to improve representation and capture
variance details at small spatial scales in the turbulent atmospheric
boundary layer, which can be considered one of the most difficult
locations for climate models. Our results demonstrate the power
of VAEs to accurately reconstruct high-resolution climate data, as
well as their ability to leverage dimensionality reduction for high
level feature learning and anomaly detection. This casts VAEs as
promising tools for both dynamical analysis and stochastic parame-
terization of fine-scale atmospheric processes from cloud-resolving
data.

2 METHODS
In this Section, we discuss the architecture of the three machine-
learning models used here, the design of our covariance constrained
VAE loss function, and the generation and preprocessing of the
atmospheric simulation data.

2.1 Architecture
Our VAE takes vertical velocity fields formatted as (30×128) 2D
images. We adopt a fully convolutional design2 to preserve local
information, which is essential in atmospheric convection modeling
1Here we are referring to internal gravity waves, which are horizontally-propagating
disturbances in the atmosphere generated by density perturbations, e.g. from deep
convection, frontogenesis, or topography.
2Earlier experiments used architecture similar to models used for CIFAR-10 data [19]
with fully connected dense layers separating the encoder and the decoder from the
latent space, but led to discouraging reconstructions plagued by posterior collapse and
an inability to represent the spatial patterns of convection.

Layer Filters Kernel Stride Activation

2D Conv-T 1024 3x3 2 relu
2D Conv-T 256 3x3 2 relu
2D Conv-T 64 3x3 2 relu
2D Conv (µ) 1 3x3 2 sigmoid
2D Conv (σ ) 1 3x3 2 linear

Table 2: Our Decoder architecture. Conv-T refers to a trans-
posed convolutional hidden layer.

(Tables 1 and 2). We obtain meaningful reconstruction performance
by ensuring that the information bottleneck in the VAE is not too
severe, i.e. that the latent space is still wide enough to preserve
enough fine features of the vertical velocity fields (in our case
of dimension 1024), and by implementing annealing techniques
outlined in [1, 11]. Here, we analyze two successful VAEs: One with
a traditional negative ELBO in the loss, and one with an additional
covariance constraint in the loss. As a baseline, we also implemented
a regular autoencoder of the same design as above, with two key
differences: All activations were replaced with the identity function
and our covariance constrained loss was replaced with the mean-
squared error. We refer to this model as the “linear” model, and
use it to better quantify the added value of VAEs for modeling
atmospheric convection.

2.2 VAE Loss Implementation
The total loss is the sum of two terms: the negative of the Evidence
Lower Bound (ELBO), commonly used as the total VAE loss, and a
covariance constraint loss term [6, 20, 30] on the covariance matrix
that we weigh by λ ∈ R+:

Loss def
= −ELBO + λ × CC, (1)

where CC is a “covariance constraining” term using the Frobe-
nius norm | | · | | to measure the distance between the covariance, Σ,
of the likelihood pθ (x|z) and the covariance, Σ, of the true data dis-
tributionp(x). θ refers to model parameters and x refers to observed
vertical velocity fields:

CC = | |Σ(pθ (x|z)) − Σ(p(x))| |. (2)
Unconstrained VAEs (λ = 0), henceforth referred to as “VAE” for

short, maximize the ELBO, defined as the sum of the log-likelihood
pθ (x|z), and the Kullback-Leibler (KL) Divergence between p(z)
and qϕ (z|x):

ELBO(x;θ ,ϕ, z) = Eqϕ (z |x)[logpθ (x|z)]

− DKL(qϕ (z|x) | | p(z)),
(3)

where ϕ are our variational parameters which are learned jointly
with the model parameters, θ . p(z) refers to the prior and qϕ (z|x)
refers to the estimated posterior. We denote hidden variables as z.
Minimizing the KL loss term regularizes the variational parameters
in the model and makes the VAE posterior more similar to the VAE
prior. Maximizing the log-likelihood enables the VAE to produce
realistic vertical velocity fieldswhere the outputwill bemore closely
aligned with the latent variable of the model. Following [18], we
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assume that the prior over the parameters and the hidden variables
are both centered isotropic Gaussian and calculate ELBO using
equation (24) of [18].

To control the rate-distortion trade-off [1], we implement linear
annealing to the KL loss term following [2], where the KL term
is multiplied by an annealing factor linearly scaled from 0 to 1
over the course of training. In our VAE, linear annealing results in
significantly lower KL losses and more interpretable latent spaces.

Finally, to generate vertical velocity fields with realistic spa-
tial variability, we additionally implement covariance-constrained
VAEs. Following Equation 2, the covariance constraint is defined
as the Frobenius norm of the covariance matrix error, which we
estimate over each batch during optimization. We choose a pre-
factor λ = 106 so that the magnitude of the covariance constraint
matches that of the reconstruction loss, resulting in a covariance-
constrained VAE “CC-VAE” that generates more faithful covariance
matrices.

2.3 Data & Preprocessing
2.3.1 Cloud-Resolving Data. To train and test our VAE, we rely on
snapshots of vertical motions with explicitly-resolved moist con-
vection and gravity wave radiation obtained from ∼15k instances
of a Cloud-Resolving Model (CRM) [16, 17] embedded within a
host Global Climate Model (GCM). The CRMs operates at a 20s
native timestep data and we extract state snapshots from it every
15 minutes, the frequency with which its horizontal average state
is permitted to interact with its host GCM. We perform a 100-day
multi-scale climate simulation to generate data showing details
of atmospheric convection within a tropical belt from 20N to 20S
latitudes. Specifically, at each 1.9◦ × 2.5◦ horizontal grid cell of the
Super-Parameterized Community Atmosphere Model (SPCAM5),
we embed a 128-column System for Atmospheric Modeling (SAM)
micro model with kilometer scale horizontal resolution; both the
host and embedded models use 30 vertical levels. This entire dataset
comes to a size of 1.3 Tb. For our purposes, there is 30 level by 128
CRM-column "snapshot" or "image" of a convective-scale vertical ve-
locity field at each latitude-longitude grid cell that we feed into the
encoder of our neural network. We train our VAEs on sub-samples
of this data staged on UC Irvine’s GreenPlanet Super-computing
node and our machine learning simulations are powered by two
NVIDIA Tesla V100 and one NVIDIA Tesla T4 GPUs.

2.3.2 Preprocessing. To reduce data volume for efficient training
and to ensure our VAE is exposed to a plethora of convective mo-
tion, we selectively sample from the initial 1.3Tb SAM dataset. We
restrict our initial data volume to the 144 latitude/longitude co-
ordinates with a detectable diurnal cycle of precipitation where
amplitude of daily precipitation is greater than two times its stan-
dard deviation within the larger-scale host model. This precipitation
filtering ensures samples of strong convection get placed into the
training dataset, as a persistent diurnal cycle of precipitation often
indicates deep convection and the presence of mesoscale convective
systems [3]. Within these selected grid cells, the vertical velocity
values range from 37.3m s−1 to −17.4m s−1 and are then scaled
from 0-1 by subtracting the minimum and dividing by the range.

We shuffle data in the spatial and temporal dimensions prior to
training. We use An 80%/20% training/test split for all models. To

ensure a balanced dataset of different convective types, we apply K-
means clustering with two centroids to group data with active and
inactive vertical velocity fields. We then sample equally from both
clusters without replacement to design a balanced dataset for the
VAE. This new 4.3Gb dataset has a 111206/27802 training/test split.
Since the horizontal domain is doubly-periodic, two vertical velocity
updrafts of equal magnitudes and size located at different horizontal
locations are physically identical. To prevent the VAE from treating
them as different at the expense of reconstruction magnitude and
variance, we preprocess all samples so that the center of the vertical
velocity field is the location of strongest convection present in the
sample. We define the “strongest convection” as the largest absolute
value of spatially-averaged vertical velocity, from 400hPa to 600hPa
in the vertical and using a moving average of 10km horizontally.

2.4 Quantifying Reconstruction Performance
We quantify the reconstructions of our final VAE and CC VAE as
well as our linear baseline using the following metrics:

2.4.1 Hellinger Distance. We calculate the Hellinger distance H
between the discrete distributions to gauge similarity [23]:

H (p,q) =

√√√ k∑
i=1

(
√
pi −

√
qi )2

2
(4)

where p is the distribution of the original vertical velocity fields
and q is the distribution of the corresponding reconstruction.

2.4.2 Mean Squared Error (MSE). To provide an overall skill of the
reconstruction, the MSE is calculated between each original sample
and its corresponding reconstruction.

2.4.3 Spectral Analysis. To better understand the skill of the VAE
reconstruction from a spatial perspective, we perform one-dimensional
spectral analysis on each sample and reconstruction at all 30 levels
in the vertical dimension. We examine four vertical levels com-
monly used in meteorology: 850hPa (top of the boundary layer),
700hPa (lower troposphere), 500hPa (mid-troposphere), and 250hPa
(upper-troposphere) to see how our VAEs capture the spatially-
resolved vertical velocity variance throughout the atmosphere. We
calculate the power spectral density Φk using:

Φk
def
=

∆n

N

������N−1∑
j=0

yje
−i jk
NT

������
2

(5)

where N is the length of the x dimension, yj is the sample or
reconstruction, T is 1/length, i is the imaginary unit and k is the
vertical level of interest in hPa (850, 700, 500, or 250) [4].

3 RESULT & DISCUSSION
Our VAE trained on cloud-resolving climate data produces accurate
vertical velocity field reconstructions. When we provide the high
resolution training dataset and appropriate convolutional architec-
ture, our VAE learns remarkably accurate representations of any
type of convection found within the test dataset. Our VAE captures
the magnitude, proper height, and structure across deep convective
regimes, shallow convective regimes, and non-convecting regimes
(Figure 4). When the “Covariance Constraining” term is added to
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Figure 1: Visualization of the latent space originally in dimension 1024, but reduced to dimension 2 by Principle Component
Analysis (PCA) [26]. The standard deviations of different types of convection the VAE learns to cluster are embedded near
corresponding clusters. This suggests the VAE learns an interpretable clustering of the data, with means and variances both
contributing to the results.
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Figure 2: Spectral Analysis at 4 different levels of the atmosphere comparing the test data to our best VAE and CC VAE as well
as a linear model. At small spatial scales we see the importance of the Covariance Constraint to capture the variance native
to convection (orange vs. red).

create a physically informed loss, the CC VAE performance im-
proves enough to match a linear baseline (Table 3). But unlike
many other image recognition tasks generative models perform,
reconstructing the mean of the convection is necessary but not
sufficient – we must capture the variance and correlation in the
vertical velocity fields. The CC VAE reconstructs variance better
than a traditional convolutional VAE and at least on par with the
linear baseline (Table 3, Figure 2). Our CC VAE is the most versatile
of our models with an accurate reconstruction performance overall
at different levels of the atmospheric column and different convec-
tive spatial scales based on the power spectra of the three models
(Figure 2). This precision across both small and large spatial scales
revealing our CC VAEs ability to emulate both the overall large

pattern of convective plumes and the details within convective
composition. Our CC VAEs results replicate disparate structures of
convection in both areas of high stochasticity near the atmospheric
boundary layer, characteristic of shallow convection, as well as in
the upper troposphere, where deep convective regimes dominate.
At this stage CC VAEs match the performance of our linear baseline
but do not exceed it.

However, unlike the linear baseline, our VAE and CC VAE dis-
cover the details of convective organization by representation learn-
ing via dimensionality reduction and feature extraction. A 2D, de-
terministic PCA projection of our CC VAE latent space clusters
and separates different convective types (Figure 1). In particular,
the distinction between deep and shallow convective regimes and
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Figure 3: Convection Type Predictions The diurnal composite from a ten day average at four unique times of day are shown
above. The VAE predicts the type of convection occurring in tropical locations over the course of a typical Boreal Winter
Diurnal Cycle. Semantic similarities of the VAE latent space are reflected in the global geospatial weather patterns.
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Figure 4: Reconstructions The trained VAE reconstructions closely resemble those from the test dataset and accurately predict
the location, magnitude and spatial structure of convective plumes.
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Figure 5: 2D PCA Temporal Projection All spatial locations comprising the Amazon Rainforest are averaged together from
November to February to get a single composite diurnal cycle that is fed through our trained VAE. The colors above correlate
to time of day (Local Solar Time). The results show a clear separation in representation on the latent space of the timing
of deepest convection and maximum precipitation (mid afternoon) from when shallow convection and calmer conditions
dominate (early morning).
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Figure 6: Anomaly DetectionWe use the ELBO in the VAE Loss function to identify themost anomalous vertical velocity fields.
We show the 9th most anomalous field because it exhibits multiple deep convective plumes.

Model MSE Hellinger Distance Frobenius Norm

Linear 4.2e-6 2.0e-3 8.0e-3
VAE 1.1e-5 3.1e-4 3.2e-4
CC VAE 4.5e-6 2.0e-3 8.0e-6

Table 3: Quantitative Reconstruction Metrics. We compute
the MSE and Hellinger Distance between true and predicted
reconstructions. This shows the baseline is equally good at
predicting the mean reconstruction. We also compute the
Frobenius Norm of the error in the covariance matrices of
the true data and the reconstructions. Both VAEs capture
more of the covariance structure of the data than the linear
baseline.

non-convective regimes is encouraging (Figure 1, please visit this
link for a complete animation of the 2D Projection of the latent
space). The physical knowledge represented in our CC VAEs latent
space stands alone from other forms of dimenionality reduction
(PCA and t-SNE on the preprocessed data) where there is no ev-
idence of distinction based on convective type. Furthermore, CC
VAE predictions of convective type based solely on latent space
location map back to a physically sensible pattern over the trop-
ics with deep convection concentrated on land over the Amazon
and African Rainforests as well as over the Pacific Warmpool (Fig-
ure 3). These predictions from latent space location not only map
convection type in a spatially coherent pattern, but also capture
the change in convection type with the diurnal cycle over moist,
tropical continents (Figure 3, please visit this link for a complete
animation of the tropical diurnal cycle). When we exclusively re-
strict the test dataset to an Amazon Diurnal Composite, the known
coherent transitions from shallow to deep convection that occur
over tropical rain-forest in response to solar heating of the diurnal
cycle correspond to monotonic trajectories in the latent space pro-
jection, verified using both t-SNE and PCA (Figure 5). Further tests
are required on more complex convective transitions to understand

the extent of the physical meaning of the CC VAE latent space, but
these initial positive results suggest great potential for physically
constrained VAEs as a tool in atmospheric dynamics to uncover
information about convective transitions, storm morphology and
propagation.

We also evaluate ELBO (Equation 3) for each sample of our test
data to find unusual storm development and activity in the dense
CRM data.

ELBO allows us to determine the degree to which a vertical
velocity field, drawn from our models latent variables is an aber-
ration in the data. Our VAEs inherent ability to detect anomalies
in the vertical velocity data proves to be an elegant way to iden-
tify deep convection in a more thorough manner than traditional
vertical velocity thresholding. An example of one such anomaly
we identify is Figure 6 – in this case an instance of two moder-
ate storms developing in one CRM array. This phenomena would
be less straightforward to locate through conventional methods,
particularly given the size and density of data involved. Our VAEs
attribute of anomaly detection learns characteristics of the data
instead of naively thresholding based on priors experiences that
may not reflect the composition of the dataset. This feature provides
the potential to help identify interesting and unexpected weather
phenomena from noise – artifacts that might otherwise never be
studied in overwhelmingly large and rich datasets.

4 CONCLUSION
We develop a VAE to reconstruct immaculate convection images
from a high-resolution, cloud-resolving dataset. Our VAE, particu-
larly once a statistically constrained loss function is added, captures
the variance and magnitude of distinct convective regimes. The
latent space of the VAE proves to be a potent tool for making physi-
cally sensible predictions of convection type that accurately reflect
the tropical atmosphere and capture the effects of solar heating
through the diurnal cycle. The unique VAE loss function allows
us to use ELBO to find anomalous storm development in a dense,
high resolution dataset that traditional methods might miss. But
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there is much work to be done before a VAE could be implemented
to power stochastic parameterizations for a climate model, likely
requiring to condition the VAE on large-scale thermodynamics via
expansion of the input vector. If successful, the ability to quickly
and efficiently generate synthetic, detailed vertical velocity fields to
help run climate models would be a valuable resource for the atmo-
spheric sciences and meteorology communities. But improvements
in the generative capabilities would likely come at the expense of
the representation learning and the VAEs diagnosis of the physics
of convection. We believe these preliminary physical intuitions
achieved via representation learning represent a promising avenue
for the broader application of generative modeling for advancing
the field of atmospheric dynamics [1, 11] and warrant further in-
vestigation to understand their full potential.
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