
1.  Introduction
Although global atmospheric model simulations are increasingly high-resolution, even under optimistic 
scenarios of enhanced computing performance, physically resolving the atmospheric turbulence con-
trolling clouds will likely not be feasible for decades. Current climate model horizontal grid cells are typi-
cally 50–100 km wide but the turbulent updrafts governing cloud formation occur on scales of just tens to 
hundreds of meters and the microphysical processes regulating convection occur down at the micrometer 

Abstract  We explore the potential of feed-forward deep neural networks (DNNs) for emulating 
cloud superparameterization in realistic geography, using offline fits to data from the superparameterized 
community atmospheric model. To identify the network architecture of greatest skill, we formally 
optimize hyperparameters using ∼250 trials. Our DNN explains over 70% of the temporal variance at 
the 15-min sampling scale throughout the mid-to-upper troposphere. Autocorrelation timescale analysis 
compared against DNN skill suggests the less good fit in the tropical, marine boundary layer is driven by 
neural network difficulty emulating fast, stochastic signals in convection. However, spectral analysis in 
the temporal domain indicates skillful emulation of signals on diurnal to synoptic scales. A closer look 
at the diurnal cycle reveals correct emulation of land-sea contrasts and vertical structure in the heating 
and moistening fields, but some distortion of precipitation. Sensitivity tests targeting precipitation skill 
reveal complementary effects of adding positive constraints versus hyperparameter tuning, motivating the 
use of both in the future. A first attempt to force an offline land model with DNN emulated atmospheric 
fields produces reassuring results further supporting neural network emulation viability in real-
geography settings. Overall, the fit skill is competitive with recent attempts by sophisticated Residual 
and Convolutional Neural Network architectures trained on added information, including memory of 
past states. Our results confirm the parameterizability of superparameterized convection with continents 
through machine learning and we highlight the advantages of casting this problem locally in space and 
time for accurate emulation and hopefully quick implementation of hybrid climate models.

Plain Language Summary  Machine learning methods have been previously used to 
replace parameterizations (approximations) of atmospheric convection under very idealized scenarios 
(aqua-planets). The hope is that these machine learning emulators can help power the next generation 
of climate models with similar accuracy but at a fraction of the computational cost. But important 
questions remain about how learnable more realistic convection (over both land and ocean) is. Recently, 
the first attempt at machine learning replicated convection was made under these Earth-like conditions. 
But it required a highly specialized neural network as well as memory of the previous behavior of the 
atmosphere. This design would make using these machine learning emulators with climate models very 
difficult. This motivates learning convection under realistic geography with a simpler network. Our results 
are reassuring because our simple neural network learns realistic convection over land as well as a more 
complicated model. But even harder tests involving full coupling with a host climate model will be needed 
to truly test this method's potential.
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scale (Blossey et  al.,  2016; Morrison et  al.,  2020; Schneider et  al.,  2017). This discrepancy creates large 
uncertainties about the precise details of deep convection on cloud feedbacks and climate change (Bony 
et al., 2015). Multiscale methods such as embedding two-dimensional (2D) cloud resolving models (CRMs) 
into general circulation model (GCM) grid cells (superpararmeterization) have been used to directly resolve 
the spatial and temporal progression of moist convection. More recently, explicit kilometer-scale simulation 
of moist convection has improved the representation of deep convective clouds and the hydrological cycle 
(Christensen et al., 2015; Daleu et al., 2015; Li & Xie, 2012; Randall et al., 2003; Schneider et al., 2017). These 
advancements allow models to simulate historically challenging atmospheric modes of variability like the 
observed afternoon maxima of deep convection over continents and a more realistic probability distribution 
of precipitation that captures extremes on the tail-end (Kooperman et al., 2016; Li et al., 2011). However, 
even the highest resolution global CRM simulations today require some assumption-prone parameteriza-
tion for microphysics and sub-km turbulence, among other cloud processes (Cheng & Xu, 2011; Siebesma 
et al., 2007), although multiscale algorithms still hold promise for making some of this explicitly tractable 
(Jansson et al., 2019; Parishani et al., 2017).

Given these dual physical and computational hurdles, using machine learning emulators to replace subgrid 
convective physics in coarse-resolution climate models is an area of rapidly increasing interest. Following 
seminal works including Krasnopolsky et al. (2010), Krasnopolsky et al. (2008), and Kisi et al. (2013), recent 
breakthroughs from global aqua-planet simulations have provided a proof of concept for hybrid climate 
models powered by machine learning. Gentine et al. (2018) showed 40–100 M samples taken from a zonally 
symmetric aqua-planet simulation were sufficient to train 5–10 layers deep neural network (DNN) to emu-
late superparameterized convective heating and moistening in a hold-out test data set, with R2 greater than 
0.7 in the midtroposphere. Building on these results, Rasp et al. (2018) demonstrated that a similar DNN 
could even be run in a prognostic setting, coupled to an advective scheme in the Community Atmosphere 
Model (CAM), thus generating accurate mean climate states and equatorial wave spectra at as low as 5% of 
the computational cost of actual superparameterization. Recently, O'Gorman and Dwyer (2018) and Yuval 
and O'Gorman (2020a) showed that similar prognostic success can occur in idealized aqua-planets trained 
on coarse-grained three-dimensional (3D) output using random forests (RFs). These RFs used refined in-
puts and outputs tailored to the prognostic variables underlying the System for Atmospheric Modeling or 
SAM, which is the embedded CRM used in the superparameterized community atmospheric model (SP-
CAM) multimodel framework. Whereas all of the above studies have focused on aqua-planets, skillfully 
replicating convection in more complex, realistic settings are a key step towards building a replacement for 
traditional subgrid parameterizations of deep convection in climate models.

Achieving competitive emulation of convection under realistic geography may be a much more significant 
hurdle for neural networks. At the time of this writing, a first pioneering attempt has been made to fit super-
parameterized convection in a realistic operational setting. Results of this study indicate that sophisticated 
network designs involving the addition of 1D convolutions in the vertical dimension, and “residual” neural 
network architecture (He et al., 2015) using state information from previous time steps, appeared critical 
to achieving reasonable fits (Han et al., 2020). This raises two issues. From a practical perspective, imple-
menting neural networks that rely on prior temporal information (such as the Resnet in Han et al. [2020]) 
as coupled components of a host climate model is technically challenging since previous timesteps are not 
typically passed to the physics parameterization. From a philosophical perspective, this raises doubts about 
casting machine learning parameterizations of convection locally in time. If confirmed, these two issues 
make the full potential of neural network (NN) emulators as a tool to advance scientific understanding 
beyond aqua-planets substantially harder to utilize.

On this basis, we explore whether feed-forward DNNs are capable of emulating convection with real-geog-
raphy if sufficient hyperparameter tuning is taken advantage of when training our neural network. The hy-
pothesis that even a feed-forward neural network can emulate superparameterized convection with realistic 
geography is based in part on the results of Ott et al. (2020) on aqua-planets in which formal, expansive hy-
perparameter tuning was identified as essential for the performance of a DNN to emulate convection. We fo-
cus on emulating superparameterization to avoid the ambiguities due to coarse-grained uniformly resolved 
CRM output (Brenowitz & Bretherton, 2018). We readily acknowledge that other methods such as RFs (Yu-
val & O'Gorman, 2020b) also show success and promise in subgrid convection emulation. Indeed, RFs have 
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some advantages, including automatically respecting physical constraints that are linear in their outputs, 
such as energy conservation, and positive-definite precipitation, which are not guaranteed in DNNs (Yuval 
& O'Gorman, 2020b). Furthermore, Watt-Meyer et al. (2021) have demonstrated that RFs can be used to 
correct, or “nudge” parameterizations and reduce simulation errors even for realistic convection. However, 
there are also ways to enforce such constraints in DNNs (Beucler et al., 2019; Kumar et al., 2020), and RFs 
also come with disadvantages. To cite a few, RFs with deep trees quickly become computationally expensive 
for large data sets, requiring large storage capacity which could prevent taking full advantage of Graphics 
Processing Unit (GPU) infrastructure (Yuval & O'Gorman, 2020b). RFs may struggle to capture local pat-
terns in the atmosphere as well (Watt-Meyer et al., 2021). For these reasons, we leave RFs for future work.

Here, our task is to understand what convective patterns, cycles, and modes of variation in a realistic setup 
of superparameterized convection can be fitted with a feed-forward DNN. We additionally aim to establish a 
set of postprocessing metrics to benchmark our own neural network's performance and transparently com-
pare different neural network emulators trained on similar data. Section 2 outlines the details of our sim-
ulation data set, introduces the design of a neural network, and describes our automated hyperparameter 
tuning algorithm, capable of finding a reasonable fit. Then, in Section 2.3, we lay out our test benchmarks. 
In Section 3, we present the spatial and temporal breakdown of our neural network predictions for parame-
terized convective tendencies. We also analyze the plausibility of the neural network emulated hydrological 
cycle in detail. The last part of Sections 3 examines the potential to couple an aqua-planet trained neural 
network to a land model as another credibility test towards a hybrid climate model. Section 4 includes a 
summary of our work, its limitations, and potential directions for future research.

2.  Methods
2.1.  Climate Simulation Data

We leverage three different data sets to train, test, and benchmark DNNs emulating convection with re-
al-geography. The data are based on the SPCAM, a global climate model that nearly explicitly resolves 
atmospheric moist convection by using idealized embedded CRMs (Grabowski, 2001; Randall et al., 2003). 
Each of the host GCM's grid cells embeds 2D CRMs of optional horizontal resolution and physical extent, 
thus avoiding heuristic parameterization of subgrid moist convective processes (Benedict & Randall, 2009; 
Randall et al., 2003).

For a point of reference, we first use outputs from SPCAM v.3 (SPCAM3) at T42 spectral truncation (i.e., 
8,192 horizontal grid cells) driven with boundary conditions of a zonally symmetric aqua-planet; as in Rasp 
et al. (2018). We then build beyond previous aqua-planet emulation studies by generating a new data set from 
a more modern version (v.5) of SPCAM (SPCAM5) that includes higher horizontal resolution (1.9° × 2.5° 
finite-volume dynamical core, i.e., 13,824 grid cells) and in which we incorporate realistic boundary con-
ditions, including a land surface model, seasonality, and a zonally asymmetric annual climatology of sea 
surface temperatures (SSTs). The data set is similar to one recently used in Han et al.  (2020) but with a 
few differences. The simulation itself is 10-year long, but selectively subsampled to every 10 days to avoid 
temporally autocorrelated training samples. We also rely on a shorter GCM timestep (15 min as opposed to 
20) (Table 1). As in Gentine et al. (2018) and Rasp et al. (2018), but unlike Han et al. (2020), we make the 
further simplification of using a reduced (32-km) CRM horizontal extent, that is, CRMs with only 8-column 
apiece, instead of the 128-km/32-column CRM configuration (Table 1). This decision, based on Pritchard 
et al. (2014)'s finding that (for deep convection) small CRM domains do not corrupt the representation of 
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Simulation data sets

Details CAM5 SPCAM3 SPCAM5

Spatio-temporal resolution 1.9° × 2.5° × 15 min 2.8° × 2.8° × 30 min 1.9° × 2.5° × 15 min

Total number of days simulated 93 93 3,650

Total number of atmospheric columns simulated 123,420,672 36,569,088 4,843,929,600

Table 1 
Details of the Three Data Sets Used for Benchmarking the Results of Our DNN Trained on Real-Geography Data
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tropical wave dynamics in SPCAM. This also has the advantage of simplifying the comparison of our results 
to Gentine et al. (2018) and Rasp et al. (2018). Meanwhile, there are reasons to think it may facilitate DNN 
emulation (Brenowitz et al., 2020; Ott et al., 2020). The codebase for running the “SPCAM5” simulations 
is the same employed by Parishani et al. (2017), which is archived at https://github.com/mspritch/Ultra-
CAM-spcam2_0_cesm1_1_1; this code was in turn forked from a development version of the CESM1.1.1 
located on the NCAR central subversion repository under tag spcam_cam5_2_00_forCESM1_1_1Rel_V09, 
which dates to February 25, 2013. Finally, for reference, we analyze output from the conventionally param-
eterized version of CAM5; this helps assess the emulation of Superparameterization compared to conven-
tional parameterization.

2.2.  Neural Network Design

We design a DNN that takes the same inputs as standard convection parameterizations in CAM to predict 
subgrid-scale tendencies at each vertical level and across each timestep globally. The neural network in-
puts can be thought of as atmospheric thermodynamics components in the 8-year SPCAM5 data training 
simulation including: both temperature (K) and specific humidity (kg/kg) for each of the 30 vertical levels 
spanning the column, as well as surface latent heat flux (W/m2), surface sensible heat flux (W/m2), top of 
atmosphere (TOA) solar insolation (W/m2), and surface pressure (hPa). By including surface pressure in 
the input vector, we allow the neural network to fit horizontal variations in the vertical pressure grid, which 
is based on a hybrid terrain-following coordinate (Neale et al., 2010). Concatenating these state variables 
creates an input vector to the neural network of length 64. Each of the input variables was pre-normalized 
before exposure to the neural network by subtracting its respective mean and dividing by its respective 
range, with these statistics computed and applied separately for each vertical level in the case of the verti-
cally resolved temperature and humidity profiles (Table 2). The reason we divide by the range instead of the 
more traditional standard deviation, in line with the methods of Rasp et al. (2018), is to avoid dividing by 
near-zero numbers, for example, in the case of stratospheric humidity. Some previous aqua-planet experi-
ments also used the meridional wind vertical profile as part of the input vector to the neural network, but 
it was omitted in this case as preliminary neural network tests indicate it had an insignificant effect on the 
skill of the trained network while increasing the input vector length by 30 and thus substantially increas-
ing training time (Gentine et al., 2018; Rasp et al., 2018); we note that Han et al. (2020) also deem this an 
avoidable input.

Our DNN ultimately predicts the subgrid-scale time tendency of temperature (K/s) or heating tendency for 
short, which includes the subgrid advection of temperature by convection and fine-scale turbulence, as well 
as grid average radiative heating throughout the column. It also predicts the subgrid-scale time-tendency of 
specific humidity throughout the column (kg/kg/s)—or moistening tendency for short. A scalar is predicted 
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DNN setup

Input Size Output Scaling factor Size

Temperature (K) 30 Heating tendency (K/s) cp 30

Specific humidity (kg/kg) 30 Moistening tendency (kg/kg/s) Ls 30

Surface pressure (hPa) 1 TOA LW flux (W/m2) −1E−3 1

Solar insolation (W/m2) 1 Surface LW flux (W/m2) 1E−3 1

Sensible heat flux (W/m2) 1 TOA SW flux (W/m2) −1E−3 1

Latent heat flux (W/m2) 1 Surface SW flux (W/m2) 1E−3 1

Precipitation (m/s) 1,728,000 1

Note. cp Refers to the specific heat capacity of air at a constant pressure and is assumed to be 1.00464E−3 (J/kg/K) and Ls is the latent heat of sublimination of 
water in standard atmospheric conditions calculated by adding the latent heat of vaporization 2.501E−6 (J/kg) and the latent heat of freezing 3.337E−5 (J/kg). 
Precipitation is weighted by the same prefactor, 1,728,000, also used in Rasp et al. (2018) to ensure it is felt in the loss function of the DNN.
Abbreviations: DNN, deep neural network; TOA, top of atmosphere.

Table 2 
Details of the Input and Output Vectors to the DNN

https://github.com/mspritch/UltraCAM-spcam2_0_cesm1_1_1
https://github.com/mspritch/UltraCAM-spcam2_0_cesm1_1_1
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for precipitation (mm/day) as well as for the long and shortwave net radiative fluxes (W/m2) at both the 
surface and the TOA. This fully concatenated output vector is of length 65 (Table 2). The state variables 
that comprise the output vector have different units, making the ultimate mean squared error (MSE) of the 
neural network devoid of physically meaning. To ensure that all of the predicted variables have comparable 
magnitude and can be felt in the optimizer, we apply multiplicative prefactors as in Rasp et al. (2018), rec-
ognizing that other choices can also be made such as additionally weighting by the mass of each pressure 
level (Beucler et al., 2019).

2.3.  Performance Analysis and Postprocessing

To assess the skill of our DNNs after training, we benchmark them against an offline hold-out test data set 
with multiple metrics. This is a first step to determine whether our DNNs could be candidates for online 
coupling, which we leave for future work. How well a neural network emulator appears to perform is in part 
a reflection of statistical analysis choices. Multiple conventions have been used and the degree of spatial 
averaging before applying error statistics has not been sufficiently reported to do inter-study comparison 
confidently, though spatial averaging is common practice (Brenowitz & Bretherton, 2018; Han et al., 2020; 
Rasp et al., 2018). In some cases, snapshots of unaveraged data (Rasp et al., 2018) have helped reveal issues 
at the finest resolved scales while zonally averaged temporal standard deviations (Han et al., 2020) have 
helped reveal issues in emulation of convective tendencies at small time intervals and spatial scales in 
neural network fits. Precipitation time series and probability density functions (PDFs) (Han et al., 2020; 
O'Gorman & Dwyer, 2018; Rasp et al., 2018) have also been used to assess neural network performance.

In our case, to examine the magnitude of the error between the neural network prediction and the SPCAM5 
target data, which we treat as truth, we will calculate a sum of squared errors (SSEs) separately for each 
longitude and latitude and, in the case of 3D variables, vertical level (based on the hybrid, terrain following 
sigma coordinate):

SSE y y
def

j

Nt

j j 









1

2

� (1)

where Nt is the length of the time series, y is the target SPCAM5 data, and ŷ is the corresponding neural 
network predicted value based on coarse-grained variables. In this case, we examine the performance of 
the neural network predicting heating and moistening tendencies. The primary metric for assessing DNN 
prediction and the associated spatial error structure is the coefficient of determination, R2, defined as:

R
SSE

y y

def

j 1

Nt

j

2

2

1 

 

( )

,
� (2)

where y is the temporally averaged heating or moistening tendency at a given latitude, longitude, and ver-
tical level.

We apply R2 to data entirely unaveraged in the latitude, longitude, and pressure dimensions. When visu-
alizing averaged R2, we often use latitude-longitude cross-sections at specific vertical levels to reveal error 
structure at the native 15-min sampling interval (Figure 2). In other portions of the analysis, we use spatial 
averaging before the error calculation, as in Han et al. (2020). For instance, in pressure-latitude cross-sec-
tions (Figures 1 and 3), we first zonally average the predictions and targets, before computing R2 over the 
time dimension. Furthermore, we examine R2 at two different temporal resolutions: the native model time-
step (15-min sampling; Figures 1, 2, and 6) since the strong diurnal cycle over land regions could bias the 
analysis between land and ocean regions, and then visualize with temporal averaging reducing the data to 
daily means (Figure 3).

We also wish to elucidate whether there is any detectable “mode-specific” performance, that is, certain 
temporal patterns that are especially predictable such as the diurnal cycle over continents in our moist 
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convection emulation. To that end, we calculate the temporal power spectral density (PSD) for a single 
month (July):

PSD
t

N
yk

def

t
k

  2 2
 ,� (3)

defined as the square complex modulus of the Fourier transform:

 y y e
k

def

j 0

Nt

j

ijk

Nt   


 
1

2

,� (4)

where y is a time series of values of convective heating or moistening tendency at a given location, Δt is 
the sampling time interval, and i is the imaginary unit so that i2 = −1 (Cooley & Tukey, 1965). The PSDs of 
heating and moistening tendencies are analyzed both regionally and globally as follows: we mass weight 
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Figure 1.  The R2 coefficient of determination for zonally averaged DNN predictions. We contrast the performance of 
a manually tuned deep neural network emulating aqua-planet target data (a) and (b) with three comparable neural 
networks trained on full complexity real-geography data. These include our baseline linear model (c) and (d), a 
manually tuned neural network (e) and (f) and our semi-automated, formally tuned Sherpa neural network (g) and (h). 
Skill shown separately for heating tendency in (K/s) (a, c, e, g) and moistening tendency in (kg/kg/s) (b, d, f, h). Areas 
where R2 is greater than 0.7 agreement between are contoured in pink and areas greater than 0.9 in orange. Convective 
tendencies are zonally averaged before the calculation of R2 to allow for a cross-section visualization. For ease of 
visualization and cleaner comparison with previous studies we show the plot of max(0,R2). DNN, deep neural network.
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each vertical level and then a PSD value is calculated for each frequency 
bin at each latitude, longitude, and pressure grid cell. We focus on times-
cales up to a month to examine variations in convection ranging from 
subdiurnal to synoptic timescales. Next, the spectral coefficients at each 
latitude, longtiude, and pressure level are combined into a single, aver-
aged PSD for the globe. We repeat this same analysis twice more, once 
with a land mask and once with an ocean mask. We also perform corre-
sponding spectral analysis in the spatial domain, that is, calculating the 
PSD as a function of zonal and meridional wavenumbers, separately for 
every vertical level and model time-step over the same month of July. For 
the zonal spectrum, we restrict our average to just tropical locations from 
20°S to 20°N and weight by the cosine of latitude to make an approximate 
Cartesian plane assumption. This enables us to sidestep the unequal grid 
spacing that would be a problem in this analysis if we included the mid-
latitudes in our spatial average.

Finally, to hone in on a regime in the lower tropical atmosphere that our 
R2 analysis suggests is especially difficult for our DNN to emulate, we will 
analyze the temporal autocorrelations of the subgrid scale tendencies. 
Our goal is to understand the regions where the DNN emulation of su-
perparameterized convection is detectably worse than the global average 
performance. As a proxy for the “stochasticity” of atmospheric motions, 
we calculate the autocorrelation function (ACF)—a measure of the self 
similarity between a given signal and a delayed version of itself—using 
the previously calculated PSD:

ACFj
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Fast signals that decorrelate quickly are more likely to be of stochastic 
nature. We thus compare the time to e-folding decay in ACF with R2 skill 
score in the planetary boundary layer to test for correlations between 
DNN skill and the timescale of dominant atmospheric signals (diurnal 
cycle, Rossby waves) visible in vertically resolved heating and moistening 
tendencies (Equation 3). We also use the inverse of the e-folding decay 
timescale, which we will refer to as the “autocorrelation frequency”, to 

examine the patterns between R2 coefficient of determination globally and the stochasticity of the dominant 
convective signals. This comparison offers a possible explanation for much of the variations in the perfor-
mance of our DNN throughout the planetary boundary layer.

To better quantify the differences between true and predicted PSDs, we rely on the log-spectral distance (D) 
(Wang et al., 2003):

D
N
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where the summation is done in frequency space. We examine the neural network performance not just for 
the convective heating and moistening tendencies but also for precipitation, for which we both calculate 
the PDF and global error between DNN predicted precipitation and SPCAM5 target data. Furthermore, 
we determine the diurnal timing of maximum precipitation globally, but we seek to filter out noise in the 
mid-latitudes. To that end, when determining the hour of maximum precipitation rate, we look only at 
locations that pass the following threshold:
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Figure 2.  The neural network skill in emulating subgrid heating at (a) the 
lowest model level and (b) the model level closest to 500 hPa, both at the 
native 15-min time step interval. The neural network fits locations over 
continents and the midlatitudes best down at the surface, while locations 
of midlatitude storm tracks are best fit by our neural network in the mid-
to-upper troposphere above 500 hPa. The tropics, in particular tropical 
locations over oceans, create the greatest challenge for the neural network 
emulation of subgrid heating tendencies. Areas where the coefficient 
of determination R2 is greater than 0.7 are contoured in pink and areas 
greater than 0.9 in orange. To facilitate comprehension, the map was 
smoothed using a 2D Gaussian averaging kernel with a standard deviation 
of 2 grid cells in both latitude and longitude (y and x). Each Gaussian 
filter was additionally truncated at 4 standard deviations. For ease of 
visualization and cleaner comparison with previous studies we show the 
plot of max(0,R2).
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         day

2max Precip min Precip max std Precip
/ 4 1N� (7)

where Precip refers to the model output precipitation rate in mm/day, Nday refers to the number of days ex-
amined and the max refers to the local maximum of the precipitation in the temporal dimension at a given 
latitude, longitude grid cell. Our assumption is that the effective degrees of freedom in the diurnal compos-
ite is 1/4 of the apparent degrees of freedom. More empirically, if we relax the threshold anymore we detect 
unrealistic signals in the marine zones of the mid-latitudes.

2.4.  Formal Hyperparameter Tuning

In several previous studies, small volumes of training data (as low as three months) and manual hyperpa-
rameter tuning were sufficient to achieve acceptable machine learning (ML) emulator performance (Gen-
tine et al., 2018; Rasp et al., 2018). Here, we make the hypothesis that with real-geography boundary con-
ditions, neural networks benefit from considerably more training data and formal hyperparameter tuning 
(Ott et al., 2020). To fully exploit our 10-year simulation, we split it into a training data set spanning the first 
8 years, a validation data set spanning the 9th year, and a test data set spanning the tenth year.

As a first step, we subsampled by a factor of 10 after sensitivity tests (not shown) indicated little difference in 
the fit skill from manual tuning attempts, likely due to redundant information from temporally autocorre-
lated state data. This subsampling in our preprocessing reduced the training data volume to a size that could 
be managed on a single GPU. Our initial architecture was inspired by previous literature, that is, composed 
of five fully connected layers with 256 nodes each. However, this manual configuration yielded poor perfor-
mance (Figure 1), and other manual attempts to explore alternate choices of hyperparameters and learning 
rate variations were likewise unsuccessful (not shown). A higher fit skill is desirable before undertaking the 
difficult task of coupling the neural network to the host climate model for online analysis.

We attained much better results after adopting a formal hyperparameter tuning. Automated neural network 
architecture searches have just begun to prove their value in climate modeling—both for optimizing offline 
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Figure 3.  Neural network performance at time step intervals (a) and (b) also seen in Figures 1g and 1h is contrasted 
with performance at the diurnal scale (c) and (d). Representation of heating tendency in (K/s) (a) and (c) and 
moistening tendency in (kg/kg/s) (b) and (d) are both examined. Zonal averages are again taken upstream of R2 
calculation. In both vertically resolved heating and moistening, there is an across the board gain in skill at longer 
timescales. Areas where R2 is greater than 0.7 are contoured in pink and areas greater than 0.9 in orange. For ease of 
visualization and cleaner comparison with previous studies we show the plot of max(0,R2).
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fits (Beucler et al., 2019) and even prognostic online coupled performance (Ott et al., 2020). Using similar 
approaches, we implemented a resource-intensive automated DNN training process, conducting a formal 
search over the following hyperparameters: batch normalization, dropout, LeakyReLU coefficient (Maas 
et al., 2013), learning rate, learning rate decay, number of layers, nodes per layer, and the optimizer (Kingma 
& Ba, 2014). All parameters and their corresponding ranges for the search are shown in Table 3.

This hyperparameter search took place in two stages, using “Sherpa” (Hertel et al., 2020), a Python library 
for hyperparameter tuning. First, we fit a large suite (over 200) candidate DNN models using a random 
search algorithm. The random search has the advantage of making no assumptions about the network 
architecture or the task of interest. In this stage, all hyperparameters, except the learning rate and learning 
rate decay, are modified. Excluding learning rate parameters in the first stage is strategic to ensure that any 
increases in performance are due to more skilled architectures.

Following the initial search, we conducted a second search on the best performing model uncovered during 
the first stage. This secondary investigation, which tested another 50 models, focused exclusively on the 
learning rate and learning rate decay settings. This procedure allowed us to train the network with the best 
possible learning schedule so as to maximize the network's performance while fixing the best-performing 
architecture uncovered in the first stage.

In total, we tested more than 250 network architectures. We noticed a dramatic improvement in perfor-
mance from the hyperparameter search quantified by the difference between the initial model's MSE and 
the MSE of the Stage 2 model. We also observed the benefit of tuning the learning rate and the learning rate 
decay in stage two. The validation loss of the stage 2 model descends smoothly and consistently compared 
to the more archaic original model or Stage 1 model. The final result of the hyperparameter search is shown 
in Table 3. We discuss below in the results section the extent to which hyperparameter tuning improves the 
benchmarks discussed above. To help quantify the improvements from the formal tuning we compare this 
“Best” DNN that was the result of the formal hyperparameter search against the “Manual” DNN that was 
designed similar to neural networks used in previous aqua-planet studies (Rasp et al., 2018). Additionally, 
we run tests on a baseline “Linear” model that is identical in all ways to the “Manual” DNN except for the 
fact that all activations are replaced with the identity function before training.

While it would be interesting to know whether skillful models could have been obtained with less data 
volume, this is impossible to precisely quantify without performing Sherpa hyperparameter tuning on a 
smaller data set—something we opted not to do due to the heavy GPU requirements of applying Sherpa. 
We strategically only utilized it on our richest training data set to conserve resources. For context on the re-
source requirement, each candidate neural network architecture required roughly 24 hours to train (about 
1 h per epoch). Eight models could be run in parallel on a single GPU and thus, using four GPUs, we could 
train about 32 models per day. In total, with four GPUs (12 GB memory each), it took 8 days to train all 250 
models.
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Name Range Parameter type Best model

Batch normalization Yes, no Choice Yes

Dropout [0, 0.25] Continuous 0.01

LeakyReLU [0, 0.4] Continuous 0.15

Learning rate [0.00001, 0.01] Continuous (log) 0.000227

Learning rate decay [0.5, 1] Continuous 0.91

Number of layers [3, 12] Discrete 7

Number of nodes 128, 256, 512 Choice 512

Optimizer Adam, SGD, RMSProp Choice Adam

Note. The resulting best model configuration is shown in the right-most column.

Table 3 
Hyperparameter Space
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3.  Results
Here, we use the diagnostics outlined in Section 2.3 to benchmark the performance of our DNNs. We quan-
tify the overall performance of our DNNs in emulating atmospheric subgrid heating and moistening ten-
dencies in Sections 3.1 and 3.2, and analyze the emulated hydrological cycle in Section 3.3. Note that since 
we used the first 8 years to train the network and the ninth year to optimize the hyperparameters, we bench-
mark the performance of our DNN on the remaining 10th year that we held out for testing.

3.1.  Spatial Structures

Differences between the aqua-planet and full complexity real-geography test beds become clear when we 
analyze the performance of neural networks without any spatial averaging in statistics. While even a man-
ually tuned feed-forward neural network can fit much of the variations in convective tendencies in an 
aqua-planet (R2 > 0.5 at the 75th percentile—Table 4a), an identical manually tuned neural network archi-
tecture performs far worse in emulating convection with land masses (Table 4a vs. Tables 4b–4e). However, 
the effects of hyperparameter tuning are dramatic, boosting the 50th percentile R2 to over 0.5 and 75th per-
centile R2 to over 0.75 for convective heating tendencies (Tables 4d and 4e vs. Tables 4f and 4g). The fact that 
one-quarter of the domain of convective heating tendency is emulated with R2 > 0.75, even before any av-
eraging in space or time, suggests our final DNN setup (full training data volume and hyperparameter tun-
ing) generates a good fit. In the Supporting Information, we include corresponding statistics for convective 
moistening as well as for both heating and moistening tendencies on the diurnal timescale—all of which 
show similar relationships between the four models. The differences in Table 4 between land and ocean (f 
vs. g) indicate spatial variations in the skill, suggesting certain regions are preferentially fit by our DNNs.

A first look at spatial structures in the skill affirms a generally close fit with familiar structures relative to 
aqua-planet expectations but also some interesting differences. Figure 1 presents the skill of zonally aver-
aged DNN predictions. Here, we again compare our prototype manually tuned DNN's skill on aqua-planet 
target data (Figures 1a and 1b) representative of what was used in Rasp et al. (2018) against our “Linear” 
baseline model (Figure 1c and 1d), our “Manual” DNN (Figures 1e and 1f), and our optimized “Best” DNN 
(Figures 1g and 1h) all trained in real-geography. Achieving realistic performance on zonal means is an eas-
ier objective due to the averaging between land and marine atmosphere and the smoothing of the sharpest 
temporal variations in convection. However, this zonal mean perspective still provides a useful composite 
view of the emulation of the atmosphere with land masses. Here, the R2 for zonal-mean net diabatic heating 
and moistening is greater than 0.7 throughout the free troposphere, agnostic to latitude (Figures 1g and 1h). 
This widespread skill in the upper troposphere is further amplified by cores of R2 greater than 0.9 around 
midlatitude storm tracks and locations of deep tropical convection above the southern and northern bounds 
of the ITCZ. Our “Best” DNN can skillfully emulate heating and moistening tendencies of convection across 
latitude and vertical level close to SPCAM5 target data (Figure 1). It is also reassuring that the best skill (R2 
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Label Training data Region Variable Timestep 25th 50th 75th

a aqua-planet Ocean Heating 15 min 0.05 0.27 0.55

b real-geog. (Linear) Ocean Heating 15 min −0.30 0.00 0.21

c real-geog. (Linear) Land Heating 15 min −0.93 −0.06 0.25

d real-geog. (Manual) Ocean Heating 15 min −0.26 0.00 0.31

e real-geog. (Manual) Land Heating 15 min −0.93 −0.06 0.35

f real-geog. (Best) Ocean Heating 15 min 0.28 0.54 0.76

g real-geog. (Best) Land Heating 15 min 0.41 0.65 0.82

Note. We show quartiles of the skill distribution in 3D space, that is, from a flattened vector of R2 values that were calculated across just the time dimension 
separately for each longitude, latitude, and pressure level, using raw convective heating tendency data at the 15-min sampling scale. We compare a neural 
network trained on aqua-planet data (a) with three different neural networks trained on more realistic SPCAM5 data. These models include a baseline “Linear” 
model (b, c), a manually tuned neural network (d, e), and a neural network formally tuned by Sherpa (f, g).

Table 4 
Statistical Breakdown of Skill Score
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over 0.9 for zonal-mean predictions) occurs in important regions of the troposphere (ITCZ, midlatitude 
storm tracks) where mean diabatic heating couples to the general circulation (Figure 1).

When interpreting the different DNNs in Figure 1, it is important to consider the two combined factors that 
can influence skill: the data set and the quality of the DNN fit. To separate their influence, Figures 1a and 1b 
versus Figures 1e and 1f show the effect of switching training data at fixed architecture. We note a skill 
increase in the continental boundary layer, consistent with the existence of new deterministic signals in 
real-geography settings likely associated with the strong, predictable diurnal cycle over land. However, the 
overall atmosphere is now more complex with both land and seas regimes, as well as interactions between 
the two. We suspect this causes the decrease in upper-tropospheric emulation skill, particularly outside the 
Hadley Circulation and for the moistening tendency. Despite a superior fit in the continental boundary lay-
er, the inability of the “Manual” neural network to capture deep convection would be a significant hurdle 
to online coupling. Fortunately, Figures 1g and 1h show dramatic skill improvement when migrating from 
a manual tuning environment to a formal hyperparameter search, underscoring the crucial role that Sherpa 
can play in identifying the optimal or “Best” DNN. Our preliminary analysis suggests that even under in-
creasingly complex conditions, the “parameterizability” of convection can be cast locally in space and time 
for a fit by a feed-forward DNN.

These results have much in common with the findings from aquaplanet trained DNNs in Rasp et al. (2018) 
and our own aqua-planet benchmark (Figures 1a and 1b) is further evidence of these similarities. However, 
unlike the aqua-planet, there is a new region of high skill in the real-geography emulator with R2 greater 
than 0.9 in the planetary boundary layer for heating tendency emulation. This signal in convection appears 
deterministic enough that even our “manual” neural network can emulate it with R2 > 0.7 (Figure 1e). This 
looks to be a continental signal, evidenced by both higher skill in the northern hemisphere (Figure 1h) 
and comparatively lower near-surface zonal-mean skill at the latitudes of the Southern Ocean. Though 
less skillful overall, there is a similar pattern in the convective moistening tendency in the boundary layer, 
where the highest DNN performance at the surface (R2 over 0.7) is confined to the continent heavy northern 
hemisphere (Figure 1h).

We confirm the existence of some distinct land-sea spatial structures in emulation skill by examining maps 
of predictions before any spatial averaging. At the lowest model level, our “Best” DNN predictions achieve 
R2 greater than 0.7 (greater than 0.9 in continental interiors; Figure 2a). However, this spatial pattern is 
inverted when examining skill on a model layer in the midtropopshere, near 500  hPa. At this altitude, 
our “Best” DNN now makes the most accurate predictions over the extratropical marine atmosphere but 
struggles over continents and deep convecting regions of the tropics (Figure 2b). We speculate that a strong, 
deterministically predictable component of diurnal variability in surface heating and moistening associated 
with large surface flux diurnal variations over land could allow the low-level heating skill to be enhanced 
there. Meanwhile, in the upper troposphere, we see the expected to see skill deficits in regions of tropical 
and continental convection (on this 15-min timescale). Diurnal signals will be examined in greater detail 
in Section 3.3.

We now focus on the spatial structures where even the formally optimized “Best” neural network still strug-
gles. For this, we return to assessing zonal-mean predictions, since these are less exposed to details of sto-
chasticity but are particularly important to emulate accurately when using neural networks prognostically. 
The greatest emulation challenge for our “Best” DNN is fitting mean temporal variance throughout the 
lower troposphere (excluding the continental boundary layer) where R2 falls below 0.3 (Figure 3a). This is 
especially challenging in the case of convective moistening (Figure 3b). Our results here are consistent with 
previous aqua-planet simulations (Gentine et al., 2018; Rasp et al., 2018), and the study of Han et al. (2020). 
Boundary layer moistening is an especially challenging target for machine learning emulation, particularly 
when focusing on the 15-min sampling interval. Further evidence of this challenge can be observed by the 
temporal standard deviations of the heating and moistening tendencies, where much of the spatial field is 
emulated well, but our neural network nevertheless under-predicts values of moistening tendency in the 
lower troposphere (Figure A1).

We conclude with an animation demonstrating unfiltered, non-composited views of the convective tenden-
cy emulation over a 2-week period in July, the link to which can be found in the Supporting Information 
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(Movie SI 1). The animation shows the evolution of total diabatic heating and moistening on a model level 
near 600 hPa (the lower-to-mid troposphere). In the three lower panels, the diurnal cycle of peak nocturnal 
radiative cooling can be seen propagating from east to west tracking the Earth's rotation. It is punctuated 
by local features of positive diabatic heating from latent heating within slow-moving weather systems, as 
well as the stationary lagged diurnal convective response to the passage of the sun over Central Eurasia and 
America. No geographic distortions of synoptic disturbances are detectable—even heating tendencies from 
tropical convective clusters and the Atlantic Convergence Zone and Pacific ITCZ are all closely emulated 
from this perspective. On the three upper panels, the associated moisture perspective provides an especially 
clear view of the lack of lower amplitude motion captured in emulated convection. The main distortion 
compared to truth is the lack of stochasticity, which manifests as geographic static in the benchmark test 
data (center panels) but is absent in the DNN emulation (right panels).

3.2.  Temporal Variability

Why do we see such considerable variations in the skill of our DNN as a function of geographic location and 
altitude? One hypothesis is that the DNN fits “mode-specific” fluctuations. The first test of this is re-exam-
ining spatial skill structures after averaging predictions from their native timescale of 15 min to the daily 
mean timescale instead. Figure 3 shows the corresponding skill for daily mean, zonal-mean predictions. 
From this view, the vast majority of the atmosphere can be emulated in terms of both heating and moisten-
ing tendencies with R2 greater than 0.9. Meanwhile, compared to the faster timescale, the skill deficit in the 
lower troposphere for convective moistening tendency is not nearly as dramatic. The fact that structures in 
spatial skill appear sensitive to temporal averaging is consistent with the hypothesis that the DNN perfor-
mance might be “mode-specific”.

To better answer understand whether our neural network only fits a dominant mode or two of convection 
at the expense of lower amplitude variations, we now turn to spectral analysis (Figure 4) on the SPCAM5 
target data and DNN predictions. Switching to frequency space is a clean way to determine if specific modes 
of variation such as the diurnal heating cycle and synoptic storm propagation are driving preferential modes 
of DNN fit. The PSD is calculated separately at each unique latitude, longitude, and vertical level from the 
CAM5 data, SPCAM5 data, and the corresponding DNN output for both our Best neural network and “Lin-
ear” baseline model, and weighted by layer mass. These location-specific PSDs are then averaged together 
horizontally and vertically to arrive at globally representative power spectra.

In contrast to our hypothesis, the spectral analysis does not reveal any major mode-specificity in the DNN 
skill on the hourly to weekly timescale. All of the most important spectral features in the target data exhibit 
comparable power in the DNN predictions, including the main signals from disturbances slower than 1 day, 
but also the discrete variance from diurnal, semi-diurnal, and other harmonics of the daily cycle of convec-
tion. While there is an expected under prediction of total variance for subdiurnal modes, the DNN skill is 
not obviously preferential to any modes at the diurnal timescale or longer.

Our DNN emulation performance can be further analyzed by taking the PSD from a spatial, rather than 
temporal, domain. Here, the DNN also shows skill at capturing variations in convection at large scales but 
does not emulate all the details at the small spatial scales (Figure 5). We note that this is very much in line 
with the findings of Yuval and O'Gorman (2020a) in which their RFs achieved poorer fits at smaller spatial 
scales compared to wider ones when performance was tested on different course-graining length scales.

While even our simple baseline “Linear” model (orange line in Figure 5) can capture the variance in con-
vective tendencies on a global scale, we see evidence of the benefits of automated, formal hyperparameter 
at the model grid cell scale. While our “Best” neural network still underestimates smaller signals in con-
vection, it is much closer to the SPCAM5 test data with respect to both convective heating and moistening.

We can quantify these differing degrees of skill captured in the spatial spectra by calculating the total log 
spectral difference (LSD). Quantitatively, the LSD between the SPCAM5 target data and the Sherpa “Best” 
neural network predictions is 1.19 for mass-weighted, averaged tropical zonal heating tendency spectra and 
1.55 for mass-weighted, averaged tropical zonal moistening tendency spectra from Equation 6. This is a far 
smaller deviation than when the baseline “Linear” model is compared to the target SPCAM5 data and the 
difference between the tropical averaged, mass-weighted zonal spectra are 2.71 and 3.61 for heating and 
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moistening respectively. Reassuringly, our “Best” neural network also has a lower LSD than the difference 
between CAM5 and SPCAM5 data (1.20 and 2.30 for heating and moistening zonal spectra). From the tem-
poral domain, the “Best” neural network has a far smaller LSD for both the heating and moistening spectra 
than the “Linear” baseline. However, the LSD between the CAM5 and SPCAM5 is actually the smallest (in 
the temporal domain), though from the figure it is clear that this is due to behavior at the shortest timescales 
that produce exponentially less variance, but which are up-weighted by this metric (not shown).

Even with the sophisticated hyperparameter tuning, the very weak signals of fast variability on timescales 
less than 2–6 h are where our DNN is still challenged most (Figure 4). Evidently, there is something native 
to high (spatial or temporal) frequency heating and moistening convective tendencies that challenge our 
DNN. This suggests alternate hypotheses that geographic structures in our DNNs skill might be an artifact 
of variance sorting (i.e., the fact that the fastest signals are also the weakest potentially downweights their 
contribution to the loss function) or of stochasticity (since fast variations can often be stochastic in origin).

To further test these hypotheses, we construct a proxy of stochasticity, and compare its geographic structure 
to the geographic structure of DNN R2 skill. The proxy is the e-folding time at which signals of atmospheric 
variance decouple into noise based on the autocorrelation, that is, the decorrelation timescale. Quantitative-
ly, the spatial structures of R2 heating skill and the de-correlation timescale are similar with a pattern cor-
relation coefficient of 0.50. The fact that the regions of least DNN skill are also the regions of fastest signal 
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Figure 4.  The temporal power spectrum for vertically resolved heating tendency in (W2/m4day) (a) and vertically 
resolved moistening tendency in (W2/m4day) (b) are calculated at each latitude, longitude, and elevation across the 
globe. These spectra are then averaged together to see how much variance the linear baseline model captures globally 
compared to our formally tuned Sherpa neural network. Results from SPCAM5 test data and CAM5 data are also 
plotted for perspective. Further tests are done exclusively over marine locations (c) and (d) and over continental ones 
(e) and (f). The peaks correspond to the solar radiation driving the diurnal cycle, though this is stronger on land (e) 
and (f) than in marine locations (c) and (d). Multitaper spectra were also calculated for both tendencies but showed no 
qualitative difference with the results above calculated through the numpy fft package. CAM, Community Atmosphere 
Model; SPCAM, superparameterized community atmospheric model.
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decorrelation (purple contours in Figure 6) supports the view that imperfect emulation of fast, stochastic 
signals is mainly responsible for sculpting the spatial structures in the DNN's skill score.

To illustrate this further within the challenging tropical regime, Figure 7 examines temporal autocorrela-
tions in different DNN skill regimes as follows: First, all tropical grid cells having poorest skill (the bottom 
10%) are identified, and the temporal autocorrelation of the benchmark time series data is calculated from 
time lags 0 to +0.4 days. This is done separately for each tropical grid cell and then composited into a sin-
gle autocorrelation plot (red line). Repeating the procedure for those horizontal tropical grid cells where 
the DNN fit has highest skill (top 10%, the blue line) reveals the characteristic difference in de-correlation 
timescale in the high-skill versus low-skill spatial regions. Repeating this procedure globally (Figure 7b) 
confirms the same timescale-selectively of skill exists across multiple geographic regimes, even though this 
was not obvious in Figure 6. The relationship is robust and clear—locations where signals tend to decor-
relate faster are locations where DNN skill is lower. This is consistent when examining both the planetary 
boundary layer of the oceans and the continents each in isolation as well as globally (not shown).
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Figure 5.  The spatial power spectrum for vertically resolved heating tendency in (W2/m4km) (a) and (b) and vertically 
resolved moistening tendency in (W2/m4km) (c) and (d) are calculated at each vertical level and time step across the 
simulation data. These spectra are then averaged together to see how much variance the linear baseline model captures 
globally compared to our formally tuned Sherpa neural network. Results from SPCAM5 test data and CAM5 data are 
also plotted for perspective. We take a 1D fft in both the x (zonal) (a) and (c) and y (meridional) (b) and (d) directions. 
However, we restrict our zonal cross-section to just a tropical belt (20°N–20°S) so we can assume a cartesian plane and 
neglect variable grid spacing. These results tie in with Figure 4 in that capturing the variations in convective tendencies 
at small scales proves more difficult for our neural networks than at large scales. CAM, Community Atmosphere 
Model; SPCAM, superparameterized community atmospheric model.
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3.3.  Hyperparameter Optimization Versus Physical Constraints 
for Emulating the Diurnal Cycle

So far we have shown comprehensive skill for our optimized DNN ex-
cept for some fast-varying convective signals that de-correlate quickly. On 
the one hand, it is not obviously a problem to have skill deficits for the 
stochastic component of superparameterized convection, since it does 
not appear to be critical to most emergent behaviors of SPCAM (Jones 
et  al.,  2019)—though some have suggested that a close representation 
of the stochastic component is still necessary to properly model large 
scale weather phenomena (Neelin et al., 2008). On the other hand, some 
fast-varying signals are also critical to regional climate simulation and 
should be deterministically predicted. The diurnal cycle should provide 
us a perfect test-bed. To what extent does our DNN emulate the details of 
the diurnal cycle of convection?

A first look at the composite height versus time-of-day structure of 
convective moistening (Figure  8) is reassuring—the DNN captures the 
coherent temporal transition of shallow to deep convection in the after-
noon over land (moistening above drying growing after sunrise into the 
midtroposphere; Figure 8a vs. Figure 8b). Our DNN also shows a good 
fit over the ocean, where it captures the opposite phase of peak moisten-
ing-above-drying which happens during the night between 8 p.m. and 6 
a.m. (Figure 8c vs. Figure 8d). Thus our first impression is that the DNN 
correctly recreates the land-sea contrast of diurnal convection present in 
the SPCAM5 target data (Figure 8).

We now hone in on the full geographic structure, focusing on the diur-
nal cycle of precipitation, which reveals some interesting surprises. The 
benchmark SPCAM5 target data (Figure  9b) resembles observations. 
Over land regions, our test data shows a strong, predictable diurnal pre-
cipitation cycle over tropical rainforests and continents in the northern 
hemisphere (experiencing boreal summer), with lagged afternoon max-
imum precipitation (Local Solar Time between 13:00 and 18:00). In con-

trast, a weak diurnal cycle of precipitation occurs over the oceans that peak at the end of night into early 
morning, and is especially detectable in subtropical stratocumulus regions. We observe the familiar benefits 
of superparameterization relative to conventional parameterization (Figure 9b vs. Figure 9a) including a 
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Figure 6.  A comparison between the neural network R2 skill in 
emulating the vertically resolved heating tendency in (K/s) (a) and 
the autocorrelation frequency of the SPCAM5 heating tendencies (b). 
Both cross-sections are taken at the lowest pressure level in the model. 
Qualitatively the patterns closely match. The areas of lowest skill score 
(bottom 10th percentile) and highest autocorrelation frequency (90th 
percentile) are both contoured in purple. For ease of visualization and 
cleaner comparison with previous studies we show the plot of max (0,R2) 
in panel (a). SPCAM, superparameterized community atmospheric model.

Figure 7.  The solid lines represent the median autocorrelation as a function of time at every surface location where 
the R2 skill score of heating tendency in (K/s) is in the top 10% (blue) and the bottom 10% (red). We restrict our 
comparison to surface locations in the tropics (15°S–15°N) (a) and then examine the entire surface of the earth (b). The 
corresponding inter-quartile regions are shaded in as a marker for statistical significance. The dots show the time to 
e-folding decay. The test data spans the month of July.
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reduced detectability of the diurnal mode except where it is supposed to be strong such as over tropical rain-
forests or where it is especially consistent such as over marine subtropical drizzle regimes. Here we see an 
interesting result in the optimized DNN's precipitation predictions (Figure 9c): Although the stratocumulus 
marine drizzle cycle appears to be well emulated, consistent with the diurnal moistening composites seen in 
Figure 8d, over land there is incorrect timing and spatial extent of maximum precipitation (Figure 9c). This 
is paradoxically at odds with Figures 8a and 8b which indicated excellent emulation of the diurnal cycle 
of convective moistening over land regions. DNN detection of a cycle of precipitation over desert regions 
is physically unrealistic and the timing of the onset of deep convection and heavy precipitation on land is 
several hours premature, much like CAM5 data (Figures 9c–a).

Why is precipitation emulated less skillfully? Our working hypothesis is that in hindsight our DNN archi-
tecture did not respect an important physical constraint that distinguishes this variable. Unlike moistening 
and heating tendencies, precipitation should be positive definite. To test this hypothesis we introduce four 
additional neural networks in Figures 9d–9g. Each new neural network has a different positive constraint 
(nonlinear activation function) on the last precipitation node to ensure rainfall predictions remain positive 
definite in line with physical reality. Additionally, in these new constrained DNNs, we alter the training 
data used. We require less data overall (just three months) but empirically find that we should no longer 
selectively sample as we did previously (e.g., take a day every 10 days). We note that restricting the training 
data set to less than a full year does not seem to cause problems with out of sample test data; it emulates 
the diurnal cycle of precipitation just was well over boreal winter even when the training data is restricted 
to boreal summer (not shown). We compare our previous DNNs (Best, Manual, Linear baseline model) that 
ignored positive definite nature of precipitation but included differing hyperparameter tunings (Figures 9c, 
9h, and 9i), against these new positively constrained, but not formally tuned networks.

Our results show the different positive constraints induce improvements over different regions of the globe. 
However, there are substantial variations between different constraint choices with little systematic effects 
other than a realistic enforcement of the timing of the onset of maximum precipitation over land and (ex-
cept ReLU) a tendency toward poor emulation in dry regions of Africa and the Middle East where these 
three constrained (by Softmax, Exponential, and Sigmoid functions) neural networks invent a diurnal cycle 
of precipitation. Unsurprisingly, the models with neither positive constraints nor formal hyperparameter 
tuning (Figures 9h and 9i) perform the worst. The timing of maximum daily precipitation is premature over 
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Figure 8.  A comparison between the moistening tendency of SPCAM5 target data (a) and (c) and DNN predictions (b) 
and (d) in (kg/kg/s) over continental (a) and (b) and marine (c) and (d) locations respectively. The composite is taken 
over the month of July and we choose to show the anomaly of the diurnal cycle in which the mean is subtracted out. 
DNN, deep neural network; SPCAM, superparameterized community atmospheric model.
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land: noon-centric rather than peaking in the midafternoon (Figures 9h and 9i). Also, these models fail to 
detect a diurnal cycle of precipitation over much of the globe (Figure 9b vs. Figure 9h and 9i). Adding the 
positive-definite constraint alone produces dramatic improvements over land (Figures 9d–9g vs. Figure 9h 
and 9i)—but there is the aforementioned variation in the magnitude of improvement between choices of 
activation function as a constraint. The DNN with a ReLU activation on precipitation seems to emulate 
the diurnal cycle of precipitation the best (Figure 9d). The hour of maximum precipitation is correct and 
the neural network emulates a diurnal cycle only where it should be strong, over tropical rain forests, the 
Southeast United States, and mid-continental summertime Eurasia (Figure 9d vs. Figure 9e–9g). Unlike the 
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Figure 9.  A comparison between CAM5 data (a), SPCAM5 test data (b), and our overall best neural network with 
automated hyperparameter tuning (c), neural networks with different positive constraints on the precipitation output 
(d, e, f, g), an archaic version of our DNN without automated hyperparameter tuning or physical constraints (Manual) 
(h), and our linear baseline model (i). The figures show the hour of maximum precipitation in (mm/day) during the 
boreal summer (months of June, July, and August). The time of maximum precipitation is colored in only over areas 
with a significant diurnal amplitude in precipitation rate as defined in Equation 7. CAM, Community Atmosphere 
Model; DNN, deep neural network; SPCAM, superparameterized community atmospheric model.
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other three constrained neural networks (Figures 9e–9g) and our Sherpa neural network (Figure 9d), it does 
not fabricate diurnal precipitation over the deserts of north Africa and the Middle East—but nevertheless 
its emulation of precipitation over continental Africa is still imperfect. But taken on balance, a constrained 
(by ReLU) neural network appears to solve most of the problems that our original DNNs suffered over land. 
However, the positive constraint alone is unable to emulate the more subtle marine stratocumulus diurnal 
cycle well in both the Atlantic and Pacific oceans where the Sherpa DNN emulates the correct time and 
spatial coverage of this lower amplitude cycle of precipitation (Figure 9c vs. Figure 9d).

We have highlighted the power of automated hyperparameter tuning on convective tendencies in Figure 1, 
but discovered that even our “Best” Sherpa DNN did not take into account physical laws governing its si-
multaneous prediction of precipitation, instead corrupting it. Difficulty emulating details of precipitation 
cycles are certainly not unique to this study but do point to larger growing pains in the machine learn-
ing and climate science communities. Similar problems with capturing the physics behind precipitation 
through neural networks have been discussed in Yen et al.  (2019) and Brenowitz and Bretherton (2018) 
where neural networks created non-trivial negative precipitation as well. As in Kumar et al. (2020), we show 
that augmenting our DNN with a positive constraint could reduce the errors in land precipitation emulation 
(Figure 9b vs. Figure 9d). Without formal hyperparameter tuning, these constrained DNNs emulated the 
land-sea contrast in the timing of peak precipitation: nocturnal over oceans, late afternoon over the hottest 
and moistest continental regions. In hindsight, it would be logical to complement the benefits of hyperpa-
rameter tuning with such constraints—an important topic for future work. It is also possible that skill in the 
precipitation field would benefit from enforcing a consistency between it and the column moistening that 
is better emulated, as in Beucler et al. (2019) or Watt-Meyer et al. (2021).

To further assess these trade-offs we now look beyond just the diurnal cycle to examine the full PDF of 
precipitation across our sensitivity tests. The formally tuned “Best” DNN does outperform all other neural 
networks in capturing the global precipitation amount distribution (Figure 10 blue vs. green). Consistent 
with the diurnal cycle analysis this “Best” DNN performs especially well over the ocean (Figure 10d blue 
vs. green). However, issues over land are even more striking from the viewpoint of the full PDF where the 
DNNs have radically different values for the amount mode—that is, rainfall rate delivering maximal pre-
cipitation. Whereas the diurnal cycle analysis had suggested a positive definite constraint alone brought 
continental precipitation into focus, we can see from the amount distribution that beyond diurnal timing 
its statistics are incorrect (dashed line vs. solid green). In fact, our constrained neural network has a more 
accurate PDF over ocean despite its established struggle fitting the nocturnal cycle of precipitation over the 
marine stratocumulus regions of the globe (Figures 10d and 9). Meanwhile, the formally tuned DNN has a 
pronounced problem of producing too much drizzle over land which is also a problem seen in precipitation 
from standard parameterization.

Taken as a whole our precipitation results suggest that this is an area where further refinement of even our 
“Best” DNN is needed. Over the oceans, the DNN captures much of the PDF of precipitation (Figure 10), 
including moderate to heavy regimes at the tail that challenges many climate models, as well as the diurnal 
cycle of precipitation over the oceans (Figure 9b vs. Figure 9c). But there is substantial corruption of the 
emulated signal over continental locations, particular with regards to the timing of onset of heaviest precip-
itation and the intensity of rain delivering most surface accumulation. For an even more information-rich 
view, we have attached as Supporting Information an animation showing two weeks of July precipitation 
from CAM5 data, target SPCAM5 data, and DNN emulation (Movie SI 2) as well as a version of Figure 10 
with all four constrained DNNs (Figure SI1 ).

Comparing the fit sensitivity of adding a constraint versus leveraging hyperparameter optimization meth-
ods (Toms et  al.,  2020), both methods provide unique, disparate performance enhancements with the 
Constrained DNN performing better over land and the “Best” Sherpa DNN doing better overall (Figures 9 
and 10). But synthesizing both tools may ultimately be necessary since neither a physically constrained 
neural network architecture nor automated hyperparameter tuned network on its own could capture the 
full complexity and timing of the diurnal cycle of precipitation over both land and ocean. We recommend 
an integration of both these tools for future attempts of this work. Meanwhile, it is worth recalling that 
these corruptions are less obvious in the diurnal cycle of heating and moistening which is better emulated, 
perhaps because it dominates the loss function, or perhaps because—unlike for precipitation—there is no 
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internal inconsistency with the values of these variables and the assumed DNN architecture. But since 
precipitation is a critical input to land surface models, resolving the issues revealed in this section will be 
an important next step towards realizing successful prognostic behavior. Other issues at the frontier of cou-
pling emulators to land surface models are discussed next.

3.4.  Toward Interactive Land Coupling

Taken together, most of the above results look promising enough that it is natural to wonder if prognostic 
tests using an emulator like this might produce stable simulations as was shown for an aqua-planet by Rasp 
et al. (2018), but in a real-geography setting. This would be exciting to test but our view is that as yet it is pre-
mature to try. For instance, beyond its corruptions of continental precipitation, the DNN we have described 
does not predict everything that would be needed to drive an interactive land surface model in practice. It is 
even unknown whether the imperfections in the near-surface state of the DNN's predictions would even be 
compatible with land surface modeling.

As a first credibility test on the latter front, we thus report some results from “offline” standalone land 
surface model simulations driven with actual (vs. emulated) surface state data. These simulations pre-
date the real-geography fits here but use the downwelling surface solar radiation, precipitation, surface 
pressure, near-surface humidity, and temperature, as well as wind speed from a previous neural network 
powered aqua-planet GCM to drive several land model integrations. These simulations are easier to per-
form than fully interactive land-atmosphere coupled simulations and provide a quick test of the null 
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Figure 10.  The probability density function (PDF) across the range of simulated precipitation rates (a) and the 
corresponding amount distribution (b) of precipitation in which the PDF is multiplied by the bin-averaged values 
of precipitation. We design the histograms based on the methods outlined in Watterson and Dix (2003), which have 
been widely adopted in literature including in formative works such as Pendergrass and Hartmann (2014). We 
implement logarithmically distributed rain-rate bins. In our case, each bin width grows by 3% to ensure the entirety 
of the precipitation PDF is reflected. For more detail, we include an archaic version of our neural network without an 
automated hyperparameter tuning or physical constraints (Manual), our best constrained neural network (dashed line), 
and our overall best (Sherpa) DNN discussed previously in the methods section. Comparisons are also made exclusively 
over marine areas (c) and (d) and continental ones (e) and (f). DNN, deep neural network.
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hypothesis that corruptions of the surface state by the DNN might be incompatible with land modeling 
in general. The idealized offline land model test-bed assumes Amazon-like properties, and 5-year simu-
lations are repeated for 112 separate grid cells driven by atmospheric inputs spanning the tropical band 
(Yacalis, 2018).

The neural network used here is philosophically similar in design to the architecture to the we use in Fig-
ure 1 (a and b). Among these similarities are the training data, which is also of T42 spectral truncation and 
a native 30 min model time step. However, this neural network is trained on a full year of simulation data, 
rather than three months. It is also a larger neural network with eight hidden layers of 512 nodes each 
and an input vector of 124 (the dynamic tendencies of temperature and humidity over the entire column 
are included for an extra length of 60 in the input). Likewise, the output vector includes the longwave and 
shortwave tendencies over the column for a total vector size of 120. The complete details can be found in 
Yacalis (2018).

The results in Figure 11 reaffirm the potential for prognostic tests. Figure 11 shows the carbon cycle flux 
responses from the resulting ensemble of Community Land Model (CLM) simulations, each with Ama-
zon-like conditions, driven by high frequency forcing data taken from different tropical grid cells of actual 
versus emulated SPCAM aqua-planet data. Relative to CLM's conventional coupled behavior (orange lines) 
these integrations drift to an unusual attractor, which can be understood by the unusual aqua-planet sur-
face state (e.g., high wind speeds from a frictionless surface). Despite this idealization, the key point is that 
the CLM drifts to the same new attractor regardless of whether the emulated surface inputs or the actual 
surface inputs are used to drive it, including details of multiple nonlinear cycles that we have traced to 
threshold physics associated with wildfire and carbon cycle feedbacks interior to CLM's biogeochemistry 
modules. These similar trajectories, despite the nonlinearities inherent to CLM physics, are strong evidence 
against the null hypothesis. This supports the idea of trying DNN convection emulators like this in fully in-
teractive real-geography simulations, if they can be adapted to produce all necessary output fields, including 
separately tracking snow versus liquid precipitation as well as separating diffuse versus direct downwelling 
solar radiation fluxes.

4.  Conclusion
We find that a feed-forward DNN can skillfully emulate the deterministic part of subgrid-scale diabatic 
heating and moistening tendencies from global superparameterization with the inclusion of land. For the 
zonal mean, neural network emulated convective tendencies capture over 70% of the actual variance at the 
15-min sampling scale and over 90% of the actual variance at the daily mean sampling scale throughout 
most of the mid-to-upper troposphere. On regional scales, heating skill is best at low altitudes over land, 
and at mid-levels over extratropical oceans–both regions where we expect convection to be deterministically 
set by the large-scale thermodynamic state. On diurnal timescales, convective responses to solar heating are 
emulated correctly, including land-sea contrast and vertical structure. Full temporal and spatial spectral 
analyses reveal no obvious “mode-specifity” to what is versus is not emulated other than imperfections 
in the goodness of fit on small spatial (less than 103 km in both the zonal and meridional directions) and 
temporal (less than 3 hour) scales (Figures 4 and 5). A Pearson Correlation Coefficient of 0.50 between 
DNN skill and autocorrelation statistics suggests these errors are highest in stochastic regions where the 
deterministic component of diabatic tendencies is weaker such as the tropical, marine boundary layer, and 
the mid-to-upper troposphere over convective land regions. But on longer timescales, particularly where 
there are distinct, deterministic patterns of atmospheric variation like the diurnal heating of the continents 
or baroclinic Rossby wave disturbances along midlatitude storm tracks, our DNN effectively emulates su-
perparameterized diabatic processes. We find the highest R2 coefficient of determination values (typically 
greater than 0.9) for daily and zonal-mean predictions especially compelling (Figures 3c and 3d). Despite 
issues in precipitation emulation, our DNN captures much of the marine PDF of precipitation, though it 
has an unexpected drizzle bias over land that can be partially reduced via a positive constraint on precipi-
tation (Figure 9). Despite these imperfections, precipitation statistics produced by the DNN are superior to 
conventional parameterization.
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The accuracy achieved by our neural network suggests that feed-forward DNNs may still be the best way 
to create next generation, hybrid climate emulators. Skip-connections in conjunction with convolutions 
would seem to have possible advantages in allowing multiscale structures to be simultaneously prioritized 
in the loss function (Han et al., 2020). But our DNN achieves similar (Figures A1) to superior (Figure A2b 
vs. Figure A2e), skill compared to the more sophisticated Convolutional (in the vertical direction) Neural 
Networks and Resnets trained recently on similar data in Han et al. (2020). This would suggest that model 
architecture choices like skip connections and 1D convolutional layers are not critical to achieving a good 
fit for a neural network in the emulation of convection.

More broadly, these results also speak to an ongoing question of what sets the “parameterizability” of 
deep convection, which can be inferred from the success of machine learning methods trained on su-
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Figure 11.  The gross primary production (GPP) and net ecosystem exchange (NEE) monthly based on CAM data (also in aqua-planet mode) are contrasted 
against SPCAM (aquaplanet) and a neural network (aquaplanet trained), the results of which are derived from one-way land coupling. The solid lines 
correspond to mean values while the shading encompasses the extent of the monthly mean standard error at each time step. CAM, Community Atmosphere 
Model; SPCAM, superparameterized community atmospheric model.
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perparameterized simulations (recognizing that despite their constraints SP includes nontraditional de-
grees of freedom like convective memory and organization). Our findings suggest that convective memory 
may not be essential (Colin et al., 2018; Han et al., 2020), at least for feed-forward DNNs. That is to say, 
our feed-forward DNNs did not require memory from previous timesteps in converging on skillful fits 
to convective tendencies—predictions independent of space and time may be the better way forward to 
achieve successful moist convection emulation. We find that our DNN, with no memory used in training, 
preferentially fits the atmospheric modes of variation where convective memory would be most helpful 
(diurnal cycle, onset of afternoon deep convection/heavy precipitation, synoptic storms). Our issues in 
DNN emulation are greatest over regions where the controlling signals happen at the shortest temporal (or 
spatial) scales—especially in the tropical, marine boundary layer. These are exactly the places convective 
memory would be least helpful.

Looking ahead, we believe a feed-forward DNN, powered by automated hyperparameter tuning as well as 
physical constraints, may be the most realistic way for ML to emulate superparameterized moist convec-
tion in a realistic atmosphere with real-geography boundary conditions. This is also a more direct way to 
achieve two-way coupling with a host climate model since feed-forward DNNs can be rapidly deployed 
today as prognostic Fortran hybrid models thanks to new automated software (Ott et al., 2020). More 
broadly, for general deep learning applications, we believe our experience sheds light on the importance 
of incorporating physical science knowledge while exploiting machine learning methods when designing 
appropriate neural networks to tackle problems such as moist convection emulation. We have found like 
many others (Toms et al., 2020) that while each of these design choices shows notable improvements 
to emulation performance on their own, both are likely needed in conjuncture to utilize DNNs to their 
fullest potential.

Though not our primary focus, our findings also point to some of the challenges ahead in neural network 
emulation of the stochastic component of convection. To replace CRMs in a convection simulation, DNNs 
will likely eventually need to fit not just deterministic but also stochastic parameterizations, which are 
crucial to error and bias reduction (Kisi et al., 2013; Palmer, 2019). Even in superparameterized climate 
simulations such stochastic effects, while not critical to mean climate, have been linked to some important 
regional precipitation extremes (Jones et al., 2019). Our results indicate there are high variance modes of 
moist convection that will be difficult for any feed-forward DNN to represent perfectly without a faster time 
step interval in training data or stochastic, generative modeling.

Meanwhile, a next step for the specific case of emulating superparameterization should be an online test 
of the performance of our trained DNN in prognostic mode to determine if the neural network is skilled 
enough to produce physically plausible outputs from the coupled run. In this limit, the secondary effects of 
stochasticity noted by Jones et al. (2019) argue deterministic DNNs are appropriate. Although coupling em-
ulated atmospheres to prognostic land models is mostly an unexplored frontier, we are optimistic based on 
our first pilot tests that it is readily approachable; imperfections of the fit do not break standalone land mod-
el simulations. But carrying this forward into fully prognostic coupled tests will require significant work, 
such as expanding this prototype DNN's output vector to include additional variables needed to allow fully 
interactive land model coupling, and associated tuning. Even if this next step proves successful, feed-for-
ward DNNs should not be thought of as a panacea for all flaws in climate models–they cannot in their pres-
ent application resolve biases induced by imperfect microphysics parameterization and the resulting errors 
in associated turbulence and cloud-radiative effects produced by superparameterized models. However, 
neural networks do still have broad use for sidestepping the computational bottlenecks that currently limit 
the global modeling community's ability to approach eddy-resolving scales. We remain excited about that 
potential, especially given our findings here that such approaches can be made remarkably skillful beyond 
aqua-planets, at least in tests of offline hold-out test skill.
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Appendix A:  Performance Comparison With Existing Literature
Figure A1 shows the extent to which the variations of the atmosphere, particularly those driven by deep 
convection and latent heating can be captured by a feed-forward DNN with minimal underprediction. The 
spatio-temporal patterns are replicated over the annual data.

Overall, when looking at the annual mean, our DNN performs well globally. These are some imperfections 
with emulation of intense tropical precipitation, but the heating and moistening tendency predictions are 
very close to the target data. In particular, Figure A2 shows modes of variation in the planetary boundary 
layer that can be captured by our DNN. The DNN seems to fit at least as well as the Resnet throughout the 
latitude-pressure cross-section, and perhaps marginally better in the boundary layer when moisture varia-
tions are examined (Figure A2b vs. Figure A2e).
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Figure A1.  The temporal standard deviation of annual heating and moistening tendencies. Units converted to (K/day) 
and (g/kg/day) respectively to contrast with the performance of a Resnet (Han et al., 2020).
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Figure A2.  The difference between annual target SPCAM5 data and the DNN predictions for heating tendency (K/day), moistening tendency (g/kg/day), 
and precipitation (mm/day). The three panels on the bottom have been taken from Han et al. (2020) to provide direct comparisons between the performance 
of our DNN compared against the Han et al. (2020) Resnet on full complexity, real-geography simulation data. DNN, deep neural network; SPCAM, 
superparameterized community atmospheric model.
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Data Availability Statement
Code for preprocessing, training, and postprocessing figure generation can be found at https://doi.
org/10.5281/zenodo.4554598. All compressed data for figures as well as sample training and test simulation 
data can be found at https://doi.org/10.5281/zenodo.4558716 while details on how to recreate the entire 
simulation are available in Section 2.
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