
2
0

2
1

 I
E

E
E

/A
C

M
 4

3
rd

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
a
re

 E
n

g
in

e
e

ri
n

g
 (

IC
S

E
)

|
9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
D

O
I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

0
2

9

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

An Evolutionary Study of Configuration Design

and Implementation in Cloud Systems
Yuanliang Zhang*!, Haochen He*, Owolabi Legunsen!, Shanshan Li*, Wei Dong*, Tianyin Xu!

*National University of Defense Technology, Changsha, Hunan, China

!University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

! Cornell University, Ithaca, NY 14850, USA

{zhangyuanliang13, hehaochen13, shanshanli, wdong}@nudt.edu.cn, legunsen@cornell.edu, tyxu@illinois.edu

Abstract—Many techniques were proposed for detecting soft-
ware misconfigurations in cloud systems and for diagnosing
unintended behavior caused by such misconfigurations. Detection
and diagnosis are steps in the right direction: misconfigurations
cause many costly failures and severe performance issues. But,
we argue that continued focus on detection and diagnosis is
symptomatic of a more serious problem: configuration design
and implementation are not yet first-class software engineering
endeavors in cloud systems. Little is known about how and why
developers evolve configuration design and implementation, and
the challenges that they face in doing so.

This paper presents a source-code level study of the evolution
of configuration design and implementation in cloud systems.
Our goal is to understand the rationale and developer practices
for revising initial configuration design/implementation decisions,
especially in response to consequences of misconfigurations. To
this end, we studied 1178 configuration-related commits from
a 2.5 year version-control history of four large-scale, actively-
maintained open-source cloud systems (HDFS, HBase, Spark,
and Cassandra). We derive new insights into the software
configuration engineering process. Our results motivate new tech-
niques for proactively reducing misconfigurations by improving
the configuration design and implementation process in cloud
systems. We highlight a number of future research directions.

I. In t r o d u c t i o n

Software configuration design and implementation have

significant impact on the functionality, reliability, and per-

formance of large-scale cloud systems. The idea behind

configuration is to expose configuration parameters which

enable deployment-time system customization. Using different

parameter values, system users (e.g., operators, sysadmins, and

DevOps engineers) can port a software system to different

environments, accommodate different workloads, or satisfy

new user requirements. In cloud systems, configuration pa-

rameters are changed constantly. For example, at Facebook,

configuration changes are committed thousands of times a day,

significantly outpacing source-code changes [1].

With the high velocity of configuration changes, misconfig-

urations (in the form of erroneous parameter values) inevitably

become a major cause of system failures, severe service

outages, and downtime. For example, misconfigurations were

the second largest cause of service-level disruptions in one of

Google’s main production services [2]. Misconfigurations also

contribute to 16% of production incidents at Facebook [1], in-

cluding the worst-ever outage of Facebook and Instagram that

occurred in March 2019 [3]. Similar statistics and incidents

were reported in other systems [4]—[11].

Software configurations also impose significant total cost of

ownership on software vendors, who need to diagnose user-

reported failures or performance issues caused by miscon-

figurations. Vendors may even have to compensate users, if

the failures lead to outages and downtime. Software vendors

also need to support and help users with configuration-related

questions, e.g., how to find the right parameter(s) and set

the right value(s) [12]. Note that system users are often not

developers; they may not understand implementation details

or they may not be able to debug code [13]—[15].

Unfortunately, configuration design and implementation

have been largely overlooked as first-class software engi-

neering endeavors in cloud systems, except for few recent

studies (Section VIII). The focus has been on detecting

misconfigurations and diagnosing their consequences [13],

[16]-[30]. These efforts tremendously improve system-level
defenses against misconfigurations, but they do not address

the fundamental need for better software configuration design

and implementation. Yet, better configuration design can ef-

fectively reduce user difficulties, reduce configuration com-

plexity while maintaining flexibility, and proactively reduce

misconfigurations [12], [31]-[33]. Also, better configuration

implementation can help detect and correct misconfigurations

earlier to prevent failure damage [13], [16].

The understanding of what constitutes software configu-

ration engineering in cloud systems is preliminary in the

literature, compared with other aspects of engineering these

software systems (e.g., software architecture, modeling, API

design, and testing) which are well studied. Meanwhile, we

observed that developers struggle to design and implement

configurations. For example, we found that developers raise

many configuration-related concerns and questions—“is the

configuration helpful?” (Spark-25676), “can we reuse an

existing parameter?” (HDFS-13735), “what is a reasonable

default value?” (HBase-19148). Furthermore, we found that

developers frequently revise configuration design/implemen-

tation decisions, usually after observing severe consequences

(e.g., failures and performance issues) induced by the initial

decisions (Sections IV-A1 and IV-A2).

This paper presents a source-code level study of the evo-

lution of configuration design and implementation in cloud

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00029

188

TABLE I: Summary of our findings on configuration design and implementation, and their implications.

F i n d i n g s a b o u t C o n f i g u r a t i o n I n t e r f a c e I m p l i c a t i o n s

F.l Software developers often parameterize constant values into
configuration parameters. Performance and reliability tuning are common
rationales for such parameterization.

L I Configuration auto-tuning techniques that consider reliability and func-
tionality are needed, in addition to performance-only optimization. Timing
parameters are an example (critical to both performance and reliability).

F.2 Over 50% of parameterizations were driven by severe consequences
of deficiencies in constant values. Unfortunately, use cases that drove the
parameterization were often poorly discussed or documented.

1.2 Techniques for identifying pathological configuration use cases through
testing and analysis are desired. Tools that can identify and categorize use
cases could help proactively parameterize deficient constants.

F.3 Only 28.1% of default-value changes mentioned systematic testing;
31.3% of default changes chose values that work around reported issues.

1.3 Many default values in existing software systems may not be optimal.
Research on how to better select default values is needed.

F i n d i n g s a b o u t C o n f i g u r a t i o n U s a g e I m p l i c a t i o n s

F.4 Most configuration-checking code were added as afterthoughts,
postmortem to system failures and performance issues in production.

1.4 Proactive parameter value checking and validation can prevent many
severe consequences (but they are still not a common engineering practice).

F.5 Over 50% of checks added as afterthoughts are basic (non-emptiness
and value-range checks); other commits invoked checking code earlier.

1.5 Automated solutions for generating basic checking code and applying
them in program early execution phases are useful and feasible.

F.6 Throwing exceptions is common for handling misconfigurations;
auto-correction is not, missing opportunities to help users handle errors.

1.6 Automatically correcting configuration errors is feasible and should be
explored in future research.

F.7 Developers often enhance configuration-related log/exception mess-
ages by including related parameters and providing guidance.

1.7 Techniques on automated enhancement of configuration-related log and
exception messages to improve misconfiguration diagnosis are needed.

F.8 Reusing existing parameters in different program locations is a com-
mon practice. However, parameter reuse leads to various inconsistencies.

1.8 Tools are needed for identifying and fixing various inconsistencies
among configuration parameters and their code implementations.

F i n d i n g s a b o u t C o n f i g u r a t i o n D o c u m e n t a t i o n I m p l i c a t i o n s

F.9 Inadequate and outdated information are major reasons behind
the changes that enhance configuration documents.

1.9 Enforcing complete, up-to-date documentation of configuration info-
mation is still a challenge (despite a lot of research effort).

F.10 Configuration use cases, parameter constraints and dependencies
between parameters are commonly added to documents.

1.10 Configuration documentation should be systematically augmented
to include critical, user-facing information.

systems, towards filling the knowledge gap and better un-

derstanding the needs that configuration engineering must

meet. Specifically, we study 1178 configuration-related com-

mits spanning 2.5 years (2017.6-2019.12) in four large-scale,

widely-used, and actively-maintained open-source cloud sys-

tems (HDFS, HBase, Spark, and Cassandra). Each commit that

we study is associated with a JIRA/GitEIub issue or a Pull

Request link which provides more context about the change

and the discussions among developers. (Section III describes

our methodology for selecting configuration-related commits).

Our goal is to understand current configuration engineering

practices, identify developer pain points, and highlight future

research opportunities. We focus on analyzing commits that

revise or refine initial configuration design or implementation

decisions, instead of commits that add or remove parameters

as code evolves. These revisions or refinements were driven

by consequences of misconfigurations. Our analysis helps to

1) understand the rationale for the changes, 2) learn design

lessons and engineering principles, and 3) motivate future

automated solutions that can prevent such consequences.

To systematically analyze configuration-related commits,

we propose a taxonomy of configuration design and imple-

mentation changes in cloud systems along three dimensions:

1) interface: why and how developers change the configu-

ration interface (parameters, default values and constraints).

2) usage: how developers change and improve parameter value

checking, error-handling, and uses. 3) documentation: how

developers improve configuration documentation.

Note that this paper focuses on cloud systems, instead

of desktop software or mobile apps, because misconfiguring

cloud systems results in more far-reaching impact. Moreover,

we focus on runtime configurations [34] whose values can be

changed post-deployment without re-compiling the software.

Runtime configurations fundamentally differ from compile-
time configurations such as #ifdef-based feature flags [35].

But runtime and compile-time configurations have similar

problems. So, there are opportunities to extend techniques that

solve problems for one to the other.

This paper makes the following contributions:

k Study and Insights. We study code changes to understand

the evolution of configuration design and implementation

in cloud systems. We find insights that motivate future

research on reducing misconfigurations in these systems.

k Taxonomy. We develop a taxonomy of cloud system

configuration design and implementation evolution.

k Data. We release our dataset and scripts at “https://github.

com/xlab-uiuc/open-cevo” to help followup research. A

detailed replication package can be found in [36].

Table I summarizes our findings and their implications.

II. Ta x o n o m y

Figure 1 shows the three parts of our taxonomy of cloud-

system configuration engineering: interface, usage, and docu-
mentation. We focus on aspects that affect how system users

interact with configurations, and not on developer-focused

INTERFACE USAGE DOCUMENTATION

Fig. 1: Three parts of our taxonomy of software configuration design
and implementation, and their components.

189

TABLE II: Our taxonomy of configuration engineering evolution.

AddParam

AddNewCode

AddcodeChange

AddParameterization

RemoveParam

Rmv RmvModule

RmvReplace

ModifyParam

ModNaming

ModDefaultValue

ModConstraint

INTERFACE (Se c t i o n IV)

Add new configuration parameters
Add new parameters when introducing new modules

Add new parameters due to changes in existing code

Convert constant values to configuration parameters
Remove existing configuration param eters

Remove parameters when removing existing modules
Replace parameters with constants or automation

Modify existing configuration param eters
Change the name of a configuration parameter

Change the default value of a configuration parameter
Change the constraints of a configuration parameter

Parse
Check

Handle

HandleAction
HandleMessage

Use

Usechange
UseAdd

USAGE (Se c t i o n V)

Change configuration parsing code
change configuration checking code

Change configuration error handling code
Handling actions (correction and exceptions)

Feedback messages (log and exception messages)
Change how configuration values are used

Change existing code that uses parameters
Add code to reuse a configuration parameter

DOCUMENTATION (SE C T IO N VI)

User manual Change configuration-related user manual content
Code comment Change configuration-related source code comments

aspects like variability and testability. We organize our study

along the categories shown in Table II.

Interface. The configuration interface that a system exposes to

users consists primarily of configuration parameters (parame-

ters, for short). As shown in Fig. 1, a parameter is identified

by a name and it typically has a default value. Users can cus-

tomize system configuration by changing parameter values in

configuration files or by using command line interfaces (CLIs).

Each parameter places constraints (correctness rules) on its

values, e.g., type, range, dependency on other parameters.

Values that violate the constraints lead to misconfigurations.

In Table II, changes that contribute to configuration interface

evolution include adding parameters, removing parameters,

and modifying parameters.

TABLE III: Software and their commits that we study.

Su b j e c t #D e s c r i p t i o n #Pa r a m s #A L L C #St u d i e d C

HDFS File system 560 1618 221
HBase Database 218 3516 268

Spark Data processing 442 6194 602

Cassandra Database 220 1868 87

maintenance of software configuration as configuration en-
gineering. We start from commits instead of bug databases

(e.g., JIRA and GitHub issues) because configuration design

and implementation evolution is not limited to bug fixing.

All cloud systems that we study record related issue or Pull

Request ID(s) in commit messages (Section III-A). We found

detailed context about changes in the configuration-related

commits through developer discussions. Moreover, commits

allow us to analyze the “diffs”—the actual changes.

A. Target Software and Version Histories
We study configuration design and implementation in four

open-source cloud systems, shown in Table III: HDFS, HBase,

Spark, and Cassandra. These projects 1) have many configura-

tion parameters and configuration-related commits, 2) are ma-

ture, actively-developed and widely-used, with well-organized

GitHub repositories and bug databases, (3) link to issue IDs

in commit messages, and 4) are commonly used subjects in

cloud and datacenter systems research.

In these subjects, we studied configuration-related commits

from June 2017 to December 2019, a 2.5-year time span.

In Table III, “#PA R A M S” is the total number of documented

parameters in the most recent version, “#AL L C” is the total

number of commits in the 2.5-year span, and “#ST U D IE D C”

is the number of configuration-related commits that we stud-

ied. We excluded configuration-related commits that only

added or modified test cases; we expected such commits

to yield less insights on design/implementation evolution. In

total, we studied 1178 configuration-related commits.

Usage. Fig. 1 presents the configuration usage model. To use

a parameter, the software program first reads its value from a

configuration file or CLI, parses the value and stores it in a

program variable. The variable is then used when the program

executes. In principle, the program checks the value against

the parameter’s constraints before using it. If checks fail, the

program needs to handle the error and provide user with

feedback messages. In Table II, configuration usage evolution

consists of changes to all parts of the usage model.

Documentation. These are natural language descriptions re-

lated to configurations. We consider changes to user manuals

and code comments—the former are written for system users

while the latter are written for developers.

III. St u d y Se t u p

To understand how configuration design/implementation

evolve, we identified and analyzed configuration-related com-
mits that modify configuration design and implementation.

Following [34], we refer to the design, implementation, and

B. Data Collection and Analysis
To find configuration-related commits within our chosen

time span, we wrote scripts to automate the analysis of

commit messages and diffs, filter out irrelevant commits,

and select likely configuration-related commits. Then, we

manually inspected each resulting commit and its associated

issue. Overall, we collected 384 commits by analyzing commit

messages and 794 commits by analyzing the commit diffs,

yielding a total of 1178 configuration-related commits.

1) Analysis of Commit Messages: Keyword search on com-

mit messages is commonly used to find related commits,

e.g., [37]-[42]. We manually performed a formative study with

hundreds of commit messages and found that three strings

commonly occur in configuration-related commits: “config”,

“parameter” and “option”. These strings were previously used

in keyword searches [34], [37], and matched 525 times in all

four subjects. We manually inspected these 525 commits and

removed commits that did not change configurations, yielding

384 configuration-related commits.

190

2) Analysis of Commit Diffs: Many commit messages do

not match during keyword search, even though the diffs

show configuration-related changes. So, we further analyzed

diffs to find more configuration-related commits, and found

additional 794 configuration-related commits. Our diff analysis

determines whether diffs modify how parameters are defined,

loaded, used, or described. Accurate automated diff analysis

requires applying precise taint tracking—treating parameter

values as initial taints that are propagated along control- and

data-flow paths [13], [16]-[18], [20], [26], [37], [43]-[45]—

to each commit and its predecessor and comparing the taint

results in both commits. Such pairwise analysis does not scale

well to the 13196 commits in all four projects (Table III).

To scale diff analysis, we used a simple text-based search

of configuration metadata, including the 1) configuration in-

terface (including how configurations are defined and loaded),

2) default configuration file, and 3) message that contains con-

figuration information. Metadata are expected to be stable in

the mature cloud systems that we study; commits that modify

them may yield good insights on configuration evolution.

Finding commits that change parameter definitions. We

start from commits that change default configuration files or

parameter descriptions in those files. These two locations are

key user-facing parts of configuration design [13], [46]. Thus,

modification of parameters (introduction, deprecation, changes

to default values, etc.) likely requires changes to either. This

heuristic was effective: it found 272 additional configuration-

related commits with an average false positive rate of 3.2%.

Finding commits that change parameter loading or setting.

Here, we leverage knowledge of configuration APIs. As re-

ported in prior studies [13], [16], [43]-[45], [47] and validated

in our study, mature software projects have unified, well-

defined APIs for retrieving and assigning parameter values.

For instance, HDFS has getter or setter methods (e.g., g e tIn t,

getBoolean, declared in a Java class; each of which has a

corresponding setter method (e.g., s e tIn t , setBoolean). The

other evaluation subjects follow this pattern.1 So, identifying

commits that changed code containing getter or setter method

usage requires a few lines of code using regular expressions.

This heuristic found 457 additional configuration-related com-

mits with a 19.9% average false positive rate.

Finding commits that change parameter value data flow.

If a commit changes code with variables that store parameter

values, then that commit is likely related to the data flow

of parameter values. We implemented a simple text-based

taint tracking to track such variables as follows. Once a

configuration value is stored in a variable, we add the variable

name to a global taint set. We perform the tracking for every

commit in the time span that we studied. We do not remove

variables from our taint set. We output candidate commits

where a modified statement contains a variable name in the

'This is common in Java and Scala projects: the configuration interface

typically wraps around core library APIs such as j a v a . u t i l . P r o p e r t i e s

to provide configuration getter and setter methods.

TABLE IV: Configuration-related commits by category. Some com-
mits contain changes in multiple categories.

I n t e r f a c e B e h a v i o r D o c u m e n t C o m m i t

HDFS 139 (62.9%) 58 (26.2%) 27 (12.2%) 221

HBase 171 (63.8%) 87 (32.5%) 21 (7.8%) 268

Spark 367 (61.0%) 182 (30.2%) 61 (10.1%) 602

Cassandra 54 (62.1%) 32 (36.8%) 5 (5.7%) 87

Total 731 (62.1%) 359 (30.5%) 114 (9.7%) 1178

taint set. Taint tracking found 31 additional configuration-

related commits with an average false positive rate of 26.2%.

Identifying other configuration-related commits We applied

the same keyword search on commit messages (Section III-B1)

to messages that occur in diffs, to capture commits that change

related exception or log messages without modifying any other

code. We found 34 additional configuration-related commits

with an average false positive rate of 29.2%.

3) Inspection and Categorization: At least two authors

independently studied each configuration-related commit and

its corresponding issue. They independently categorized each

commit based on the taxonomy in Section II, and then met

to compare their categorization. When they diverged, a third

author was consulted for additional discussion until consensus

was reached. Further, in twice-weekly project meetings, the

inspectors met with a fourth author to review their catego-

rization of 15% of commits inspected during the week. These

meetings helped check that understanding of the taxonomy is

consistent. Our experience shows that consistently checking a

taxonomy like Figure 1 with concrete examples significantly

improves inter-rater reliability and categorization efficiency.

Note that we categorized each commit based on how it

revised the original configuration design/implementation. If

a commit adds a new parameter and also a manual entry

to document this new parameter, we treat this commit as

AddParam (Table II)—the commit revises the configuration

interface instead of documentation. Some commits modify

multiple (sub-)parts in our taxonomy.

4) Data Collection Results: Table IV shows the studied

configuration-related commits along the three parts of our

taxonomy. There is a significant number of commits in each

part. The rest of this paper summarizes our analysis and pro-

vides insights on how configuration design and implementation

evolve along these three parts.

IV. Co n f i g u r a t i o n In t e r f a c e Ev o l u t i o n

Changes to the configuration interface were the most

common, compared with behavior or documentation changes

(Table IV). We focus on analyzing changes to config-
urability—the level of user-facing configuration flexibility—

(Section IV-A) and default values (Section IV-B). We omit

other kinds of configuration interface changes which are often

routine and cannot directly lead to misconfigurations.

A. Evolution of User-Facing Configuration
Table V shows our categorization of changes to configura-

bility. Most changes add or remove parameters; per project,

191

TABLE V: Statistics on configuration interface changes.

H D FS H B a s e Sp a r k C a s s a n d r a T o t a l

A ddParam 106 122 277 42 547

AddNewCode 54 55 143 23 275

AddcodeChange 16 34 72 8 130

AddP arameterization 36 33 62 11 142

RemoveParam 5 24 30 6 65

RmVRmvModule 3 16 25 4 48

RmvReplace 2 8 5 2 17

M odifyParam 28 25 60 6 119

ModNaming 5 8 30 1 44

ModDefaultValue 19 14 20 3 56

ModConstraint 4 3 10 2 19

removal is 5.1x to 21.2x less frequent than addition (with an

average of 8.4x). We find that adding or removing parameters

occur naturally during software evolution—parameters are

added with new code, and removed with code deletion. We

do not focus on co-addition or co-removal of parameters with

code. Rather, we focus on changes that revise previous config-

uration engineering decisions by 1) parameterizing constants

and 2) eliminating parameters or converting them to constants.

Our data corroborates a prior finding [12] that configuration

interface complexity increases rapidly over time, as more

parameters are added than are removed. Complexity measures

the size of the configuration space (number of parameters

multiplied by the number of all their possible values). Ap-

proaches for dealing with the rapid growth rate are desired.

Variability modeling [48]-[52] which is extensively researched

for compile-time configurations, can potentially be extended

to understand and manage runtime configuration complexity.

1) Parameterization: Developers often convert constants

into parameters after discovering that one constant cannot sat-

isfy all use cases. We find 142 commits that parameterize 169

constants (169 parameterizations). We report on 1) rationales

for the parameterizations, 2) how developers identify constants

to parameterize, 3) use cases that made constants insufficient,

and 4) how developers balance increase in configuration

complexity (caused by adding new parameters) with the need

for flexibility (which necessitates parameterization). Our re-

sults have ramifications for configuration interface design: we

provide understanding for managing the configurability versus

simplicity tradeoff. The rationales for parameterization also

motivate configuration parameter auto-tuning.

Rationales for parameterization. These include: perfor-

mance tuning, reliability, environment setup, manageability,

debugging, compatibility, testability, and security. Table VI

shows, for each rationale, the number of commits and param-

eters, an example parameter, and a description. We discuss the

top two rationales, due to space limits. Performance tuning was

the top rationale for parameterizing constants, involving 39.6%

(67/169) of parameters in 56 commits. Different workloads

need different values, so it is hard to find one-size-fits-all con-

stants. Resource-related (e.g., buffer size and thread number),

feature selection (turning on/off features with performance

impact, e.g., monitoring), and timing logic (mostly timeouts

and intervals) were the main resulting parameter types, with

20.9% (14/67), 37.3% (25/67), and 14.9% (10/67) new param-

eters, respectively. Others 26.9% (18/67) set algorithm-specific

parameters (e.g., weights and sample sizes).

Reliability, with 37 of 169 of the parameterizations, was

the second most common rationale. Of these, 17 were caused

by hardcoded timeout values that led to constant request

failures in the reported deployments, so developers made them

configurable. Note that new timing parameters were created

for both reliability and performance tuning. For example,

in HDFS, a new timing parameter was created to improve

performance. The previous constant was causing a “delete

file task to wait for... too long” (HBase-20401). But, another

HDFS timing parameter was created to improve reliability.

The previous constant was too small, causing “timeouts while

creating 3TB volume” (HDFS-12210).

Di s c u s s i o n : Configuration auto-tuning techniques

that consider reliability and functionality are needed, in

addition to performance-only optimization [53]—[71].

Specifically, timing parameters have important impli-

cations to both reliability and performance; however,

not much work has been done on auto-tuning timing

parameters (e.g., timeouts and intervals).

How developers find constants to parameterize. 54.4%

(92/169) of parameterizations were postmortem to severe

consequences, e.g., system failures, performance degradation,

resource overuse, and incorrect results. Among previous con-

stants for these, 40.2% (37/92) led to performance degradation;

35.9% (33/92) caused severe failures; 19.6% (18/92) led to

incorrect or unexpected results (e.g., data loss and wrong

output); and 4.3% (4/92) resulted in resource overuse.

Di s c u s s i o n : Despite the efforts in parameterization,

developers still overlook deficient constants that may

lead to severe consequences (e.g., failures and perfor-

mance issues). Proactive techniques for detecting de-

ficient constants and for automating parameterization

are needed; the latter could assist performance testing

of cloud systems.

Describing use cases that prompt parameterization. Use

cases where constants were deficient should be described fully

to help users set correct values. But, developers described

the concrete use cases that prompt parameterization for only

37.9% (64/169) parameters. Others discussed use cases either

vaguely (45.0% or 76/169 parameters) or provided no informa-
tion (17.1% or 29/169 parameters). Table VII shows examples.

Di s c u s s i o n : Future work should identify and docu-

ment use cases and workloads, including which param-

eters can be tuned, and suggest beneficial configuration

values that are designed for concrete use cases.

192

TABLE VI: Statistics and examples of developers’ rationales for parameterization (excluding two commits that lacks information).

R a t io n a l e #COMMIT #Pa r a m E x a m p l e Ne w Pa r a m e t e r L im it a t io n o f p r e v io u s c o n s t a n t

Performance 56 67 spark.sql.codegen.cache.maxEntries The cache size does not work for online stream processing (Spark-24727)

Reliability 28 37 spark.sql.broadcastExchange.maxThreadThreshold Out of memory if thread-object garbage collection is too slow (Spark-26601)

Manageability 20 20 dfs.federation.router.default.nameservice.enable Enable the default name service to store files (HDFS-13857)

Debugging 8 9 spark.kubernetes.deleteExecutors Disable auto-deletion of pods for debugging and diagnosis (Spark-25515)

Environment 8 13 dfs.cblock.iscsi.advertised.ip Allows server and target addresses to be different (HDFS-13018)

Compatibility 13 13 spark.network.remoteReadNioBufferConversion Add the parameter to fall back to an old code path (Spark-24307)

Testability 3 4 spark.security.credentials.renew alRatio May not need to be set in production but can make testing easier (Spark-23361)

Security 4 4 spark.sql.redaction.string.regex The output of query explanation can contain sensitive information (Spark-22791)

TABLE VII: Use-case description of parameterization changes.

Le v e l Ex a m p l e

Concrete “Volume creation times out while creating 3TB volume” (HDFS-12210).

Vague “I f many regions on a RegionServer, the default will be not (HBase-21764).

No Info “It would be better if the user has the option instead o f a constant” (Spark-25233).

Balancing flexibility and simplicity Configuration interface

design must balance flexibility (i.e., configurability) with

simplicity [12]. New parameters increase flexibility (by han-

dling additional use cases), but increase interface complexity

(thus reducing usability). 16.2% (23/142) of parameterization

commits contained developer discussions on the flexibility-

simplicity tradeoff. Most discussed estimated prevalence of use

cases for parameterization—it is not worth increasing interface

complexity for rare use cases—and typically involve advanced

users, e.g., “admittedly, this...is an expert-level setting, useful
in some cases” (Cassandra-14580). We also found developers’

debates on whether to parameterize (Cassandra-12526, HDFS-

12496, Spark-26118).

A middle-ground solution is to parameterize without docu-

menting or exposing the parameter, e.g., “although...not widely

used, I could see allowing control...via an undocumented

parameter” (Spark-23820). With this practice, not all but the

most advanced users know of such parameters. We found

that 58.0% (98/169) of the newly added parameters were not

documented in the parameterization commit, indicating that

these parameters were first added as middle-ground solutions.

Di s c u s s i o n : Further studies are needed on 1) if and
why undocumented parameters are eventually docu-
mented, and 2) how often and why (expert) users
modify un-exposed parameters, in order to understand

the intent and utility of such parameters.

Specifically, visibility conditions from variability model-

ing [50], [51], [72] can be extended to manage the tradeoff

of flexibility versus simplicity, which can benefit navigation

support and user guidance [73]-[76]. Currently, visibility

conditions are mainly designed for Boolean feature flags based

on dependency specifications (e.g., in CDL and KConfig);

complexity metrics and variability analysis for other parameter

types (e.g., numeric and strings) are needed.

2) Removing Parameters: Understanding parameter re-

moval can yield insights on reducing configuration interface

complexity [12], [35]. We examined all 17 configuration-

related commits that removed a parameter (not co-removal

with code). All 17 removed parameters were converted to

constants or code logic was added that obviated them. 14

removed parameters were converted to constants: 11 to their

default values and 3 to safe values. Developers mentioned that

8 of the 17 parameters had no clear use case (e.g., HBase-8518,

HBase-18786), or required users to understand implementation

details (e.g., Cassandra-14108). Three parameters confused

users or might lead to severe errors (e.g., Spark-26362).

Three of 17 removed parameters were obviated by new

automation logic. For example, in HBase-21228, h b a s e .r

e g io n se rv e r .h a n d le r . count which specified the number

of concurrently updating threads to be garbage collected in

a Java ConcurrentHashMap, was removed after developers

switched to ThreadLocal<SyncFuture> which automatically

garbage collects terminated threads. This example shows how

implementation choices could affect configuration complexity.

Di s c u s s i o n : Future studies can evaluate the utility

and impact of each parameter (e.g., by analyzing if

and how often deployed values are equal or similar to

the default values). Configurations with low utility can

be replaced with constants (e.g., default values).

B. Evolution of Default Values
Parameter default values are important to the usability of

configurable systems; they provide users with good starting

points for setting parameters without needing to understand

the entire configuration space. Thus, developers usually choose

default values that satisfy common use cases. Ideally, a de-

fault value applies under most common workloads, without

causing failures (HBase-16417, HBase-20390, HDFS-11998).

The “ModoefauitVaïue” row in Table V shows 56 commits that
changed 81 default values. We discuss why default values

changed and how new default values were chosen.

Reasons for changing default values. We observe proactive

and reactive default value changes. 38.3% (31/81) default-

value changes were proactive, including 1) enabling a pre-

viously disabled feature flag (32.3% (10/31)), e.g., “running

193

the feature in production for a while with no issues, so

enabled the feature by default” (HDFS-7964), 2) performance

reasons (35.4%, 11/31), e.g., “sets properties at values yielding

optimal performance” (HBase-16417), and 3) supporting new

use cases (32.3%, 10/31), e.g., “it may be a common use case

to ...list queries on these values” (Cassandra-14498).

The remaining 61.7% (50/81) of default value changes

were reactive to user-reported issues, including 1) system

failures and performance anomalies due to not supporting new

workloads, deployment scale, hardware, etc (50.0%, 25/50),

2) inconsistencies with user manual (38.0%, 19/50), and 3)

working around software bugs (12.0%, 6/50), e.g., “we set
the parameter to false by default for Spark 2.3 and re-enable

it after addressing the lock congestion issue” (Spark-23310).

choosing new values. It is straightforward to change new

default values for Boolean and enumerative parameters, given

their small value ranges. So, we describe how new default

values of 32 numeric parameters were chosen (excluding those

that fix default value inconsistency (e.g., HBase-18662). Only

28.1% (9/32) numeric parameters had systematic performance

testing and benchmarking mentioned in the JIRA/GitHub

issues. Later commits reset these new default values, despite

the initial testing and benchmarking. For example, HBase

developers performed “write-only workload evaluation...read

performance in read-write workloads. We investigate several
settings...” (HBase-16417). Yet, we found three later commits

that changed the default value of the same parameter to differ-

ent numbers. For 31.3% (10/32) of numeric parameters, new

default values were chosen by adjusting the previous default

values to resolve production failures. In many of these cases,

usually without high confidence in the new default values,

developers simply chose values that resolve the problem(s).

Examples: “It probably makes sense to set it to something

lower” (Spark-24297), or “I ’m thinking something like 3000

or 5000 would be safer” (HBase-18023). We found no infor-

mation on the remaining 40.6% (13/32) numeric parameters.

We observe that backward compatibility and safety are

common considerations in selecting new default values. New

default values that radically change system behavior are often

considered inappropriate (e.g., HBase-18662).

Di s c u s s i o n : Default value changes are often reactive

to the reported issues, without systematic assessment.

Systematic testing and evaluation of new (and existing)

default values are needed.

Dynamic workloads and heterogenous deployments neces-

sitate continuous and incremental changes to default values.

Future work could maintain a set of default values (instead of

one) for typical workloads, hardware, and scale.

C. Summary
There is an unmet need for practical configuration automa-

tion techniques and tools for choosing and testing parameter

values—why do cloud system developers still change param-

eter values statically rather than using parameter automation?

TABLE VIII: Statistics on configuration usage evolution.

H D FS H B a s e Sp a r k C a s s a n d r a TO TA L

Parse 5 14 59 7 85

Check 7 20 29 11 67

Handle 12 18 20 2 52

HandleAction 8 6 4 1 19

HandleMessage 4 12 16 1 33

Use 34 35 74 12 155

UseChange 7 10 25 3 45

UseAdd 27 25 49 9 110

There is also need for automatic ways of identifying workloads

or use cases for which default values (and even constants) are

ill-suited. Such automatic workload identification approaches

can help developers to better 1) decide which constant values

need to be parameterized, 2) understand when their current

default values will lead to system failures, and 3) come up

with better tests and benchmarks for default values.

V. Co n f ig u r a t io n Us a g e Ev o l u t io n

We present results on configuration usage evolution (recall

the configuration usage model described in Fig. 1 and Sec-

tion II). Across the four cloud systems, 26.2%-36.8% of

commits changed parameter usage (Table VIII). We describe

changes to checking, error handing, and use of parameters. We

omit changes to parsing APIs (e.g., Spark-23207).

A. Evolution of Parameter Checking Code
Proactively checking parameter values is key to preventing

misconfigurations [16]. However, we find that many parame-

ters had no checking code when they were introduced. Check-

ing code was added reactively: 1) 74.6% (50/67) of commits

that changed checking code occurred after users reported

runtime failures, service unavailability, incorrect/unexpected

results, startup failures, etc. (Table IX shows examples).

2) In 14.9% (10/67) commits, developers proactively added

or improved the checking code; 2 of them applied reactively-

added checking code to other parameters with similar types

(e.g., Cassandra-13622). 3) We did not find sufficient infor-

mation of the other 7 commits.

1) Adding new checking code: 79 new checks were added

in 83.6% (56/67) of checking-code related commits. 87.3%

(69/79) of these new checks were for specific parameters,

while the others were applied to groups of configuration pa-

rameters (e.g., read-only parameters). Surprisingly, for specific

parameter checks (69 checks in 46 commits), 58.0% (40/69)

were basic checks: NOT-NULL (20/69), value range (15/69) and

deprecation checks (5/69). An example is in Fig. 2(a). Majority

of new checking code were added reactively, corroborating

that simple checks can prevent many severe failures [16],

[77]. More of such checks could be automatically added and

invoked at system startup. The other 29 checks were more

complex: 9 value semantic checks (e.g., file/URI properties

and data alignment, Fig. 2(b)), 2) 13 checks for parameter

dependencies (e.g., Fig. 2(c)), and 3) 7 checks for execution

context (e.g., Fig. 2(d)).

194

TABLE IX: Examples of consequences that can be prevented by adding configuration checking code.

C o n s e q u e n c e E x a m p l e Pa r a m e t e r D e s c r i p t i o n

Runtime Error hbase.bucketcache.bucket.sizes If value is not aligned with 256, instantiating a bucket cache throws IOException (HBase-16993)

Early Termination commitlog_segment_size_in_mb If value > 2048, Cassandra throws an exception when creating commit logs (Cassandra-13565)

Service unavailability spark.dynamicAllocation.enabled Running barrier stage with dynamic resource allocation may cause deadlocks (Spark-24954)

Unexpected Results spark.sql.shuffle.partitions If the value is 0, the result of a table join will be an empty table (Spark-24783)

1 + if (writeTables==null || writeTables.isEmpty()) {
2 + throw new IllegalArgumentException(
3 + "Configurtion parameter" +
4 + OUTPUT_TABLE_NAME_CONF_KEY + "cannot be empty")}

(a) Add a NOT-NULL check (HBase-18161)

1 + if (bucketSize % 256 != 0) {
2 + throw new IllegalArgumentException(
3 + "Illegal value:" + bucketSize +
4 + "configured for" + BUCKET_CACHE_BUCKETS_KEY +
5 + "All bucket sizes to be multiples of 256")}

(b) Add a semantic check (HBase-16993)

1 + require(conf.getOption(authKey).isEmpty()
2 + || !restServerEnabled,
3 + s"The RestSubmissionServer does not " +
4 + "support authentication via ${authKey}." +
5 + "Either turn off spark.master.rest.enabled " +
6 + "or do not use authentication.")

(c) Add a check for parameters dependency (Spark-25088)

1 + if (rdd.isBarrier() &&
2 + Utils.isDynamicAllocationEnabled(sc.getConf)) {
3 + throw new SparkException(
4 + "Barrier execution mode does not support"
5 + "dynamic resource allocation for now. You can"
6 + "disable dynamic resource allocation: setting"
7 + "spark.dynamicAllocation.enabled to false")}

(d) Add a check for execution context (Spark-24954)

Fig. 2: Examples of configuration checking code.

2) Improving existing checking code: 11 commits improved

existing checking code: eight made checks more strict, e.g., a

NOT-NULL check was improved to “only allow table replication

for sync replication” (HBase-19935), and three moved check-

ing code to be invoked earlier instead of during subsequent

execution, e.g., “when starting task scheduler, spark.task.cpus

should be checked” (Spark-27192).

Di s c u s s i o n : Checks for parameter values are often

added as afterthoughts. Proactively generating check-

ing code can help prevent failures due to misconfigu-

rations.

Two possible directions are automatically learning checking

code (we find that newly-added checking code is often simple)

and automatically applying checking code for one parame-

ter to other parameters both in the same software (which

developers are already doing manually) and across software

projects. A direction is to co-learning checking code and

usage code. Techniques for extracting complex constraints and

specifications can reduce manual effort for reasoning about

and implementing checking code. A few recent works show

promise for inferring parameter constraints through analysis of

source code and documentation [13], [78]-[80]. Techniques for

extracting feature constraints could be extended and applied

to runtime configurations [81]-[84].

B. Evolution of Error-Handling Code

We discuss changes to misconfiguration-related exception-

handling code and to messages that provide user feedback.

1) Changes to configuration error handling: 19 commits

dealt with error handling: 10 added new handling code

to try -c a tc h blocks or throw new exceptions; 9 commits

changed handling code. Among the 9 commits, (1) four

changed misconfiguration-correction code: three of these

added logic to handle a misconfiguration, e.g. “if secret file

specified in httpfs.authentication.signature.secret.file does not
exist, random secret is generated” (HDFS-13654) and one

changed buggy misconfiguration-correction code to simply log

errors (HDFS-14193) (showing that auto-correcting misconfig-

urations is not always easy), (2) three changed the exception

type as it was “dangerous to throw statements whose exception

class does not accurately describe why they are thrown...since

it makes correctly handling them challenging” (HDFS-14486),

and (3) two replaced exception throwing with logging the

errors and resuming the execution.

We also studied the newly added handling code in the 79

commits that added new checking code in Section V-A1. In

73.4% (58/79) of the cases, the handling code threw runtime

exceptions or logged error messages. The expectation is that

users should handle the errors. In the remaining 26.6% (21/79)

cases, developers attempted to correct the misconfigurations,

e.g., “it’s developers’ responsibility to make sure the configu-
ration don’t break code.” (Spark-24610). Developers corrected

misconfigurations by changing to the closest value in the valid

range (11/21), reverting to the default value (3/21), and using

the value of another parameter with similar semantics (7/21).

Di s c u s s i o n : Developers want to make code more

robust in the presence of misconfigurations, but their

manual efforts are often ad hoc. There is need for new

techniques for generating misconfiguration correction

code and improving existing handling code.

Techniques for fixing compile-time configuration errors,

such as range fixes [85], [86], may be applicable for generating

correction strategies for some types of runtime parameters. A

key challenge is to attribute runtime errors (e.g., exceptions)

to misconfigurations and to rerun the related execution with

the corrected configurations.

195

TABLE X: Four levels of message feedback quality in commits that changed exception or logging messages.

L e v e l D e s c r i p t i o n E x a m p l e

L4
Contain parameter names and

provide guidance for fixing

“Barrier execution mode does not support dynamic resource allocation... You can disable dynamic

resource allocation by se ttin g ...sp a rk .d y n am ic A llo ca tio n .en ab led to false.” (Spark-24954)

L3 Contain parameter names “Failed to create SSL context using s e rv e r_ e n c ry p tio n _ o p tio n s .” (Cassandra-14991)

L2 Do not contain parameter names “This is commonly a result of insufficient YARN configuration.” (HBase-18679)

L1 No mention of configuration “Could not modify concurrent moves thread count.” (HDFS-14258)

2) Changes to feedback messages: Feedback (error log

or exception) messages are important for users to diagnose

and repair misconfigurations. We investigated commits that

modified feedback messages and categorize the level of feed-

back that they provided in Table X, where L4 messages

provide the highest-quality feedback and L1 messages pro-

vide the lowest-quality feedback. Among 33 commits that

modified messages, 18 enhanced feedback quality by adding

configuration-specific information. After enhancement, 8 mes-

sages became L3, and 7 became L4. Changes in the other

15 commits improved 1) correctness (9/15)—half changed

imprecise parameter boundary values, e.g., from “no less” to

“greater” (Spark-26564), 2) readability (3/15), such as fixing

typographic errors, 3) the log level (2/15), and 4) security

(1/15), i.e., removing potentially sensitive value.

Di s c u s s i o n : Future work could study the feedback

level in all messages related to misconfiguration han-

dling code. If most messages are not L4, then future

work should automatically detect deficient messages

and automatically enhance them to L4.

Moreover, configuration-related logging is not as mature

as logging for debugging [87]-[92]. Improving configuration-

related logging requires logging related parameters, erroneous

values, and, where feasible, possible fixes. Poor-quality feed-

back from tools hinders developers [93] and techniques exist

for dealing with message errors in other domains [94], [95].

C. Evolution of Parameter Value Usage
Software developers change how existing parameters are

used (“UseChange” in Table VIII) and reuse existing parameters

for different purposes (“UseAdd” in Table VIII).

1) Changing how existing parameters are used: 45 com-

mits changed parameter usage for the following reasons:

Fine-grained control. In 12/45 commits, developers pre-

viously used one parameter for multiple purposes, due to

poor design—“e.g., CompactionChecker and PeriodicMem-
StoreFlusher execution period are bound together” (HBase-

22596)—or for reuse—e.g., “arrow.enabled was added... with

PySpark... Later, SparkR... was added... controlled by the same

parameter. Suppose users want to share some JVM between

PySpark and SparkR... They use the optimization for all or

none.” (Spark-27834). Developers resolved both categories by

creating separate parameters for fine-grained control.

Domain/scope. 8/45 commits changed the usage domain

or scope of a parameter. For example, HDFS developers

changed a parameter, which was previously only used in the

decommission phase to also be used in the maintenance phase,

so “lots of code can be shared” (HDFS-9388).

Parameter overriding 9/45 commits changed parameter over-

ride priority, e.g., “We need to support both table-level pa-
rameters. Users might also use session-level parameter... the

precedence would be...” (Spark-21786).

semantics 6/45 commits changed what a parameter is used

for, e.g., in Spark-21871, developers started using sp a rk .sq l.

codegen.hugeMethodLimit as the maximum compiled function

size instead of spark.sql.codegen.m axLinesPerFunction.

Parameter replacement 6/45 commits swapped one parame-

ter for another because the previous one was outdated or wrong

, e.g., in Spark-24367, a use of parquet.enable.summary-me

ta d a ta was replaced with a use of parquet.summary.metada

t a . l e v e l because the former was deprecated.

Buggy parameter values 4/45 commits changed parameter

values that were buggy, e.g., the value of a parameter changed

because, “user specified filters are not applied in YARN

mode...we need... user provided filters” (Spark-26255).
2) Reusing existing parameters: To avoid growing the

configuration space unnecessarily, developers sometimes reuse

existing parameters that are similar to their new use case, in-

stead of introducing a new parameter. 110 commits reused 151

existing parameters for different purposes. However, parameter

reuse comes at a cost. We find two main problems. First,

reusing a parameter and code that it controls can result in

subtle inconsistencies that can lead to bugs or user confusion.

19.2% (29/151) parameter reuses had such inconsistencies.

Second, developers often clone existing code to enable reuse.

We focus on inconsistencies. Problems of code cloning are the

subjects of other research.

We manually checked for inconsistencies by comparing the

newly-added code in a target commit with code that used

the parameter in existing code base. We found 29 inconsis-

tencies in HDFS (9/29), HBase (9/29) and Spark (11/29).

Inconsistencies manifest in different ways. We categorized

them based on the sources of inconsistencies during reuse:

1) feedback message (9/29), e.g., Spark-18061; 2) checking

code (4/29) e.g., HBase-20590; 3) new uses of deprecated

parameters (6/29), e.g., HDFS-12895; 4) default values (3/29),

e.g., HBase-21809; and 5) use statements (7/29), e.g., HBase-

20586. Fig. 3 shows examples of inconsistencies in reuse of

checking code and use statements, where added lines start with

+. In Fig. 3(a), the new parameter usage did not check for

parameter value emptiness as the old usage did. In Fig. 3(b),

196

1 + String principal = conf.get (
2 + Constants.REST_KERBEROS_PRINCIPAL) ;
3 + if (principal != null) {...}
4
5 Preconditions.checkArgument(principalConfig != null
6 && !principalConfig. isEmpty() ,

REST_KERBEROS_PRINCIPAL +
8 " should be set if security is enabled”);

(a) Inconsistent checking (HBase-20590)

1 + if (peer Conf . get (” hbas e . s ecur it y . authent icat i on ”)
2 + .equals(Mkerberos”))
3
4 isSecurityEnabled = "kerberos”.equalsIgnoreCase(
5 conf.get("hbase.security.authenticat ion")) ;
6 if (isSecurityEnabled) {...} * VI.

(b) Inconsistent parameter usage (HBase-20586)

Fig. 3: Examples of configuration inconsistent reuse.

the new usage of h b a s e .s e c u r ity .a u th e n tic a tio n checked

case-insensitive equality; the old usage was case-sensitive.

Di s c u s s i o n : Inconsistencies in parameter usage can

confuse users (the same values are used in different

ways) or lead to bugs. Ideas for detecting bugs as

deviations from similar program behavior [96], [97]

could be starting points for addressing this problem.

D. Summary
We advocate that improving software qualities—resilience,

diagnosability, and consistency—should be first-class princi-

ples in software configuration engineering. We find that even

in mature, production-quality cloud systems, checking, error

handling, feedback, and parameter usage are often not de-

signed or implemented in a principled manner. More research

effort should be put on enhancing these essential qualities of

configurable software to defend against misconfigurations, in

addition to detection and diagnosis tools that are external to

the cloud system [1], [17]-[28], [30].

VI. Co n f ig u r a t io n Do c u m e n t Ev o l u t io n

We very briefly discuss configuration document evolution:

114 commits made 149 changes to user manuals or code com-

ments. 100 of these commits changed user manuals and the

rest changed code comments. We discuss why configuration

documents were changed and the changed content.

Reasons for changing configuration documents. The 149

changes to configuration documents resolved five types of

problems: 1) 63 were inadequate for users to understand pa-

rameters or to set values correctly, e.g., “users wondered why

spark.sql.shuffle.partitions...unchanged when they changed the

config...worth to explain it in guide doc” (Spark-25245); 2) 29

were outdated after configuration design and implementation

changed (Section IV and Section V); 3) 21 were incorrect,

e.g., “LazyPersistFileScrubber will be disabled if... configured

to zero. But the document was incorrect” (HDFS-12987);

4) 17 had readability issues, e.g., “Client rpc timeouts are not
easy to understand from documentation” (HBase-21727); and

5) 19 improved content, e.g., “Add thrift scheduling... config

to scheduling docs” (Spark-20220).

Di s c u s s i o n : Document-as-code techniques can be

applied to eliminate inconsistencies between configu-

ration documents and configuration design/implemen-

tation.

Content added to enhance documents. Inadequate infor-

mation was the most common problem resolved by con-

figuration document changes. We put the 63 changes that

enhanced inadequate documents in six categories based

on the content added: 1) 16 changed constraints on pa-

rameter values, e.g., “This should be positive and less
than 2048” (Cassandra-13622); 2) 10 explained depen-

dence on other parameters, e.g., “This property works

with dfs.namenode.invalidate.work.pct.per.iteration” (HDFS-

12079); 3) 6 changed parameter value types and units; 4) 6

changed parameter scope, e.g., “Timeout... is controlled differ-
ently. Use hbase.client.scanner.timeout.period property to set
this timeout” (HBase-21727), 5) 22 provided use cases and

guidance, e.g., “enabling this will be very helpful if dfs image

is large” (HDFS-13884); and 6) 3 warned about deprecation,

e.g., “this config will be removed in Spark 3.0” (Spark-25384).

Di s c u s s i o n : Ethnographic studies could help un-

derstand the gaps between documented configuration

information and configuration obstacles faced by users.

summary Correctness and effectiveness of technical doc-

umentation is a long-lasting problem in software engineer-

ing. Configuration documentation is no exception. Special-

ized techniques for maintaining and improving configuration

documentation are needed. For example, checking for incon-

sistencies between documents and source code [98]-[101]

could help detect defects in configuration-related code or

documents. Also, techniques for auto-generating documents,

especially using structured data, can be applied to generating

per-parameter comments and manual entries [102]-[104].

VII. Th r e a t s t o Va l i d i t y

We studied cloud systems. Some of our findings may not

generalize to other kinds of software. We chose these projects

because they are widely used, highly configurable with lots

of parameters, mature, and well maintained. They also have

issue-tracking systems that help us understand the context of

configuration-related commits.

Though we selected candidate commits from version con-

trol history, we may have missed some configuration-related

commits due to two limitations. First, our regular expressions

assume standard coding conventions and will not match if de-

velopers do not follow these conventions. Second, our simple,

text-based tainting may miss some changes to the data flow

of variables that store parameter values. However, as we men-

tioned in Section III, precise pairwise tainting does not scale

197

to all the commits in the range that we studied—we traded off

precision for scalability. All commits selected were manually

inspected and categorized through a rigorous quality-assurance

process (Section III-B3). False positives came mainly from

commits that touched lines containing configuration-related

variables but did not change the configuration.

VIII. Re l a t e d Wo r k

A prior study [37] found that software evolution necessi-

tates resetting parameter values and built ConfigSuggester

to identify parameters whose values need to be changed

after a software updates. We study how the configuration

interface and parameter usage change across (a portion of)

version control history to draw insights for better configuration

design and implementation. Sayagh et al. [34] studied software

configuration engineering in practice using interviews, user

surveys, and a literature review. our work is complementary:

we perform a code-level study of configuration evolution,

which yields new insights.
There have been many studies on misconfigurations in a

wide variety of software systems [1], [2], [4]-[11]. Our work

does not focus on detecting misconfigurations or diagnosing

failures caused by misconfigurations. We focus on current con-

figuration engineering practices, with the goal to understand

how to improve configuration design and implementation.
Recently, a few studies investigated automated techniques

or engineering practices to enhance configuration checking

code [16], diagnosability [105], interface [46], security [14],

[106], [107], configuration data analysis [108], configuration

libraries [109], [110], and correlations or coupling in con-

figuration and code [111]-[113]. Our work corroborates and

complements the aforementioned work from the perspective of

software evolution. Specifically, our work studies the practices

of software developers and reveals how software configuration

design and implementation are revised and evolved.
Despite the differences (Appendix A), runtime configura-

tions share commonalities with compile-time configurations or

SPL configurations, such as # ifd e f -based feature flags [35].

It is possible that techniques and methodologies designed for

compile-time configurations, especially feature and variability

modeling [48], [50]-[52], [72], [114], could be adapted for use

with runtime configurations. Such adaptation needs to address

unique challenges of runtime configuration parameters, such

as dependencies on deployment environments, as well as their

complex data types and misconfiguration patterns.
Configuration design and implementation have significant

implications on software testing and debugging [115]-[120].

For example, introducing new parameters enlarges the configu-

ration space and thus makes it more costly to comprehensively

test software. In this paper, we focus on understanding how

to improve configuration design and implementation so that

fewer misconfigurations occur, and not on software bugs that

can occur under different parameter value combinations.

IX. Co n c l u s io n s

We presented present an evolutionary study of configuration

design and implementation in cloud systems. To the best

of our knowledge, ours is the first evolutionary study on

code-level runtime configuration design and implementation

in these systems. We analyze rationales and practices for

revising configuration design and implementation decisions,

especially in response to consequences of misconfigurations.

our study yields several new insights into the configuration

engineering process, and research opportunities for reducing

misconfigurations. our hope is to inspire researchers and

developers to treat configuration engineering as a first-class

software engineering endeavor.

Ap p e n d ix A: Ru n t im e v e r s u s SPL Co n f ig u r a t io n

A very frequent request is to compare runtime configuration

(the type of configuration studied in this paper) with software

product lines (SPL) configuration (often referred to as “feature

flags” or “feature toggles”) and to position the work in the area

of SPL and variability modeling. We explicitly discuss a few

fundamental differences:
First, runtime configurations are changed by software users

(operators/sysadmins in our context); SPL configurations are

managed by developers. Since users are unfamiliar with code,

the configuration specifications become the interfaces (Sec-

tion IV). Moreover, as users are prone to misconfigurations,

checking and providing feedback are critical (Section V).
Second, runtime configurations are implemented differently

than SPL configurations. Runtime configurations are mostly

in the form of configuration parameters that load values from

files or command lines; SPL configurations are typically in the

form of preprocessors that determine modules to be included

in the released binary.

Third, runtime configurations of cloud software are changed

frequently (hundreds to thousands of times a day [1], [9],

[113]); SPL configurations are typically changed with product

release cycles. This higher velocity of runtime configuration

changes increases misconfiguration occurrences and makes

checking, error handling, and logging critical.
Fourth, runtime configurations depend on the deployment

environment, including machine resources (e.g., CPU, mem-

ory, and storage), operating systems (e.g., files, IP addresses,

and ports), and workloads (data size and requests per seconds).

In contrast, SPL configurations are often determined before

software release or system deployment.
Lastly, runtime configurations have more complex data

types (e.g., string and numeric) with different error patterns;

SPL configurations are mostly boolean or enumerative types.
Certainly, ideas in SPL and variability modeling can be

extended and applied to runtime configuration. We have dis-

cussed them in context of our analysis throughout the paper.

Ac k n o w l e d g e m e n t

We thank Xiangbing Huang, Xudong Sun, Sam Cheng, Jack

Chen, and Darko Marinov for discussions. The research was

mainly conducted when Zhang was a visiting student at UIUC,

supported by China Scholarship Council. Zhang, He, Li, and

Dong were supported in part of National Key R&D Program

of China No. 2017YFB1001802; NSFC No. 61872373 and

61872375. Xu was supported in part of NSF 1816615.

198

Re f e r e n c e s

[1] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic Configuration Manage-
ment at Facebook,” in SOSP, 2015.

[2] L. A. Barroso, U. Holzle, and P. Ranganathan, The Datacenter as a
Computer: Designing Warehouse-Scale Machines. 2018.

[3] J. Shieber, “Facebook blames a server configuration change
for yesterday’s outage.” https://techcrunch.com/2019/03/14/
facebook-blames-a-misconfigured-server-for-yesterdays-outage/,
2019.

[4] G. Amvrosiadis and M. Bhadkamkar, “Getting Back Up: Understanding
How Enterprise Data Backups Fail,” in USENIXATC, 2016.

[5] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasu-

pathy, “An Empirical Study on Configuration Errors in Commercial and
Open Source Systems,” in SOSP, 2011.

[6] S. Kendrick, “What takes us down?,” USENIX ; login:, vol. 37, no. 5,
2012.

[7] A. Rabkin and R. Katz, “How Hadoop Clusters Break,” IEEE Software,
vol. 30, no. 4, 2013.

[8] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service outages,” in SoCC, 2016.

[9] B. Maurer, “Fail at Scale: Reliability in the Face of Rapid Change,”
CACM, vol. 58, no. 11, 2015.

[10] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?,” in USITS, 2003.

[11] K. Nagaraja, F. Oliveira, R. Bianchini, R. Martin, and T. Nguyen, “Un-
derstanding and dealing with operator mistakes in internet services,” in
OSDI, 2004.

[12] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
You Have Given Me Too Many Knobs! Understanding and Dealing with
Over-Designed Configuration in System Software,” in FSE, 2015.

[13] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do not blame users formisconfigurations,” in SOSP, 2013.

[14] T. Xu, H. M. Naing, L. Lu, and Y. Zhou, “How Do System Administrators
Resolve Access-Denied Issues in the Real World?,” in CHI, 2017.

[15] T. Xu, V. Pandey, and S. Klemmer, “An HCI View of Configuration
Problems,” arXiv:1601.01747, 2016.

[16] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in OSDI,
2016.

[17] M. Attariyan and J. Flinn, “Automating Configuration Troubleshooting
with Dynamic Information Flow Analysis,” in OSDI, 2010.

[18] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in OSDI,
2012.

[19] M. Attariyan and J. Flinn, “Using Causality to Diagnose Configuration
Bugs,” in USENIXATC, 2008.

[20] S. Zhang and M. D. Ernst, “Automated Diagnosis of Software Configu-
ration Errors,” in ICSE, 2013.

[21] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “EnCore: Exploiting System Environment and Correlation
Information for Misconfiguration Detection,” in ASPLOS, 2014.

[22] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
Misconfiguration Troubleshooting with PeerPressure,” in OSDI, 2004.

[23] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang, “STRIDER: A Black-box, State-based Approach to
Change and Configuration Management and Support,” in LISA, 2003.

[24] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic Automated Lan-
guage Learning for Configuration Files,” in CAV, 2016.

[25] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac, “Synthe-
sizing configuration file specifications with association rule learning,” in
OOPSLA, 2017.

[26] Z. Dong, A. Andrzejak, and K. Shao, “Practical and Accurate Pinpointing
of Configuration Errors using Static Analysis,” in ICSME, 2015.

[27] P. Huang, W. Bolosky, A. Sigh, and Y. Zhou, “ConfValley: A systematic
configuration validation framework for cloud services,” in EuroSys, 2015.

[28] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable Declarative
Configuration Specification and Validation for Applications, Systems,

and Cloud,” in Middleware, 2017.
[29] M. Sayagh, N. Kerzazi, and B. Adams, “On Cross-stack Configuration

Errors,” in ICSE, 2017.

[30] X. Sun, R. Cheng, J. Chen, E. Ang, o . Legunsen, and T. Xu, “Testing
Configuration Changes in Context to Prevent Production Failures,” in
OSDI, 2020.

[31] D. Norman, “Design Rules Based on Analyses of Human Error,” CACM,
vol. 26, no. 4, 1983.

[32] D. Norman, “Design principles for human-computer interfaces,” in CHI,
1983.

[33] R. A. Maxion and R. W. Reeder, “Improving User-Interface Dependabil-
ity through Mitigation of Human Error,” JHCS, vol. 63, no. 1-2, 2005.

[34] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software Con-
figuration Engineering in Practice Interviews, Survey, and Systematic
Literature Review,” TSE, vol. 46, no. 6, 2018.

[35] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner, “Exploring
Differences and Commonalities between Feature Flags and Configuration
Options,” in ICSE SEIP, 2020.

[36] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An Evo-
lutionary Study of Configuration Design and Implementation in Cloud
Systems (with Replication Package),” arXiv:submit/3601478, 2020.

[37] S. Zhang and M. D. Ernst, “Which Configuration Option Should I
Change?,” in ICSE, 2014.

[38] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis of
Flaky Tests,” in FSE, 2014.

[39] J. Bernardo, D. da Costa, and U. Kulesza, “Studying the impact of
adopting continuous integration on the delivery time of pull requests,”
in MSR, 2018.

[40] M. Rigger, S. Marr, B. Adams, and H. Mössenböck, “Understanding
GCC Builtins to Develop Better Tools,” in FSE, 2019.

[41] L. P. Hattori and M. Lanza, “On the nature of commits,” in ASE, 2008.

[42] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing Probabilis-
tic Programming Systems,” in FSE, 2018.

[43] A. Rabkin and R. Katz, “Static Extraction of Program Configuration
Options,” in ICSE, 2011.

[44] A. Rabkin and R. Katz, “Precomputing Possible Configuration Error
Diagnosis,” in ASE, 2011.

[45] M. Lillack, C. Kästner, and E. Bodden, “Tracking Load-time Configura-
tion Options,” in ASE , 2014.

[46] T. Xu and Y. Zhou, “Systems Approaches to Tackling Configuration
Errors: A Survey,” ACM Surveys, vol. 47, no. 4, 2015.

[47] F. Behrang, M. B. Cohen, and A. Orso, “Users Beware: Preference
Inconsistencies Ahead,” in FSE, 2015.

[48] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wqsowski, “Evolution
of the Linux Kernel Variability Model,” in SPLC, 2010.

[49] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The
Variability Model of the Linux Kernel,” in VaMoS, 2010.

[50] D. Nesic, J. Krüger, S. Stanciulescu, and T. Berger, “Principles of Feature
Modeling,” in ESEC/FSE, 2019.

[51] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A Study
of Variability Models and Languages in the Systems Software Domain,”
TSE, vol. 39, no. 12, 2013.

[52] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An
Analysis of the Variability in Forty Preprocessor-based Software Product
Lines,” in ICSE, 2010.

[53] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in
SIGMOD, 2017.

[54] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijantoro,
“Understanding and Auto-Adjusting Performance-Sensitive Configura-
tions,” in ASPLOS, 2018.

[55] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic Configuration of
Internet Services,” in EuroSys, 2007.

[56] Z. Yu, Z. Bei, and X. Qian, “Datasize-aware high dimensional configura-
tions auto-tuning of in-memory cluster computing,” in ASPLOS, 2018.

[57] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using Bad Learners to
Find Good Configurations,” in FSE, 2017.

[58] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
Influence Models for Highly Configurable Systems,” in FSE, 2015.

[59] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster
configurations using flash,” TSE, vol. 46, no. 7, 2018.

[60] C.-J. Hsu, V. Nair, T. Menzies, and V. W. Freeh, “Scout: An Experienced
Guide to Find the Best Cloud Configuration,” arXiv:1803.01296, 2018.

[61] S. Duan, V. Thummala, and S. Babu, “Tuning Database Configuration
Parameters with iTuned,” in VLDB, 2009.

[62] Y. Zhu, J. Liu, M. Guo, Y. Bao, K. Song, and Z. Liu, “BestConfig:
Tapping the Performance Potential of Systems via Configuration Adjust-
ment,” in SoCC, 2017.

[63] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agarwal,
“Transfer Learning for Performance Modeling of Configurable Systems:
An Exploratory Analysis,” in ASE , 2017.

[64] P. Jamshidi, M. Velez, C. Kästner, and N. Siegmund, “Learning to Sam-
ple: Exploiting Similarities Across Environments to Learn Performance
Models for Configurable Systems,” in FSE, 2018.

[65] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart hill-
climbing algorithm for application server configuration,” in WWW, 2004.

199

[66] T. Ye and S. Kalyanaraman, “A Recursive Random Search Algorithm for
Large-Scale Network Parameter Configuration,” in SIGMETRICS, 2003.

[67] H. Herodotou, F. Dong, and S. Babu, “No One (Cluster) Size Fits All:
Automatic Cluster Sizing for Data-intensive Analytics,” in SoCC, 2011.

[68] T. Osogami and T. Itoko, “Finding Probably Better System Configura-
tions Quickly,” in SIGMETRICS, 2006.

[69] R. Krishna, V. Nair, P. Jamshidi, and T. Menzies, “Whence to Learn?
Transferring Knowledge in Configurable Systems using BEETLE,”
arXiv:1911.01817, 2019.

[70] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic Knobs for Responsive Power-Aware Computing,”
in ASPLOS, 2011.

[71] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Towards Automatic Optimization of MapReduce Programs,”
in CIDR, 2011.

[72] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Variability
Modeling in the Real: A Perspective from the Operating Systems Do-
main,” in ASE , 2010.

[73] R. Barrett, E. Kandogan, P. P. Maglio, E. Haber, L. A. Takayama,
and M. Prabaker, “Field Studies of Computer System Administrators:
Analysis of System Management Tools and Practices,” in CSCW, 2004.

[74] L. Takayama and E. Kandogan, “Trust as an Underlying Factor of System
Administrator Interface Choice,” in CHI, 2006.

[75] E. M. Haber and J. Bailey, “Design Guidelines for System Administration
Tools Developed through Ethnographic Field Study,” in CHI, 2007.

[76] D. Jin, M. B. Cohen, X. Qu, and B. Robinson, “PrefFinder: Getting the
Right Preference in Configurable Software Systems,” in ASE , 2014.

[77] D. Yuan, Y. Luo, X. Zhuang, G. Rodrigues, X. Zhao, Y. Zhang, P. Jain,
and M. Stumm, “Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems,” in
OSDI, 2014.

[78] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding
and Discovering Software Configuration Dependencies in Cloud and
Datacenter Systems,” in FSE, 2020.

[79] C. Xiang, H. Huang, A. Yoo, Y. Zhou, and S. Pasupathy, “PracExtractor:
Extracting Configuration Good Practices from Manuals to Detect Server
Misconfigurations,” in USENIXATC, 2020.

[80] C. Li, S. Wang, H. Hoffmann, and S. Lu, “Statically Inferring Perfor-
mance Properties of Software Configurations,” in EuroSys, 2020.

[81] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where Do Configura-
tion Constraints Stem from? An Extraction Approach and An Empirical
Study,” TSE, vol. 99, 2015.

[82] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining Configuration
Constraints: Static Analyses and Empirical Results,” in ICSE, 2014.

[83] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study,” Tech.
Rep. CMU/SEI-90-TR-021, SEI, CMU, 1990.

[84] S. She, R. Lotufo, T. Berger, A. Wqsowski, and K. Czarnecki, “Reverse
Engineering Feature Models,” in ICSE, 2011.

[85] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating Range Fixes
for Software Configuration,” in ICSE, 2012.

[86] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
“Range Fixes: Interactive Error Resolution for Software Configuration,”
TSE, vol. 41, no. 6, 2015.

[87] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou,
and S. Savage, “Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging,” in OSDI, 2012.

[88] D. Yuan, S. Park, and Y. Zhou, “Characterising Logging Practices in
Open-Source Software,” in ICSE, 2012.

[89] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving Software
Diagnosability via Log Enhancement,” in ASPLOS, 2011.

[90] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “SherLog:
Error diagnosis by connecting clues from run-time logs,” in ASPLOS,
2010.

[91] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang,
and T. Xie, “Log2: A Cost-Aware Logging Mechanism for Performance
Diagnosis,” in USENIXATC, 2015.

[92] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where Do Developers Log? An Empirical Study on Logging Practices
in Industry,” in ICSE, 2015.

[95] T. Barik, J. Witschey, B. Johnson, and E. R. Murphy-Hill, “Compiler
Error Notifications Revisited: An Interaction-first Approach for Helping
Developers More Effectively Comprehend and Resolve Error Notifica-
tions,” in ICSE, 2014.

[93] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?,” in ICSE,
2013.

[94] C. Sun, V. Le, and Z. Su, “Finding and Analyzing Compiler Warning
Defects,” in ICSE, 2016.

[96] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
Deviant Behavior: A General Approach to Inferring Errors in Systems
Code,” in SOSP, 2001.

[97] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “AutoISES: Auto-
matically inferring security specifications and detecting violations,” in
USENIX Security, 2008.

[98] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iComment: Bugs or Bad
Comments? */,” in SOSP, 2007.

[99] S. H. Tan, D. Marinov, L. Tan, and G. Leavens, “@tComment: Testing
Javadoc comments to detect comment-code inconsistencies,” in ICST,
2012.

[100] Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and H. Gall, “Au-
tomatic Detection and Repair Recommendation of Directive Defects in
Java API Documentation,” TSE, 2018.

[101] H. Zhong and Z. Su, “Detecting API Documentation Errors,” in OOP-
SLA, 2013.

[102] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining Question and
Answer Sites for Automatic Comment Generation,” in ASE , 2013.

[103] J. Zhai, X. Xu, Y. Shi, G. Tao, M. Pan, S. Ma, L. Xu, W. Zhang, L. Tan,
and X. Zhang, “CPC: Automatically Classifying and Propagating Natural
Language Comments via Program Analysis,” in ICSE, 2020.

[104] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards Automatically Generating Summary Comments for Java Meth-
ods,” in ASE , 2010.

[105] S. Zhang and M. D. Ernst, “Proactive Detection of Inadequate Diagnostic
Messages for Software Configuration Errors,” in ISSTA, 2015.

[106] N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty, “Secure
Coding Practices in Java: Challenges and Vulnerabilities,” in ICSE, 2018.

[107] C. Xiang, Y. Wu, B. Shen, M. Shen, H. Huang, T. Xu, Y. Zhou, C. Moore,
X. Jin, and T. Sheng, “Towards Continuous Access Control Validation
and Forensics,” in CCS, 2019.

[108] T. Xu and D. Marinov, “Mining Container Image Repositories for Soft-
ware Configurations and Beyond,” in ICSE NIER, 2018.

[109] M. Sayagh, Z. Dong, A. Andrzejak, and B. Adams, “Does the Choice of
Configuration Framework Matter for Developers? Empirical Study on 11
Java Configuration Frameworks,” in SCAM , 2017.

[110] M. Raab and G. Barany, “Challenges in Validating FLOSS Configura-
tion,” in OSS, 2017.

[111] E. Horton and C. Parnin, “V2: Fast Detection of Configuration Drift in
Python,” in ASE , 2019.

[112] C. Wen, Y. Zhang, X. He, and N. Meng, “Inferring and applying def-use
like configuration couplings in deployment descriptors,” in ASE , 2020.

[113] S. Mehta, R. Bhagwan, R. Kumar, B. Ashok, C. Bansal, C. Maddila,
C. Bird, S. Asthana, and A. Kumar, “Rex: Preventing bugs and miscon-
figuration in large services using correlated change analysis,” in NSDI,
2020.

[114] L. Passos, R. Queiroz, M. Mukelabai, T. Berger, S. Apel, K. Czarnecki,
and J. Padilla, “A study of feature scattering in the Linux kernel,” TSE,
2018.

[115] C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering Arrays for Efficient
Fault Characterization in Complex Configuration Spaces,” IEEE Trans-
actions on Software Engineering (TSE), vol. 32, no. 1, 2006.

[116] D. Jin, X. Qu, M. B. Cohen, and B. Robinson, “Configurations every-
where: Implications for testing and debugging in practice,” in ICSE, 2014.

[117] S. M. Fouché, M. B. Cohen, and A. Porter, “Incremental Covering Array
Failure Characterization in Large Configuration Spaces,” in ISSTA, 2009.

[118] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression
testing: An empirical study of sampling and prioritization,” in ISSTA,
2008.

[119] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
Symbolic Evaluation to Understand Behavior in Configurable Software
Systems,” in ICSE, 2010.

[120] C. Song, A. Porter, and J. S. Foster, “iTree: Efficiently Discovering High-
Coverage Configurations Using Interaction Trees,” in ICSE, 2012.

200

