
Finding Polluter Tests Using Java PathFinder

Pu Yi
Peking University

Beijing, China
lukeyi@pku.edu.cn

Anjiang Wei
Peking University

Beijing, China
weianjiang@pku.edu.cn

Wing Lam
University of Illinois

Urbana, IL, USA
winglam2@illinois.edu

Tao Xie
Peking University

Beijing, China
taoxie@pku.edu.cn

Darko Marinov
University of Illinois

Urbana, IL, USA
marinov@illinois.edu

ABSTRACT
Tests that modify (i.e., “pollute”) the state shared among tests in
a test suite are called “polluter tests”. Finding these tests is im-
portant because they could result in different test outcomes based
on the order of the tests in the test suite. Prior work has proposed
the PolDet technique for finding polluter tests in runs of JUnit
tests on a regular Java Virtual Machine (JVM). Given that Java
PathFinder (JPF) provides desirable infrastructure support, such
as systematically exploring thread schedules, it is a worthwhile
attempt to re-implement techniques such as PolDet in JPF. We
present a new implementation of PolDet for finding polluter tests
in runs of JUnit tests in JPF. We customize the existing state
comparison in JPF to support the so-called “common-root iso-
morphism” required by PolDet. We find that our implementation
is simple, requiring only ∼200 lines of code, demonstrating that
JPF is a sophisticated infrastructure for rapid exploration of re-
search ideas on software testing. We evaluate our implementation
on 187 test classes from 13 Java projects and find 26 polluter tests.
Our results show that the runtime overhead of PolDet@JPF com-
pared to base JPF is relatively low, on average 1.43x. However,
our experiments also show some potential challenges with JPF.

Categories and Subject Descriptors: D.2.5 [Software Engineering]:
Testing and Debugging

Keywords: Polluter tests, flaky tests, PolDet, Java PathFinder

1. INTRODUCTION
Flaky tests [9] can nondeterministically pass or fail for the same
code under test. Finding flaky tests proactively is important be-
cause their failures can mislead developers to debug their recent
code changes [5]. Specifically, developers would assume the cause
of the failures is in the code changes if the tests passed before the
code changes but fail after the code changes. Some flaky tests
are order dependent [17], i.e., they depend on the test-suite order
and can pass in one order but fail in another order. These order-
dependent tests most commonly [13] involve a pair of a polluter
test, which modifies (i.e., “pollutes”) the state shared among tests,
and a victim test, which fails when run after the polluter test but
passes otherwise. Strictly speaking, only the victim tests are flaky
tests, because they can pass or fail, but finding polluter tests is
important to prevent victim tests from failing.

Prior work [4] has proposed a technique, called PolDet, to find
polluter tests during regular testing on a Java Virtual Machine
(JVM). The idea of PolDet is to find the polluter tests “by def-
inition”: run each test from the test suite, capture the shared
pre-state (before the test starts running) and the post-state (af-
ter the test finishes), and compare these two states. In PolDet’s
original implementation, where the running of JUnit tests is on
a regular JVM, a shared state consists of the part of the heap
reachable from the static (class) fields.

Implementing PolDet requires a few key features. Specifically, the
original PolDet implementation uses the XStream library [16] for
XML serialization to traverse the relevant part of the heap and
serialize it into XML for later comparison. The serialization starts
from a set of roots, i.e., from a map whose keys are fully qualified
names of the static fields and whose values are either primitive
values or the references to the actual heap objects pointed to by
these fields. PolDet uses a Java agent to track all loaded classes
to identify the static fields. PolDet also uses a modified JUnit
runner to call the logic for capturing and comparing states.

PolDet’s comparison of Java states requires handling an important
technical challenge, namely, lazy class loading, which could cause
false alarms for state differences. Java programs do not load all
of the classes necessary for program execution at the start of the
execution but dynamically discover what classes are needed and
load them only when needed. As a result, the pre-state and the
post-state for a test can often trivially differ because they have
different static fields whenever the test execution loads a new class
(that has at least one static field). Reporting such state differences
would be undesirable and create false alarms in PolDet.

To avoid reporting these false alarms, PolDet defines the notion
of common-root isomorphism [4]. It views pre-states and post-
states as multi-rooted graphs whose nodes represent heap objects
(including arrays) and primitive values, and whose edges represent
object fields (including array indices). The graph roots correspond
to the static fields. PolDet finds the set of common roots for the
two graphs and compares whether the subgraphs reachable from
these common roots are isomorphic (up to the node identity).
Precise definitions are in the original PolDet paper [4].

Given that Java PathFinder (JPF) [15] provides desirable infras-
tructure for systematically testing Java programs, e.g., for ex-
ploring thread schedules, it is worthwhile to re-implement tech-
niques such as PolDet in JPF, as is the focus of our work in
this paper. Our re-implementation of PolDet in JPF is relatively
simple, demonstrating JPF’s high extensibility to support test-
ing techniques such as PolDet. In particular, we develop a new,
customized state comparison in JPF to support common-root iso-
morphism required by PolDet. We also write a JUnit listener to
call our code when a test starts (to capture the pre-state) and
when a test finishes (to capture the post-state and to compare its
appropriate parts with the pre-state). In total, our implementa-
tion has ∼200 lines of code. It is pending as a pull request to JPF
(https://github.com/javapathfinder/jpf-core/pull/285). We re-
fer to our implementation as PolDet@JPF and the original im-
plementation as PolDet@JVM.

We evaluate our PolDet@JPF implementation on 187 test classes
from 13 open-source Java projects used in the original PolDet



// in PotionTest class
@Test // the polluter test
public void setExtended () {

PotionEffectType.registerPotionEffectType(new
PotionEffectType (19) {
/* other methods */
@Override
public String getName () {

return "Poison";
}

});
/* some checking */

}

// in PotionEffectType class
private static final Map <String , PotionEffectType >

byName = new HashMap <String , PotionEffectType >();
public static void registerPotionEffectType(

PotionEffectType type) {
/* check that the argument is valid */
byName.put(type.getName ().toLowerCase (), type);

}
public static PotionEffectType getByName(String name) {

Validate.notNull(name , "name cannot be null");
return byName.get(name.toLowerCase ());

}

Figure 1: A polluter test setExtended found with PolDet@JPF

evaluation [4]. These projects have a total of 991 test classes, but
unfortunately, JPF (even without our extensions) could not run
more than 187 classes. We find 26 polluter tests. (We use the
term “test” to refer to one JUnit test method.) We also measure
the overhead that PolDet@JPF has over base JPF. The average
(geometric mean) overhead is fairly low, only 1.43x, and is quite
stable across projects, ranging from 1.12x to 1.86x. In contrast,
PolDet@JVM reports the average overhead of 4.50x, but ranging
much more widely, from 1.07x to 1029.57x [4, Fig. 4]. In summary,
when JPF can execute a test class, our PolDet@JPF works fairly
well and can search for polluter tests relatively fast.

2. EXAMPLE
We next show one example of a polluter test found by PolDet@JPF
in our experiments. Figure 1 shows the relevant snippets of the
test code and code under test. This test is from the Bukkit project
that provides an extension for the popular Minecraft game. The
test is PotionTest.setExtended, which registers a new subclass ob-
ject of an abstract class PotionEffectType. The test assigns the
name for an object by overriding the getName method. The ab-
stract class PotionEffectType contains a static field whose type is
Map and whose name is byName. This field supports getting a reg-
istered subclass by its name using the getByName method. When
registering this new subclass object, the setExtended test eventu-
ally adds an entry to the map in byName. Therefore, the pre-state
and post-state differ due to this additional entry in the map.

This change of shared state may not be obvious to the developers
who wrote this test. However, this change could be easily observed
by another test that would try to use the getByName method from
the PotionEffectType class. Accordingly, this polluter test could
potentially cause some newly added victim test to fail if the victim
test runs after this test and relies on the content of the map. Using
the state-serialization feature in our PolDet@JPF, we can find the
change of the program state by comparing the state serialization
results in the test pre-state and post-state. This test was also
found and reported in the original PolDet paper [4].

3. IMPLEMENTATION
The PolDet technique finds polluters by comparing states before
and after test runs, i.e., test pre-state and post-state. According

to the original implementation [4], the key features required for
implementing PolDet in Java are (1) finding the set of all loaded
classes (by the JVM) from executing the tests to get the set of all
static fields from these classes; (2) capturing the shared heap state
reachable from static fields to enable state comparison; (3) com-
paring the states using the“common-root-isomorphism”technique
to handle dynamic class loading [4]; and (4) extending JUnit to
make appropriate calls to the core system that captures and com-
pares states. We implement our PolDet@JPF tool based on the
jpf-core code [7]. Before we describe how we implement each of
the key features, we first provide a high-level overview.

3.1 Overview
JPF implements a JVM that runs on the host JVM and interprets
the application code. JPF has two execution layers: the native
JVM level in which JPF runs and the JPF level in which the
application code runs. JVM and JPF load classes only on demand.

Our PolDet@JPF implementation runs JUnit tests at the JPF
level but captures and compares the states in the native JVM
level. PolDet@JPF extends the existing JPF state serialization
for our purpose. Before each test starts and after it finishes, our
JUnit listener calls our serialization to capture and compare the
states. To enable these calls, we expose a new native peer that
can be called from the Java code interpreted by JPF to jump into
the native JVM that executes JPF.

3.2 Finding loaded classes
At the native JVM level, it is easy to find the set of all classes
loaded by the Java code interpreted by JPF. (In contrast, finding
classes loaded by JVM requires using a Java agent as done by the
original PolDet@JVM [4, §4.3].) Our JPF state serialization finds
loaded classes while capturing the shared state.

3.3 Capturing shared state
The key of our implementation is to capture the shared state (the
pre-stare and post-state for a test). We leverage the existing JPF
state serialization, specifically the FilteringSerializer class and
write a sub-class of it called PolDetSerializer. Traditionally, JPF
calls state serialization at “choice points”, where it matches the
current state with the previously encountered states, perform-
ing stateful search and stopping the current execution path if it
matches a previously encountered state. Instead, our code calls
into state serialization before and after executing each test.

The FilteringSerializer produces an integer array that serial-
izes (almost) the entire state of the JVM interpreted by JPF, in-
cluding the static area (loaded classes), thread information, stack
frames, and the heap reachable from all of the roots. Our PolD-

etSerializer ignores two kinds of fields. First, we ignore all of
the fields from JUnit, i.e., all instance fields in classes starting
with org.junit. Because we run the tests and JUnit in JPF, the
JVM interpreted by JPF has the entire JUnit state. For exam-
ple, one of the JUnit fields, named org.junit.runner.Result.count,
stores the number of executed tests. This field changes for each
test, and we do not want to label every test as a polluter sim-
ply because JUnit changes this counter field. Second, we ig-
nore all of the fields whose class or field names contain cache

(case insensitive). For example, JPF keeps some cached objects
in gov.nasa.jpf.vm.BoxObjectCacheManager to speed up execution.
Again, these objects can change for many (albeit not all) test exe-
cutions, but their change does not indicate that the test is truly a
polluter test. As a result, PolDet@JPF could have false negatives
for some of JPF’s test classes.



class PolDetListener extends RunListener {
// native method declarations for JPF
public native static void capturePreState ();
public native static boolean compareStates ();
public void testStarted(Description description) {

capturePreState (); // also collect loaded classes
}
public void testFinished(Description description) {

if (! compareStates ()) { // compare pre - & post -state
/* print "polluter found" for the method */

}
}
/* testRunStarted and testRunFinished methods collect

and print statistics */
}

Figure 2: JUnit listener to capture the pre-state and post-state

In addition to capturing the state, our code also (1) at the start
of each test records the set of loaded classes, and (2) at the end
of each test calls our PolDetSerializer to capture, as the roots
for serialization, only the static fields from the classes that are
loaded before the test starts (in other words, our code ignores
the static fields from the classes newly loaded during the test
execution). Thus, we ensure that the pre-state and post-state
have the same set of roots, based on the classes that are loaded
in the pre-state, effectively providing the “common-root isomor-
phism” [4, §4.4]. This comparison can have false negatives, e.g., a
polluter test cannot be found if it is checked first by PolDet@JPF.

3.3.1 Debugging support
To compare serialized states more easily, and inspired by the ex-
isting DebugCFSerializer class in JPF, we use a feature that is not
necessary to detect polluter tests but greatly aids in debugging
why a test is a polluter. Namely, the FilteringSerializer (as ev-
ery other state-serialization class) in JPF returns an integer array
that compactly encodes the entire state. While such an array is
good for performance (both space and time) of state comparison,
the array makes it rather challenging to determine which part of
the shared state is polluted.

In addition to the integer array, our debugging feature can also
print a more human-readable graph representation of the state.
Each edge in the graph can be a field on the heap (reachable from
the root static fields), e.g., if objRef1 and objRef2 are two object
references used by JPF, and the field named f of objRef1 has
value objRef2, our debug output has a triple objRef1, f, objRef2.
Our implementation also handles primitive values, arrays (whose
elements are serialized with array indices instead of field names
for objects), and various kinds of state graph roots: static fields,
stack frames, and thread information. This feature makes it easier
to find which parts of the pre-state and post-state differ for a
polluter test. We can traverse from the difference back to the root
in the state graph to understand how the changes happen. We
use this feature to print the states only after a test is reported as a
polluter, i.e., when we inspect the pollution. We do not print the
states while determining whether some test is a polluter, because
printing this debug information would add a substantial overhead.
The debugging feature requires ∼50 more lines of code.

3.4 Comparing shared states
State comparison is straightforward because of how shared states
are captured, i.e., ignoring irrelevant parts of the state and travers-
ing only the heap reachable from the common roots. PolDet@JPF
simply compares the two integer arrays, for pre-state and post-
state, and reports a test as a polluter if the arrays differ.

// implementation of native methods at the JVM level
public class JPF_PolDetListener extends NativePeer {

static int[] preState; // store for later comparison
static PolDetSerializer serializer = new

PolDetSerializer (); // stores loaded classes
@MJI
public static void capturePreState____V(MJIEnv env ,

int classRef) {
serializer.attach(env.getVM());
preState = serializer.getState(PRESTATE);

}
@MJI
public static boolean compareStates____Z(MJIEnv env ,

int classRef) {
serializer.attach(env.getVM());
int[] postState = serializer.getState(POSTSTATE);
return Arrays.equals(preState , postState);

}
}

Figure 3: Native peer showing the key methods

3.5 Extending JUnit
Our current PolDet@JPF implementation supports JUnit 4, be-
cause it is still the most widely used JUnit version, although JU-
nit 5 is the latest version and is becoming widely used. We do not
need to change the JUnit 4 core itself but just implement a JUnit
listener, as shown in Figure 2, to call our methods for capturing
and comparing shared states. In particular, before each test, we
capture the pre-state (including the set of loaded classes), and
after each test, we (1) capture the post-state (reachable from the
previously loaded classes) and (2) compare the states and print
that the test is a polluter if the states differ, as shown in Fig-
ure 3. The implementation for capturing states could be further
optimized to reuse the post-state of one test for the pre-state of
the next test; we do not currently do so because the overhead of
PolDet@JPF is already quite low compared to base JPF.

4. EXPERIMENTS
We evaluate our PolDet@JPF on a subset of projects (13 out of 26)
used in the original PolDet@JVM evaluation [4, Fig. 3]. Our ini-
tial plan was to repeat the exact experiments from PolDet@JVM.
However, we encounter two problems. First, some of the code ver-
sions used in PolDet@JVM evaluation are rather old and cannot
compile “out-of-the-box”, e.g., due to missing library dependen-
cies. As a result, we decide to use the latest versions of all these
projects. Second, even when projects could compile, JPF could
not run a large number of test classes from these projects.

To determine which test classes to use in our experiments, we
proceed as follows. We first clone the latest version of the project
from its GitHub repository and discard projects that are not
Maven-based or that cannot compile with Maven. At this point,
we have a total of 991 test classes. We then run each test class
by itself on JPF and discard classes that JPF could not run, e.g.,
due to missing native peers or incorrect native peers that return
the wrong values. (Note that these issues are not due to our
PolDet@JPF extensions of JPF.) We did initially try to add some
native peers, but we found the effort rather futile as we had dozens
of such problems, e.g., with code calling into graphic interfaces
(even when running fully on the command line), making network
calls, or using other I/O. In the end, we are left with 187 (out of
991) test classes belonging to 13 projects that JPF could run.

Table 1 shows some statistics of the projects used in our experi-
ments. For each project, we tabulate the name of the repository,
the exact commit, and the number of test classes and test meth-
ods that we could run on JPF. For each project, we collect all of



GitHub project slug commit # test time [s] overhead time [s] overhead
SHA classes methods polluters PolDet base of PolDet JVM of JPF

@JPF JPF
ahorn/android-rss 4f0bd7cd 2 20 0 0.268 0.144 1.86 0.040 3.60
apache/httpcomponents-client 918ac153 33 240 * 7 4.516 3.225 1.40 0.649 4.97
Athou/commafeed b597c655 2 7 0 0.142 0.085 1.67 0.016 5.31
Bukkit/Bukkit f210234e 31 271 * 5 5.088 3.627 1.40 1.025 3.54
caelum/vraptor4 593ce9ad 26 129 4 7.351 6.552 1.12 1.498 4.37
fakemongo/fongo 7301aa1f 1 8 0 0.100 0.054 1.85 0.009 6.00
github/maven-plugins 8d6d4939 2 5 0 0.440 0.339 1.30 0.186 1.82
jopt-simple/jopt-simple 81e6a674 60 384 * 1 7.632 5.843 1.31 1.753 3.33
nurkiewicz/spring...repository fafe7dc8 1 13 0 0.182 0.105 1.73 0.051 2.06
perwendel/spark 5ca2a0a6 14 53 2 0.967 0.624 1.55 0.138 4.52
qos-ch/slf4j 62309486 5 37 1 1.133 1.003 1.13 0.072 13.93
tbruyelle/spring-test-mvc 31530307 6 53 2 2.785 2.472 1.13 0.331 7.47
twitter/hbc b3c73e60 4 22 4 0.587 0.417 1.41 0.126 3.31
sum (geomean for overhead) 187 1,242 26 31.191 24.490 1.43 5.894 4.30

Table 1: Key statistics of our experiments for finding polluter tests using our PolDet@JPF implementation; ‘*’ denotes that one of the
polluter tests is a parameterized unit test that has multiple runs that pollute the state, as discussed in Section 4.1.3

the test classes that JPF could run individually, and then we run
these classes all at once (1) in our PolDet@JPF to find polluters
and measure runtime, (2) in JPF to measure the runtime for base
JPF, and (3) in a regular JVM to measure the overhead of base
JPF over JVM. All timing experiments are performed on a server
with 32 Physical CPUs (Intel(R) Xeon(R) Silver 4110 CPU @
2.10GHz) using Java OracleJDK version 1.8.0 261.

Table 1 also summarizes the results that we obtain in our exper-
iments. For each project, we tabulate the number of polluters,
the time for running all test classes that could run, the overhead
of our PolDet@JPF over base JPF, as well as the time for run-
ning all (187) test classes in JVM, and the overhead of base JPF
over JVM. The overhead of our PolDet@JPF stems from captur-
ing and comparing states before and after each test. (The timing
experiments do not run our debugging that prints states in a for-
mat easier for comparison.) We find the overhead of PolDet@JPF
over base JPF quite acceptable, on average (geometric mean) just
1.43x, and ranging from 1.12x to 1.86x across projects. For these
test classes, we also find that the overhead of JPF over JVM to be
quite acceptable, on average just 4.30x, and ranging from 1.82x
to 13.93x across projects. In comparison, PolDet@JVM was re-
ported to have an average overhead of 4.50x, but ranging much
more widely, from 1.07x to 1029.57x [4, Fig. 4]. Note that we
do not directly compare PolDet@JPF and PolDet@JVM as they
were run on different project versions and tests.

4.1 Analysis of polluter tests
Our experiments find a total of 26 polluter tests. These pol-
luter tests are in 8 projects, i.e., more than half of the studied 13
projects. This result already shows that polluters may be widely
present across various projects. The overall ratio of polluter tests
that our experiments find among all of the tests is 2.08% (26 out of
1,242 tests). This ratio is lower than reported for PolDet@JVM,
5.31% (324 polluters out of 6105 tests). The reason could be that
more complex tests, which manipulate larger portions of the state
and involve more extensive operations, are both more likely to be
polluters and also less likely to be able to run in JPF.

We have inspected all of the tests that PolDet@JPF reports as pol-
luters. Our initial attempt to simply inspect the test code (and
potentially directly invoked code under test) proved to be rather
challenging because the pollution can often be deep in the heap.
Therefore, we develop our debugging support (Section 3.3.1) to
make it easier to locate the state difference, as well as the static
field that is a root from which the difference can be reached. Sec-
tion 2 has already discussed one example test. We next discuss

several more selected example tests. Admittedly, many of the
state differences would be hard to observe with other “victim”
tests; this result is again in contrast to the original PolDet@JVM
evaluation [4] presumably for the same reason of test complexity.
Nevertheless, we still find some interesting state differences.

4.1.1 Real pollution
The test ResourceUtilsTest.testGetFile... from the spark project
modifies the static field java.net.URL.handlers from the Java stan-
dard library. The field points to an object of the type Hashtable.
This test adds an element to the hashtable. A potential victim test
could easily observe such a change by invoking the static method
URL.getURLStreamHandler that looks up the hashtable handlers.

4.1.2 Pollutions due to caching
The four tests from the HttpHostsTest class in the hbc project
all modify the same part of the state that happens to be in the
standard library. Specifically, these tests involve a list of host
addresses whose order is randomized using the standard library
method Collections.shuffle. This method uses a pseudorandom
number generator (PRNG) stored in a static field. Calling shuffle

changes the internal state of the PRNG. Strictly speaking, this
change is a pollution because another test could observe it by
checking the result of shuffle or by using reflection to directly
access the internal state of the PRNG. However, it is unlikely to
have a realistic test that depends on such an observation.

The test XpathRequestMatchersTests.testStringNoMatch from the
spring-test-mvc project checks an operation from the XPath query
language for XML documents. The test executes code that in-
volves serializing object graphs into XML strings. This serializa-
tion uses the StringBufferPool class to cache string buffers that
can often be reused in serialization. The test execution pollutes
this internal cache; while this pollution is indeed a true modifica-
tion of the shared state, it is unlikely that any other test would
be a “victim” that would observe the internal cache state and fail
when run after this polluter but pass when run before it.

The test OptionException...Test.givesCorrectExceptionMessage

from the jopt-simple project uses the locale feature to set the
user’s language preferences. The execution of this test modifies
the shared state reachable from the field Locale.LOCALECACHE in the
standard library. This field stores a cache that is lazily initialized.
The test execution makes this cache bigger, thus polluting the
state. It is unlikely that any other test would be a “victim” that
would observe such cache state.



The test ExceptionMapperTest.testGetInstance... from the spark

project modifies a part of the state that is not too far from the test
code. The test is for the class ExceptionMapper and modifies its
static field ExceptionMapper.servletInstance. This field points to
an object of the type HashMap. This test replaces one empty map
with another. According to the common-root isomorphism [4],
the pre-state and post-state are isomorphic, but FilteringSeri-

alizer does not declare these states as equivalent (in other words,
FilteringSerializer does not fully break heap symmetry).

4.1.3 Parameterized unit tests
We have also found some interesting cases of parameterized unit
tests [14] that are polluters. While 26 tests are polluters, there
are actually more test runs that pollute. For example, the test
TestClassicHttpRequests.testCreateFromString from the project
httpcomponents-client is a parameterized unit test, and it has
8 sets of parameters that all pollute the shared state. The test
OptionException...Test.givesCorrectExceptionMessage from jopt-

simple also has 8 sets of parameters but only pollutes for the first
set. The test DyeColorTest.getWoolDyeColor from Bukkit has 16
sets of parameters but only one set pollutes the shared state.

5. RELATED WORK
There is a growing body of research on flaky tests. Luo et al. [9]
presented a characterization of flaky tests, identifying a dozen
kinds of flaky tests based on the root causes of nondeterminism.
Some of the earliest work [10, 17] considered flaky tests that de-
pend on the order of the tests in the test suite, and this topic
continues to garner attention [2, 8, 13]. Specifically, the work on
iFixFlakies [13] proposed a technique to fix one kind of flaky tests
and also named tests related to flaky tests due to test-suite order,
including “polluters” addressed in this paper, as well as “victims”
and “brittles” that can fail due to the shared state.

The most related work by Huo and Clause [6] proposed the no-
tion of “brittle assertions”, i.e., test assertions that depend on the
shared state that is read by the test but not written by the test.
Thus, tests with such brittle assertions can fail if run in a wrong
pre-state, even if the code under test has no faults. In partic-
ular, victim tests pass when run in isolation (starting from the
default JVM state) but fail when run after other (polluter) tests;
in contrast, brittle tests fail when run in isolation but pass when
run after other tests [13]. Moreover, Huo and Clause proposed
finding tests with brittle assertions via taint tracking, and they
implemented a sophisticated system in JPF [6]. Our work is com-
plementary to theirs because PolDet@JPF finds polluter tests.

Most prior and ongoing work on flaky tests has been on open-
source Java projects, e.g., Alshammari et al. [1] use machine learn-
ing to predict which tests are flaky. However, other domains have
also been analyzed, e.g., Gruber et al. [3] report on thousands of
flaky tests in Python, and Romano et al. [11] report on hundreds
of flaky tests in Android and web applications. Besides academic
research, various companies have published papers about flaky
tests, reporting the importance of the problem, with Harman and
O’Hearn presenting a compelling overview [5].

6. CONCLUSIONS AND FUTURE WORK
We have presented a novel implementation, called PolDet@JPF,
of the previously proposed PolDet [4] technique to find polluter
tests. Our work highlights some positive aspects of JPF: (1) JPF
enables our implementation to be fairly simple, with just ∼200
lines of code; (2) the runtime overhead of PolDet@JPF over base
JPF is relatively low, with 1.43x on average; and (3) the runtime
overhead of base JPF over JVM is relatively low, with 4.30x. Our

experiments also show a negative aspect of JPF: JPF currently
cannot handle a lot of real code, e.g., it could run only 187 out of
991 test classes that we have tried.

Future work could, in general, help to increase JPF’s applicability
to more code, e.g., implementing more peer methods or advancing
jpf-nhandler [12]. Specifically for PolDet@JPF, providing visual-
ization or better output information could help developers spot
the root of pollution more easily. Another interesting topic would
be automatically removing state pollution from tests.

Acknowledgments
We thank August Shi and Zhengxi Li for engaging discussions
about flaky tests in general and polluter tests in particular. This
work was partially supported by NSF grants CNS-1564274, CCF-
1763788, CCF-1816615, and CCF-1956374. We thank Facebook
and Google for supporting research on flaky tests. Wing Lam is
supported by a Google – CMD-IT LEAP Dissertation Fellowship.
Tao Xie is with the Key Laboratory of High Confidence Software
Technologies (Peking University), Ministry of Education, China,
and is the corresponding author.

7. REFERENCES
[1] A. Alshammari, C. Morris, M. Hilton, and J. Bell.

FlakeFlagger: Predicting flakiness without rerunning tests.
In ICSE, 2021.

[2] A. Gambi, J. Bell, and A. Zeller. Practical test dependency
detection. In ICST, 2018.

[3] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser. An
empirical study of flaky tests in Python. In ICST, 2021.

[4] A. Gyori, A. Shi, F. Hariri, and D. Marinov. Reliable
testing: Detecting state-polluting tests to prevent test
dependency. In ISSTA, 2015.

[5] M. Harman and P. O’Hearn. From start-ups to scale-ups:
Opportunities and open problems for static and dynamic
program analysis. In SCAM, 2018.

[6] C. Huo and J. Clause. Improving oracle quality by detecting
brittle assertions and unused inputs in tests. In FSE, 2014.

[7] JPF Core. https://github.com/javapathfinder/jpf-core.

[8] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. iDFlakies:
A framework for detecting and partially classifying flaky
tests. In ICST, 2019.

[9] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical
analysis of flaky tests. In FSE, 2014.

[10] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. In ESEC/FSE, 2011.

[11] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang.
An empirical analysis of UI-based flaky tests. In ICSE, 2021.

[12] N. Shafiei and F. v. Breugel. Automatic handling of native
methods in Java PathFinder. In SPIN, 2014.

[13] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov.
iFixFlakies: A framework for automatically fixing
order-dependent flaky tests. In ESEC/FSE, 2019.

[14] N. Tillmann and W. Schulte. Parameterized unit tests. In
ESEC/SIGSOFT FSE, 2005.

[15] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In ASE, 2000.

[16] XStream. https://x-stream.github.io.

[17] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D.
Ernst, and D. Notkin. Empirically revisiting the test
independence assumption. In ISSTA, 2014.


