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Abstract. Let � be a post-critically finite branched covering of a two-sphere.
By work of Koch, the Thurston pullback map induced by � on Teichmüller
space descends to a multi-valued self-map — a Hurwitz correspondence H� —
of the moduli space M0,P. We study the dynamics of Hurwitz correspondences
via numerical invariants called dynamical degrees. We show that the sequence
of dynamical degrees of H� is always non-increasing, and the behavior of this
sequence is constrained by the behavior of � at and near points of its post-
critical set.

1. Introduction

Denote by S
2 the oriented two-sphere. Suppose � : S2

! S
2 is an orientation-

preserving branched covering whose post-critical set

P := {�
n(x)| x is a critical point of � and n > 0}

is finite. Then � is called post-critically finite. The topological dynamics of � induce
holomorphic and algebraic dynamical systems:

(I) Thurston [DH93]: a holomorphic, contracting self-map Th� : TS2,P !

TS2,P of the Teichmüller space of complex structures on S
2 punctured at

P. This is known as the Thurston pullback map, and it descends to
(II) Koch [Koc13]: an algebraic, multivalued self-map H� : M0,P M0,P of

the moduli space of markings of CP1 by P. Such a multivalued map is
called a Hurwitz correspondence.

In addition, if

(1) P contains a periodic and fully ramified point p0 of �, and
(2) either every other critical point of � is also periodic or there is exactly one

other critical point of �,

then we also have

(III) Koch [Koc13]: a meromorphic, single-valued map H
�1
� : M0,P M0,P.

The branched covering � is conjugate, up to homotopy, to a post-critically finite
rational map on CP1 if and only if Th� has a fixed point. There is a tremendous
amount of current research investigating the dynamics of (I). Koch introduced (II)
and (III) as algebraic dynamical systems that ‘shadow’ the holomorphic dynamics
of (I).

Dynamical degrees are numerical invariants associated to algebraic dynamical
systems; they measure complexity of iteration. Let X� be a smooth quasiprojective
variety and g : X

�
X

� (resp. g : X
�

X
�) a meromorphic map (resp. a

meromorphic multi-valued map). Fix a smooth projective birational model X of
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X
� and an ample class h 2 H

1,1(X). The kth dynamical degree of g is defined to
be the non-negative real number

⇥k(g) = lim
n!1

�
((gn)⇤(hk)) · (hdimX�k)

�1/n
,

The above limit exists and is independent of X and h; this was proved first by Dinh
and Sibony in the complex setting [DS05, DS08] and later by Truong [Tru15, Tru16]
in the algebraic setting. The k-th dynamical degree of g measures the ‘asymptotic
growth rate of the degrees of codimension-k subvarieties of X� under iterates of g’
— amazingly, this is a well-defined notion although the degree of a subvariety of
X

� is not well-defined.
Now, since � : P ! P is a self-map of a finite set, every point eventually maps

into a periodic cycle. We define the polynomiality index of � to be the positive real
number

PI(�) := max
{p2P,`>0|�`(p)=p}

�
⇧`�1

i=0(local degree of � at �i(p))
�1/`

.

In fact, PI(�) is the maximum, over all periodic cycles of � on S
2, of the geometric

mean of the local degrees of � at all the points in the cycle.

Theorem 3.1. For k = 0, . . . , |P|� 4, we have ⇥k(H�) � PI(�) ·⇥k+1(H�).

Thus the behavior of the sequence of dynamical degrees of H� is constrained by
the behavior of � at and near points of P. Note that 1  PI(�)  deg(�) always
holds. PI(�) = 1 if and only if no critical point of � is periodic, i.e. if every critical
point is strictly pre-periodic. PI(�) = deg(�) if and only if P contains a point p0

that is fixed by and fully ramified under either � or �2, i.e. if and only if either �
or �2 is a topological polynomial.

Corollary 1.1. ⇥k(H�) decreases as k increases, strictly if � has a periodic critical

point.

In Section 5, we give an example of a branched covering � for which every critical
point is strictly pre-periodic so PI(�) = 1, such that ⇥0(H�) = ⇥1(H�). Thus when
the polynomiality index equals one, the sequence of dynamical degrees may decrease
only weakly.

For any �, the dynamical degrees of H� are algebraic integers [Ram18]. As a
parallel to Corollary 1.1, the results in [Ram18] show that for k > 0, the degree over
Q of ⇥k ‘likely’ decreases as k increases. More precisely, there is an upper bound
for the degree over Q of ⇥k that decreases as k increases. In spite of the parallel,
the methods used in this paper are very di↵erent from those used in [Ram18].

1.1. Implications when H
�1
� is single-valued. Dynamical degrees have been

studied primarily in the context of single-valued maps. The topological entropy of a
holomorphic single-valued map was found to be equal to the logarithm of its largest
dynamical degree (Yomdin [Yom87] and Gromov [Gro03]). The topological entropy
of a meromorphic single-valued map is bounded from above by the logarithm of
its largest dynamical degree (Dinh and Sibony [DS05]); equality is conjectured
when there is a unique largest dynamical degree. If g is a single-valued map,
either holomorphic or meromorphic, its 0-th dynamical degree is 1 and its top
dynamical degree is its topological degree. Guedj [Gue05] found that a map whose
top dynamical degree is its largest has especially good ergodic properties. (See
Corollary 1.3 for the implications in the context of this paper.)
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If g : CPN
! CPN is a holomorphic map given in coordinates by homogeneous

polynomials of degree d, its k-th dynamical degree is d
k. Thus k 7! log(⇥k(g))

is linear with slope d, and the top (N -th) dynamical degree of g is its largest. If
g : CPN CPN or g : X X is a meromorphic map, k 7! log(⇥k(g)) is known
to be concave. Thus the top dynamical degree of g is its largest if and only if
k 7! ⇥k(g) is strictly increasing.

Koch and Roeder [KR16] studied the dynamical degrees of H�1
� in the special

case that � has exactly two critical points, both periodic. They showed in this case
that ⇥k(H

�1
� ) is the absolute value of the largest eigenvalue of the induced pullback

action on H
k,k(M0,P), where M0,P is the Deligne-Mumford compactification of

M0,P. Koch [Koc13] studied the maps H�1
� as meromorphic self-maps of CP|P|-3,

another compactification of M0,P. Koch found that if (1) and (2) hold, and, in
addition, the special point p0 is fixed by �, i.e. � is a topological polynomial, then
H

�1
� : CP|P|-3 CP|P|-3 is holomorphic, given in coordinates by homogeneous

polynomials of degree equal to the topological degree of �. Thus if � is a topological
polynomial, ⇥k(H�) = deg(�)k. Koch showed that in this case H

�1
� : CP|P|-3

!

CP|P|-3 is also critically finite.
Fix � of topological degree d > 1 such that (1) and (2) hold. If there are two

fully ramified points of � in periodic cycles, then pick p0 to be one with minimal
cycle length. Set `0 to be the length of the cycle containing p0; then PI(�) � d

1/`0 .

Since H
�1
� is single-valued, its 0-th dynamical degree is 1; the results in [Koc13]

imply that its top dynamical degree/topological degree is d
|P|�3. It follows from

definitions that ⇥k(H
�1
� ) = ⇥|P|�3�k(H�). We obtain from Theorem 3.1:

Corollary 1.2. The dynamical degrees of H
�1
� satisfy

(d1/`0)|P|�3 = (d1/`0)|P|�3
·⇥0(H

�1
� )

 (d1/`0)|P|�4
·⇥1(H

�1
� )

 · · ·

 ⇥|P|�3(H
�1
� ) = deg(H�1

� ) = d
|P|�3

In particular, the topological degree of H�1
� is strictly larger than its other dy-

namical degrees. Corollary 1.2 provides a theoretical explanation for an aspect of
the experimental results in [KR16]: in every example computed, the largest dy-
namical degree of H�1

� is the topological degree.
A direct application of Guedj’s results in [Gue05] yields:

Corollary 1.3. There is a unique H
�1
� -invariant measure m� on CP|P|-3

of maxi-

mal entropy. The measure m� is mixing, and all its Lyapunov exponents are bounded

from below by

1

2
log(PI(�)) �

1

2`0
log(d) > 0.

Further, the set of repelling periodic points of H
�1
� is equidistributed with respect to

m�.

If `0 = 1, then p0 is fixed and � is a topological polynomial. In this case,
Corollary 1.2 recovers that ⇥k(H

�1
� ) = d

k, since by [Koc13], H�1
� is holomorphic

on CP|P|-3. Thus in this case k 7! log(⇥k(H
�1
� )) is linear of slope log(d). If
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(|P| � 3, d(|P| � 3))

`0 = 1

`0 = 2

`0 = 3

`0 = 4
slope = (1/`0)d `0 = 5

1 2 · · · |P| � 3 k

log(�k(H
�1
� ))

Figure 1. Fix d > 1 and |P| � 3. Given a degree d finite branched
covering � whose post-critical set has size |P| such that there exists
a fully ramified point in a periodic cycle of length `0, the figure
shows how the graph of k 7! log(⇥k(H

�1
� )) is constrained by `0.

If `0 = 1, the graph is the line of slope log(d), pictured in solid
red. If `0 > 1, the graph is concave of slope at least (1/`0) log(d),
passing through (0, 0) and (|P | � 3, d(|P | � 3)), and between the
line of slope (1/`0) log(d) pictured in solid black and the line of
slope log(d) pictured in solid red. The dashed red curve depicts
qualitatively what the graph might look like if `0 = 2.

`0 > 1, then k 7! log(⇥k(H
�1
� )) is a concave function, which by Corollary 1.2 is

strictly increasing with slope at least (1/`0) log(d). This generalizes the result that
polynomiality of � ensures holomorphicity of H�1

� on CP|P|-3 as follows:

Observation 1.4. The more � resembles a topological polynomial, i.e. the smaller
the value of `0, the more the sequence of dynamical degrees of H�1

� resembles the

sequence of dynamical degrees of a holomorphic map on CP|P|-3 (Figure 1.1).

1.2. Implications for Hurwitz correspondences as multi-valued maps and
an application to enumerative geometry. Hurwitz correspondences can be
defined without reference to the Thurston pullback map. Let P be a finite set
and let H be a Hurwitz space parametrizing maps f : CP1

! CP1 together with
two injections from P into the source and target CP1 respectively, such that f has
specified branching behavior at and over the marked points P. The Hurwitz space
H admits two maps to M0,P: a map ⇡1 specifying the configuration of marked
points on the “target” CP1, and a map ⇡2 specifying the configuration of marked
points on the “source” CP1. If the marked points on the target CP1 include all the
branch values of f , then ⇡1 is a covering map, and ⇡2 � ⇡

�1
1 defines a multi-valued

map from M0,P to itself.
The Hurwitz space H may be disconnected; each connected component of H

parametrizes maps of a single topological type. If � is a post-critically finite
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branched covering with post-critical set P and branching type as specified by H,
then H� is the connected component of H that parametrizes maps f : CP1

! CP1

such that there exist homeomorphisms �1 and �2 from (CP1
,P) to (S2

,P) with
�2 � f = � � �1. Every connected component of H arises as H� for some post-
critically finite �. Fixing H, all such branched coverings have the same branching,
induce the same map P ! P, and in particular, have the same polynomiality
index. Thus polynomiality index is a well-defined invariant of H. We define a Hur-
witz correspondence in general to be the multivalued self-map of M0,P obtained
by restricting ⇡2 � ⇡

�1
1 to any non-empty union � of connected components of a

Hurwitz space H. Theorem 3.1 is proved in this more general context, i.e. we have
⇥k(�) � PI(�) ·⇥k+1(�). This implies that Hurwitz correspondences are a special
subclass of multivalued maps: The sequence of dynamical degrees of a multi-valued
map may not be log-concave, and appears to be quite unconstrained in general
[Tru16].

The topological entropy of a multi-valued map is at most the logarithm of its
largest dynamical degree, but can be strictly smaller [DS08]. Thus we have:

Corollary 1.5. The topological entropy of H (resp. H� or �) is at most its 0-th
dynamical degree ⇥0(H) (resp. ⇥0(H�) or ⇥0(�)).

The 0-th dynamical degree of H is the topological degree of the “target” map
⇡1 : H ! M0,P. This degree is called a Hurwitz number ; it counts covers of CP1

having specified branch locus on CP1 and specified ramification profile. It also
counts the number of ways to factor the identity in the symmetric group Sd as
a product of permutations with specified cycle types that collectively generate a
transitive subgroup. Thus the dynamically motivated quantity ⇥0(H) has a purely
combinatorial interpretation.

The top dynamical degree of H is the topological degree of the “source” map ⇡2.
In Section 4, we use Theorem 3.1 to prove Proposition 4.1, which has two alter-
native statements, one relevant to enumerative geometry and another relevant to
dynamics. (Thanks to an anonymous referee for pointing out the second statement.)

Proposition 4.1, Statement 1 Let r be the maximum local degree of [f : CP1
!

CP1] 2 H at p where p ranges over P. Then deg(⇡1) � r
|P|�3 deg(⇡2). That is,

the number of ways a generic configuration of P-marked points on CP1
arises the

configuration of marked points on the target CP1
of some branched map [f ] 2 H is

at least r
|P|�3

times the number of ways it appears as the configuration of marked

points on the source CP1
of such a map.

Proposition 4.1, Statement 2 Let r be the maximum local degree of a post-

critically finite branched covering � at p where p ranges over the post-critical set P.

Then ⇥0(H�) � r
|P|�3⇥|P|�3(H�). That is, if there is a critical point that is also

post-critical, then there is a strict aggregate decrease between the 0-th and the top

dynamical degrees, and an upper bound for this aggregate decrease that is better (in

some examples strictly better) than the bound given by the polynomiality index.

1.3. Remarks on the polynomiality index. We are not aware of any previ-
ous mention of polynomiality index of a branched covering or rational function as
defined in this paper. However, a similar notion is considered in [Sil93], in which
Silverman addresses the question of when a rational function on CP1 has orbits con-
taining infinitely many integers. Silverman defines the attractive index of a rational
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function f(z) at a point p 2 CP1 of exact period ` to be

⇧`�1
i=0(local degree of � at f i(p))1/`;

he shows that the attractive index at p controls the rate at which ‘almost all’
points in CP1 approach the orbit of p. The polynomiality index of a rational
function/branched covering defined in this paper is the maximum attractive index
attained by some periodic point in CP1/S2. (Thanks to Silverman for mentioning
the connection to [Sil93].)

1.4. Organization. Section 2 gives background on meromorphic multi-valued maps
(henceforth referred to as rational correspondences), the moduli space M0,P and
its compactification M0,P, Hurwitz spaces, and Hurwitz correspondences. Section
3 contains the proof of Theorem 3.1. Section 4 contains an application of the main
theorem to enumerative algebraic geometry. Sections 5 and 6 give examples of
sepcific Hurwitz correspondences.

1.5. Acknowledgements. I am grateful to my advisors David Speyer and Sarah
Koch for introducing me to Hurwitz correspondences, and for wonderful guidance.
I am grateful to Mattias Jonsson, Philip Engel, Joe Silverman and Rob Silversmith
for useful conversations, to Roland Roeder for extremely helpful comments, and to
Rob Silversmith for help with typing. I am also grateful to an anonymous referee
for useful comments.

1.6. Conventions. All varieties are over C. For X a variety, we denote by Zk(X)
the group of k-cycles onX; that is, the free abelian group on the set of k-dimensional
subvarieties of X. We denote by Ak(X) the Chow group of k-cycles on X up to
rational equivalence. For X a smooth variety, we denote by A

k(X) the Chow group
of codimension-k cycles on X.

2. Background

2.1. Rational correspondences/meromorphic multi-valued maps. Rational
correspondences generalize the notion of a rational map. A rational correspondence
from X to Y is a multi-valued map to Y defined on a dense open set of X.

Definition 2.1. LetX and Y be irreducible smooth projective varieties. A rational

correspondence (�,⇡X ,⇡Y ) : X Y is a diagram

�

X Y

⇡X ⇡Y

where � is a smooth quasiprojective variety, not necessarily irreducible, and the
restriction of ⇡X to every irreducible component of � is dominant and generically
finite.

Over a dense open set in X, ⇡X is a covering map, and ⇡Y �⇡
�1
X defines a multi-

valued map to Y. However, considered as a multi-valued map from X to Y, it is
possible that ⇡Y � ⇡

�1
X has indeterminacy, since some fibers of ⇡X may be empty

or positive-dimensional.
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Like rational maps, rational correspondences induce pushforward and pullback
maps of Chow groups, and can be composed with each other.

Definition 2.2. Let � be a projective compactification of � such that � is dense in �
and ⇡X and ⇡Y extend to maps ⇡X and ⇡Y defined on �. The cycle (⇡X⇥⇡Y )⇤[�] 2
ZdimX(X ⇥ Y ) is independent of the choice of compactification �, so we denote
this cycle by [�].

Remark 2.3. In [DS08], a rational correspondence from X to Y is defined as a cycleP
i mi[�i] in ZdimX(X ⇥ Y ), such that each �i maps surjectively onto X.

Definition 2.4. Let � be a projective compactification of � as in Definition 2.2.
Set

[�]⇤ : = (⇡Y )⇤ � (⇡X)⇤ : Ak(X) ! Ak(Y )

and

[�]⇤ : = (⇡X)⇤ � (⇡Y )
⇤ : Ak(Y ) ! A

k(X).

These pushforward and pullback maps are independent of the choice of compact-
ification �; they depend only on the cycle [�] ([Ful98], Remark 6.2.2).

Definition 2.5. Suppose (�,⇡X ,⇡Y ) : X Y and (�0
,⇡

0

Y ,⇡
0

Z) : Y Z are ratio-
nal correspondences such that the image under ⇡Y of every irreducible component
of � intersects the domain of definition of the multi-valued map ⇡0

Z � (⇡0

Y )
�1

. The
composite �0

� � is a rational correspondence from X to Z defined as follows.
Pick dense open sets UX ✓ X and UY ✓ Y such that ⇡Y (⇡

�1
X (UX)) ✓ UY , and

⇡X |⇡�1
X (UX) and ⇡

0

Y |(⇡0
Y )�1(UY ) are both covering maps. Set

�0
� � := ⇡

�1
X (UX) ⇡Y ⇥⇡0

Y
(⇡0

Y )
�1(UY ),

to be the fibered product as defined in Theorem 3.3 of [Har77], together with its
given maps to X and Z.

Remark 2.6 (The fibered product). Although the fibered product of two maps of
schemes (as cited from [Har77] and used above in Definition 2.5) is complicated,
the basic idea is quite simple. If ⇡1 : U1 ! Y and ⇡2 : U2 ! Y are two maps of
sets, then their fibered product is the subset of U1⇥ U2 where the two maps agree:

U1 ⇡Y ⇥⇡0
Y

U2 := {(u1, u2) 2 U1 ⇥ U2|⇡1(u1) = ⇡2(u2)}

On the other hand, if ⇡1 : U1 ! Y and ⇡2 : U2 ! Y are two maps of schemes, then
their fibered product is a possibly non-reduced scheme. In the context of this paper,
this may be thought of as a variety together with positive integer multiplicities
assigned to the irreducible components. However, the underlying set of their fibered
product as schemes is their fibered product as sets.

This composite does depend on the choices of open sets UX and UY , but the
cycle [�0

� �] is well-defined. Note that [�0
� �]⇤ may not agree with [�0]⇤ � [�]⇤ and

[�0
��]⇤ may not agree with [�]⇤ � [�0]⇤. Dynamical degrees, introduced in the next

section, are meant to address the discrepancy between [�0
� �]⇤ and [�]⇤ � [�0]⇤ or

equivalently between [�0
� �]⇤ and [�0]⇤ � [�]⇤
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2.2. Dynamical degrees. Dynamical degrees were first introduced as invariants of
surjective holomorphic self-maps of a smooth projective variety. The kth dynamical
degree of g : X ! X is the spectral radius of g⇤ : Hk,k(X) ! H

k,k(X). Dynamical
degrees were later generalized to rational maps and rational correspondences.

Definition 2.7. Let (�,⇡1,⇡2) : X X be a rational correspondence such that
the restriction of ⇡2 to every irreducible component of � is dominant. In this case
we say � is a dominant rational self-correspondence.

Definition 2.8. Let � be as in Definition 2.7. Set �n := � � · · · � � (n times), and
pick h an ample divisor class on X. The kth dynamical degree ⇥k of � is defined
to be

lim
n!1

�
([�n]⇤(hk)) · (hdimX�k)

�1/n
.

This limit exists and is independent of choice of ample divisor ([DS05, DS08, Tru15,
Tru16]).

The dynamical degrees of � are determined by the cycle [�].

Theorem 2.9 (Birational invariance of dynamical degrees, [DS05, DS08, Tru15,
Tru16]). Let (�,⇡1,⇡2) : X X be a dominant rational self-correspondence, and

let � : X X
0
be a birational equivalence. We obtain a dominant rational self-

correspondence on X
0
through conjugation by � as follows. Let U be the domain

of definition of �, and set �0 = ⇡
�1
1 (U) \ ⇡�1

2 (U). We have a dominant rational

self-correspondence

(�0
,� � ⇡1,� � ⇡2) : X

0
X

0
.

Then the dynamical degrees of � and �0
are equal.

Definition 2.10. If � = (�,⇡1,⇡2) : X X is a dominant rational correspondence
then its inverse ��1 is defined to be (�,⇡2,⇡1) : X X.

Lemma 2.11. Let � = (�,⇡1,⇡2) : X X and �0 = (�0
,⇡1,⇡2) : X X be

dominant rational correspondences. Then the correspondence (���0)�1
is the same

as (�0)�1
� ��1

.

Proof. This follows immediately from the definition (2.5) of composition of rational
correspondences. ⇤

Lemma 2.12 (Dynamical degrees of a correspondence and its inverse). Let � =
(�,⇡1,⇡2) : X X be a dominant rational correspondence. Then we have, for

k = 0, . . . , dimX,

⇥k(�) = ⇥dimX�k(�
�1).

Proof. Fix an ample divisor class h on X. Let (�n
,⇡

n
1 ,⇡

n
2 ) : X X denote the

nth iterate of �. By the functoriality of inverse correspondences as in Lemma 2.11,
(�n

,⇡
n
2 ,⇡

n
1 ) : X X is the nth iterate of ��1. By passing to a birational model of

�n for each n if necessary, we may assume that each �n is smooth and projective,
and that the maps ⇡n

1 ,⇡
n
2 : �n

! X are both regular. We have:
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⇥k(�) := lim
n!1

�
((⇡n

1 )⇤ � (⇡
n
2 )

⇤(hk)) · (hdimX�k)
�1/n

= lim
n!1

�
((⇡n

2 )
⇤(hk)) · ((⇡n

1 )
⇤(hdimX�k))

�1/n

= lim
n!1

�
(hk) · ((⇡n

2 )⇤ � (⇡
n
1 )

⇤hdimX�k)
�1/n

=: ⇥dimX�k(�
�1)

Here, the first equality follows from the definition of pullback by a rational corre-
spondence, and the second and third equalities follow from the projection formula
as stated in Proposition 8.3(c) of [Ful98]. ⇤

The sequence of dynamical degrees of a rational map is log-concave. Let
g : X X be a dominant rational map, and let h be an ample divisor class on X.
For n > 0 set Gr(gn) to be the graph of gn in X ⇥X, with its two maps ⇡n

1 and
⇡
n
2 to X. If ⇥k denotes the kth dynamical degree of g, we have

⇥k = lim
n!1

�
((gn)⇤(hk)) · (hdimX�k)

�1/n

= lim
n!1

�
((⇡n

1 )⇤ � (⇡
n
2 )

⇤(hk)) · (hdimX�k)
�1/n

= lim
n!1

�
((⇡n

2 )
⇤(hk)) · ((⇡n

1 )
⇤(hdimX�k))

�1/n
.

Here, (as in the proof of Lemma 2.12), the second equality follows from the definition
of pullback by a rational map, and the third equality follows from the projection
formula as stated in Proposition 8.3(c) of [Ful98]. Since (⇡n

2 )
⇤(h) and (⇡n

1 )
⇤(h) are

nef on Gr(gn), and Gr(gn) is irreducible, the sequence of intersection numbers

{((⇡n
2 )

⇤(hk)) · ((⇡n
1 )

⇤(hdimX�k))}k

is log-concave ([Laz04], Example 1.6.4). Thus the sequence {⇥k}k is log-concave
as well.

This statement is false for multi-valued maps/rational correspondences [Tru16].
The argument breaks down since their graphs are not necessarily irreducible. Even
if a given rational correspondence � is irreducible, its iterates �n are reducible in
general. Our proof of Theorem 3.1 deals separately with every irreducible compo-
nent of infinitely many iterates of a given Hurwitz correspondence.

2.3. The moduli spaces M0,P and M0,P. The moduli space M0,P is a smooth
quasiprojective variety parametrizing ways of marking CP1 by elements of a finite
set, up to change of coordinates on CP1.

Definition 2.13. Let |P| � 3. There is a smooth quasiprojective variety M0,P of
dimension |P|� 3 parametrizing injections ◆ : P ,! CP1 up to post-composition by
Möbius transformations of CP1

There are several compactifications of M0,P that extend the interpretation as
a moduli space. The most widely-studied of these is the Deligne-Mumford/ stable
curves compactification M0,P. Projective space CP|P|�3 is another such compact-
ification.
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Definition 2.14. A stable P-marked genus zero curve is a connected projective
curve C of arithmetic genus zero whose only singularities are simple nodes, together
with an injection ◆ : P ,! (smooth locus of C), such that the set of automorphisms
C ! C that commute with ◆ is finite.

Theorem 2.15 (Deligne, Grothendieck, Knudsen, Mumford). There is a smooth

projective variety M0,P of dimension |P| � 3 that parametrizes stable P-marked

genus zero curves. It contains M0,P as a dense open subset.

The complement M0,P r M0,P is a simple normal crossings divisor, referred
to as the boundary of M0,P. Given a subset S ✓ P such that |S| ,

��SC
�� � 2,

define a divisor �S ✓ M0,P as follows. Consider the locus of all [C, ◆] in M0,P

such that C has two irreducible components joined at a node, the points ◆(p) with
p 2 S are all on one component, and the points ◆(p) with p 2 SC are all on the other
component. Let �S be the closure of this locus; �S is an irreducible divisor contained
in the boundary. Every irreducible component of the boundary is obtained in this
manner. Note that �S = �SC .

Definition 2.16. For an injection j : P0
,! P with |P0

| � 3, there is a forgetful

map µ : M0,P ! M0,P0 sending [C, ◆] to [C, ◆�j]. This map extends to µ : M0,P !

M0,P0 .

The tautological  -classes. M0,P has a tautological line bundle Lp correspond-
ing to each marked point p 2 P. This line bundle assigns to the point [C, ◆] the
1-dimensional complex vector space T_

◆(p)C, namely, the cotangent line to the curve

C at the marked point ◆(p). The divisor class associated to Lp is denoted  p.
The space H

0(M0,P,Lp) is (|P| � 2)-dimensional and basepoint-free. The in-
duced map ⇢ : M0,P ! P(H0(M0,P,Lp)_) ⇠= CP|P|�3 is a birational map onto
CP|P|�3 ([Kap93]).

Consider a forgetful map µ : M0,P[{q} ! M0,P. For p 2 P, we have ([AC98])

µ
⇤
 
M0,P
p =  

M0,P[{q}
p � �{p,q}.

It follows by induction that:

Lemma 2.17. For a forgetful map µ : M0,P[Q ! M0,P, we have

µ
⇤
 
M0,P
p =  

M0,P[Q
p �

X

S✓Q
S nonempty

�{p}tS.

2.4. Hurwitz spaces and Hurwitz correspondences. Hurwitz spaces are mod-
uli spaces parametrizing finite maps with prescribed ramification between smooth
algebraic curves/Riemann surfaces. See [RW06] for a summary.

Definition 2.18. A partition � of a positive integer k is a multiset of positive
integers whose sum with multiplicity is k.

Definition 2.19. A multiset �1 is a submultiset of �2 if for all r 2 �1, the multi-
plicity of occurrence of r in �1 is less than or equal to the multiplicity of occurrence
of r in �2.

Definition 2.20 (Hurwitz space, [Ram18], Definition 5.4). Fix discrete data:
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• A and B finite sets with cardinality at least 3 (marked points on source
and target curves, respectively),

• d a positive integer (degree),
• F : A ! B a map,
• br : B ! {partitions of d} (branching), and
• rm : A ! Z>0 (ramification),

such that

• (Condition 1, Riemann-Hurwitz constraint)
P

b2B (d� length of br(b)) =
2d� 2, and

• (Condition 2) for all b 2 B, the multiset (rm(a))a2F�1(b) is a submultiset
of br(b).

There exists a smooth quasiprojective variety H = H(A,B, d, F, br, rm), a Hurwitz

space, parametrizing morphisms f : CP1
! CP1 up to isomorphism, where

• There are injections from A and B into the source and target CP1 respec-
tively,

• f is degree d,
• for all a 2 A, f(a) = F (a) via the injections of A and B into CP1,
• for all b 2 B, the branching of f over b is given by the partition br(b), and
• for all a 2 A, the local degree of f at a is equal to rm(a).

The Hurwitz space H has a “source” map ⇡A to M0,A sending [f : (CP1
,A) !

(CP1
,B)] to [CP1

,A]. There is similarly a “target” map ⇡B from H to M0,B. Un-
less H is empty, ⇡B is a finite covering map. Thus for smooth compactifications XA

of M0,A and XB of M0,B, (H,⇡B,⇡A) : XB XA is a rational correspondence.
We generalize this notion.

Definition 2.21 (Hurwitz correspondence, [Ram18], Definition 5.5). Let A0 be any
subset of A with cardinality at least 3. There is a forgetful morphism µ : M0,A !

M0,A0 . Let � be a union of connected components of H. If XA0 and XB are smooth
projective compactifications of M0,A0 and M0,B respectively, then

(�,⇡B, µ � ⇡A) : XB XA0

is a rational correspondence. We call such a rational correspondence a Hurwitz

correspondence.

2.5. Hurwitz self-correspondences and dynamics. Suppose � : S2
! S

2 is
a degree d orientation-preserving branched covering with finite post-critical set P.
Define br : P ! {partitions of d} sending p 2 P to the branching profile of � over
p. Define rm : P ! Z>0 sending p 2 P to the local degree of � at p. Then

H = H(P,P, d,�|P, br, rm)

parametrizes maps (CP1
,P) ! (CP1

,P) with the same branching as �. Let ⇡1 and
⇡2 be the “target” and “source” maps from H to M0,P. For � a non-empty union
of connected components of H, and XP any compactification of M0,P, (�,⇡1,⇡2) :
XP XP is a rational self-correspondence.

There is a unique connected component H� of H parametrizing maps that are
topologically isomorphic to �, i.e. maps f : (CP1

,P) ! (CP1
,P) such that there

exist marked-point-preserving homeomorphisms �1 and �2 from (CP1
,P) to (S2

,P)
with �2 � f = � � �1. By [Koc13], the multi-valued map defined by H� on M0,P is
descended from the Thurston pullback map Th�.
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It is convenient to consider Hurwitz self-correspondences in more generality.
Given a Hurwitz space H = H(P0

,P, d, F, br, rm) together with an injection P ,!

P0
, if µ : M0,P0 ! M0,P is the forgetful map, � is a non-empty union of connected

components of H, and XP is a compactification of M0,P, then (�,⇡P, µ � ⇡P0) :
XP XP is a Hurwitz self-correspondence. Note that by Theorem 2.9, the dy-
namical degrees of the Hurwitz self-correspondence � do not depend on the choice
of compactification XP.

Definition 2.22. As above, let H = H(P0
,P, d, F, br, rm) be a Hurwitz space

together with an injection P ,! P0. Since F : P ! P is a self-map of a finite
set, every point eventually maps into a periodic cycle. We define the polynomiality

index of H to be

PI(H) := max
{p2P,`>0|F `(p)=p}

�
⇧`�1

i=0rm(p)
�1/`

.

If � is a non-empty union of connected components of H, then we define the poly-
nomiality index of � to be the polynomiality index of H.

Note that the polynomiality index of H� as in Definition 2.22 agrees with the
polynomiality index of � as in Section 1.

2.6. Fully marked Hurwitz spaces and admissible covers. Harris and Mum-
ford ([HM82]) constructed compactifications of Hurwitz spaces. These compactifi-
cations are called moduli spaces of admissible covers. They are projective varieties
that parametrize certain ramified maps between nodal curves. They extend the
“target curve” and “source curve” maps to the stable curves compactifications of
the moduli spaces of target and source curves, respectively.

In general, the admissible covers compactifications are only coarse moduli spaces
with orbifold singularities. For technical ease, we introduce a class of Hurwitz
spaces whose admissible covers compactifications are fine moduli spaces. We call
these Hurwitz spaces fully marked.

Definition 2.23 ([Ram18], Definition 5.6). Given (A,B, d, F, br, rm) as in Defini-
tion 2.20 with Condition 2 strengthened to:

• (Condition 20) For all b 2 B, the multiset (rm(a))a2F�1(b) is equal to br(b),

we refer to the corresponding Hurwitz space H(A,B, d, F, br, rm) as a fully marked

Hurwitz space.

Given any Hurwitz space H = H(A,B, d, F, br, rm), there exists a fully marked
Hurwitz space H

full = H(Afull
,B, d, F, br, rm), where Afull is a superset of A ex-

tending the functions F and rm. There is a finite covering map ⌫ : Hfull
! H, and

we have the following commutative diagram (see [Ram18] for details):

H
full

H M0,Afull

M0,B M0,A

⌫
⇡Afull

µ
⇡A⇡B
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For � a union of connected components ofH, and forXB and XA smooth projective
compactifications of M0,B and M0,A, respectively, (�,⇡B,⇡A) : XB XA is a
Hurwitz correspondence. Set �full = ⌫

�1(�). Then �full is a union of connected
components of Hfull

, and in ZdimXB(XB ⇥XA),

[�] =
1

deg ⌫
[�full].

Lemma 2.24. Let (�,⇡1,⇡2) : XP XP be a dominant Hurwitz self-correspondence.

Then

(kth dynamical degree of �) =
1

deg ⌫
(kth dynamical degree of �full),

where �full
is a union of connected components of a fully marked Hurwitz space

H
full

corresponding to a superset Pfull
of P, and ⌫ : �full

! � is a finite covering

map.

Proof. For �full as above, we have that for every iterate �n,

[�n] =

✓
1

deg ⌫

◆n

[(�full)n]. ⇤

This means that arbitrary Hurwitz correspondences may be studied via fully
marked Hurwitz spaces. These in turn have convenient compactifications by spaces
of admissible covers.

Theorem 2.25 (Harris and Mumford, [HM82]). Given (A,B, d, F, br, rm) sat-

isfying Conditions 1 and 20 as in Definition 2.23, there is a projective variety

H = H(A,B, d, F, br, rm) containing H = H(A,B, d, F, br, rm) as a dense open

subset. This admissible covers compactification H extends the maps ⇡B and ⇡A to

maps ⇡B and ⇡A to M0,B and M0,A, respectively, with ⇡B : H ! M0,B a finite

flat map. H may not be normal, but its normalization is smooth.

The following comparison of tautological line bundles on moduli spaces of ad-
missible covers is the key ingredient in our proof of Theorem 3.1:

Proposition 2.26 (Ionel, Lemma 1.17 in [Ion02]). Let H = H(A,B, d, F, br, rm)
be a fully marked space of admissible covers with maps ⇡B and ⇡A to M0,B and

M0,A respectively. Suppose we have a 2 A and b 2 B with F (a) = b. Then

(⇡B)⇤(Lb) = (⇡A)⇤(La)⌦rm(a)
as line bundles on H.

3. Main Theorem

Theorem 3.1. Let

(�,⇡1,⇡2) : M0,P M0,P

be a dominant Hurwitz self-correspondence. Let R be the polynomiality index of �,
and let ⇥k be the kth dynamical degree of �. Then

⇥0 � R⇥1 � · · · � R
|P|�3⇥|P|�3.

Proof. By Lemma 2.24, we may assume � is a union of connected components
of a fully marked Hurwitz space H = H(Pfull

,P, d, F, br, rm) corresponding to a
superset Pfull of P. Let H denote the admissible covers compactification of H, and
let � be the closure of � in H. For ` > 0 set �` to be the `th iterate of �, that is

� ⇡2⇥⇡1 · · · ⇡2⇥⇡1 � (` times),
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Set �` to be its compactification

� ⇡2⇥⇡1 · · · ⇡2⇥⇡1 � (` times),

with ⇡`
1 and ⇡`

2 its two maps to M0,P.

Since ⇡`
1 is a flat map, no irreducible component of �` is supported over the

boundary of M0,P. This means that �` is a dense open subset of �`. We refer to

the complement �` r �` as the boundary of �`. The inverse image under ⇡`
1 of the

boundary of M0,P is exactly the boundary of �`. The inverse image under ⇡`
2 of

the boundary of M0,P is contained in the boundary of �`.

The compactification �` is singular. However, for Cartier divisorsD1, . . . , Ddim�` ,

the intersection product D1 · · · · ·Ddim�` is a well-defined integer as in Section 1.1.C
of [Laz04]. For any subscheme Y of dimension k, and Cartier divisors D1, . . . , Dk,

we similarly have the intersection number D1 · · · · ·Dk · Y 2 Z.

Lemma 3.2. For all p 2 P and for all ` � 0, there is an equality of Cartier divisors

on �` of the form

(⇡`
1)

⇤( F `(p)) = ⇧`�1
i=0rm(F i(p)) · (⇡`

2)
⇤( p) + E,

where E is an e↵ective Cartier divisor supported on the boundary of �`.

Proof. We induct on `. By convention, �0 is the identity rational correspondence

(M0,P, ⇡
0
1 = Id, ⇡0

2 = Id) : M0,P M0,P.

For all p 2 P, F 0(p) = p, so (⇡0
1)

⇤( F 0(p)) = (⇡0
2)

⇤( p). This gives us the base case
` = 0.

Suppose the Lemma holds for `� 1. We have

�` = � ⇡2⇥⇡`�1
1

�`�1

� �`�1

M0,Pfull

M0,P M0,P M0,P

pr1 pr2

⇡1

⇡2 ⇡
`�1
1

⇡
`�1
2

⇡
full
2

µ

For all p 2 P, we have

(⇡`
1)

⇤( F `(p)) = pr⇤1(⇡1)
⇤( F `(p))

= pr⇤1

⇣
rm(F `�1(p)) · (⇡full

2 )⇤( Pfull

F `�1(p))
⌘

(by Proposition 2.26).

By Lemma 2.17,

 
Pfull

F `�1(p) = µ
⇤( F `�1(p)) +

X

S✓PfullrP

�{F `�1(p)}[S.
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The inverse image under ⇡full
2 of the boundary in M0,Pfull is contained in the bound-

ary of � (in fact it is the entire boundary), and the inverse image under pr1 of the
boundary of � is the boundary of �`. Thus, the Cartier divisor

E1 := pr⇤1

0

@(⇡full
2 )⇤

0

@
X

S✓PfullrP

�{F `�1(p)}[S

1

A

1

A

is e↵ective and supported on the boundary of �`. We continue:

(⇡`
1)

⇤( F `(p)) = rm(F `�1(p)) pr⇤1(⇡
full
2 )⇤µ⇤( F `�1(p)) + rm(F `�1(p))E1

= rm(F `�1(p)) pr⇤1(⇡2)
⇤( F `�1(p)) + rm(F `�1(p))E1

= rm(F `�1(p)) pr⇤2(⇡
`�1
1 )⇤( F `�1(p)) + rm(F `�1(p))E1.

By the inductive hypothesis, we can rewrite this as

rm(F `�1(p)) pr⇤2(⇧
`�2
i=0rm(F i(p))(⇡`�1

2 )⇤( p) + E2) + rm(F `�1(p))E1,

where E2 is an e↵ective Cartier divisor supported on the boundary of �`�1. Since
the inverse image under pr2 of the boundary of �`�1 is contained in the boundary
of �`, pr⇤2(E2) is an e↵ective Cartier divisor supported on the boundary of �`. Thus
we can finally write

(⇡`
1)

⇤( F `(p))

= rm(F `�1(p))(⇧`�2
i=0rm(F i(p))) pr⇤2(⇡

`�1
2 )⇤( p)

+ rm(F `�1(p)) pr⇤2(E2) + rm(F `�1(p))E1

= ⇧`�1
i=0rm(F i(p))(⇡`

2)
⇤( p) + (rm(F `�1(p)) pr⇤2(E2) + rm(F `�1(p))E1),

which is as desired. This proves Lemma 3.2. ⇤

Now, since F : P ! P is a map of finite sets, every point is eventually periodic.

Fix p 2 P that is periodic of period `0 > 0 and such that (⇧`0�1
i=0 rm(F i(p)))

1
`0 = R.

Then by Lemma 3.2, for every multiple m`0, we have on �m`0 :

(⇡m`0
1 )⇤( p) = R

m`0(⇡m`0
2 )⇤( p) + Em,(1)

where Em is an e↵ective Cartier divisor supported on the boundary of �m`0 .

Let ⇢ : M0,P ! CP|P|�3 be the birational morphism to projective space given
by the line bundle Lp. Let h be the Cartier divisor class of a hyperplane in CP|P|�3

.

Then ⇢⇤(h) =  p.

The pullback [�n]⇤(hk) is by definition

(⇢ � ⇡n
1 )⇤ � (⇢ � ⇡

n
2 )

⇤(hk).

So, by the projection formula,

([�n]⇤(hk)) · (h|P|�3�k) = ((⇢ � ⇡n
2 )

⇤(hk)) · ((⇢ � ⇡n
1 )

⇤(h|P|�3�k)).

Since dynamical degrees are birational invariants, ⇥k is also the kth dynamical
degree of the induced rational correspondence (�, ⇢�⇡1, ⇢�⇡2) : CP|P|�3 CP|P|�3

.
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We have

⇥k = lim
n!1

(([�n]⇤(hk)) · (h|P|�3�k))1/n

= lim
n!1

(((⇢ � ⇡n
2 )

⇤(hk)) · ((⇢ � ⇡n
1 )

⇤(h|P|�3�k)))1/n

= lim
n!1

(((⇡n
2 )

⇤( k
p)) · ((⇡

n
1 )

⇤( |P|�3�k
p )))1/n.

Since this sequence converges, we can find its limit using any subsequence, and

⇥k = lim
m!1

(((⇡m`0
2 )⇤( k

p)) · ((⇡
m`0
1 )⇤( |P|�3�k

p )))1/m`0

= lim
m!1

(((⇡m`0
2 )⇤( p))

k
· ((⇡m`0

1 )⇤( p))
|P|�3�k)1/m`0 .

For m > 0, set

↵m,k := ((⇡m`0
2 )⇤( p))

k
· ((⇡m`0

1 )⇤( p))
|P|�3�k

,

so

⇥k = lim
m!1

(↵m,k)
1/m`0

Lemma 3.3. Fix m > 0. The intersection numbers ↵m,k on �m`0 satisfy

↵m,0 � R
m`0↵m,1 � · · · � (Rm`0)|P|�3

↵m,|P|�3

Proof of Lemma 3.3. Let J be any irreducible component of �m`0 , and set

↵
J ,k := ((⇡m`0

2 )⇤( p))|
k
J
· ((⇡m`0

1 )⇤( p))|
|P|�3�k

J
.

Since (⇡m`0
1 )⇤( p) and (⇡m`0

2 )⇤( p) are pullbacks of the ample hyperplane class

h, they are nef on �m`0 and J . By [Laz04], Example 1.6.4, ↵
J ,k is a log-concave

function of k.
Note that  |P|�4

p = ⇢
⇤(h|P|�4). The class h|P|�4 on CP|P|�3 may be represented

by a line L that does not intersect the codimension-two exceptional locus of ⇢.
Then ⇢

�1(L) is an irreducible curve in M0,P not contained in the boundary and

(⇡m`0
1 )�1(⇢�1(L))|

J
is a curve Y none of whose irreducible components lies in

the boundary of J . Since ⇡m`0
1 is a flat map, and a covering map away from the

boundary,

((⇡m`0
1 )⇤( |P|�4

p ))|
J

= [Y ].

By Equation 1, we have

(⇡m`0
1 )⇤( p) · [Y ] = R

m`0(⇡m`0
2 )⇤( p) · [Y ] + Em · [Y ]

Since (⇡m`0
1 )⇤( p) and (⇡m`0

2 )⇤( p) are nef on �m`0 , the intersection numbers

(⇡m`0
1 )⇤( p) · [Y ] and (⇡m`0

2 )⇤( p) · [Y ]

are non-negative. Since Em is entirely supported on the boundary and no compo-
nent of Y is supported on the boundary, Em · [Y ] is non-negative as well. Thus we
obtain:

(⇡m`0
1 )⇤( p) · [Y ] � R

m`0(⇡m`0
2 )⇤( p) · [Y ].(2)
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Thus,

↵
J ,0

= ((⇡m`0
1 )⇤( p))|

|P|�3

J

= ((⇡m`0
1 )⇤( p))|J · ((⇡m`0

1 )⇤( |P|�4
p ))|

J

= ((⇡m`0
1 )⇤( p))|J · [Y ]

� R
m`0((⇡m`0

2 )⇤( p))|J · [Y ] by (2)

= R
m`0((⇡m`0

2 )⇤( p))|J · ((⇡m`0
1 )⇤( |P|�4

p ))|
J

= R
m`0((⇡m`0

2 )⇤( p))|J · ((⇡m`0
1 )⇤( p))|

|P|�4

J

= R
m`0↵

J ,1.

By log-concavity, we conclude that the intersection numbers ↵
J ,k satisfy

↵
J ,0 � R

m`0↵
J ,1 � · · · � (Rm`0)|P|�3

↵
J ,|P|�3

Since
↵m,k =

X

J irreducible
component of �m`0

↵
J ,k,

the lemma follows.
⇤

We now complete the proof of Theorem 3.1. For all m,

↵m,0 � R
m`0↵m,1 � · · · � (Rm`0)|P|�3

↵m,|P|�3, so

↵
1/m`0
m,0 � R↵

1/m`0
m,1 � · · · � R

|P|�3
↵
1/m`0
m,|P|�3

The theorem follows by taking the limit as m goes to infinity. ⇤

4. An application to enumerative algebraic geometry

Proposition 4.1. Let H = H(P,P, d, F, br, rm) be a Hurwitz space with “target”

and “source” maps ⇡1 and ⇡2 respectively to M0,P. Let

r = max
p2P

rm(p).

Let � be any connected component of H. Then

⇥0(�) = deg(⇡1|�) � r
|P|�3 deg(⇡2|�) = ⇥|P|�3(�).

By summing over all connected components of H we obtain

⇥0(H) = deg(⇡1) � r
|P|�3 deg(⇡2) = ⇥|P|�3(H).

Remark 4.2. Here, r is the maximum local degree of [f : CP1
! CP1] 2 H at p

where p ranges over P.
In the introduction, two alternate statements are given for Proposition 4.1. Both

follow immediately from the statement as proved here. Note that every connected
component � arises as H� for some topological branched covering �, giving us the
second statement in the introduction. Note that if there is a p 2 P with local
degree rm(p) strictly bigger than 1, then even if the polynomiality index is 1, by
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this proposition we can still guarantee a strict total decrease from the 0-th to the
top dynamical degrees.

Proof. Fix p 2 P with rm(p) = r. Pick a permutation � 2 Aut(P) such that
�(p) = F (p). The permutation � induces an automorphism �

moduli of M0,P given
by

[◆ : P ,! CP1] 7! [◆ � � : P ,! CP1].

Set
H

new = H(P,P, d,�
�1

� F, br ��, rm).

H
new is the Hurwitz space obtained by using � to relabel the marked points of

[f : CP1
! CP1] 2 H on the target CP1. The point p is a ‘fixed point’ of maps

[f ] 2 H
new. Note that by construction PI(Hnew) � r. (In fact PI(Hnew) = r,

although we will not need this stronger fact.) There is an isomorphism �
hurwitz

from H to H
new as follows. A point in H is a map f : CP1

! CP1 together
with injections ◆1 and ◆2 into the target CP1 and source CP1 respectively. The
isomorphism �

hurwitz : H ! H
new takes [f, ◆1, ◆2] 2 H to [f, ◆1 � �, ◆2]. Denote by

⇡
new
1 and ⇡new

2 respectively the “target” and “source” maps from H
new to M0,P.

Note that �moduli
� ⇡1 = ⇡

new
1 � �

hurwitz; also that ⇡2 = ⇡
new
2 � �

hurwitz
.

Now let � be some connected component of H; denote by �new its isomorphic
image in H

new. By Theorem 3.1, we have

deg(⇡new
1 |�new) = ⇥0(�

new) � r
|P|�3⇥|P|�3(�

new) = deg(⇡new
2 |�new)(3)

Since �moduli and �hurwitz are both isomorphisms, we have that

deg(⇡1|�) = deg(⇡new
1 |�new)

and
deg(⇡2|�) = deg(⇡new

2 |�new).

By (3), this proves the proposition.
⇤

5. Equal dynamical degrees when the polynomiality index equals 1

Let � : S2
! S

2 be a branched covering such that every critical point of � is
strictly pre-periodic; then PI(�) = 1. In this case, Theorem 3.1 is at its weakest:
it tells us only that ⇥k(H�) � ⇥k+1(H�). In fact, equality is possible, as in the
following example.

Example 5.1. A generic degree 3 rational function on CP1 has four simple critical
points. Let f be such a rational function with simple critical points x1, . . . , x4. Set
p1, . . . , p4 to be the four non-critical points such that f(pi) = f(xi) for i = 1, . . . , 4.
Now let  be any homeomorphism of CP1 that takes f(xi) to pi for i = 1, . . . , 4.
Set � =  � f ; then � is a degree 3 branched covering whose simple critical points
x1, . . . , x4 map respectively to fixed points p1, . . . , p4. Thus � has finite post-critical
set P = {p1, . . . , p4}, and PI(�) = 1.

Set Pfull := Pt {q1, . . . , q4}. Let H be the Hurwitz space that parametrizes (up
to changing coordinates on CP1) two injections ◆1 : P ,! CP1, ◆2 : Pfull

,! CP1, as
well as a degree 3 map f : CP1

! CP1 such that for i = 1, . . . , 4:

• f(◆2(pi)) = f(◆2(qi)) = ◆1(pi),
• f is unramified at ◆2(pi), and
• f is simply ramified at ◆2(qi).
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Each ◆2(pi) is called a co-critical point of f : it is an unramified point mapping to
a critical value.

Since H parametrizes maps with the same markings and branching type as �, as
in Section 2.5 we have that H� is a connected component of H. On the other hand,
since H parametrizes maps with only simple branching, by [Ful69] H is connected.
Thus H� = H. The space H admits two maps to M0,P: a “target” map ⇡1

recording ◆1 and a “source” map ⇡2 recording ◆2|P.
An element of M0,P is an injection ◆ : P ,! CP1, considered up to post-

composition by Möbius transformations. Given such an equivalence class of in-
jections [◆], we may post-compose by a Möbius transformation to assume that
◆(p1) = 0, ◆(p2) = 1, and ◆(p3) = 1. Then ◆(p4) defines a point of CP1 r {0, 1,1}.
This gives an identification between M0,P and CP1 r {0, 1,1} = Cr {0, 1}. Thus
H� is one dimensional, and the Hurwitz correspondence H� has two dynamical
degrees: ⇥0(H�) = deg(⇡1) and ⇥1(H�) = deg(⇡2).

Now, given an element [f : (CP1
, p1 . . . , p4, q1 . . . , q4) ! (CP1

, p1 . . . , p4)] 2 H�

we can apply two independent Möbius transformations to assume that ◆1(p1) =
◆2(q1) = 0, ◆1(p2) = ◆2(q2) = 1, and ◆1(p3) = ◆2(q3) = 1. Thus, in these coor-
dinates, f is a degree 3 rational function such that 0, 1, and 1 are critical fixed
points. As a degree 3 rational function, f is of the form

f(z) =
z
3 +Az

2 + Cz +D

Ez3 + Fz2 +Gz +H
.

The condition that 0 is a critical fixed point forces C and D to vanish; the condition
that 1 is a critical fixed point forces E and F to vanish. We re-write f as

f(z) =
z
3 +Az

2

Gz +H
.

The condition that 1 be a fixed point forces H = 1 +A�G. Re-writing again:

f(z) =
z
3 +Az

2

Gz + 1 +A�G
.

Imposing the last condition that 1 be a critical point forces G = 3 + 2A. Thus

f(z) =
z
3 +Az

2

(3 + 2A)z � 2�A

is determined by the parameter A. For A 2 C, we set

fA(z) =
z
3 +Az

2

(3 + 2A)z � 2�A
,

identifyingH� with a Zariski-open subset of C, parametrized by A. A direct compu-
tation yields that the fourth and last critical point of fA is at (�2A�A

2)/(3+2A).
The “target” map ⇡1 identifies the positions of the four critical values, 0, 1,1,

and

fA

✓
�2A�A

2

3 + 2A

◆
= �

A
3(2 +A)

(3 + 2A)3
.

Thus for A 2 H�, we have

⇡1(A) = �
A

3(2 +A)

(3 + 2A)3
2 Cr {0, 1} = M0,P.

We see from these coordinates that ⇡1 has degree 4.
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Solving for the inverse images of the critical values, we obtain that the co-critical
points mapping respectively to 0, 1, 1 and �(A3(2+A)/((3+2A)3) are �A, �2�A,
(2 + A)/(3 + 2A), and A/(3 + 2A). The “source” map ⇡2 sends A 2 H� to the
cross-ratio of the four co-critical points, which simplifies to

(2 +A)3A

�3� 2A
,

which is again degree 4 in A. Thus we obtain that

⇥1(H�) = deg(⇡2) = 4 = deg(⇡1) = ⇥0(H�).

The above example is of a branched covering � whose post-critical set has size
exactly four, giving us a Hurwitz correspondence on a one-dimensional moduli
space. We do not know an example of a branched covering � with finite post-
critical set with size strictly larger than four (so that H� is a correspondence on
a moduli space of dimension larger than one), such that ⇥k(H�) = ⇥k+1(H�) for
some k, but we believe that such branched coverings should exist.

We also do not know if there exists a branched covering � such that H
�1
� is

single-valued and ⇥k(H�) = ⇥k+1(H�) for some k. Such a map could not satisfy
Koch’s criteria 1 and 2. On the other hand, every known example of a branched
covering � with H

�1
� single-valued satisfies Koch’s criteria.

6. A two-dimensional Hurwitz correspondence in coordinates

Example 5.1 describes in coordinates a Hurwitz correspondence on the one-
dimensional moduli space M0,4. In this section we describe a simple Hurwitz
correspondence on the two-dimensional space M0,5. Let P = {p1, . . . , p5}, and let
H be a Hurwitz space that parametrizes

• two injections ◆1, ◆2 : P ,! CP1, and
• a degree 2 map f : CP1

! CP1 such that ◆1(pi) = f(◆2(pi)) for i = 1, . . . , 5,
and such that f is ramified at ◆2(p1) and ◆2(p3),

up to changing coordinates on CP1. The space H admits two maps to M0,P: a
“target” map ⇡1 recording ◆1 and a “source” map ⇡2 recording ◆2. We describe
these maps in coordinates below.

An element of M0,P is an injection ◆ : P ,! CP1, considered up to post-
composition by Möbius transformations. Given such an equivalence class of in-
jections [◆], we may post-compose by a Möbius transformation to assume that
◆(p1) = 0, ◆(p2) = 1, and ◆(p3) = 1. Then the tuple (◆(p4), ◆(p5)) defines a
point of

(CP1 r {0, 1,1}⇥ CP1 r {0, 1,1})r {x = y}(4)

This defines an identification between M0,P and the space (4). Now, given an
element [◆1, ◆2, f ] of H, we can apply two independent Möbius transformations to
assume that ◆1(p1) = ◆2(p1) = 0, ◆1(p2) = ◆2(p2) = 1, and ◆1(p3) = ◆2(p3) = 1.
Then f must be the map sending z 2 CP1 to z

2, and the tuple (◆2(p4), ◆2(p5))
defines a point of

(CP1 r {0, 1,�1,1}⇥ CP1 r {0, 1,�1,1})r ({x = y} [ {x = �y})(5)

It is straightforward to check that this defines an identification of H with the space
(5). In these coordinates, the map ⇡1 sends (x, y) in (5) to (x2

, y
2) in (4), and
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⇡2 is the open inclusion from (5) to (4). Thus this Hurwitz correspondence is the
‘coordinate-wise square root’ multivalued map; it sends (x, y) in

M0,P
⇠= (CP1 r {0, 1,1}⇥ CP1 r {0, 1,1})r {x = y}

to the unordered tuple

{(+
p
x,+

p
y), (+

p
x,�

p
y), (�

p
x,+

p
y), (�

p
x,�

p
y)}.

The correspondence H arises as H� for any degree 2 branched cover � : S2
! S

2

with two ramified fixed points p1 and p3, and three labelled unramified (and not
post-critical) fixed points p2, p4 and p5. Since we need to label superfluous points
that are not post-critical in order to have a correspondence on the two-dimensional
M0,P, this is a somewhat trivial example. In fact, the inverse of H is the single-
valued, holomorphic, ‘coordinate-wise squaring’ map on CP1

⇥CP1 sending (x, y) to
(x2

, y
2). Thus we conclude that ⇥0(H) = 4, ⇥1(H) = 2, and ⇥2(H) = 1. Note that

the polynomiality index of H is 2, so the inequalities in Theorem 3.1 are equalities
in this example.

However, from this example we obtain certain others by post-composing ⇡2 with
automorphisms of M0,P that are induced by permutations in S5 relabelling the
points p1, . . . , p5. These new examples are less trivial but also less easily described
in coordinates. They correspond to H� for branched covers � : S2

! S
2 with two

ramified period points, either in the same cycle of length 5, or in di↵erent cycles
of lengths 2 and 3. In [KR16], these correspondences are described in detail in
coordinates, and the first dynamical degrees of their single-valued inverse maps are
computed.

There is also a computation in Chapter 7 of [Ram17] of the dynamical degrees of
a family of two-dimensional Hurwitz correspondences whose inverses are not single-
valued. These Hurwitz correspondences are closely related to the one-dimensional
correspondence in Example 5.1. For these, computation in coordinates is forbid-
dingly di�cult; instead, a combinatorial algorithm is developed in 7.1 and applied
in 7.2.
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[Gro03] Mikhäıl Gromov, On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217–

235.
[Gue05] Vincent Guedj, Ergodic properties of rational mappings with large topological degree,

Annals of Mathematics 161 (2005), no. 3, 1589–1607.
[Har77] Robin Hartshorne, Algebraic geometry, Encyclopaedia of mathematical sciences, Springer,

1977.
[HM82] Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves,

Inventiones Mathematicae 67 (1982), 23–86.



22 ROHINI RAMADAS

[Ion02] Eleny-Nicoleta Ionel, Topological recursive relations in H
2g(Mg,n), Inventiones Mathe-

maticae 148 (2002), 627–658.
[Kap93] Mikhail M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space M0,n,

Journal of Algebraic Geometry 2 (1993), no. 2, 239–262.
[Koc13] Sarah Koch, Teichmüller theory and critically finite endomorphisms, Advances in Math-

ematics 248 (2013), 573–617.
[KR16] Sarah Koch and Roland K. W. Roeder, Computing dynamical degrees of rational maps

on moduli space, Ergodic Theory and Dynamical Systems 36 (2016), no. 8, 2538?2579.
[Laz04] Robert K. Lazarsfeld, Positivity in Algebraic Geometry I, Springer-Verlag Berlin Heidel-

berg, 2004.
[Ram17] Rohini Ramadas, Dynamics on the moduli space of pointed rational curves, Ph.D. thesis,

University of Michigan, 2017.
[Ram18] , Hurwitz correspondences on compactifications of M0,N , Advances in Mathe-

matics 323 (2018), 622–667.
[RW06] Matthieu Romagny and Stefan Wewers, Hurwitz spaces, Sémin. Congr. 13 (2006), 313–
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