DYNAMICAL DEGREES OF HURWITZ CORRESPONDENCES

ROHINI RAMADAS

ABSTRACT. Let ¢ be a post-critically finite branched covering of a two-sphere.
By work of Koch, the Thurston pullback map induced by ¢ on Teichmiiller
space descends to a multi-valued self-map — a Hurwitz correspondence H g4 —
of the moduli space Mg p. We study the dynamics of Hurwitz correspondences
via numerical invariants called dynamical degrees. We show that the sequence
of dynamical degrees of H is always non-increasing, and the behavior of this
sequence is constrained by the behavior of ¢ at and near points of its post-
critical set.

1. INTRODUCTION

Denote by S? the oriented two-sphere. Suppose ¢ : S? — 52 is an orientation-
preserving branched covering whose post-critical set

P := {¢"(x)| x is a critical point of ¢ and n > 0}

is finite. Then ¢ is called post-critically finite. The topological dynamics of ¢ induce
holomorphic and algebraic dynamical systems:
(I) Thurston [DH93]: a holomorphic, contracting self-map Thy : Tg2p —
Ts2 p of the Teichmiiller space of complex structures on S? punctured at
P. This is known as the Thurston pullback map, and it descends to
(IT) Koch [Kocl3]: an algebraic, multivalued self-map Hy : Mop = Mo p of
the moduli space of markings of CP! by P. Such a multivalued map is
called a Hurwitz correspondence.

In addition, if
(1) P contains a periodic and fully ramified point py of ¢, and
(2) either every other critical point of ¢ is also periodic or there is exactly one
other critical point of ¢,
then we also have
(III) Koch [Kocl3]: a meromorphic, single-valued map H;l Mop -> Mop.
The branched covering ¢ is conjugate, up to homotopy, to a post-critically finite
rational map on CP! if and only if Thy has a fixed point. There is a tremendous
amount of current research investigating the dynamics of @ Koch introduced
and as algebraic dynamical systems that ‘shadow’ the holomorphic dynamics
o
Dynamical degrees are numerical invariants associated to algebraic dynamical
systems; they measure complexity of iteration. Let X° be a smooth quasiprojective
variety and g : X° -~ X° (resp. ¢ : X° -2 X°) a meromorphic map (resp. a
meromorphic multi-valued map). Fix a smooth projective birational model X of
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X° and an ample class h € H1(X). The kth dynamical degree of g is defined to
be the non-negative real number
. n * imX— 1/n
Oi(g) = lim_ (((g") (b)) - (X k) /"

The above limit exists and is independent of X and b; this was proved first by Dinh
and Sibony in the complex setting [DS05, DS08] and later by Truong [Trulb| [Trul6)
in the algebraic setting. The k-th dynamical degree of g measures the ‘asymptotic
growth rate of the degrees of codimension-k subvarieties of X° under iterates of ¢’
— amazingly, this is a well-defined notion although the degree of a subvariety of
X° is not well-defined.

Now, since ¢ : P — P is a self-map of a finite set, every point eventually maps
into a periodic cycle. We define the polynomiality index of ¢ to be the positive real
number

_ , 1/¢
Pl(¢) := max Hf,l local degree of ¢ at ¢*(p .
0= pep B gy (T ¢ ()
In fact, PI(¢) is the maximum, over all periodic cycles of ¢ on S, of the geometric
mean of the local degrees of ¢ at all the points in the cycle.

Theorem For k=0,...,|P|—4, we have Ok(Hy) > PI(§) - Opt1(Hep)-

Thus the behavior of the sequence of dynamical degrees of H is constrained by
the behavior of ¢ at and near points of P. Note that 1 < PI(¢) < deg(¢) always
holds. PI(¢) = 1 if and only if no critical point of ¢ is periodic, i.e. if every critical
point is strictly pre-periodic. PI(¢) = deg(¢) if and only if P contains a point pg
that is fixed by and fully ramified under either ¢ or ¢2, i.e. if and only if either ¢
or ¢? is a topological polynomial.

Corollary 1.1. ©4(H,) decreases as k increases, strictly if ¢ has a periodic critical
point.

In Section[B] we give an example of a branched covering ¢ for which every critical
point is strictly pre-periodic so PI(¢) = 1, such that ©¢(H,) = ©1(He). Thus when
the polynomiality index equals one, the sequence of dynamical degrees may decrease
only weakly.

For any ¢, the dynamical degrees of H, are algebraic integers [Raml18]. As a
parallel to Corollary the results in [Ram18] show that for k > 0, the degree over
Q of © ‘likely’ decreases as k increases. More precisely, there is an upper bound
for the degree over Q of ©; that decreases as k increases. In spite of the parallel,
the methods used in this paper are very different from those used in [Ram18].

1.1. Implications when ”H;l is single-valued. Dynamical degrees have been
studied primarily in the context of single-valued maps. The topological entropy of a
holomorphic single-valued map was found to be equal to the logarithm of its largest
dynamical degree (Yomdin [Yom87] and Gromov [Gro03|). The topological entropy
of a meromorphic single-valued map is bounded from above by the logarithm of
its largest dynamical degree (Dinh and Sibony [DS05]); equality is conjectured
when there is a unique largest dynamical degree. If g is a single-valued map,
either holomorphic or meromorphic, its 0-th dynamical degree is 1 and its top
dynamical degree is its topological degree. Guedj [Gue05] found that a map whose
top dynamical degree is its largest has especially good ergodic properties. (See
Corollary for the implications in the context of this paper.)
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If g : CPY — CPV is a holomorphic map given in coordinates by homogeneous
polynomials of degree d, its k-th dynamical degree is d*. Thus k + log(©x(g))
is linear with slope d, and the top (IN-th) dynamical degree of g is its largest. If
g:CPYN -5 CPY or g : X -+ X is a meromorphic map, k — log(©x(g)) is known
to be concave. Thus the top dynamical degree of g is its largest if and only if
k +— O (g) is strictly increasing.

Koch and Roeder [KR16] studied the dynamical degrees of 7—[;1 in the special
case that ¢ has exactly two critical points, both periodic. They showed in this case
that 6;6(7-[;1) is the absolute value of the largest eigenvalue of the induced pullback
action on H** (M(),p), where ﬂo,p is the Deligne-Mumford compactification of
Mo p. Koch [Kocl3] studied the maps ’H;l as meromorphic self-maps of CPIPI-3,
another compactification of My p. Koch found that if and hold, and, in
addition, the special point pg is fixed by ¢, i.e. ¢ is a topological polynomial, then
”H;l : CPIPI3 -5 CPIPI? is holomorphic, given in coordinates by homogeneous
polynomials of degree equal to the topological degree of ¢. Thus if ¢ is a topological
polynomial, O (Hs) = deg(¢)*. Koch showed that in this case /H;l : CPIPI3
CPPI3 is also critically finite.

Fix ¢ of topological degree d > 1 such that and hold. If there are two
fully ramified points of ¢ in periodic cycles, then pick py to be one with minimal
cycle length. Set £y to be the length of the cycle containing po; then PI(¢) > d'/‘o.
Since ’H;l is single-valued, its 0-th dynamical degree is 1; the results in [Kocl3|
imply that its top dynamical degree/topological degree is dPI=3_ Tt follows from
definitions that ©y (H;l) = Op|—3-1(Hg). We obtain from Theorem

Corollary 1.2. The dynamical degrees of 7—[;1 satisfy
(dl/ég)\P\ﬂ‘S _ (d1/50)|P\73 . @0(7_[;1)
(d1/€0)|P\—4 . 91(7_[;1)

IN A

< Opp_s(H;") = deg(H;") = dIPI 3

In particular, the topological degree of 7—[;1 is strictly larger than its other dy-
namical degrees. Corollary provides a theoretical explanation for an aspect of
the experimental results in [KR16]: in every example computed, the largest dy-
namical degree of 7—[;1 is the topological degree.

A direct application of Guedj’s results in [Gue05| yields:

Corollary 1.3. There is a unique H;l-invam'cmt measure Mg on CPPF3 of mawi-
mal entropy. The measure my is mizing, and all its Lyapunov exponents are bounded
from below by

1 1

= log(PI > — log(d) > 0.

3 108(P1(0)) = 5~ og(d)
Further, the set of repelling periodic points of ’H;l 1s equidistributed with respect to
mey.

If /o = 1, then pg is fixed and ¢ is a topological polynomial. In this case,
Corollary recovers that @k(H(;l) = d*, since by [Kocl3], ’H,;l is holomorphic

on CPIPI3. Thus in this case k — log(@k(’;‘—l;)) is linear of slope log(d). If
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FIGURE 1. Fixd > 1 and |P| > 3. Given a degree d finite branched
covering ¢ whose post-critical set has size |P| such that there exists
a fully ramified point in a periodic cycle of length ¢y, the figure
shows how the graph of k — log(Oy (’H;l)) is constrained by .
If 4y = 1, the graph is the line of slope log(d), pictured in solid
red. If £y > 1, the graph is concave of slope at least (1/¢y)log(d),
passing through (0,0) and (|P| — 3,d(|P| — 3)), and between the
line of slope (1/€y)log(d) pictured in solid black and the line of
slope log(d) pictured in solid red. The dashed red curve depicts
qualitatively what the graph might look like if ¢y = 2.

Ly > 1, then k +— log(@k(’H;l)) is a concave function, which by Corollary is
strictly increasing with slope at least (1/€y)log(d). This generalizes the result that
polynomiality of ¢ ensures holomorphicity of 7—[;1 on CPPI3 ags follows:

Observation 1.4. The more ¢ resembles a topological polynomial, i.e. the smaller
the value of £, the more the sequence of dynamical degrees of H ;! resembles the

sequence of dynamical degrees of a holomorphic map on CPIP-3 (Figure .

1.2. Implications for Hurwitz correspondences as multi-valued maps and
an application to enumerative geometry. Hurwitz correspondences can be
defined without reference to the Thurston pullback map. Let P be a finite set
and let H be a Hurwitz space parametrizing maps f : CP' — CP! together with
two injections from P into the source and target CP' respectively, such that f has
specified branching behavior at and over the marked points P. The Hurwitz space
‘H admits two maps to Mg p: a map m; specifying the configuration of marked
points on the “target” CP!, and a map m specifying the configuration of marked
points on the “source” CP!. If the marked points on the target CP' include all the
branch values of f, then m; is a covering map, and my o 7] ! defines a multi-valued
map from My p to itself.

The Hurwitz space H may be disconnected; each connected component of H
parametrizes maps of a single topological type. If ¢ is a post-critically finite
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branched covering with post-critical set P and branching type as specified by H,
then H, is the connected component of H that parametrizes maps f : CP! — CP!
such that there exist homeomorphisms x; and ya from (CP!,P) to (S?,P) with
X2 0 f = ¢oxi1. Every connected component of H arises as H, for some post-
critically finite ¢. Fixing H, all such branched coverings have the same branching,
induce the same map P — P, and in particular, have the same polynomiality
index. Thus polynomiality index is a well-defined invariant of 2. We define a Hur-
witz correspondence in general to be the multivalued self-map of M p obtained
by restricting 7o o w1y ! to any non-empty union I' of connected components of a
Hurwitz space H. Theorem is proved in this more general context, i.e. we have
O(T") > PI(T") - O41(T"). This implies that Hurwitz correspondences are a special
subclass of multivalued maps: The sequence of dynamical degrees of a multi-valued
map may not be log-concave, and appears to be quite unconstrained in general
[Truld].

The topological entropy of a multi-valued map is at most the logarithm of its
largest dynamical degree, but can be strictly smaller [DS08]. Thus we have:

Corollary 1.5. The topological entropy of H (resp. Hg or T') is at most its 0-th
dynamical degree ©g(H) (resp. ©g(Hg) or Op(T)).

The 0-th dynamical degree of #H is the topological degree of the “target” map
7 : H — Mo p. This degree is called a Hurwitz number; it counts covers of CP*
having specified branch locus on CP' and specified ramification profile. It also
counts the number of ways to factor the identity in the symmetric group Sy as
a product of permutations with specified cycle types that collectively generate a
transitive subgroup. Thus the dynamically motivated quantity ©¢(#) has a purely
combinatorial interpretation.

The top dynamical degree of H is the topological degree of the “source” map .
In Section [d, we use Theorem to prove Proposition which has two alter-
native statements, one relevant to enumerative geometry and another relevant to
dynamics. (Thanks to an anonymous referee for pointing out the second statement.)

Proposition Statement 1 Let r be the mazimum local degree of [f : CP1 —
CP'] € H at p where p ranges over P. Then deg(my) > rPI=3 deg(nz). That is,
the number of ways a generic configuration of P-marked points on CP' arises the
configuration of marked points on the target CP! of some branched map [f] € H is
at least r'P1=3 times the number of ways it appears as the configuration of marked
points on the source CP' of such a map.

Proposition Statement 2 Let r be the mazimum local degree of a post-
critically finite branched covering ¢ at p where p ranges over the post-critical set P.
Then ©g(Hy) > rIP1730p|_3(Hy). That is, if there is a critical point that is also
post-critical, then there is a strict aggregate decrease between the 0-th and the top
dynamical degrees, and an upper bound for this aggregate decrease that is better (in
some examples strictly better) than the bound given by the polynomiality indez.

1.3. Remarks on the polynomiality index. We are not aware of any previ-
ous mention of polynomiality index of a branched covering or rational function as
defined in this paper. However, a similar notion is considered in [Sil93], in which
Silverman addresses the question of when a rational function on CP' has orbits con-
taining infinitely many integers. Silverman defines the attractive index of a rational
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function f(z) at a point p € CP! of exact period ¢ to be
T~} (local degree of ¢ at fi(p))'/*;

he shows that the attractive index at p controls the rate at which ‘almost all’
points in CP' approach the orbit of p. The polynomiality index of a rational
function/branched covering defined in this paper is the maximum attractive index
attained by some periodic point in CP!/S?. (Thanks to Silverman for mentioning
the connection to [Sil93].)

1.4. Organization. Section[2gives background on meromorphic multi-valued maps
(henceforth referred to as rational correspondences), the moduli space My p and
its compactification ﬂo’p, Hurwitz spaces, and Hurwitz correspondences. Section
contains the proof of Theorem Section [4| contains an application of the main
theorem to enumerative algebraic geometry. Sections [5] and [6] give examples of
sepcific Hurwitz correspondences.

1.5. Acknowledgements. I am grateful to my advisors David Speyer and Sarah
Koch for introducing me to Hurwitz correspondences, and for wonderful guidance.
I am grateful to Mattias Jonsson, Philip Engel, Joe Silverman and Rob Silversmith
for useful conversations, to Roland Roeder for extremely helpful comments, and to
Rob Silversmith for help with typing. I am also grateful to an anonymous referee
for useful comments.

1.6. Conventions. All varieties are over C. For X a variety, we denote by Zj(X)
the group of k-cycles on X; that is, the free abelian group on the set of k-dimensional
subvarieties of X. We denote by Ag(X) the Chow group of k-cycles on X up to
rational equivalence. For X a smooth variety, we denote by A*(X) the Chow group
of codimension-k cycles on X.

2. BACKGROUND

2.1. Rational correspondences/meromorphic multi-valued maps. Rational
correspondences generalize the notion of a rational map. A rational correspondence
from X to Y is a multi-valued map to Y defined on a dense open set of X.

Definition 2.1. Let X and Y be irreducible smooth projective varieties. A rational
correspondence (U',nx,my): X 23 Y is a diagram

r

X Y

where I' is a smooth quasiprojective variety, not necessarily irreducible, and the
restriction of mx to every irreducible component of I' is dominant and generically
finite.

Over a dense open set in X, mx is a covering map, and 7y o 7r;<1 defines a multi-
valued map to Y. However, considered as a multi-valued map from X to Y, it is
possible that 7y o 7r)_(1 has indeterminacy, since some fibers of mx may be empty
or positive-dimensional.
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Like rational maps, rational correspondences induce pushforward and pullback
maps of Chow groups, and can be composed with each other.

Definition 2.2. Let I be a projective compactification of I' such that I is dense in T’
and mx and 7y extend to maps 7x and 7y defined on T'. The cycle (7x x 7y )«[[] €
Zaim x (X x Y) is independent of the choice of compactification T, so we denote
this cycle by [I].

Remark 2.3. In [DS08], a rational correspondence from X to Y is defined as a cycle
> mi[l] in Zqim x (X x Y'), such that each I'; maps surjectively onto X.

Definition 2.4. Let T’ be a projective compactification of I' as in Definition
Set

[T s = (Ty)s 0 (Ax)" + Ap(X) = Ap(Y)
and
)" = (7)o (7)1 AR(Y) — A (X).

These pushforward and pullback maps are independent of the choice of compact-
ification I'; they depend only on the cycle [I'] ([Ful98], Remark 6.2.2).

Definition 2.5. Suppose (I',7x,7y) : X =3 Y and (I, 7}, 7)) : Y =3 Z are ratio-
nal correspondences such that the image under 7y of every irreducible component
of T' intersects the domain of definition of the multi-valued map 7/ o (m},) 1. The
composite TV oT' is a rational correspondence from X to Z defined as follows.

Pick dense open sets Ux C X and Uy C Y such that 7y (ﬂ;(l(Ux)) C Uy, and
7TX|7r;(1(UX) and Ty |(x; )-1(y) are both covering maps. Set

IMoT := 7T;(1(UX) my Xl (W%)_I(UY)’

to be the fibered product as defined in Theorem 3.3 of [Har77], together with its
given maps to X and Z.

Remark 2.6 (The fibered product). Although the fibered product of two maps of
schemes (as cited from [Har77] and used above in Definition is complicated,
the basic idea is quite simple. If w1 : Uy — Y and 7w : Uy — Y are two maps of
sets, then their fibered product is the subset of Uy x Us where the two maps agree:

Ut my Xay, Uz = {(u1,u2) € Up x Uslmi(u1) = m2(u2)}

On the other hand, if 7 : Uy = Y and w9 : Uy — Y are two maps of schemes, then
their fibered product is a possibly non-reduced scheme. In the context of this paper,
this may be thought of as a variety together with positive integer multiplicities
assigned to the irreducible components. However, the underlying set of their fibered
product as schemes is their fibered product as sets.

This composite does depend on the choices of open sets Ux and Uy, but the
cycle [T oI is well-defined. Note that [I o ', may not agree with [I]. o [[']. and
I o T'J* may not agree with [I']* o [[']*. Dynamical degrees, introduced in the next
section, are meant to address the discrepancy between [IV o T']* and [[']* o [IV]* or
equivalently between [T o T'], and [I"], o [T«
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2.2. Dynamical degrees. Dynamical degrees were first introduced as invariants of
surjective holomorphic self-maps of a smooth projective variety. The kth dynamical
degree of g : X — X is the spectral radius of g* : H**(X) — H**(X). Dynamical
degrees were later generalized to rational maps and rational correspondences.

Definition 2.7. Let (I',71,m2) : X =3 X be a rational correspondence such that
the restriction of ms to every irreducible component of I' is dominant. In this case
we say I' is a dominant rational self-correspondence.

Definition 2.8. Let I" be as in Definition Set ' :=To---oT (n times), and
pick b an ample divisor class on X. The kth dynamical degree Oy of T" is defined
to be
: n* imX— 1/n
Tim (([T7]5(5%)) - (9 7F))
This limit exists and is independent of choice of ample divisor ([DS05, DS08, [Trul5l
Truld]).

The dynamical degrees of I' are determined by the cycle [T'].

Theorem 2.9 (Birational invariance of dynamical degrees, [DS05, [DS08, [Trulb
Trul6]). Let (I',m,m2) : X =3 X be a dominant rational self-correspondence, and
let B: X --» X' be a birational equivalence. We obtain a dominant rational self-
correspondence on X' through conjugation by 8 as follows. Let U be the domain
of definition of 3, and set T' = 7y (U) N7y "(U). We have a dominant rational
self-correspondence

(I",Bom,Bom): X' =3 X'.
Then the dynamical degrees of T' and T are equal.

Definition 2.10. If ' = (T, 71, m2) : X -2 X is a dominant rational correspondence
then its inverse I'! is defined to be (', m2,m1) : X =2 X.

Lemma 2.11. Let T = (I,my,m) : X 23X and IV = (TV,m,m) : X 23 X be
dominant rational correspondences. Then the correspondence (T'oT")™1 is the same
as (")~ 1oL

Proof. This follows immediately from the definition (2.5)) of composition of rational
correspondences. ([

Lemma 2.12 (Dynamical degrees of a correspondence and its inverse). Let I' =
(T,m,m) : X223 X be a dominant rational correspondence. Then we have, for
k=0,...,dimX,

Ok(T) = Odim x—£(T™1).

Proof. Fix an ample divisor class h on X. Let (I',#7",7%) : X 23 X denote the
nth iterate of I'. By the functoriality of inverse correspondences as in Lemma [2.11]
(T, 78, 77) + X =3 X is the nth iterate of I~1. By passing to a birational model of
I'™ for each n if necessary, we may assume that each I'" is smooth and projective,
and that the maps 77,73 : I'" — X are both regular. We have:
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O(I) = lim_(((xf). o (x3)" (55)) - (pm X —H)) "
= Tim (7)) (6)) - ()" (pm X)) /"
= Tim ((0%) - ((5)- o (}) " X)) "
=: Odim x k()

Here, the first equality follows from the definition of pullback by a rational corre-
spondence, and the second and third equalities follow from the projection formula
as stated in Proposition 8.3(c) of [Ful9g]. O

The sequence of dynamical degrees of a rational map is log-concave. Let
g: X -» X be a dominant rational map, and let h be an ample divisor class on X.
For n > 0 set Gr(g™) to be the graph of ¢" in X x X, with its two maps #n} and
75 to X. If ©f denotes the kth dynamical degree of g, we have

O = lim (((g")"(6") (X)) "
= Tim (((]). o (75)"(6)) - (pHm X —5)) "
= Tim (((n5)"(6")) - ((x0)" (X)) "

Here, (as in the proof of Lemma, the second equality follows from the definition
of pullback by a rational map, and the third equality follows from the projection
formula as stated in Proposition 8.3(c) of [Ful98]. Since (75)*(h) and (7}")*(h) are
nef on Gr(g"), and Gr(g™) is irreducible, the sequence of intersection numbers

{((@3)"(6%)) - (71)* (H™ =)}

is log-concave ([Laz04], Example 1.6.4). Thus the sequence {O}; is log-concave
as well.

This statement is false for multi-valued maps/rational correspondences [Trul6].
The argument breaks down since their graphs are not necessarily irreducible. Even
if a given rational correspondence I is irreducible, its iterates I' are reducible in
general. Our proof of Theorem deals separately with every irreducible compo-
nent of infinitely many iterates of a given Hurwitz correspondence.

2.3. The moduli spaces M, p and HQP. The moduli space Mg p is a smooth
quasiprojective variety parametrizing ways of marking CP' by elements of a finite
set, up to change of coordinates on CP'.

Definition 2.13. Let |P| > 3. There is a smooth quasiprojective variety Mg p of
dimension |P| — 3 parametrizing injections ¢ : P < CP! up to post-composition by
Mobius transformations of CP*

There are several compactifications of My p that extend the interpretation as
a moduli space. The most widely-studied of these is the Deligne-Mumford/ stable
curves compactification Mo p. Projective space CPIPI=3 is another such compact-
ification.
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Definition 2.14. A stable P-marked genus zero curve is a connected projective
curve C' of arithmetic genus zero whose only singularities are simple nodes, together
with an injection ¢ : P < (smooth locus of C), such that the set of automorphisms
C — C that commute with ¢ is finite.

Theorem 2.15 (]Leligne, Grothendieck, Knudsen, Mumford). There is a smooth
projective variety Mo p of dimension |P| — 3 that parametrizes stable P-marked
genus zero curves. It contains Mo p as a dense open subset.

The complement ﬂqp N My.p is a simple normal crossings divisor, referred
to as the boundary of Mop. Given a subset S C P such that |S], |SC| > 2,
define a divisor dg C MQP as follows. Consider the locus of all [C,¢] in ﬂo,p
such that C has two irreducible components joined at a node, the points ¢(p) with
p € S are all on one component, and the points +(p) with p € S are all on the other
component. Let dg be the closure of this locus; dg is an irreducible divisor contained
in the boundary. Every irreducible component of the boundary is obtained in this
manner. Note that dg = dgc.

Definition 2.16. For an injection j : P’ — P with |P’| > 3, there is a forgetful
map p: Mop — Mg pr sending [C, (] to [C, toj]. This map extends to pu: Mop —
Mopr.

The tautological v-classes. My p has a tautological line bundle L, correspond-
ing to each marked point p € P. This line bundle assigns to the point [C,¢] the
1-dimensional complex vector space T’ L\ép) C, namely, the cotangent line to the curve
C at the marked point ¢(p). The divisor class associated to £, is denoted 1,,.

The space H(Mop, L,) is (|P| — 2)-dimensional and basepoint-free. The in-
duced map p : Mop — P(H'(Myp, L)) = CPPI=3 is a birational map onto
CPIPI=3 ([Kap93)).

Consider a forgetful map p : mO,PU{q} — Mop. For p € P, we have ([AC98])

*H m-Uq
iy O =y P —{pa}-

It follows by induction that:

Lemma 2.17. For a forgetful map u : mo,qu — Mo,p, we have

pU T =0T = T s
5CQ
S nonempty
2.4. Hurwitz spaces and Hurwitz correspondences. Hurwitz spaces are mod-
uli spaces parametrizing finite maps with prescribed ramification between smooth
algebraic curves/Riemann surfaces. See [RW06] for a summary.

Definition 2.18. A partition A of a positive integer k is a multiset of positive
integers whose sum with multiplicity is k.

Definition 2.19. A multiset A\ is a submultiset of Ay if for all r € A{, the multi-
plicity of occurrence of  in A; is less than or equal to the multiplicity of occurrence
of rin Asj.

Definition 2.20 (Hurwitz space, [Raml18], Definition 5.4). Fix discrete data:
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A and B finite sets with cardinality at least 3 (marked points on source
and target curves, respectively),

d a positive integer (degree),

F: A — B amap,

br : B — {partitions of d} (branching), and

rm: A — Z>° (ramification),

such that
e (Condition 1, Riemann-Hurwitz constraint) >, g (d — length of br(b)) =
2d — 2, and
e (Condition 2) for all b € B, the multiset (rm(a)),ep-1(5) is a submultiset
of br(b).

There exists a smooth quasiprojective variety H = H(A, B, d, F, br,rm), a Hurwitz
space, parametrizing morphisms f : CP! — CP! up to isomorphism, where

e There are injections from A and B into the source and target CP' respec-
tively,
f is degree d,
for all a € A, f(a) = F(a) via the injections of A and B into CP!,
for all b € B, the branching of f over b is given by the partition br(b), and
for all a € A, the local degree of f at a is equal to rm(a).

The Hurwitz space H has a “source” map ma to Mg a sending [f : (CP', A) —
(CP!,B)] to [CP', A]. There is similarly a “target” map mg from H to Mo g. Un-
less H is empty, mg is a finite covering map. Thus for smooth compactifications X o
of Mo a and Xg of Myg, (H,7m8,7a) : XB =3 Xa is a rational correspondence.
We generalize this notion.

Definition 2.21 (Hurwitz correspondence, [Raml18|, Definition 5.5). Let A’ be any
subset of A with cardinality at least 3. There is a forgetful morphism g : Mo A —
Mo as. Let I" be a union of connected components of H. If Xa, and Xg are smooth
projective compactifications of My o and My B respectively, then

(FaT‘—Bnu/OT‘—A) :XB -3 XA’

is a rational correspondence. We call such a rational correspondence a Hurwitz
correspondence.

2.5. Hurwitz self-correspondences and dynamics. Suppose ¢ : S? — S? is
a degree d orientation-preserving branched covering with finite post-critical set P.
Define br : P — {partitions of d} sending p € P to the branching profile of ¢ over
p. Define rm : P — Z>° sending p € P to the local degree of ¢ at p. Then

H = H(Pv Pv dv ¢|P7 brv rm)

parametrizes maps (CP!, P) — (CP!, P) with the same branching as ¢. Let 7, and
my be the “target” and “source” maps from H to Mo p. For I' a non-empty union
of connected components of #, and Xp any compactification of Mo p, (I', 71, m2) :
Xp -2 Xp is a rational self-correspondence.

There is a unique connected component H, of H parametrizing maps that are
topologically isomorphic to ¢, i.e. maps f : (CP!,P) — (CP!,P) such that there
exist marked-point-preserving homeomorphisms y; and x» from (CP*, P) to (52, P)
with x2 0 f = ¢ o x1. By [Kocl3|, the multi-valued map defined by H, on Mg p is
descended from the Thurston pullback map Thy.
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It is convenient to consider Hurwitz self-correspondences in more generality.
Given a Hurwitz space H = H(P’,P,d, F,br,rm) together with an injection P —
P, if p: Mop — Mop is the forgetful map, I' is a non-empty union of connected
components of H, and Xp is a compactification of Mg p, then (I',7p, u o wp/) :
Xp -3 Xp is a Hurwitz self-correspondence. Note that by Theorem the dy-
namical degrees of the Hurwitz self-correspondence I' do not depend on the choice
of compactification Xp.

Definition 2.22. As above, let H = H(P’,P,d, F,br,rm) be a Hurwitz space
together with an injection P — P’. Since F' : P — P is a self-map of a finite
set, every point eventually maps into a periodic cycle. We define the polynomiality
index of H to be
1/¢
PI(H) := max o-lr .
)= e Bt (Liorm(p))

If I' is a non-empty union of connected components of H, then we define the poly-
nomiality index of I' to be the polynomiality index of H.

Note that the polynomiality index of H, as in Definition agrees with the
polynomiality index of ¢ as in Section

2.6. Fully marked Hurwitz spaces and admissible covers. Harris and Mum-
ford (JHMS82]) constructed compactifications of Hurwitz spaces. These compactifi-
cations are called moduli spaces of admissible covers. They are projective varieties
that parametrize certain ramified maps between nodal curves. They extend the
“target curve” and “source curve” maps to the stable curves compactifications of
the moduli spaces of target and source curves, respectively.

In general, the admissible covers compactifications are only coarse moduli spaces
with orbifold singularities. For technical ease, we introduce a class of Hurwitz
spaces whose admissible covers compactifications are fine moduli spaces. We call
these Hurwitz spaces fully marked.

Definition 2.23 ([Raml8|, Definition 5.6). Given (A,B,d, F,br,rm) as in Defini-
tion with Condition 2 strengthened to:

e (Condition 2') For all b € B, the multiset (rm(a))qep-1(») is equal to br(b),
we refer to the corresponding Hurwitz space H(A, B, d, F,br,rm) as a fully marked
Hurwitz space.

Given any Hurwitz space H = H(A, B, d, F,br,rm), there exists a fully marked
Hurwitz space HM! = H(AM! B, d, F,br,rm), where A is a superset of A ex-
tending the functions F' and rm. There is a finite covering map v : ™! — H, and
we have the following commutative diagram (see [Raml8] for details):

Hfull

TT A full
14

Mo Afull
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For I' a union of connected components of H, and for Xg and X smooth projective
compactifications of Mg p and My a, respectively, (I',7g,7a) : X -3 Xa is a
Hurwitz correspondence. Set I''! = y=1(T"). Then I'™! is a union of connected
components of H™! and in Zgim x5 (XB X Xa),

1
T = Ffull )
M= ™
Lemma 2.24. Let (T, 71, m2) : Xp =3 Xp be a dominant Hurwitz self-correspondence.
Then

1
(kth dynamical degree of T) = < (kih dynamical degree of T™),

where TT s q union of connected components of a fully marked Hurwitz space
HY corresponding to a superset P of P, and v : T = T is a finite covering
map.

Proof. For T as above, we have that for every iterate I'™,

)= () 1) 0

degv

This means that arbitrary Hurwitz correspondences may be studied via fully
marked Hurwitz spaces. These in turn have convenient compactifications by spaces
of admissible covers.

Theorem 2.25 (Harris and Mumford, [HM82]). Given (A,B,d, F,br,rm) sat-
isfying Conditions 1 and 2' as in Definition @ there is a projective variety
H = H(A,B,d, F,br,rm) containing H = H(A,B,d, F,br,rm) as a dense open
subset. This admissible covers compactification H extends the maps mg and Ta to
maps 78 and Ta to Mop and Mo a, respectively, with 78 : H — Mos a finite
flat map. H may not be normal, but its normalization is smooth.

The following comparison of tautological line bundles on moduli spaces of ad-
missible covers is the key ingredient in our proof of Theorem
Proposition 2.26 (Ionel, Lemma 1.17 in [Ion02]). Let H = H(A,B,d, F,br,rm)
be a fully marked space of admissible covers with maps T and Ta to HO,B and
Mo a respectively. Suppose we have a € A and b € B with F(a) = b. Then
(TB)*(Ly) = (Ta)*(La)®™ @) as line bundles on H.

3. MAIN THEOREM

Theorem 3.1. Let

(T, my,m2) : Mop 23 Mop
be a dominant Hurwitz self-correspondence. Let R be the polynomiality index of T,
and let Oy be the kth dynamical degree of T'. Then

©y> RO > - 2> RlPFS@\P\%-

Proof. By Lemma [2.24] we may assume I' is a union of connected components
of a fully marked Hurwitz space H = H(P™! P d, F,br,rm) corresponding to a
superset P! of P. Let H denote the admissible covers compactification of H, and
let T be the closure of ' in . For ¢ > 0 set I'¥ to be the fth iterate of T, that is

Ty Xoy oo ap X T (¢ times),
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Set T’ to be its compactification
fﬁXﬁ ﬁXﬁf (E times),

with 7?{ and 775 its two maps to Mo p.

Since 7¢ is a flat map, no irreducible component of T? is supported over the

boundary of ﬂqp. This means that I'* is a dense open subset of T¢. We refer to
the complement T¢ \ T as the boundary of T'¥. The inverse image under 7?{ of the
boundary of Mo p is exactly the boundary of T'?. The inverse image under 7?5 of
the boundary of My p is contained in the boundary of Te.

The compactification T is singular. However, for Cartier divisors D1, ..., D i T
the intersection product Dy ----- D, 7 is a well-defined integer as in Section 1.1.C

of |[Laz04]. For any subscheme Y of dimension k, and Cartier divisors Dy, ..., Dy,
we similarly have the intersection number Dy ----- Dy - Y € Z.

Lemma 3.2. For allp € P and for all £ > 0, there is an equality of Cartier divisors
on T'C of the form

(75)* (o) = TZgrm(F (p)) - (75)* () + B,
where E is an effective Cartier divisor supported on the boundary of T'*.
Proof. We induct on £. By convention, I'0 is the identity rational correspondence
(Mop, 70 =1d, 70 =1d) : Mop =3 Mop.

For all p € P, F9(p) = p, so (;?)*(wpo(p)) = (7?8)*(1%). This gives us the base case
{=0.
Suppose the Lemma holds for £ — 1. We have

(=T mox—— D01
T
pPry Pra
Te—1
T my !
ﬂf_l
Mo p Mop
For all p € P, we have
()" (pey) = pri (@) (Ypey)
= pr* (rm( F1(p)) - (ﬂgull)*w;’?jll(p))) (by Proposition [2.26]).

By Lemma [2.17]

full *
7/)112/5—1(,9) = p (Ype-10p)) + Z OFe-1(p)us-
SCPfull P
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full

The inverse image under 75" of the boundary in MO’PMH is contained in the bound-

ary of T (in fact it is the entire bogdary), and the inverse image under pr; of the
boundary of T is the boundary of T'¥. Thus, the Cartier divisor

E,:=pr] | (x 5‘1“) Z dype-1(p)Ius
Sgpfull\P

is effective and supported on the boundary of T¢. We continue:

(7)) ($pe(p) = m(F (p)) pri (5™ w* ($pe () + m(F (p)) By
rm(FH () pri(72)* ($pe-1 ) + rm(F ! (p)) En
rm(F 7 (p) pra(ny 1) ($pey) + mm(F (p)) By

By the inductive hypothesis, we can rewrite this as

m(F* (p) pr (TZGrm(FY (p)) (5" (4y) + B2) + mm(F* () B,

where Es is an effective Cartier divisor supported on the boundary of I'*-1. Since
the inverse image under pry of the boundary of I'*~1 is contained in the boundary

of T, pr3(Es) is an effective Cartier divisor supported on the boundary of T¢. Thus
we can finally write

() (Ype(p))
= rm(F"~(p)) (T Z3rm (F' (p))) pry (w5 )" ()
+rm(F Y (p)) pri(Ey) + rm(F (p)) By
= IZyrm(F' (p)(75)" (v) + (rm(F* =1 (p) pr3 (B2) + rm(F*~ (p)) B,
which is as desired. This proves Lemma ([

Now, since I': P — P is a map of finite sets, every point is eventually periodic.
1
Fix p € P that is periodic of period £y > 0 and such that (II{®;'rm(F(p)))% = R.
Then by Lemma m for every multiple m/,, we have on T'o:

(1) (T770) (p) = R™ (5')*(6p) + B,

where F,, is an effective Cartier divisor supported on the boundary of Tmbo.

Let p: Mop — CPIPI=3 be the birational morphism to projective space given
by the line bundle £,,. Let § be the Cartier divisor class of a hyperplane in CPIPI-3,
Then p7(h) = v,.

The pullback [I']*(h*) is by definition

(pomf).o(poms)*(h®).

So, by the projection formula,

(L] (6%)) - (BFI737F) = ((p o 75)* (%)) - ((p o 7)* (HIFI737F)).

Since dynamical degrees are birational invariants, © is also the kth dynamical
degree of the induced rational correspondence (T, po7r1, po73) : CPIPI-3 -3 CPIPI-3,
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‘We have
O = lim (([T"]" (%)) - (bF1=274)) /"
= Tim (((po75)"(h*)) - ((po 77)"(HIPI737F))) /"
= Tim (((75)" () - ()" (=),

Since this sequence converges, we can find its limit using any subsequence, and
O = T (((75"™)" (45)) - (a0 (fP1=3-H)))t/meo
m—roo
= Tim (A5 () (1) (1)) P12/t

For m > 0, set

e 1= (@50 () - (0 (1)) P1=3F,

SO

O = lim (apm)t/™

m—
Lemma 3.3. Fiz m > 0. The intersection numbers oy, j, on rméo satisfy
Qmo > R™00, 1 > > (R™0)P173a, by
Proof of Lemma[3.3. Let J be any irreducible component of W and set
ag = (@) W)l - () Wp))IF 7"
mlo\

Since (7]"0)*(¢,) and (75**)*(¢b,) are pullbacks of the ample hyperplane class

b, they are nef on I'% and J. By [Laz04], Example 1.6.4, az . is a log-concave
function of k.

Note that ¢,|,P‘74 = p*(h/PI=%). The class h/PI=* on CcpPI-3 may be represented
by a line L that does not intersect the codimension-two exceptional locus of p.
Then p~1(L) is an irreducible curve in My p not contained in the boundary and

(77*°)"Y(p~Y(L))|7 is a curve Y none of whose irreducible components lies in

the boundary of 7. Since ﬁ”éo is a flat map, and a covering map away from the

boundary,
() (P11 = [V).
By Equation [I] we have
(A7) () - [Y] = R™0 (2570)* (1) - [Y] + By - [Y]
Since (77")* (1) and (77"°)*(1),) are nef on T™%, the intersection numbers

(7)) - [Y] and  (x5)* (1) - [Y]

are non-negative. Since F,, is entirely supported on the boundary and no compo-
nent of Y is supported on the boundary, E,, - [Y] is non-negative as well. Thus we
obtain:

(2) (T770) (W) - [Y] = R™0 (75 0)" () - [Y].
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Thus,
o7
= (") ()21
= (7)) |7+ (A7) (WP 17
= (@) ()l 7 - Y]

wpm?' [Y] by ‘)

By log-concavity, we conclude that the intersection numbers az ; satisfy

o mly . mlo\|P|-3 ., __
azo = R™agz, > = (R™°)" oz p)_g

Uk = § a?}ka

7 irreducible
component of I'™%0

Since

the lemma follows.

O
We now complete the proof of Theorem For all m,
Qom0 > Rm&’aml > > (Rm€°)|P‘*3am7|p|_3, SO
s = Rag [T = - > RPIZa) [
The theorem follows by taking the limit as m goes to infinity. O

4. AN APPLICATION TO ENUMERATIVE ALGEBRAIC GEOMETRY

Proposition 4.1. Let H = H(P,P,d, F,br,rm) be a Hurwitz space with “target”
and “source” maps w1 and m respectively to Mo p. Let

= a. .
r=me urm(p)

Let T be any connected component of H. Then
Oy (") = deg(m|r) > r'FI=? deg(ma|r) = Op|—_3(T).
By summing over all connected components of H we obtain
Oo(H) = deg(m1) > rIPI7 deg(mz) = Op|_3(H).

Remark 4.2. Here, r is the maximum local degree of [f : CP! — CP!] € H at p
where p ranges over P.

In the introduction, two alternate statements are given for Proposition[4.1] Both
follow immediately from the statement as proved here. Note that every connected
component I' arises as Hq for some topological branched covering ¢, giving us the
second statement in the introduction. Note that if there is a p € P with local
degree rm(p) strictly bigger than 1, then even if the polynomiality index is 1, by
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this proposition we can still guarantee a strict total decrease from the 0-th to the
top dynamical degrees.

Proof. Fix p € P with rm(p) = r. Pick a permutation o € Aut(P) such that
o(p) = F(p). The permutation o induces an automorphism o™°4ult of Mg p given
by
[L: P~ CP'w[too: P — CP'.
Set
H™ = H(P,P,d,c " o F,broo,rm).

H"Y is the Hurwitz space obtained by using o to relabel the marked points of
[f : CP! — CP'] € H on the target CP!. The point p is a ‘fixed point’ of maps
[f] € H™¥. Note that by construction PI(H**) > r. (In fact PI(H"Y) = r,
although we will not need this stronger fact.) There is an isomorphism ghurwitz
from H to H"V as follows. A point in H is a map f : CP* — CP! together
with injections ¢; and u» into the target CP' and source CP' respectively. The
isomorphism oMWWtz 1 3 s YW takes [f,11,19] € H to [f, 11 0 0,1]. Denote by
w1 and 75" respectively the “target” and “source” maps from H"Y to My p.
Note that o.moduli om = 7Ti}ew o O.hurwitz; also that Ty = Félew ° O.hurwitz.

Now let I be some connected component of H; denote by I'®V its isomorphic
image in H"*V. By Theorem [3.1] we have

(3) deg(m1% |puew ) = Op (%) > ¢ 1730 p| _5(I™Y) = deg(m5° |paew )

moduli hurwitz

Since o and o are both isomorphisms, we have that

deg(m1|r) = deg(m " [pnew )
and
deg(ma|r) = deg (w5 |rnew ).

By , this proves the proposition.
O

5. EQUAL DYNAMICAL DEGREES WHEN THE POLYNOMIALITY INDEX EQUALS 1

Let ¢ : S — S? be a branched covering such that every critical point of ¢ is
strictly pre-periodic; then PI(¢) = 1. In this case, Theorem is at its weakest:
it tells us only that ©(Hs) > Ort1(He). In fact, equality is possible, as in the
following example.

Example 5.1. A generic degree 3 rational function on CP! has four simple critical
points. Let f be such a rational function with simple critical points x1, ..., xz4. Set
P1, ..., P4 to be the four non-critical points such that f(p;) = f(x;) fori=1,...,4.
Now let ¢ be any homeomorphism of CP! that takes f(x;) to p; fori =1,...,4.
Set ¢ = 1 o f; then ¢ is a degree 3 branched covering whose simple critical points
x1,...,2T4 map respectively to fixed points pi,...,ps. Thus ¢ has finite post-critical
set P ={p1,...,ps}, and PI(¢) = 1.

Set Pl .= P1i{q,...,q}. Let H be the Hurwitz space that parametrizes (up
to changing coordinates on CP') two injections ¢; : P < CP!, 15 : Pl <y CP!, as
well as a degree 3 map f : CP! — CP! such that fori =1,...,4:

o f(e2(pi)) = fe2(q)) = ta(pi),
e f is unramified at t2(p;), and
e f is simply ramified at ¢2(g;).
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Each 15(p;) is called a co-critical point of f: it is an unramified point mapping to
a critical value.

Since ‘H parametrizes maps with the same markings and branching type as ¢, as
in Section [2.5 we have that # is a connected component of 7. On the other hand,
since H parametrizes maps with only simple branching, by [Ful69] H is connected.
Thus Hy = H. The space ‘H admits two maps to Mg p: a “target” map m;
recording ¢; and a “source” map 7o recording to|p.

An element of Mg p is an injection ¢ : P — CP!, considered up to post-
composition by Mobius transformations. Given such an equivalence class of in-
jections [¢], we may post-compose by a Mobius transformation to assume that
t(p1) =0, t(p2) = 1, and ¢(p3) = co. Then ¢(p4) defines a point of CP* \ {0, 1, 00}.
This gives an identification between Mg p and CP! \ {0,1,00} = C~ {0,1}. Thus
Hy is one dimensional, and the Hurwitz correspondence Hy has two dynamical
degrees: Oy(Hy) = deg(m) and O1(Hy) = deg(m2).

Now, given an element [f : (CP',p1...,ps,q1...,q1) = (CPLp1...,ps)] € Hy
we can apply two independent Mdbius transformations to assume that ¢1(p1) =
ta(q1) = 0, t1(p2) = ta(ge) = 1, and ¢1(p3) = t2(g3) = oco. Thus, in these coor-
dinates, f is a degree 3 rational function such that 0, 1, and oo are critical fixed
points. As a degree 3 rational function, f is of the form

B B+ A2 +Cz+D
1) = EB+F224+Gz+H
The condition that 0 is a critical fixed point forces C' and D to vanish; the condition
that oo is a critical fixed point forces F and F' to vanish. We re-write f as

3 A 2
f(z) = Zt+az
Gz+H
The condition that 1 be a fixed point forces H =1+ A — G. Re-writing again:

23+ A2
1O-gisaso
Imposing the last condition that 1 be a critical point forces G = 3 + 2A. Thus
23 4+ A2
1) = (3+2A;_Z—2—A
is determined by the parameter A. For A € C, we set
234+ AZ?
(B3+24)z—2-A’
identifying H 4 with a Zariski-open subset of C, parametrized by A. A direct compu-

tation yields that the fourth and last critical point of f4 is at (—2A4 — A2)/(3+2A).
The “target” map m; identifies the positions of the four critical values, 0,1, 0o,

and
p 24— A%\ A2+ 4)
A\T3124 )T (31248

fa(z) =

Thus for A € Hy, we have
A3(2+ A)
M) =~y

We see from these coordinates that m; has degree 4.

eC~ {0, 1} = MO,P-
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Solving for the inverse images of the critical values, we obtain that the co-critical
points mapping respectively to 0, 1, oo and —(A3(2+A4)/((3+24)3) are —A, —2— A,
2+ A)/(3+24), and A/(3 + 2A). The “source” map my sends A € Hy to the
cross-ratio of the four co-critical points, which simplifies to

(24 A)2A
-3-24"
which is again degree 4 in A. Thus we obtain that
©1(Hy) = deg(me) = 4 = deg(m1) = Ou(Hs4).

The above example is of a branched covering ¢ whose post-critical set has size
exactly four, giving us a Hurwitz correspondence on a one-dimensional moduli
space. We do not know an example of a branched covering ¢ with finite post-
critical set with size strictly larger than four (so that H4 is a correspondence on
a moduli space of dimension larger than one), such that ©(He) = Op41(Hy) for
some k, but we believe that such branched coverings should exist.

We also do not know if there exists a branched covering ¢ such that 7—[;1 is
single-valued and ©4(Hy) = Okt1(Hy) for some k. Such a map could not satisfy
Koch’s criteria [1| and On the other hand, every known example of a branched
covering ¢ with ”H,(;l single-valued satisfies Koch’s criteria.

6. A TWO-DIMENSIONAL HURWITZ CORRESPONDENCE IN COORDINATES

Example describes in coordinates a Hurwitz correspondence on the one-
dimensional moduli space Mg 4. In this section we describe a simple Hurwitz
correspondence on the two-dimensional space Mg 5. Let P = {p1,...,ps}, and let
‘H be a Hurwitz space that parametrizes

e two injections ¢y, 19 : P < CP', and
e adegree 2 map f : CP! — CP! such that v1(p;) = f(ta(p;)) fori =1,...,5,
and such that f is ramified at t5(p1) and 1a(p3),

up to changing coordinates on CP!. The space H admits two maps to Mo p: a
“target” map m; recording ¢; and a “source” map mo recording to. We describe
these maps in coordinates below.

An element of Mo p is an injection ¢ : P — CP', considered up to post-
composition by Mobius transformations. Given such an equivalence class of in-
jections [¢], we may post-compose by a Mobius transformation to assume that
t(p1) = 0, t(p2) = 1, and ¢(p3) = oo. Then the tuple (¢(ps),t(ps)) defines a
point of

(4) (CP' < {0,1,00} x CP* < {0,1,00}) \ {z =y}
This defines an identification between Mgy p and the space . Now, given an

element |11, 2, f] of H, we can apply two independent Mébius transformations to

assume that ¢1(p1) = ta(p1) = 0, t1(p2) = ta(p2) = 1, and 11 (p3) = t2(p3) = oo.
Then f must be the map sending z € CP! to 22, and the tuple (t2(ps),t2(ps))
defines a point of

(5)  (CP'~ {0,1,-1,00} x CP* < {0,1,-1,00}) \ ({z =y} U {z = —y})

It is straightforward to check that this defines an identification of H with the space
(5). In these coordinates, the map 7 sends (x,y) in to (22,9%) in , and
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o is the open inclusion from (B to (). Thus this Hurwitz correspondence is the
‘coordinate-wise square root’ multivalued map; it sends (z,y) in

Mop = (CP' < {0,1,00} x CP!  {0,1,00}) \ {z =y}
to the unordered tuple

{(+\/Ea +\/§)7 (+\/>a _\/y)a (_\/57 +\/§)7 (_\/>a _\/g)}

The correspondence H arises as H for any degree 2 branched cover ¢ : $? — S?
with two ramified fixed points p; and p3, and three labelled unramified (and not
post-critical) fixed points pa, p4 and ps. Since we need to label superfluous points
that are not post-critical in order to have a correspondence on the two-dimensional
M p, this is a somewhat trivial example. In fact, the inverse of # is the single-
valued, holomorphic, ‘coordinate-wise squaring’ map on CP! x CP* sending (z,y) to
(22,9?%). Thus we conclude that ©g(H) = 4, ©1(H) = 2, and O2(H) = 1. Note that
the polynomiality index of H is 2, so the inequalities in Theorem are equalities
in this example.

However, from this example we obtain certain others by post-composing 7o with
automorphisms of Mg p that are induced by permutations in Ss relabelling the
points p1, ..., p5. These new examples are less trivial but also less easily described
in coordinates. They correspond to H, for branched covers ¢ : S? — S? with two
ramified period points, either in the same cycle of length 5, or in different cycles
of lengths 2 and 3. In [KRI6], these correspondences are described in detail in
coordinates, and the first dynamical degrees of their single-valued inverse maps are
computed.

There is also a computation in Chapter 7 of [Ram17] of the dynamical degrees of
a family of two-dimensional Hurwitz correspondences whose inverses are not single-
valued. These Hurwitz correspondences are closely related to the one-dimensional
correspondence in Example [5.1] For these, computation in coordinates is forbid-
dingly difficult; instead, a combinatorial algorithm is developed in 7.1 and applied
in 7.2.

REFERENCES

[AC98] Enrico Arbarello and Maurizio Cornalba, Calculating cohomology groups of moduli spaces
of curves via algebraic geometry, Publications Mathématiques de I'Institut des Hautes
Etudes Scientifiques 88 (1998), no. 1, 97-127.

[DH93] Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization
of rational functions, Acta Mathematica 171 (1993), no. 2, 263-297.

[DS05] Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique
d’une application rationelle, Annals of Mathematics 161 (2005), no. 3, 1637-1644.

, Upper bound for the topological entropy of a meromorphic correspondence, Israel
Journal of Mathematics 163 (2008), no. 1, 29-44.

[Ful69] William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Annals
of Mathematics 90 (1969), no. 3, 542-575.

[Ful9g] , Intersection theory, second ed., Springer-Verlag New York, 1998.

[Gro03] Mikhail Gromov, On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217—
235.

[Gue05] Vincent Guedj, Ergodic properties of rational mappings with large topological degree,
Annals of Mathematics 161 (2005), no. 3, 1589-1607.

[Har77] Robin Hartshorne, Algebraic geometry, Encyclopaedia of mathematical sciences, Springer,
1977.

[HM82] Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves,
Inventiones Mathematicae 67 (1982), 23-86.

[DS08]




22 ROHINI RAMADAS

[Ion02] Eleny-Nicoleta Ionel, Topological recursive relations in H29(Myg ), Inventiones Mathe-
maticae 148 (2002), 627-658.

[Kap93] Mikhail M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space Mo n,
Journal of Algebraic Geometry 2 (1993), no. 2, 239-262.

[Koc13] Sarah Koch, Teichmiiller theory and critically finite endomorphisms, Advances in Math-
ematics 248 (2013), 573-617.

[KR16] Sarah Koch and Roland K. W. Roeder, Computing dynamical degrees of rational maps
on moduli space, Ergodic Theory and Dynamical Systems 36 (2016), no. 8, 253872579.

[Laz04] Robert K. Lazarsfeld, Positivity in Algebraic Geometry I, Springer-Verlag Berlin Heidel-
berg, 2004.

[Ram17] Rohini Ramadas, Dynamics on the moduli space of pointed rational curves, Ph.D. thesis,
University of Michigan, 2017.

[Ram18] | Hurwitz correspondences on compactifications of MOJ\], Advances in Mathe-
matics 323 (2018), 622-667.

[RW06] Matthieu Romagny and Stefan Wewers, Hurwitz spaces, Sémin. Congr. 13 (2006), 313—
341.

[Sil93] Joseph H. Silverman, Integer points, diophantine approzimation, and iteration of rational
maps, Duke Math. J. 71 (1993), no. 3, 793-829.

[Trul5] Tuyen Trung Truong, (Relative) dynamical degrees of rational maps over an algebraic
closed field, ArXiv e-prints (2015), arXiv:1501.01523,

[Trul6] Tuyen Trung Truong, Relative dynamical degrees of correspondences over a field of arbi-
trary characteristic, ArXiv e-prints (2016), arXiv:1605.05049,

[Yom87] Yosef Yomdin, Volume growth and entropy, Israel Journal of Mathematics 57 (1987),
no. 3, 285-300.

FE-mail address: rohini_ramadas@brown.edu

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RI


http://arxiv.org/abs/1501.01523
http://arxiv.org/abs/1605.05049

	1. Introduction
	1.1. Implications when H_phi^(-1) is single-valued
	1.2. Implications for Hurwitz correspondences as multi-valued maps and an application to enumerative geometry
	1.3. Remarks on the polynomiality index
	1.4. Organization
	1.5. Acknowledgements
	1.6. Conventions

	2. Background
	2.1. Rational correspondences/meromorphic multi-valued maps
	2.2. Dynamical degrees
	2.3. The moduli spaces M_{0,P} and Mbar_{0,P}
	2.4. Hurwitz spaces and Hurwitz correspondences
	2.5. Hurwitz self-correspondences and dynamics
	2.6. Fully marked Hurwitz spaces and admissible covers

	3. Main Theorem
	4. An application to enumerative algebraic geometry
	5. Equal dynamical degrees when the polynomiality index equals 1
	6. A two-dimensional Hurwitz correspondence in coordinates
	References

