ALGEBRAIC STABILITY OF MEROMORPHIC MAPS DESCENDED FROM
THURSTON’S PULLBACK MAPS

ROHINI RAMADAS

ABSTRACT. Let ¢ : S2 — S? be an orientation-preserving branched covering whose post-critical set has
finite cardinality n. If ¢ has a fully ramified periodic point poo and satisfies certain additional conditions,
then, by work of Koch, ¢ induces a meromorphic self-map R, on the moduli space Mo ; Ry descends
from Thurston’s pullback map on Teichmiiller space. Here, we relate the dynamics of Ry on Mo, to the
dynamics of ¢ on S2. Let £ be the length of the periodic cycle in which the fully ramified point peo lies;
we show that Ry is algebraically stable on the heavy-light Hassett space corresponding to ¢ heavy marked
points and (n — £) light points.

1. INTRODUCTION

Suppose that ¢ : S? — S? is an orientation preserving branched covering from a topological 2-sphere to
itself, of topological degree d > 1. A critical point of ¢ is a point at which ¢ is not a local homeomorphism.
If x is a critical point of ¢ then x has a punctured neighborhood on which ¢ is an r-tol covering map, with
2 < r < d. In this case the multiplicity of x is (r — 1); the map ¢ has (2d — 2) critical points counted with
multiplicity. Suppose further that the post-critical set of ¢:

P := {¢"(x)| = is a critical point of ¢ and n > 0}

is finite. Then ¢ is called post-critically finite/ PCF. Thurston [DH93] introduced a holomorphic pullback
map Thy induced by ¢ on the Teichmiiller space 7 (52, P) of complex structures on (S?,P); the branched
covering ¢ is homotopic to a PCF rational function on CP! if and only if Thy has a fixed point.

Teichmiiller space 7 (5%, P) is a non-algebraic complex manifold but is the universal cover of the algebraic
moduli space Mo p of markings of CP! by the set P. Koch has introduced algebraic dynamical systems on
My p that descend from the transcendental Thurston pullback map. We say that a critical point x of ¢ is
fully ramified if it has the maximum possible multiplicity of (d — 1), i.e. if the local degree of ¢ at x equals
the global degree of ¢. We say that y € S? is a periodic point of ¢ if 3¢ > 0 such that ¢*(y) = y; if £ is
chosen to be minimal we say y is periodic of period ¢. If £ = 1, i.e. if ¢(y) = y, then y is a fixed point of ¢.
We say ¢ is a topological polynomial if there is a point on S? that is fully ramified and fixed. Now, suppose
¢: (S, P) — (S2,P) is PCF and satisfies:

Criteria 1.1. (1) P contains a periodic and fully ramified point pso of ¢, and
(2) either every other critical point of ¢ is also periodic or there is exactly one other critical point of ¢,

then [Kocl3] the “inverse” of Thy descends to Mop. More precisely, there is a meromorphic map
Ry : My p -+ Mop such that the following diagram commutes:

Th
T(S2%,P) ¢ T(S2,P)
universal cover J{ J{ universal cover
Mop -------- B :z: ********* Mo p

The moduli space M p is not compact. It is natural to ask whether R, extends to a holomorphic self-map
of some compactification. Projective space CP/PI=3 is a compactification of Mg.p. Koch also showed that
if the fully ramified point p, in criterion (1.1} [1)) is a fixed point of ¢, i.e. if ¢ is a topological polynomial,
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then Ry : CPPI=3 — CPIPI=3 is holomorphic. Moreover, in this case, the union of the forward orbits of the
critical loci of Ry is an algebraic set in CPIPI=3 e, Ry is a higher-dimensional analog of a post-critically
finite map.

In general, if ¢ is not a topological polynomial, we ask whether R4 extends “nicely” to some compact-
ification of Mg p. It might be too much to expect that R4 extends to a holomorphic self-map of some
compactification. Instead, we study a weaker property called algebraic stability. Let X be some smooth
projective compactification of Mg p, so R4 can be considered to be a meromorphic self-map of X. Although
Ry : X -+ X may not extend to a holomorphic or even continuous map from X to itself, it induces pull-
back actions R} on the singular cohomology groups of X (see Section for details of how this action is
defined). This action preserves the Hodge decomposition and therefore induces a pullback action on the
groups H**(X). However, crucially, this action does not respect iteration, i.e. in general we do not have
(Rp)* = (R%)™. Suppose we do have, for some fixed k and all n > 0 that (R})* = (R})" on HME(X); in
this case we say that Ry is k-stable on X. We say Ry is algebraically stable on X if it is k-stable on X for
all k. If R, extends to a holomorphic self-map of X then it is automatically algebraically stable on X, so
being algebraically stable may be thought of as ‘acting on cohomology like a holomorphic map does’.

Koch and Roeder [KR16] showed that if ¢ has exactly two critical points, both periodic, then R, is
algebraically stable on the Deligne-Mumford compactification of Mg p. This was generalized by Koch,
Speyer and the author [Raml8]: If ¢ is PCF and R, exists, then Ry is algebraically stable on the Deligne-
Mumford compactification. The Deligne-Mumford compactification Mg p of Mg p is “large” as measured
by the ranks of its cohomology groups and the number of irreducible components of Mg p ~ Mg p. On the
other hand, by [Kocl3], if ¢ satisfies criteria and and is a topological polynomial, then Ry
is holomorphic, thus algebraically stable, on the much smaller compactification CP/PI=3.

In this paper, we interpolate between [Kocl3] and [Raml8] by identifying a relationship between the
topological dynamics of ¢ and the algebraic dynamics of Ry. We find a sequence {Xy},—,. p| of of smooth
projective compactifications of My p, with X; = CPIPI=3 and Xip| = ﬂo,p, such that for all ¢, there is a
birational holomorphic map pgi1,0 : X¢41 — Xo. We show:

Theorem 1.2. If ¢ is a branched covering with post-critical set P satisfying criteria (11.1, E) and (11.1, @
and such that the fully ramified point pso of @ is in a cycle of period ¢, then the meromorphic map
Ry : Mop -+ Mop is algebraically stable on X,.

The ¢-th compactification X, is the heavy/light Hassett space corresponding to ¢ heavy weights and
P|—2) light weights, constructed by Hassett and parametrizing weighted stable curves ([Has03], see Sections
and for details). The space X, can be obtained as an iterated blow-up of CPIPI=3, The last three
compactifications, Xp|_2, X|p|—1 and X|p|, are isomorphic to each other, but for £ < (| P|—3), the birational
map pe+1,0 © Xe+1 — X contracts in dimension certain subvarieties in the boundary X,y; ~ Mo p. Under
the pushforward map (pe+1.¢)« on homology, the classes of the contracted subvarieties go to zero. Thus
for £ =1,...,(|P| — 2), the spaces X, are all distinct. For small ¢, the compactification X, is “small”, as
measured by the number of components in its boundary X, \ Mg p and the ranks of its cohomology groups.
If ¢ is a branched covering with a fully ramified point p,, in a periodic cycle (i.e. satisfying criterion
), then the length ¢ of that cycle measures how much ¢ “resembles” a topological polynomial: If £ = 1
then ¢ is a topological polynomial; if £ > 1 is small then ¢ resembles a topological polynomial. We give a
non-rigorous interpretation for Theorem

If ¢ resembles a topological polynomial, then Ry is algebraically stable on a small compactification of Mo p.

1.1. Dynamical degrees and the significance of algebraic stability. Let g : U -+ U be a meromorphic
self-map of a smooth quasiprojective complex variety, and let X be some smooth projective compactification
of U. As discussed above and described in Section g induces a pullback action on H**(X), but we
may not have (¢™)* = (¢*)". However, we obtain an important numerical invariant of g by considering
the asymptotics of the operators (¢g")*. Pick any norm on H**(X). The k-th dynamical degree of g is the
non-negative real number

lim [|(g™)* : B (X) — HER(X[Y™

n— oo
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This limit exists, is independent of the choice of norm, and also of the choice of compactification X (Dinh and
Sibony [DS05] in the complex setting and Truong [Truld] in the algebraic setting). Thus the k-th dynamical
degree is intrinsic to the action of g on the possibly non-compact space U. The dynamical degrees of a map
measure its complexity: The topological entropy of a holomorphic map is equal to the logarithm of its largest
dynamical degree (Gromov |[Gro03|] and Yomdin [Yom87]) and the topological entropy of a meromorphic map
is at most the logarithm of its largest dynamical degree (Dinh and Sibony [DS05]).

Given g : U -+ U, if there exists a compactification X of U on which g is k-stable, then the k-th dynamical
degree of g is the absolute value of the largest eigenvalue of g* acting on H**(X), thus an algebraic integer
whose degree over Q is at most Rank(H**(X)). The degree over Q of an algebraic integer is a measure of
its complexity. Thus if g is k-stable on X, then Rank(H**(X)) gives an upper bound on a certain type of
complexity of the map g.

A common strategy to compute the dynamical degrees of a given map is to look for birational models
on which the map is k-stable/algebraically stable. However, Favre [F03| has given examples of monomial
maps ¢ : P2 - 3 P? for which no such birational models exist. Computing the k-th dynamical degree of a map
which is either provably not k-stable or not known to be k-stable on any model involves dealing with the
pullbacks along infinitely many iterates, and is difficult to impossible. Also, given a meromorphic map, there
is no known strategy to find a birational model on which it is k-stable. Thus there are only a few examples
of meromorphic maps whose dynamical degrees have been computed.

In this regard, monomial maps are perhaps the best understood. A monomial map g : (C*)* — (C*)"
is determined by an n-by-n integer matrix M, of exponents. Work of Jonsson and Wulcan [JWI11] for
k =1 and Lin [Linl2a] in general gives criteria on M, for the existence of a compactification on which g
is k-stable. When those criteria are satisfied, they give explicit descriptions of toric compactifications on
which the maps are 1-stable (Jonsson-Wulcan)/algebraically stable (Lin). These works also lead to formulas
for the dynamical degrees of monomial maps: the k-th dynamical degree of g is the absolute value of the
product of the k largest eigenvalues of the integer matrix Mg, thus an algebraic integer of degree at most
(2) [Lin12b]. In addition to monomial maps, birational surface transformations are also well-studied: Diller
and Favre ([DF01]) showed that every birational transformation g of a projective surface X is 1-stable on
some birational model of X. They use this result to show that the first dynamical degree of g is either 1, a
Salem number, or a Pisot number. Blanc and Cantat ([BC16]) describe the set of Salem and Pisot numbers
that arise as dynamical degrees of birational surface transformations. Given the difficulty in computing
dynamical degrees, there are several open questions about them. Until recently, it was not known whether
every dynamical degree is an algebraic integer: Bell-Diller-Jonsson [BDJ19] have recently found a map with
a transcendental dynamical degree.

It had already been established in [Raml8] that every R, is algebraically stable on the Deligne-Mumford
compactifcation, and thus has all dynamical degrees are algebraic integers. Theorem [1.2]offers a more refined
view, by relating a type of complexity of Ry (the length of the periodic cycle of ps) to a type of complexity
of Ry (the degree over Q of its k-th dynamical degree). As a corollary to Theorem we obtain:

Corollary 1.3. If ¢ is a branched covering with finite post-critical set P satisfying criteria (IZ.Z, E) and
(IZ.Z, @ and such that the fully ramified point pso of (I].J, E) is in a cycle of period ¢, then the kth dynamical
degree of Ry is an algebraic integer whose degree over Q is at most Rank(H""(X,)).

The isomorphism class of X, depends on ¢ and |P|. For fixed |P|, fixed k € {1,..., (dim¢c(Mop) — 1)}
and for £1,0, € {1,...,(|P| —2)}, if £1 < {3 then Rank(H**(X,,)) < Rank(H"**(X,,)). Thus, if we fix
N > 0 the cardinality of post-critical set, and consider

¢ € {Branched coverings with |post-critical set| = N satisfying (1.1} [I) and (L.1} [2)},
then the shorter the length ¢ of the periodic cycle of the fully ramified point of ¢, the better an upper bound
one can obtain on the degree over Q of the k-th dynamical degree of Rg. More informally:

If ¢ resembles a topological polynomial, then the k-th dynamical degree of Ry is an algebraic integer of low
degree over Q.

The sequence of dynamical degrees of any meromorphic map is log-concave [DS05]; the sequence of
dynamical degrees of a holomorphic map on CP" is log-linear. There is an analysis, in [Ram19], of how the
k-th dynamical degree of R, depends on k. It is shown that the sequence {kth dynamical degree of Ry}

3



increases strictly with k, and that the sequence of logarithms dynamical degrees of Ry is less concave if ¢
resembles a topological polynomial. The precise statement of the result in [Ram19] is very different from
the statement of Theorem and the proofs are unrelated as well. However, the two statements share the
following informal interpretation (generalizing [Kocl3|):

If ¢ resembles a topological polynomial, then the dynamics of Ry resemble those of a holomorphic map on
CPIPI=3,

It would be interesting to have a conceptual explanation for the relationship between Theorem [I.2] and
the results in [Ram19].

1.2. Hurwitz correspondences. Koch’s results in [Kocl3] are more general than described above. Let
¢ : 8% — S? be a degree d post-critically finite branched covering with post-critical set P. If ¢ does not
satisfy criteria and , then the meromorphic map Ry need not exist. However, it is still true
that the transcendental pullback map Thy induced by ¢ on T (S? P) descends to an algebraic dynamical
system on Mg p. However, in general, this is a multivalued map. More precisely, there is an algebraic
variety H4 admitting a covering map from T(S?,P) as well as two maps 7; and 7o to My p such that m is
a covering map and the following diagram commutes [Koc13]:

, Th(¢) ,
T(5%P) —_ T(5%P)
Ve % Ho my eover
./\/l07p MO,P

The variety H is a Hurwitz space, a moduli space parametrizing degree d regular maps f : (CP*, P) —
(CP!,P), with analogous branching to ¢. The Hurwitz space H, is non-dynamical in the sense that it
parametrizes maps up to separate changes of coordinates on source and target CP!; this means that the
behavior under iteration of [f] € H, is not well-defined. The multivalued map m o 77 s called a Hurwitz
correspondence, and considered to be an algebraic “shadow” of Thy. Hurwitz correspondences can be defined
purely algebro-geometrically, with no reference to branched coverings of the sphere and to Thurston’s pullback
map. (Section [3} see [Ram17] or [Ram18] for more details). In the case that ¢ satisfies criteria and
, Koch showed that 75 is generically one-to-one; the meromorphic map Ry is m o w5 ! ie. a single-
valued but meromorphic “inverse” of the multi-valued but holomorphic Hurwitz correspondence. Thus the
graph of Ry is (up to birational equivalence) the Hurwitz space .

1.3. Combinatorial compactifications of moduli spaces and the proof of Theorem The
Deligne-Mumford compactification ﬂqp of Mo p is a moduli space of stable nodal genus zero curves with
smooth distinct points marked by elements of P (see Section [2| for definitions and details). The boundary
M(LP ~ My p has a combinatorial stratification that is very useful: for example, this stratification is used
to give explicit descriptions of the cohomology groups of Mg p [Kee92].

Hassett’s [Has03] alternate weighted stable curves compactifications of Mg p parametrize nodal genus zero
curves with smooth points — not necessarily distinct — marked by elements of P. Let € : P — QN(0, 1] be an
assignment, to every p € P of some rational ‘weight’, such that the sum of the weights of all p € P is greater
than 2. Then there is a smooth projective compactification Mo p(€) parametrizing nodal genus zero curves
with smooth points marked by P; the marked points corresponding to a subset of P may coincide as long
as the sum of the weights of the points in that set is no greater than 1. The boundary My p(€) ~ Mo p has
a combinatorial stratification that is related to the stratification of the boundary of the Deligne-Mumford
compactification. Also, My p admits a regular birational map pe to Mo p(€), with fibers that may be
positive dimensional over the boundary.

The Hurwitz space H admits an admissible covers compactification ﬂ(z, constructed by Harris and Mum-
ford [HMS82]; this compactification extends 7, and 75 to regular maps to ﬂmp. The map 7 : ﬁ(ﬁ — Mo,p
is finite and flat; this fact was used in [Raml8| to conclude algebraic stability of all Hurwitz correspondences
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on My p. The boundary of ﬂ(z, has a stratification analogous to and compatible with the stratification of
Mo,p.

Now, suppose ¢ satisfies criteria and , so as per the previous section, Hy is the graph
of the meromorphic map Rg. We set P, C P to be the subset of points in the periodic cycle containing
the fully ramified point p.,. We assign weight €(p) to p € P by the rule €(p) = 1 for p € P, (these are
heavy points), and e(p) < 1 for p € (P \ P,) (these points are vanishingly light). We formulate and apply
a combinatorial analysis of the stratification of H, and of the fibers of p. to show, roughly speaking, that
positive-dimensional fibers of pe o 71 are also positive-dimensional fibers of p, o 3, and so the meromorphic
map Ry has finite fibers on My p(€). When this analysis is applied to the induced map on cohomology, we
obtain the algebraic stability result of Theorem [1.2

1.4. Organization. We begin by introducing My p and its compactifications in Section [2| and Hurwitz
spaces in Section [3] In these background sections we frequently refer back to [RamlS8|. Section [4] contains
the key technical contribution of this paper: here, we relate the combinatorics of compactifications of Hurwitz
spaces with the combinatorics of certain Hassett spaces. In Section o} we bring all the ingredients together
to prove Theorem

1.5. Conventions. We work over C.

Acknowledgements. Iam grateful to my thesis advisors Sarah Koch and David Speyer; this work continues
work done during my Ph.D.. T am also grateful to Rob Silversmith for useful conversations, including one
that led to a more efficient proof of Lemma to Melody Chan for useful comments on an earlier draft,
and to an anonymous referee for corrections and suggestions that led to significant improvements.

2. THE MODULI SPACE Mo p AND ITS COMPACTIFICATIONS

Let P be a finite set of cardinality at least 3. There is a smooth quasiprojective variety Mo p of complex
dimension (|P|—3) that parametrizes injections ¢ : P < CP! up to the equivalence ¢ ~ 1 o for any M&bius
transformation 1. The variety My p is not compact — the limit of a one-parameter family of injections
P — CP! may irreparably fail to be an injection into CP!. There are a number of smooth projective
compactifications of Mo p. The boundary of a compactification X is the complement X \~ Mo p. If X is a
modular compactification of Mg p, i.e. one that extends its interpretation as a moduli space of maps from
P to an algebraic curve, then points on the boundary of X must correspond to degenerate cases in which
either the map is not injective, or the curve has singularities, or both.

2.1. Stable curves and the Deligne-Mumford compactification ﬂo,p. The Deligne-Mumford com-
pactification is in some sense the universal and largest modular compactification of Mg p: It admits a
holomorphic birational map to every other modular compactification (Smyth, [Smy09]).

Definition 2.1. Let P be a finite set. A P-marked nodal genus zero algebraic curve is a connected, proper,
possibly nodal algebraic curve C' of arithmetic genus zero, together with an injection ¢ from P into the
smooth locus of C. We say that (C,¢) is stable if C' has no nontrivial automorphisms that commute with ¢.

Concretely, since C' has arithmetic genus zero, it is isomorphic to a tree of CP's attached at nodes. A
special point on C'is a point of C that is either a node, or in the image of ¢. The condition that (C,¢) have no
non-trivial automorphism is equivalent to the condition that every irreducible component of C' have at least
three special points. For the remainder of this section we suppose that P is a finite set of cardinality at least
3; by works of Deligne, Grothendieck, Knudsen, and Mumford, there is a smooth projective variety Mg p
that parametrizes stable P-marked genus zero algebraic curves, and that contains M, p as a dense open
subset. The boundary My p ~ Mg p has codimension one. Points in the boundary correspond to injective
maps from P to a nodal algebraic curve; for a general point on the boundary this curve has two irreducible
components. The homeomorphism class of a marked nodal curve is encoded combinatorially by a marked
tree. For this reason, we introduce below some notation and terminology for describing marked trees and
nodal curves. Note that every node on a genus zero curve is disconnecting, in fact, the complement of any
node has exactly two connected components.



Definition 2.2. Let (C,¢) be a P-marked nodal genus zero curve. If C,, is an irreducible component of C,
x € CNCy and n € C~{z} is a node, we say n connects C,, to x if Co,~ {n} and z are in distinct connected
components of C' \ {n}. If n connects C, to ¢(p) for p € P, we say that n connects C,, to p. Similarly, if C,
and Cpg are two irreducible components of C' and 1 € C' is a node, we say n connects C, to Cp if Cy, \ {1}
and Cg ~\ {n} are in distinct connected components of C' \ {n}.

If ¢ C, for some irreducible component C,, of C, then there is a unique node n € C, that connects C,
to z. Similarly, if C, and Cg are distinct irreducible components, then there is a unique node 7 on C, that
connects C, to Cg.

Definition 2.3. A P-marked tree is a ‘graph with legs’ o defined as follows: ¢ has vertices, edges joining
pairs of vertices, and legs marked by elements of P that are attached to vertices, such that the resulting
graph is connected and has no cycles. More formally, o carries the data of: a finite set Verts(o) of vertices,
a finite set Edges(c) of edges, a map Edges(c) — Sym?(Verts(c)) encoding the adjacency, a set of legs of o
that is canonically identified with P, and a map Mark : P — Verts(o) encoding how the legs are attached.
For a vertex v on o, set of flags on v is defined as: Flags, := {Legs attached to v} U {edges incident to v}.
The wvalence of v, denoted |v| is defined to be the cardinality of Flags,. We define the moduli dimension
md(v) of v € Verts(o) to be |v| — 3. We say that o is stable if every vertex on o has valence at least 3, or,
equivalently, if very vertex has non-negative moduli dimension. Suppose o is a P-marked tree, and v is a
vertex of . For p € P, we define §(v — p) to be the unique flag in Flags, that connects the leg p to v, i.e.
is part of the unique (non-repeating) path in o from v to p. If Mark(p) = v then §(v — p) = p; otherwise
d(v — p) is an edge. Similarly, for v; and vy two distinct vertices of o, we define §(v; — v2) to be the unique
flag in Flags,, that is part of the path in o from vy to vs.

Definition 2.4. Let (C,¢) be a P-marked nodal genus zero curve. Its dual tree is the P-marked tree o
defined as follows. The vertices v of o correspond to irreducible components C,, of C. Two vertices v; and
vy are joined by an edge if and only if the components C,, and C,, intersect at a node. Thus nodes of C'
correspond to edges of o. For each marked point ¢(p) on C,, we attach a leg marked by p to the vertex v,
i.e. Mark(p) = v. The graph o has no loops because C has arithmetic genus zero. Note that o is stable if
and only if (C,¢) is.

For fixed P, there are finitely many isomorphism classes of stable P-marked trees, and each of these arises
as the dual tree of some P-marked stable genus zero curve. The classification of stable curves by topological
type gives a stratification of My p.

Definition 2.5. Given o a stable P-marked tree, the closure S, of the locus S2 of curves with dual graph
o is an irreducible subvariety of M p isomorphic to

(1) H MO,FlagsU

veEVerts(o)

We refer to S, as a boundary stratum of ﬂo’p; Boundary strata on ﬂo’p are in bijection with isomorphism
classes of stable P-marked trees.

From the above decomposition[I]of S, into a product we obtain that the dimension of a boundary stratum
S, is

(2) Z dime (Mo Flags,) = Z md(v)

v€EVerts(o) v€EVerts(o)

2.2. Stabilization and forgetful maps. Suppose |P| > 3 and (C,¢) is a P-marked nodal genus zero curve.
Then there is a unique curve C’, together with a surjective map st : C — C’, such that (C’,st o () is stable.
The curve C’ is called the stabilization of C, and is obtained from C as follows. Let ¢ be the dual tree of C.
Given an irreducible component C,, of C' corresponding to vertex v of o, we say that C, (resp. v) is P-stable
if there are at least three special points on C,, of the form either a marked point ¢(p) or a node 7 that
connects C,, to some marked point p. This is equivalent to the condition that there are at least three flags
on v of the form (v — p) for some p € P. We obtain C’ from C by contracting to a point each connected
component of the closure of C' \ |, p_staple Cv- The map st : €' — C” is the resulting map: a component C,
maps isomorphically onto its image in C” if and only if it is stable; otherwise st(C,) is a point.
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Now, let j : P’ — P be an injection of finite sets, where |P|,|P’| > 3. There is a forgetful map
p: Mop — Mo ps sending [(CP, )] to [(CP,c04)]. If (C,¢) is a P-marked stable curve, then (C,¢ o0 j) is
not necessarily stable. However, we can obtain from (C, toj) a stable curve by stabilizing as described above.
In this way, p extends to a regular map from HO,P to Moypl. If 0 is a P-marked stable tree, forgetting the
points in P\ P’ yields a P’-marked tree, in general not stable. We have:

Lemma 2.6. If S, is a boundary stratum of Mo p, then u(S,) is a boundary stratum of Mo p:, and the
restriction of p to S, factors through the projection:

(3) So = H MO,Flagsv — H MO,Flagsv,
v€EVerts(o) vEVerts(o)
P’-stable

2.3. Hassett spaces/Moduli spaces of weighted stable curves. These are alternate compactifications
of Mgy p constructed by Hassett in [Has03]. Points in the boundary of these compactifications parametrize
possibly nodal curves C' that are marked by elements of P; but here the marked points are assigned rational
weights that prescribe the extent to which they are allowed to coincide.

Definition 2.7. A weight datum on Mop is a map € : P — QN (0, 1] such that }_  p €(p) > 2.

Definition 2.8. Let € be a weight datum on Myp. A P-marked e-stable genus zero curve is a possi-
bly nodal curve C of arithmetic genus zero, together with a (not necessarily injective) map mp : P —
(smooth locus of C), such that

(1) If mp(py) = --- = mp(ps) then €(p1) +-- -+ €(ps) < 1, and

(2) For every irreducible component C,,

#{nodes on C,} + Z e(p) > 2.
{pImp(p)eCu}

Like a stable curve, C' is isomorphic to a tree of CP's attached at nodes, and is marked by elements of
P. Condition specifies that marked points may coincide if their combined weights don’t exceed one.
Condition ensures that any node on C' partitions the set P into two sets, both of which have total weight
greater than one.

Definition-Theorem 2.9 (Hassett, [Has03)]). (1) Given a weight datum € on My p, there is a smooth
projective variety ﬂo,p(e) that parametrizes P-marked e-stable genus zero curves and contains
M p as a dense open set.
(2) There is a reduction map pe : Mo}P — M()’P(G) that respects the open inclusion of My p into both
spaces.
(3) If €1 and e are two weight data on Mg p such that for every p € P, €1(p) > e2(p), then there is a
generalized reduction map pe, e, : Mo p(€1) = Mo p(€2) such that pe, = pe,.c, © pe, -

Example 2.10. (1) Set e(p) = 1 for all p € P; this is a weight datum as long as |P| > 3. Then
the notions of stability and e-stability coincide, so Mo p = Mo p(€). Thus the Deligne-Mumford
compactification is a special case of a Hassett space.

(2) Fix poo € P, and € € Q such that (|P| —2) < (1/¢) but (JP| —1) > (1/€). Set €(pes) = 1, and
€(p) = ¢ for all p # poo. Then M, p(€) = CPIPI=3,

The reduction map pe can be described explicitly: Suppose (C,¢) is a P-marked nodal genus zero curve.
Then there is a unique curve C’, together with a surjective map ste : C — C’, such that (C’ st o¢) is
e-stable. The curve C’ is called the e-stabilization of C, and is obtained from C' as follows. Let o be the
dual tree of C.

Definition 2.11. Given an irreducible component C, of C' corresponding to vertex v of o, we say that v
(resp. C,) is e-stable if:

(4) Z min | 1, Z €(p) p > 2.
fleFlags, {p| i=6(v—p)}
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We obtain C’ by contracting to a point each connected component of the closure of (C' U(v e-stable) Cy).
The induced stabilization map ste : C — C’ maps a component C, isomorphically onto its image in C’ if
and only if C), is e-stable; otherwise st¢(C,) is a point. The reduction map pe : ﬂo,p — ﬂo,p(e) sends
[(C,1)] € Mop to its e-stabilization. Given a boundary stratum S, of My p, we consider the natural
projection map

(5) Sa = H MO,Flagsv — H MO,FIagSU = PSG‘7
vEVerts(o) vEVerts(o)
e-stable

where PS, is defined to be the product on the right. Set PS; to be the product [],everts(o) Mo,Flags, ; this
e-stable
is a dense open subset of PS,. We have the following lemma.

Lemma 2.12. Let S, C M(LP be a boundary stratum. Then:

(1) the restriction pe|s, factors through the projection in equation ).
(2) the induced map from PS, to Mo p(€) is birational onto its image, and an isomorphism onto its
image when restricted to PS., and

o

(‘?) dim¢ (pe(Sa)) = ZUEVerts(o’) md(v)
e-stable
2.4. Heavy/light Hassett spaces. In this paper we will be primarily concerned with a certain subclass
of spaces of weighted stable curves. These spaces are called heavy/light Hassett spaces and have appeared
in studies of tropical moduli spaces of curves [CHMRI16, KKLI19].

Definition 2.13. Suppose |P| > 3, and there is a decomposition P = Py, LUP;; with [P}, | > 2. Let ¢ > 0
be any rational number such that [Pj| < (1/€). Then the weight datum e sending p € Pp,,y to 1 (these are
the heavy points) and p € P, to € (these are the light points) is called a heavy/light weight datum, and the
resulting moduli space Mo p(€) is called a heavy/light Hassett space.

Heavy/light weight data € can be characterized in the following manner: on a e-stable curve, heavy
marked points may not coincide with each other or with light marked points, but light marked points may
coincide with each other to an arbitrary extent. Thus the isomorphism class of the moduli space Mo p(€)
does not depend on the value of the rational number ¢; it depends only on the numbers of heavy and light
points. If the number of light points is one or two, then the resulting heavy/light space is isomorphic to
the Deligne-Mumford compactification. The number of heavy points must be at least 2; if that number is
exactly 2, the resulting heavy/light space is a toric variety called a Losev-Manin space and has been studied
independently.

Since we will be interested in understanding the reduction maps from My p to various heavy/light Hassett
spaces, the following characterization of e-stableness for heavy/light data will be useful.

Lemma 2.14. Suppose € is a heavy/light weight datum, with P = Py, UPy. Then
(1) (Statement about curves.)

(a) An irreducible component C1 of a nodal P-marked curve (C, 1) is not e-stable if

(6) H{p € Phyy s.t. 1(p) € C1} U {n € C1 node connecting Cy to some p € Ppyy}| =1

(b) If (C,1) is a stable P-marked curve then the converse also holds.
(2) (Equivalent statement about trees.)
(a) A vertex v of a P-marked tree o is not e-stable if

(7) {fl € Flags, |fl = (v — p) for some p € Py} =1

(b) If o is a stable P-marked tree then the converse also holds.

Proof. Since the equivalence of items and is clear, we prove only . First, we claim that for any
vertex v on a P-marked tree o, the cardinality of set in @ must be at least one: Since there exists some
Do € Ppyy, and o is connected, 3fly € Flags, connecting v to po.

8



Now suppose v is a vertex of o such that the set in has cardinality one. Then

(8) Z min ¢ 1, Z elp) y = Z 1+ Z Z e<1+|Pple<2.

ficFlags,, {p| A=6(v—p)} fieFlags, ficFlags,, p s.t.
=6(v—p) f#£5(v—p) 1=8(v—p)
for some for any
pephvy pEthy

So, according to Definition v is not e-stable, proving part (2a)).

Finally, we suppose that o is a stable P-marked tree, and v on ¢. Since o is stable, v is P-stable, so there
are at least three flags on v of the form §(v — p) for some p € P. If there are two or more flags on v for the
form §(v — p) for some p € Pp,,y, then

(9) Z min { 1, Z €(p) p >2+e€>2,

fleFlags, {plfI=0(v—p)}

so v is e-stable. So if v is not e-stable, then the set has cardinality exactly one, proving the lemma. [J

2.5. A tower of compactifications. Let |P| > 3, and suppose € > 0 is such that (JP| —2) < (1/e) and
(IP] = 1) > 1/e. Fix poo € P and subsets of P

{p}=P1CPyCP3,--- ,CPp =P
such that |Py| = ¢. For £ = 1,...,|P], let X; be the Hassett space corresponding to the weight datum
assigning the points in P, weight 1 and all other points weight e. For ¢ = 2,...,|P|, X, is a heavy/light
Hassett space with ¢ heavy points and (|P| — ) light points. As stated in the previous section, My p =
Xip| = Xjp|—1 = X|p|—2, and X is a Losev-Manin space. On the other hand, X; is not a heavy/light space:
X, = CPIPI=3 as described in Example . By Theorem we have reduction maps pg41,0 @ Xe41 —
X for £ =1,...,|P| — 1. These are the spaces and maps referred to in the statement of Theorem [1.2

2.6. (Co)homology groups of compactifications of Mg p. In this work, we only consider the Deligne-
Mumford compactifications and the Hassett weighted stable curves compactification of My p. For any
such compactification Xp we have [Kee92, [Cey09] that Hop(Xp,Z) is a finitely generated free abelian
group generated by fundamental classes of boundary strata. We also have identifications H**(Xp,Z) =
Hj(dim(xp)—k) (XP,Z) and H?*(Xp,R) = H**(Xp). A boundary stratum in Mo p(€) is the image, under
pe, of a boundary stratum in Mo p. This tells us that Hai(Mop(€),Z) is the quotient of Hgk(moyp,Z)
by the kernel of the pushforward (pe).. By [Raml8] (Lemma 10.9), the kernel of (pe)s : Hox(Mop, Q) —
Hop (Mo p(€),Q) is spanned by fundamental classes of boundary strata. Lemma allows us to describe
ker((pe)«) as follows:

Lemma 2.15. Suppose € is a weight datum on Mgp, with pe the reduction morphism from Mop to
Mop(€). Then
(1) For S, any k-dimensional boundary stratum of Mo p, the pushforward (pe).([Ss]) is monzero in
Hap(Mo.p(€),Q) if and only if every vertex v € Verts(o) with md(v) > 0 is e-stable.
(2) The kernel of (pe)s : Har(Mop,Q) — Hap(Mop(€),Q) equals the span of {[S,] k-dim | Fv €
Verts(o) not e-stable with md(v) > 0}.

Change of notation. In the subsequent sections, for a P-marked curve (C,¢) or (C,mp), we will suppress
the notation ¢/mp for the marking map, and just write (C,P).

3. HURWITZ CORRESPONDENCES

Hurwitz spaces are moduli spaces parametrizing finite maps with prescribed ramification between smooth
curves. We refer the reader to [RW06] for a general summary and to [Raml§| for the definitions as used in
this paper. In particular, we use Definition 5.4 of [Ram18] for our definition of the Hurwitz space: Fix discrete
data: A and B finite sets, d € Z>°, F : A — B, br : B — {partitions of d}, and rm : A — Z>°. Then
H =H(A,B,d, F,br,rm) is a smooth quasiprojective variety parametrizing morphisms f : (C, A) — (D, B),
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where C' and D are, respectively, A-marked and B-marked smooth connected genus zero curves, f is degree
d, and maps the points in A to those in B as specified by F', with ramification at points in A and branching
over points in B as specified by rm and br respectively. The Hurwitz space H has a “source curve” map ma to
Mo a sending [f : (C, A) — (D, B)] to the marked curve [(C, A)]. There is similarly a “target curve” map 7g
from H to My g. Unless H is empty, mg is a finite covering map. Thus the triple (H, 75, 7a) : MB = Ma
is a multi-valued map. We generalize this notion.

Definition 3.1 (Hurwitz correspondence, [Raml8], Definition 5.5). With notation as above, let A’ be any
subset of A with cardinality at least 3. There is a forgetful map p : Mg a — Mo a/. Let I' be a union of

connected components of H. We call the triple (I', 7, oma) : Mo B = Mo A a Hurwitz correspondence.

3.1. Hurwitz correspondences and meromorphic maps from PCF maps. Suppose ¢ : S? — S? is
a degree d orientation-preserving branched covering with finite post-critical set P. Define rm : P — Z>°
sending p € P to the local degree of ¢ at p. Define br : P — {partitions of d} sending p € P to the branching
profile of ¢ over p. Then H = H(P,P,d, ¢|p, br,rm) parametrizes regular maps (CP*, P) — (CP!, P) with
the same branching as ¢. Let m; and w5 be the “target” and “source” maps from H to Mo p. There is a
unique connected component Hy of H parametrizing maps that are topologically isomorphic to ¢, i.e. maps
f : (CP,P) — (CP!,P) such that there exist marked-point-preserving homeomorphisms y; and x» from
(CPL,P) to (S%,P) with x2 o f = ¢ o x1. By [Kocl3], the Hurwitz correspondence (Hg, 71, m2) on Mg p is
descended from the Thurston pullback map Thyg. When, in addition, ¢ satisfies criteria [1.1} I 1] and [1.1] . 2
Koch showed that my : Hy — Mg p is generically one-to-one; the meromorphic map Ry is m; 071'2 . Thus the
graph of Ry is (up to birational equivalence) the Hurwitz space H4, i.e. the following diagram commutes:

/\

M0p< **************

As described in [DSO08, [TT16, Ram18], correspondences can be composed and dynamical correspondences
such as (Hg4,m1,m2) can be iterated. When the meromorphic map Ry exists, then the multivalued map
(Hg, Tin,T2,n) given by the n-th iterate of (4,1, m2) is the inverse of Ry.

3.2. The maps on (co)homology induced by Hurwitz correspondences. Suppose (I',7g,pt 0 wa) :

Mo B = M, A+ is a Hurwitz correspondence from My g to Mg a/, X is some smooth projective compact-
ification of My B and X4/ is some smooth projective compactification of Mg a-. Then there are induced
pushforward maps on homology groups, (and, dually, pullback maps on cohomology groups) as follows. Let
T be any smooth projective compactification of I' such that the maps 7g : I' — Xp and (powa): T — Xas
are both regular. Then [['], := (uo7ma )« o : Hop(XB,Z) — Hop(Xar, Z). The pushforward and pullback
maps are well-defined, i.e. they do not depend on the choice of compactification I', but they are not in general
functorial with respect to composition of correspondences. (See [DS08, Raml8] for details). However, the
maps induced by Hurwitz correspondences on the (co)homology groups of the Deligne-Mumford compactifi-
cations in particular are functorial with respect to composition [Ram18]. Now suppose ¢ : S? — S? is PCF
and satisfies criteria and so Ry exists. By the definition of pullback by a meromorphic map
given in [Roel3|, and the fact that #, is the graph of Ry, we have, for any compactification Xp of Mg p,
and Vn > 0, that [Hz]f (R%)* and [H}]* = (R}) on Hap(Xp,Z). This implies that by [Raml8], Ry is
algebraically stable on Mg p.

3.3. Compactifications of Hurwitz spaces. An admissible cover is a ramified map between nodal curves
that satisfies a certain balancing condition at nodes. Harris and Mumford [HM82] defined admissible covers
and constructed their moduli spaces, which compactify Hurwitz spaces. We refer the reader to Definition
7.3 of [Ram18] for the definition of a (A, B,d, F, br,rm)-admissible cover, as it is used here. In general, the
admissible covers compactifications are only coarse moduli spaces with orbifold singularities. For technical
ease, [Ram18], Definition 7.1 introduces fully marked Hurwitz spaces, a class of Hurwitz spaces parametrizing
maps of curves [ : (C,A) — (D, B) with the property that Va € C with f(a) € B, we must have a € A. In
10



other words, a point on the source curve is marked if (and only if) its image on the target curve is marked.
The admissible covers compactifications of fully marked Hurwitz spaces are fine moduli spaces.

Theorem 3.2 (Harris and Mumford, [HMS82]). Given H = (A, B,d, F,br,rm) a fully marked Hurwitz space
as in [Ram18], Definition 7.1, there is a projective variety H = H(A, B, d, F,br,rm) parametrizing admissible
covers, and containing H = H(A,B,d, F,br,rm) as a dense open subset. The compactification H extends
the maps mg and wa to maps T and Ta to WO,B and WO,A, respectively, with 7g : H — MQB a finite
flat map. H may not be normal, but its normalization is smooth.

Remark 3.3. The irreducible components of H are the Zariski closures of the connected components of .

3.4. Boundary strata in H. Moduli spaces of admissible covers have a stratification analogous to and
compatible with that of ﬂo’n. This stratification has been studied in detail in [CMRI16]. In this section
we fix H = H(A,B,d, F,br,rm) a fully marked Hurwitz space, and let H = H(A,B,d, F,br,rm). If
[f : (C,A) — (D,B)] € H is an admissible cover, then there is an induced map of graphs from the dual
tree of C to that of D, as described in [Cap]. The combinatorial type of an admissible cover records this
map of graphs together with other discrete data that describe how the irreducible components of C' map to
those of D. We refer the reader to [CMR16] for the general definition of combinatorial type of admissible
cover, and to Definition 7.8 of [Ram18] for the specific definition, used here, of the combinatorial type ~y of
[f:(C,A) — (D,B)] € H, where:

(10) Y= (0'7 T, dVerts» fVert57 FEdges; (bru)UEVerts(a)a I'InEdges)-

Here, 0 and 7 denote the dual trees of C' and D respectively, fverts and Frqges record, respectively, how the
irreducible components and the nodes of C' map to those of D, dyets records the degrees of the restrictions
of f to the irreducible components of C, and (bry)yeverts(o) @and rMEqges record, respectively, the branching
of f over nodes of D and at nodes of C.

Definition 3.4. Set G to be the locally closed subvariety {[f'] € H|f' has combinatorial type v} and set
G, to be its closure in H. We refer to G, as a boundary stratum of H.

The boundary stratum G, can be decomposed into a product of lower-dimensional spaces of admissible
covers. For v € Verts(o), the Hurwitz space H, = H(Flags,, Flagsy, . (v} @Verts, FEdges, by, TMEdges) 18
fully marked. Denote by H, the corresponding space of admissible covers; this is reducible in general. The

space H, admits maps to the moduli space Mg Fiags, Of source curves and the moduli space My Fiags —
v ’ Tverts (v

of target curves. For w € Verts(r), set H, = Hve(fvms)*l(w) H.,,, where the product is fibered over the
common moduli space MO,F]agsw of target curves. The fibered product H,, is itself a moduli space of possibly

disconnected admissible covers, admitting a map o™ to the moduli space [] )Mo,mg% of

e VE(fyerts) 1 (w
source curves and a finite flat map 72 to the moduli space M Flags, of target curves. The stratum G,
is isomorphic to HwGVcrts(T) H.,. The boundary stratum G, is not necessarily irreducible. Its irreducible
components are of the form

(11) J= 1] 7

we Verts(T)

where J,, is an irreducible component of ..

4. MODULI SPACES OF STATIC POLYNOMIALS

A polynomial f(z) in one variable defines a regular map f : CP! — CP! for which co € CP! is a fully
ramified fixed point. More generally, a regular map f’ : CP! — CP! is called a polynomial if there is a fully
ramified fixed point a., € CP!; such a map f’ is conjugate to a regular map defined by a polynomial in
one variable. We recall from Section |l| that a topological polynomial is a branched covering ¢ : S? — S§2
that has a fully ramified fixed point. The condition of having a fully ramified point is invariant under
separate changes of coordinates on source and target, i.e. it is a non-dynamical/static feature. On the other
hand, the condition of being a fixed point is invariant under the same change of coordinates on source and
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target, but not invariant under separate changes of coordinates on source and target. In other words, the
condition of being a fixed point is a dynamical feature. Now, suppose ¢ satisfies criteria and .
Then, although ¢ may not be a topological polynomial, it shares a non-dynamical feature with topological
polynomials, i.e. there is a point po, that is a fully ramified point of ¢, although it may not be fixed. This
motivates the following definition:

Definition 4.1. We say that a regular map f : CP! — CP' of degree d is a static polynomial if it has a
fully ramified point, i.e. if there exists a, € CP! such that the local degree of f at a is d. Similarly, we
say that a degree d admissible cover f : C' — D is a static polynomial if there exists a smooth point ao, € C'
such that the local degree of f at a. is d.

Note that if ¢ is PCF and satisfies criteria (1.1} [1)) and (1.1] , then H, and Hg are moduli spaces that
parametrize static polynomials.

4.1. Degenerations of static polynomials. Here, we describe a few basic features of the combinatorics
of static polynomial admissible covers.

Lemma 4.2. Suppose [ : C — D is a degree d admissible cover with an irreducible component Co, of C' such
that the restriction f|c. has degree equal to d. If § € D is any node, and Dy is the connected component of
D ~ {6} that contains f(Cuo) ~ {0}, then f=1(Dyg) is connected.

Proof. %‘c Dioge the closure of Dy in D, and set Cj to be the closure of f~(Dp) in C. Then the restriction
f ‘CT : Cp = Dy is also an admissible cover of degree d, and it has degree equal to d on the irreducible

component Cy, of Cy. Thus the source curve Cy must be connected. Since Cy . f~(Dp) is a set of isolated
smooth points (these are nodes of C' but smooth points of Cj), connectedness of Cy is equivalent of to
connectedness of f~1(Dg); we conclude that the latter is connected, as desired. O

Corollary 4.3. Suppose f : C — D is a degree d static polynomial admissible cover, fully ramified over a
smooth point bos € D. If 8 € D is any node, and Dy is the connected component of D ~ {0} that contains
beo, then f=1(Dy) is connected.

Proof. This follows from Lemma [£.2] and the fact that if C'; is the irreducible component containing the
fully ramified smooth point a., = f~!(bs), then the restriction f|c.. has degree equal to d. a

We further conclude that if f : C' — D is a degenerate static polynomial as in Corollary then the
restriction of f to any irreducible component of C' is a static polynomial of possibly smaller degree. More
precisely, let Cy be an irreducible component of C. If as, € C1, then it’s clear that f|¢, is a static polynomial.
Otherwise, let 17 be the node on C; connecting it to a~; we claim that 5 is a fully ramified point of f|¢,.
To see this, set § = f(n), and Dy to be the connected component of D ~\ {6} that contains b,. Since by
Corollary f~Y(Dy) is connected, and since C has genus zero, there is a unique node connecting C; to
f~Y(Dy); this node must be 1. Thus 7 is the only point of C; mapping to 6; this forces f|o, to be fully
ramified at 7.

4.2. Static polynomials and weighted stable curves. In this section we study Hurwitz spaces H
parametrizing static polynomials. We will relate the combinatorics of static polynomials to the combinatorics
of stable curves to find compactifications Xg and X s on which the Hurwitz correspondence induced by H
behaves well.

Definition 4.4. Let H = H(A,B,d, F,br,rm) be a Hurwitz space parametrizing static polynomials, and
let b € B be the image of the fully ramified point, i.e. we have br(bo) = (d). We define a compatible
pair of heavy/light Hassett spaces with respect to H to be a pair Xp and Xa of compactifications of My g
and Mg a respectively, obtained as follows. Let B = By, U By; be a set partition such that: bo € Bpoy,
IBhoy| > 2, and }Fﬁl(th,yﬂ > 2. Set Apyy = F ' (Bpyy), and Ay = F~1(By). Let € > 0 be such that
|Bi| < (1/€) and |Ay| < (1/€). Let e be the weight datum on Mg g that assigns points in Bj,,, weight 1
and points in By, weight ¢, and let ea be the weight datum on Mg a that assigns points in Ay, weight 1
and points in A;; weight €. Set Xg and X s to be the corresponding spaces of B- and A-marked weighted
stable curves respectively.
12



In other words, we require the special point b, (the marked image of the fully ramified point) to be heavy,
we require all of the points in A that map, under F', to heavy points in B to be heavy themselves, and we
require points in A that map to light points in B to be light.

Now, we fix H, together with a pair of compatible pair Xg and Xa of heavy/light Hassett spaces, along
with all the notation in Deﬁnltlon E Let pg and pa be the reduction morphisms from /\/lo B and /\/lo A to
Xp and X respectively. We are interested in studying the correspondence induced by H from Xg to Xa.
In order to be able to use an admissible covers compactification, we pass to the fully marked Hurwitz space:
Let H" = 3 (A™! B, d, F,br,rm) be the fully marked Hurwitz space of H as in Section 3.3} with A" D> A

. —full . . . . .
the full marked preimage of B. Let H " be the admissible covers compactification of HM!; it admits a
—full | — —
covering map v to H. Set 75 and Tarn to be the maps from H  to Mo, and M s respectively, and
W ﬂQ arn — Mo a to be the forgetful map. Throughout the section we will refer back to the notation
defined above:
A, Ahvya Alt7 B, Bhvy7 Blta Afull’ oo boca da Fa bI‘, rm,

(12) —full _
€, €A, €B, Ha H ’ XB7 XA; T™B,; TAfu, PB, PA, 2 and v

Lemma 4.5. With notation as in (@), suppose we have [f : (C, Al — (D, B)] € ﬂfun. Then, considering
C as a (not necessarily stable) A-marked curve, we have:

(1) (Statement about the map of curves.) If Cy is an irreducible component of C' such that f(Cy) is not
eg-stable, then C is not ea -stable.

(2) (Equivalent statement about the induced map of dual trees.) If v is a vertex on the dual tree of C
such that fyverts(v) on the dual tree of D is not eg-stable, then v is not ea -stable.

Proof. Since the equivalence of items and is clear, we prove only . Since (D, B) is a stable curve
and f(Cq) is not eg-stable, we conclude from part of Lemma that there is a unique node 6 on
f(C1) connecting it to every heavy point, i.e. to every point in By,,. Since by, is heavy, 6 connects f(C4) to
bs. Now, let Dy be the connected component of D \ {6} that contains b, (and contains every other point
in Bjyy, and does not contain f(Cy) \ {6}). By Corollary [4.3] Co := f~1(Dy) is connected. Since the pair
ea and epg is a compatible pair of weights as in Definition every point in Aj,, maps, via, f, to some
point in By,,,, and thus every point in Ay, lies on Cy. Now, since C' is genus zero, there is a unique note 7
on C; connecting it to Cy, i.e. 1 is the node on € that connects it to every point in Ajy,,. By the criterion
in part of Lemma we conclude that ' is not €a-stable. [l

Lemma 4.6. With notation as in @), suppose G, is any boundary stratum of ﬁfun and that J is any
irreducible component of G.,. Then the two maps (pg o TB) and (pa © o Tarn) from J to Xg and to Xa
respectively both factor through the projection

(13) J= 1] Zu— 1] 7w

wE Verts(T) wE Verts(T)
ep-stable

where the decomposition of J as a product is as per Section @, equation 411 ).

Proof. Recall that 7 is the dual tree of the target curve (D, B) of a generic admissible cover [f : (C, Afll) —
(D,B)] e JC H"". As described in Section the above decomposition of J into a product is induced
by the decompositionin = [Lweverts(r) Hw, Where H,, is an admissible covers space of (pure) dimension
md(w). The factor J,, in the decomposition of J is an irreducible component of H,,, and thus also has

dimension md(w). Under 75, J maps to the boundary stratum 7 in ﬂo,B, and the restriction 75 : J — T’
decomposes into a product as follows:

e targct
7TB|J - HwEVerts(-r) w

J = HwEVerts(T) 7“’ HwEVerts(T) MO,Flagsw =1
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Each factor map 728" is a finite flat map from the admissible covers space 7., to an appropriate moduli
space of target curves. Thus 7g : J — T, is finite and flat, so T is the full image of J. Now, by Lemma
2.12] the restriction pg : T — Xp factors through the projection

(14) TT = H MO,Flagsw — H MO,Flagsw
we Verts(T) we Verts(T)
ep-stable

We conclude that the restriction 75 : J — Xp factors through the projection in (13]).
Now, the boundary stratum S, in My arn is isomorphic to ] (o) Mo, Flags,, and the restriction
Tarmn : J — Sy also factors as a product:

vEVerts

full —=source

J= H 7’w TA |J = HweVerts(T) Ty H H MO,Flagsv =55
wE Verts(T) weE Verts() vef\;elrts(w)
Each factor map 7" is a map from the space J, of admissible covers to a moduli space of possibly

disconnected source curves. Note that every vertex on o that is e-stable is also A-stable, thus by Lemmas
and the restriction pa o pu: S, — Xa factors through the composition of projections

(15) So= I Morags, = ] Morrags, = ] Morias,
vEVerts(o) v€EVerts(o) vEVerts(o)
A-stable ea-stable

From item of Lemma we conclude that if v is a ea-stable vertex on o, then fyers(v) is eg-stable
as a vertex on 7. Thus the restriction pa o : S, — Xa factors through the projection

(16) Sa = H mO,FIagSU — H MO,FlagsU = H H ﬂO,Flagsv

vEVerts(o) v€EVerts(o) weVerts(t) vefo . (w)
Ferts(v) es-stable ep-stable

Thus the composite pa o po i : J — X4 factors though the projection in , proving the lemma. [

—full
Using Lemma we conclude that any irreducible component J of a boundary stratum of H " that is
contracted in dimension by the map to Xg must also be contracted in dimension by the map to Xa.

Lemma 4.7. With notation as in @), suppose G, is a boundary stratum ofﬁfu11 and J is some irreducible
component of G-, such that dimc(ps o T8(J)) < dimc(J). Then dime(pa o pro Tamu(J)) < dime(J).

Proof. The map 7g is finite, so dim¢(7g(J)) = dime(J). In fact, 75(J) is the boundary stratum T of
Mo . We conclude that dime(pg (7)) < dime(T%). By Lemma paopormil: J — Xa factors though
the projection in We have that dimc(J) = -, everts(r) md(w). By the above, dime(pa o pomarn(J)) <
> weverts(r) md(w). By Lemma [2.15] 7 has at least one vertex with positive moduli dimension that is not

ep-stable

ep-stable. Thus ), cverts(r) md(w) < ZwGVerts(T) md(w), proving the lemma. |

ep-stable

Proposition 4.8. With notation as in (@), let T’ be any non-empty union of connected components of H,
and let k € {0,...,dimc(MoB)}. Then the pushforward maps

[T : Hop (Mo, Q) = Hap(Mo,a,Q)
(pB)+ : Hor (Mo B, Q) — Hop(Xgs, Q)
(pA)s : Ha, (Mo a, Q) = Hop(Xa, Q)
satisfy: [I']«(ker((pB)s)) C ker((pa)«).

Remark 4.9. The very beginning of the proof of Proposition follows the beginning the proof of Theorem

9.7 of [Ram18]: In order to understand the pushforward by a Hurwitz correspondence on the homology

groups of the Deligne-Mumford compactifications we reduce to the case of a fully marked Hurwitz space,

then frame the action of the pushforward on boundary strata in terms of the stratification of the space of
14



admissible covers. After this point, the two proofs diverge. Here, the key content lies in Lemma via
Lemma .7

Proof. First, we reformulate the problem in order to allow ourselves to work solely with fully marked Hurwitz
spaces. Set Tl = ,=1(T") and set T'full to be its closure in H"". We have that [T, = gy o (71 [5mm) s ©
(TB)|% By Lemma 7.2 of [Ram18], we have that [[]. = (1/degv)["],, so it suffices to show that

T full :

[Tl (ker((pB)«)) C ker((pa)«). Suppose T is a k-dimensional boundary stratum of Myp such that
[T;] € ker((pB)«); in this case dimc(ps(7r)) < dime(7,). Since the map 7y is flat, by Lemma 1.7.1 of
[Ful98] we have that

@)D= Y mil],

J irred. comp

—\ -1
of (78) | L (T,)

where the (m)s are positive integer multiplicities. Let J be an arbitrary term appearing in the above sum.

. . . -_— . . —full
Since the inverse image under g of a boundary stratum of Mg g is a union of boundary strata of " ,

. . . . . . . . —full
and since g is finite, J is an irreducible component of some k-dimensional boundary stratum of A, and

78(J) = T,. We have that
dime(pg o TB(J)) = dime(ps(7T;)) < dime(T;) = dime(J).

By LemmaH dim(pa o po (7h™) |gmr(J) < dim(J), so (pa o po (") gmm)«([J]) = 0 € Hop(Xa, Q). Since
J was arbitrary, we conclude:

(pa)« (L™ (I77)) =(pa)s © s © (TR lgmaw) » © T g ([17])
= > mlpacpo Ty |mmm)«[J] = 0 € Hop(Xa, Q).

J irred. comp

of (TB)| Ly (T+)

Thus [T, ([T,]) € ker((pa)«). We conclude that for an arbitrary boundary stratum 7, of My g such
that [T,] € ker((pB).), we have that [T, ([T}]) € ker((pa)«). By [Raml8|, Lemma 10.9, ker((pB).) is
spanned by fundamental classes of boundary strata. We conclude that [[T!], (ker((pB)«)) C ker((pa)«),
proving the proposition. (]

Remark 4.10. Lemma |4.6) which is the key technical lemma of this paper, is used in Lemma |4.7| and
Proposition to study the pushforward maps induced by Hurwitz spaces of static polynomials on the
homology groups of compatible pairs of heavy/light Hassett spaces. Proposition is then used in Theorem
to conclude algebraic stability on certain heavy/light Hassett spaces. Lemm can be independently
used to provide a geometric perspective on Theorem While there isn’t an agreed-upon definition of
a regular/holomorphic (as opposed to a rational/meromorphic) correspondence from X to Y, it should
be something like “a variety I' with a finite map (proper and having finite fibers) 7x : ' — X and a
map 7wy : I' — Y”. This candidate definition captures the informal notion of a multivalued map from
X to Y taking only finitely many values for any given = € X. However, it might not be strong enough
to ensure good behavior, for example to ensure algebraic stability of a “regular” self-correspondence on a
smooth projective variety. For that, either I' should be required to be smooth, or wx should be required
to be flat [Roel3, [Ram18]. Below, we use Lemma to show (Proposition that a Hurwitz space of
static polynomials induces a “regular” correspondence (according to the weaker definition given above) on
a compatible pair of heavy/light Hassett spaces. Proposition is too weak to be used to prove Theorem

b1l

Lemma 4.11. With notation as in 412), suppose that V C ﬁfuu is an irreducible subvariety with the property
that pg o TB(V') is a single point in Xg. Then pa o poTarm (V) is a single point X .

. . . . . —full .
Proof. Since V is irreducible, there is a unique smallest boundary stratum G, of H " that contains V. Set

Ve =V NG, where GJ is as in Deﬁnition Then V° is open and dense in V. Since V is irreducible,

’)/7
there is a unique irreducible component J of G, such that V C J. By Lemma the restrictions of both

pB o and pa oy o Tamn to J factor through the projection to PJ := [[weverts(r) Jw described in 1)
eg-stable
15



(Here, 7 is the dual tree of the target curve of every [f] € G5.) When restricted to V°, pg o 7B factors
through the projection to the product of (not compactified) Hurwitz spaces PJ° := [ weverts(r) Juw, followed
ep-stable

by the map miarges : PJ° — PTY := [[weverts(r) Mo,Flags, - By Lemma [2.12} the map ?nduced by pg from
PT? is an isomorphism onto its image iI:B)Eth.b leSince by assumption pg o (V) is a single point in Xg, the
image of V° in PT? is a single point y. Now, marget is @ product of covering maps thus itself a covering
map, so ﬂtjﬁ,get(y) is a finite set {z1,...x,}. The image of V° in PJ° is contained in ﬂ;ll,get (y), and since
Ve is irreducible, its image must be a single point z;; € PJ°. Since V° is dense in V, the image of V in PJ
is the single point z;. On the other hand, the restriction of pa o o Tarn to J and thus also to V factors
through the projection to PJ. Since the image of V' in PJ is a single point, this forces the image of V' under
PA O L0 T aranr t0 be a single point of Xa. ]

From Lemma [4.11] we obtain:

Proposition 4.12. With notation as in @: The induced map to Xy from (pgoTB X pa O,U/Oﬂ'Afull)(ﬁfun) C

XB X XA is finite.
5. ALGEBRAIC STABILITY OF H, ON HEAVY/LIGHT HASSETT SPACES

In this section, we fix a degree d branched covering ¢ with finite post-critical set P that satisfies criteria
and . Let pso € P be the fully ramified cyclic point, and let P,, C P be the forward orbit of
Do 1-€. the set of all points in its periodic cycle. Fix a positive rational number € such that IPﬂ%l <e< IPW%Q
and let € be the weight datum that assigns weight 1 to the elements of P, and assigns weight € to all elements
not in Po,. Let X = Mo p(€) be the corresponding Hassett space. If [Poo| = 1 then po is fixed so ¢ is
a topological polynomial. Also, as described in Section the Hassett space X is isomorphic to CPPI=3,
By [Kocl3], Ry is holomorphic thus algebraically stable on X. If |Po| > 2 then X is a heavy/light Hassett
space. Here, we show:

Theorem 5.1. Let ¢, P,poo, Poo,€,€, and X be as above, and suppose |Ps| > 2. Then Hy and Ry are
algebraically stable on X.

Proof. By [Ram18], The Hurwitz correspondence H4 is algebraically stable on My p. Now, let p : Mop — X
be the reduction map. Note that (X, X) is a compatible pair of heavy/light Hassett spaces with respect to the
Hurwitz space Hg, as in Definition Thus He, X and p together satisfy the assumptions of Proposition
We conclude that for all k, the kernel of p, : Hop(Mop) — Hor(X) is an invariant subspace of [H)..
On the other hand, it is shown in [Raml8] Lemma 4.16 that if a correspondence T' is algebraically stable
on X7, and if r : X; — X5 is a regular birational map such that for all m, the kernel of the pushforward
ry : Hp(X1) = Hpp(X2) is invariant under the action of [I'], on H,,(X7), then I" is also algebraically stable
on Xo. Applying this result here tells us that H, is algebraically stable on X, i.e. for every iterate n,
[(Hyle = [He]? on Hox(X). On the other hand, for all £ = 0,...,dimc(X), and for iterates n > 0, the action
of (Rg)* on H?**(X) = H**(X) is identified with the action of [Hg]* on Hy(dime(x)—k)(X). We conclude
that R, is algebraically stable on X. O

Theorem [I.2] follows as an immediate consequence: it is a restatement of Theorem [5.1] above.

Remark 5.2. There is a variant of Theorem obtained by applying Proposition repeatedly. Suppose
¢ is a degree d branched covering with finite post-critical set P that satisfies criterion with poo the
fully ramified periodic point, and such that every critical point of ¢ is periodic. Then ¢ satifies
as well. Let P, and € be as in the statement of Theorem Let Poo = Py C Py...,P,. = P be any
filtration of P such that each P; is a union of periodic cycles of ¢. For i = 1,...,r, let €; be the weight
datum on My p assigning weight 1 to points in P; and weight € to points in the complement of P;, and let
X; be the corresponding space of weighted stable curves. Note that there is a generalized reduction map
pii—1 @ X; — X;—1 commuting with the reduction maps p; and p;—; from X, = Mop to X; and X; 4
respectively. For i =1,...,r — 1, set V;, k = ker((p;)«) C Hox(Mop). By Proposition

(1) The subspace Vi is invariant under the action [Hg]. = R}, on Ha,(Mop) = HAdmMop)=k) (A, p).

Thus by Lemma 4.16 of [Ram18]:
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(2) The Hurwitz correspondence H, and the rational map Ry are algebraically stable on each Xj.

Thus Vs 14 C Vi—op C ... C Hop(Mop) = H2(dmMor)=k) (Af, p) is a filtration of H2(dm(Mor)=k) (Af, p)
by Rj-invariant subspaces. This filtration allows us to write R as a block-lower-triangular matrix. In con-
trast, the main result of [Ram18] is a completely different filtration of the (co)homology groups of Mg p by
subspaces invariant for every Hurwitz correspondence, giving us in this specific context another — different
and utterly independent — expression of R} as a block-lower-triangular matrix. The latter expression makes

no use of the specifics of ¢, in particular of criteria (I.I} [I) and (L.} 2).
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