PULLBACKS OF k CLASSES ON My,
ROHINI RAMADAS

ABSTRACT. The moduli space Mo, carries a codimension-d Chow class k4. We consider the subspace IC‘,il

of Ad(ﬂoyn,(@) spanned by pullbacks of k4 via forgetful maps. We find a permutation basis for IC%, and

describe its annihilator under the intersection pairing in terms of d-dimensional boundary strata. As an
application, we give a new permutation basis of the divisor class group of Mg .

1. INTRODUCTION

Mumford [D.83] introduced the tautological, codimension-d class x4 in the cohomology /Chow group of the
moduli space M, ,,. This class extends to the moduli space Mg,n of stable curves as well as to various partial
compactifications of M, ,,. Ring-theoretic relations involving x classes have been studied by Faber, Ionel,
Pandharipande, Pixton, Zagier, Zvonkine, and several others, and play a role in the study of Gromov-Witten
theory and mirror symmetry ([Fab99, Ton05, [Pan12l [PP| [PPZ16]; see [Panlll, [Pan1g| for overviews).

Here, we investigate  classes on My, from a linear-algebraic and representation-theoretic perspective.
The symmetric group S, acts on My ,, and thus acts on its cohomology and Chow groups. Given any
T C {1,...,n} with |T| > 3, there is a forgetful map 7 : Mo, — Mor. We set £} = mh(kq), and
consider the subspace K¢ C A%(M ,,, Q) spanned by {/{dT}Tg{17.__,n}; this subspace is clearly S, -invariant.
Recall that a permutation basis of a G-representation is one whose elements are permuted by the action of
G. We show:

Theorem A. (Theorem [3.14{iii).) If n >4 and 1 < d < n — 3, then K& has a permutation basis given by
{5 1T > (d+3),|T| = (d+3) mod 2}.

1.1. Does A%( My, Q) have a permutation basis? Getzler [Get95] and Bergstrom-Minabe [BM13] have
given algorithms to compute the character of Ad(ﬂoyn,Q) as an S,-representation. It is not clear from
these algorithms whether A¢(M, ,,Q) has a permutation basis. Farkas and Gibney [FG03] have given a
permutation basis for A'(Mj ,,, Q). Theorem implies that KL = A' (M, Q), so:
Theorem B. The set {kT | |T| > 4,|T| even} is a permutation basis of A'(Mo n,Q).
The basis given by Theorem B is different from the one given in [FG03], which consists of certain boundary
divisors and 9 classes. For odd n, the two bases are isomorphic as S;,-sets, but for even n they are not.
Silversmith and the author [RS20] have produced a permutation basis for Az(Mo,,, Q), using Theorem
as an ingredient. Very recent work of Castravet and Tevelev [CT20] on the derived category of My,
gives a permutation basis of A*(Mp,,Q) = @Z;g A% (Mo.n,Q); its elements, however, are not of pure
degree. The question of whether or not A%(Mo_,, Q) has a permutation basis for all d and n remains open.

1.2. The dual story in Ay(My,,Q) and the proof of Theorem There is an S),-equivariant
intersection pairing A4(Mo.n, Q) x A4(Mo.n, Q) — Q. To prove Theorem A, we show:

Theorem C. (Theorem [3.14(i)lf(ii).) If n > 4 and 1 < d < n — 3, we have
(1) The annihilator of K& C A4( Mo, Q) is the subspace Vi, C Aq(Mon, Q) spanned by boundary

strata whose dual trees have two or more vertices with valence at least four.

(2) Qun = w is the dual of K2.

1991 Mathematics Subject Classification. 14H10 (primary), 14N99, 14M99, 20C30.
This work was partially supported by NSF grants 0943832, 1045119, 1068190, and 1703308.

1



It is straightforward to show that V, ,, is contained in the annihilator of K&, but to show equality involves
a complicated induction on n. We use the fact that if 7 denotes the forgetful morphism from Mg 41 to
ﬂo,n, then:

Theorem D. (Theorem 3.14(v)) If n > 4 and 1 < d < n — 3, then we have the following (dual) exact
sequences:

T T
0= Qdn — Qd+int1 — Qdyin — 0

d4+1 7 ged+1 Tx god
0— K I Kt =5 Kd =0
In general, it is difficult to use induction to study A%(Mo,,,Q), partly due to the fact that

A (Mo, Q) T A (Mo i1,Q) =5 A% (Mo, Q)

is not exact. This failure of exactness is also responsible for the fact that the dimensions of A4(Mo.,, Q) =
A"=3=4(My », Q) grow exponentially with n, whereas dim(K7?~379) grows as a degree-d polynomial in n.

1.3. Significance for dynamics on M, ,. Hurwitz correspondences are a class of multivalued dynamical
systems on My ,,. They were introduced by Koch [Koc13| in the context of Teichmiiller theory and complex
dynamics on P!, and their dynamics were studied by the author [Rami8| Ram19b, Rami9a]. A Hurwitz
correspondence H on Mg ,, induces a linear pushforward action on Qg ,, and the d-th dynamical degree of
H (a numerical invariant of algebraic dynamical systems) is the largest eigenvalue of this action [Ram1§].
Theorem can be used to re-interpret Theorem 10.6 of [Ram18] to conclude that H acts on pullbacks of
K classes, and that this action encodes important information about the dynamics of H:

Theorem E. Suppose H is a Hurwitz correspondence on Mg . If 1 < d < n—3, then K& is invariant under
the pullback H* : AY (Mo n, Q) — A4 Mo, Q), and the d-th dynamical degree of H is the largest eigenvalue
of the action of H* on K.

Acknowledgements. I am grateful to David Speyer, Rob Silversmith, and Renzo Cavalieri for useful
conversations. Rob Silversmith noticed a patten in my experimental data: the dimensions of Qg4 , can be
expressed as sums of binomial coefficients. This observation led me to conjecture the correct dual basis of
Q4.n- My initial expression of the dual basis elements was purely combinatorial; Renzo Cavalieri observed
that these elements could be expressed as functionals induced by pairing with x classes. I am grateful to
two anonymous referees for valuable feedback that led to significant improvements, and to corrections of the
statement and proof of Lemma [2.14

Notation and conventions. For n a positive integer, we denote by [n] the set {1,...,n}. For A a finite set,
we denote by QA the free Q-vector space on A. For V a vector space, we denote by VV its dual. For a linear
map g : YV — X, we denote by pV its dual map. If W is a subspace of V, we denote by W+ its annihilator
in VY. For Y a variety, we denote by A4(Y) its Chow group, and by A4(Y, Q) the tensor product of A4(Y)
with Q. For X a d-dimensional subvariety of Y, we denote by [X] its class in A4(Y) (resp. Aq(Y,Q)).

2. CHOW CLASSES ON Mg,

The moduli space Mgy, is an (n—3)-dimensional smooth variety parametrizing configurations of n distinct
labelled points on P!, up to changes of coordinates. Its stable curves compactification My ,, parametrizes
stable nodal rational curves with n distinct smooth marked points [Knu83]. We set Aqg,, := Ag(Mo ., Q),
and A .= Ap—_3_dn. There is an S, -equivariant non-degenerate intersection pairing Aq,, X Ad — Q; this
identifies A¢ with Ayl ,- In this section, we introduce certain classes in Aqg,, and Al and reformulate the
the intersection pairing between these classes in purely combinatorial terms.
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2.1. Boundary strata, dual trees, and set partitions. Given a point in Mo, i.e. stable n-marked
rational curve C| its dual tree is a graph o decorated with n marked legs, defined as follows: Vertices of
o correspond to irreducible components of C, two vertices are connected by an edge if the corresponding
irreducible components of C' meet at a node, and a vertex is decorated by the i-th leg if the corresponding
irreducible component of C' contains the i-th marked point. Note that o is a stable n-marked tree, i.e. every
vertex has valence at least 3 (counting legs). Given a stable n-marked tree o, we set X, to be the closure,
in ﬂo,n, of the locus of stable curves whose dual tree is 0. The locus X, is a subvariety, and is called a
boundary stratum. By [Kee92], Aq(Mo.,) is a finitely generated free abelian group generated, though not
freely, by the fundamental classes of d dimensional boundary strata; additive relations among boundary
strata are described in [KM94]. Boundary strata are isomorphic to products of smaller moduli spaces:

(1) Xo = H HO,Valence('u) .

v vertex of o

We conclude that X, is positive-dimensional if and only if its dual tree has at least one vertex with valence
at least four. If o has exactly one vertex v with valence at least four, then X, is isomorphic to mo}\/alence(v),
since the factors in the above product decomposition of X, corresponding to vertices other than v are all
isomorphic to single-point spaces.

Definition 2.1. We say that a positive-dimensional boundary stratum X, is Type I if its dual tree o has
exactly one vertex with valence at least four; in this case we also say that o is a Type I stable tree. We say
that a positive-dimensional boundary stratum X, is Type II if its dual tree o has two or more vertices with
valence at least four; in this case we also say that o is a type II stable tree. Forn >4 and d=1,...,n — 4,
we set Vg, C Aqg,pn to be the subspace generated by the fundamental classes of Type II boundary strata. We
set Qg to be the quotient Ay, /Vin. Note that since Vg, is S,-invariant, Qg , inherits an action of S,,.
Also note that Qg ,, is generated by the fundamental classes of Type I boundary strata.

Definition 2.2. Suppose o is a stable n-marked tree and v a vertex on o. We obtain from the pair (o, v)
a set partition II,(o,v) of [n] as follows: ¢ and j are in the same part of IL,(o,v) if and only if the i- and
j-marked legs on o are on the same connected component of o\ {v}. Note that there is a canonical bijection
§ : 1L (0,v) — {edges adjacent to v} U {legs attached to v}: If {i} € IL.(0o,v), this implies that the i—th leg
is attached to v, and we set §({i}) := (i-th leg); and if P € IL.(o,v) is such that |P| > 2, then there is a
unique edge e adjacent to v such that the legs corresponding to the elements of [n] \ P are all in the same
connected component of o \ e; we set 6(P) := e. Thus |II,(c,v)| = Valence(v). If o is Type I and v is its
unique vertex with valence at least four, then the partition I, (o, v) is intrinsically associated to o, so we
denote it by IL.(0). In this case we have dim(X,) = |IL.(0)| — 3(= Valence(v) — 3).

Definition 2.3. We recall certain special relations (introduced in Section 7.2 of [KM94]) that hold, in
Aqg.n, among d-dimensional boundary strata. Suppose 7 is the dual tree of a (d + 1)—dimensional boundary
stratum, v is a vertex of 7 with valence four or more, and 4, j, k,l € [n] are such that the parts Py, Py, Ps, Py
of IT = I, (7, v) containing 14, j, k, [ respectively are distinct. If we have IT = II; Ul with |IT; |, [TIz| > 2, then
there is a stable n-marked tree 7(Il;, II5) obtained from 7 by splitting v into two vertices v; and v joined by
a new edge, and attaching to vy all the edges/legs of 7 corresponding to elements of IT; (under the bijection
¢ introduced in Definition above), and attaching to v all the edges/legs of 7 corresponding to elements
of PII,. By [KM94], we obtain from the data (7, {i, j, k,1}, v) a relation, denoted R(7, {4, j, k, 1}, v), in Agp:

(2) > [(Xr @, m)] — > (X7, 11,)] = 0.

TI=I11 Ull2; Py, P2 €111 ; P3, P4 €112 TI=I1, Ull2; Py, P3 €111 ; P2, P4 €112

Lemma 2.4. Suppose that o1 and oo are two Type I stable n-marked trees, and suppose IL.(o1) = I, (02).
Then [Xo,] = [Xo,] € Adn, where d = dim(X,,) = dim(X,,).

Proof. For i = 1,2, denote by v; the unique vertex on ¢; with valence at least four. Observe that the tree

obtained by collapsing to a point every edge of o1 except those adjacent to vy is the same as the tree obtained

by collapsing every edge of o9 except those adjacent to vo; we denote this common tree by o and we denote

by vg the vertex on ¢ obtained from v, as well as from vo. We use the product decomposition of X, given in

, and, for v a vertex of o, set pr, to be the projection from X, to WO’Valence(v). Observe that in Agz(X,),
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we have, for i = 1,2, that [X,,] = (pr,,)"([Mo valence(vo)]) - [ 0, Pr% ([Point]). Pushing this relation forward

to Mo,n, we obtain the desired equality.
O

For n > 1 and d > —3, we set SP4, to be the set of all set partitions of [n] having exactly d 4+ 3 parts.
By Lemma for n > 4 and d > 1, there is a well-defined map SPy,, — Ay, sending II to [X,], where
o is any Type I stable n-marked tree such that IT = I, (o) (it is clear that such a o exists). Extending by
linearity and composing with the quotient map from Ag, to Qg4,, we obtain a surjective, Sp-equivariant,
linear map QSPg ., — Qan-

Lemma 2.5. The kernel of the surjective linear map QSPy,, — Qg is the subspace Rqy of QSPg,
generated by elements of the form:

(3) {PLUPy, P3, Py, ..., Pyiay +{P1, Po, PsUPy, ..., Pyia}
—{PyUP3, Py, Py,...,Pyrs} —{P1,P5,P,UPy,... Pii4},

where {Py, Po, P3, Py, ..., Py14} is a set partition of [n] with d + 4 parts.

Proof. An element Zi:l aslls of QSP,,, is the kernel of the map to Qg if and only if there is a linear
relation in Ag,, of the form: Zi:l as[X,,] = (linear combination of classes of Type II strata), where each
X,, is a Type I stratum such that IL.(0s) = II;. By Theorem 7.3 of [KM94], the relations, in Agn,
among d-dimensional strata are generated by the relations R(r, {4, 7, k,1},v) as in Definition Given
R(7,{i,j, k,1},v), there are three cases: Case 1 is that 7 is Type II, v has valence exactly four, and 7 has
exactly one vertex v’ other than v with valence four or more. In this case, the resulting relation is of the
form: [ X, ]+ [Xr,] — [Xrs] — [Xr,] =0, where for z = 1,...,4, the tree 7, is Type I and IL.(7,) = IL.(7,v");
in particular, applying II, to the left side of the above relation, we obtain 0 € QSP,,. Case 2 is that 7 is
Type II and either v has valence five or more, or 7 has at least three vertices each with valence four or more.
In this case, all the terms in the resulting relation are Type II. Case 3 is that 7 is Type 1. In this case, we
may write IL.(7) = {P1,..., Psta} in such a way that i € Py, j € Py, k € P3, and | € Py, and we observe
that the resulting relation has the form (after rearranging terms):

(4) [(Xr )+ [Xr L] = [X7 5] = [ X7, ] = (linear combination of classes of Type II strata),

where each 7, , is a type I tree and IL.(7; ) = {Py UP,} U (IL.(7) ~\ { Py, P,}). In particular, applying II, to
the left side of the relation , we obtain an expression of the form . We conclude if we have a relation
in Ag,, of the form:

(5)  (linear combination of classes of Type I strata) = (linear combination of classes of Type II strata)

then applying II, to the left side yields a linear combinations of set partitions in the Q-span of expressions
of the form . This implies that the kernel of the map from QSP, ,, to Qg , is contained in the Q-span of
expressions of the form . Conversely, given any element 6 € QSP,, of the form , i.e. any set partition
{P1,...,Pii4} of [n] with distinguished parts Py,..., Py, one can find a Type I tree 7 (with v its unique
vertex of valence at least four) such that II.(7) = {P1, ..., Piya}. If, further, we pick i € Py, j € Py, k € Ps,
and [ € Py, then applying II, to the Type I terms of the induced relation R(r, {4, j, k,{},v) yields 6, showing
that 6 is in the kernel of the map to Qg .

|

Corollary 2.6. There is an Sy-equivariant isomorphism Q4. = QSP 4,/ Ra.rn identifying the class [X,| of
a Type I stratum with the set partition (o).

2.2. Kappa classes and the intersection pairing. For d = 0,...,n — 3, ﬂo,n carries a codimension
d kappa class kg € A%. It can be defined as follows: Set 7 : Mg 11 — Mo, to the map forgetting the
(n 4+ 1)—st marked point, and t,41 to be the divisor class on ﬂo,nﬂ corresponding to the line bundle
whose fiber at (C,p1,...,pn) € Mo i1 is the cotangent space of C at p,41. Then kg := 71'*(1/)21{). (See
[AC96| [ACI8] for details and properties.)
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Lemma 2.7. Letn >4 and 1 < d <n—3. Suppose X, is a dimension d boundary stratum on ﬂo’n. Then

1 X, is Type I
(6) [Xo] - ka = oo
0 Xo ts Type II

Proof. We use the product decomposition of X, given in , and, for v a vertex of o, set pr, to be the
projection from X, to Mg valence(v)- By Equation 1.8 of [AC96], we have that, as a class supported on X,:

* ﬂ,aencev
(7) [Xol-ka= Y prylsy v,

v vertex of o

where mﬁ/lo’vale“e(”) denotes the codimension-d x class on the factor Mg valence(v)- 1f Xo is Type I1, then for

each vertex v, we have (Valence(v)) —3) < d. This implies that ﬁyo‘vale"ce(” has negative dimension so must
be zero, and so [X,] - kg = 0. On the other hand, if X, is Type I and vg is the unique vertex of o with
valence at least four, then Valence(vg) — 3 = d, and for any vertex v # vy, Valence(v) — 3 = 0. This implies

that, for such X,, the term of the sum in corresponding to vy equals pr;'jo(/iﬁ/[”’d”), which by Lemma

1.1 (12) of [CY11] equals 1, while dimension-counting tells us that each of the other terms of the sum in
equals 0, showing that [X,] - kg = 1.
]

Definition 2.8. For T C [n], we set Hg to be the pullback, to Mo, of the codimension d kappa class on
Mo, 1, via the natural forgetful map mr : Mg, = Mo . We also set ICi to be the subspace of .A;il spanned
by the classes {k7 | T C [n]}. Note that K¢ is S,-invariant.

Definition 2.9. Define a pairing (-,-) : {set partitions of [n]} x {subsets of [n]} — Z. For a set partition II
and subset T, set

(LT = 1 VPcIl, PNT#{
0 FIPellst. PNT =0.

Lemma 2.10. Letn >4 and 1 < d <n—3. Suppose X, is a dimension d boundary stratum on ﬂoyn, and
T C [n]. Then

(I (0),T) X, is Type I

8 X, Ky =
® Xo] - ra {O X, is Type I

Proof. By the projection formula, [X,] - k% = (77).([Xs]) - ka. By Lemma 9.5 of [Ram18], if X, is Type
II, then (77).([X,]) is either zero, or the fundamental class of a Type II boundary stratum of Mg . If
X, is Type I, then if 3P € I, (o) s.t. PNT = (), then (7r).([X,]) = 0, while if VP € II.(0), PNT # 0,
then (7). ([X,]) is the fundamental class of a Type I boundary stratum of Mg 7. Applying Lemma we
obtain the desired result. ]

Corollary 2.11. (1) The subspace K& C A% is orthogonal, with respect to the intersection pairing, to
Vin C Agn, i.e. we have K4 C Vj:n.
(2) The intersection pairing on Mg, descends to a pairing Quq, x K¢ — Q.

We will eventually show that K¢ = Vj:n, which implies that K& = Qzl/m. Note that by Lemma , the
pairing between Qg ,, and K¢ obtained in Corollary can be expressed in purely combinatorial terms.

2.3. Pushing forward and pulling back via forgetful maps. The forgetful map = : ﬂom“ — Mo,n
induces pushforward maps 7, : Agnt1 — Agn and pullback maps 7* : Ag, — Agyin+1. By [Ramis],
T« (Van+1) € Van. Also, if X, is a Type II boundary stratum, then 7*([X,]) is a sum of fundamental classes
of Type II boundary strata of ﬂo)nﬂ. This implies that 7*(Vgn) € Vat1,n+1. Thus there are induced
pushforward maps 7, : Q4nt+1 — Qa,» and pullback maps 7* : Qg ., = Qay1,n+1-
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Lemma 2.12. (1) The pushforward 7, : Qqn+1 — Qan lifts to 7. : QSPy 1 — QSPy,, where

(1) := {{P ~{n+1} | P€Il} otherwise

(2) The pullback ™™ : Q4n — Qa+in+1 lifts to 7 : QSPg, — QSPyy1,41 where, for II € SPy,,
(M) :=TMuU{{n+1}}.

Proof. For , suppose that X, is a Type I d-dimensional boundary stratum on Mo ,41. Observe that if,
VP € Il.(0), we have that P~ {n+1} # (), then 7. ([X,]) = [Xo], where IL.(¢’) = {P~{n+1} | P € IL.(0)}.
On the other hand, if {n+1} € IL,(¢), then dim(r(X,)) < dim(X,), so m.([X,]) = 0. For (2), suppose that
X, is a Type I d-dimensional boundary stratum on ﬂo,n, and observe that

9) 7 ([X+]) = [X+] + (sum of classes of Type II boundary strata),

where 7’ is a Type I stable (n + 1)-marked tree and IL.(7") = IL.(7) U {{n + 1} }. O

The pushforward maps 7, : Agpnt1 — Adgn and 7, 1 Qg ny1 — Qa.pn are easily seen to be surjective. Since
m has positive relative dimension (equal to one), m, o m* =0 on A, , thus also on Q, ..

Lemma 2.13. Forn >4 and k > 1, the complex Qg £, Qdt1,n+1 LN Qat1,n 1S exact.

Proof. We use the lifts of 7* and 7, to 7* : QSPg4,, = QSPg;1n4+1 and 7 : QSPyy1 nt1 = QSPgian
respectively. Note that Im(7*) = Span({II | {n 4+ 1} € II}). On the other hand, Ker(7,) is spanned by
the set partitions in which n + 1 appears as a singleton set (i.e. set partitions in Im(7*)), together with
differences of two set partitions that differ only in the placement of n + 1, i.e.:

Ker(7y) = Im(7*) + Span({{PLU{n + 1}, Py, P5, Py,...} —{P1, PU{n+ 1}, P3, P4,...}}).
Note that:
{PLU{n+1}, Py, P3,Py,...} —{P1,PoU{n+1},P3,Py,...}
= ({P1 U{n+1}, Py, Py, Py,..} + {Pi,{n+1}, PLUPs, Py,...}
(PP, P,U{n+1},Py,..} — {PLUP;, Py, {n+1}, Py, .. .})
- ({Pl, (41}, PyUPy, Py} — {PLUPs, Py, {n+ 1}, Py, .. .}) € Rapins1 + Im(7*)

This implies that Ker(7,) = Im(7*) + Rg+1,n+1, which in turn implies that Ker(m,) = Im(7*). O

The pullback 7* : A2 — A2, which by the projection formula is dual to 7 : Ag, — Agnq1, restricts
to 7 : K¢ — K2, and sends &} on Mo, to % on Mo 1. The pushforward m, : A% — A2 is dual to

T Ad+1,n+1 - Ad,n~
Lemma 2.14. The pushforward m, : Af,l:_ll — Ai restricts to my : Kﬁill — ICfL, with

IiT\ {n+1}

n+1eT
(K1) = {od n+1¢T

Proof. By Lemma , for all n and d, we have that ICfL - Vj:n. Since 7 (Van) € Vat1,n+1, and since,

by the projection formula, m, and 7* are dual maps, we have that 7, (Kf:_ll) C Vin. This means that for

T C [n+ 1], the class . (k] ) is determined by the functional that it defines on Qg p, i.e. by the values of

[X,] - w*(ﬁgﬂ), where X, ranges over all Type I d-dimensional boundary strata on Mg ,. Given such an

X, we have, by the projection formula, by the expression for 7*([X,]) given in Equation@ and by applying
6



Lemma, twice, that

[Xo] - me(igyr) = 7 ([Xo]) - Hd+1:<H* JUu{{n+1}},7)
if VP e I (o) U{{n+1}},PNT #0
if JP e (o) U{{n+1}} st. PNT =1

(o
ifVP eIl (o), PN (T~ {n+1})#0,andn+1€T
if AP eIl (o) st. PN(T~{n+1})=0,0rifn+1¢T

{ 0),T~{n+1}) ifn+l1eT

ifn+1¢T

X,, e e 4 1eT
ifn+1¢T.

3. MAIN RESULTS AND PROOFS

3.1. The set-up. Throughout Sectlon l we use the identification Qq, = QSPy, /R4, introduced in
Corollary. we write an element of Qg ,, as a Q-linear combination of set partitions of [n] with d+ 3 parts,
rather than as a Q-linear combination of fundamental classes of Type I boundary strata.

Definition 3.1. For n > 1 and d > —3, we set K% := {T' C [n] | |T| > (d + 3),|T| = (d +3) mod 2}, and
set Can : QK2 — K2 to be the natural linear map (g, : QK% — K¢ sending T to x7.

The map (4, together with the intersection pairing Q4., x K¢ — Q induces the pairing Q4 ,, x QK% — Q,
where, for IT € SP;,, and T € K¢, I1- T = (I, T) as in Definition Note that if S is an S,,-set, then QS
has a natural basis S: identifying each basis element of QS with the corresponding dual basis element in QSY
induces a natural S,-equivariant identification between QS and its dual. Thus we write QK? = (QK4%)".

Definition 3.2. For d > —1, the pairing (.,.) (Definition between set partitions and subsets of [n]
induces a map ¢q., : QSPq, — (QK%)Y = QK?. For d > 1, @d,n descends to a map ¢q.p : Qan — QK¢Y.
The map ¢4, on generators Il € SP 4, is given explicitly by: ¢qn (1) = > pega (IL,T) - T.

Definition 3.3. Define maps a : QK¢ — QK ‘_"'_11 and (3 : QK%H — QK¢ where:

T n+1¢T
o) {n+1) AT {0 n+lel.
Lemma 3.4. The following is an exact sequence:
(10) 0 — QK?¢ % QKL 2 QKI5 0.

Proof. First, we observe that « is injective, since it maps the natural basis of QK¢ injectively to a subset
of the natural basis of QKiill Also, f3 is surjective, since every basis element of QK%*! is in the image.

Finally, for exactness in the middle, we observe that Im(«) = Ker(8) = Q{T € Kflfl |n+1eT}. O

Lemma 3.5. The following diagram commutes:

QSP4, —— QSPyi1np1 —— QSPai1,

de,n yzdﬂ,m yml,n

a B
QK; —*— QK1) ——— QKJ*!
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Proof. Commutativity of the left square: Given II € SP,,, we have

Garinm (7 (D) = > (MU{{n+1}},T) T= > (HU{{n+1}},T)-T

d+1 d+1
TEK7L+1 T€K7L+1

n+1eT
= > (T T'Uf{n+1}
T'eK?
=a( Y (ILT) - T') = a(dan(ID)).
T'eKd

Commutativity of the right square: Given II' = {Py,..., Py14} € SP4y1.n41, we may assume without
loss of generality that n 4+ 1 € P;. There are two cases:

Case 1: P, = {n+ 1}. Then 7,(IT') = 0 50 Gay1.n(7(I')) = 0. Note that for T C [n + 1], we have that if
n+1¢T, then (I',T) =0, while if n + 1 € T, then S(T) = 0. This implies that

B(@arinr () =B > (W, T)-T)=p( Y (II',T)-T)=0.

d+1 d+1
TeK ! TeKt!
n+1eT

Case 2: P, # {n+1}. Then

Garin(® () = > {Pi~{n+1},Py... Py}, T')- T’

T eKit?
/ / 7 /
= > T'= > T =B(¢ar1ni(Il)).
d+1 d+1
TeKit TreKiit
T'NP~{n+1}#£0 n+1¢T
T'APy,...,.T'NPyt1740 (I, T)=1

We use the following lemma several times; its proof follows from a standard diagram chase.

Lemma 3.6. [Variant of the Four Lemma] Suppose we have a commutative diagram of vector spaces as
follows

i f1 Wy f2 Wy 0
b
Xl g1 XQ g2 Xg

Suppose further that the bottom row is exact at Xo, that the top row is exact at Ws, and that hy and hs are
surjective. Then hy is surjective.

3.2. A preliminary lemma. In this section, we prove some technical results — Lemmas and
These are not of independent interest, but are necessary to prove Theorem in Section The proofs
(and statements) of these three lemmas are conceptually similar to each other, as well as to those of Theorem
all four proofs use the Four Lemma or its variant Lemma to induct on n. Lemma [3.8]is required
in the inductive step of Lemma which is required in the inductive step of Lemma [3.10} which in turn is
required in the inductive step of Theorem The proofs of Lemmas [3.8]and [3.9] also involve some intricate
combinatorics of set partitions and subsets.

Definition 3.7. For n > 0, we set:
E, :={T C [n]||T| even}; O, :={T C [n]||T] odd}; F, :={(P,R)|PAUP,=[n],PANP,=0,1€ P}

Note that F,, ~ {([n],0)} is in canonical bijection with SP_;,, so QF,, is canonically isomorphic to
Q{([n],0)} ® QSP_; ,,. There are maps « : QE,, - QO,41, a : QO,, — QE, 41, 8 : QE,+; — QE,, and
8



£ : Q0,11 — QO,, analogous to the maps a and S as in Definition Define maps odd,, : QF,, — QO,,
and even,, : QF,, — QE,,, where

oddn (P, P2)) = Y (-T)+ > T; even, (P, )= > (-T)+ > (-T)

TCP TCP, TCP; TCP,
|T| odd |T| odd |T| even |T| even

Lemma 3.8. Forn > 1, the maps odd,, and even,, are surjective.

Proof. We induct on n. Base case: n = 1. We have:

Fi={({1}1,0)} Ei1={0} O1={{1}}; oddi(({1},0)) = —{1};  eveni(({1},0)) = —20.
This establishes the base case.
Inductive hypothesis: The proposition holds up to some n > 1.
Inductive step: Define maps v : QF,, - QF,, ;1 and § : QF,, 11 — QF,,, where:

(P, By)) = (PlU{n+1}, Py) — (P, PU{n +1})
S((PL,Py)) = (Py~ {n+1}, Py~ {n+1})

The diagram below has exact rows; we claim it commutes.

QF, —— QF,.1 —>— QF, 0
levenn lOddn-%—l loddn
0 QE, —% Q0,; —— QO, 0

Commutativity of the left square: For (P], Py) € QF,,,
0ddy 41 (1P, PA)) = oddas 1 (PL U {m + 1}, P§) — oddys (P, P4 U {m + 1))

Y, DY M- XY D+ Y (D)

TCPU{n+1} TCP; TCP] TCP,U{n+1}
|T| odd |T| odd |T| odd |T| odd
= 2 D+ X (D)
TCP{U{n+1} TCPjU{n+1}
|T| odd |T| odd
n+1e€T n+1eT
= > (—Tun+1))+ > (—(T'u{n+1})
T'CP| T'CP}
|T'| even |T'| even

= a(even, (P;, P})).
Commutativity of the right square: For (P, P») € QF,,11,
oddn(é(Pl, Pz)) = Oddn(Pl AN {TL + 1}, P2 N {n + 1})

= > D+ > (D

TCPi~{n+1} TCPy~{n+1}
IT| odd IT| odd

= ﬁ(OddTL+1(P1, PQ))
This proves the claim. By the inductive hypothesis, even,, and odd,, are surjective, so by the Four Lemma,

odd,,+; is surjective.
The digram below has exact rows; we claim it commutes.

QF, —— QF 41 u QF,, 0
lodd71 levennﬂ leven"
0 Q0, = QE,;1 —— QE, 0
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Commutativity of the left square: For (P], P;) € QF,,

even,+1(v(Py, Py)) = eveny,11(Pf U{n+ 1}, Py) — even,, 11 (P, Py U{n+1})

Y D+ Y D) Y D+ Y (D)

TCP/U{n+1} TCP; TCP| TCP,u{n+1}
|T| even |T| even |T| even |T| even
= > D+ > D
TCP/U{n+1} TCP,U{n+1}
|T| even |T| even
n+1€T n+1eT
= > —(Tu{nt+1p+ Y (T'uf{n+1}
T'CP/ T'CP}
|T'| odd |T’| odd

= a(odd, (Py, Pj)).
Commutativity of the right square: For (P, ) € QF, 11,

eveny, (§(Pr, P2)) = even,(Pr~ {n+ 1}, P\ {n+1})

- Y D+ X D

TCPi~{n+1} TCPy~{n+1}
|T| even |T| even

= ﬁ(evenn-f—l(Pla PQ))

This proves the claim. Again, by the inductive hypothesis, odd,, and even,, are surjective, so by Lemma |3.6!
even, i is surjective. O

We only use the fact that odd,, is surjective to proceed; we use it to prove Lemma (3.9
Lemma 3.9. For alln > 2, the map (;3_1@ :QSP_,,, — QK ! is surjective.

Proof. We induct on n.
Base case: n = 2. We have SP_; 5 = {{{1},{2}}} and K;* = {{1,2}}. We have

42)2,2({{1}7 {2}}) - <{{1}7 {2}}a {132}> ’ {172} =1 {172}a

which shows that rj~>2’2 is surjective.
Inductive hypothesis: The lemma holds up to some n > 2.
Inductive step: Define a map v : QF,, = QSP_; ,, 11, where

(P, Pp)) = {PrU{n+ 1}, P} — {P[, P U{n+1}}.

Consider the digram

QF,, —— QSP_; 11 —— QSP_;,, —— 0

lOddn l&—l,nﬂ J/(’lgfl,n

0 — QO, —*— QK, |, SN QK;! —— 0

Here, 7, o v = 0, the bottom row is exact, and 7, is surjective. Note that the right square commutes by
Lemma we claim the left square commutes as well.
10



Commutativity of the left square: For (P], P;) € QF,,
O—1t1 (VP Py)) = b1t (P U{n + 1}, P3}) = 61 nn ({P1}, Py U {n + 1))

> - Y (D

TC[n+1] TC[n+1]
|T|>2 |T1>2
|T| even |T| even
TA(P{U{n+1})#0 TO(P))#0
TNP,#0 TNPyU{n+1}#0
= > M- > @
TClnt1] TClnt1]
712 I71>2
|T| even |T| even
n+1eT n+1eT
T~{n+1}CP, T~{n+1}CP/
= Y (Tu{n+1}) - Y (T'U{n+1})
7' Cln] ' Cln)
|T| odd |T| odd
T'CP] T'CP]

= a(odd, (P;, P})).
This proves the claim. Since odd,, is surjective, and by the inductive hypothesis so is qg_l,n, By Lemma
®—_1,n+1 is surjective. O
Lemma 3.10. For alln > 3, the map ¢~>07n : QSPy,,, — QK is surjective.

Proof. We induct on n.

Base case: We have SPg 3 = {{{1},{2}, {3}}}, K$ = {{1,2,3}}, and ¢o3({{1},{2},{3}}) = {1,2,3}, so
q~50,3 is surjective.

Inductive hypothesis: The proposition holds up to some n > 4.

Inductive step: Consider the following diagram, which commutes by Lemma |3.5

QSP_;, —= QSPg 11 —— QSPy, — 0

J/(gfl,n lq‘BOmA»l J/‘Z’O,n

0 —— QK,;! —— QK),, —— QK!) —— 0

By the inductive hypothesis, éom is surjective. By Lemma (5_1)” is surjective, so by the Four Lemma,
®o,n+1 is surjective, as desired. O

3.3. An inductive proof of Theorem |3.13

Lemma 3.11. For all n > 4, we have dim Q; ,, = dimQK}L.

Proof. There are no Type II 1-dimensional boundary strata, so Vn > 4, V;,, = {0} and 91, = Ay,,. By
[FG03], dim A, = 2"~ — (3) — 1. On the other hand,

dim QK = #{T C [n]||T] even, |T| > 4} = 2"~! — (Z) —1.

Lemma 3.12. For alln > 4, the map ¢,,—3., is an isomorphism.

Proof. For all n > 4, we have that V,_3., = {0}, An_3.n = Qn_3n = Q{{{1},...,{n}}}, K3 = {[n]},
and ¢pn_3n : Qn_3n — QK? 3 sends {{1},...,{n}} to [n]. Thus ¢,_3, is an isomorphism. O

Theorem 3.13. Forn >4 and d such that 1 <d <n—3, ¢gpn : Qan — QK¢ is an isomorphism.
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Inductive proof of Theorem[3.15. Base case: n = 4; then 1 < d < n — 3 implies that d =1 = n — 3. By
Lemma ©1,4 is an isomorphism.

Inductive hypothesis: For some n > 4, and for all d with 1 < d < n — 3, we have that ¢4, : Q4. — QK%
is an isomorphism.

Inductive step: For 1 < d < (n — 4), we have the following diagram, which commutes by Lemma

* T
Ker(r*) —— Qan —— Qitint1 — Qatin —— 0

l %J/¢d,n l¢d+1.n+1 %J/¢d+l,n

0 —— QK? — QK1 2 QK+ —— 0
The top row is exact by Lemma[2.13] and the bottom row is exact by Lemmal3.4 By the inductive hypothesis,
@d,n and ¢g41,, are isomorphisms. So, by the Five Lemma, ¢g41,n+1 is an isomorphism. Combining the
above argument with Lemma we conclude that for 2 < d < (n+1)—3, the map ¢4 ,,+1 is an isomorphism.
We also have the following diagram, which commutes by Lemma [3.5

. .
QSPy,, —— Qint1 — Q1 —— 0

J/&;O,n l¢1,n+1 %J/‘i)l,n

0 QK% —%— QK!,, —— QKL —— 0

where the bottom row is exact and the top row is a complex, exact at Q; ,. By Lemma , bo.n is
surjective, and by the inductive hypothesis, ¢; , is an isomorphism. By Lemma , ®1,n+1 1s surjective.

But by Lemma , dim Q; 41 = dim (@K}LJr17 SO ¢1,n+1 is an isomorphism.
|

3.4. Theorem |3.14]| and its proof.

Theorem 3.14. Forn > 4 and d such that 1 < d <n — 3:
(i) We have K& = Vj:n.
(ii) The pairing Qq., x K& — Q is perfect.
(iii) The set {kL | |T| > (d+3),|T| = (d +3) mod 2} is an S,-equivariant basis for K2.
(iv) The S,, actions on Qq, and KfL are isomorphic to the permutation representation induced by the
natural action of S, on the set {T C [n]| |T| > (d+3),|T| = (d +3) mod 2}.
(v) The following (dual) sequences are exact:

(11) 0= Quan = Qarimi1 - Qit1n — 0
(12) 0 — K4 I5 Kt T kd 0

Proof. Recall the map (g, : QK¢ — K4 given in Deﬁnition We have compatible pairings Qg X Kd —Q
and Qg x QK? — Q, inducing maps 14, : Qa.n — (K)V and ¢a, : Qun — (QKZ)Y = QKZ, where, ¢q
is as in Definition These maps satisfy: ¢qn = (Can)” ©Nd,n. By Theorem ®d,n is an isomorphism,
which implies that 74 5, is injective. On the other hand, we have by Corollary that K4 C Vin = (Qdan)Y,
$0 (n4n)" is injective as well. This implies that 74, is an isomorphism, proving items @ and Since
Nan and @q 5 are both isomorphisms, we conclude that so is (4, proving item @, and thus also item [(iv)
Finally, by Theorem and Lemma the sequence in Equation |11|is dual to the sequence in Equation
which is exact by Lemma We conclude that the sequence in Equation [11]is exact. The sequence in
Equation [11|is dual to the sequence in Equation so the latter sequence is exact, proving item O
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