
PULLBACKS OF  CLASSES ON M0,n

ROHINI RAMADAS

Abstract. The moduli space M0,n carries a codimension-d Chow class d. We consider the subspace Kd
n

of Ad(M0,n,Q) spanned by pullbacks of d via forgetful maps. We find a permutation basis for Kd
n, and

describe its annihilator under the intersection pairing in terms of d-dimensional boundary strata. As an
application, we give a new permutation basis of the divisor class group of M0,n.

1. Introduction

Mumford [D.83] introduced the tautological, codimension-d class d in the cohomology/Chow group of the
moduli space Mg,n. This class extends to the moduli space Mg,n of stable curves as well as to various partial
compactifications of Mg,n. Ring-theoretic relations involving  classes have been studied by Faber, Ionel,
Pandharipande, Pixton, Zagier, Zvonkine, and several others, and play a role in the study of Gromov-Witten
theory and mirror symmetry ([Fab99, Ion05, Pan12, PP, PPZ16]; see [Pan11, Pan18] for overviews).

Here, we investigate  classes on M0,n from a linear-algebraic and representation-theoretic perspective.
The symmetric group Sn acts on M0,n, and thus acts on its cohomology and Chow groups. Given any
T ✓ {1, . . . , n} with |T | � 3, there is a forgetful map ⇡T : M0,n ! M0,T . We set Td := ⇡⇤

T (d), and
consider the subspace K

d
n ✓ Ad(M0,n,Q) spanned by {Td }T✓{1,...,n}; this subspace is clearly Sn-invariant.

Recall that a permutation basis of a G-representation is one whose elements are permuted by the action of
G. We show:

Theorem A. (Theorem 3.14(iii).) If n � 4 and 1  d  n � 3, then K
d
n has a permutation basis given by

{Td | |T | � (d+ 3), |T | ⌘ (d+ 3) mod 2}.

1.1. Does Ad(M0,n,Q) have a permutation basis? Getzler [Get95] and Bergström-Minabe [BM13] have
given algorithms to compute the character of Ad(M0,n,Q) as an Sn-representation. It is not clear from
these algorithms whether Ad(M0,n,Q) has a permutation basis. Farkas and Gibney [FG03] have given a
permutation basis for A1(M0,n,Q). Theorem 3.14 implies that K1

n = A1(M0,n,Q), so:

Theorem B. The set {T1 | |T | � 4, |T | even} is a permutation basis of A1(M0,n,Q).

The basis given by Theorem B is di↵erent from the one given in [FG03], which consists of certain boundary
divisors and  classes. For odd n, the two bases are isomorphic as Sn-sets, but for even n they are not.

Silversmith and the author [RS20] have produced a permutation basis for A2(M0,n,Q), using Theorem
3.14 as an ingredient. Very recent work of Castravet and Tevelev [CT20] on the derived category of M0,n

gives a permutation basis of A⇤(M0,n,Q) =
Ln�3

d=0 A
d(M0,n,Q); its elements, however, are not of pure

degree. The question of whether or not Ad(M0,n,Q) has a permutation basis for all d and n remains open.

1.2. The dual story in Ad(M0,n,Q) and the proof of Theorem 3.14. There is an Sn-equivariant
intersection pairing Ad(M0,n,Q)⇥Ad(M0,n,Q) ! Q. To prove Theorem A, we show:

Theorem C. (Theorem 3.14(i),(ii).) If n � 4 and 1  d  n� 3, we have

(1) The annihilator of K
d
n ✓ Ad(M0,n,Q) is the subspace Vd,n ✓ Ad(M0,n,Q) spanned by boundary

strata whose dual trees have two or more vertices with valence at least four.

(2) Qd,n := Ad(M0,n,Q)
Vd,n

is the dual of K
d
n.
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It is straightforward to show that Vd,n is contained in the annihilator of Kd
n, but to show equality involves

a complicated induction on n. We use the fact that if ⇡ denotes the forgetful morphism from M0,n+1 to
M0,n, then:

Theorem D. (Theorem 3.14(v)) If n � 4 and 1  d  n � 3, then we have the following (dual) exact

sequences:

0 ! Qd,n
⇡⇤
�! Qd+1,n+1

⇡⇤
�! Qd+1,n ! 0

0 ! K
d+1
n

⇡⇤
�! K

d+1
n+1

⇡⇤
�! K

d
n ! 0

In general, it is di�cult to use induction to study Ad(M0,n,Q), partly due to the fact that

Ad+1(M0,n,Q)
⇡⇤
�! Ad+1(M0,n+1,Q)

⇡⇤
�! Ad(M0,n,Q)

is not exact. This failure of exactness is also responsible for the fact that the dimensions of Ad(M0,n,Q) =
An�3�d(M0,n,Q) grow exponentially with n, whereas dim(Kn�3�d

n ) grows as a degree-d polynomial in n.

1.3. Significance for dynamics on M0,n. Hurwitz correspondences are a class of multivalued dynamical
systems on M0,n. They were introduced by Koch [Koc13] in the context of Teichmüller theory and complex
dynamics on P1, and their dynamics were studied by the author [Ram18, Ram19b, Ram19a]. A Hurwitz
correspondence H on M0,n induces a linear pushforward action on Qd,n, and the d-th dynamical degree of
H (a numerical invariant of algebraic dynamical systems) is the largest eigenvalue of this action [Ram18].
Theorem 3.14 can be used to re-interpret Theorem 10.6 of [Ram18] to conclude that H acts on pullbacks of
 classes, and that this action encodes important information about the dynamics of H:

Theorem E. Suppose H is a Hurwitz correspondence on M0,n. If 1  d  n�3, then K
d
n is invariant under

the pullback H
⇤ : Ad(M0,n,Q) ! Ad(M0,n,Q), and the d-th dynamical degree of H is the largest eigenvalue

of the action of H
⇤
on K

d
n.

Acknowledgements. I am grateful to David Speyer, Rob Silversmith, and Renzo Cavalieri for useful
conversations. Rob Silversmith noticed a patten in my experimental data: the dimensions of Qd,n can be
expressed as sums of binomial coe�cients. This observation led me to conjecture the correct dual basis of
Qd,n. My initial expression of the dual basis elements was purely combinatorial; Renzo Cavalieri observed
that these elements could be expressed as functionals induced by pairing with  classes. I am grateful to
two anonymous referees for valuable feedback that led to significant improvements, and to corrections of the
statement and proof of Lemma 2.14.

Notation and conventions. For n a positive integer, we denote by [n] the set {1, . . . , n}. For A a finite set,
we denote by QA the free Q-vector space on A. For V a vector space, we denote by V

_ its dual. For a linear
map µ : V ! X , we denote by µ_ its dual map. If W is a subspace of V, we denote by W

? its annihilator
in V

_. For Y a variety, we denote by Ad(Y ) its Chow group, and by Ad(Y,Q) the tensor product of Ad(Y )
with Q. For X a d-dimensional subvariety of Y , we denote by [X] its class in Ad(Y ) (resp. Ad(Y,Q)).

2. Chow classes on M0,n

The moduli space M0,n is an (n�3)-dimensional smooth variety parametrizing configurations of n distinct
labelled points on P1, up to changes of coordinates. Its stable curves compactification M0,n parametrizes
stable nodal rational curves with n distinct smooth marked points [Knu83]. We set Ad,n := Ad(M0,n,Q),
and A

d
n := An�3�d,n. There is an Sn-equivariant non-degenerate intersection pairing Ad,n ⇥A

d
n ! Q; this

identifies A
d
n with A

_
d,n. In this section, we introduce certain classes in Ad,n and A

d
n, and reformulate the

the intersection pairing between these classes in purely combinatorial terms.
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2.1. Boundary strata, dual trees, and set partitions. Given a point in M0,n, i.e. stable n-marked
rational curve C, its dual tree is a graph � decorated with n marked legs, defined as follows: Vertices of
� correspond to irreducible components of C, two vertices are connected by an edge if the corresponding
irreducible components of C meet at a node, and a vertex is decorated by the i-th leg if the corresponding
irreducible component of C contains the i-th marked point. Note that � is a stable n-marked tree, i.e. every
vertex has valence at least 3 (counting legs). Given a stable n-marked tree �, we set X� to be the closure,
in M0,n, of the locus of stable curves whose dual tree is �. The locus X� is a subvariety, and is called a
boundary stratum. By [Kee92], Ad(M0,n) is a finitely generated free abelian group generated, though not
freely, by the fundamental classes of d dimensional boundary strata; additive relations among boundary
strata are described in [KM94]. Boundary strata are isomorphic to products of smaller moduli spaces:

X�
⇠=

Y

v vertex of �

M0,Valence(v).(1)

We conclude that X� is positive-dimensional if and only if its dual tree has at least one vertex with valence
at least four. If � has exactly one vertex v with valence at least four, then X� is isomorphic to M0,Valence(v),
since the factors in the above product decomposition of X� corresponding to vertices other than v are all
isomorphic to single-point spaces.

Definition 2.1. We say that a positive-dimensional boundary stratum X� is Type I if its dual tree � has
exactly one vertex with valence at least four; in this case we also say that � is a Type I stable tree. We say
that a positive-dimensional boundary stratum X� is Type II if its dual tree � has two or more vertices with
valence at least four; in this case we also say that � is a type II stable tree. For n � 4 and d = 1, . . . , n� 4,
we set Vd,n ⇢ Ad,n to be the subspace generated by the fundamental classes of Type II boundary strata. We
set Qd,n to be the quotient Ad,n/Vd,n. Note that since Vd,n is Sn-invariant, Qd,n inherits an action of Sn.
Also note that Qd,n is generated by the fundamental classes of Type I boundary strata.

Definition 2.2. Suppose � is a stable n-marked tree and v a vertex on �. We obtain from the pair (�, v)
a set partition ⇧⇤(�, v) of [n] as follows: i and j are in the same part of ⇧⇤(�, v) if and only if the i- and
j-marked legs on � are on the same connected component of �r{v}. Note that there is a canonical bijection
� : ⇧⇤(�, v) ! {edges adjacent to v} [ {legs attached to v}: If {i} 2 ⇧⇤(�, v), this implies that the i�th leg
is attached to v, and we set �({i}) := (i-th leg); and if P 2 ⇧⇤(�, v) is such that |P | � 2, then there is a
unique edge e adjacent to v such that the legs corresponding to the elements of [n]r P are all in the same
connected component of � r e; we set �(P ) := e. Thus |⇧⇤(�, v)| = Valence(v). If � is Type I and v is its
unique vertex with valence at least four, then the partition ⇧⇤(�, v) is intrinsically associated to �, so we
denote it by ⇧⇤(�). In this case we have dim(X�) = |⇧⇤(�)|� 3(= Valence(v)� 3).

Definition 2.3. We recall certain special relations (introduced in Section 7.2 of [KM94]) that hold, in
Ad,n, among d-dimensional boundary strata. Suppose ⌧ is the dual tree of a (d+ 1)�dimensional boundary
stratum, v is a vertex of ⌧ with valence four or more, and i, j, k, l 2 [n] are such that the parts P1, P2, P3, P4

of ⇧ = ⇧⇤(⌧, v) containing i, j, k, l respectively are distinct. If we have ⇧ = ⇧1t⇧2 with |⇧1| , |⇧2| � 2, then
there is a stable n-marked tree ⌧(⇧1,⇧2) obtained from ⌧ by splitting v into two vertices v1 and v2 joined by
a new edge, and attaching to v1 all the edges/legs of ⌧ corresponding to elements of ⇧1 (under the bijection
� introduced in Definition 2.2 above), and attaching to v2 all the edges/legs of ⌧ corresponding to elements
of P⇧2. By [KM94], we obtain from the data (⌧, {i, j, k, l}, v) a relation, denoted R(⌧, {i, j, k, l}, v), in Ad,n:

X

⇧=⇧1t⇧2;P1,P22⇧1;P3,P42⇧2

[X⌧(⇧1,⇧2)]�
X

⇧=⇧1t⇧2;P1,P32⇧1;P2,P42⇧2

[X⌧(⇧1,⇧2)] = 0.(2)

Lemma 2.4. Suppose that �1 and �2 are two Type I stable n-marked trees, and suppose ⇧⇤(�1) = ⇧⇤(�2).
Then [X�1 ] = [X�2 ] 2 Ad,n, where d = dim(X�1) = dim(X�2).

Proof. For i = 1, 2, denote by vi the unique vertex on �i with valence at least four. Observe that the tree
obtained by collapsing to a point every edge of �1 except those adjacent to v1 is the same as the tree obtained
by collapsing every edge of �2 except those adjacent to v2; we denote this common tree by � and we denote
by v0 the vertex on � obtained from v1 as well as from v2. We use the product decomposition of X� given in
(1), and, for v a vertex of �, set prv to be the projection from X� to M0,Valence(v). Observe that in Ad(X�),
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we have, for i = 1, 2, that [X�i ] = (prv0)
⇤([M0,Valence(v0)]) ·

Q
v 6=v0

pr⇤v([point]). Pushing this relation forward

to M0,n, we obtain the desired equality.
⇤

For n � 1 and d � �3, we set SPd,n to be the set of all set partitions of [n] having exactly d + 3 parts.
By Lemma 2.4, for n � 4 and d � 1, there is a well-defined map SPd,n ! Ad,n sending ⇧ to [X�], where
� is any Type I stable n-marked tree such that ⇧ = ⇧⇤(�) (it is clear that such a � exists). Extending by
linearity and composing with the quotient map from Ad,n to Qd,n, we obtain a surjective, Sn-equivariant,
linear map QSPd,n ! Qd,n.

Lemma 2.5. The kernel of the surjective linear map QSPd,n ! Qd,n is the subspace Rd,n of QSPd,n

generated by elements of the form:

{P1 [ P2, P3, P4, . . . , Pd+4}+ {P1, P2, P3 [ P4, . . . , Pd+4}(3)

� {P1 [ P3, P2, P4, . . . , Pd+4}� {P1, P3, P2 [ P4, . . . , Pd+4},

where {P1, P2, P3, P4, . . . , Pd+4} is a set partition of [n] with d+ 4 parts.

Proof. An element
Pt

s=1 as⇧s of QSPd,n is the kernel of the map to Qd,n if and only if there is a linear

relation in Ad,n of the form:
Pt

s=1 as[X�s ] = (linear combination of classes of Type II strata), where each
X�s is a Type I stratum such that ⇧⇤(�s) = ⇧s. By Theorem 7.3 of [KM94], the relations, in Ad,n,
among d-dimensional strata are generated by the relations R(⌧, {i, j, k, l}, v) as in Definition 2.3. Given
R(⌧, {i, j, k, l}, v), there are three cases: Case 1 is that ⌧ is Type II, v has valence exactly four, and ⌧ has
exactly one vertex v0 other than v with valence four or more. In this case, the resulting relation is of the
form: [X⌧1 ] + [X⌧2 ]� [X⌧3 ]� [X⌧4 ] = 0, where for x = 1, . . . , 4, the tree ⌧x is Type I and ⇧⇤(⌧x) = ⇧⇤(⌧, v0);
in particular, applying ⇧⇤ to the left side of the above relation, we obtain 0 2 QSPd,n. Case 2 is that ⌧ is
Type II and either v has valence five or more, or ⌧ has at least three vertices each with valence four or more.
In this case, all the terms in the resulting relation are Type II. Case 3 is that ⌧ is Type I. In this case, we
may write ⇧⇤(⌧) = {P1, . . . , Pd+4} in such a way that i 2 P1, j 2 P2, k 2 P3, and l 2 P4, and we observe
that the resulting relation has the form (after rearranging terms):

[X⌧1,2 ] + [X⌧3,4 ]� [X⌧1,3 ]� [X⌧2,4 ] = (linear combination of classes of Type II strata),(4)

where each ⌧x,y is a type I tree and ⇧⇤(⌧x,y) = {Px [Py}[ (⇧⇤(⌧)r {Px, Py}). In particular, applying ⇧⇤ to
the left side of the relation (4), we obtain an expression of the form (3). We conclude if we have a relation
in Ad,n of the form:

(linear combination of classes of Type I strata) = (linear combination of classes of Type II strata)(5)

then applying ⇧⇤ to the left side yields a linear combinations of set partitions in the Q-span of expressions
of the form (3). This implies that the kernel of the map from QSPd,n to Qd,n is contained in the Q-span of
expressions of the form (3). Conversely, given any element ✓ 2 QSPd,n of the form (3), i.e. any set partition
{P1, . . . , Pd+4} of [n] with distinguished parts P1, . . . , P4, one can find a Type I tree ⌧ (with v its unique
vertex of valence at least four) such that ⇧⇤(⌧) = {P1, . . . , Pd+4}. If, further, we pick i 2 P1, j 2 P2, k 2 P3,
and l 2 P4, then applying ⇧⇤ to the Type I terms of the induced relation R(⌧, {i, j, k, l}, v) yields ✓, showing
that ✓ is in the kernel of the map to Qd,n.

⇤

Corollary 2.6. There is an Sn-equivariant isomorphism Qd,n
⇠= QSPd,n/Rd,n identifying the class [X�] of

a Type I stratum with the set partition ⇧⇤(�).

2.2. Kappa classes and the intersection pairing. For d = 0, . . . , n � 3, M0,n carries a codimension
d kappa class d 2 A

d
n. It can be defined as follows: Set ⇡ : M0,n+1 ! M0,n to the map forgetting the

(n + 1)�st marked point, and  n+1 to be the divisor class on M0,n+1 corresponding to the line bundle
whose fiber at (C, p1, . . . , pn) 2 M0,n+1 is the cotangent space of C at pn+1. Then d := ⇡⇤( 

d+1
n+1). (See

[AC96, AC98] for details and properties.)
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Lemma 2.7. Let n � 4 and 1  d  n� 3. Suppose X� is a dimension d boundary stratum on M0,n. Then

[X�] · d =

(
1 X� is Type I

0 X� is Type II
(6)

Proof. We use the product decomposition of X� given in (1), and, for v a vertex of �, set prv to be the
projection from X� to M0,Valence(v). By Equation 1.8 of [AC96], we have that, as a class supported on X�:

[X�] · d =
X

v vertex of �

pr⇤v(
M0,Valence(v)

d ),(7)

where 
M0,Valence(v)

d denotes the codimension-d  class on the factor M0,Valence(v). If X� is Type II, then for

each vertex v, we have (Valence(v))�3) < d. This implies that 
M0,Valence(v)

d has negative dimension so must
be zero, and so [X�] · d = 0. On the other hand, if X� is Type I and v0 is the unique vertex of � with
valence at least four, then Valence(v0)� 3 = d, and for any vertex v 6= v0, Valence(v)� 3 = 0. This implies

that, for such X�, the term of the sum in (7) corresponding to v0 equals pr⇤v0(
M0,d+3

d ), which by Lemma
1.1 (12) of [CY11] equals 1, while dimension-counting tells us that each of the other terms of the sum in (7)
equals 0, showing that [X�] · d = 1.

⇤

Definition 2.8. For T ✓ [n], we set Td to be the pullback, to M0,n, of the codimension d kappa class on
M0,T , via the natural forgetful map ⇡T : M0,n ! M0,T . We also set Kd

n to be the subspace of Ad
n spanned

by the classes {Td | T ✓ [n]}. Note that Kd
n is Sn-invariant.

Definition 2.9. Define a pairing h·, ·i : {set partitions of [n]}⇥ {subsets of [n]} ! Z. For a set partition ⇧
and subset T , set

h⇧, T i =

(
1 8P 2 ⇧, P \ T 6= ;

0 9P 2 ⇧ s.t. P \ T = ;.

Lemma 2.10. Let n � 4 and 1  d  n� 3. Suppose X� is a dimension d boundary stratum on M0,n, and

T ✓ [n]. Then

[X�] · 
T
d =

(
h⇧⇤(�), T i X� is Type I

0 X� is Type II.
(8)

Proof. By the projection formula, [X�] · Td = (⇡T )⇤([X�]) · d. By Lemma 9.5 of [Ram18], if X� is Type
II, then (⇡T )⇤([X�]) is either zero, or the fundamental class of a Type II boundary stratum of M0,T . If
X� is Type I, then if 9P 2 ⇧⇤(�) s.t. P \ T = ;, then (⇡T )⇤([X�]) = 0, while if 8P 2 ⇧⇤(�), P \ T 6= ;,
then (⇡T )⇤([X�]) is the fundamental class of a Type I boundary stratum of M0,T . Applying Lemma 2.7, we
obtain the desired result. ⇤

Corollary 2.11. (1) The subspace K
d
n ✓ A

d
n is orthogonal, with respect to the intersection pairing, to

Vd,n ✓ Ad,n, i.e. we have K
d
n ✓ V

?
d,n.

(2) The intersection pairing on M0,n descends to a pairing Qd,n ⇥K
d
n ! Q.

We will eventually show that Kd
n = V

?
d,n, which implies that Kd

n = Q
_
d,n. Note that by Lemma 2.10, the

pairing between Qd,n and K
d
n obtained in Corollary 2.11 can be expressed in purely combinatorial terms.

2.3. Pushing forward and pulling back via forgetful maps. The forgetful map ⇡ : M0,n+1 ! M0,n

induces pushforward maps ⇡⇤ : Ad,n+1 ! Ad,n and pullback maps ⇡⇤ : Ad,n ! Ad+1,n+1. By [Ram18],
⇡⇤(Vd,n+1) ✓ Vd,n. Also, if X� is a Type II boundary stratum, then ⇡⇤([X�]) is a sum of fundamental classes
of Type II boundary strata of M0,n+1. This implies that ⇡⇤(Vd,n) ✓ Vd+1,n+1. Thus there are induced
pushforward maps ⇡⇤ : Qd,n+1 ! Qd,n and pullback maps ⇡⇤ : Qd,n ! Qd+1,n+1.
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Lemma 2.12. (1) The pushforward ⇡⇤ : Qd,n+1 ! Qd,n lifts to ⇡̃⇤ : QSPd,n+1 ! QSPd,n where

⇡̃⇤(⇧) :=

(
0 {n+ 1} 2 ⇧

{P r {n+ 1} | P 2 ⇧} otherwise

(2) The pullback ⇡⇤ : Qd,n ! Qd+1,n+1 lifts to ⇡̃⇤ : QSPd,n ! QSPd+1,n+1 where, for ⇧ 2 SPd,n,

⇡̃⇤(⇧) := ⇧ [ {{n+ 1}}.

Proof. For (1), suppose that X� is a Type I d-dimensional boundary stratum on M0,n+1. Observe that if,
8P 2 ⇧⇤(�), we have that Pr{n+1} 6= ;, then ⇡⇤([X�]) = [X�0 ], where ⇧⇤(�0) = {Pr{n+1} | P 2 ⇧⇤(�)}.
On the other hand, if {n+1} 2 ⇧⇤(�), then dim(⇡(X�)) < dim(X�), so ⇡⇤([X�]) = 0. For (2), suppose that
X⌧ is a Type I d-dimensional boundary stratum on M0,n, and observe that

⇡⇤([X⌧ ]) = [X⌧ 0 ] + (sum of classes of Type II boundary strata),(9)

where ⌧ 0 is a Type I stable (n+ 1)-marked tree and ⇧⇤(⌧ 0) = ⇧⇤(⌧) [ {{n+ 1}}. ⇤

The pushforward maps ⇡⇤ : Ad,n+1 ! Ad,n and ⇡⇤ : Qd,n+1 ! Qd,n are easily seen to be surjective. Since
⇡ has positive relative dimension (equal to one), ⇡⇤ � ⇡⇤ = 0 on A⇤,⇤, thus also on Q⇤,⇤.

Lemma 2.13. For n � 4 and k � 1, the complex Qd,n
⇡⇤
�! Qd+1,n+1

⇡⇤
�! Qd+1,n is exact.

Proof. We use the lifts of ⇡⇤ and ⇡⇤ to ⇡̃⇤ : QSPd,n ! QSPd+1,n+1 and ⇡̃⇤ : QSPd+1,n+1 ! QSPd+1,n

respectively. Note that Im(⇡̃⇤) = Span({⇧ | {n + 1} 2 ⇧}). On the other hand, Ker(⇡̃⇤) is spanned by
the set partitions in which n + 1 appears as a singleton set (i.e. set partitions in Im(⇡̃⇤)), together with
di↵erences of two set partitions that di↵er only in the placement of n+ 1, i.e.:

Ker(⇡̃⇤) = Im(⇡̃⇤) + Span({{P1 [ {n+ 1}, P2, P3, P4, . . .}� {P1, P2 [ {n+ 1}, P3, P4, . . .}}).

Note that:

{P1 [ {n+ 1}, P2, P3, P4, . . .}� {P1, P2 [ {n+ 1}, P3, P4, . . .}

=
⇣
{P1 [ {n+ 1}, P2, P3, P4, . . .}+ {P1, {n+ 1}, P2 [ P3, P4, . . .}

�{P1, P3, P2 [ {n+ 1}, P4, . . .}� {P1 [ P3, P2, {n+ 1}, P4, . . .}
⌘

�

⇣
{P1, {n+ 1}, P2 [ P3, P4, . . .}� {P1 [ P3, P2, {n+ 1}, P4, . . .}

⌘
2 Rd+1,n+1 + Im(⇡̃⇤)

This implies that Ker(⇡̃⇤) = Im(⇡̃⇤) +Rd+1,n+1, which in turn implies that Ker(⇡⇤) = Im(⇡⇤). ⇤

The pullback ⇡⇤ : Ad
n ! A

d
n+1, which by the projection formula is dual to ⇡⇤ : Ad,n ! Ad,n+1, restricts

to ⇡⇤ : Kd
n ! K

d
n+1, and sends Td on M0,n to Td on M0,n+1. The pushforward ⇡⇤ : Ad+1

n+1 ! A
d
n is dual to

⇡⇤ : Ad+1,n+1 ! Ad,n.

Lemma 2.14. The pushforward ⇡⇤ : Ad+1
n+1 ! A

d
n restricts to ⇡⇤ : Kd+1

n+1 ! K
d
n, with

⇡⇤(
T
d+1) =

(
Tr{n+1}
d n+ 1 2 T

0 n+ 1 62 T

Proof. By Lemma 2.11, (1), for all n and d, we have that Kd
n ✓ V

?
d,n. Since ⇡

⇤(Vd,n) ✓ Vd+1,n+1, and since,

by the projection formula, ⇡⇤ and ⇡⇤ are dual maps, we have that ⇡⇤(K
d+1
n+1) ✓ V

?
d,n. This means that for

T ✓ [n+ 1], the class ⇡⇤(Td+1) is determined by the functional that it defines on Qd,n, i.e. by the values of

[X�] · ⇡⇤(Td+1), where X� ranges over all Type I d-dimensional boundary strata on M0,n. Given such an
X�, we have, by the projection formula, by the expression for ⇡⇤([X�]) given in Equation 9, and by applying
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Lemma 2.10 twice, that

[X�] · ⇡⇤(
T
d+1) = ⇡⇤([X�]) · 

T
d+1 = h⇧⇤(�) [ {{n+ 1}}, T i

=

(
1 if 8P 2 ⇧⇤(�) [ {{n+ 1}}, P \ T 6= ;

0 if 9P 2 ⇧⇤(�) [ {{n+ 1}} s.t. P \ T = ;

=

(
1 if 8P 2 ⇧⇤(�), P \ (T r {n+ 1}) 6= ;, and n+ 1 2 T

0 if 9P 2 ⇧⇤(�) s.t. P \ (T r {n+ 1}) = ;, or if n+ 1 62 T

=

(
h⇧⇤(�), T r {n+ 1}i if n+ 1 2 T

0 if n+ 1 62 T

=

(
[X�] · 

Tr{n+1}
d if n+ 1 2 T

0 if n+ 1 62 T .

⇤

3. Main results and proofs

3.1. The set-up. Throughout Section 3, we use the identification Qd,n
⇠= QSPd,n/Rd,n introduced in

Corollary 2.6: we write an element of Qd,n as a Q-linear combination of set partitions of [n] with d+3 parts,
rather than as a Q-linear combination of fundamental classes of Type I boundary strata.

Definition 3.1. For n � 1 and d � �3, we set Kd
n := {T ✓ [n] | |T | � (d+ 3), |T | ⌘ (d+ 3) mod 2}, and

set ⇣d,n : QK
d
n ! K

d
n to be the natural linear map ⇣d,n : QK

d
n ! K

d
n sending T to Td .

The map ⇣d,n, together with the intersection pairing Qd,n⇥K
d
n ! Q induces the pairing Qd,n⇥QK

d
n ! Q,

where, for ⇧ 2 SPd,n and T 2 K
d
n, ⇧ · T = h⇧, T i as in Definition 2.9. Note that if S is an Sn-set, then QS

has a natural basis S: identifying each basis element of QS with the corresponding dual basis element in QS
_

induces a natural Sn-equivariant identification between QS and its dual. Thus we write QK
d
n = (QK

d
n)

_.

Definition 3.2. For d � �1, the pairing h., .i (Definition 2.9) between set partitions and subsets of [n]
induces a map �̃d,n : QSPd,n ! (QK

d
n)

_ = QK
d
n. For d � 1, �̃d,n descends to a map �d,n : Qd,n ! QK

d
n.

The map �̃d,n on generators ⇧ 2 SPd,n is given explicitly by: �̃d,n(⇧) =
P

T2Kd
n
h⇧, T i · T.

Definition 3.3. Define maps ↵ : QK
d
n ! QK

d+1
n+1 and � : QK

d
n+1 ! QK

d
n, where:

↵(T ) = T [ {n+ 1} �(T ) =

(
T n+ 1 62 T

0 n+ 1 2 T.

Lemma 3.4. The following is an exact sequence:

0 ! QK
d
n

↵
�! QK

d+1
n+1

�
�! QK

d+1
n ! 0.(10)

Proof. First, we observe that ↵ is injective, since it maps the natural basis of QK
d
n injectively to a subset

of the natural basis of QK
d+1
n+1. Also, � is surjective, since every basis element of QK

d+1
n is in the image.

Finally, for exactness in the middle, we observe that Im(↵) = Ker(�) = Q{T 2 K
d+1
n+1 | n+ 1 2 T}. ⇤

Lemma 3.5. The following diagram commutes:

QSPd,n QSPd+1,n+1 QSPd+1,n

QK
d
n QK

d+1
n+1 QK

d+1
n

⇡̃⇤

�̃d,n

⇡̃⇤

�̃d+1,n+1 �̃d+1,n

↵ �

7



Proof. Commutativity of the left square: Given ⇧ 2 SPd,n, we have

�̃d+1,n+1(⇡̃
⇤(⇧)) =

X

T2Kd+1
n+1

h⇧ [ {{n+ 1}}, T i · T =
X

T2Kd+1
n+1

n+12T

h⇧ [ {{n+ 1}}, T i · T

=
X

T 02Kd
n

h⇧, T 0
i · T 0

[ {n+ 1}

= ↵(
X

T 02Kd
n

h⇧, T 0
i · T 0) = ↵(�̃d,n(⇧)).

Commutativity of the right square: Given ⇧0 = {P1, . . . , Pd+4} 2 SPd+1,n+1, we may assume without
loss of generality that n+ 1 2 P1. There are two cases:
Case 1: P1 = {n+ 1}. Then ⇡̃⇤(⇧0) = 0 so �̃d+1,n(⇡̃⇤(⇧0)) = 0. Note that for T ⇢ [n+ 1], we have that if
n+ 1 62 T , then h⇧0, T i = 0, while if n+ 1 2 T , then �(T ) = 0. This implies that

�(�̃d+1,n+1(⇧
0)) = �(

X

T2Kd+1
n+1

h⇧0, T i · T ) = �(
X

T2Kd+1
n+1

n+12T

h⇧0, T i · T ) = 0.

Case 2: P1 6= {n+ 1}. Then

�̃d+1,n(⇡̃⇤(⇧
0)) =

X

T 02Kd+1
n

h{P1 r {n+ 1}, P2, . . . , Pd+4}, T
0
i · T 0

=
X

T 02Kd+1
n

T 0\P1r{n+1} 6=;
T 0\P2,...,T

0\Pd+1 6=;

T 0 =
X

T 02Kd+1
n+1

n+1 62T
h⇧0,T i=1

T 0 = �(�̃d+1,n+1(⇧
0)).

⇤

We use the following lemma several times; its proof follows from a standard diagram chase.

Lemma 3.6. [Variant of the Four Lemma] Suppose we have a commutative diagram of vector spaces as

follows

W1 W2 W3 0

X1 X2 X3

f1

h1

f2

h2 h3

g1 g2

Suppose further that the bottom row is exact at X2, that the top row is exact at W3, and that h1 and h3 are

surjective. Then h2 is surjective.

3.2. A preliminary lemma. In this section, we prove some technical results — Lemmas 3.8, 3.9 and 3.10.
These are not of independent interest, but are necessary to prove Theorem 3.13 in Section 3.3. The proofs
(and statements) of these three lemmas are conceptually similar to each other, as well as to those of Theorem
3.13; all four proofs use the Four Lemma or its variant Lemma 3.6 to induct on n. Lemma 3.8 is required
in the inductive step of Lemma 3.9, which is required in the inductive step of Lemma 3.10, which in turn is
required in the inductive step of Theorem 3.13. The proofs of Lemmas 3.8 and 3.9 also involve some intricate
combinatorics of set partitions and subsets.

Definition 3.7. For n > 0, we set:

En := {T ✓ [n]| |T | even}; On := {T ✓ [n]| |T | odd}; Fn := {(P1, P2)|P1 [ P2 = [n], P1 \ P2 = ;, 1 2 P1}

Note that Fn r {([n], ;)} is in canonical bijection with SP�1,n, so QFn is canonically isomorphic to
Q{([n], ;)} � QSP�1,n. There are maps ↵ : QEn ! QOn+1, ↵ : QOn ! QEn+1, � : QEn+1 ! QEn and
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� : QOn+1 ! QOn, analogous to the maps ↵ and � as in Definition 3.3. Define maps oddn : QFn ! QOn

and evenn : QFn ! QEn, where

oddn((P1, P2)) =
X

T✓P1
|T | odd

(�T ) +
X

T✓P2
|T | odd

T ; evenn((P1, P2)) =
X

T✓P1
|T | even

(�T ) +
X

T✓P2
|T | even

(�T )

Lemma 3.8. For n � 1, the maps oddn and evenn are surjective.

Proof. We induct on n. Base case: n = 1. We have:

F1 = {({1}, ;)}; E1 = {;}; O1 = {{1}}; odd1(({1}, ;)) = �{1}; even1(({1}, ;)) = �2;.

This establishes the base case.
Inductive hypothesis: The proposition holds up to some n � 1.
Inductive step: Define maps � : QFn ! QFn+1 and � : QFn+1 ! QFn, where:

�((P 0
1, P

0
2)) = (P 0

1 [ {n+ 1}, P 0
2)� (P 0

1, P
0
2 [ {n+ 1})

�((P1, P2)) = (P1 r {n+ 1}, P2 r {n+ 1})

The diagram below has exact rows; we claim it commutes.

QFn QFn+1 QFn 0

0 QEn QOn+1 QOn 0

�

evenn

�

oddn+1 oddn

↵ �

Commutativity of the left square: For (P 0
1, P

0
2) 2 QFn,

oddn+1(�(P
0
1, P

0
2)) = oddn+1(P

0
1 [ {n+ 1}, P 0

2)� oddn+1(P
0
1, P

0
2 [ {n+ 1})

=
X

T✓P 0
1[{n+1}

|T | odd

(�T ) +
X

T✓P 0
2

|T | odd

(T )�

0

BB@
X

T✓P 0
1

|T | odd

(�T ) +
X

T✓P 0
2[{n+1}

|T | odd

(T )

1

CCA

=
X

T✓P 0
1[{n+1}

|T | odd
n+12T

(�T ) +
X

T✓P 0
2[{n+1}

|T | odd
n+12T

(�T )

=
X

T 0✓P 0
1��T 0�� even

(�(T 0
[ {n+ 1})) +

X

T 0✓P 0
2��T 0�� even

(�(T 0
[ {n+ 1}))

= ↵(evenn(P
0
1, P

0
2)).

Commutativity of the right square: For (P1, P2) 2 QFn+1,

oddn(�(P1, P2)) = oddn(P1 r {n+ 1}, P2 r {n+ 1})

=
X

T✓P1r{n+1}
|T | odd

(�T ) +
X

T✓P2r{n+1}
|T | odd

(T )

= �(oddn+1(P1, P2)).

This proves the claim. By the inductive hypothesis, evenn and oddn are surjective, so by the Four Lemma,
oddn+1 is surjective.

The digram below has exact rows; we claim it commutes.

QFn QFn+1 QFn 0

0 QOn QEn+1 QEn 0

�

oddn

�

evenn+1 evenn

↵ �
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Commutativity of the left square: For (P 0
1, P

0
2) 2 QFn,

evenn+1(�(P
0
1, P

0
2)) = evenn+1(P

0
1 [ {n+ 1}, P 0

2)� evenn+1(P
0
1, P

0
2 [ {n+ 1})

=
X

T✓P 0
1[{n+1}

|T | even

(�T ) +
X

T✓P 0
2

|T | even

(�T )�

0

BB@
X

T✓P 0
1

|T | even

(�T ) +
X

T✓P 0
2[{n+1}

|T | even

(�T )

1

CCA

=
X

T✓P 0
1[{n+1}

|T | even
n+12T

(�T ) +
X

T✓P 0
2[{n+1}

|T | even
n+12T

(T )

=
X

T 0✓P 0
1��T 0�� odd

�(T 0
[ {n+ 1}) +

X

T 0✓P 0
2��T 0�� odd

(T 0
[ {n+ 1})

= ↵(oddn(P
0
1, P

0
2)).

Commutativity of the right square: For (P1, P2) 2 QFn+1,

evenn(�(P1, P2)) = evenn(P1 r {n+ 1}, P2 r {n+ 1})

=
X

T✓P1r{n+1}
|T | even

(�T ) +
X

T✓P2r{n+1}
|T | even

(�T )

= �(evenn+1(P1, P2)).

This proves the claim. Again, by the inductive hypothesis, oddn and evenn are surjective, so by Lemma 3.6,
evenn+1 is surjective. ⇤

We only use the fact that oddn is surjective to proceed; we use it to prove Lemma 3.9

Lemma 3.9. For all n � 2, the map �̃�1,n : QSP�1,n ! QK
�1
n is surjective.

Proof. We induct on n.
Base case: n = 2. We have SP�1,2 = {{{1}, {2}}} and K

�1
2 = {{1, 2}}. We have

�̃2,2({{1}, {2}}) = h{{1}, {2}}, {1, 2}i · {1, 2} = 1 · {1, 2},

which shows that �̃2,2 is surjective.
Inductive hypothesis: The lemma holds up to some n � 2.
Inductive step: Define a map � : QFn ! QSP�1,n+1, where

�((P 0
1, P

0
2)) = {P 0

1 [ {n+ 1}, P 0
2}� {P 0

1, P
0
2 [ {n+ 1}}.

Consider the digram

QFn QSP�1,n+1 QSP�1,n 0

0 QOn QK
�1
n+1 QK

�1
n 0

�

oddn

⇡̃⇤

�̃�1,n+1 �̃�1,n

↵ �

Here, ⇡̃⇤ � � = 0, the bottom row is exact, and ⇡̃⇤ is surjective. Note that the right square commutes by
Lemma 3.5; we claim the left square commutes as well.
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Commutativity of the left square: For (P 0
1, P

0
2) 2 QFn,

�̃�1,n+1(�(P
0
1, P

0
2)) = �̃�1,n+1({P

0
1 [ {n+ 1}, P 0

2})� �̃�1,n+1({P
0
1}, P

0
2 [ {n+ 1}})

=
X

T✓[n+1]
|T |�2

|T | even
T\(P 0

1[{n+1}) 6=;
T\P 0

2 6=;

(T )�
X

T✓[n+1]
|T |�2

|T | even
T\(P 0

1) 6=;
T\P 0

2[{n+1} 6=;

(T )

=
X

T✓[n+1]
|T |�2

|T | even
n+12T

Tr{n+1}✓P 0
2

(T )�
X

T✓[n+1]
|T |�2

|T | even
n+12T

Tr{n+1}✓P 0
1

(T )

=
X

T 0✓[n]
|T | odd
T 0✓P 0

2

(T 0
[ {n+ 1})�

X

T 0✓[n]
|T | odd
T 0✓P 0

1

(T 0
[ {n+ 1})

= ↵(oddn(P
0
1, P

0
2)).

This proves the claim. Since oddn is surjective, and by the inductive hypothesis so is �̃�1,n, By Lemma 3.6,
�̃�1,n+1 is surjective. ⇤

Lemma 3.10. For all n � 3, the map �̃0,n : QSP0,n ! QK
0
n is surjective.

Proof. We induct on n.
Base case: We have SP0,3 = {{{1}, {2}, {3}}}, K0

3 = {{1, 2, 3}}, and �̃0,3({{1}, {2}, {3}}) = {1, 2, 3}, so
�̃0,3 is surjective.
Inductive hypothesis: The proposition holds up to some n � 4.
Inductive step: Consider the following diagram, which commutes by Lemma 3.5

QSP�1,n QSP0,n+1 QSP0,n 0

0 QK
�1
n QK

0
n+1 QK

0
n 0

⇡̃⇤

�̃�1,n

⇡̃⇤

�̃0,n+1 �̃0,n

↵ �

By the inductive hypothesis, �̃0,n is surjective. By Lemma 3.9, �̃�1,n is surjective, so by the Four Lemma,
�̃0,n+1 is surjective, as desired. ⇤

3.3. An inductive proof of Theorem 3.13.

Lemma 3.11. For all n � 4, we have dimQ1,n = dimQK
1
n.

Proof. There are no Type II 1-dimensional boundary strata, so 8n � 4, V1,n = {0} and Q1,n
⇠= A1,n. By

[FG03], dimA1,n = 2n�1
�
�n
2

�
� 1. On the other hand,

dimQK
1
n = #{T ✓ [n]||T | even, |T | � 4} = 2n�1

�

✓
n

2

◆
� 1.

⇤

Lemma 3.12. For all n � 4, the map �n�3,n is an isomorphism.

Proof. For all n � 4, we have that Vn�3,n = {0}, An�3,n = Qn�3,n = Q{{{1}, . . . , {n}}}, Kn�3
n = {[n]},

and �n�3,n : Qn�3,n ! QK
n�3
n sends {{1}, . . . , {n}} to [n]. Thus �n�3,n is an isomorphism. ⇤

Theorem 3.13. For n � 4 and d such that 1  d  n� 3, �d,n : Qd,n ! QK
d
n is an isomorphism.
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Inductive proof of Theorem 3.13. Base case: n = 4; then 1  d  n � 3 implies that d = 1 = n � 3. By
Lemma 3.12, �1,4 is an isomorphism.
Inductive hypothesis: For some n � 4, and for all d with 1  d  n� 3, we have that �d,n : Qd,n ! QK

d
n

is an isomorphism.
Inductive step: For 1  d  (n� 4), we have the following diagram, which commutes by Lemma 3.5:

Ker(⇡⇤) Qd,n Qd+1,n+1 Qd+1,n 0

0 QK
d
n QK

d+1
n+1 QK

d+1
n 0

⇡⇤

�d,n⇠=

⇡⇤

�d+1,n+1 �d+1,n⇠=

↵ �

The top row is exact by Lemma 2.13, and the bottom row is exact by Lemma 3.4. By the inductive hypothesis,
�d,n and �d+1,n are isomorphisms. So, by the Five Lemma, �d+1,n+1 is an isomorphism. Combining the
above argument with Lemma 3.12, we conclude that for 2  d  (n+1)�3, the map �d,n+1 is an isomorphism.
We also have the following diagram, which commutes by Lemma 3.5:

QSP0,n Q1,n+1 Q1,n 0

0 QK
0
n QK

1
n+1 QK

1
n 0

⇡̃⇤

�̃0,n

⇡⇤

�1,n+1 �1,n⇠=

↵ �

where the bottom row is exact and the top row is a complex, exact at Q1,n. By Lemma 3.10, �̃0,n is
surjective, and by the inductive hypothesis, �1,n is an isomorphism. By Lemma 3.6), �1,n+1 is surjective.
But by Lemma 3.11, dimQ1,n+1 = dimQK

1
n+1, so �1,n+1 is an isomorphism.

⇤

3.4. Theorem 3.14 and its proof.

Theorem 3.14. For n � 4 and d such that 1  d  n� 3:

(i) We have K
d
n = V

?
d,n.

(ii) The pairing Qd,n ⇥K
d
n ! Q is perfect.

(iii) The set {Td | |T | � (d+ 3), |T | ⌘ (d+ 3) mod 2} is an Sn-equivariant basis for K
d
n.

(iv) The Sn actions on Qd,n and K
d
n are isomorphic to the permutation representation induced by the

natural action of Sn on the set {T ✓ [n] | |T | � (d+ 3), |T | ⌘ (d+ 3) mod 2}.
(v) The following (dual) sequences are exact:

0 ! Qd,n
⇡⇤
�! Qd+1,n+1

⇡⇤
�! Qd+1,n ! 0(11)

0 ! K
d+1
n

⇡⇤
�! K

d+1
n+1

⇡⇤
�! K

d
n ! 0(12)

Proof. Recall the map ⇣d,n : QK
d
n ! K

d
n given in Definition 3.1. We have compatible pairings Qd,n⇥K

d
n ! Q

and Qd,n ⇥QK
d
n ! Q, inducing maps ⌘d,n : Qd,n ! (Kd

n)
_ and �d,n : Qd,n ! (QK

d
n)

_ = QK
d
n, where, �d,n

is as in Definition 3.2. These maps satisfy: �d,n = (⇣d,n)_ � ⌘d,n. By Theorem 3.13, �d,n is an isomorphism,
which implies that ⌘d,n is injective. On the other hand, we have by Corollary 2.11 that Kd

n ⇢ V
?
d,n = (Qd,n)_,

so (⌘d,n)_ is injective as well. This implies that ⌘d,n is an isomorphism, proving items (ii) and (i). Since
⌘d,n and �d,n are both isomorphisms, we conclude that so is ⇣d,n, proving item (iii), and thus also item (iv).
Finally, by Theorem 3.13 and Lemma 3.5, the sequence in Equation 11 is dual to the sequence in Equation
10, which is exact by Lemma 3.4. We conclude that the sequence in Equation 11 is exact. The sequence in
Equation 11 is dual to the sequence in Equation 12, so the latter sequence is exact, proving item (v) ⇤
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