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Abstract—We consider the problem of covert communication
in the presence of a cooperative jammer. Covert communication
refers to communication that is undetectable by an adversary, i.e.,
a scenario in which, despite ongoing communication, the output
distribution observed by an adversary called the “warden” is
indistinguishable from the distribution that would have been
induced by an innocent channel-input symbol. It is known
that in general, a transmitter and a receiver can communicate
only O(y/n) covert bits over n channel uses, i.e., zero rate.
This paper shows that a cooperative jammer can facilitate the
communication of positive covert rates, subject to the transmitter
having non-causal access to the jammer signal. An achievable
rate region is calculated that highlights the relation between the
covert communication rate, jammer’s randomness (expressed as
a rate), and rate of a secret key shared between transmitter and
receiver.

I. INTRODUCTION

Covert communication refers to scenarios in which a trans-
mitter wishes to communicate reliably over a channel with a
receiver while simultaneously ensuring that the distribution
induced at a separate channel output (called “warden”) is
identical to that induced by an innocent channel symbol [1]-
[5]. In a point-to-point Discrete Memoryless Channel (DMC)
it is known that, if the distribution induced on the warden’s
observation by the innocent channel-input symbol is a convex
combination of the distributions generated by the other input
symbols, then it is possible to achieve a positive covert
communication rate; otherwise the number of covert bits that
can be reliably communicated over n channel transmissions
scales at most as O(y/n) [3]. These results has motivated
the study of other models in which positive covert rates are
achievable e.g., when the Channel State Information (CSI) is
available at the transmitter and the receiver (or only at the
transmitter) but not at the warden [6]-[8]. Also, it is possible
to achieve positive covert rate when the warden has uncertainty
about the power of noise or interference at its receiver [9]—
[14].

Of particular relevance to the present work, the problem
of secret communication over DMCs with random states has
been studied in [15]-[17]. Furthermore, arbitrarily varying
wiretap channels under strong and semantic secrecy criterion
have been studied in [18]-[20] and Covert communication
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over adversarially jammed channels has been studied in [21].
Multiple-Access Channel (MAC) with cribbing encoders was
first studied by Willems and van der Meulen [22], [23]
and channel resolvability and strong secrecy for a discrete
memoryless multiple-access channel with cribbing has been
studied in [24].

In this paper we study the problem of covert communication
over a DMC when a cooperative jammer [25] is present (see
Fig. 1). Here we assume that the jammer’s output is available
non-causally at the transmitter and there is a shared secret
key between the legitimate terminals. Since the jammer can
simulate a random state (given sufficient resources), we expect
to achieve a positive covert communication rate in the consid-
ered model. One of the main contributions of this work is to
show that cribbing the jamming signal enables a positive covert
communication rate via a Shannon strategy and Gel fand-
Pinsker coding. An achievable rate region is calculated that
highlights the relation between the covert communication rate,
jammer’s randomness (expressed as a rate), and rate of the
secret key shared between transmitter and receiver.

II. PRELIMINARIES AND PROBLEM STATEMENT

Throughout this paper, random variables are denoted by
capital letters and their realizations are denoted by lower case
letters. Calligraphic letters represent sets and the cardinality
of a set is denoted by | - |. Px and Pxy represent probability
distributions on discrete alphabets X and X’ x )/, respectively.
For brevity, we sometimes omit the subscripts in probability
distributions if they are clear from the context, i.e., instead
of Px(x) we write P(x). The integer set {1,...,M} is
denoted by [1,M] and 1., denotes the indicator function.
The n-fold product distribution constructed from the same
distribution P is denoted P®". For two distributions P and
(@ on the same alphabet, the KL-divergence is defined as
D(P||Q) £, P(z)log ggzg and the total variation distance
is defined by ||P — Q|1 £ 3 3°, |P(2) — Q(=)|. Throughout
the paper, log denotes the base 2 logarithm. Ex(-) is the
expectation with respect to the random variable X and for
a set of random variables {X;};c 4 indexed over a countable
set A.

Consider a DMC as shown in Fig. 1. X and S are the
channel input alphabets while ) and Z are the channel
output alphabets at the legitimate receiver and the warden,
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Fig. 1. Covert communication in presence of a jammer

respectively. Let zo € X be an innocent symbol corresponding
to the absence of communication with the receiver. Let

(1) = ZPS(S)WZ|X,S(‘|$O»S)7 (la)
s€S
Qz() = Z Z Ps(s)Pxs(z|s)Wgz x s(-|z,s),  (1b)
seSzeX

& 2 [1L, Qo and Q5" = [[i, Qz. We define non-
negative costs bj(x) and ba(s) for channel inputs z € X
and s € S, respectively. The average cost of input sequences
2" € X" and s" € 8" are by(z") = L3 bi(x;) and
ba(s™) = L3577 | ba(s;), respectively. The jammer’s output
is available non- causally at the transmitter. An (|M],n) code
consists of an encoder that maps (M, S") to X" € X" and
a decoder at the receiver that maps Y to M € M. The
code is assumed known to all parties and the objective is
to design a code that is both reliable and covert. The code
is defined to be reliable if the average probability of error
P = P(M # M) goes to zero when n — oo. The code is
covert if the warden cannot determine whether communication
is happening (hypothesis H;) or not (hypothesis Hy). The
probabilities of false alarm (warden deciding H; when Hj is
true) and missed detection (warden deciding Hy when H; is
true), are denoted by «,, and f3,,, respectively. An uninformed,
random decision by the warden satisfies «,, + 3, = 1, which
is the benchmark for covertness. When the channel carries
communication, the warden’s channel output distribution is
denoted Pz~, and the optimal hypothesis test by the warden
satisfies o, + B > 1 — ]D)(PZnHQ%@”) [26]. Therefore, to
show that the communication is covert, it suffices to show
that D(Pz«||Q5™) — 0. Note that supp(Qo) = Z otherwise
D(Pz||Q5™) — oo. Consequently, our goal is to design a
sequence of (2"%,n) codes such that

lim P 0, (2a)
nli_)néo D(Pz-||Q$™) — 0, (2b)
limsup E[b; (X™)] < By, (2¢)
1i¥r?soljp E[b2(S™)] < Bs. (2d)

n—oo

where B; and B, are the average constraints on cost per
codeword. Here the goal is to design a code for the transmitter
and the jammer in such a way that the transmitter can com-
municate covertly with receiver. We define the covert capacity

as the supremum of all achievable covert rates and denote it
by Ccynce.

III. ONE-SIDED MAC RESOLVABILITY LEMMA

The achievable rate region is based on Lemma 1 below.
This lemma describes the rate required for a codebook exciting
one of the inputs of a MAC so that the output distribution is
indistinguishable from that arising from a random excitation
of the same input, while the other MAC input is being
excited at the same time by a codebook with an arbitrary,
prescribed rate. A key distinction of this result from the usual
resolvability results is that the target distribution may not be
independent and identically distributed (i.i.d.).

We begin by characterizing the setup for this lemma.
Consider a discrete memoryless MAC (X1 X Xa, Wz x, x,, Z)
over which two encoders transmit codewords as in Fig. 2. Let
Cy 2 {XP(mi)},, o pq.» Where M; = 1,277, be a random
codebook consisting of independent random sequences each
generated according to P®i", for 1 = 1,2. We denote a
realization of C; by ¢; £ {7 ml)}m - The codebook
construction described above induces the Probablhty Mass
Function (PMF) A for the codebooks.

[T II PEr(at(m)Per(ag(ms)).

miEM1 maEMo

Aep, ) =

‘We now consider two scenarios, under both of which Transmit-
ter 2 emits a codeword chosen randomly and uniformly from
the random codebook Cs. In the first scenario, Transmitter 1
emits an i.i.d. sequence according to Py,. The distribution
induced at the output of the channel is

on Ry
Pyeicy (") égTRz 3 W, ("X (), ()
mo= 1

where

Wzix, (z]x2) £ Z P(x1)Wzx, x, (2|71, 22). (4

r1E€AXL

In the second scenario, Transmitter 1 emits a codeword
uniformly at random from a random codebook C. The
distribution induced at the channel output is

2nR1 2rLR2

Z Z 27l(R1+R2)

mi1= 17712 1

x WEL x, (Z"[XT(m1), X5 (m2)). (5)

We wish to find conditions under which the distributions
induced at the channel output in the two scenarios are
approximately equal. We call this problem one-sided MAC
resolvability.

Pancl,Cz

Definition 1. A rate pair (R1, Ry) is achievable for the
one-sided resolvability of the discrete memoryless MAC
(X1 x Xo, Wy x, x,,2) if for a given Wy x, x, there
exists a sequence of (2"F1 2"f2 n) codes such that
Ec,.c, {D(Pzn‘chcz\|PZn|cz)] — 0. The one-sided MAC
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Fig. 2. Distribution Approximation in MAC

resolvability region R is the convex hull of the set of all
achievable rate pairs (Ry, Rz).

The main difference between the resolvability region in
Definition 1 and the standard resolvability defined in [27]-
[29] is that here the target distribution Pzn|c, at the output
of channel is not necessarily i.i.d.. We now find sufficient
conditions on the size of the two codebooks such that the
distributions induced at the channel output in the two scenarios
in Eq. (5) and (3) are approximately equal in terms of expected
KL divergence.

Lemma 1. For a discrete memoryless MAC, Wz x, x, if
(R1, R2) belongs to

U @®RiuRry) (6)
P(z1)P(z2)
where
(R17R2) S R*_E :
- Ry > ]I(Xl; Z)
Ri=9 R, >1(X,:2) ) (72)
Ry + Ry > ]I(Xl, Xo; Z)
Ro={ (Ri,Ry) e R?: Ry >1(X1;Z|X5) }, (7b)
then
Ec,,c, [D(Pzn\cl,czﬂpmcz)] —0. ®)

We prove Lemma 1 by considering two different cases; first,
when the size of the second transmitter’s codebook operates
above the capacity of its channel; second, when the size of the
second transmitter’s codebook operates below the capacity of
its channel. The former case results in the region R, and the
latter results in the region Rs. The proof does not fit in this
submission and has been made available online [30].

Remark 1. The region Ri is the channel resolvability re-
gion for MAC. Since X, and Xy are independent therefore
I(X1;Z]1X2) = I(X1;X9,Z), and the region Ro can be
viewed as the resolvability region of a MAC against a wire-
tapper who has full access to the channel input Xo while the
first transmitter does not have access to Xo.

Remark 2. A related result [31, Theorem 3] states that if (6)
holds then Ec, c, | ’PZ"\CI co — Pznic, ‘ |1 —> 0. However,
no proof is publicly available for [31, Theorem 3]

IV. MAIN RESULT

Theorem 1. The covert capacity of the DMC Wy, 7|5, x when
the transmitter has non-causal access to the jammer’s input

is lower-bounded by
Ceine > max [I(U;Y) = I(U; VI[S)], )

where the maximum is over distributions of the form

PsPyPyy,s and x(u,s), such that E[by(X)] < By,
E[bs(S)] < B, Qz = Qo. Ry > I(S; Z), and
Ry > max {I(U; 2),1(U, S; Z) — Ry} —I(U;Y).  (10)

Remark 3. The achievable rate region in Theorem 1 is still
valid for the scenario in which the transmitter has access to
the jammer’s input, i.e., the dummy messages J.

Two extremal cases for the jammer rate are instructive and
are considered next. First, if the jammer has maximal rate
R; = H(S), the key rate requirements are the same as in
the problem of covert communication over a state-dependent
channel [6], [8]. Since U and S are independent, one can show
that (10) reduces to:

Ry > 1(U; Z) = 1(U;Y). (11)

This is the condition that has been derived in [6, Eq. (8)].
Second, if we set R as its minimum, i.e., Ry =1(S;7Z) +e,
and since U and S are independent, one can show that (10)
will reduce to

Rg >1(U; Z|S) = I(U;Y). (12)

Since I(U; Z|S) > I(U; Z), if the size of jammer’s code-
book is decreased, a higher rate is needed for the secret
key shared between the legitimate terminals. From (10), the

smallest jammer codebook allowing minimal secret key rate
is Ry =1(S; Z|U).

Proof of Theorem 1. Fix Ps(s), Py(u), Pyu,s(vlu,s),
z(u, s), and €1 > eo > 0 subject to the conditions Q7 = Qo,

E[b (X)) < 77 and E[b>(9)] < 172
Codebook Generation: Let Cf") S
{U" (ks O} o myercsmxes Where K= 1,277,

= [1,2"E], and £ = [1,2"%], be a random codebook
consisting of independent random sequences each generated
according to P®". We denote a realization of C’fn) by
(”) £ {u"(k,m E)}(k,ml)eKX/MXﬁ. The indices (k,m,¥)
can be viewed as a two-layer binning.

Let C’(n) £ {S"(j } 7o Where J = [1, 2"87] be a ran-
dom codebook con51stmg of independent random sequences
each generated according to P®”. We denote a realization of
5" by & & {5 () }Jeg

Let, C, = {C] (m ol } and ¢, = {cln), c§">}. The code-
book construction descrlbed above induces the PMF \(c,,) for
the codebooks.

I

Aen) = H P (s
JjET (kym,0)EXXMXL

P (u" (kym, 1) ).

13)
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To facilitate the analysis, we define a so-called ideal joint
PMF for all input, output, message, key, and auxiliary vari-
ables, conditioned on the choice of codebooks ¢,

(cn) . -n ~n ,n _n
FK,M,LL,S”,U",V",ZH(kama]?&3 ,at v 2"

— 9—n(Rk+R+R;+R’)
2 * ’ {sr=sn() } N {an=ur (k,m,0)}

LAMWED (2™a", 5,

Qn
x P Z|U,8

e (0" ]3" (14)

where Py gy is a test channel and Wz |y ¢ is the marginal
distribution of Wy y |y, s defined in Theorem 1.

Encoding: The jammer selects an index j uniformly at
random and transmits s"(j). The encoder cribs this s and,
conditioned on it, generates a sequence v" i.i.d. according
to P‘@f’l’;. To do so, the encoder employs local randomness
in a manner reminiscent of Csiszar and Korner’s stochastic
encoder [32]. Then, given v™ as well as the cribbed signal
s™(4), the key k, and the message m, the encoder chooses the
index /¢ via a likelihood encoder [29], [33], [34], according to
the following distribution:

e (0], m, ,0™)
P g (v ur (k,m, £), 5™ (j))

> PO s (onlun (kom, 0),s7(j))
0 e[1,2nR]

5)

Using the resulting index ¢ as well as the key k& and message
m, the encoder computes u"(k, m, ) and transmits codeword
a™, where x; = x(u;(k,m, ), s;).
For a fixed codebook c,, the induced joint distribution is
PI(é’E\)I,J,S",V",L,U”,Zn(kv m, j, 8", v" L, a", 2")
__ o—n(Rx+R+Rjy) ®n [, n|zn
=2 ]l{gnzsn(j)}PV‘S(,U ‘8 )

x f]flcin) (£|k7 m, j, vn)]l{a”:u"(k,m,f)}

x Wi g(="[a", 8"). (16)
Considering the random codebook generation, we have
P(en, k,m, 4,8, 6,0, 2"™)
= Aen) x P (kym, 4,3, 0,a", 2"), (17)

where A € P is defined in (13).

Covert Analysis: We denote by P(“r) the distributions
induced by a fixed codebook ¢, and by P.|¢, the distributions
induced by a random codebook C,,. Consider a scenario in
which the jammer selects a codeword from its codebook
uniformly at random and the transmitter chooses the innocent
sequence z. Under a fixed codebook an)’ the induced joint
distribution is as follows

(n) 1
Tf]fi‘n,)m (J,s",2") :TLTJ]I{S":S7L(]')}W§}’S (z""xf, ™).
Therefore, the distribution induced on the warden’s observa-
tion is

on ity
& 1 n 7 .
T3 N = o 2 Wiks (226, 57(). (18)
j=1

If Ry > I(S;Z) then according to the soft covering lemma
[28, Theorem 4] or [29, Corollary VII.4],

o
|5 =g, —o. (19)

n—r oo

where Q?" has been defined in (la). Note that if R; <
I(S; Z) according to Shannon’s channel coding theorem, the
warden might be able to decode J, which reduces the problem
to the point to point channel for which the covert rate will be
Zero.

We aim to show that the coding scheme described above
guarantees

Ec,||Pznc, — Q%" o 0, (20)

and therefore according to [35, eq. (323)] (also see, [36,
Remark 1])

Ec,[D(Pz+c,[|QF™)] — 0, 1)

where Q%" has been defined in (1b).
By the triangle inequality,
Ec,||Pznic, — Q%" 1 <Ec,||Pznic, —Tznic,|h
+Ec,[|Dznj0, —QF - (22)

We proceed to bound the first term on the Right Hand Side
(RHS) of (22). For every codebook ¢,

F%I\)J.,J _ o-n(Rx+R+R;) _ PI(<C,73\)4,J7 3)
P8 = Uy} = Poians (23b)
Fglcly}g,M,J,S",V” = 15 (O, m, g, 0™)
= PI(ITTIL(),M,J,S",V"’ (23¢)
ngc:f\)K,M,J,Sn,vaL = 1{ﬂn=un(k,m,5)}
= P((JCT:L\)K,M,J,S”,V”,L’ (23d)
I‘(ZC;L\)K,M,J,Sn,vn,L,Un = W?j@,s(znlﬂ”, ")
= Péc;:])K,M,J,S",V",L,U"7 (23e)

where (23a)-(23b) and (23d)-(23e) follow directly from (14)
and (16) and (23c) follow since for every codebook c,,,

]_"(Cn)

L, g (LR, m, g, o)

o F%TJ\Z,L,J,V"L(hm’&jv vn)
F(Igjlf\)/[,tl,V" (k’ m, j, Un)
= 5 (Ul m, 0™,

Thus, the first on the RHS of (22) is bounded as

(24)

Ec, ||Pznc, — FZ"\CnH1
<Ec,

Py a1,7,57, V0 LU, 27 (Cn

— Uk mus0ve Lun zec, ||

(@)
=Ec, ||Psnvn,r,um 20 K=1,M=1,7=1,C,

—Dgn v pun znk=1,M=1,0=1,0, ||,
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. 25)

vis(-15"(1)

where (a) follows from (23a), the independence of (K, M, J)

and C,, and symmetry of codebook construction with respect
to (K, M, J); and (b) follows from (23b)-(23e). According to

Lemma 1 the RHS of (25) vanishes when n grows if

R >1(U;V|S). (26)

This follows since conditioning on My = 1 the distribution in
(3) reduces to Pzn|pr,—1(2") = WE}Q( 2"| X% (1)) and the
distribution in (5) reduces to
on Ry 1
Pznicy my=1(2") = Z Ry
mi=1

x W

Z|X1, Xz( n|X{L(m1)7X§L(1))~

Also, according to [31], [37] the second term on the RHS of
(22) vanishes when n grows if

R; > 1(S;2), (27a)
Rx +R+ R >1(U; 2), (27b)
Rk +R+ R +R; >1(U,S; 7). (27¢)
Now, by using the triangle inequality we have
Ec, [|Pzricn =T e |y < Eeul[Pznie, — Q5™
zn|lc{™ T Q" H1 (28)

Using Pinsker inequality the first term on the RHS of (28)
vanishes when n grows if we choose Ps, Py, Pyy,s and
z(u, s) such that Qz = Qq, (26), and (27) hold. Also, from
(19) the second term on the RHS of (28) vanishes when n
Srows.

Decoding and Error Probability Analysis: We show that
the average probability of error can be made arbitrarily small.
By access to the key K the receiver declares that M = M if
there exists a unique index M such that (U™ (K, M, ¢),Y™) €
T(U,Y). Then the error event (M # M) occurs only if
one or more of the following error events occur:

& 2 {(UM(K, M, L), V") ¢ T\"(U,V)}, (29a)
E A (UMK, M,L),Y") ¢ T"(U,Y)}, (29b)
Es & (UMK, m,0),Y™) e T (U,Y)

for some m # M and £ € [1: 27%']}. (29¢)

Therefore, from the union bound we can bound the probability
of error as follows

P(M # M) <P(&) +P(Ef N &) +P(&).  (30)

According to the typicality lemma the second term on the RHS
of (30) goes to zero as n — oo [38]. The third term on the

RHS of (30) goes to zero as n — oo if [38],
R+ R <1(U;Y). 3D

We now show that the first term on the RHS of (30) also
vanishes as n — oo. For a fix ¢ > 0 consider the PMF

I" defined in (14). With respect to the random experiment
described by I" we have

ECHPF((U"(m,k,L),V", S"(j)) ¢ 7;€”)|cn) —0,
(32)
this follows because V" is derived by passing U"(k,m, L) ~

ngm’ for every (m7k) S (M IC) and Sn(]) ~ Pg?"7 for

every j € J, through the DMC P‘Q?I'Zj 5 Therefore (32) holds

by weak law of large numbers. We also have

Ec, [Py sn vnic, —Lun,snvnic, |l
< Ec, [|Ps.x,p,5m,0,0mve 200,
=Lk msmnumve zeicnl L, (33)

where based on (25) the RHS of (33) vanishes when n grows.
We now define g,, : U™ x V" xS™ — R as g, (u™, s",v") =

ﬂ{(u",s",vn)Qt(/")}' We now have

Eo,Pp((U"(k;m, L), $"(),V") ¢ TS”|C)
— B, Ep g0 (U" (K, m, L), " (), V")|C,
< B, B [ga (U (k,m, 1), 8"(7), V")[C,

+Ec,

|90 (U (k,m, 1), 5" (5), V™)
— Er [ga (U" (k,m, L), 8"(), V")[C,

(a)
< Ec Er {gn(U”(lmm, L), 5" (j), V”)|Cn}

+Ec, ||PU"7V",S]TL|C,,L —Lynyn snic, [1, 34

where (a) follows from [39, Property 1] for g,, being bounded
by 1. From (32) and (33) the RHS of (34) vanishes when n
Srows.

Input Cost Analysis: From (32) average over a random
codebook C,, we have

P(E) = P((U" (m, k, L), V", 57(j)) ¢ TS"IC,)
= P((U"(m, k. L), V", §"(j), X") ¢ TS |Co) — 0.
(35)

From Typical Average Lemma [38, Section 2.4] if 2" € T."
then by (2™) < Bj. Therefore,

Ec, x m[b1(X™)]
=P(E)Ec, xm[bi(X")|E] + P(E°)Ec, ke ar[b1(X™)|E]
=P(£)BShx + P(E°)By, (36)

where Bith £ max,e bi(2). From (35) the RHS of (36)
tends to By as n grows. Therefore,

limsupEc, &, [01(X™)] < Bj.

n—oo

(37

Similarly, limsup Ec, x ar,[02(S™)] < Ba.

The regi(?n_)iorf Theorem 1 is derived by applying Fourier-
Motzkin [40] to (26), (27), and (31). O
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