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Abstract—We consider the problem of covert communication
in the presence of a cooperative jammer. Covert communication
refers to communication that is undetectable by an adversary, i.e.,
a scenario in which, despite ongoing communication, the output
distribution observed by an adversary called the “warden” is
indistinguishable from the distribution that would have been
induced by an innocent channel-input symbol. It is known
that in general, a transmitter and a receiver can communicate
only O(

√
n) covert bits over n channel uses, i.e., zero rate.

This paper shows that a cooperative jammer can facilitate the
communication of positive covert rates, subject to the transmitter
having non-causal access to the jammer signal. An achievable
rate region is calculated that highlights the relation between the
covert communication rate, jammer’s randomness (expressed as
a rate), and rate of a secret key shared between transmitter and
receiver.

I. INTRODUCTION

Covert communication refers to scenarios in which a trans-
mitter wishes to communicate reliably over a channel with a
receiver while simultaneously ensuring that the distribution
induced at a separate channel output (called “warden”) is
identical to that induced by an innocent channel symbol [1]–
[5]. In a point-to-point Discrete Memoryless Channel (DMC)
it is known that, if the distribution induced on the warden’s
observation by the innocent channel-input symbol is a convex
combination of the distributions generated by the other input
symbols, then it is possible to achieve a positive covert
communication rate; otherwise the number of covert bits that
can be reliably communicated over n channel transmissions
scales at most as O(

√
n) [3]. These results has motivated

the study of other models in which positive covert rates are
achievable e.g., when the Channel State Information (CSI) is
available at the transmitter and the receiver (or only at the
transmitter) but not at the warden [6]–[8]. Also, it is possible
to achieve positive covert rate when the warden has uncertainty
about the power of noise or interference at its receiver [9]–
[14].

Of particular relevance to the present work, the problem
of secret communication over DMCs with random states has
been studied in [15]–[17]. Furthermore, arbitrarily varying
wiretap channels under strong and semantic secrecy criterion
have been studied in [18]–[20] and Covert communication
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over adversarially jammed channels has been studied in [21].
Multiple-Access Channel (MAC) with cribbing encoders was
first studied by Willems and van der Meulen [22], [23]
and channel resolvability and strong secrecy for a discrete
memoryless multiple-access channel with cribbing has been
studied in [24].

In this paper we study the problem of covert communication
over a DMC when a cooperative jammer [25] is present (see
Fig. 1). Here we assume that the jammer’s output is available
non-causally at the transmitter and there is a shared secret
key between the legitimate terminals. Since the jammer can
simulate a random state (given sufficient resources), we expect
to achieve a positive covert communication rate in the consid-
ered model. One of the main contributions of this work is to
show that cribbing the jamming signal enables a positive covert
communication rate via a Shannon strategy and Gel’fand-
Pinsker coding. An achievable rate region is calculated that
highlights the relation between the covert communication rate,
jammer’s randomness (expressed as a rate), and rate of the
secret key shared between transmitter and receiver.

II. PRELIMINARIES AND PROBLEM STATEMENT

Throughout this paper, random variables are denoted by
capital letters and their realizations are denoted by lower case
letters. Calligraphic letters represent sets and the cardinality
of a set is denoted by | · |. PX and PXY represent probability
distributions on discrete alphabets X and X ×Y , respectively.
For brevity, we sometimes omit the subscripts in probability
distributions if they are clear from the context, i.e., instead
of PX(x) we write P (x). The integer set {1, . . . ,M} is
denoted by J1,MK and 1{·} denotes the indicator function.
The n-fold product distribution constructed from the same
distribution P is denoted P⊗n. For two distributions P and
Q on the same alphabet, the KL-divergence is defined as
D(P ||Q) ,

∑
x P (x) log P (x)

Q(x) and the total variation distance
is defined by ||P −Q||1 , 1

2

∑
x |P (x)−Q(x)|. Throughout

the paper, log denotes the base 2 logarithm. EX(·) is the
expectation with respect to the random variable X and for
a set of random variables {Xi}i∈A indexed over a countable
set A.

Consider a DMC as shown in Fig. 1. X and S are the
channel input alphabets while Y and Z are the channel
output alphabets at the legitimate receiver and the warden,
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Fig. 1. Covert communication in presence of a jammer

respectively. Let x0 ∈ X be an innocent symbol corresponding
to the absence of communication with the receiver. Let

Q0(·) =
∑

s∈S
PS(s)WZ|X,S(·|x0, s), (1a)

QZ(·) =
∑

s∈S

∑

x∈X
PS(s)PX|S(x|s)WZ|X,S(·|x, s), (1b)

Q⊗n0 ,
∏n
i=1Q0 and Q⊗nZ ,

∏n
i=1QZ . We define non-

negative costs b1(x) and b2(s) for channel inputs x ∈ X
and s ∈ S , respectively. The average cost of input sequences
xn ∈ Xn and sn ∈ Sn are b1(xn) = 1

n

∑n
i=1 b1(xi) and

b2(sn) = 1
n

∑n
i=1 b2(si), respectively. The jammer’s output

is available non-causally at the transmitter. An (|M|, n) code
consists of an encoder that maps (M,Sn) to Xn ∈ Xn and
a decoder at the receiver that maps Y n to M̂ ∈ M. The
code is assumed known to all parties and the objective is
to design a code that is both reliable and covert. The code
is defined to be reliable if the average probability of error
P

(n)
e = P(M̂ 6= M) goes to zero when n→∞. The code is

covert if the warden cannot determine whether communication
is happening (hypothesis H1) or not (hypothesis H0). The
probabilities of false alarm (warden deciding H1 when H0 is
true) and missed detection (warden deciding H0 when H1 is
true), are denoted by αn and βn, respectively. An uninformed,
random decision by the warden satisfies αn + βn = 1, which
is the benchmark for covertness. When the channel carries
communication, the warden’s channel output distribution is
denoted PZn , and the optimal hypothesis test by the warden
satisfies αn + βn ≥ 1 −

√
D(PZn ||Q⊗n0 ) [26]. Therefore, to

show that the communication is covert, it suffices to show
that D(PZn ||Q⊗n0 ) → 0. Note that supp(Q0) = Z otherwise
D(PZn ||Q⊗n0 ) → ∞. Consequently, our goal is to design a
sequence of (2nR, n) codes such that

lim
n→∞

P (n)
e → 0, (2a)

lim
n→∞

D(PZn ||Q⊗n0 )→ 0, (2b)

lim sup
n→∞

E[b1(Xn)] ≤ B1, (2c)

lim sup
n→∞

E[b2(Sn)] ≤ B2. (2d)

where B1 and B2 are the average constraints on cost per
codeword. Here the goal is to design a code for the transmitter
and the jammer in such a way that the transmitter can com-
municate covertly with receiver. We define the covert capacity

as the supremum of all achievable covert rates and denote it
by CCJ-NC.

III. ONE-SIDED MAC RESOLVABILITY LEMMA

The achievable rate region is based on Lemma 1 below.
This lemma describes the rate required for a codebook exciting
one of the inputs of a MAC so that the output distribution is
indistinguishable from that arising from a random excitation
of the same input, while the other MAC input is being
excited at the same time by a codebook with an arbitrary,
prescribed rate. A key distinction of this result from the usual
resolvability results is that the target distribution may not be
independent and identically distributed (i.i.d.).

We begin by characterizing the setup for this lemma.
Consider a discrete memoryless MAC (X1×X2,WZ|X1,X2

,Z)
over which two encoders transmit codewords as in Fig. 2. Let
Ci ,

{
Xn
i (mi)

}
mi∈Mi

, whereMi = J1, 2nRiK, be a random
codebook consisting of independent random sequences each
generated according to P⊗nXi , for i = 1, 2. We denote a
realization of Ci by ci ,

{
xni (mi)

}
mi∈Mi

. The codebook
construction described above induces the Probability Mass
Function (PMF) λ for the codebooks.

λ(c1, c2) =
∏

m1∈M1

∏

m2∈M2

P⊗nX1

(
xn1 (m1)

)
P⊗nX2

(
xn2 (m2)

)
.

We now consider two scenarios, under both of which Transmit-
ter 2 emits a codeword chosen randomly and uniformly from
the random codebook C2. In the first scenario, Transmitter 1
emits an i.i.d. sequence according to PX1

. The distribution
induced at the output of the channel is

PZn|C2
(zn) ,

1

2nR2

2nR2∑

m2=1

W⊗nZ|X2

(
zn|Xn

2 (m2)
)
, (3)

where

WZ|X2
(z|x2) ,

∑

x1∈X1

P (x1)WZ|X1,X2
(z|x1, x2). (4)

In the second scenario, Transmitter 1 emits a codeword
uniformly at random from a random codebook C1. The
distribution induced at the channel output is

PZn|C1,C2
(zn) ,

2nR1∑

m1=1

2nR2∑

m2=1

1

2n(R1+R2)

×W⊗nZ|X1,X2

(
zn|Xn

1 (m1), Xn
2 (m2)

)
. (5)

We wish to find conditions under which the distributions
induced at the channel output in the two scenarios are
approximately equal. We call this problem one-sided MAC
resolvability.

Definition 1. A rate pair (R1, R2) is achievable for the
one-sided resolvability of the discrete memoryless MAC
(X1 × X2,WZ|X1,X2

,Z) if for a given WZ|X1,X2
there

exists a sequence of (2nR1 , 2nR2 , n) codes such that
EC1,C2

[
D
(
PZn|C1,C2

||PZn|C2

)]
−−→
n→∞

0. The one-sided MAC
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Fig. 2. Distribution Approximation in MAC

resolvability region R is the convex hull of the set of all
achievable rate pairs (R1, R2).

The main difference between the resolvability region in
Definition 1 and the standard resolvability defined in [27]–
[29] is that here the target distribution PZn|C2

at the output
of channel is not necessarily i.i.d.. We now find sufficient
conditions on the size of the two codebooks such that the
distributions induced at the channel output in the two scenarios
in Eq. (5) and (3) are approximately equal in terms of expected
KL divergence.

Lemma 1. For a discrete memoryless MAC, WZ|X1,X2
if

(R1, R2) belongs to

⋃

P (x1)P (x2)

(R1 ∪R2) (6)

where

R1 =





(R1, R2) ∈ R∗2+ :
R1 > I(X1;Z)
R2 > I(X2;Z)
R1 +R2 > I(X1, X2;Z)




, (7a)

R2 =
{

(R1, R2) ∈ R∗2+ : R1 > I(X1;Z|X2)
}
, (7b)

then

EC1,C2

[
D
(
PZn|C1,C2

||PZn|C2

)]
−−→
n→∞

0. (8)

We prove Lemma 1 by considering two different cases; first,
when the size of the second transmitter’s codebook operates
above the capacity of its channel; second, when the size of the
second transmitter’s codebook operates below the capacity of
its channel. The former case results in the region R1 and the
latter results in the region R2. The proof does not fit in this
submission and has been made available online [30].

Remark 1. The region R1 is the channel resolvability re-
gion for MAC. Since X1 and X2 are independent therefore
I(X1;Z|X2) = I(X1;X2, Z), and the region R2 can be
viewed as the resolvability region of a MAC against a wire-
tapper who has full access to the channel input X2 while the
first transmitter does not have access to X2.

Remark 2. A related result [31, Theorem 3] states that if (6)
holds then EC1,C2

∣∣∣∣PZn|C1,C2
− PZn|C2

∣∣∣∣
1
−−→
n→∞

0. However,
no proof is publicly available for [31, Theorem 3].

IV. MAIN RESULT

Theorem 1. The covert capacity of the DMC WY,Z|S,X when
the transmitter has non-causal access to the jammer’s input
is lower-bounded by

CCJ-NC ≥ max
[
I(U ;Y )− I(U ;V |S)

]
, (9)

where the maximum is over distributions of the form
PSPUPV |U,S and x(u, s), such that E[b1(X)] ≤ B1,
E[b2(S)] ≤ B2, QZ = Q0, RJ > I(S;Z), and

RK > max
{
I(U ;Z), I(U, S;Z)−RJ

}
− I(U ;Y ). (10)

Remark 3. The achievable rate region in Theorem 1 is still
valid for the scenario in which the transmitter has access to
the jammer’s input, i.e., the dummy messages J .

Two extremal cases for the jammer rate are instructive and
are considered next. First, if the jammer has maximal rate
RJ = H(S), the key rate requirements are the same as in
the problem of covert communication over a state-dependent
channel [6], [8]. Since U and S are independent, one can show
that (10) reduces to:

RK > I(U ;Z)− I(U ;Y ). (11)

This is the condition that has been derived in [6, Eq. (8)].
Second, if we set RJ as its minimum, i.e., RJ = I(S;Z) + ε,
and since U and S are independent, one can show that (10)
will reduce to

RK > I(U ;Z|S)− I(U ;Y ). (12)

Since I(U ;Z|S) ≥ I(U ;Z), if the size of jammer’s code-
book is decreased, a higher rate is needed for the secret
key shared between the legitimate terminals. From (10), the
smallest jammer codebook allowing minimal secret key rate
is RJ = I(S;Z|U).

Proof of Theorem 1. Fix PS(s), PU (u), PV |U,S(v|u, s),
x(u, s), and ε1 > ε2 > 0 subject to the conditions QZ = Q0,
E[b1(X)] ≤ B1

1+ε1
, and E[b2(S)] ≤ B2

1+ε2
.

Codebook Generation: Let C
(n)
1 ,{

Un(k,m, `)
}

(k,m,`)∈K×M×L, where K = J1, 2nRK K,

M = J1, 2nRK, and L = J1, 2nR
′
K, be a random codebook

consisting of independent random sequences each generated
according to P⊗nU . We denote a realization of C

(n)
1 by

c
(n)
1 ,

{
un(k,m, `)

}
(k,m,`)∈K×M×L. The indices (k,m, `)

can be viewed as a two-layer binning.
Let C(n)

2 ,
{
Sn(j)

}
j∈J , where J = J1, 2nRJ K, be a ran-

dom codebook consisting of independent random sequences
each generated according to P⊗nS . We denote a realization of
C

(n)
2 by c(n)

2 ,
{
sn(j)

}
j∈J .

Let, Cn =
{
C

(n)
1 , C

(n)
2

}
and cn =

{
c
(n)
1 , c

(n)
2

}
. The code-

book construction described above induces the PMF λ(cn) for
the codebooks.

λ(cn) =
∏

j∈J
P⊗nS

(
sn(j)

) ∏

(k,m,`)∈K×M×L
P⊗nU

(
un
(
k,m, `

))
.

(13)
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To facilitate the analysis, we define a so-called ideal joint
PMF for all input, output, message, key, and auxiliary vari-
ables, conditioned on the choice of codebooks cn,

Γ
(cn)
K,M,J,L,Sn,Un,V n,Zn(k,m, j, `, s̃n, ũn, vn, zn)

= 2−n(RK+R+RJ+R′)1{
s̃n=sn(j)

}⋂{
ũn=un(k,m,`)

}

× P⊗nV |S,U (vn|s̃n, ũn)W⊗nZ|U,S(zn|ũn, s̃n), (14)

where PV |S,U is a test channel and WZ|U,S is the marginal
distribution of WZ,Y |U,S defined in Theorem 1.

Encoding: The jammer selects an index j uniformly at
random and transmits sn(j). The encoder cribs this sn and,
conditioned on it, generates a sequence vn i.i.d. according
to P⊗nV |S . To do so, the encoder employs local randomness
in a manner reminiscent of Csiszár and Körner’s stochastic
encoder [32]. Then, given vn as well as the cribbed signal
sn(j), the key k, and the message m, the encoder chooses the
index ` via a likelihood encoder [29], [33], [34], according to
the following distribution:

f
(cn)
LE (`|k,m, j, vn)

=
P⊗nV |U,S

(
vn|un(k,m, `), sn(j)

)
∑

`′∈J1,2nR′K
P⊗nV |U,S

(
vn|un(k,m, `′), sn(j)

) . (15)

Using the resulting index ` as well as the key k and message
m, the encoder computes un(k,m, `) and transmits codeword
xn, where xi = x(ui(k,m, `), si).

For a fixed codebook cn, the induced joint distribution is

P
(cn)
K,M,J,Sn,V n,L,Un,Zn(k,m, j, s̃n, vn, `, ũn, zn)

= 2−n(RK+R+RJ )1{
s̃n=sn(j)

}P⊗nV |S(vn|s̃n)

× f (cn)
LE (`|k,m, j, vn)1{

ũn=un(k,m,`)
}

×W⊗nZ|U,S(zn|ũn, s̃n). (16)

Considering the random codebook generation, we have

P (cn, k,m, j, s̃
n, `, ũn, zn)

= λ(cn)× P (cn)(k,m, j, s̃n, `, ũn, zn), (17)

where λ ∈ P is defined in (13).
Covert Analysis: We denote by P (cn) the distributions

induced by a fixed codebook cn, and by P·|Cn the distributions
induced by a random codebook Cn. Consider a scenario in
which the jammer selects a codeword from its codebook
uniformly at random and the transmitter chooses the innocent
sequence xn0 . Under a fixed codebook c(n)

2 , the induced joint
distribution is as follows

Υ
(c

(n)
2 )

J,Sn,Zn(j, sn, zn) =
1

2nRJ
1{sn=sn(j)}W

⊗n
Z|X,S

(
zn|xn0 , sn

)
.

Therefore, the distribution induced on the warden’s observa-
tion is

Υ
(c

(n)
2 )

Zn (zn) =
1

2nRJ

2nRJ∑

j=1

W⊗nZ|X,S
(
zn|xn0 , sn(j)

)
. (18)

If RJ > I(S;Z) then according to the soft covering lemma
[28, Theorem 4] or [29, Corollary VII.4],

∣∣∣∣Υ(c
(n)
2 )

Zn −Q⊗n0

∣∣∣∣
1
−−→
n→∞

0. (19)

where Q⊗n0 has been defined in (1a). Note that if RJ <
I(S;Z) according to Shannon’s channel coding theorem, the
warden might be able to decode J , which reduces the problem
to the point to point channel for which the covert rate will be
zero.

We aim to show that the coding scheme described above
guarantees

ECn ||PZn|Cn −Q⊗nZ ||1 −−→n→∞
0, (20)

and therefore according to [35, eq. (323)] (also see, [36,
Remark 1])

ECn [D(PZn|Cn ||Q⊗nZ )] −−→
n→∞

0, (21)

where Q⊗nZ has been defined in (1b).
By the triangle inequality,

ECn ||PZn|Cn −Q⊗nZ ||1 ≤ECn ||PZn|Cn − ΓZn|Cn ||1
+ ECn ||ΓZn|Cn −Q⊗nZ ||1. (22)

We proceed to bound the first term on the Right Hand Side
(RHS) of (22). For every codebook cn,

Γ
(cn)
K,M,J = 2−n(RK+R+RJ ) = P

(cn)
K,M,J , (23a)

Γ
(cn)
Sn|K,M,J = 1{

s̃n=sn(j)
} = P

(cn)
Sn|K,M,J , (23b)

Γ
(cn)
L|K,M,J,Sn,V n = f

(cn)
LE (`|k,m, j, vn)

= P
(cn)
L|K,M,J,Sn,V n , (23c)

Γ
(cn)
Un|K,M,J,Sn,V n,L = 1{

ũn=un(k,m,`)
}

= P
(cn)
Un|K,M,J,Sn,V n,L, (23d)

Γ
(cn)
Zn|K,M,J,Sn,V n,L,Un = W⊗nZ|U,S(zn|ũn, s̃n)

= P
(cn)
Zn|K,M,J,Sn,V n,L,Un , (23e)

where (23a)-(23b) and (23d)-(23e) follow directly from (14)
and (16) and (23c) follow since for every codebook cn,

Γ
(cn)
L|K,M,J,V n(`|k,m, j, vn)

=
Γ

(cn)
K,M,L,J,V n(k,m, `, j, vn)

Γ
(cn)
K,M,J,V n(k,m, j, vn)

= f
(cn)
LE (`|k,m, j, vn). (24)

Thus, the first on the RHS of (22) is bounded as

ECn
∣∣∣∣PZn|Cn − ΓZn|Cn

∣∣∣∣
1

≤ ECn
∣∣∣∣PK,M,J,Sn,V n,L,Un,Zn|Cn
− ΓK,M,J,Sn,V n,L,Un,Zn|Cn

∣∣∣∣
1

(a)
= ECn

∣∣∣∣PSn,V n,L,Un,Zn|K=1,M=1,J=1,Cn

− ΓSn,V n,L,Un,Zn|K=1,M=1,J=1,Cn

∣∣∣∣
1
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(b)
= ECn

∣∣∣∣P⊗nV |S
(
· |Sn(1)

)
− ΓV n|K=1,M=1,J=1,Cn

∣∣∣∣
1
, (25)

where (a) follows from (23a), the independence of (K,M, J)
and Cn, and symmetry of codebook construction with respect
to (K,M, J); and (b) follows from (23b)-(23e). According to
Lemma 1 the RHS of (25) vanishes when n grows if

R′ > I(U ;V |S). (26)

This follows since conditioning on M2 = 1 the distribution in
(3) reduces to PZn|M2=1(zn) = W⊗nZ|X2

(zn|Xn
2 (1)) and the

distribution in (5) reduces to

PZn|C1,M2=1(zn) ,
2nR1∑

m1=1

1

2nR1

×W⊗nZ|X1,X2

(
zn|Xn

1 (m1), Xn
2 (1)

)
.

Also, according to [31], [37] the second term on the RHS of
(22) vanishes when n grows if

RJ > I(S;Z), (27a)
RK +R+R′ > I(U ;Z), (27b)

RK +R+R′ +RJ > I(U, S;Z). (27c)

Now, by using the triangle inequality we have

ECn
∣∣∣∣PZn|Cn −Υ

Zn|C(n)
2

∣∣∣∣
1
≤ ECn

∣∣∣∣PZn|Cn −Q⊗n0

∣∣∣∣
1

+ ECn
∣∣∣∣Υ

Zn|C(n)
2
−Q⊗n0

∣∣∣∣
1
. (28)

Using Pinsker inequality the first term on the RHS of (28)
vanishes when n grows if we choose PS , PU , PV |U,S and
x(u, s) such that QZ = Q0, (26), and (27) hold. Also, from
(19) the second term on the RHS of (28) vanishes when n
grows.

Decoding and Error Probability Analysis: We show that
the average probability of error can be made arbitrarily small.
By access to the key K the receiver declares that M̂ = M if
there exists a unique index M̂ such that (Un(K, M̂, `), Y n) ∈
T (n)
ε (U, Y ). Then the error event (M̂ 6= M) occurs only if

one or more of the following error events occur:

E1 , {(Un(K,M,L), V n) /∈ T (n)
ε′ (U, V )}, (29a)

E2 , {(Un(K,M,L), Y n) /∈ T (n)
ε (U, Y )}, (29b)

E3 , {(Un(K,m, `), Y n) ∈ T (n)
ε (U, Y )

for some m 6= M and ` ∈ [1 : 2rR
′
]}. (29c)

Therefore, from the union bound we can bound the probability
of error as follows

P(M̂ 6= M) ≤ P(E1) + P(Ec1 ∩ E2) + P(E3). (30)

According to the typicality lemma the second term on the RHS
of (30) goes to zero as n → ∞ [38]. The third term on the
RHS of (30) goes to zero as n→∞ if [38],

R+R′ < I(U ;Y ). (31)

We now show that the first term on the RHS of (30) also
vanishes as n → ∞. For a fix ε > 0 consider the PMF

Γ defined in (14). With respect to the random experiment
described by Γ we have

ECnPΓ

((
Un(m, k, L), V n, Sn(j)

)
/∈ T (n)

ε′ |Cn
)
−−→
n→∞

0,

(32)

this follows because V n is derived by passing Un(k,m,L) ∼
P⊗nU , for every (m, k) ∈ (M,K), and Sn(j) ∼ P⊗nS , for
every j ∈ J , through the DMC P⊗nV |U,S . Therefore (32) holds
by weak law of large numbers. We also have

ECn ||PUn,Sn,V n|Cn − ΓUn,Sn,V n|Cn ||1
≤ ECn ||PJ,K,M,Sn,L,Un,V n,Zn|Cn

− ΓJ,K,M,Sn,L,Un,V n,Zn|Cn ||1, (33)

where based on (25) the RHS of (33) vanishes when n grows.
We now define gn : Un×Vn×Sn → R as gn(un, sn, vn) ,

1{(un,sn,vn)/∈T (n)

ε′ }
. We now have

ECnPP
((
Un(k,m,L), Sn(j), V n

)
/∈ T (n)

ε′ |Cn
)

= ECnEP
[
gn(Un(k,m,L), Sn(j), V n)|Cn

]

≤ ECnEΓ

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]

+ ECn
∣∣∣EP

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]

− EΓ

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]∣∣∣
(a)

≤ ECnEΓ

[
gn(Un(k,m,L), Sn(j), V n)|Cn

]

+ ECn ||PUn,V n,Snj |Cn − ΓUn,V n,Snj |Cn ||1, (34)

where (a) follows from [39, Property 1] for gn being bounded
by 1. From (32) and (33) the RHS of (34) vanishes when n
grows.

Input Cost Analysis: From (32) average over a random
codebook Cn we have

P(E) = P
((
Un(m, k, L), V n, Sn(j)

)
/∈ T (n)

ε′ |Cn
)

= P
((
Un(m, k, L), V n, Sn(j), Xn

)
/∈ T (n)

ε′ |Cn
)
−−→
n→∞

0.

(35)

From Typical Average Lemma [38, Section 2.4] if xn ∈ T (n)
ε

then b1(xn) ≤ B1. Therefore,

ECn,K,M [b1(Xn)]

= P(E)ECn,K,M [b1(Xn)|E ] + P(Ec)ECn,K,M [b1(Xn)|Ec]
= P(E)B

(1)
max + P(Ec)B1, (36)

where B(1)
max , maxx∈X b1(x). From (35) the RHS of (36)

tends to B1 as n grows. Therefore,

lim sup
n→∞

ECn,K,M,[b1(Xn)] ≤ B1. (37)

Similarly, lim sup
n→∞

ECn,K,M,[b2(Sn)] ≤ B2.

The region in Theorem 1 is derived by applying Fourier-
Motzkin [40] to (26), (27), and (31).
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