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Abstract

A black hole embedded within a bright, optically thin emitting region imprints a nearly circular “shadow” on its
image, corresponding to the observer’s line of sight into the black hole. The shadow boundary depends on the
black hole’s mass and spin, providing an observable signature of both properties via high-resolution images.
However, standard expressions for the shadow boundary are most naturally parametrized by Boyer–Lindquist radii
rather than by image coordinates. We explore simple, approximate parameterizations for the shadow boundary
using ellipses and a family of curves known as limaçons. We demonstrate that these curves provide excellent and
efficient approximations for all black hole spins and inclinations. In particular, we show that the two parameters of
the limaçon naturally account for the three primary shadow deformations resulting from mass and spin: size,
displacement, and asymmetry. These curves are convenient for parametric model fitting directly to interferometric
data, they reveal the degeneracies expected when estimating black hole properties from images with practical
measurement limitations, and they provide a natural framework for parametric tests of the Kerr metric using black
hole images.

Unified Astronomy Thesaurus concepts: Black hole physics (159)

1. Introduction

When surrounded by optically thin emitting material, a black
hole produces a nearly circular “shadow” on the image seen by
a distant observer, corresponding to the observer’s line of sight
into the black hole (see, e.g., Bardeen 1973; Jaroszynski &
Kurpiewski 1997; de Vries 2000; Falcke et al. 2000;
Perlick 2004; Cunha & Herdeiro 2018; Narayan et al. 2019).
The size and shape of the shadow encode information about the
black hole’s angular momentum, inclination relative to the
observer, and mass. Moreover, the shadow boundary is
achromatic and independent of the emission and astrophysical
details of a source. However, the angular diameter of the
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size, where G is the gravitational constant, M is the mass of the
black hole, c is the speed of light, and D is the distance from
the observer (Hilbert 1917; Synge 1966; Bardeen 1973;
Takahashi 2004). Thus, even for nearby supermassive black
hole candidates, very high angular resolution is required to
study the shadow.

This resolution was recently achieved by the Event Horizon
Telescope, using very-long-baseline interferometry (VLBI) at
1.3 mm wavelength to image the supermassive black hole in the
galaxy M87 (Event Horizon Telescope Collaboration et al.
2019a, 2019b, 2019c, 2019d, 2019e, 2019f; hereafter EHT1–6).
The EHT observations revealed a bright, asymmetric ring,
corresponding to a black hole with ( ) =  ´M M6.5 0.7 109

at a distance D=(16.8±0.8)Mpc. While the EHT does not
yet provide significant constraints on the shadow shape or
asymmetry, planned extensions to shorter wavelengths and
longer baselines will achieve even finer resolution and a greater
reduction of the astrophysical foreground. Thus, it is essential to
develop tools and techniques that are capable of more detailed
model fitting and inference and to assess what can be learned

about a black hole from higher resolution observations of its
shadow.
To this end, many authors have quantified the shadow of a

Kerr black hole using simple diagnostics such as mean
diameter, asymmetry, and displacement from the origin (e.g.,
Takahashi 2004; Johannsen & Psaltis 2010; Chan et al. 2013;
Grenzebach et al. 2015; Tsupko 2017). Other authors have
moved beyond these diagnostics, presenting general approx-
imation frameworks to model arbitrary shadows using a
Legendre expansion (Abdujabbarov et al. 2015) or a basis of
principal components (Medeiros et al. 2020). Several authors
have explored simpler parametric approximations for the
shadow, either using approximations for the full relativistic
calculation of the shadow (Cunha & Herdeiro 2018) or using
families of simple curves (de Vries 2003). Here, we expand
this latter approach, developing approximations for the
shadow using simple polar curves. We show that these
curves provide excellent representations for the exact shadow
shape, while offering a variety of concrete advantages.
Relative to simple shadow diagnostics, these curves have the
advantage of completely characterizing the information in the
shadow, thereby highlighting potential parameter degenera-
cies that are expected to persist even for high-resolution
images. They also provide tools for model fitting directly to
interferometric data, and they can be used as a parametric
framework to assess the validity of the Kerr shadow
assumption.
We begin, in Section 2, with a brief introduction to the

shadow and its properties. Next, we explore approximations to
the shadow using a shifted ellipse (Section 3), a limaçon
(Section 4), and the convex hull of a shifted limaçon
(Section 5). In Section 6, we compare these results and discuss
their implications for the inference of black hole parameters
with high-resolution images. We summarize our results in
Section 7.
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2. The Shadow of a Kerr Black Hole

The Kerr metric (Kerr 1963) describes the vacuum spacetime
around a rotating, non-charged black hole of mass M and
dimensionless spin a=Jc/M2, where J is the angular
momentum of the black hole and  a0 1. A crucial feature
of this metric is that photons near the black hole can orbit on
spheres with constant Boyer–Lindquist radius, r. For a
Schwarzschild black hole, all spherical photon orbits have
r=3GM/c2, while a spinning black hole has + - r r r ,
where the radii of the prograde (+) and retrograde (−)

equatorial photon orbits are
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For simplicity, we will set G=c=M=1 for the remainder
of our discussion and will express later quantities in units
of ºr GM cg

2.
Null geodesics in the Kerr metric are fully characterized by

two constants of motion: the energy-rescaled angular momen-
tum about the spin axis =ℓ L E , and the energy-rescaled
Carter constant c = Q E2. For a spherical photon orbit at
radius r, these are given by (see, e.g., Bardeen 1973; Teo 2003;
Cunha & Herdeiro 2018)
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A slight perturbation from a spherical orbit will exponen-
tially diverge away from the photon orbit. Slightly tighter orbits
plunge into the black hole, while slightly larger orbits escape to
infinity. This instability produces a brightness enhancement at
the boundary of the shadow if the region + - r r r is
populated by emitting material and is optically thin (see, e.g.,
Gralla & Lupsasca 2019; Gralla et al. 2019; Johnson et al.
2020). A distant observer viewing the black hole at inclination
qo relative to the spin axis will then see this asymptotic
brightness enhancement at Cartesian screen coordinates given

by Bardeen (1973):
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Here, the projected spin direction on the observer’s screen lies
along the y-direction. The interior of this curve corresponds to
the observer’s line of sight into the black hole.
Figure 1 shows example shadows at three inclinations

and all spins. For a Schwarzschild black hole (a= 0), the
shadow is circular and has a radius on the image of

( ) ( )+ =x r y r r272 2
g (Hilbert 1917; Synge 1966). As

a increases, the shadow is displaced horizontally and flattens on
the side approaching the origin. This effect becomes most
pronounced in the limit a 1 and q p 2o (a maximally
spinning black hole viewed edge-on).
While Section 3 defines the exact boundary of the black hole

shadow, it is inconveniently parametrized by the corresponding
(Boyer–Lindquist) emission radius rather than by a natural
image coordinate such as the polar angle. Next, we will explore
simple polar approximations for the shadow.

3. Ellipse Approximation

3.1. Definitions

Our first polar curve to describe the black hole shadow is an
ellipse, including a displacement parameter. In addition to its
simple parametric form, the ellipse has convenient Fourier
relationships to a circle, making it particularly effective as a
tool for model fitting directly to interferometric data.
Specifically, by the Fourier scaling theorem, any circular
image with a known Fourier transform can be stretched by a
factor f to create an ellipse, with a Fourier transform given by
stretching baselines and rescaling visibility amplitudes of the
circular image by the factor -f 1 along the same direction. For

Figure 1. Black hole shadow boundary as a function of spin and inclination. The dimensionless spin magnitude a is sampled uniformly from 0 to 1 in steps of 0.02,
while the three panels correspond to inclinations q = 0o (left), q = 45o (center), and q = 90o (right).
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instance, any circular ring model used to fit the EHT
observations in EHT6could be trivially adapted to allow
elliptical shapes (see also Kamruddin & Dexter 2013;
Benkevitch et al. 2016).

We parameterize the ellipse as ( ( ) ( ))t tx y, , where

( ) ( ) ( ) ( )t t t d= +x r cos , 40
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Here, δ is a shift in the positive x-direction, r is the ellipse
radius along the spin axis, r⊥ is the ellipse radius orthogonal to
the spin axis, and [ ]t pÎ 0, 2 parametrizes the curve. If d = 0,
then τ is equal to the polar angle j.

3.2. Fidelity of Shadow Fits

For every shadow given by a pair of black hole parameters
a and j, we determined the best-fitting ellipse parameters
by minimizing the root-mean-squared (rms) radial residual,
weighted by arc length ( ) ( ) ( )j j j j= + ¢dℓ r r d2 2 .
Namely, we minimized
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Weighting by arc length gives results that are independent of
how the curve is parametrized, including the assumed centroid.
Other weighting choices, such as td , jd , or the line element dr
resulting from parameterization by Boyer–Lindquist radius
(Equation (3)) can heavily upweight particular segments of the
shadow curve.

Figure 2 shows the best-fitting ellipse parameters and rms
radial residual at four inclinations and all spins. In general, the
parameters vary smoothly and monotonically with spin except
at very high spin. Note that the shadow radius orthogonal to the
spin axis monotonically decreases with spin, while the shadow
axis parallel to the spin axis decreases at low inclination but
increases at high inclination.

At all nonzero inclinations, the rms residual increases with
spin. As shown in Figure 1, the left shadow edge flattens as
spin increases, which the ellipse cannot reproduce. Never-
theless, the rms residual is s  r0.1 g for all cases, corresp-
onding to a fractional radial error of approximately 2% or less.
For a black hole viewed at low inclination or a black hole with
low spin, the accuracy of the ellipse is excellent. For the
supermassive black hole in M87, which has q » 17o (Walker
et al. 2018) and m»r D 3.8 asg (EHT6), the ellipse has
s  r0.005 g (s mD 0.02 as) or a fractional radial error of
approximately 0.1%.

4. Limaçon Approximation

4.1. Definitions

Our second polar curve to describe the black hole shadow is
a limaçon,4 formed by tracing a fixed point on a circle as it
rotates around another circle of equal radius displaced by one

diameter. The limaçon has a simple polar representation that
depends on only two parameters:

( ) ( ) ( )j l l jº +r 1 cos . 81 2

Here, j is the polar angle,l > 01 is a scale parameter, while l2
contributes both asymmetry and displacement. Note that the

Figure 2. Ellipse parameters that best fit the shadow boundary as a function of
black hole spin and inclination. From top to bottom, panels show the ellipse
radius perpendicular to the projected spin axis (r⊥), the ellipse radius parallel to
the projected spin axis (rP), the ellipse displacement (δ), and the rms error of the

fitted curve weighted by arc length ( ( )s d j= á ñr ℓ
2 ).

4 Pronounced /ˈlɪməsɒn/.
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limaçon is convex when ∣ ∣l  1 22 . For ∣ ∣l > 12 , the limaçon
intersects itself at the origin for ( )j l=  -- -cos 1

2
1 . For

l = 12 , the limaçon is exactly a cardioid, with a cusp atj p= .
Because changing the sign of l2 simply gives an image
reflection, we will assume that l > 02 for the remainder of this
paper.

The limaçon exhibits similar behavior to the shadow,
shifting itself over from the origin by a similar amount and
producing an edge on the left side as it progresses further from
the origin. The similarity between the shadow and the limaçon
is demonstrated in Figure 3 (and is quantified in Section 4.3).
Hence, unlike the ellipse, we do not include a shift parameter
for fits to the pure limaçon. de Vries (2003) proposed the
limaçon as an approximation to the shadow of a Kerr–Newman
black hole and provided several example fits, demonstrating
excellent agreement. The quality of these fits declined with
increasing spin. In Section 5, we will generalize the limaçon by
including a shift parameter and an additional operation to
ensure convexity; these modifications substantially improve the
quality of the shadow fits.

4.2. Characteristics

We now compute some simple derived quantities for the
limaçon, to clarify how the parameters l1 and l2 affect the
curve and relate to shadow properties.
The simplest characteristics of the limaçon are quantities

weighted uniformly by angle with respect to the origin of the
limaçon coordinates. The mean radius is lá ñ =jr 1, while the

standard deviation of the radius is l láD ñ =jr 22
1 2 . The

horizontal displacement is l lD º =+x x

2 1 2
max min .

However, for comparisons with other families of curves
(including the Kerr shadow), it is convenient to instead
compute quantities with respect to coordinates that are centered
on the curve, according to the horizontal displacement, and
weighted by arc length. For example,

⎛
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It is also useful to evaluate the curve radii along directions
orthogonal (r⊥) and parallel (rP) to the vertical axis (i.e., the

Figure 3. Comparison between exact shadows (green, solid) and their best-fitting limaçons (black, dashed) for j = 90 (i.e., edge-on viewing). The limaçon
parameter l2 increases with spin, producing both the asymmetry and centroid displacement seen in the exact shadow.

4
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projected spin axis). These radii are independent of the
assumed centroid or curve weighting and have been discussed
extensively for the specific case of a black hole’s shadow (e.g.,
Grenzebach et al. 2015; Tsupko 2017). For the limaçon,
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4.3. Fidelity of Shadow Fits

Figure 4 shows the best-fitting limaçon parameters at four
inclinations and for all spins, obtained by minimizing the rms
radial residual weighted by arc length as described in
Section 3.2. The limaçon parameters are monotonic in spin
and inclination, and the limaçon generally outperforms the
ellipse in approximating the shadow despite requiring one
fewer parameter. For <a 0.95, limaçons fit the shadow with
s - r10 g

2 , or a fractional radial error of less than 0.2%.
Figure 5 shows the best-fitting limaçon parameters as a

function of black hole spin and inclination. Importantly, the
mapping is one-to-one, so the limaçon parameters uniquely
determine the black hole spin and inclination if the mass-to-
distance ratio of the black hole is known. Because the Kerr
metric occupies only a small part of the ( )l l,1 2 parameter
space, a limaçon fit can also be used to assess the validity of the
Kerr assumption for the shadow and to quantify departures
from Kerr.

5. Convex Hull Limaçon Approximation

5.1. Definitions

As shown in Figure 4, the limaçon provides an excellent
approximation to the shadow but is least accurate at high spin
and inclinations approaching edge-on. Remarkably, the shape
of the shadow in the limit of maximal-spin and edge-on
inclination is precisely a limaçon with l = r41 g and l = 12 ,
with two modifications. First, it is horizontally displaced from
the origin (see Figure 6). Namely, it takes the form,

( ) ( ) ( )j d j= - = +r ; 1 4 1 cos , 12

where d = -1 indicates that r and j are polar coordinates
defined relative to an origin that is horizontally displaced by
d = -1. Second, the shadow for these asymptotic parameters
has a hard, flat edge joining the discontinuous portion in the
region [ ]j p pÎ 2 3, 4 3 , which deviates from the signature
cusp of the l = 12 limaçon. This behavior can be reproduced

by taking the convex hull of the shifted limaçon. Equation (10)
then gives that the shadow of an extremal black hole viewed

edge-on has =r̂ r
9

2 g and  =r r3 3 g. This result was derived
by Grenzebach et al. (2015), who provide a general expression
for r⊥ and rP for a black hole of any spin viewed edge-on.
Motivated by the exact form of the shadow in this limit, our

third family of parametric curves is the convex hull of a shifted
limaçon. This curve adds a single parameter, the shift δ; the
convex hull is only relevant for ∣ ∣l > 1 22 , where a flat edge is
introduced at ( )j l=  -arccos 1 2 2 or at d l l= -x 4min 1 2.
In the Kerr parameter space, the convex hull is only needed
for ⪆a 0.95.

Figure 4. Limaçon parameters that best fit the shadow boundary as a function
of black hole spin and inclination. From top to bottom, panels show the
limaçon scale parameter l1, the limaçon asymmetry parameter l2, and the rms

error of the fitted curve ( )s d j= á ñr ℓ
2 . Unlike the ellipse, both limaçon

parameters vary monotonically with spin and inclination (although the rms
error is not monotonic in spin).

5
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5.2. Fidelity of Shadow Fits

Using the methodology described in Section 3.2, limaçons
were fit to shadow shapes at four inclinations for all spin. The
results are shown in Figure 7.

The convex hull limaçon offers fits that can be an order of
magnitude better than those of the unshifted limaçon or the
ellipse. Size and asymmetry parameter variation are monotonic,
but the curves quantifying the horizontal shift of the
approximation increase in concavity while shifting downwards
as inclination approaches q p= 2o . All inclinations and spins
have a point at around a=0.8 where d = 0; here, the best-
fitting convex hull limaçons match the normal, unshifted

limaçon provided that l < 1 22 . Indeed, this agreement can be
seen in the intersections with the lighter, dotted curves in the
bottom panel of Figure 7, representing the resulting accuracy of
the limaçon fits from Figure 4. The fit fidelity generally
worsens as the asymmetry of the true shadow increases, but it
improves sharply near maximal spin.

Figure 5. Best-fitting limaçon parameters ( )l l,1 2 for all spins and inclinations.

Figure 6. In the maximal-spin, edge-on limit, the shadow boundary (black) is
the convex hull of a shifted limaçon withl = 41 ,l = 12 , and d = -1. Because
l > 1 22 , the pure limaçon curls into a cardioid. Hence, both the displacement
and convex hull are necessary to exactly match the shadow.

Figure 7. Convex hull limaçon parameters that best fit the shadow boundary as
a function of black hole spin and inclination. From top to bottom, panels show
the scale parameterl1, the asymmetry parameter l2, the displacement δ, and the

rms radial residual ( )d já ñr ℓ
2 . For comparison, the rms error of the limaçon is

also shown as dashed lines (see Figure 4). All inclinations and spins have a
point near a=0.8 where d = 0; at this location the limaçon and convex hull
limaçon fit equally well unless l > 1 22 because only difference improvement
in the convex hull limaçon is its additional shift parameter.

6
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While the diagnostic quantities of the convex hull limaçon
are not as trivial to derive as those of the ordinary limaçon, the
convex hull limaçon similarly constrains the Kerr metric tightly
in the ( )l l,1 2 parameter space, as shown in Figure 8.

6. Discussion

6.1. Comparison of Polar Approximations

Figure 9 compares the accuracy for each of our parametric
shadow approximations as a function of spin and inclination.
For low spin, a 0.5, the black hole shadow is nearly circular
and all approximations are excellent (even a circle fits
reasonably well). At high spin, the circle ceases to be a
reasonable fit except at very low inclination, and it has a
fractional radial rms of approximately 4% at high inclination.
The limaçon, which can produce a flat left edge, outperforms
the ellipse at high spin and inclination, while the convex hull
limaçon significantly outperforms both the ellipse and limaçon
at all inclinations for maximal spin.

6.2. Implications of Accurate Polar Approximations

The accuracy of simple curves such as the limaçon in
describing the shadow has subtle implications for the general
shadow geometry. For example, the limaçon is defined by only
two parameters, implying that the displacement is determined
entirely by the mean radius and asymmetry. This is analogous
to the exact shadow, in which the shape is determined by the
two parameters of black hole mass and spin. The limaçon
relationship can be expressed using “observable” quantities
such as the perpendicular radius r⊥ and the area =A

( )pl l+1 21
2

2
2 :

( )
p

D = -^
^

r
A

r
2 1 . 13

2

This relationship is exact for a limaçon with l < 1 22 and is
approximately true for the black hole shadow (Δ is correct to

within r0.4 g and has a fractional error smaller than»20% for all
values of spin and inclination). It shows that a shadow
displacement only occurs when there is asymmetry and that the
two effects are intimately linked. This relationship also
provides a simple way to estimate the black hole’s location
on an image from measurements of the shadow size and shape.

6.3. Degeneracies of Inferred Black Hole Parameters

Another useful application of our geometrical shadow
approximations is to assess the degeneracies in spin and
inclination. Apart from the trivial inclination degeneracy at
zero spin, the shadow has a single additional discrete
degeneracy for supplementary inclination angles: q o

p q- o (see, e.g., Mars et al. 2018). However, if the mass-to-
distance ratio of the black hole is unknown, then shadows that
differ by a constant rescaling are indistinguishable (e.g., all
face-on observers see a perfectly circular shadow, regardless of
spin). Moreover, identification of the coordinate origin is
impractical, so shadows that differ only by a displacement will
likely be indistinguishable. Finally, shadows that may not be
formally degenerate may still have differences that are so small
as to be indistinguishable for all practical purposes. Our
framework allows us to assess all these cases.
These various classes of denegeracies are evident in

Figures 5 and 8. For example, the convex hull limaçon fits
make no assumptions about knowledge of the coordinate
centroid. For both the limaçon and the convex hull limaçon,
apriori knowledge of the mass-to-distance ratio is necessary
to place a measurement of l1 in units of rg, while l2 is
dimensionless and requires no apriori knowledge.
For instance, because of the a priori estimates of rg for

SgrA* using stellar orbits, measuring the (convex hull)
limaçon parameters l1 and λ2 for SgrA* would provide
unambiguous estimates for both the spin and inclination of the
black hole (up to the single discrete degeneracy for
supplementary inclination angles). Indeed, a measurement of
λ1 alone is sufficient to narrowly constrain the spin and (if
l < r4.831 g) to give a lower bound on the inclination.

Likewise, while the supermassive black hole in M87 does
not have a strong prior on rg and, thus, only λ2 can be measured
directly, it does have a tightly constrained jet inclination. A
measurement of λ2 would then determine the spin magnitude a
under the assumption that the spin axis is aligned with the jet.
For sources with no prior constraints on rg or qo, a

measurement of λ2 provides a lower limit on both spin and
inclination but does not absolutely determine either. Larger
values of spin and inclination would correspond to smaller
values of l r1 g and, thus, larger values of the black hole mass.
Because the convex hull limaçon is an excellent approximation
to the true shadow, these degeneracies are unlikely to be
resolved even with highly accurate measurements of the
shadow shape, although they could be broken with comple-
mentary measurements (e.g., temporal signatures, modeling of
the complete system, or relationships between sequential
photon subrings).

7. Summary

We have shown that simple polar curves can provide
excellent approximations to the exact boundary of the shadow
from a Kerr black hole (Equation 3). A suitable polar curve
must account for three geometric properties of the black hole

Figure 8. Best-fitting convex hull limaçon parameters ( )l l,1 2 for all spins and
inclinations (a displacement parameter δ is fitted but not shown). As for the
limaçon, the mapping uniquely determines the black hole spin and inclination if
the mass-to-distance ratio (i.e., rg) is known. Moreover, the Kerr metric
occupies only a small part of the ( )l l,1 2 parameter space, so a convex hull
limaçon fit can be used to assess the validity of a Kerr assumption for the
shadow and to quantify departures from Kerr.
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shadow: diameter, asymmetry, and horizontal displacement.
For a Kerr black hole, the shadow diameter and displacement
are directly proportional to the black hole mass, while all three
properties are affected by the spin magnitude and inclination.

We first explored fitting the shadow with a displaced ellipse,
which provides a marked improvement in fit quality over a
circle (see Figure 9) and offers convenient analytic expressions
for directly fitting interferometric quantities. The rms error in
radius, weighted by arc length, is less than r0.1 g for all spins
and inclinations, corresponding to a fractional error of only 2%.
For a source viewed at low inclination, as is expected for the
supermassive black hole in M87, the fractional rms error is less
than 0.1% (corresponding to m0.02 as for M87). Hence, we
expect the ellipse to provide an excellent shadow approx-
imation when fitting parametric models to EHT observations of
M87, with sufficient complexity to provide estimates of the
shadow asymmetry and, hence, the black hole inclination and
spin. A set of ellipse parameters uniquely determines the black
hole spin if the mass-to-distance ratio or inclination is known
a priori (as is relevant for SgrA* and M87, respectively).

Next, we explored fitting the shadow with a family of curves
known as limaçons, which are two-parameter polar curves, as
originally proposed and studied by de Vries (2003). We
showed that a limaçon often fits the shadow better than an
ellipse despite requiring one fewer parameter. In addition,
limaçons have an inherent relationship between displacement
and asymmetry just as Kerr black holes do. Hence, they
provide convenient expressions for this relationship for the
exact black hole shadow (e.g., Equation (13)).

Finally, we explored fitting the shadow with a generalized
limaçon, adding a displacement parameter and taking a convex
hull. Especially at high spin, this convex hull limaçon provides
a significantly better fit than the unmodified limaçon or ellipse.
The best-fitting convex hull limaçon has a fractional rms radial
residual of less than 0.3% for all black hole spins and
inclinations. It also gives an exact description of the shadow in
the limit of a maximally spinning black hole viewed edge-on.

These polar curves offer many utilities including parametric
model fitting to interferometric data, simple diagnostics of the
shadow properties, and a low-dimensional geometrical repre-
sentation of the full shadow shape (just as the exact shadow is
defined solely by the mass and spin of the black hole). They
also reveal degeneracies that are expected when inferring a
black hole’s parameters from images of its shadow. For
instance, because a displacement cannot be directly observed
and the convex hull limaçon provides an excellent fit to the

shadow shape, an accurately measured shadow only gives a
bounded range for the black hole mass as well as lower limits
on the spin and inclination (see Figure 8). However, an a priori
measurement of the black hole mass, spin, or inclination is
sufficient to break this degeneracy, yielding the other two
parameters from the measured shadow. Finally, our curves
provide a flexible parametric framework to assess whether a
particular shadow is compatible with the Kerr metric. While
simple circular models were suitable for the initial EHT
observations of M87, these curves offer a pathway to interpret
the increasingly sensitive observations expected in the coming
decades, with correspondingly more stringent demands for
model fidelity.
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