Finite Element Analysis of 3D Woven
Composites Using Consumer Graphical
Processing Units

BORYS DRACH

ABSTRACT

The focus of this paper is application of a Graphical Processing Unit (GPU) based
solver to linearly elastic finite element analysis (FEA) of composites with three-
dimensional (3D) woven reinforcements. Aspects specific to this material system
including local material orientations, high contrast between elastic properties of
constituents, large number of degrees of freedom, and simulation runtimes are
discussed. Speedups offered by parallelization via GPUs and regularity of structured
grids enable matrix-free implementation of FEA, which requires reassembly of the
global stiffness at every iteration of solution of the system of linear equations, but in
turn significantly reduces memory requirements. This makes linear analysis of
composite structures with explicit reinforcement representation (tens of millions of
degrees of freedom) possible on personal computers. Potential applications of this
procedure include fast calculation of effective properties for design of novel 3D
woven architectures and efficient solution of problems with high degrees of material
nonlinearity requiring frequent stiffness matrix updates.

INTRODUCTION

Three-dimensional (3D) woven composites can be tailored to combine a unique
set of mechanical properties required for a specific application [1]. However, the
design process of new woven architectures is challenging due to the vast design space
and complicated structure-property relationships. In theory, digital representations of
new weave architectures can be generated and used to develop models for full
mechanical characterization of new systems via finite element analysis (FEA). The
composites community has made a great progress towards making this workflow
possible. However, many challenges are yet to be overcome before such an approach
is routinely used in engineering practice, especially in the case of composites with
high fiber volume fractions.

Borys Drach, New Mexico State University, Department of Mechanical and Aerospace
Engineering, 1040 S. Horseshoe Str., Las Cruces, NM 88003, U.S.A.

1181

One of the major challenges is development of realistic (.as-woven”)
reinforcement geometry. During weaving and processing (e.g. in resin transfer
molding), fiber bundles are deformed from contact interactions with each other and
manufacturing equipment. As a result, there are substantial differences between the
idealized (nominal) and the final woven geometry [2], which affect the mechanical
behavior of the composites. In most cases, use of nominal geometry leads to
significant overprediction of elastic properties of woven composites [3]. Several
geometry generation methods that account for the local deformation of fiber bundles
have been proposed to deal with this issue. In the author’s opinion, the most promising
among them is the digital element method [4], [5], which can be used to simulate the
weave process and predict the as-woven geometry. A comprehensive approach to
realistic geometry generation based on this methodology is presented in [6], [7].
However, digital element chain method requires input of multiple non-physical
constants affecting the final solution, which undermines its predictive power and
makes it reliant on reference information such as X-ray computed tomography data.

Another major challenge is related to FEA of digital representations of 3D woven
composites. Due to the complicated reinforcement geometry of these composites, the
smallest non-repeating portion of the material known as a unit cell (typically several
mm in size) often requires hundreds of thousands or millions of elements for accurate
geometric representation [8]. Even linearly elastic analysis of a unit cell becomes
computationally challenging at such levels of discretization because of large amount
of RAM memory required to store the global stiffness matrix. When possible,
researchers employ periodic boundary conditions to approximate behavior of a large
composite specimen with a single unit cell. Highly non-linear problems such as
simulation of progressive damage and materials processing pose yet another obstacle —
repeated stiffness matrix updates, which leads to simulation runtimes measured in
many hours or even days. As such, there is a need for new computational approaches
that would enable faster, more accessible FEA of 3D woven composites without
sacrificing fidelity of geometric representation of reinforcement.

Due to their unique architecture graphical processing units (GPUs) offer a
promising alternative to central processing units (CPUs) when it comes to large non-
linear simulations [9]. Originally developed for acceleration of image rendering on a
screen GPUs have evolved into complex systems with thousands of processing cores
and gigabytes of memory. Nowadays, GPUs are used for a wide spectrum of
applications including physics-based simulations, medical imaging, artificial neural
networks, machine learning etc., see for example, review in [10]. Modern general-
purpose GPUs are unsurpassed in the single instruction multiple data class of
computing — their theoretical performance is measured in trillions of floating-point
operations per second. However, their specialized architecture places certain
limitations on numerical methods that can be successfully ported to GPUs; in addition,
efficient implementations are highly application specific. Due to these challenges, the
full potential of GPUs is yet to be realized in commercial engineering software
packages including general-purpose FEA solvers.

In this paper, we explore use of GPUs for linearly elastic analysis of a unit cell
with orthogonal 3D woven reinforcement and implications of the approach for
nonlinear analysis.

1182

METHODOLOGY
GPU Implementation of FEA Solver

Linearly elastic FEA comes down to finding solution of a system of linear
equations (SLE) of the form Ku = f, where K — is a symmetric positive-definite
global stiffness matrix, u — is the vector of unknown displacements, and f — is the
vector of applied nodal forces. If the system has only a few thousands of equations, it
can be solved using direct methods such as Gaussian Elimination. However, for larger
systems iterative approaches such as Conjugate Gradient Method (CGM) are typically
used. Normally, K is assembled first then stored and used in the solution. For finite
element models with millions of degrees of freedom, which result in millions of
equations in the SLE, storage and manipulation of K requires a lot of memory and
computation time.

To minimize memory requirements, matrix-free methods can be used. These
methods only require storage of results of matrix-vector products at intermediate steps
of an iterative procedure such as CGM. However, since CGM requires many iterations
to find a converged solution, global stiffness matrix if not stored explicitly must be
reassembled implicitly at every iteration. This dramatically increases computation
time on CPUs. GPUs can be used to speed up the global stiffness matrix assembly
process by hundreds of times. As a result, an efficient GPU FEA implementation has
the potential to be faster and more memory-efficient than traditional CPU solvers. The
main reason GPU FEA solvers are not widely used in engineering community is that
implementations that would utilize all the benefits of GPUs are highly dependent on
specific applications.

GPUs typically have several multiprocessors with each one capable of running
thousands of threads simultaneously. This architecture enables GPUs to process
independent portions of large data. Numerous strategies have been proposed for
efficient parallelization of the matrix assembly computations to avoid race conditions,
1.e. simultaneous changes of the same memory location by multiple threads. Such
strategies include element-by-element (EbE) assembly with “coloring” (segmentation
of the mesh into disjointed fragments that can be processed independently of each
other), node-by-node (NbN), and degree of freedom-by-degree of freedom (DbD), see
[11].

In addition, there are several kinds of on-chip memory including register and
shared, and off-chip memory including global, local, constant and texture. Each
memory type has a different latency of read and write operations associated with it.
Minimization of low-bandwidth memory operations is one of the main optimization
strategies in GPU programming, see for example, [12] for details.

Implementation in this paper uses the Compute Unified Device Architecture
(CUDA) parallel computing platform by NVIDIA Corporation, which provides an
interface for computation on general purpose NVIDIA GPUs. The approach presented
here is based on the matrix-free implementation in [13]. One of the main strategies of
the approach to improve performance of the assembly step is use of a fixed (or
structured) mesh as opposed to a conformal mesh. This eliminates the need for a large
element connectivity matrix and allows to reuse element stiffness matrix for identical
elements in the model. It has previously been shown that structured meshes lead to
good predictions of elastic properties of 3D woven composites when compared to

1183

conformal meshes [8]. In the current approach, discretization results in each element
belonging to either the matrix or the tows — there are no boundary elements defined by
a mix of properties of two adjacent phases.

CGM with Jacobi preconditioner is used for solution of the FEA system, see
Figure 1 for the iterative algorithm [13]. Scalars tol, k4, and k represent the user-
controlled tolerance, maximum number of iterations and iteration counter,
respectively; vector u, represents the initial guess for displacement; vectors a, p, r and
scalars a, 3, p are quantities used in the CGM method; matrix M is the Jacobi
preconditioner matrix, which is simply a diagonal matrix of the components K;; (no
summation) of the global stiffness matrix. This form of M makes finding its inverse as
simple as calculating the reciprocal value of each component independently. Note that
only non-zero elements of the matrix are stored. Other more efficient preconditioners
exist, however, most of them require manipulations of the full stiffness matrix which
is not available explicitly in the matrix-free implementation.

Input: K, £, ug, tol, kp,qx

Output: u
Algorithm:

01: k=0

02: u=nu,

03: r=f—K-u
04: p=M1r
05: po=p'-r

06: while [|r||, > tol - ||f]|, do
07: k=k+1
08: a=K:p

Pr-1
09: =
Xk al - p
10: u=u-+t+ag-p
11: r=r—ag-a

12 pp=M)T-r
13: Bk = Pr/Pr-1

14: p=M1lr+p,p
15: ifk = k4, then

16: break;
17: end
18: end

Figure 1. Conjugate gradient method with Jacobi preconditioner [13].

To minimize the number of data transmissions between the host (CPU) and the
device (GPU), most of the one-time preprocessing operations are performed on the
host. The program starts by reading the mesh, material properties and material
orientations files. Since structured grid approach is used, mesh file represents a simple
list of each element’s phase in the grid — “0” is used for the matrix phase, positive
integers correspond to the position of the material orientation vector of the element in
the orientations file and represent the homogenized tow phase. Next, all element

1184

stiffness matrices are calculated on the host and stored as a single vector. The total
number of stiffness matrices is equal to the number of distinct material orientations
present in the 3D woven tows plus one (for the matrix material). The matrix is
assumed to be isotropic, tow elements are treated as transversely isotropic with the
out-of-plane material orientation vectors aligned with tow centerlines. Matrix
operations required for generation of element stiffness matrices [14] are programmed
using Eigen C++ library [15]. The final size of the vector containing all element
stiffness matrices affects the amount of memory occupied on the device, which means
care must be used to keep the number of tow material orientations to a minimum
without sacrificing the fidelity of the woven architecture representation. Once the
element stiffness matrices are available, Jacobi preconditioner M can be calculated.

Next, all vectors used in the CGM algorithm are initialized and steps 4 and 5 of the
algorithm are executed on the host. Matrix-vector product in step 3 and all vector
operations in the “while” loop (steps 6 and beyond) are performed on the device.
Memory for a,f, M, p,r,uand for vectors containing all element stiffness matrices
and composite mesh is allocated on the device and these quantities are copied from the
host to the device’s global memory. Steps 9, 10, 11, 12 and 14 represent simple vector
operations, i.e. dot product, summation, multiplication by a scalar or their
combinations. These steps are programmed using the CUDA-accelerated
implementation of the Basic Linear Algebra Subprograms (BLAS) aka cuBLAS
library [16].

Step 8 requires assembly of the global stiffness matrix, which depends on the
physics of the problem, element type, boundary conditions etc. and must be
implemented via a custom GPU subroutine (kernel). DbD scheme is used for the
assembly to the avoid race condition — each degree of freedom is assigned to a
separate thread and is only processed once. Note that in this case, contribution from
the same element is added multiple times because an element is connected to multiple
degrees of freedom, however, this is not a significant performance issue because all
element stiffness matrices are precomputed in advance.

Finally, the scalar operations used for calculation of the convergence criterion are
performed on the host.

RESULTS AND DISCUSSION

A model of an orthogonal 3D woven carbon/epoxy composite unit cell of the size
5.08 x 5.08 x 4 mm?3 is used to illustrate performance of the GPU FEA solver
presented above. Reinforcement geometry of the unit cell was extracted from X-ray
computed microtomography data and resampled to obtain a structured grid finite
element mesh of the size 126 X 126 X 100 (1,587,600 total) hexahedral elements,
see Figure 2. Volume fraction of the tows in the unit cell is 67.6%. Elastic properties
of the RTM6 epoxy matrix and homogenized tows (20% RTM6 epoxy matrix and
80% IM?7 carbon fiber by volume) are provided in Table I. Note that local material
orientations aligned with the tow centerlines are applied to all elements in the tows.
Details of the model preparation approach are presented in [8].

1185

Figure 2. (a) X-ray computed microtomography data of an orthogonal 3D woven composite; (b) structured
finite element grid generated from the data [8].

Table 1. Elastic properties of the matrix and homogenized tow materials.

Material E; (GPa) E,(GPa) | G, (GPa) 177 V23

Matrix: RTM6 epoxy 2.89 - - 0.350 -

Tow: 20% RTM6 epoxy +
80% IM7 carbon fibers by vol.

221 13.18 7.17 0.350 0.350

In this analysis, displacements of all nodes on the negative x-plane are fixed in all
three directions and nodes on the positive x-plane are prescribed a displacement of
0.00508 mm (0.1% strain) in the positive x-direction. For comparison, the same load
case is simulated in the commercial FEA software MSC Marc. CASI Iterative solver
with tolerance of 1078 is used in Marc (https://www.mscsoftware.com/product/marc).
Same tolerance is used in the GPU FEA code analysis.

Figure 3 presents contour plots of the displacement components x,y and z
obtained using Marc. Figure 4a shows a comparison of the displacement plots between
Marc and the GPU FEA code for the path along the positive x-axis and for the
coordinates y = z = 0. Absolute errors normalized by the applied displacement
(0.00508) are shown in Figure 4b. Path plots look identical. Upon closer examination
of the error plots, the greatest error (0.29%) is observed in the component y of
displacement. Error in the component x is much lower (0.038%) because both faces
of the specimen, ie. x =0mm and x =5.08mm are prescribed applied
displacements in the x-direction. Comparison of reaction forces in the x-direction
gives a relative error of 0.71%: MSC Marc predicts a value of 1486.6 N, GPU FEA —
1476.0 N.

The main advantage of this implementation is computational efficiency. Both
simulations are run on an office machine with Windows 10 64-bit operating software,
Intel 17-8700 (3.2 GHz) CPU, 32 GB of RAM, and NVIDIA GeForce GTX 1050 Ti 4
GB graphics card. The total runtime of the MSC Marc simulation is 345 seconds: 66
seconds was spent on the stiffness matrix assembly, 120 seconds — on the solution of
the SLE. The total runtime of the GPU FEA code is 66 seconds with the assembly step
taking on average 32 ms (stiffness matrix is assembled at every iteration). Considering
matrix assembly alone, the speed increase achieved by the GPU FEA code is
approximately 2,000 times, however, the total runtime is only 5 times shorter because
Jacobi is an inefficient preconditioner and it takes GPU FEA many more iterations to

1186

converge to the solution. The commercial code requires approximately 100 iterations,
while GPU FEA — over 1000.

In terms of memory, GPU FEA code requires 973 MB of RAM and 400 MB of
the dedicated GPU memory. MSC Marc uses approximately 17,000 MB of RAM,
more than 17 times of the GPU FEA code requirement.

While linearly elastic analysis of a single composite unit cell is not particularly
exciting — as demonstrated it can be performed using a commercial FEA package — the
results presented in this paper lead to the following observations:

1) elastic analysis of very large models (tens of millions of elements) is possible
on personal computers equipped with dedicated graphics cards if GPU-based
matrix-free solvers are used.

2) nonlinear analysis which requires frequent reassembly of the global stiffness
matrix can be sped up significantly with a GPU solver — assembly step on
GPU takes a small fraction of the time required on CPU. For maximum
performance, the complete global stiffness matrix could be stored, and an
efficient preconditioner could be used. Note that this would increase the GPU
memory requirements of the code.

] L |

Figure 3. Contour plots of the displacement components x, y and z obtained using commercial

FEA software MSC Marc.
21 & 10
T]
| i:m.r--!..
| Emnry
N _,.-""'. 351 s
/ =1 4
&t r
sl
At
15}
al r
_.-'. |
1 Fa - —
4 ’ ——
T oy
d _f. 2 —— — — Er
1 £ 5 —— + = =
i 1 a 3 o B B 2 1 2 3 4 E i
(a) (b)

Figure 4. Comparison of displacements sampled along the red arrow from the commercial FEA code
MSC Marec (solid lines) and GPU FEA (data points) results: (a) displacement components x, y and z;
(b) errors in displacement values normalized by the applied displacement.

1187

CONCLUSIONS

An implementation of a GPU-based FEA solver is presented and used for linearly
elastic analysis of a 3D woven composite unit cell. The GPU-based solver offers
significant performance improvements over the commercial FEA code: 5 times shorter
runtime and 17 times lower RAM requirement. Due to reduced memory requirements,
GPU FEA solvers enable linear analysis of models with tens of millions of elements
on personal computers and show potential as efficient alternatives to CPU solvers in
the case of highly nonlinear analysis where frequent global stiffness matrix updates
are required.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation,
USA through grant CMMI-1662098.

REFERENCES

[1] L. Tong, A. P. Mouritz, and M. K. Bannister, 3D Fibre Reinforced Polymer Composites.
Elsevier, 2002.

[2] I. Tsukrov et al., “Finite Element Modeling to Predict Cure-Induced Microcracking in Three-
Dimensional Woven Composites,” Int. J. Fract., vol. 172, no. 2, pp. 209-216, Dec. 2011.

[3] H. Moulinec and P. Suquet, “A numerical method for computing the overall response of
nonlinear composites with complex microstructure,” Comput. Methods Appl. Mech. Eng., vol.
157, no. 1-2, pp. 69-94, 1998.

[4] G. Zhou, X. Sun, and Y. Wang, “Multi-chain digital element analysis in textile mechanics,”
Compos. Sci. Technol., vol. 64, no. 2, pp. 239-244, Feb. 2004.

[5] L. Huang, Y. Wang, Y. Miao, D. Swenson, Y. Ma, and C.-F. Yen, “Dynamic relaxation
approach with periodic boundary conditions in determining the 3-D woven textile micro-
geometry,” Compos. Struct., vol. 106, pp. 417-425, Dec. 2013.

[6] A. Drach, B. Drach, and I. Tsukrov, “Processing of fiber architecture data for finite element
modeling of 3D woven composites Dedicated to Professor Zden¢k Bittnar in occasion of his
70th birthday.,” Adv. Eng. Sofiw., vol. 72, pp. 18-27,2014.

[7] B. Drach, A. Drach, I. Tsukrov, M. Penverne, and Y. Lapusta, “Finite Element Models of 3D
Woven Composites Based on Numerically Generated Micro-Geometry of Reinforcement,” in
Proceedings of the American Society for Composites 2014 - 29th Technical Conference on
Composite Materials, 2014.

[8] A. Ewert, B. Drach, K. Vasylevskyi, and 1. Tsukrov, “Predicting the overall response of an
orthogonal 3D woven composite using simulated and tomography-derived geometry,” Compos.
Struct., vol. 243, no. October 2019, p. 112169, 2020.

[9] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU
computing,” Proc. IEEE, vol. 96, no. 5, pp. 879-899, 2008.

[10] S.Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous computing techniques,” ACM
Comput. Surv., vol. 47, no. 4, 2015.

[11] J. Martinez-Frutos, P. J. Martinez-Castejon, and D. Herrero-Pérez, “Fine-grained GPU
implementation of assembly-free iterative solver for finite element problems,” Comput. Struct.,
2015.

[12] NVIDIA, “CUDA Toolkit Documentation,” 2020. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. [Accessed: 16-Jul-2020].

[13] J. Martinez-Frutos and D. Herrero-Pérez, “Efficient matrix-free GPU implementation of Fixed
Grid Finite Element Analysis,” Finite Elem. Anal. Des., vol. 104, pp. 61-71, 2015.

1188

[14] D. L. Logan, 4 First Course in the Finite Element Method, 6th ed. Cengage Learning, 2016.

[15] B. Jacob and G. Guennebaud, “Eigen C++ Library.” [Online]. Available:
http://eigen.tuxfamily.org/.

[16] NVIDIA, “cuBLAS Library: User Guide,” 2020. [Online]. Available:
https://docs.nvidia.com/cuda/cublas/index.html. [Accessed: 16-Jul-2020].

1189

