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Abstract—In this paper, we formulate and solve a two-stage
Bayesian sequential change diagnosis problem. Different from the
one-stage sequential change diagnosis problem considered in the
existing work, after a change has been detected, we can continue
to collect samples so that we can identify the distribution after
change more accurately. The goal is to minimize the total cost
including delay, false alarm and mis-diagnosis probabilities. We
first convert the two-stage sequential change diagnosis problem
into a two-ordered optimal stopping time problem. Using tools
from multiple optimal stopping time problems, we obtain the
optimal change detection and distribution identification rules.

I. INTRODUCTION

Abrupt changes detection and diagnosis problem using
sequential observations has many applications, including net-
work monitoring, outage detection and identification in power
system, etc. [1]-[3]. These tasks can be formulated and gen-
eralized as a sequential change diagnosis (SCD) problem. In
particular, an SCD problem can be viewed as a combination of
change point detection (CPD) problem and sequential multiple
hypothesis testing (SMHT) problem. In CPD problems, the
goal is to detect the presence of change in the distribution
quickly [4]-[10]. In SMHT problems, the distribution does
not change, the focus is to identify the data distribution from
K candidate distributions [11]-[14]. In SCD problem, the data
distribution will change at an unknown time, from distribution
fo to one of the K candidate distributions. We need to detect
the change point as quickly as possible and identify the dis-
tribution after change as accurately as possible. [15] provides
early results for SCD problem. [16] generalizes earlier work on
SCD and provides more tractable and appropriate performance
criteria. In addition, the optimal solution and asymptotically
optimal solution of one-stage Bayesian SCD problem are
derived in [17] and [18], respectively.

In the one-stage SCD problem [15]-[18], we must detect the
change and identify the distribution after change at the same
time. In practice, however, after we detect the change, we may
still have opportunity to observe extra data samples, which
may help us to make a more accurate identification decision.
For example, we conduct quality test on a manufacturing pro-
cess which includes multiple processing components. When
a sudden fault occurs in one of the processing components,
the goal is to detect the fault quickly and identify the faulted
processing component accurately. If the quality testers have
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chance to observe some extra products after the fault is
detected, the accuracy of fault diagnosis can be improved with
a relatively low extra delay cost.

Motivated by this, we formulate a two-stage SCD problem.
In this problem, we have two stopping times. The first stopping
time is to raise an alarm once a change has been detected.
After that, we can still collect more observations. The second
stopping time will decide when we are ready to make the
diagnosis decision. Therefore, in our problem formulation,
change detection and distribution identification become two
different stages of the whole SCD procedure. Taking advantage
of samples of the second stage, it is possible to achieve a lower
total cost by improving the identification accuracy.

In this paper, we characterize the optimal solution for the
formulated Bayesian two-stage SCD problem. The main idea
is to convert the two-stage SCD problem into two ordered op-
timal stopping time problems, one for change detection stage
and the other for distribution identification stage. Then we
solve them in reverse order. Firstly, we convert the distribution
identification stage of the two-stage SCD problem into an
optimal single stopping time problem. Afterwards, we study
this problem under a finite-horizon dynamic programming
(DP) framework, then expand it to infinite-horizon case and
obtain the optimality equation. Applying DP method [19], we
solve the optimality equation and get the optimal stopping
rule for the distribution identification stage. Following the
same method, we can also get the optimal stopping rule of
the change detection stage. In addition, we investigate the
properties of the cost function. Finally, we validate that the
proposed optimal two-stage SCD rule generally outperforms
the optimal one-stage SCD rule by simulation.

The remainder of the paper is organized as follows. In
Section II, we provide our problem formulation. In Section III,
we study the evolution of the posterior probability, and convert
the two-stage SCD problem into two optimal single stopping
time problems. In Section IV, we derive the optimal rules for
the two optimal single stopping time problems. Simulation
results are provided in Section V. Finally, we conclude this
paper in Section VI. Due to space limitations, we omit the
proof details. The proof details can be found in [20].
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Figure 1. Time ordering of a two-stage SCD process

II. PROBLEM FORMULATION

Consider a probability space (€2, F,P) that hosts a stochas-
tic process {X,}n>1. Let A : Q — {0,1,...} be the
time when the distribution of X, changes and 6 : Q —
72 {1,...,I} be the state after change. In particular, the
distribution of X,, is fy when n < A, and is fy when n > .
A and 6 are independent random variables defined with the
distributions

if t=0

P{At}{pm it 620

(1= po)(L=p)""p,

and v; = P{ =i} > 0, i € Z, where po, p and {v;}icz
are constants. Given A and 6, random variables {X,},>1
are independent. In addition, F = (F,,),>0 is the filtration
generated by the stochastic process {X,,},>1; namely, Fo =
{0,2} and F, =0(X1,X2...X,).

Our goal is to quickly raise an alarm when the change occurs
and further accurately determine the state 6. Towards this goal,
we employ a two-stage SCD rule (71, 72, d) that includes two
stopping times 77 and 71 + 72 and a decision rule d. Here, 7 is
the time when we raise an alarm that a change has occurred. In
our model, after 77, we can keep collecting more observations
to make a more accurate diagnosis. Correspondingly, 71 + 72
is the time when we make the diagnosis decision d.

Let A := {(71,72,d)|11,71 + 72 € F,d € ZU{0}} be the
set of all possible two-stage SCD rules. Here, 7 € [ means
that 7 is a stopping time associated to F. The time ordering
of a two-stage SCD process is shown in Fig.1. The possible
costs of an SCD rule include costs of delay, false alarm and
mis-diagnosis. The delay consists of two parts, (71 — A)4
and 75, which correspond to the change detection stage and
the distribution identification stage respectively. The expected
costs of them are E[c; (7 — A)4] and E[ca7s], where ¢; and
co are per-unit costs associated with each stage. A false alarm
occurs when a change alarm is raised before A\. The expected
false alarm cost is El[al;, <x}], where a is the penalty
factor of false alarm and 1.y is the indicator function. Mis-
diagnosis happens when a wrong distribution identification is
made, i.e., when d # 6. The expected mis-diagnosis cost is
E[Zle bijoo>ri+ra>00=id=5} T b0jL{r+r.<na=53] for
d = j, where b;; is the penalty factor for wrong decision
d = j when 6 =4 and by ; is penalty factor of false alarm of
distribution identification stage. We set b;; = 0 when 7 = j.

Thus the Bayes cost function for an SCD rule § € A is

C0) = caE[(11 = A) 4] + B[] + aE[1(,, <xy]+
I

I
Z E[Z bijL{cos>m4ma>n0=i,d=j} T 001 {r +ry<X d=j}]-
i1
(1)

Our goal is to find the optimal rule § € A that minimizes
C(9).

In a closely related one-stage SCD problem discussed in
[17], the change detection and distribution identification must
occur at the same time, and hence there is only one stopping
time. We generalize the problem setup in [17] to allow the
change detection and identification to occur at different times
with the hope of improving the decision accuracy. We assume
c1 > co. Under this condition, we can improve the identifi-
cation accuracy with lower per-unit costs in the distribution
identification stage.

III. POSTERIOR ANALYSIS

Let IT,, = (H%O)7 . ,H%I))nzo € Z be the posterior proba-
bility process defined as

Y =P\ <n,0=iF,},icT
I .= P{\ > n|F,)
where 2 £ {IT € [0, 1)y, 0) T = 1},
It is easy to check that {II,},>o is a Markov process
satisfying

. Di(anl Xn)
ZjeIU{O} D; (M1, Xn)
where
. [ (1=p)O fo(z) i=0

The initial state is

Héé) =1-po
Héz) = PoU;

1=0
i€l

Proposition 1. With the process 11, we can express (1) as

T1—1

C((S) =E Z C1 (1 - H%O)) + CcoTo + 1{7-1<oo}aH5-?)
n=0
I I )
+ 1{T1+T2<00} Z 1{d:j} Z bin‘(le)-f—Tz :
j=0 =0
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associated with the decision d = j. We have

i5» which is the mis-diagnosis cost
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C(0)=E Z 1 (1 - HS») + oo + 1{71<00}al_[(7?)
n=0
I
+ 17 4r<00} Z l{d:j}Bj (H71+72)]
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+ CoTo + 1{T1+T2<OO}B (HT1+T2)‘|

part 2

= C(Th T2, d*)
in which B(IT) = min B;(II), the smallest mis-diagnosis
JEZU{0}

cost. From (3), we can see that the optimal decision d* is the
choice that achieves B(II). Then we only need to find the
optimal stopping times 7; and 7, which means that the SCD
problem becomes an optimal ordered two-stopping problem.
[21] showed that the ordered multiple stopping time problem
can be reduced to a sequence of optimal single stopping
time problems defined by backward induction. Here we use
the same method and reduce the two-stage stopping problem
to two optimal single stopping time problems. According to
equation (3), the cost can be divided into two parts. The first
part is the expected cost of the change detection stage, while
the second part corresponds to the distribution identification
stage. The first part depends on 7; while the second part
depends both on 7; and 75. Let the cost functions of change
detection stage and distribution identification stage be

7'171
Cim) =Y e (1 - Hﬁl‘))) + 1 coyall® (4
n=0

and

CQ(HTI,Tz) = CoTo + 1{7'1+7'2<oo}B (H-,—1+-,—2) . (@)

Cs is a function of II;, and 75 because II;, and the obser-
vations from 77 to 7y 4+ 72 are sufficient to calculate II, 4 ,,.
Then we have the minimal expected cost for the SCD process,

C(ri,73,d") = FE[C1(T1)+02(7‘1772)]
E[Ci(r1) + E [Ca(72) 117, ]

min
T1,T1+T72€
= min
T1,T1+72€F

=minE |Ci(r) + min E[Cy(m)|]

T1EF T1+T12€F

(6)

By equation (6), we can see that the two-stage stopping time
problem becomes two optimal single stopping time problems.
The first one is for the identification stage, its goal is finding
the optimal 72 which minimizes E[Cy(72)|II,,] for any given
71 and I, . The second single stopping time problem is to find

the best stopping rule for the detection stage, i.e., selecting the
optimal 7; to minimize the expected cost of the whole SCD
process, C(11, T2, d*). From the last line of (6), it is easy to see
that we can find an optimal 7; to minimize the expected cost
for the whole SCD process if the optimal rule for 7 is known.
Therefore, we will solve the SCD problem in a reversed order,
i.e., find the optimal rule for the identification stage first, then
select the optimal stopping time for the detection stage.

IV. OPTIMAL SOLUTION

3) A Finite-Horizon Case

To solve the two-stage SCD problem, we first restrict
attention to the finite-horizon case. In particular, we can
spend at most 77 amount of time in the detection stage, i.e.,
71 < T71, and we can spend at most 75 amount of time in the
identification stage, i.e., 7o < T5. Here, 77 and T3 are fixed
positive integers. After establishing dynamic programming
framework for the finite-horizon case, we will then extend
it and further obtain the optimal rule for infinite-case.

In the distribution identification stage, 7 and II, are
already given. After we get the optimal 75 and minimum
expected cost, Cz(I1;, , 73), for any 7 and I, we will further
introduce the optimal stopping rule for the change detection
stage later.

Now we consider the optimal single stopping time problem
under a DP framework. Let S ,(62) denote the state of the system
at time k € |1, T + 11)- S’,(f) can take 6 € Z, 0 and E (End).
Here, Sl(f) = 60 means that the change has happened before
k and the distribution after the change is fp. S,(f) = 0 means
that no change has happened before k, which implies a false
alarm was made at time 7;. Once the result of distribution
identification is declared, the state of system becomes E. The
state evolves as:

2 2
S = 0a(SE7 A L k)
where the transition function g- is

0, ifA>k,s#FE,a=0
g2(s,\a)=4¢0, if A<k s#Ea=0.
E, fs=Fora=1

The initial state Sg) = 0 if A > 7, otherwise Sg) =¢.In
addition, the observations in this DP framework are the data
samples { X, }n>1.

Under this DP framework, we can see that H,(;) =
P(S,E,z) = i|F)). Then the expected cost of the distribution
identification stage can be expressed in terms of II; as

CQ(Hk, k) = Cg(k - Tl) + 1{k._7-1<00}B(Hk).

Therefore, II; is the sufficient statistics for the DP process.
Furthermore, we can express the minimum cost-to-go function
at time k for this DP problem as

VErT(IL,) = B(ML), if k =Ty + 1 (7



V27 (IT) = min(B(ITy,),
co + GPTTUILL)), if k< To+1 (8)

where

G () = B[V, 21 ™ (k)| i)

:/{qujiirTl(HkJrl)f(XkJrllfk)} | X1 =adT

_ / (VET (M1 (g, 2)) £ (201 |
©)

The first item of the minimization in equations (8) is the
mis-diagnosis cost for stopping at time k, while the second
item corresponds to the cost of proceeding to time k + 1.
In this way, we know that the minimum expected cost for
the finite-horizon DP problem is V2*7(II,). By solving
the optimality equations (7) and (8), we can get the cost
V471D, ) for any given 7y < Ty and II,, € Z.

Here, we explain why G’;‘Cz"'” is a function of IIj. Firstly,
we already know that II;,; is a function of II; and the
data sample X};. Besides, for any given value of Xy,
f(Xg+41|Fr) is also a function of T because

FXpalFr) = Dj(Mk, Xjt1)-
Therefore, G2 is a function of IIj and so is V7>,
In addition, there are some useful properties of G > (II).
Lemma 1. For k € [r,To + 7] and T1 € Z, (I). 0 <

GEFR(n) < | max by (2). GL7 (1) ds concave

JjEZU{0} (10)

By Lemma 1, we can conclude that VkTQ""T1 is concave for
k € [r1,T> + 71]. This is because B(II) is concave and the
minimization of concave functions will still be concave.

After knowing the optimal stopping rule of the distri-
bution identification stage and the minimum expected cost
V 2+ (I1,, ) for any given 71 and IL,,, selecting an optimal 71
to minimize the whole Bayes cost becomes a single stopping
time problem. The method to solve this problem is similar
with the distribution identification stage.

Now we consider the optimal stopping problem of the
change detection stage under a finite-horizon DP framework.
Let S,gl) denotes the state of the system of the change detection
stage at time k € [0, 77]. S,il) can take value 1 (post-change),
0 (pre-change) and F (End). Once a change alarm is raised,
the state of system becomes E. The state evolves as:

StV = g8 L <)
with S(()l) = 0, where the transition function g; is

0, ifA>k,s#FE,a=0
gi(s,\a)=<¢1, if A<k s#FE,a=0.
E, fs=Fora=1

In addition, the observations of this DP framework are the data
samples {X,, },>1.

Under this DP framework, we can see that H,(f) =
P(S? =0|F,) and 1 — I = P(S® = 1|7,). Then the
expected cost of the whole SCD process can be expressed in
terms of {II,,},<x as

k—1
Clh 2 d") = V)Y er (1= 10 )41 oy all),
n=0

Therefore, {IL,},<x is the sufficient statistics for the DP
process. Furthermore, we can express the minimum cost-to-
go function at time k for this DP problem as

Wo1y,) = al” + VR, if k=T (11)

W (1) = min(alli” + V(L)
a(1-10)+Ul(m), if k< Ty (12)

where
Ut (T) = E[W,L ) (g )| Fi)

:/[Wgh(ﬂkﬂ)f()(kﬂ\fk)} | Xy =adx (13)

:/[W;;‘Fil(ﬂkﬂ(ﬂk,x))f(x\nk)} da.

The first item of the minimization in equation (12) is the cost
for stopping at time k, while the second item corresponds to
the cost of proceeding to time k+ 1. In this way, we know that
the minimum expected cost for the finite-horizon DP problem
is Wi (o).

Similar to Ggﬁﬁ, UkT ! is also a function of II. Firstly,
we already know that II;,; is a function of II; and the
data sample Xj;. Besides, for any given value of Xy, 1,
f(Xk41|Fr) is also a function of II; because of equation
(10). Therefore, U is a function of IT;, and so is W, .

In addition, there are some useful properties of Ug 1(1ID).

Lemma 2. For k € [0,T1] and Tl € Z, (1). 0 < U () <

a+ Z_’jlenl?ﬁo} bij; (2). UIM(I) is concave.

By Lemma 2, we can conclude that W,CT ' is concave for
k € [0,Ty]. This is because IT®)(IT) and V,">**(II) are also
concave and minimization operation preserves concavity.
B. Infinite-horizon Case

After establishing the DP frameworks for the two stages
of the finite-horizon SCD problem, we can study the infinite-
horizon case by extending the frameworks to infinite-horizon
case, i.e., letting 7} and 75 go to infinity.

Theorem 1. For any 11 € Z, the infinite-horizon cost-to-go
function for the DP process of the identification stage is

V(D) = lim V(1) = min(B(ID), ¢ + Gy (II)) (14)
where

Gy (II) = E[V(IT)| F)

B / [V(ﬁ(ﬂvff))f(:cm)} da. (15)



In (15), II denotes the posterior probability at time next to the
time of II and F. In addition, the function V (I1) is concave
and bounded as 0 < V(II) < max b ;.
i,j€IU{0}
From optimality equation (14), we know that the optimal
rule for this single optimal stopping time problem is

T3 = kﬁgfl{B(Hk) < co+ Gy(lg)} (16)
That is, we should make an identification when the hyper-plane
on the right side exceeds B(II). In addition, the expected cost
of the distribution identification stage is V (IL,, ).

Heuristically, at any time k > 79, we have two choices:
(1) Making an identification; (ii) Waiting for the next data
sample. With the posterior probability IT, the expected cost
values of the two choices are B(II;) and ¢y + Gy (Ilg),
respectively. The optimal stopping rule (15) tells us that when
B(II) < ¢2 + Gy (I1), the optimal option is making iden-
tification immediately. If B(II) > c¢3 + Gy (Il ), observing
more data samples is a better choice.

Based on (12), we can study the infinite-horizon DP process
of change detection stage by letting 77 — oo.

Theorem 2. For any 11 € Z, the infinite-horizon cost-to-go
function for the detection stage is

WD = Jim W7 1) .
= min(all'¥Y + V(I1), ¢; (1 — 1) + Uy (I1))

where

Uw (I1) = E[W (IT)| 7]

. (18)
- / WL, 2)) f(2[11)] da.
In (18), TI denotes the posterior probability at time next to the
time of 11 and F. In addition, the function W (I) is concave
and bounded as 0 < W(II) <a+ max b;;.
i,j€ZU{0}

From optimality equation (17), we can see that the optimal

rule for this problem is

Tlopt = gg%{an,@ F V() < e (1 — ) + Uy (TT) 3.
- 19)
That is, we should raise a change alarm when the hyper-plane
on the right side exceeds aII(®) + V/(IT). Finally, we get the
minimal expected cost of the two-stage SCD problem, W (IIj).
Similar to the identification stage, at any time k of the
change detection stage, we have two choices: (i) Raise a
change alarm and enter the distribution identification stage;
(i) Wait for the next data sample. The expected costs of the
two choices are aH,iO) + V(II)) and ¢1 (1 — Hg))) + U (I1,),
respectively. The optimal stopping rule (19) tells us that when
aH,(CO) +V(Ig) <ca(1- cho )+ Uw (111, the optimal option
is to raise change alarm immediately. If aH,&O) + V(1) >
a(l- ngo)) + Uw (I11,), it is better to wait and observe more
samples.

Table T
COMPARISON OF THE BAYESIAN COSTS WITH DIFFERENT ¢; AND 7

r

o 0.02 0.05 0.2 0.5 1
0.005 0.0720 | 0.0798 | 0.1009 | 0.1309 | 0.1580
0.02 0.2352 | 0.2511 | 0.3115 | 0.3695 | 0.4016
0.05 0.4763 | 0.5086 | 0.6123 | 0.6853 | 0.6980
0.2 0.9392 | 0.9892 | 1.0021 | 1.0023 | 1.0023
0.5 1.0059 | 1.0062 | 1.0058 | 1.0064 | 1.0067

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate
the performance of the proposed SCD rule. In our simula-
tion, the observed data samples independently follow a two-
dimensional normal distribution, A (1, I2). The mean vector
1 changes at the change point, from gy to two possible mean
vectors p1 and p2. Denote the mean vectors as ,uoz(ugl), uéo))
and ui:(pgl), MEO)). The elements of these mean vectors
satisfy

1 _ (1) 1 (1
S ST G A A
M1~ = Ko Ho = py  +0.5

In addition, we set I = 2, pg = 0, p = 0.01, (vi,v2) =
(0.3,0.7). Finally, all the penalty factors of false alarm and
mis-diagnosis are 1. Table I presents the expected costs of the
optimal two-stage SCD rule with different delay penalty factor
settings, i.e., with different ¢; and r. Here, r = c¢;/co. The
results are estimated by Monte-Carlo simulations.

From Table I, we can see that the performance of the optimal
two-stage SCD rule becomes better as c; and r get smaller. In
particular, with identical c;, the optimal two-stage SCD rules
with 7 < 1 generally outperform the rules with » = 1. This
result validates that the optimal two-stage SCD rule generally
outperforms the optimal one-stage SCD rule. Furthermore,
with smaller c;, the performance improvement brought by
reducing r is more significant. The reason is, with a small
c1, we can use more data to improve the accuracy of change
detection and identification without a significant increment of
the delay cost. On the contrary, when c; is large enough, the
performance can still be very poor even with a very small r.
This result implies that when the unit delay cost is too large,
the improvement on diagnosis accuracy becomes too expensive
and also negligible.

VI. CONCLUSION

In this paper, we have formulated the Bayesian two-stage
sequential change diagnosis problem. We have converted the
problem into two optimal single stopping time problems and
obtained the optimality equations of them. After solving these
equations using dynamic programming, we have obtained the
optimal rule for the Bayesian two-stage SCD problem.
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