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Abstract—This paper studies the problem of recovering the
hidden vertex correspondence between two edge-correlated ran-
dom graphs. We focus on the Gaussian model where the two
graphs are complete graphs with correlated Gaussian weights
and the Erdds-Rényi model where the two graphs are subsampled
from a common parent Erdds-Rényi graph G(n,p). For dense
graphs with p = n=°M, we prove that there exists a sharp
threshold, above which one can correctly match all but a vanish-
ing fraction of the vertices and below which correctly matching
any positive fraction is impossible, a phenomenon known as the
“all-or-nothing” phase transition. Even more strikingly, in the
Gaussian setting, above the threshold all vertices can be exactly
matched with high probability. In contrast, for sparse Erdds-
Rényi graphs with p = n~ %W, we show that the all-or-nothing
phenomenon no longer holds and we determine the thresholds
up to a constant factor. Along the way, we also derive the sharp
threshold for exact recovery, sharpening the existing results in
Erdds-Rényi graphs [1], [2].

The proof of the negative results builds upon a tight character-
ization of the mutual information based on the truncated second-
moment computation in [3] and an ‘“‘area theorem” that relates
the mutual information to the integral of the reconstruction error.
The positive results follows from a tight analysis of the maximum
likelihood estimator that takes into account the cycle structure
of the induced permutation on the edges.

A full version of this paper is accessible at: https://arxiv.
org/pdf/2102.00082.pdf

I. INTRODUCTION

The problem of graph matching (or network alignment)
refers to finding the underlying vertex correspondence between
two graphs on the sole basis of their network topologies.
Going beyond the worst-case intractability of finding the
optimal correspondence (quadratic assignment problem [4],
[5]), an emerging line of research is devoted to the average-
case analysis of graph matching under meaningful statistical
models, focusing on either information-theoretic limits [1]-
[3], [6]-[8] or computationally efficient algorithms [9]-[15].
Despite these recent advances, the sharp thresholds of graph
matching remain not fully understood especially for approxi-
mate reconstruction. The current paper aims to close this gap.

Following [11], [16], we consider the following probabilistic
model for two random graphs correlated through a hidden
vertex correspondence. Let the ground truth 7 be a uniformly
random permutation on [n]. We generate two random weighted
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graphs on the common vertex set [n] with (weighted) adja-
cency vectors A = (Ajj)i<i<j<n and B = (Bjj)i<i<j<n
such that (A,r(i),r(j), Bij) are i.i.d. pairs of correlated random
variables with a joint distribution P, which implicitly depends
on n. Of particular interest are the following two special cases:

o (Gaussian model): P = N (8),(;5’)) is the joint

distribution of two standard Gaussian random variables
with correlation coefficient p > 0. In this case, we have
B =pA™ ++/1— p?Z, where A and Z are independent
standard normal vectors and A7, = Aq(i)x(j)-

o (Erd6s-Rényi random graph): P denotes the joint distri-

bution of two correlated Bern(g) random variables X and
Y such that P{Y =1| X =1} = s, where ¢ < s < 1.
In this case, A and B are the adjacency vectors of
two ErdGs-Rényi random graphs G1,Go ~ G(n,q),
where G7T (with the adjacency vector A™) and G4 are
independently edge-subsampled from a common parent
graph G ~ G(n,p) with p = g/s.

Given the observation A and B, the goal is to recover the
latent vertex correspondence 7 as accurately as possible. More
specifically, given two permutations 7,7 on [n], denote the
fraction of their overlap by

overlap(7, 7) £ % {i e [n]:n()=7()}.

Definition 1: We say an estimator 7 of 7 achieves, as n —
00,
o partial recovery, if P {overlap (7,7) > §} = 1 —o(1) for
some constant ¢ € (0, 1);
o almost exact recovery, if P {overlap (7,7) >0} = 1 —
o(1) for any constant § € (0,1);
e exact recovery, if P{overlap (7,7) =1} =1 — o(1).
The information-theoretic threshold of exact recovery has
been determined for the Erd6s-Rényi graph model [2] in
the regime of p = O (log_3(n)) and more recently for the
Gaussian model [8]; however, the results and proof techniques
in [2] do not hold for denser graphs. In contrast, approximate
recovery are far less well understood. Apart from the sharp
condition for almost exact recovery in the sparse regime
p =n"%1 [6], only upper and lower bounds are known for
partial recovery [7]. See Section III for a detailed review of
these previous results.
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In this paper, we characterize the sharp reconstruction
thresholds for both the Gaussian and dense Erdds-Rényi
graphs with p = n~=°(1). Specifically, we prove that there
exists a sharp threshold, above which one can estimate all but
a vanishing fraction of the latent permutation and below which
recovering any positive fraction is impossible, a phenomenon
known as the ‘“all-or-nothing” phase transition [17]. This
phenomenon is even more striking in the Gaussian model, in
the sense that above the threshold the hidden permutation can
be estimated error-free with high probability. In contrast, for
sparse Erd8s-Rényi graphs with p = n~ () we show that the
all-or-nothing phenomenon no longer holds. To this end, we
determine the threshold for partial recovery up to a constant
factor and show that it is order-wise smaller than the almost
exact recovery threshold found in [6].

Along the way, we also derive a sharp threshold for exact
recovery, sharpening existing results in [1], [2]. As a byprod-
uct, the same technique yields an alternative proof of the result
in [8] for the Gaussian model.

II. MAIN RESULTS

Throughout the paper, we let ¢ > 0 denote an arbitrarily
small but fixed constant. Let 7y denote the maximum like-
lihood estimator (MLE), which reduces to

uL € argmax(A™ , B). (1)

Since the prior distribution of the latent permutation 7 is
uniform, the MLE coincides with the maximum a posteriori
(MAP) estimator in [2] for the Erdés-Rényi graphs. Note that
the MLE may not maximize E [overlap(7, 7)].

Theorem 1 (Gaussian model): If

4+ ¢€)logn
pr > U dlogn @)
n
then P {overlap (Tmr, ) =1} =1 — o(1).
Conversely, if
4 —¢)logn
g < bz dlosn 3)

n

then for any estimator 7 and any fixed constant 6 > 0,
P {overlap (7, 7) <0} =1 —o(1).

Theorem 1 implies that in the Gaussian setting, the recovery
of m exhibits a sharp phase transition in terms of the limiting
value of % at threshold 4, above which exact recovery is
possible and below which even partial recovery is impossible.
The positive part of Theorem 1 was first shown in [8]. Here we
provide an alternative proof that does not rely on the Gaussian
property and works for Erdés-Rényi graphs as well.

The next result determines the sharp threshold for the Erdds-
Rényi model in terms of the key quantity nps?, the average
degree of the intersection graph G; A G5 (whose edges are
sampled by both G; and G3).

Theorem 2 (Erdds-Rényi graphs, dense regime): Assume
that p is bounded away from 1 and that p = n—°(1)_ If

5. (24¢€)logn

nps ,
P _log%—l—i-p

“4)

then for any constant 6 < 1, P {overlap (Tpmp,,7) > 0} =1 —
o(1). Conversely, if

2 (2—¢)logn

, 5
_log%—l—i-p ©)

nps
then for any estimator 7 and any constant 6 > O,
P {overlap (7, 7) <0} =1 —o(1).

Theorem 2 implies that analogous to the Gaussian model,
in dense Erd8s-Rényi graphs, the recovery of 7 exhibits an
“all—or;nothing” phase transition in terms of the limiting value

f W at threshold 2, above which almost exact
recovery is possible and below which even partial recovery
is impossible. However, as we will see in Theorem 4, unlike
the Gaussian model, this threshold differs from that of exact
recovery.

Remark 1 (Entropy interpretation of the thresholds): The
sharp thresholds in Theorem 1 and Theorem 2 can be in-
terpreted from an information-theoretic perspective. Suppose
an estimator T = 7(A, B) achieves almost exact recovery
with Eoverlap(7, )] = 1 — o(1), which, by a rate-distortion
computation, implies that I(7;7) must be close to the full
entropy of m, that is, I(m;7) = (1 — o(1))nlogn. On
the other hand, by the data processing inequality, we have
I(m;7) < I(m; A, B). The latter can be bounded simply as
(see Section IV-A)

I(; A, B) < (’2‘) 1(P),
where I(P) denote the mutual information between a pair of

random variables with joint distribution P. For the Gaussian
model, we have

1 1
I(P)=-log —.
(P) =3 8 T
For the correlated Erd6s-Rényi graph,
I(P) = qd(s|lq) + (1 — q)d(nllq), (6)
where ¢ = ps, n = Q(ll:qs), and d(sllq) =

D(Bern(s)||Bern(g)) denotes the binary KL divergence. By
Taylor expansion, we have I(P) = s%p (p —1+log %) (1-
o(1)) when ¢ = o(1). Combining these with (3)I(P) > (1 —
o(1))nlogn shows that almost exact recovery is impossible
under the conditions (3) and (5). The impossibility of partial
recovery under the same conditions takes more effort to show,
which we do in Section IV-A.

Theorem 3 (Erdds-Rényi graphs, sparse regime): Assume
p=n"20_ If

logn
2
nps” > (24 € max{,Z}, @)
2+ log(1/p)

then there exists a constant § > 0 such that
P {overlap (TmL, ) > 0} = 1 — o(1). Conversely, assuming
np = w(log?n), if

nps® <1—c¢, (8)
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then for any estimator 7 and any constant 6 > O,
P {overlap (7, 7) < d} =1 —o(1).

Theorem 3 implies that for sparse Erdés-Rényi graphs with
p =n~% for a constant o € (0, 1), the information-theoretic
thresholds for partial recovery is at nps2 =< 1, which is much
lower than the almost exact recovery threshold nps? = w(1)
as established in [6]. Hence, interestingly the all-or-nothing
phenomenon no longer holds for sparse Erd6s-Rényi graphs.
Note that the conditions (7) and (8) differ by a constant factor.
Determining the sharp threshold for partial recovery in the
sparse regime remains an open question.

Finally, we address the exact recovery threshold in the
Erdds-Rényi graph model. For ease of notation, we consider
a general correlated Erd6s-Rényi graph model specified by
the joint distribution P = (pa, : a,b € {0,1}), so that
]P’{Aﬂ(i)ﬂ(j) =a,B;; = b} = pap for a,b € {0,1}. In this
general Erd6s-Rényi model, 7y, is again given by the maxi-
mization problem (1) if p11pgo > po1P10 (positive correlation)
and changes to minimization if p11pog < Po1p1o (negative
correlation). The subsampling model is a special case with
positive correlation, where

poo = 1 — 2ps + ps”.

©)

Theorem 4 (Erdds-Rényi graphs, exact recovery): Under the
subsampling model (9), if

p11 =ps®, pio =po1 = ps(l —s),

n (vPoobi1 — v/Poibio)” > (1 +€)logn,  (10)
then P {overlap (Tpr, ) = 1} =1 —o(1).
Conversely, if
n (v/PooP11 — \/p()1p1(1)2 < (1—¢)logn, (11

then for any estimator 7, P {overlap (7, 7) = 1} = o(1).
Assume that p is bounded away from 1. Then Theo-
rem 4 implies that the exact recovery threshold is given by

2
lim, s o0 w = 1. Since log £ —14p > 2(1—/p)?,
with equality 1f and only if p = 1, the threshold of exact
recovery is strictly higher than that of almost exact recovery

in the Erd6s-Rényi graph model, unlike the Gaussian model.

III. COMPARISONS TO PRIOR WORK
A. Exact recovery

The information-theoretic thresholds for exact recovery have
been determined for the Gaussian model and the general
Erdds-Rényi graph model in certain regimes. In particular,
for the Gaussian model, it is shown in [8] that if np2 >
(4 + ¢)logn, then the MLE given in (1) achieves exact
recovery; if instead n,o2 < (4—¢€) logn, then exact recovery is
impossible. Theorem 1 significantly strengthens this negative
result by showing that under the same condition even partial
recovery is impossible.

Analogously, for Erd6s-Rényi random graphs, it is shown
in [1], [2] that the MLE achieve exact recovery when
nps? = logn + w(1) under the additional restriction that
p = O(log™3(n)). Conversely, exact recovery is shown

in [1] to be information-theoretically impossible provided

that nps? < logn — w(1), based on the fact the intersec-

tion graph G7 A Go ~ G(n,ps®) has many isolated nodes

with high probability. In comparison, Theorem 4 implies

that the precise exact recovery threshold is instead given by
npsQ(\/l 2ps+p52 Vp(1— s))

lim,,— oo = 1. In particular, de-

riving the tight COIldlthIl (11) requires more than eliminating
isolated nodes. See the discussions in Section IV-C for details.

B. Partial and almost exact recovery

Compared to exact recovery, the understanding of partial
and almost exact recovery is less precise. It is shown in [6]
that in the sparse regime p = n~(1) almost exact recovery is
information-theoretically possible if and only if nps? = w(1)
The more recent work [7] further investigates partial recovery.

It is shown that if nps® > C(6) max{l, lolgo(gl%)}, then

there exists an exponential-time estimator 7 that achieves
overlap (7, ) > 6 with high probability, where C(§) is some
large constant that tends to oo as & — 1; conversely, if
wp) _  (log(n)
o n

) with I(P) given in (6), then no estimator
can achieve overlap (7, ) > ¢ with positive probability. These
conditions do not match in general and are much looser than
the results in Theorems 2 and 3.

IV. PROOF SKETCH
A. Impossibility of partial recovery

As a first step, we characterize the asymptotic value of the
mutual information I(A, B; ). By definition,

I(A,B;m) £E [D (Papi«|Pa,5)]
=E [D (Pa,pxlQa,B)] — D (Pa,sllQaB)

for any joint distribution Q4 p of (A,B) such that
D (Pa,B||Qap) < oo. Note that P, p|, factorizes into a

product distribution [T, _; Pa_ . (;).B: = P®(), where P
is the joint distribution of (A,r( yx(j)» Bij). Thus, to exploit
the tensorization property of the KL-divergence, we choose
Qa.p to be a product distribution under which A and B
are independent and (A;;, B;;) are i.i.d. pairs of independent
random variables with a joint distribution ) with the same
marginals as P. (We shall refer to this Q4 p as the null
model.) In particular, for the Gaussian (resp. Erd&s-Rényi)
model, @ is the joint distribution of two independent standard
normal (resp. Bern(q)) random variables. Under this choice,
we have D (P pix[Qa,5) = (5)D(P||Q) = (3)I(P) and
hence

I(A,B;m) = <Z) I(P) — D (Pa,5l|Qus).
By the non-negativity of the KL divergence, we have
I(A,B;7) < (3)I(P). This bound turns out to be tight, as
made precise by the following proposition. To prove this result,
we leverage the previous truncated second moment computa-
tion in [3] to conclude that D(P 4, p||Qa,p) is negligible under

the desired conditions.
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Proposition 1: Tt holds that

I(A, B;m) = (Z

)17~ ..
where
e ¢, = o(1) in the Gaussian model with p? <
e (, = o(1) in the dense ErdGs-Rényi graphs with p =
n =M and nps? (log(1/p) — 1 +p) < (2 — €)log(n);
e (, = O(logn) in the sparse Erd&s-Rényi graphs with
p=n"%D and np = w(1) and nps®> <1 —e.
Given the tight characterization of the mutual information
in Proposition 1, we now relate it to the Bayes risk. Using the
chain rule, we have

I(A,B;m) = I(Biw | A) = I(B; A™ | A),

(4—e)logn ,
n 5

where the second equality follows from the fact that A —
A™ — B forms a Markov chain. The intuition is that condi-
tioned on A, B is a noisy observation of A™ (which is random
owning to 7). In such a situation, the mutual information can
typically be related to an integral of the reconstruction error
of the signal A™. To make this precise, we first introduce
a parametric model Py that interpolates between the planted
model P and the null model Q as 6 varies. We write Ey to
indicate expectation taken with respect to the law Py.

For the Gaussian model, let Py denote the model under
which B = VAA™ + /1 —0Z, where A,Z are two inde-
pendent Gaussian matrices and § € [0,1]. Then 6 = p?
corresponds to the planted model P while § = 0 corresponds
to the null model Q. As 6 increases from 0 to p2, Py
interpolates between Q and P. Let

mmseg(A™) £ Eg[||A™ — Eg[A™|A, B]||?]

denote the minimum mean-squared error (MMSE) of estimat-
ing A™ based on (A, B) distributed according to Py. The
following proposition follows from the celebrated I-MMSE
formula [18].
Proposition 2 (Gaussian model):
’ mmsey(A™)

1 P
I(A,B;W)ZE/O e

The correlated Erd6s-Rényi graph model requires more
effort. Let us fix ¢ = ps and consider the following cou-
pling Py between two Bern(g) random variables with joint
probability mass function py, where pg(11) = ¢f, pe(01) =
pe(10) = ¢q(1 — 6), and pe(00) = 1 — (2 — 0)q, with
0 € [g, s]. Let Py denote the interpolated model under which
(A,r(i),r(j), Bij) are i.i.d. pairs of correlated random variables
with joint distribution Py. As 6 increases from ¢ to s, Py
interpolates between the null model @ = P, and the planted
model P = P,. Following [19], [20], we prove the following
area theorem that relates I(A, B;7) to the MMSE of A™.

Proposition 3 (Erdds-Rényi random graph): It holds that

1(A, Bim) < @I(P) " <"> g5

2
S 97(]
+ [ —
/q s(1—q)?

(mmseo(a7) = (3 )at1 - ) a0

de .

The above two steps together imply that the MMSE of A™
given the observation (A, B) is asymptotically equal to the
estimation error of the trivial estimator E [A™], which further
asymptotically equals (3)q = E[||A]|*] when ¢ = o(1).
Finally, we connect the MMSE of A™ to the Hamming loss
of reconstructing 7, concluding the impossibility of the partial
recovery.

Proposition 4: In both the Gaussian and Erds-Rényi graph
model, if mmseg(A™) > E [[|A]]?] (1 — &) for some & > 0,
then for any estimator 7 = 7(A, B),

N 1/4 nlogn 1/4
Egloverlap(7,m)] < O [ £/° + (W) :

B. Possibility of partial recovery

Let S,, denote the set of permutations on the node set [n].
For any two permutations 7,7’ € S, let d(w,n’) denote the
number of non-fixed points in the 7’ o 7=1. The following
proposition provides sufficient conditions for 7y defined in
(1) to achieve the partial recovery and almost exact recovery
in Erd6s-Rényi graphs.

Proposition 5: Let ps < £. ' Suppose that

e if p=1-o0(1),

ns?(1 - p)?
— = = > (4 1 ; 12
(=g - lene 2
e if p <1 — ¢g for some constant cg,
(2+¢€) logn . 1
nps? > { BRIt TPET gy
4+e€ ifp<nT2

Then there exists a constant § = (¢, o) < 1 such that
P{d (FmL, 7) < dn} > 1 —n~ o),

If in addition nps?(1 — p)? = w(1), then for any constant
d>0,

P{d (FmL,7) < dn} > 1 —n~1+o),

We remark that in the dense regime of n—o1) < p <1—cq,
(13) already implies that nps? = w(1) and hence the MLE
achieves almost exact recovery provided nps? > mf;&;;%;
this proves the positive part of Theorem 2. In contrast, in the
sparse regime of p = n~®(1) the MLE achieves the almost
exact recovery provided that nps? = w(1), which is in fact
needed for any estimator to succeed [6].

The proof of Proposition 5 relies on the following key
lemma, which bounds the probability that the ML estimator
(1) makes a given number of errors.

Lemma 1: Let € € (0,1) be an arbitrary constant and ps <

N[ =

"Note that the existence/absence of an edge is a matter of representation
and they are mathematically equivalent. As a consequence, by flipping 0 and
1, the model with parameter (n,p,s) is equivalent to that with parameter
(n,p’,s’) for an appropriate choice of p’ and s’ such that p’s’ = 1 — ps.
Thus we can assume ps < 1/2 without loss of generality.
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o For the Erdés-Rényi model, suppose that either (12) or
(13) holds. Then there exists some constant 0 < ¢ < 1
such that for any k£ > dn,

P{d (%ML,TF) = k} < 2€Xp <nh <k)> 1{k<n—1}
n =

1
+ 67210gn1{k:n} + exp <—64€k log n) 5 (14)

where h(z) = —zlogz — (1 —z)log(1l —x) is the binary
entropy function.

If in addition nps?(1 — p)? = w(1), then (14) holds for
any constant 0 < § < 1 and all k£ > dn.

« For the Gaussian model, suppose that np? > (4+¢)log n.

Then (14) holds for any constant 0 < § < 1 and all
k > on.

The proof of Lemma 1 uses the cycle structure of permu-
tations (cf. [3, Section 3.1] for more details and examples).
For each 0 € S, let oF denote the induced permutation
of o on the edge set ([72"]) of unordered pairs, according to
of((i,7)) = (0(i),o(5)). We shall refer to o and oF as a node
permutation and edge permutation. Each permutation can be
decomposed as disjoint cycles known as orbits. Orbits of o
(resp. oF) are referred as node orbits (resp. edge orbits). Let
F be the set of fixed points of o. Let O be the collection of all
edge orbits of oF. Denote O; = (I; ) C O, which is a subset
of fixed points of edge permutation o,

Lemma 1 follows from a large deviation analysis of the
maximum likelihood estimator (1). A crucial observation is
that the difference of the objective function in (1) evaluated
at a given permutation 7' and the ground truth 7 can be
decomposed across the edge orbits of o £ 7~ o7/ as

(A" A" B)= 3 Xo- Y Yo £X-V
0c0\0, 0e0\0,

A

where XO = Z(m‘)eo Aw/(i)‘n"(j)Bija and YO =
Z(i,j)eo Az (i)x(;) Bij» are independent across edge orbits O.
Crucially, Y depends on 7’ only through its fixed point set
F', which has substantially fewer choices than 7’ itself when
n — | F| < n. Therefore, for the purpose of applying the union
bound it is beneficial to separately control X and Y. Indeed,
we show that Y is highly concentrated on its mean. Hence, it
remains to analyze the large-deviation event of X exceeding
E [Y], which is accomplished by a careful computation of the
moment generation function (MGF) Mo £ E [exp (tX0)]
and proving that

Mo < M2, for O] > 2. (15)

Intuitively, it means that the contribution of longer edge orbits
can be effectively bounded by that of the 2-edge orbits.
Capitalizing on this key finding and applying the Chernoff
bound together with a union bound over 7’ yield Lemma 1.

C. Exact recovery

Building upon the almost exact recovery results in the pre-
ceding section, we now analyze the MLE for exact recovery.

In parallel with Lemma 1, the following lemma gives a tighter
bound on the probability that the MLE makes a small number
of errors.

Lemma 2: Suppose that for any constant 0 < € < 1,

o for general Erd6s-Rényi random

2
n (v/Poobit — v/Poibio)” > (1+€)logn;
o for Gaussian model, if np? > (4 + €) logn;

graphs, if

then for any k € [n] such that k < {Gn,

P{d (Ruw,7) = k} < exp (—%klogn) .36
The positive result in Theorem 4 readily follows from the
union bound on k by applying (14) for large k£ and (16) for
small k.

To prove Lemma 2, we need to consider 7’ that is close to T,
ie., d(m, ') < en/16. In this regime, the number of choices
of F' is comparable to that of 7’. Hence, instead of separately
bounding X and Y/, it is more favorable to directly applying
the Chernoff bound to the difference X — Y. Crucially, the
moment generation function E [exp (¢(Xo — Yo))] continues
to satisfy the relation (15) and the bottleneck for exact recovery
happens at |F'| = n — 2, where 7’ differs from 7 by a 2-cycle
(transposition).

Prompted by this observation, we prove a matching neces-
sary condition of exact recovery in Theorem 4 by considering
permutations o = 7~ o 7’ that consists of n — 2 fixed points
and a 2-node orbit (i, j), for some ¢, j € [n], in which case,

(A" A" B)=— 3 (AR - A7) (B — By) -
ke[n]\{i,5}

A
=Xijk

Note that Xijyklifl\'sj‘a(sl +b5_1+ (1 —a— 6)50 with ¢ = 2poop11
and b = 2pgi1p1p for all k& # 4,j. There remains two
key challenges to conclude the existence of many choices
of (i,7) for which (A™, B) > (A", B). First, to derive a
tight impossibility condition, we need to obtain a tight large-
deviation lower estimate for this event. Second, the RHS of
the above equation is correlated for different pairs of (4, 7).
This dependency is addressed by fixing a subset 7' C [n] with
|T| = o(n) and breaking the summation in the above equation
into two terms X agd Y;j, where X;; £ EkeTc\{i)j} Xij
Then we further partition 7" as T} U 7> and separately bound
Xi; and Y;; for any ¢ € Ty and j € T5. Since |T| = o(n), a
simple application of Markov’s inequality ensures that Y;; < 7
for a relatively small threshold 7. Moreover, by construction,
crucially X;; and X ; are pairwise independent for any
it # 4 in Ty and j # j' in T,. Thus we apply a second-
moment calculation to show that there exist many choices of
(Z7j) S T1 X T2 such that Xij < —T.
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