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ABSTRACT

The problem of checking if a program execution meets a formal
specification arises in many software engineering tasks includ-
ing runtime verification and designing test oracles. When online
analysis is not possible, execution trace logs are stored for offline
postmortem analysis, often in a compressed format to reduce disk
space and warehousing requirements. A straightforward method
for checking if a compressed execution satisfies a property is to
first decompress it and then analyze the resulting uncompressed
execution.

In this paper, we consider the problem of checking if an execution
trace, compressed using a grammar-based lossless compression
scheme, satisfies a specification expressed in linear temporal logic,
without explicitly decompressing it. In general, this problem is
known to be intractable (PSPACE-hard in the size of the compressed
trace and the LTL formula). We show that the problem can be solved
in polynomial time for the fragment LTL[F, G, X], which comprises
of all Boolean and modal operators of LTL except the until operator.
Our algorithm for analyzing SLPs (a grammar-based compression
scheme) is effective in practice — for a suite of large execution
traces obtained from open source projects, our algorithm shows
significant speed ups when compared with the performance of
checking LTL properties over corresponding uncompressed traces.
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1 INTRODUCTION

Consider the membership problem that can be abstractly defined
as follows: Given a program execution 7, determine if 7 is a “good”
behavior. This computational problem plays a key role in several
approaches whose goal is the engineering of reliable and secure
software. The first sub-area where it arises is runtime verifica-
tion [10, 27] where one dynamically monitors the behavior of a
system with to determine if the it conforms to system requirements.
This approach can be used to augment testing by observing sys-
tem behavior along paths that were inadequately exercised during
testing, thereby resulting in increased code coverage. The key com-
putational task in runtime verification is to solve the membership
problem — check whether the monitored execution needs satisfies
a system requirement. A second sub-area of interest is the design
test oracles [9]. Given executions of a system exercised by a test
suite, a test oracle is a program that distinguishes between cor-
rect and incorrect behaviors of the system. Thus, a test oracle can
be seen as solving the membership problem for the specific sys-
tem being tested. The membership problem also plays a key role
in intrusion detection [43]. Log files that record the interaction
between a network of elements need to be examined to detect pat-
terns of “intrusive behavior” so that corrective measures can be
taken to avoid security compromises. Since these log files are large,
and there are multiple patterns of intrusive behavior, intrusion
is typically detected automatically by a program that solves the
membership problem to determine if the log files do not contain an
intrusive pattern. Finally, the membership problem also needs to be
solved when statistically model checking a system. Statistical model
checking [5, 44] is an approach to verify quantitative properties of
stochastic systems. In this approach, the model checker executes
the stochastic system a few times to draw a statistical sample of
system behaviors, and then use hypothesis testing to determine the
likelihood of a property being true of a system. A crucial step in this
process is building an oracle that determines for each execution,
whether it satisfies a desired logical property.

One practical challenge in each of these application areas that
rely on solving the membership problem is the size of the program
execution that needs to be analyzed. Program traces that arise in
runtime verification, testing or statistical model checking are often
huge, containing millions of events. Long traces are often necessary
to exercise large parts of the code base to ensure good code coverage.
Log files analyzed for intrusions often record interactions that take
place over long windows of time, sometimes over multiple days. The
challenge therefore is two-fold: how to store such long traces/logs,
and how to effectively analyze them. The common solution to
address the warehousing needs for such traces is to compress them
and then store them in a compressed format.
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Given that program executions need to be compressed to ad-
dress storage costs, an important question in the context of the
membership problem is, to find effective solutions to the prob-
lem when the input trace is compressed. This question is not
new, and has a rich history, especially in theoretical computer sci-
ence (7,8, 12,15, 16, 31, 38, 46]. The short summary of results in this
space is as follows. There is always a naive algorithm to solve the
membership problem on compressed traces — uncompress the trace
and check membership. In many situations this is often (provably)
the best algorithm possible [7, 16, 38]. However, there are excep-
tions where the membership problem can be solved in time that
is polynomial in the size of the compressed trace [30]; one notable
example is dynamic race detection on compressed strings [23].

The main question we investigate in this paper is the following:
Given a program trace 7 in compressed form and a formula ¢ in
linear temporal logic (LTL) [39], determine if 7 satisfies ¢. LTL is
widely used in testing and verification. It’s popularity relies on the
fact that, on the one hand it is rich enough to express many require-
ments that typically arise in software engineering, and on the other
hand, the absence of explicit quantification, makes it simple enough
for a practitioner to easily write properties. Compression schemes
we consider are those where a program trace is represented using
a straight line program (SLP). SLPs are special context-free gram-
mars where the language of the grammar contains exactly one
string, namely, the trace it represents. Several lossless compression
schemes. like run-length encoding and Lempel-Ziv encodes [50],
can be efficiently converted into SLPs with similar size. There are
efficient implementations of compression algorithms that produce
an SLP representation of a given execution [3, 21, 22, 25, 37, 48-50].

The problem of determining if a finite trace compressed using an
SLP satisfies an LTL property, has been studied before. The problem
is known to be intractable — it is PSPACE -hard [33]. Therefore, we
ask if there is a rich fragment of LTL for which the problem can be
efficiently solved. We consider the fragment LTL[F, G, X] which is
the collection of all LTL formulas that are built from propositions
using boolean operators, and only the temporal operators X (next),
F (eventually or finally), and G (always or globally); in particular, U
(until) cannot be used in the formulas of LTL[F, G, X]. The fragment
LTL[F, G, X] is expressively very rich. Over infinite traces, LTL[F,
G, X] can express properties in each class of the safety-progress
classification of temporal properties introduced by Manna and
Pnueli [32]'. Our main result is that the problem of checking if a
finite trace represented by an SLP satisfies an LTL[F, G, X] formula
can be decided in time that is polynomial in the size of the SLP
(compressed trace) and the formula.

We now outline the technical challenges and our theoretical
contributions in obtaining this result. The principal idea used in
verification, runtime verification, and automatic test oracle genera-
tion for temporal properties is to exploit the connection between
LTL formulas and automata — translate the formula into an au-
tomata, and then “run” the automaton with the program or trace
to verify or test. For runtime verification or test oracles, the au-
tomaton constructed from the formula needs to be deterministic.
This idea can also be used when checking compressed traces where

10r in every Borel class that has w-regular properties.
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you effectively “run” the deterministic automaton on the grammar
representing the trace.

However, even for LTL [F, G] formulas?, the smallest nondeter-
ministic automaton is exponential and the smallest deterministic
automaton is doubly exponential in the size of the formula [6].
Theoretical lower bounds establish that this cannot be improved.
Our first observation is that if the finite (uncompressed) trace is
processed right-to-left instead of left-to-right, then there is an expo-
nential sized, deterministic automaton for each LTL[F, G, X] formula,
that can solve the membership question. “Running” an automaton
left-to-right or right-to-left on an SLP is very similar and so this
change does not fundamentally change the algorithm for com-
pressed traces. However, the fact that the automaton is exponential
sized would affect the complexity; for compressed traces, the run-
ning time of an algorithm using this automaton would be exponen-
tial in the formula. To combat this, we observe that the automaton
we design for LTL[F, G, X] has special “monotonicity” properties
and has a small “diameter”. These two observations can be com-
bined to observe that there are “essentially” O(m) state changes
(m here refers to the size of the LTL[F, G, X] formula) when the
automaton is run on any (uncompressed) trace, no matter what the
length of the trace is. Finally, we exploit the special structure of the
states of this automaton, to design an algorithm for compressed
traces. To prove that this algorithm indeed runs in time that is
polynomial in the formula size and the grammar, requires carefully
counting the number of substrings that arise in a string represented
by an SLP.

We evaluate the performance of our algorithm for checking com-
pressed traces over open source Java projects obtained from GitHub
(largely derived from prior study [28]). We also use 10 LTL[F, G, X]
properties describing specifications for the use of iterators, collec-
tions, file objects, etc., Our evaluation suggests that, large traces
from open source projects can be effectively compressed (with an
average compression ratio of more than 600x) and that compressed
traces can be effectively checked against these specifications, lead-
ing to significant speed ups (averaging at 34Xx).

The rest of the paper is organized as follows. Section 2 dis-
cusses background relevant for the exposition. Section 3 presents
an overview of our algorithm for checking LTL[F, G, X] formulae
on compressed traces, and Sections 4 and 5 discuss the technical
details of the algorithm. We present our evaluation in Section 6,
related work in Section 7 and concluding remarks in Section 8.

2 PRELIMINARIES

In this section we present preliminary notations about execution
traces, LTL monitoring and the SLP compression format.

2.1 Execution Traces

In many approaches whose goal is to either prove the correctness
of a software or find errors, a key computational problem that
needs to be solved is the membership problem, where one needs to
determine if a given program execution is correct with respect to a
system specification. In this setting, an execution trace (or simply an
execution) can be abstractly modeled as a finite sequence of “events”
belonging to a set (say) 2. The set of events X is determined by what

2These are LTL formulas that only have F and G (and no X or U) as temporal operators.
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class SetTraversal {
HashSet<Integer> s = new HashSet<Integer> ();
public void insert(int max) {
for(int i = 0; i < max; i++) s.add(i);

3

public int sumAllExcept(int val) {
Iterator<Integer> itr = s.iterator();
int sum = 0;
if(litr.hasNext()) return sum;

while(true){
int i = itr.next();
if(i == val) continue;

sum = sum + i;
if(!itr.hasNext()) break;

return sum;
}
}
class SetTraversalTest {
@Test
void testInsertAndSum() {
SetTraversal st = new SetTraversal();
st.insert(128);
int actual = st.sumAllExcept(64);
int expected = (127 = (127 + 1))/2 - 64;
assertEquals(expected, actual);
3
}

Figure 1: Java class SetTraversal with methods insert and
sumAllExcept. The unit test testInsertAndSum tests these
two methods at once.

is visible or has been made visible through instrumentation when
the program is executed. Thus, an execution is 7 = egeq - - - €x_;
where each e; € X; the empty trace/sequence will be denoted by
€. Let us fix an execution 7 = epe; - - - ex_1. The ith event in the
execution will be denoted by 7[i] = e;. We will denote the substring
ejej+1---ej—1 by t[i : j], the suffix ejej+1---ex_q by z[i :] and
the prefix eg - - - €;—1 by 7[: i]. The length of execution 7, denoted
|z], is the number of events in it which is k. By definition |e| = 0.

Example 1. Consider the Java class SetTraversal in Figure 1. Ev-
ery instance of this class has a member variable s, which is a set of
integer elements. The method insert inserts all non-negative inte-
gers less than max in s, while the method sumA11Except returns the
sum of those elements of the set s which are different from the in-
teger val. We remark that the implementation of sumAllExcept is
functionally correct whenever val is not the last value when travers-
ing s using the iterator itr.If val is the last value in s when travers-
ing using itr, the loop body can execute next() (after traversing
the node with itr), even though there are no remaining elements,
which may raise a Java exception (NoSuchElementException).
The figure also shows a test class SetTraversalTest that im-
plements a unit test testInsertAndSum that first calls insert on
an instance st of SetTraversal with the argument 128 and then
checks if the sum of elements thus inserted (except the element
64) is as expected. The given unit test passes and, in fact, does not
expose the bug outlined above. The execution trace generated due
to this test, can nevertheless be used to infer the possibility of an
exception. If we instrument calls to the methods hasNext () and
next (), then we will observe a trace over the alphabet ¥ = {h, n},
where h represents a call to hasNext () and n represents a call to
next (). For the unit test testInsertAndSum, we will observe the
execution trace 7 = (hn)®>n(hn)®?h. This is because, in this case,
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the iterator traverses the set s in the order of insertion, and for
the first 65 elements (values 0 through 64), the method insert cor-
rectly calls hasNext () before next (). However, in the next step,
it enters the loop and calls next without checking hasNext (). All
the subsequent loop executions generate the sequence (hn)?h. In
subsequent sections, we will discuss how analyzing 7, in fact, can
hint at the possibility of an exception. Observe that || = 256,
r[: 130] = (hn)®, 7[130 :] = n(hn)®?h and 7[2 : 130] = (hn)%*.

2.2 Linear Temporal Logic

Linear temporal logic (LTL) is a popular logic for specifying tempo-
ral properties of systems, and is widely used to specify correctness
properties. In this section, we introduce the syntax and semantics
of LTL and some fragments that are relevant in this paper. Since
program executions encountered while testing and runtime ver-
ification are assumed to be finite, our semantics for LTL will be
defined for finite execution traces. While this is not the classical
semantics for LTL, it is standard [13]. We will also be using a “letter
semantics” for the logic — models are sequences of letters as op-
posed to sequences of sets of propositions, and formulas are built
using letters as opposed to propositions.

Syntax of LTL. Let us fix a finite alphabet X. Then, a formula ¢ in
LTL over X is given by the following grammar.

¢ == al-¢lereleVelXelFp|GeleUp

Here, a is a symbol in 3, =, A and V are Boolean connectives and X
(‘next’), F (‘eventually’), G (‘always’) and U (‘until’) are temporal
modal operators. We will use ¢1 = ¢ as a shorthand for
P11V @2

Semantics of LTL. The semantics of LTL is given by how an LTL
formula ¢ evaluates over a finite non-empty trace r € =*. We
formally describe this evaluation relation |=¢ below; the subscript
‘f’ in ¢ stands for evaluation over finite traces.

T Ff oa iff r[0]=a
T Fr e iff e
T Fr eingr iff tlEpeirandrEr @2
T Ff eiVer M tlEperortEr
T |=f Xo iff |r]>1and7[1 :] |:f @
. there is an i such that 0 < i < |7|
T Fr o Fe iff and 7[i :] Fro
r ky Go i f.o[: e.‘ieg i suchthat0 <i < 7|,

there is an i such that 0 < i < |7|
and r[i :] ¥ @2 and for every j
suchthat 0 < j <i,z[j : ] lFf o1

T |=f @1Ugpy  iff

Remark. LTL, as presented here, only has future time operators.
Some presentations include past time operators as well: Y (for ‘yes-
terday’), the dual of X; O (for ‘once’), the dual of F; H (for ‘his-
torically’), the dual of G; and S (for ‘since’), the dual of U. Over
finite traces, the following property holds. Let ¢ be the formula
obtained by replacing every past time (future time) operator by
the corresponding dual future time (past time) operator in ¢. Then
T | gifandonly if 7" |=¢ @; here " denotes the reverse of 7. This
means that over finite traces, LTL with only past time operators is
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“equivalent” to LTL with only future time operators. Our results,
though presented only for LTL with future time operators, also
apply to LTL with purely past time operators.

Example 2. Consider the program shown in Figure 1 and the
execution 7 produced when calls to methods hasNext () and next ()
are tracked. As shown in Example 1, 7 = (hn)®>n(hn)®?h, where h
represents a call to hasNext () and n represents a call to next().
Intuitively, in a correct implementation, the program should check
the existence of a next element (i.e., event h) before accessing the
next element (i.e., event n). The program in Figure 1 does not satisfy
this intuitive correctness requirement since an event h does not
precede the event n when the value 65 is accessed. We can formalize
our informal intuition by requiring that ‘there are no successive
calls to next () . However, this by itself is not enough because the
execution nhn does not have successive n events, but the first n event
is not preceded by h. So we must also require that the execution
does not begin with n. We could write this as ¢ = (-n) A G(n =
=X(n)). One can see that 7 does not satisfy this property (as desired)
because 7[129 :] = nn(hn)®?h does not satisfy n = —Xn.

Fragments of LTL. We will consider a couple of fragments of
LTL obtained by restricting the modal operators that appear in
formulas. The first fragment is LTL[X] which consists of formulas
built from events and Boolean operators using only X operator. The
next fragment is LTL[F, G, X] which uses the modal operators X, F,
and G, but does not use U. We skip the formal BNF grammar for
these fragments.

Formulas in LTL[F, G, X] can be expressed in a normal form that
is obtained by pushing X as far in as possible. Since X(¢1 V ¢2) =
(Xe1) V (Xp2), X(@1 A @2) = (Xo1) A (X@2) and XFp = FXp, we can
push X inside conjunctions, disjunctions and F operators. However,
over finite executions X cannot be pushed inside ‘=’ or ‘G’ operators.
To see this, consider the execution o = hn. Observe that ¢ satisfies
XGn, but not GXn as |o[1 :]| = 1 and thus o[1 :] ¢ Xn. Similarly,
7 = n satisfies =Xh but not X—h. The normal form can be described
by the following BNF grammar.

o == YlnlereleVelFe
n ou= Xy Xy (1)
Y u= al-¢|Ge

Formulas in LTL[F, G, X] (¢) are one of X-formulas (), G-formulas
(¥), conjunctions/disjunctions of LTL[F, G, X] formulas, or an F
operator applied to an LTL[F, G, X] formula in the normal form.
X-formulas are those where the top level operator is X. A X operator
can only be applied to either a G-formula or an X-formula. Finally,
G-formulas are letters, or negations of LTL[F, G, X] formulas (¢p),
or have G as the topmost operator. Every LTL[F, G, X] formula can
be converted into this normal form, with at most quadratic blowup.

Example 3. Consider the LTL[F, G, X] formula ¢ = X(Gn V Fh).
The normal form for this can be obtained by pushing X as far inside
as possible. Thus, ¢’ = (XGn) V (FXh) is the equivalent formula in
normal form.

Remark. The fragment LTL[F, G, X] is expressively rich. For ex-
ample, it can express properties in each class of the safety-progess
classification of temporal properties introduced by Manna and
Pnueli [32]. Among the pattern-based specifications introduced
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in [14], most patterns, except precedence, chain precedence, and
scopes can be expressed in LTL[F, G, X]. In fact, among the 555
commonly occurring specifications collected and surveyed in [14],
approximately 80% of them can be expressed in LTL[F, G, X].

Automata for LTL and its fragments. For LTL properties, algo-
rithms for verification, runtime verification, and test oracle gen-
eration, all rely on the translation of logic formulas to automata.
For a specification ¢, the crucial step therefore, is the construction
of an automaton A, such that an execution 7 is accepted by A,
if and only if 7 satisfies ¢. The size of A, has big influence on
the complexity of the verification/testing algorithm. For runtime
verification and test oracle generation, the automaton A, needs
to be deterministic. Because of the critical role translations from
LTL to automata play in algorithms, these have been well studied.
Unfortunately, the translation from formulas to deterministic au-
tomata can result in at least a double exponential blowup. It is worth
emphasizing that the result below holds whether we interpret LTL
over finite or infinite executions.

Theorem 2.1 (Alur-LaTorre [6]). There is a family {¢n},en of
LTL[F, G, X] formulas such that the size of ¢, is n and any deter-
ministic acceptor for ¢y, is of size Q(22").

2.3 Compressed Executions

In this paper, we will present algorithms to solve the membership
problem when the program execution is compressed. The com-
pressed execution we consider will be encoded by a straight line
program (SLP), which is a special context-free grammar whose lan-
guage has exactly one string, namely, the execution it represents.
Several lossless compression schemes, like run-length encoding and
Lempel-Ziv encoding [50] can be efficiently converted into SLPs
of similar size. Several efficient algorithms that compress strings
using SLPs are known [3, 21, 22, 25, 37, 48-50].

Straight Line Programs (SLP). Recall that a context-free gram-
mar is a tuple G = (T, N, S, R), where T is the set of terminals, N is
the set of non-terminals, S € N is the starting non-terminal, and R is
the set of rules of the form A — «, where A€ Nanda € (NUT)*.
A straight line program (SLP) is special context-free grammar, with
restrictions that ensure that the language associated with G has
exactly one string. In particular, we require that in an SLP, each
non-terminal A has exactly one rule where A appears on the left,
and that there is a total ordering ‘<’ on non-terminals such that if
a non-terminal B appears on the right-hand side of the rule for A
then A < B. These restrictions ensure that the language associated
with each non-terminal has exactly one string, and we denote this
string as [A].

The size of a rule (A — «) € R is defined to be the size |a|
and the size of a grammar G, denoted by |G|, is defined to the be
sum of the sizes of all rules. The compression ratio of a grammar

G = (T,N,S,R) is defined to be ‘[\[CS;]P’ i.e., the ratio between the

length of the string that G represents, and the size of G.

Example 4. The grammar shown in Figure 2 is an SLP that encodes
the execution 7 = (hn)®*n(hn)%2h of program in Figure 1 from
Example 1. The grammar has start symbol S. The rules are designed
to ensure that [A;] = (hn)?, [B] = n(hn)®2h and therefore [S] = 7.
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S - A(,sB B - nC C - A(,z h
A1 —  hn Az - A 1 A1 A4 Ed A2A2
Ay — A)A4 Ag —  A4A4 Alg — AsgAg

Ay —  AgAie Azp —  AgAz Azp > AjeAie
Asg o ApA Asz  —  A30A3 Aes  —  AszAss

Figure 2: A straight line program encoding of the execution
7 = (hn)®n(hn)%2h from Example 1.

The SLP has 15 rules. All rules have size 2. Thus the size of the
SLP is 2 x 15 = 30. The compression ratio is therefore % ~ 8.53.

Every SLP can be transformed in linear time into Chomsky nor-
mal form where the size of each rule is bounded by 2. From now on
we will assume that all the SLP grammars are written in Chomsky
normal form.

We remark that an SLP can be exponentially more succinct than
the uncompressed string it represents. For instance, a string o = h2"
of size 2" can be represented by a grammar of size O(n) with rules
S - H,H,, H, » H,—1Hp—1, ..., H» —» H{H; and H; — h.

The problem of checking if an execution represented by an SLP
G satisfies an LTL formula ¢ has been studied before. A naive
algorithm for this problem involves decompressing the SLP G and
checking if the uncompressed execution satisfies ¢. However, this
can be expensive because of the possible exponential succinctness
of the SLP, as outlined in the previous paragraph. Is there a better
algorithm that doesn’t involve uncompressing?

Automata for checking SLPs against LTL. One possible ap-
proach, that works without decompressing the SLP, leverages the
automata-theoretic connections of LTL. Given an LTL formula
¢, we can first construct a deterministic finite automaton A, =
(Q,2, qo, 9, F) as outlined in Section 2.2. For every non-terminal A
in the SLP grammar G and for every state g € Q, we can then induc-
tively compute the state §(g, [A]) reached after running the string
generated by A starting from the state q. In the base case, the rule
corresponding to Ais A — a (a € %), and §(q, [A]) = 6(q, a). In the
inductive case of A — BC, we have (g, [S]) = 8(6(q, [B]), [C])-
Finally checking if [A] [=¢ ¢ amounts to checking §(qo, [S]) € F.
This approach would work in time O(|G| - | A| - D), where D is the
time taken to compute the transition function on an input symbol
and state. Note that D, in general, is at least log |A| because the
bits encoding the state have to be read and the encoding of the next
state needs to be produced. Based on Theorem 2.1, this is double
exponential in |¢| and thus intractable. Indeed, the following theo-
retical lower bound establishes that there is no algorithm that has
a tractable asymptotic complexity for the case of full LTL.

Theorem 2.2 (Markey and Schnoebelen [33]). Given an SLP G =
(T, N, S, R) and an LTL formula ¢, the problem of checking if [S] ¢
¢ is PSPACE-hard.

The main result of this paper shows that this problem can be
solved efficiently (in polynomial time) when the formula is from
the LTL fragment LTL[F, G, X].

3 TECHNICAL OVERVIEW

Recall (from Section 2.3) that there is a simple automata-theoretic al-
gorithm for checking if a compressed trace (SLP G) satisfies a given
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LTL formula ¢ (ie., [G] [Ff ¢). This simple algorithm constructs
a DFA A, corresponding to the given LTL formula ¢ (in time
O(|A|)), and then inductively computes, for every non-terminal
A of G and for every state q of A, the next state ¢’ = 5(q, [A])
obtained after running the trace fragment [A] on Ay,. As we previ-
ously observed the total running time of this simple algorithm is
O(|Ap| +1G||Ap|D) (Where D is the time to compute the transition
function) which, based on the size of the smallest deterministic au-
tomaton, is O(IGIZZWI 211y The algorithm we propose for formulas
in LTL[F, G, X] works on the same automata-theoretic paradigm
but with modifications that lead to a polynomial running time. In
this section we outline some of the ideas that help us achieve this
polynomial time.

Backwards automaton. The first observation that our algorithm
relies on is that for the fragment LTL[F, G, X], there is a deter-
ministic automaton that works backwards and only suffers an ex-
ponential blow-up (instead of double exponential in the forward
automaton). That is, for the input formula ¢ € LTL[F, G, X], we
construct an automaton ﬂfp such that for any trace 7, 7 |:f 7]
iff 7" is accepted by A[,; for an execution 7 = epe; - - €p_q its
reverse is T = ep_jex_s - - - €. The algorithm for analyzing the
SLP G with this automaton is also straightforward, and proceeds
as if the grammar G is reversed (every rule of the form A — BC
becomes A — CB). But, this by itself is not enough if we are using
the exhaustive paradigm ‘compute &(g, [A]) for all g and A’ because
[ AL = 0(2!¢!). Thankfully, the backwards automaton A, enjoys
a special structure that we exploit, in conjunction with the next
observation, to get our efficient algorithm.

Bounding running time with visited states. We next observe
that, instead of computing 6(g, [A]) for all pairs of state g and non-
terminal A in the automata-theoretic algorithm, we can afford to
only compute §(qg, -) for states that are actually visited (instead of
all states). Consider the production rule S — UV, where S is the
starting non-terminal of the input SLP grammar G. Our final goal
is to compute the state ¢ = 5(qo, [S]). We remark that this can be
computed as the composition g = §(q’, [V]), where ¢’ = (qo, [U]).
If this is the only rule that V occurs in, we only need to compute
8(q’,[V]) (instead of computing &(p, [V]) for every state p). Notice
that this intermediate state ¢’ would also be visited when running
A on the uncompressed trace [[S]; this is precisely the state reached
after running the prefix [U] of [S]. In fact, this observation can
be generalized so that we only compute §(g, A) for those states
q that are ever visited when analyzing the uncompressed trace.
We formalize this as follows. For a trace 7 and an automaton A
with initial state qo, let v(A,7) = {§(qo,7[: i])|10 < i < |z|} be
the states of A that are visited when running 7 on A. Then, we
can compute §(qo,S) by only computing (g, A) for every non-
terminal A and state q € v(A, [G]). This gives us an upper bound
of O(|G| - [V(A, [G])] - D), an improvement over O(|G| - | A| - D)
(D denotes the time to evaluate the transition function).

Bounding number of states visited. Our third important obser-
vation is that any run of automaton ﬂfp (for ¢ € LTL[F,G,X])
satisfies a “monotonicity” property. This property allows us to
bound the number of states visited |v(A, [G])| on any input to
|(p||2|k (independent of ||G||). Here, k is what we call the nesting
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depth of X in ¢; a precise definition will be presented in Section 4.
This combined with some other observations gives us a running
time of O(|G||¢[2|2[¥).

Further improvements. Our algorithm for analyzing compressed
executions runs in strictly polynomial time (and thus does not have
the exponential dependence due to the factor |=|¥). We achieve this
by performing an involved fine grained analysis of the running time
of the algorithm. Further, we also make use of the monotonicity
property outlined in the previous paragraph to optimize the space
usage of the algorithm.

In Section 4, we describe the automaton construction, and the
other observations about monotonicity and the number of visited
states in greater detail. We finally present the algorithm for analyz-
ing compressed executions and improvements thereof in Section 5.

4 AUTOMATON FOR LTL[F, G, X]

In this section, we present the construction of a backwards deter-
ministic automaton Ay, such that Aj, accepts a trace 7" if and only
if z |Ff @; recall that 7" is the reverse of execution 7. The main
advantage of this construction is that the size of A}, is only expo-
nential in ¢ (as opposed to doubly exponential). In addition, A,
has a special structure that ensures that the number of states visited
by A¢, on any input " is polynomial in |¢|.

Before presenting the construction, we will introduce some con-
ventions and notations that we will use in the rest of this paper. First,
as outlined in Section 2, we can assume that LTL[F, G, X] formulas
are in normal form given by Equation (1), i.e., X operators have been
pushed as far inside as possible. For any formula ¢ € LTL[F, G, X],
we will use sub(¢) to denote the set of sub-formulas of ¢. When
defining our automata, we will consider a special subset of sub-
formulas, called FGX-subformulae, denoted by subpgx(¢). These
are sub-formulas ¢/ of ¢ whose topmost operator is either F, G, or
X, and if the top operator of ¢ is X, then ¢ has a sub-formula with
topmost operator G. We formally define this set next.

Definition 1 (FGX-sub-formulas). For a formula ¢ € LTL[F, G, X],
subpgx () is the set of sub-formulas defined inductively as follows.

Suchx(a) = @
subrgx(—¢) = subrcx(@)
subpox (91 ® 92) = subpgx(@1) Usubpox(g2), @ € {A,V}
subpgx(Me) = {Me} Usubecx(e), M e {F,G}
subpgx(Xp) = subpgx(e), ¢ € LTL[X]
subpox(Xp) = {Xe} U subggx(e), ¢ ¢ LTL[X]

Let us look at examples to illustrate these definitions.

Example 5. Consider the formula ¢ = -n A G(n = -Xn) from
Example 2. The set of its sub-formulas is sub(¢) = {¢, =n,n, G ((ﬁn)v

—|(Xn)), (=n) V =(Xn), =Xn, Xn}. Similarly, subpgx(¢) = {G((-n) Vv
—(Xn))}. Notice that Xn ¢ subpgx(¢) (even though its topmost
operator is X) as it does not have a G-sub-formula in its scope.

As is standard in automata constructions for LTL, our automaton
.?lfp for ¢ will track the truth of sub-formulas of ¢ as it processes
the input. Instead of tracking the truth of all sub-formulas, our
automaton will only track the truth of sub-formulas in subpgx ().
Since subpgx () is smaller than sub(¢) (as illustrated by Example 5),

Minjian Zhang, Umang Mathur, and Mahesh Viswanathan

this results in smaller automata and better performance in practice.
But this is not our only reason for tracking fewer sub-formulas. As
we will show towards the end of this section, tracking the truth
of fewer sub-formulas reveals that every run of the automaton is
“monotonic”, which can then be exploited to argue that the number
of states visited in the run of Aj, on any string is small.

Let us fix ¢ € LTL[F, G, X]. The states of our automaton ﬂfp will
keep track of which sub-formulas in subpgx(¢) are true and which
ones are not, on the input seen so far. Thus a state is essentially a
valuation h : subpgx(¢) — {T, L} over ¢. We use Val, to denote
the set of all valuations over ¢.

While keeping track of the truth of sub-formulae is necessary, it
is not sufficient. In order to determine truth of formulas in LTL[X]
like XXa, the automaton will additionally also keep track of the
last few events seen, in its control state. How many events need
to be tracked depends on the number of X operators that appear
in LTL[X] sub-formulas of ¢. Recall that we are assuming that Xs
have been pushed as far in as possible in ¢.

For ¢y € LTL[X], define Xdepth(y) to be the nesting depth of
X operators in . And more generally, for ¢ € LTL[F, G, X], we
define Xdepth(¢) = max{Xdepth(¥) | € sub(¢) N LTL[X]}. For
example, LTL[X] sub-formulas of XG(h = (XXXn)) are h and the
sub-formulas of XXXn. Thus, Xdepth(XG(h = XXXn)) = 3. On
the other hand, since the only LTL[X] sub-formulas of h A (XGn)
are h and n, Xdepth(h A (XGn)) = 0.

To compute the next state h” obtained after reading a symbol e in
state h, the automaton needs to update the truth of all sub-formulas
in subpgx (). It turns out that we can, in fact, compute the truth
of all sub-formulas in sub(¢) (and thus the valuation h’) solely by
looking at h, e, the formula ¢ and the last k events seen in the trace,
where k = Xdepth(¢). This definition (of how truth of sub(g) is
updated) is critical not only in defining the automaton but also
in stating its correctness. We present this definition before giving
the formal definition of ﬂfp. In this definition, we will use »<k 1o
denote the set of all sequences over X of length at most k.

Definition 2. Let ¢ € LTL[F,G,X], h € Val, and buf € <k,
For any event e € X, post(h, buf,e) : sub(¢) — {T, L} is defined
inductively as follows.
post(h, buf,e)(a) =
post(h, buf,e)(=¢) =

post(h, buf,e)(¢1 ® ¢2) =

post(h, buf,e)(G¢) =
post(h, buf,e)(F§) =

(a=e)
~(post(h, buf, e)(¢))
post(h, buf, e)(41)
post(h, buf, e)(¢2)
h(Gg@) A post(h, buf,e)(¢)
h(F¢) Vv post(h, buf,e)(¢)
(buf =f ¢) Xg € LTL[X]
h($)? otherwise

if ® €{A, V}

post(h, buf, e)(X¢)

Having outlined the basic intuition behind the construction of
A, we are ready to present its formal definition. In the following,
for a function f : A — B and set C C A, we denote by f[c the
restriction of f to the domain C.

3This definition assumes e is at least the second event read. post(h, buf, e)(X¢$) = L
if e is the first event.
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h n h h
A (T, h) n (T, n) (L, n) n (L, h)
3 q4

q0 q q2 q

Figure 3: Automaton for the formula ¢ = -nAG(n = —Xn).

Definition 3 (Automaton for LTL[F, G, X]). For ¢ € LTL[F, G, X]
with Xdepth(¢) = k and event set %, the DFA ﬂza =(0.%,90,6,F)
is defined as follows.

o The states in Q are triples of the form (h, b, buf) where h €
Val,, b € {T, L} and buf € Z=K. Intuitively, h tracks the
truth of FGX-sub-formulas of ¢ while b tracks whether ¢ is
true on the input read so far. Additionally, buf stores the last
k symbols read by the automaton thus far.

e The initial state qq is (ho, L, €) where for every Gy, Fy €
subrgx (@), ho(Fy) = L and ho(Gy/) = T.

o The transition function ¢ is given as follows: § ((h, b, buf), e) =
(post(h, buf, €) Msubrey (¢)> POSt(R, buf, e)(¢), buf’), where buf’
is the prefix of length k of the concatenated sequence e - buf.

e The final states F = {(h, T, buf) | h € Val, and buf € »<ky,

Let us illustrate the automaton construction with an example.

Example 6. Consider the formula ¢ = =-n A G(n = -Xn) from
Example 2. The backwards automaton Aj, for ¢ is shown in Figure 3;
the alphabet is assumed to be X = {h, n}. The set of sub-formulas
subpgx(¢) = {G(n = =Xn)} is singleton, and thus there are 2
valuations in Val,,. Further, Xdepth(¢) = 1 and thus the buffer size
is at most 1. The states of A" are triples (h, b, buf), where h € Val,,
b € {T, L} and buf € {h,n, €}. In the figure, we only show the first
component (valuation h) and the third component (the buffer) of
the state. Since there is only one formula in subggx(¢), we write
the valuation h as the truth value it maps the sub-formula to. The
component b can be inferred from the figure — b = T in a state iff
the state is an accepting state (state q1).

Now consider the traces r; = hhnn and 7, = hhn. Observe that
the automaton rejects the trace 7; = nnhh but accepts r; = nhh as
71 Ef ¢ but Er o

The correctness proof of the automaton construction in Defini-
tion 3 relies on the following technical lemma which says that the
automaton correctly computes the truth of every sub-formula. It can
be proved using an easy induction on |z| and structural induction
on the formula.

Lemma 4.1. For ¢ € LTL[F, G, X], let ﬂfp =(0Q, 2, qo, 9, F) be the
DFA as given in Definition 3. For any execution 7 = ec wheree € %,
for any ¢ € sub(e), 7 ¢ ¢ if and only if post(6(qo, o). €)(¥) = T.

We can now state the correctness of our automaton construction.

Theorem 4.1. Let ¢ € LTL[F, G, X] and ﬂZa be the DFA given in
Definition 3. For any execution 7, 7 |=¢ ¢ if and only if 7" € L(A).

PrOOF. Let 7 = eo. Observe that ' € L(?{;,) iff 5(qo, ") =
(h, T) for some h. From the definition of the transition function §,
this is equivalent to post(§(qo, o), €)(¢) = T.From Lemma 4.1, this
is the same as 7 |- ¢ and thereby establishing the theorem. O
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Size of “7[:0 Observe that the number of states of the automaton
A is 2lsubrax(@)1+1) 3,1k where k = Xdepth(¢). Since subpgx (@) C

sub(¢) and |sub(p)| < |¢|, the number of states is o@lelz)k).
We next argue that though Aj, has 0(2!%!|31%) states, in any

run, it goes through at most O(l(leZIk) states. This is based on the
observation that state changes in A, are monotonic.

Consider two valuations g, h : subpgx(¢) — {T,L}. We will
say that g < h if for every Fy € subpgx (@), if g(F¥) = T then
h(Fy) = T, and for every My € subpgx (@) where M € {X, G}, if
g(My) = L then h(My) = L.

Lemma 4.2. For ¢ € LTL[F, G, X], let ﬂ;, =(Q.,Z%, 90,6, F) be the
DFA defined in Definition 3. Let u € ¥* and let states (hy, by, bufy)
and (hg, b2, bufz) be such that §((hy, by, bufy),u) = (hy, by, bufy).
Then, hy < hy.

The proof of Lemma 4.2 follows from the definition of the tran-
sition function ¢ and induction on the length of u.

Lemma 4.2 establishes that once the valuation component of
the state changes, you never revisit the same valuation. Since the
assignment to any i € subpgx(¢) can change at most once, the
number of valuations visited in any run is bounded by |subrgx (¢)|,
thereby giving a bound on the number of states visited in any run:

Corollary 4.1. Let ¢ € LTL[F, G, X] be a formula over X. The DFA
ﬂ;, visits O(|(p||2|k) distinct states on any input trace r € X*

5 MONITORING COMPRESSED TRACES
AGAINST LTL[F, G, X]

We will now present our main result — an efficient algorithm to
check, givenan SLP G = (T, N, S, R) and ¢ € LTLI[F, G, X], if [S] Er
¢. Our algorithm follows the template algorithm for SLPs outlined in
Section 2.3. That is, we will “run” the automaton A{, (Definition 3)
on the uncompressed trace [S], without explicitly uncompressing
the SLP. This can be accomplished by computing, for every state
g and non-terminal A € N, the state §(g, [A]") %, and then finally
checking 6(qo, [S]") € F, where qq is the initial state and F is the
set of final states of A7,. As pointed out in Section 2.3, this runs in
O(|G]| |ﬂ;u |D) time (where D is the time to compute the transition

function), which given the description of A}, is O(|G| |qo|2|‘*’| 1=1%),
where k = Xdepth(p). Now, we can observe that it is not necessary
to compute §(q, [A]") for every state g, but only for the states
visited during a run of Aj, on [S]". This can be accomplished if
we used a “on-the-fly” algorithm for the §(gq, [A]") computations.
For such an algorithm, given the monotonicity properties of A,
(Lemma 4.2) and the resulting bound on the number of visited states
(Corollary 4.1), we can improve the running time to O(|G||¢|? IZIk).

The main observation in this section is that this “on-the-fly”
algorithm in fact has a running time that is polynomial in the size
of G and ¢. This requires us examine this algorithm in some detail,
and analyze its running time carefully.

Recall that a state ofﬂ;, is of the form (h, b, buf) where h € Val,,
b € {T, L}is aBoolean recording the truth of ¢, and buf is the buffer
tracking the last k symbols read. Now, consider a non-terminal A,

4Recall that ﬂfp runs the execution in reverse.
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and state (h, b, buf). Let (h’,b”, buf’) = 8((h, b, buf), [A]"). Based
on the Definition 2, we know that the value of the Boolean b does not
influence the values of 4’, b’, and buf”. This Boolean b is only needed
to determine if the last state (i.e., 5(qo, [S]")) is a final state, This
can alternatively be determined from the valuation A’ at the end
and buffer buf’ using a function analogous to post (Definition 2);
we skip giving this definition. Next buf’ is nothing but the prefix of
length k of the concatenated string [A]-buf, which can be computed
in an inductive manner based on the rules in the grammar. In the
interests of space, we don’t give how buf” can be computed but we
assume we have a function updateBuffer(A, buf) which returns
the prefix of length k of [A] - buf.

Algorithm 1: Compute state of automaton Aj, after reading
the string [A]"

1 function postState(A, h, buf)
2 visited « visited U{(A, buf)}
3 if A — e then

4 if (e, buf) € visited then return h
5 else /x (e, buf) ¢ visited */

6 visited « visited U {(e, buf)}

7 h’ « &((h, L, buf),e)

8 if b’ # h then visited « @

9 return b’

10 else /x A — BC */

1 if (C,buf) € visitedthen h’ < h
12 else /* (C, buf) ¢ visited */

13 L h’ « postState(C, h, buf)

14 buf « updateBuffer(C, buf)

15 if (B, buf) € visited then return h’
16 else /x (B, buf) ¢ visited */

17 h’" « postState(B, h’, buf’)

18 L return h’”/

The critical function is really the computation of A" given non-
terminal A, valuation h and buffer buf. A pseudocode for this func-
tion postState is given in Algorithm 1. We will call postState
with arguments A, h, buf only once. After the first call we will mem-
oize this result, and if in subsequent computations, there is a need
to compute postState(A, h, buf) we will use the stored result. The
data structure storing these previously computed postState re-
sults is called visited in Algorithm 1. Observe that monotonicity
properties of Aj, (Lemma 4.2) mean that if the valuation k in the
state changes during an execution, the automaton never returns to
the same valuation again. Hence, visited just stores the previous
calls for the current valuation h; as soon as the valuation changes,
we reset the data structure visited because the previous calls to
postState will never be repeated as h has changed. Moreover,
this means that visited only stores pairs (A, buf) when a call to
postState (A, h, buf) returns the valuation h.

In line 2, we record the fact that we have made a call postState(A,
h, buf) by adding (A, buf) to visited. The computation then pro-
ceeds based on the rule for the non-terminal A. If A — e (e € X)
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ho:  [(S,€).(B.€),(C,€), (h,€), (As2, h), (A2, h), (A16, h), (As, h),
(A, h), (A2, h), (A1, h), (n, h), (h,n), (A3, h), (A24, h),
(As, h), (Ags,n), (A33,n), (A1, n), (n,n)]

hi: [(h,n), (A3z2,h), (A6, h), (As, h), (Ag, h), (A2, h), (A1, h)
(n,h), (h,n)]

Figure 4: Executing Algorithm 1 on SLP in Figure 2 with property
@ = -nAG(n = -Xn). The valuation h corresponds to [G(n =
=Xn) —» T]and hy is [G(n = -Xn) — L]. The figure shows the
set visited for each valuation. Elements are added to visited from
left to right as recursive calls are made. Initially the valuation is Ay,
which changes to h; when §((ho, L, n), n) is computed.

is the rule, then we return A if we have computed it before (line 4)
or find the new valuation by computing the transition function é.
Note that visited is set to @ if the valuation changes (line 8). On
the other hand, if the rule is A — BC (lines 10 through 17), then we
compute the result by “running” C and then B.

Example 7. Consider the trace 7 from Example 1 of the program
in Figure 1. Its compression as an SLP is given in Figure 2. Let us
fix the property to be checked to be ¢ = -n A G(n = -Xn) from
Example 2. Let us see how Algorithm 1 evaluates ¢ on this SLP.

Recall that subpgx(¢) = {G(n = =Xn)}. Thus there are two
valuations hp = [G(h = -=Xn) — T]and by = [G(h =
=Xn) — L], with kg being the initial valuation. Next, recall that
since Xdepth(¢) = 1, the buffer is of size at most 1.

The algorithm starts with a call postState (S, ho, €) (i.e., buffer
is empty) which initiates a sequence of recursive calls to postState
with different arguments. Initially visited is empty. Line 2 of Al-
gorithm 1 adds (S, €) to visited, and given the rule for S, makes a
recursive call postState (B, hg, €) (lines 11 to 13). The set visited
memoizes the result of a call to postState to avoid re-computing an
answer — if (A, buf) € visited after returning from a call postState
(A, h, buf) then it means that the valuation after running [A] from
valuation h with buffer buf is h. Figure 4 shows the set visited. The
first row shows the set visited while the current valuation is hg,
and the second row shows visited after the valuation changes to hy.
Recursive calls to postState add elements to visited in the order
shown from left to right.

The call postState (B, hy, €) leads to a call postState (C, hy, €)
which then results in a check of §((ho, L, €), h) (lines 6 through 9).
Since §((ho, L,€),h) = ho (see automaton in Figure 3), visited is
not reset. The buffer changes to h (line 14), and a call is made
to postState (Aez, ho, h) (line 17). This results in a sequence of
recursive calls with non-terminals A; for values i < 62. To see how
storing results in visited helps, let us see what happens during the
call postState (Az, ho, h). A recursive call postState (A, ho, h) is
made (line 13) which returns hg; running the automaton in Figure 3
on [A1] from hg leaves the valuation unchanged. The updated
buffer (line 14) remains h, and since (A1, h) € visited (because of
the previous call), we do not make additional recursive calls to
postState (line 17). Such savings in calls to postState happen in
many of the calls involving the non-terminals A;.

After the recursive call postState (B, hy, €) returns hg (no change
to valuation), the algorithm will make a call to postState (Ags, ho, n),
since the buffer after reading [B] is n. This leads to calls postState
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(As3, ho,n) and postState (A, ho, n) as well as a computation of
&((ho, L,n),n). The valuation returned by § is now hj, which leads
to visited being reset to @ (line 8). The evolution of the set visited
after the change of valuation is shown in the second row of Figure 4.

After the call postState (Ags, ho, n) returns with valuation hy,
we need to evaluate whether ¢ holds. It turns out that given a
valuation of each formula in subggx(¢) (namely k1) and the buffer
after Ags (namely h), we can compute the truth valuation for all
subformulas of ¢, including ¢ itself. Details of this process are
omitted in the interests of space. Carrying this computation out,
we discover that ¢ is not true and hence the execution encoded by
the SLP in Figure 2 does not satisfy ¢.

Running time. The running time for each call to postState is
dominated by either the time taken for line 7 or for line 14. This is be-
cause if we make recursive calls to postState (lines 13 and 17) that
time can be ascribed to those recursive calls. Line 7 takes at most
time O(|¢|) while line 14 takes O(k) time (recall k = Xdepth(y)).
Thus, each call to postState takes O(|¢|) time. The number of pos-
sible calls to postState is at most the number of triples (A, h, buf)
which is |Gl|¢| IZIk . Thus, the total running time can be bounded
by O(|G]|¢p|? |Z|k). This bound has an exponential dependence on
k = O(lg|) and we will show that this can be improved.

The key to improving the bound is to do a more careful count of
the number of postState calls. Monotonicity (Lemma 4.2) ensures
that there are at most |¢| different valuations h. Therefore, for any
fixed valuation h, we will try to bound the number of pairs (A, buf)
that can arise as arguments in a call to postState with h as the val-
uation. Our observation is that this is much less than |G| IZIk . This
is because if (A, h, buf) is an argument to postState, then [A]buf
must be a substring of [S]. Let us fix the uncompressed string, i.e.,
[S]. to be 7. As a first step towards counting such pairs (A4, buf),
we define the notion of when a non-terminal C is responsible for
generating the pair (4, buf).

Definition 4. A non-terminal C is said to be responsible for a
substring 7[i : j] of 7 if C is the label of the lowest internal node
of the parse tree for 7 that has z[i : j] as a substring.

Similarly, C is responsible for pair (A, buf) if C is responsible for
some occurrence of the string [A] - buf (which is a substring of 7).

Observe that all nodes labeled C are responsible for the same
set of pairs (A, buf). This is because such pairs are completely
determined by the parse tree with root labeled C. Moreover, there is
some non-terminal that is responsible for each pair (A, buf). Thus,
we can upper bound the number of pairs (A, buf) by counting the
number of pairs each non-terminal C is responsible for. Lemma 5.1
presents one such bound, and its proof is presented in the Appendix.

Lemma 5.1. A non-terminal C is responsible for at most O(H(C) +
k) pairs; here H(C) is the height of the parse tree whose root is
labeled C.

Taking H(G) to denote the height of the grammar (or H(S)), we
can use Lemma 5.1 to get the following bound on the running time.

Theorem 5.1. Given an SLP G with start symbol S and formula
¢ € LTL[F, G, X], the problem of determining if [S] [=7 ¢ can be
solved in time O(|G|(H(G) + k)|¢|?).
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Theorem 5.1 follows from observing that Lemma 5.1 shows that
the number of calls to postState is bounded by O(|G|(H(G)+k)|¢l)
and the running time of each call to postState is at most O(|¢|).

6 EXPERIMENTAL EVALUATION

We gauge the feasibility of our proposed approach of monitoring
compressed execution traces by comparing the performance of
our algorithm against that of the standard approach of monitoring
traces without compressing them. The goals of our evaluation are:

(1) Compression ratios. The asymptotic runtime of our algo-
rithm varies quadratically with the size of the compressed
trace (Theorem 5.1). As a result, any speed up (over analysis
of uncompressed traces) will evidently only be because of
good compression ratios. We, therefore, want to evaluate
whether execution traces from real world software projects
can be compressed efficiently.

(2) Performance of algorithm. Our next goal is to understand
how the running time varies with the size of the compressed
trace (SLP) in practice. Further, in order to evaluate the prac-
tical feasibility of our approach, we want to evaluate whether
our algorithm for analyzing compressed traces performs bet-
ter than the standard approach of analyzing (uncompressed)
traces directly, by a good margin. Finally, we want to under-
stand how the speed up varies with factors such as compres-
sion ratio.

We next describe our implementation and experimental setup
(Section 6.1) and then discuss our evaluation results (Section 6.2).

6.1 Implementation and Setup

The broad outline of our experimental setup is as follows. For our
set of benchmark programs, we extract execution traces using an
off-the-shelf logging tool. We then compress these traces as straight
line programs (SLPs) and analyze the SLPs thus generated using
our algorithm detailed in Section 5. We also compare the running
time of our algorithm with the time it takes to analyze the original
uncompressed traces using the standard approach (i.e., running
against finite state automata corresponding to our LTL specs).

Implementation. We implemented our algorithm in our tool Z1p-
MOP [4], primarily written in Java (in about 500 LoC). We use
JavaMOP [1, 11, 34] for extracting execution traces. JavaMOP in-
struments a Java program under test and adds monitoring code
at each event of interest for checking if the program’s executions
meet some formal specification. For our experimental evaluation,
we obtained execution traces by modifying JavaMOP so that it logs
events to a file. To analyze uncompressed traces against LTL[F, G, X]
properties, we use Rabinizer-4.0 [24] publicly available at [2]. Ra-
binizer-4.0 is a state-of-the art tool for translating LTL formulae into
automata. For each of the LTL properties we consider, we obtain
deterministic finite automata using Rabinizer-4.0 and check if this
automata accepts the trace in consideration.

Benchmarks and Traces. Our subjects are open source GitHub
repositories derived from a prior empirical study [28] on GitHub
projects, as well as independently obtained from GitHub based on
their popularity score (measured by GitHub stars). We use JavaMOP
to instrument these repositories so that all events of interest (those
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Figure 5: Sizes of (uncompressed and compressed) traces and compression ratios.

that occur in any of the LTL specs) are logged. We then generated
traces by running all test classes of these repositories. We chose the
top 100 traces based on the trace lengths. The minimum, maximum
and average trace lengths in this set are 52.6M, 1.03B and 209M.
The overall distribution is given in Figure 5a.

LTL Specifications. Our LTL properties are also obtained from [28].
Most of these properties specify the expected usage of different
data structures and APIs used in these software projects, and are
expressed in many different formalisms (regular expressions, ERE,
LTL, FSM, etc.,). An example property is -n A G(n = —Xn) from
Example 2 (in Section 2.2), that specifies how an iterator of the
Set collection must be used — every call to next() (denoted by
‘n’) must be immediately preceded by a call to hasNext () (denoted
by ‘h’). Another such property is ¢ = G(cr = F(cl)) which
states that a resource (such as a buffered stream) must eventually
be closed (‘cl’) every time it is created (‘cr’). We identified that
10 properties were expressible in the fragment LTL[F, G, X], and
selected all of them for our study.

Setup. We compare the running times of our algorithm over com-
pressed traces to the time for analyzing the corresponding uncom-
pressed traces against our LTL[F, G, X] specifications. After ob-
taining traces from our benchmark projects (using JavaMOP), we
compress these traces using the Sequitur algorithm [37], available
publicly [3], which runs in linear time in the size of the uncom-
pressed trace. For the uncompressed traces, we use Rabinizer-4.0
to generate a deterministic finite state automaton for each prop-
erty. For every property, Rabinizer-4.0 generates a Rabin automata,
which is essentially a finite state machine, together with an ac-
ceptance condition for deciding membership of infinite words. We
manually transformed these automata so that they are suitable for
analyzing finite traces. Our experiments were conducted over a
2.6GHz 64-bit Linux machine.

6.2 Evaluation Results

Size of Compressed Traces and Compression Ratios. While
the uncompressed traces have lengths varying from 50M to 1.03B,
the sizes of the compressed traces (SLPs) all lie between 54k and
1.8M. The average size of the SLPs is approximately 329k and the
overall distribution is presented in Figure 5b. The compression ra-
tios of each trace was observed to be at least 277. The maximum and
average compression ratios are 1016 and 641, and the distribution
is shown in Figure 5c. The significant compression ratios hint that

most open source projects generate execution traces that have a lot
of repetition and thus can be effectively compressed. A plausible
explanation of large amount of repetitions is that many unit tests
in our subject repositories repeatedly manipulate collection objects
(such as lists or sets) in a loop.

Running times. In Figure 6a, we plot the running time (in seconds)
for every compressed trace. These times are averaged over the
running time of ZiPMOP across all the 10 LTL[F, G, X] properties
we consider. Further, in order to ensure fair comparison with the
analysis over uncompressed traces, we exclude the time to read
(uncompressed or compressed) trace files in memory — including
I/0 times would penalize the uncompressed analysis more heavily
as they work over larger files. Observe that all the times are within
0.5 second (excluding I/O time). Also observe that, as expected, the
times increase with the size of the compressed trace (SLP). In fact,
we can see that the time increases linearly with the size of the SLP,
despite the worst case dependence of |G|? as in Theorem 5.1 (H(G)
can be O(G) in worst case).

Speed-up over analysis of uncompressed traces. We now com-
pare how the running time over compressed traces compare with

the running time of analyzing uncompressed trace logs. Figure 6b
Time to analyze uncompressed trace

shows the speed up , Where,

Time to analyze SLP
as before, both the numerator and denominator are average times

over all LTL specs. Further, both the times exclude I/O time. The
maximum, minimum and average speed ups are 90X, 15X and 34X.
The high speed up shows the power of compression in analyzing
trace logs as compared to uncompressed versions.

In Figure 7a we show how the speed up varies with the compres-
sion ratio. As expected, our algorithm performs better (as against
the uncompressed analysis) when the compression ratio is high.
This is because the time to analyze an uncompressed trace 7 is
O(|z|) (time to check membership in a finite automaton) and the
time to analyze a compressed trace G using our algorithm (Sec-
tion 5) is proportional to O(|G|) and the speed-up thus increases
with the quantity O(|z|/|Gl), which is the compression ratio.

In Figure 7b, we analyze the efficiency of the algorithm, defined

Speed up

asn = . The efficiency factor intuitively captures

Compression ratio
how well can the speed up over uncompressed traces be explained

using the compression ratio. We observe that the efficiency val-
ues are in the range 0.04 to 0.11, and this is likely because of the
constant multiplicative factors involved in the running time of our



Checking LTL[F,G,X] on Compressed Traces in Polynomial Time

o o
o W
8 8
.
o
.

R
N
o

.

o
2
G

h S

Average Running Time (s)
)
N
)
-
.
.

o o
o i
G o

-

0.0 500.0k 1.0M 1.5M 2.0M
Size of SLP
(a) Running time v/s size of compressed trace

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

0.0 20.0 40.0 60.0 80.0 100.0
Speed Up
(b) Distribution of speed up over uncompressed analysis

Figure 6: Running time and speed over uncompressed analysis

90.0 o
.
80.0 . .
‘
70.0 R
2600 e ° .
o L] . .
g 500 % o0
«n . o o
40.0 et e i, o
30.0 °e T L
Y
-’
2001 0,000

200.0 300.0 400.0 500.0 600.0 700.0 800.0
Compression Ratio
(a) Compression ratio v/s speed up

o
o
IS

o
o
~

g
=3
©
L3
.

Speed Up / Compression Ratio
)
"
1)
.

n
o
o
&

0.0 500.0k 1.0M 1.5M 2.0M
Size of SLP

(b) Efficiency factor v/s size of SLP

Figure 7: Speed up, compression ratio and efficiency

algorithm for checking compressed traces. Further, the efficiency
factor increases (almost) monotonically with the size of the com-
pressed format, implying that higher compression ratios are more
effective when the compressed traces are themselves large.

7 RELATED WORK

From a theoretical standpoint, the work that is closest to ours is that
of Markey and Schnoebelen [33] which established the PSPACE-
hardness for the general problem of checking if a string, represented
as an SLP, satisfies a formula written in full LTL; our result shows
polynomial time tractability for the LTL[F, G, X] sub-fragment. No-
tably, the hardness in [33] arises from the use of arbitrarily nested
until operators in LTL formulae. Lohrey [30] comprehensively sur-
veys algorithmic and complexity-theoretic aspects of language the-
oretic questions involving SLPs. Galperin and Wigderson [16], and
subsequently others([7, 8, 12, 15, 16, 31, 38, 46] showed that graph
problems that are tractable on the uncompressed input become
intractable when posed over compressed (succinct) representations.

Analysis of execution traces or event sequences has been cen-
tral to the engineering of reliable and efficient software. While
in our work, we propose the use of compression in runtime ver-
ification [18-20, 27, 35], prior works have focused on the use of
compression in race detection [23], profiling [17, 26, 29, 42], or
program comprehension using dynamic slicing [45, 47]. More re-
cent works on large scale debugging [41], bug localization [40] and
triaging [36] using trace data obtained from stack traces obtained at
the time of crashes, while implicitly rely on compression provided
by databases that store large columes of trace data, they do not
leverage compression in the actual analysis tasks (such as pattern

mining or clustering). An interesting avenue for future work would
be to develop techniques to speed up such techniques by leveraging
compression.

8 CONCLUSIONS

We propose the use of compression as an algorithmic paradigm to
improve the efficiency of checking if execution traces conform
to specifications written in LTL (linear temporal logic). While
this problem is intractable (PSPACE-hard) in general, we estab-
lish a polynomial time algorithm for the rich fragment LTL[F, G, X]
whose formulae do not include the U operator of full LTL. Our
polynomial time algorithm leverages a monotonicity property in
the automata theoretic representation of formulae in LTL[F, G, X].
On a comprehensive benchmark suite of open source Java projects,
our evaluation confirms that execution traces can be effectively
compressed and that the membership problem of traces can be effi-
ciently decided over compressed formats (straight line programs),
without decompressing them, resulting into significant speed ups
when compared to analysis over uncompressed traces.
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