

36:2 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

due to concurrency are very hard to reproduce manually, and automated techniques for doing so
are crucial in enhancing the productivity of software developers.

Data races are the most common form of concurrency errors. A data race (sometimes just called
a race) occurs when a thread of a multi-threaded program accesses a shared memory location while
another thread is modifying it without proper synchronization. The presence of a data race is often
symptomatic of a serious bug in the program [Lu et al. 2008]; races have caused data corruption
and compilation errors [Boehm 2011; Kasikci et al. 2013; Narayanasamy et al. 2007], and significant
system errors [Boehm 2012; Zhivich and Cunningham 2009] in the past. Therefore, considerable
research has focused on detecting and preventing races in multi-threaded programs.

One of the most popular approaches to race prediction is via dynamic analysis [Bond et al. 2010;
Flanagan and Freund 2009; Pozniansky and Schuster 2003]. Unlike static analysis, dynamic race
prediction is performed at runtime. Such techniques determine if an observed execution provides
evidence for the existence of a possibly alternate program execution that can concurrently perform
conflicting data accesses1. The underlying principle is that a race is present but łhiddenž in a large
number of different program executions; hence techniques that uncover such hidden races can
accelerate the process of debugging concurrent programs significantly. The popularity of dynamic
race prediction techniques further stems (i) from their scalability to large production software, and
(ii) from their ability to produce only sound error reports.

The most popular dynamic race prediction techniques are based on Lamport’s happens-before
partial order [Lamport 1978]. These techniques scan the input trace, determine happens-before
orderings on-the-fly, and report a race on a pair of conflicting data accesses if they are unordered
by happens-before. This approach is sound, in that the presence of unordered conflicting data
accesses ensures the existence of an execution with a race. While happens-before based analysis
fails to predict races in various cases [Smaragdakis et al. 2012], its wide deployment is based on
the fact that the algorithm is fast, single pass, and runs in linear time. The principle that forms the
basis of its efficiency is the following. When reasoning about alternate executions, happens-before
analysis does not consider any execution in which the order of synchronization primitives is
reversed from that in the observed execution. We call such alternate executions sync(hronization)-
preserving executions. Other, more powerful race prediction techniques [Genç et al. 2019; Huang
et al. 2014; Huang and Rajagopalan 2016; Pavlogiannis 2019; Roemer et al. 2018; Smaragdakis
et al. 2012] sacrifice this principle and consider alternate executions that are not sync-preserving.
Naturally, this typically results in performance degradation, as the problem is in general NP-
hard [Mathur et al. 2020a], and considerable efforts are made towards improving the scalability of
such techniques [Roemer and Bond 2019; Roemer et al. 2020].
Although happens-before only detects races whose exposure preserves the ordering of syn-

chronization primitives, it can still miss simple races that adhere to this pattern. For example,
consider the trace 𝜎1 shown in Figure 1a. Let us name the events of this trace based on the order in
which they appear in the trace; thus, 𝑒𝑖 denotes the 𝑖

th event of the trace. Here, the partial order
happens-before orders the first w(𝑥) (event 𝑒1) and the last w(𝑥) (event 𝑒6), and therefore, does not
detect any race in this execution. However events 𝑒1 and 𝑒6 are in race. This can be exposed by
the alternate execution shown in Figure 1b, which is obtained by dropping the critical section of
lock ℓ performed by thread 𝑡1. Notice that the order of synchronization events (namely, acq(ℓ)
and rel(ℓ) events) that appear in the trace of Figure 1b, are in the same order as in the trace of
Figure 1a, and hence this is a sync-preserving execution. Thus, the notion of sync-preservation
captures races beyond standard happens-before races.

1Conflicting data accesses come from different threads, access a common memory location, and at least one is a write.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:3

𝑡1 𝑡2

1 w(x)

2 acq(ℓ)

3 rel(ℓ)

4 acq(ℓ)

5 rel(ℓ)

6 w(x)

≤
H
B

(a) An observed trace 𝜎1.

𝑡1 𝑡2

1 acq(ℓ)

2 rel(ℓ)

3 w(x)

4 w(x)

(b) A witness 𝜎∗
1
of a race in 𝜎1.

𝑡1 𝑡2

1 w(x)

2 acq(ℓ)

3 w(𝑥)

4 rel(ℓ)

5 acq(ℓ)

6 w(x)

7 rel(ℓ)

(c) An observed trace 𝜎2.

Fig. 1. (1a) shows a trace 𝜎1 with a sync-preserving race (𝑒1, 𝑒6) missed by ≤
HB

. (1b) shows a witness that
exposes the race. (1c) shows a sync-preserving race (𝑒1, 𝑒6) that is non-consecutive, due to the intermediate
event 𝑒3.

Another important limitation of happens-before and virtually all partial-order methods [Kini et al.
2017; Mathur et al. 2018; Roemer et al. 2018, 2020; Smaragdakis et al. 2012] is highlighted in Figure 1c.
The trace 𝜎2 has a race between 𝑒1 and 𝑒6, both conflicting on variable 𝑥 . Notice, however, that the
intermediate event 𝑒3 also accesses 𝑥 , but is not in race with either 𝑒1 or 𝑒6. Partial-order methods
for race prediction are limited to capturing races only between successive conflicting accesses2.
Hence, distant races that are interjected with intermediate conflicting but non-racy events, are
missed by such methods. On the other hand, sync-preservation is not bound to such limitations:
(𝑒1, 𝑒6) is characterized as a race under this criterion, regardless of the intermediate, non-racy 𝑒3,
and is exposed by a witness that omits the critical section on lock ℓ in the thread 𝑡1.

Our Contributions. Motivated by he above observations, we make the following contributions.

(1) We introduce the novel notion of sync(hronization)-preserving data races. This is a sound
notion of predictable races, and it strictly subsumes the standard notion of happens-before
races. Moreover, it characterizes races between events that can be arbitrarily far apart in
the input trace, as opposed to happens-before and other partial-order methods that only
characterize races between successive conflicting accesses. Our notion is applicable to all
concurrency settings, and interestingly, it is also complete for systems with synchronization-
deterministic concurrency [Aguado et al. 2018; Bocchino et al. 2009; Cui et al. 2015; Zhao
et al. 2019].

(2) We develop an efficient, single-pass, nearly linear time algorithm SyncP that, given a trace 𝜎 ,
detects whether 𝜎 contains a sync-preserving race. In fact, our algorithm soundly reports all
events 𝑒2 which are in a sync-preserving race with an event 𝑒1 that appears earlier in 𝜎 . Given

N events in 𝜎 , our algorithm spends 𝑂 (𝑁) time, where 𝑂 hides factors poly-logarithmic in

N , when other parameters of the input (e.g., number of threads) are 𝑂 (1).
(3) Although our algorithm performs a single pass of the trace, in the worst case, it might

use space that is nearly linear in the length of the trace, i.e., 𝑂 (N) space. Hence follows
a natural question: is there an efficient algorithm for sync-preserving race prediction that
uses considerably less space? We answer this question in negative, by showing that any
single-pass algorithm for detecting even a single sync-preserving race must use nearly linear
space. Hence, our algorithm SyncP has nearly optimal performance in both time and space.

(4) We next study the complexity of race predictionwith respect to the number of synchronization
reversals that might occur when constructing a witness that exposes the race. In the case

2When the earlier access is a read instead of a write, this statement is true per thread.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:4 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

of synchronization via locks, this number corresponds to the number of critical sections
whose order is reversed in the witness trace. We prove that the problem of predicting races
which can be witnessed by a single reversal (of two critical sections) is NP-complete and
even W[1]-hard when parameterized by the number of threads. Thus, sync-preservation
characterizes exactly the tractability boundary of race prediction, and our algorithm is nearly
optimal for the tractable side. Moreover, our result shows that any level of synchronization
suffices to make the problem of race prediction as hard as in the general case.

(5) Finally, we have implemented our race prediction algorithm SyncP and evaluated its perfor-
mance on standard benchmarks. Our results show that sync-preservation characterizes many
races that are missed by state-of-the-art methods, and SyncP detects them efficiently.

2 PRELIMINARIES

In this section we establish notation useful throughout of the paper. The exposition follows other
related works in the literature.

2.1 Background on Dynamic Data Race Prediction

Traces and Events. Our objective is to develop a dynamic analysis technique which works over
execution traces, or simply traces of concurrent programs. We work with the sequential consistency
memory model. In this setting, traces are sequences of events. We will use 𝜎, 𝜎 ′, . . . , 𝜎1, 𝜎2, . . . to
denote traces. Every event of 𝜎 can be represented as a tuple 𝑒 = ⟨𝑖, 𝑡, op⟩, where 𝑖 is a unique
identifier of 𝑒 in 𝜎 , 𝑡 is the thread that performs 𝑒 and op is the operation performed in the event
𝑒 . We often omit the unique identifier of such a tuple and simply write 𝑒 = ⟨𝑡, op⟩. We use thr(𝑒)
and op(𝑒) to denote the thread performing 𝑒 and the operation performed by 𝑒 . An operation can
be one of read from or write to a shared memory location or variable 𝑥 , denoted r(𝑥) and w(𝑥),
and acquisition or release of a lock ℓ , denoted acq(ℓ) or rel(ℓ). Forks and joins can be naturally
handled, but we avoid introducing them here for notational convenience. We denote by Events𝜎
the set of events in a trace 𝜎 . We use Thr𝜎 , Vars𝜎 and Locks𝜎 to denote respectively the threads,
variables and locks that appear in 𝜎 . Likewise, we use Acquires𝜎 (ℓ) and Releases𝜎 (ℓ) to denote the
set of acquire and release events of 𝜎 on lock ℓ ∈ Locks𝜎 .
We require that traces obey lock semantics. In particular, every lock ℓ is released by a thread 𝑡

only if there is an earlier matching acquire event by the same thread 𝑡 , and that each such lock is
held by at most one thread at a time. Formally, let 𝜎 |ℓ denote the projection of 𝜎 to the set of events
Acquires𝜎 (ℓ) ∪ Releases𝜎 (ℓ). We require that for every lock ℓ , the sequence 𝜎 |ℓ is a prefix of some
sequence that belongs to the language of the regular expression

(∑
𝑡 ∈Thr𝜎

⟨𝑡, acq(ℓ)⟩ · ⟨𝑡, rel(ℓ)⟩
)∗
.

For an acquire event 𝑒 , we use match𝜎 (𝑒) to denote the matching release event of 𝑒 if one exists
(and ⊥ otherwise). Similarly, for a release event 𝑒 , match𝜎 (𝑒) is the matching acquire of 𝑒 on the
same lock. For an acquire event 𝑒 , the critical section protected by 𝑒 , denoted CS𝜎 (𝑒), is the set of
events 𝑒 ′ such that thr(𝑒 ′) = thr(𝑒) and 𝑒 ′ occurs after 𝑒 and before the matching releasematch𝜎 (𝑒)

(if it exists) in 𝜎 . For a release event 𝑒 , we have CS𝜎 (𝑒) = CS𝜎 (match𝜎 (𝑒)).

Orders on Traces. A partial order ≤𝜎
P
defined over a trace 𝜎 is a reflexive, anti-symmetric and

transitive binary relation on Events𝜎 ; the symbol P is an optional identifier for the partial order. We
write 𝑒1 ≤

𝜎
P
𝑒2 to denote (𝑒1, 𝑒2) ∈≤

𝜎
P
, where 𝑒1, 𝑒2 ∈ Events𝜎 . For a partial order ≤

𝜎
P
, we use <𝜎

P

to denote the strict order ≤𝜎
P
\{(𝑒, 𝑒) | 𝑒 ∈ Events𝜎 }. We write 𝑒1≰

𝜎
P
𝑒2 to denote that (𝑒1, 𝑒2) ∉≤

𝜎
P
.

Events 𝑒1, 𝑒2 ∈ Events𝜎 are said to be unordered by ≤𝜎
P
, denoted 𝑒1 ∥

𝜎
𝑃
𝑒2 if 𝑒1≰

𝜎
P
𝑒2 and 𝑒2≰

𝜎
P
𝑒1;

otherwise, we write 𝑒1 ∦
𝜎
𝑃
𝑒2, denoting that 𝑒1 and 𝑒2 are ordered by ≤𝜎

P
in one or the other way.

When 𝜎 is clear from context, we will use ≤
P
, <

P
, ≰

P
, ∥𝑃 and ∦𝑃 instead of respectively ≤𝜎

P
, <𝜎

P
,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:5

𝑡1 𝑡2

1 acq(ℓ)

2 rel(ℓ)

3 acq(ℓ)

4 rel(ℓ)

5 w(𝑥)

6 r(𝑥)

(a) Trace 𝜎3 with data race

𝑡1 𝑡2

1 w(𝑥)

2 acq(ℓ)

3 r(𝑥)

4 rel(ℓ)

5 acq(ℓ)

6 w(𝑥)

7 rel(ℓ)

(b) Trace 𝜎4 with predictable race

𝑡1 𝑡2

1 w(𝑦)

2 acq(ℓ)

3 w(𝑥)

4 rel(ℓ)

5 acq(ℓ)

6 r(𝑥)

7 rel(ℓ)

8 w(𝑦)

(c) Trace 𝜎5 with no predictable race

Fig. 2. Traces, data races and predictable data races

≰𝜎
P
, ∥𝜎

𝑃
and ∦𝜎

𝑃
. For a partial order ≤𝜎

P
, a set 𝑆 ⊆ Events𝜎 is said to be downward-closed with respect

to ≤𝜎
P
if for every 𝑒, 𝑒 ′ ∈ Events𝜎 , if 𝑒 ≤

𝜎
P
𝑒 ′ and 𝑒 ′ ∈ 𝑆 , then 𝑒 ∈ 𝑆 .

The trace-order ≤𝜎
tr
defined by 𝜎 is the total order on Events𝜎 imposed by the sequence 𝜎 , i.e.,

𝑒1 ≤
𝜎
tr
𝑒2 iff the event 𝑒1 occurs before 𝑒2 in 𝜎 . The thread-order (or program-order) ≤𝜎

TO
of 𝜎 is the

partial order on Events𝜎 that orders events in the same thread: for two events 𝑒1, 𝑒2 ∈ Events𝜎 ,
𝑒1 ≤

𝜎
TO

𝑒2 iff 𝑒1 ≤
𝜎
tr
𝑒2 and thr(𝑒1) = thr(𝑒2).

Conflicting Events and Data Races. Let 𝜎 be a trace. Two events 𝑒1, 𝑒2 ∈ Events𝜎 are said to be
conflicting, denoted 𝑒1 ≍ 𝑒2, if thr(𝑒1) ≠ thr(𝑒2), and there is a common variable 𝑥 ∈ Vars𝜎 such
that op(𝑒1), op(𝑒2) ∈ {r(𝑥), w(𝑥)} and at least one of op(𝑒1) and op(𝑒2) is w(𝑥). Let 𝜌 be a trace
with Events𝜌 ⊆ Events𝜎 . An event 𝑒 ∈ Events𝜎 is said to be 𝜎-enabled in 𝜌 if 𝑒 ∉ Events𝜌 and
for all events 𝑒 ′ ∈ Events𝜎 such that 𝑒 ′ <𝜎

TO
𝑒 , we have 𝑒 ′ ∈ Events𝜌 . A pair of conflicting events

(𝑒1, 𝑒2) in 𝜎 is said to be a data race of 𝜎 if 𝜎 has a prefix 𝜎 ′ such that both 𝑒1 and 𝑒2 are 𝜎-enabled
in 𝜎 ′. The trace 𝜎 is said to have a data race if there is a pair of conflicting events (𝑒1, 𝑒2) in 𝜎 that
constitutes a data race of 𝜎 .

Example 1. Consider the trace 𝜎3 in Figure 2a. The set of events of 𝜎3 is Events𝜎3
= {𝑒1, 𝑒2, . . . , 𝑒6},

Thr𝜎 = {𝑡1, 𝑡2},Vars𝜎 = {𝑥} and Locks𝜎 = {ℓ}. For the event 𝑒1 = ⟨𝑡1, acq(ℓ)⟩, we have thr(𝑒1) = 𝑡1
and op(𝑒1) = acq(ℓ). The trace order of this trace is ≤𝜎3

tr
= {(𝑒𝑖 , 𝑒 𝑗) | 𝑖 ≤ 𝑗} and the thread-

order is ≤𝜎3

TO
= {(𝑒1, 𝑒2), (𝑒1, 𝑒5), (𝑒2, 𝑒5), (𝑒3, 𝑒4), (𝑒3, 𝑒6), (𝑒4, 𝑒6)}. Events 𝑒5 and 𝑒6 conflict because

they access the same variable 𝑥 and are performed by different threads. For the prefix trace
𝜎 ′
3
= 𝑒1·𝑒2·𝑒3·𝑒4, both 𝑒5 and 𝑒6 are 𝜎3-enabled in 𝜎 ′

3
. Thus, (𝑒5, 𝑒6) constitutes a data race of 𝜎3.

Correct Reorderings. Execution traces of concurrent programs are sensitive to thread scheduling,
and looking for a trace with a specific pattern is like searching for a needle in a haystack. In terms
of data race detection, this means that a dynamic analysis that looks for executions with enabled
conflicting events (data races) is likely to miss many data races that might have otherwise been
captured in alternate executions of the same program that arise due to slightly different thread
scheduling. The notion of data race prediction attempts to alleviate this problem by capturing a
more robust notion of data races. The idea here is to infer data races that might occur in alternate
reorderings of an observed trace, thereby detecting data races beyond those in just the execution
that was observed. The set of allowable reorderings of an observed trace 𝜎 is defined in a manner
that ensures that data races can be detected agnostic of the program that generated 𝜎 in the first
place. Such a notion is captured by a correct reordering which we define next.
For a trace 𝜎 and a read event 𝑒 , we use lw𝜎 (𝑒) to denote the write event observed by 𝑒 . That

is, 𝑒 ′ = lw𝜎 (𝑒) is the last (according to the trace order ≤𝜎
tr
) write event 𝑒 ′ of 𝜎 such that 𝑒 and 𝑒 ′

access the same variable and 𝑒 ′ ≤𝜎
tr
𝑒; if no such 𝑒 ′ exists, then we write lw𝜎 (𝑒) = ⊥.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:6 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Given the above notation, a trace 𝜌 is said to be a correct reordering of trace 𝜎 if

(a) Events𝜌 ⊆ Events𝜎
(b) Events𝜌 is downward closed with respect to ≤𝜎

TO
, and further ≤

𝜌

TO
⊆≤𝜎

TO
,

(c) for every read event 𝑒 ∈ Events𝜌 , lw𝜌 (𝑒) = lw𝜎 (𝑒).

The above definition ensures that if 𝜌 is a correct reordering of 𝜎 , then every program that generates
the execution trace 𝜎 also generates 𝜌 . This is because 𝜌 preserves both intra-thread ordering, as
well as the values read by every read occurring in 𝜌 , thereby preserving any control flow that
might have been taken by 𝜎 . This style of formalizing alternative executions based on semantics
of concurrent objects was popularized by [Herlihy and Wing 1990] and by prior race detection
works [Said et al. 2011; Şerbănuţă et al. 2012]. Our definition of correct reordering has been derived
from [Smaragdakis et al. 2012], which has subsequently also been used in the literature [Genç et al.
2019; Kini et al. 2017; Mathur et al. 2018, 2020a; Pavlogiannis 2019; Roemer et al. 2018].

Data Race Prediction. Armed with the notion of correct reorderings, we can now define a more
robust notion of data races. A pair of conflicting events (𝑒1, 𝑒2) in 𝜎 is said to be a predictable data
race of 𝜎 if there is a correct reordering 𝜌 of 𝜎 such that 𝑒1, 𝑒2 are 𝜎-enabled in 𝜌 . We remark that a
pair of conflicting events (𝑒1, 𝑒2) in trace 𝜎 may not be a data race of 𝜎 , but nevertheless may still
be a predictable data race of 𝜎 .

Example 2. Consider the trace 𝜎4 in Figure 2b. Observe that there is no prefix of 𝜎4 in which both
𝑒1 and 𝑒6 are enabled. However, (𝑒1, 𝑒6) is a predictable race of 𝜎4 that is witnessed by the singleton
correct reordering 𝜎CR

4
= 𝑒5 in which both 𝑒1 and 𝑒6 are enabled; 𝜎

CR

4
is both downward closed

with respect to, and respects ≤𝜎4

TO
. Further, it has no read events and thus vacuously every read

observes the same last write as in 𝜎4. The other pair of conflicting events in 𝜎4, namely (𝑒3, 𝑒6),
however, is not a predictable race. These events are protected by a common lock, and there is no
correct reordering in which 𝑒3 and 𝑒6 are simultaneously enabled Ð any attempt at doing so will
lead to overlapping critical sections on ℓ , thereby violating lock semantics.

Example 3. Now, consider 𝜎5 in Figure 2c. Here, the conflicting pair (𝑒3, 𝑒6) cannot be a predictable
race as in the case of 𝜎4Ð the lock ℓ protects both 𝑒3 and 𝑒6. Now consider the other conflicting
pair (𝑒1, 𝑒8). Let 𝜌 be a correct reordering of 𝜎5 in which 𝑒8 is enabled. We must have 𝑒6 ∈ Events𝜌
(𝜌 must be ≤𝜎5

TO
-downward closed) and further 𝑒3 ∈ Events𝜌 (as 𝑒3 = lw𝜎5

(𝑒6) = lw𝜌 (𝑒6)). Clearly,
𝑒1 cannot be enabled in any such trace 𝜌 , and thus, the trace 𝜎5 has no predictable data race.

The central theme of race prediction is to solve the problem below.

Problem 1 (Data Race Prediction). Given a trace 𝜎 , determine if 𝜎 has a predictable data race.

A Note on Soundness. We say that an algorithm for data race prediction is sound if whenever
the algorithm reports a YES answer, then the given trace has a predictable data race. Likewise,
an algorithm is complete if the algorithm reports YES whenever the input trace has a data race.
Our convention for this nomenclature ensures that no false positives are reported by a sound

algorithm [Sergey 2019] and is consistent with prior work on data race prediction [Genç et al. 2019;
Kini et al. 2017; Pavlogiannis 2019; Roemer et al. 2018; Smaragdakis et al. 2012]. Soundness is often
a desirable property for dynamic race predictors for widespread adoption [Gorogiannis et al. 2019].

2.2 Synchronization-Preserving Data Races

In general, the problem of data race prediction is intractable [Mathur et al. 2020a], and a sound
and complete algorithm for data race prediction is unlikely to scale beyond programs of even
moderate size. A recent trend in predictive analysis for race detection instead, aims to develop

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:7

𝑡1 𝑡2 𝑡3

1 w(𝑥)

2 acq(ℓ)

3 rel(ℓ)

4 acq(ℓ)

5 w(𝑥)

6 rel(ℓ)

7 acq(ℓ)

8 r(𝑥)

9 rel(ℓ)

(a) Trace 𝜎6

𝑡1 𝑡2 𝑡3

1 acq(ℓ)

2 w(𝑥)

3 rel(ℓ)

4 acq(ℓ)

5 r(𝑥)

6 w(𝑥)

7 rel(ℓ)

(b) Sync-preserving correct reordering 𝜎CR

6
of 𝜎6

Fig. 3. Sync-preserving correct reordering and sync-preserving races

techniques that are sound but incomplete, with successively better prediction power (ability to
report more data races) than previous techniques [Genç et al. 2019; Kini et al. 2017; Pavlogiannis
2019; Roemer et al. 2018; Smaragdakis et al. 2012]. Most of these techniques are either based on
partial orders [Kini et al. 2017; Pozniansky and Schuster 2003; Smaragdakis et al. 2012] or use
graph-based algorithms [Pavlogiannis 2019; Roemer et al. 2018]. In this paper, we characterize a
class of predictable data races, called sync(hronization)-preserving races, which we define shortly.
We will later (Section 4) present an algorithm that reports a race iff the input trace has a sync-
preserving race. Since sync-preserving races are predictable races, our algorithm will be sound for
race prediction.

Sync-Preserving Correct Reordering. A correct reordering of a trace is called sync(hronization)-
preserving if it does not reverse the order of synchronization constructs; in our formalism, traces
use locks as synchronization primitives to enforce mutual exclusion. Formally, a correct reordering
𝜌 of a given trace 𝜎 is sync-preserving with respect to 𝜎 if for every lock ℓ and for any two acquire
events 𝑒1, 𝑒2 ∈ Acquires𝜌 (ℓ), we have 𝑒1 ≤

𝜌
tr
𝑒2 iff 𝑒1 ≤

𝜎
tr
𝑒2. In other words, the order of two critical

sections on the same lock is the same in 𝜎 and 𝜌 . Let us illustrate this notion on an example.

Example 4. Consider trace 𝜎6 in Figure 3a. This trace has 3 critical sections on lock ℓ . Now consider
the correct reordering 𝜎CR

6
(Figure 3b) of 𝜎6. Here, the critical section in thread 𝑡1 is not present. But,

nevertheless, the order amongst the remaining critical sections on ℓ (in threads 𝑡2 and 𝑡3) is the same
as in 𝜎6, making 𝜎CR

6
a sync-preserving correct reordering of 𝜎6. This example also demonstrates

that the order of read and write events may be different in a trace and its sync-preserving correct
reordering (as in Figure 3).

A pair of conflicting events (𝑒1, 𝑒2) of a trace 𝜎 is said to be a sync(hronization)-preserving race
of 𝜎 if there is a sync-preserving correct reordering 𝜌 of 𝜎 in which 𝑒1 and 𝑒2 are 𝜎-enabled.

Example 5. Let us again consider traces from Figure 3. Events 𝑒1 and 𝑒8 in𝜎6 (Figure 3a) correspond
respectively to events 𝑒6 and 𝑒7 in 𝜎CR

6
(Figure 3b). These two events are 𝜎6-enabled in the prefix

𝜌 = 𝑒1·𝑒2·𝑒3·𝑒4·𝑒5 of 𝜎
CR

6
. As a result, (𝑒1, 𝑒8) is a sync-preserving race of 𝜎6. Likewise, (𝑒1, 𝑒4) is

also a sync-preserving race of 𝜎6 witnessed by the singleton sync-preserving correct reordering
𝜌 ′ = ⟨𝑡2, acq(ℓ)⟩, in which both 𝑒1 and 𝑒4 are enabled.

In this paper we present a linear time algorithm for the following decision problem, giving a
sound algorithm for Problem 1.

Problem 2 (Sync-Preserving Race Prediction). Given trace 𝜎 , determine if there is a pair of
conflicting events (𝑒1, 𝑒2) in 𝜎 such that (𝑒1, 𝑒2) is a sync-preserving data race of 𝜎 .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:8 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Comparison with Other Approaches. Here we briefly compare sync-preserving races with
other approaches in the literature for sound dynamic race prediction. Races reported using the
famous happens-before (HB) partial order [Pozniansky and Schuster 2003], and its extension to
schedulable-happens-before (SHB) [Mathur et al. 2018] are strictly subsumed by this notion. That
is, these techniques only compute sync-preserving races, but can also miss simple cases of sync-
preservation, as already illustrated in the examples of Figure 1. The causally precedes (CP) partial
order [Smaragdakis et al. 2012], and its extension to the weak causally precedes (WCP) partial
order [Kini et al. 2017] are capable of predicting races that reverse critical sections. However, they
are closed under composition with HB, and as such can miss even simple sync-preserving races,
even on two-threaded traces. The doesn’t commute (DC) partial order [Roemer et al. 2018] is an
unsound weakening to WCP, that further undergoes a vindication phase to filter out unsound
reports. Nevertheless, DC is somewhat similar to WCP and also misses sync-preserving races.
The recently introduced partial order strong-dependently-precedes (SDP) [Genç et al. 2019], while
claimed to be sound in that paper, is, in fact, unsound. In our technical report [Mathur et al. 2020b],
we show a counter-example to the soundness theorem of SDP, which we confirmed with the
authors [Genç et al. 2020]. The partial orderWDP [Genç et al. 2019] is a (unsound) weakening of
DC, and can nevertheless miss sync-preserving races in the vindication phase employed for ruling
out false positives. We further refer to [Mathur et al. 2020b] for a few examples that illustrate the
above comparison.

3 SUMMARY OF MAIN RESULTS

Here we give an outline of the main results of this paper. In later sections we present the details,
i.e., algorithms, proofs and examples. Due to limited space, some technical proofs are relegated to
our companion technical report [Mathur et al. 2020b]. Our first result is an algorithm for dynamic
prediction of sync-preserving races. We show the following theorem.

Theorem 3.1. Sync-preserving race prediction is solvable in 𝑂 (N · T 2 + A · V · T 3) time and

𝑂 (N + T 3 · V · L) space, for a trace 𝜎 with length N , T threads, A acquires, andV variables.

In many settings the number of events N and number of acquires A are the dominating pa-

rameters, whereas the other parameters are much smaller, i.e., T ,V = 𝑂 (1), where 𝑂 hides

poly-logarithmic factors. Hence, the complexity of our algorithm becomes 𝑂 (N) for both time
and space. Our next result shows that a linear space complexity is essentially unavoidable when
predicting sync-preserving races with one-pass streaming algorithms.

Theorem 3.2. Any one-pass algorithm for sync-preserving race prediction on traces with ≥ 2 threads,

N events and Ω(logN) locks uses Ω(N/log2N) space.

Clearly, any algorithm must spend linear time, while Theorem 3.2 shows that the algorithm

must also use (nearly) linear space. As our algorithm uses 𝑂 (N) time and space, it is optimal for
both resources, modulo poly-logarithmic improvements. Our next theorem shows a combined
time-space lower bound for the problem, which highlights that reducing the space usage must lead
to an increased running time, given that the algorithm is executed on the Turing Machine model.

Theorem 3.3. Consider the problem of sync-preserving race prediction on traces with ≥ 2 threads,

N events and Ω(logN) locks. Consider any Turing Machine algorithm for the problem with time and

space complexity 𝑇 (N) and 𝑆 (N), respectively. Then we have 𝑇 (N) · 𝑆 (N) = Ω(N2/log2N).

Finally, we study the complexity of general race prediction as a function of the number of
reversals of synchronization operations. Given our positive result in Theorem 3.1, can we relax

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:9

our restriction of sync-preservation while retaining a tractable definition of predictable races? Our
next theorem answers this question in negative.

Theorem 3.4. Dynamic race prediction on traces with a single lock and two critical sections is

W[1]-hard parameterized by the number of threads.

Note that W[1]-hardness implies NP-hardness. The theorem has two important implications.

(1) Any witness of predictable races in the setting of Theorem 3.4 is either a sync-preserving
reordering, or reverses the order of a single pair of acquire events. Thus, Theorem 3.1 and
Theorem 3.4 establish a tight dichotomy on the tractability of the problem, based on the
number of synchronization reversals: the problem is as hard as in the general case for just 1
reversal, while it is efficiently solvable for no reversals.

(2) The general problem of dynamic race prediction was shown to be W[1]-hard in [Mathur
et al. 2020a]. However, that proof requires traces with Ω(N) critical sections, and hence it
applies to traces that essentially comprise of synchronization events entirely. In contrast, the
class of traces in Theorem 3.4 has the smallest level of synchronization possible, i.e., just a
single lock and two critical sections on that lock. Hence, Theorem 3.4 shows that any amount
of lock-based synchronization suffices to make the problem as hard as in the general case.

Together, Theorem 3.1, Theorem 3.2 and Theorem 3.4 characterize exactly the tractability horizon
of race prediction, and show that our algorithm is time and space optimal for the tractable side.

4 DETECTING SYNCHRONIZATION-PRESERVING RACES

In this section, we discuss our algorithm SyncP for detecting sync-preserving data races. The
complete algorithm is presented in Section 4.4. The algorithmmay appear complex at first glance and
to make the exposition simple, we first present a high-level overview of the algorithm in Section 4.1.
In the overview, we highlight important observations and algorithmic insights for solving smaller
subproblems of the main problem of sync-preserving race prediction. Section 4.2 and Section 4.3
present details of the algorithms for the smaller subproblems, and pave the way for the final
algorithm in Section 4.4. In Section 4.5, we present a matching space lowerbound result for detecting
sync-preserving races, thereby showing the optimality of our algorithm.

4.1 Insights and Overview of the Algorithm

Our algorithm, SyncP, relies on several important observations that are crucial for detecting
sync-preserving races in linear time. In order to present these observations, it is helpful to define
intermediate subproblems.

Problem 3 (Sync-Preserving Race Prediction Given Pair). Given a trace 𝜎 and a pair of conflicting
events (𝑒1, 𝑒2) of 𝜎 , determine if (𝑒1, 𝑒2) is a sync-preserving data race of 𝜎 .

Problem 4 (Sync-Preserving Race Prediction Given Event and Thread). Given a trace 𝜎 , an event
𝑒 in 𝜎 and a thread 𝑡 ≠ thr(𝑒), check if there is an event 𝑒 ′ ≤𝜎

tr
𝑒 such that thr(𝑒 ′) = 𝑡 and (𝑒 ′, 𝑒)

constitutes a sync-preserving race of 𝜎 .

Observe that a trace withN events can have𝑂 (N2) conflicting pairs of events. Thus, an algorithm
for Problem 3 that runs in time 𝑂 (𝑇 (N)) can be used to obtain an algorithm for Problem 4 (resp.
Problem 2) that runs in time𝑂 (N ·𝑇 (N)) (resp.𝑂 (N2 ·𝑇 (N))) by checking if every other event of
the given thread 𝑡 that conflicts with 𝑒 is also in race with 𝑒 (resp. every conflicting pair of events
is a race). We will, however, present algorithms for all three problems that run in 𝑂 (N) time.

Efficiently Solving Problem 3. Our first important observation towards a full fledged solution
to Problem 3 is that when checking for the existence of a sync-preserving reordering (of a trace 𝜎)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:10 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

that witnesses a race on a given pair (𝑒1, 𝑒2), it, suffices to only search for those reorderings 𝜌 of 𝜎
which impose the same order as in 𝜎 , on all of its events, and not just on the critical sections. We
formalize this in Lemma 4.1.

Lemma 4.1. If (𝑒1, 𝑒2) is a sync-preserving race of 𝜎 , then there is a correct reordering 𝜌 of 𝜎 such

that both 𝑒1, 𝑒2 are 𝜎-enabled in 𝜌 and ≤
𝜌
tr
⊆≤𝜎

tr
.

The implication of Lemma 4.1 is the following. When we are searching for a correct reordering
𝜌 of 𝜎 that witnesses a race (𝑒1, 𝑒2), and if we already have access to the set of events 𝑆 ⊆ Events𝜎
of a candidate reordering 𝜌 , a simple check suffices Ð does 𝑆 form a correct reordering of 𝜎
when linearized according to ≤𝜎

tr
? In other words, we do not need to enumerate and check all the

(exponentially many) permutations of events in 𝑆 . Thus, Problem 3 Ð ‘search for a sync-preserving
correct reordering 𝜌’ Ð reduces to a simpler problem Ð ‘search for an appropriate set of events’. Of
course, not all sets 𝑆 ⊆ Events𝜎 of events can be linearized (according to ≤𝜎

tr
) to obtain a correct

reordering of 𝜎 . At the very least, 𝑆 should satisfy some sanity conditions which we outline next.

Definition 1 (Thread-Order and Last-Write Closure). Let 𝜎 be a trace. A set 𝑆 ⊆ Events𝜎 is said
to be (≤𝜎

TO
, lw𝜎)-closed if (a) 𝑆 is downward-closed with respect to ≤𝜎

TO
, and (b) for any read

event 𝑟 ∈ Events𝜎 , if 𝑟 ∈ 𝑆 and if lw𝜎 (𝑟) exists, then lw𝜎 (𝑟) ∈ 𝑆 .
The (≤𝜎

TO
, lw𝜎)-closure of a set 𝑆 ⊆ Events𝜎 , denoted TLClosure𝜎 (𝑆) is the smallest set 𝑆 ′ ⊆

Events𝜎 such that 𝑆 ⊆ 𝑆 ′ and 𝑆 ′ is (≤𝜎
TO

, lw𝜎)-closed.

We remark that any correct reordering 𝜌 of 𝜎 that contains events in the set 𝑆 must also contain
all the events in TLClosure𝜎 (𝑆).

Definition 2 (Sync-Preserving Closure). Let 𝜎 be a trace. A set 𝑆 ⊆ Events𝜎 is said to be sync-
preserving closed if
(a) 𝑆 is (≤𝜎

TO
, lw𝜎)-closed, and

(b) for any two acquire events 𝑎1, 𝑎2 ∈ Acquires𝜎 (ℓ) with 𝑎1 ≤
𝜎
tr

𝑎2, if both 𝑎1, 𝑎2 ∈ 𝑆 , then
match𝜎 (𝑎1) ∈ 𝑆

The sync-preserving closure of a set 𝑆 ⊆ Events𝜎 , denoted SPClosure𝜎 (𝑆) is the smallest set
𝑆 ′ ⊆ Events𝜎 such that 𝑆 ⊆ 𝑆 ′ and 𝑆 ′ is sync-preserving closed.

Intuitively, the set 𝑆 ′ = SPClosure𝜎 (𝑆) captures the additional set of events thatmust be present in
any sync-preserving correct reordering 𝜌 of 𝜎 given that 𝜌 contains all events in 𝑆 . First, any correct
reordering of𝜎 containing 𝑆 will containTLClosure𝜎 (𝑆) and thusTLClosure𝜎 (𝑆) ⊆ 𝑆 ′ (Condition a).
Second, if a correct reordering 𝜌 is sync-preserving and contains two acquires 𝑎1 ≤

𝜎
tr
𝑎2 on the same

lock ℓ , then we must also have 𝑎1 ≤
𝜌
tr
𝑎2. Then, in order to ensure well-formedness of 𝜌 , CS𝜎 (𝑎1)

must also finish entirely before 𝑎2 in 𝜌 , and thus 𝜌 must contain match𝜎 (𝑎1) (Condition b).
For two events 𝑒1, 𝑒2 ∈ Events𝜎 , we define

SPIdeal𝜎 (𝑒1, 𝑒2) = SPClosure𝜎 ({prev𝜎 (𝑒1)} ∪ {prev𝜎 (𝑒2)}).

Here, we use prev𝜎 (𝑒) to denote the last event 𝑒 ′ in 𝜎 such that 𝑒 ′ ≤𝜎
TO

𝑒; if no such event exists,
then prev𝜎 (𝑒) = ⊥ (and further we let {⊥} = ∅). In essence, SPIdeal𝜎 (𝑒1, 𝑒2) contains the necessary
set of events that must be present in any sync-preserving correct reordering that witnesses the
race (𝑒1, 𝑒2). We next show that, in fact, it is also a sufficient set of events, given that it is disjoint
from {𝑒1, 𝑒2}.

Lemma 4.2. (𝑒1, 𝑒2) is a sync-preserving race of 𝜎 iff {𝑒1, 𝑒2} ∩ SPIdeal𝜎 (𝑒1, 𝑒2) = ∅.

Lemma 4.2 gives us a straightforward algorithm for Problem 3 Ð compute 𝐼 = SPIdeal𝜎 (𝑒1, 𝑒2)

and check if neither 𝑒1, 𝑒2 ∉ 𝐼 . In Section 4.2 we show how to compute this in linear time.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:11

Efficiently Solving Problem 4. As noted before, a linear time algorithm for Problem 3 guarantees
a quadratic time algorithm for Problem 4. In order to design a more efficient linear time algorithm,
we will exploit monotonicity of SPIdeal𝜎 (·, ·), which we formalize next.

Lemma 4.3. Let 𝜎 be a trace and let 𝑒1, 𝑒2, 𝑒
′
1
, 𝑒 ′

2
∈ Events𝜎 such that 𝑒1 ≤

𝜎
TO

𝑒 ′
1
and 𝑒2 ≤

𝜎
TO

𝑒 ′
2
.

Then, SPIdeal𝜎 (𝑒1, 𝑒2) ⊆ SPIdeal𝜎 (𝑒
′
1
, 𝑒 ′

2
).

Our linear time algorithm for Problem 4 exploits Lemma 4.3 as follows. Suppose we are checking
if a given event 𝑒 in the given trace 𝜎 is in sync-preserving race with some earlier conflicting
event of thread 𝑡 . To accomplish this, we can scan 𝜎 and enumerate the list 𝐿 of events that belong
to 𝑡 and conflict with 𝑒 . When checking for a race with the first such event 𝑒 ′

first
, we compute

𝐼first = SPIdeal𝜎 (𝑒
′
first

, 𝑒). If a race is found, we are done. Otherwise, we analyze the next event
𝑒 ′next in 𝐿 and compute 𝐼next = SPIdeal𝜎 (𝑒

′
next, 𝑒). Here Lemma 4.3 ensures that 𝐼first ⊆ 𝐼next. Our

algorithm exploits this observation by computing the latter set 𝐼next incrementally, spending time
that is proportional only to the number of extra events (i.e., events in 𝐼next \ 𝐼first). This principle is
applied repeatedly to subsequent events of 𝐿, giving us an overall linear time algorithm (Section 4.3).

Efficiently Solving Problem 2. A final ingredient in our incremental linear time algorithm
for Problem 2 is the following observation which builds on Lemma 4.3.

Lemma 4.4. Let 𝜎 be a trace and let 𝑒1, 𝑒2, 𝑒
′
2
∈ Events𝜎 such that 𝑒1 ≤

𝜎
tr
𝑒2 ≤

𝜎
TO

𝑒 ′
2
, 𝑒1 ≍ 𝑒2 and

𝑒1 ≍ 𝑒 ′
2
. If (𝑒1, 𝑒2) is not a sync-preserving race, then (𝑒1, 𝑒

′
2
) is also not a sync-preserving race of 𝜎 .

Intuitively, this observation suggests the following. Suppose that, when looking for a sync-
preserving race, the algorithm determines that 𝑒2 is not in race with any earlier conflicting event.
Then, for an event 𝑒 ′

2
(that appears later in the thread of 𝑒2), we only need to investigate if 𝑒 ′

2
is in

race with conflicting events 𝑒 ′
1
that appear after 𝑒2 in the trace (i.e., 𝑒2 ≤

𝜎
tr
𝑒 ′
1
≤𝜎

tr
𝑒2), instead of

additionally looking for races (𝑒 ′′
1
, 𝑒 ′

2
) where 𝑒 ′′

1
≤

tr
𝑒2.

High-Level Overview of SyncP. Equipped with Lemma 4.3 and Lemma 4.4, we now describe our
incremental algorithm for Problem 2 that works in linear time. For ease of exposition, let us focus
on the question Ð is there a write-write race on some fixed variable 𝑥 ∈ Vars when accessed in two
fixed threads 𝑡1, 𝑡2 ∈ Vars. The algorithm scans the trace in a streaming forward pass and analyzes
every event 𝑒 = ⟨𝑡2, w(𝑥)⟩, checking if there is an earlier conflicting event 𝑒 ′ = ⟨𝑡1, w(𝑥)⟩ ≤tr

𝑒 so
that (𝑒 ′, 𝑒) is a sync-preserving race. In doing so, it computes 𝐼 = SPIdeal𝜎 (𝑒

′, 𝑒) in linear time and
checks if 𝑒 ′ ∉ 𝐼 . If not, (𝑒 ′, 𝑒) is not a race and the algorithm checks if there is a different event
𝑒 ′next ≤tr

𝑒 so that (𝑒 ′next, 𝑒) is a race. This continues until there are no earlier events remaining that
conflict with 𝑒 . Each time, the ideal computation is performed incrementally, by using the previously
computed ideals. After this, the algorithm moves to the next write event 𝑒next = ⟨𝑡2, w(𝑥)⟩ in 𝑡2 and
checks if it is in race with some earlier event 𝑒 ′′ of thread 𝑡1, where this time, 𝑒 ′′ appears in the trace
after the previously discarded event 𝑒 of 𝑡2. Again, the closed set SPIdeal𝜎 (𝑒

′′, 𝑒next) is computed
incrementally. We show that all this incremental computation can be performed efficiently and
present an outline for our algorithm for Problem 2 in Section 4.4.
Next, we present high-level descriptions of the intermediate steps that we outlined above, and

discuss important algorithmic insights and data-structures that help achieve efficiency.

4.2 Checking if a Given Pair of Conflicting Events is a Sync-Preserving Race

Algorithm 1 outlines our solution to Problem 3 (check if a given pair of events (𝑒1, 𝑒2) is a sync-
preserving race of 𝜎). This algorithm computes the closure SPIdeal𝜎 (𝑒1, 𝑒2) in an iterative fashion
and checks if it contains neither 𝑒1 nor 𝑒2 (see Lemma 4.2). We remark that when 𝑒1 ≤

𝜎
tr

𝑒2,
Definition 2 ensures that 𝑒2 ∉ SPIdeal𝜎 (𝑒1, 𝑒2). Consequently, the check ‘𝑒1 ∉ SPIdeal𝜎 (𝑒1, 𝑒2)’

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:12 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Algorithm 1: Checking if a Given Conflicting Pair Constitutes a Sync-Preserving Race

Input: Trace 𝜎 , Conflicting events 𝑒1 and 𝑒2 with 𝑒1 ≤
𝜎
tr
𝑒2

1 function ComputeSPIdeal(𝜎 , 𝑒1, 𝑒2, 𝐼0)

2 𝐼 ← 𝐼0 ∪ TLClosure𝜎 ({prev𝜎 (𝑒1)}) ∪ TLClosure𝜎 ({prev𝜎 (𝑒2)})

3 repeat

4 if ∃ℓ ∈ Locks𝜎 , ∃𝑎1, 𝑎2 ∈ Acquires𝜎 (ℓ) such that 𝑎1 ≤
𝜎
tr
𝑎2 and 𝑎1, 𝑎2 ∈ 𝐼 then

5 𝐼 ← 𝐼 ∪ TLClosure𝜎 ({match𝜎 (𝑎1)})

6 until 𝐼 does not change

7 return 𝐼

8 𝐼 ← ComputeSPIdeal(𝜎 , 𝑒1, 𝑒2, ∅)

9 if 𝑒1 ∉ 𝐼 then

10 declare ‘race’

(Line 9 in Algorithm 1) is equivalent to the condition ‘{𝑒1, 𝑒2} ∩ SPIdeal𝜎 (𝑒1, 𝑒2) = ∅’ (due
to Lemma 4.2). The function ComputeSPIdeal performs a fixpoint computation, starting from
the set 𝐼 =

⋃
𝑖∈{1,2} TLClosure𝜎 ({prev𝜎 (𝑒𝑖)}) (when 𝐼0 = ∅). The correctness of the algorithm

follows from the correctness of the function ComputeSPIdeal, which we formalize below.

Lemma 4.5. Let 𝜎 be a trace, 𝑒1, 𝑒2 ∈ Events𝜎 and 𝐼0 ⊆ Events𝜎 be a (≤𝜎
TO

, lw𝜎)-closed set. Let

𝐼 be the set returned by ComputeSPIdeal(𝜎, 𝑒1, 𝑒2, 𝐼0) in Algorithm 1. Then, 𝐼 = SPClosure𝜎 (𝐼0 ∪

{prev𝜎 (𝑒1)} ∪ {prev𝜎 (𝑒2)}).

We now discuss the data-structures used to ensure linear time and space for Algorithm 1.

Vector Timestamps. Vector timestamps [Fidge 1991; Mattern 1988] are routinely used in dis-
tributed computing and also in prior work on race prediction [Flanagan and Freund 2009; Kini et al.
2017; Pozniansky and Schuster 2003; Roemer et al. 2018]. We use vector timestamps to represent sets
of events that are (≤𝜎

TO
, lw𝜎)-closed; a formal definition is deferred to Section 4.4. In Algorithm 1,

the sets TLClosure𝜎 ({prev𝜎 (𝑒𝑖)}) are (≤TO
, lw)-closed (Line 2). Further, the initial value 𝐼0 = ∅

ensures that all subsequent values of 𝐼 in ComputeSPIdeal are (≤
TO

, lw)-closed. All these sets
can be represented as vector timestamps. The advantage of using vector timestamps is two-fold.
First, these timestamps provide a succinct representation of sets Ð instead of representing a set
explicitly as a collection of events, a vector timestamp only uses T integers (where T = |Thr𝜎 |).
Second, the vector timestamps for (≤𝜎

TO
, lw𝜎)-closed sets can be computed in a streaming fashion,

incrementally, using vector timestamps of smaller subsets.

Projecting a Trace to Threads and Locks. Let us consider the check in Line 4. Here, we look
for two acquire events 𝑎1 ≤

𝜎
tr
𝑎2 in the current ideal 𝐼 that acquire the same lock ℓ . How do we

efficiently discover two such acquires? A straightforward but naive way is to enumerate all pairs of
events in 𝐼 and check if they are acquire events of the above kind. But this can take 𝑂 (N3) time,
where N = |Events𝜎 | because the number of such pairs can be 𝑂 (N2) in the worst case and the
number of times the ideal can change is 𝑂 (N). Instead, we rely on the following observation:

Proposition 4.6. Let 𝐼 ⊆ Events𝜎 be downward closed with respect to ≤𝜎
TO

. For every 𝑡 ∈ Thr𝜎 and

every ℓ ∈ Locks𝜎 , there is at most one acquire event 𝑎 with thr(𝑎) = 𝑡 , op(𝑎) = acq(ℓ) such that

𝑎 ∈ 𝐼 and match𝜎 (𝑎) ∉ 𝐼 . When such an event 𝑎 exists, then match𝜎 (𝑎
′) ∈ 𝐼 for every other acquire

𝑎′ <𝜎
TO

𝑎 of the form 𝑎′ = ⟨𝑡, acq(ℓ)⟩.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:13

The above observation can be exploited as follows. Let 𝐼 be the current ideal and let 𝑒𝐼𝑡,ℓ be the

last acquire on lock ℓ performed by thread 𝑡 such that 𝑒𝐼𝑡,ℓ ∈ 𝐼 . Let Acq
𝐼
ℓ = {𝑒

𝐼
𝑡,ℓ }𝑡 ∈Thr𝜎

be the set

of last acquire events in 𝐼 of every thread. Let 𝑒𝐼ℓ be the last event (according to trace order ≤𝜎
tr
)

in Acq𝐼ℓ . Then, for every other acquire 𝑒 ′ ∈ Acq𝐼ℓ \ {𝑒
𝐼
ℓ }, the matching release match𝜎 (𝑒

′) must

be added in 𝐼 . Hence, if we can efficiently determine the events 𝑒𝐼𝑡,ℓ each time, then we can also

efficiently determine 𝑒𝐼ℓ and thus efficiently perform the closure each time. So, how do we determine

𝑒𝐼𝑡,ℓ efficiently each time? We achieve this by maintaining a FIFO sequence CSHist𝑡,ℓ , for every

thread 𝑡 ∈ Thr𝜎 and lock ℓ ∈ Locks𝜎 . For every critical section on lock ℓ in thread 𝑡 , there is a
corresponding entry in the list CSHist𝑡,ℓ , and the order of these entries is the same as the order in
which these critical sections were performed in the trace 𝜎 . Every entry (corresponding to critical
section with acquire 𝑎) is a pair (TLClosure𝜎 (𝑎),TLClosure𝜎 (match𝜎 (𝑎))), represented as a pair
of vector timestamps (𝐶𝑎,𝐶match (𝑎)).
Let us now see how we perform the check in Line 4 using these data structures {CSHist𝑡,ℓ }𝑡,ℓ .

For the current ideal 𝐼 , we essentially need to determine the last acquire 𝑒𝐼𝑡,ℓ of each thread 𝑡 and
lock ℓ that belongs to 𝐼 . This can be done by traversing the list CSHist𝑡,ℓ starting from the earliest
entry, until we encounter the entry corresponding to the last acquire 𝑒𝐼𝑡,ℓ that belongs to 𝐼 (this
corresponds to a simple timestamp comparison). All entries in CSHist𝑡,ℓ prior to the identified
event 𝑒𝐼𝑡,ℓ can then be discarded from CSHist𝑡,ℓ , because the ideal now contains their information
and only grows monotonically through the course of the fixpoint computation and the discarded
entried will not be of use from now on. Thus, every entry in the lists {CSHist𝑡,ℓ }𝑡,ℓ is traversed only
once and the overall fixpoint computation runs in linear time when the number of T is constant.

4.3 Checking for a Sync-Preserving Race on a Given Event with a Given Thread

Algorithm 2: Checking if There Is a Sync-Preserving Race on a Given Event with a Given

Thread

Input: Trace 𝜎 , Event 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩, Thread 𝑢

1 for each 𝑏 ∈ {r, w} such that 𝑏 ≍ 𝑎3

2 let 𝐿𝑏 be the list of events 𝑒 ′ of the form ⟨𝑢,𝑏 (𝑥)⟩ such that 𝑒 ′ ≤𝜎
tr
𝑒

3 for each 𝑏 ∈ {r, w} such that 𝑏 ≍ 𝑎

4 𝐼𝑏 ← ∅

5 for each 𝑒 ′ ∈ 𝐿𝑏
6 𝐼𝑏 ← ComputeSPIdeal(𝜎 , 𝑒 ′, 𝑒 , 𝐼𝑏)

7 if 𝑒 ′ ∉ 𝐼𝑏 then

8 declare ‘race’ and exit

Let us now consider Algorithm 2. This algorithm takes as input a trace 𝜎 , an event 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩

and a threads 𝑢 ≠ 𝑡 , and checks if there is an event 𝑒 ′ of thread 𝑢 such that 𝑒 ′ ≤𝜎
tr
𝑒 and (𝑒 ′, 𝑒) is a

sync-preserving race. Algorithm 2 works as follows. For the sake of simplicity, assume that 𝑒 is a
read event, i.e., 𝑎 = r. The algorithm assumes access to the list 𝐿w of write events 𝑒

′ = ⟨𝑢, w(𝑥)⟩ that
appear prior to 𝑒 (Line 2); these lists can be constructed in linear time, in a single pass traversal of
the trace. The algorithm simply traverses 𝐿w (according to trace order ≤

𝜎
tr
) and checks for races with

3𝑏 ≍ 𝑎 whenever not both 𝑏 and 𝑎 are read (r) operations

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:14 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

each event in 𝐿w, by computing the fixpoint closure sets as in Algorithm 1. Instead of computing the
ideal from scratch, the algorithm exploits the monotonicity property outlined earlier in Lemma 4.3
by reusing the ideal 𝐼w computed so far. As with Algorithm 1, this algorithm also uses vector
timestamps and maintains lists {CSHist𝑡,ℓ }𝑡 ∈Thr,ℓ∈Locks for computing successive ideals efficiently.
Overall again, each entry in {CSHist𝑡,ℓ }𝑡 ∈Thr,ℓ∈Locks is visited a constant number of times and
thus Algorithm 2 runs in linear time and uses linear space.

4.4 Algorithm SyncP for Sync-Preserving Race Prediction

The pseudo-code for SyncP is presented in Algorithm 3. This is a one pass streaming algorithm that
processes events as they appear in the trace, modifying its state and detecting races on the fly. The
algorithm maintains several data structures including vector clocks and FIFO queues in its state.
We first describe these data structures, then discuss how the algorithm initializes and modifies
them as it processes the trace, and finally discuss the time and space usage for this algorithm; many
of these details have already been spelt out in Sections 4.1-4.3.

Let us first briefly explain the notion of vector timestamps and vector clocks [Fidge 1991; Mattern
1988]. A vector timestamp is a mapping 𝑉 : Thr𝜎 → N from the threads of a trace to natural
numbers, and can be represented as a vector of length |Thr𝜎 |. The join of two vector timestamps
𝑉1 and 𝑉2, denoted 𝑉1 ⊔𝑉2 is the vector timestamp 𝜆𝑡,max(𝑉1 (𝑡),𝑉2 (𝑡)). Vector timestamps can
be compared in a pointwise fashion: 𝑉1 ⊑ 𝑉2 iff ∀𝑡,𝑉1 (𝑡) ≤ 𝑉2 (𝑡). The minimum timestamp is
⊥ = 𝜆𝑡, 0. For a scalar 𝑐 ∈ N, we use𝑉 [𝑡 ↦→ 𝑐] to denote the timestamp 𝜆𝑢, if 𝑢 = 𝑡 then 𝑐 else 𝑉 (𝑢).
Vector clocks are variables that take values from the space of vector timestamps. We use normal
font for timestamps (𝐶,𝐶 ′, 𝐼 . . .) and boldfaced font for vector clocks (C,LW, I, . . .).

Data Structures and Initialization. The algorithm maintains the following data structures.

(1) Vector Clocks. The algorithm uses vector clocks primarily for two purposes. First, we assign
timestamps to all events in the trace and use the following vector clocks for this purpose
Ð for every thread, a dedicated clock C𝑡 , and for every variable 𝑥 , a dedicated clock LW𝑥 .
The timestamp of an event 𝑒 is essentially a succinct representation of the set TLClosure(𝑒).
Next, the algorithm computes SPIdeal (·, ·) sets and represents them as timestamps. These are
stored in vector clocks I⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩ , one for every tuple (𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥) ∈ Thr×Thr×{r, w}×

{r, w} × Vars. All vector clocks are initialized with the timestamp ⊥ = 𝜆𝑡, 0.

(2) Scalars. For every lock ℓ , the algorithm maintains a scalar variable 𝔤ℓ to record the index of
the last acquire on ℓ seen in the trace seen so far. Each such scalar is initialized with 0.

(3) FIFO Queues. The algorithm maintains several FIFO queues, whose entries correspond to
different events in the trace. The algorithm ensures that an event appears only once, and
additionally ensures that the entries respect the order of appearance of the corresponding
events in the trace. The first kind of FIFO queues are used in the fixpoint computation. For this,

the algorithm maintains queues CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ , one for every thread 𝑡 , lock ℓ and tuple

(𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥). Each entry of CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ is a triplet (𝑔𝑒 ,𝐶𝑒 ,𝐶

′
𝑒) and corresponds to

an acquire event 𝑒 of the form ⟨𝑡, acq(ℓ)⟩ Ð here, 𝑔𝑒 is the index of 𝑒 in the trace, 𝐶𝑒 is the
timestamp of 𝑒 and 𝐶 ′𝑒 is the timestamp of the matching release match (𝑒). The second kind

of queues are of the form AccessHist
⟨𝑢 ⟩
𝑡,𝑎,𝑥 , one for each 𝑡,𝑢 ∈ Thr, 𝑎 ∈ {r, w} and 𝑥 ∈ Vars.

Entry in such a FIFO queue corresponds to access events of the form 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩. Each entry
is of the form (𝐶prev (𝑒) ,𝐶𝑒) where 𝐶prev (𝑒) is the timestamp of prev (𝑒) (and ⊥ if prev (𝑒) does
not exist) and 𝐶𝑒 is the timestamp of 𝑒 . All FIFO queues are empty (∅) in the beginning. We
write 𝐿 • first() and 𝐿 • last() to denote the first and last elements of the FIFO queue 𝐿.
Further, 𝐿 •isEmpty(), 𝐿 •addLast() and 𝐿 •removeFirst() respectively represent functions

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:15

Algorithm 3: Detailed Streaming Algorithm for Checking Sync-Preserving Races

1 function Initialization()

2 foreach 𝑡 ∈ Thr · do

3 C𝑡 := ⊥

4 foreach 𝑥 ∈ Vars · do

5 LW𝑥 := ⊥

6 foreach ℓ ∈ Locks · do

7 𝔤ℓ := 0

8 foreach 𝑡1≠𝑡2 ∈ Thr, 𝑎1≍𝑎2 ∈ {r, w}, 𝑥 ∈ Vars do

9 I⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩ := ⊥

10 foreach 𝑡 ∈ Thr, ℓ ∈ Locks do

11 CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ := ∅

12 foreach 𝑢 ∈ Thr do

13 foreach 𝑡 ∈ Thr, 𝑎 ∈ {r, w}, 𝑥 ∈ Vars do

14 AccessHist
⟨𝑢 ⟩
𝑡,𝑎,𝑥 := ∅

15 function maxLowerBound(𝑈 , 𝐿𝑠𝑡)

16 (𝑔max,𝐶max,𝐶
′
max) := (0,⊥,⊥)

17 while not𝐿𝑠𝑡 • isEmpty() do

18 (𝑔,𝐶,𝐶 ′) := 𝐿𝑠𝑡 • first()

19 if 𝐶 ⊑ 𝑈 then

20 (𝑔max,𝐶max,𝐶
′
max) := (𝑔,𝐶,𝐶

′)

21 else

22 break

23 𝐿𝑠𝑡 • removeFirst()

24 return (𝑔max,𝐶max,𝐶
′
max)

25 function ComputeSPIdeal(𝐼 , ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩)

26 repeat

27 foreach ℓ ∈ Locks do

28 foreach 𝑡 ∈ Thr do

29 (𝑔ℓ,𝑡 ,𝐶ℓ,𝑡 ,𝐶
′
ℓ,𝑡) := maxLowerBound(𝐼 ,

CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ)

30 𝑡max := argmax𝑡 ∈Thr {𝑔ℓ,𝑡 }

31 𝐼 := 𝐼 ⊔
⊔

𝑡≠𝑡max∈Thr 𝐶
′
ℓ,𝑡

32 until 𝐼 does not change

33 return 𝐼

34 function checkRace(𝐿𝑠𝑡 , 𝐼 , ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩)

35 while not𝐿𝑠𝑡 • isEmpty() do

36 (𝐶prev ,𝐶) := 𝐿𝑠𝑡 • first()

37 𝐼 := ComputeSPIdeal(𝐼 ⊔𝐶prev , ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩)

38 if 𝐶 ̸⊑ 𝐼 then

39 declare ‘(𝑎1, 𝑎2) race on 𝑥 ’

40 break

41 𝐿𝑠𝑡 • removeFirst()

42 return 𝐼

43 handler read(𝑡 , 𝑥)

44 𝐶prev := C𝑡
45 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1] ⊔ LW𝑥

46 foreach 𝑢 ∈ Thr do

47 AccessHist
⟨𝑢 ⟩
𝑡,r,𝑥

• addLast((𝐶prev, C𝑡))

48 foreach 𝑢 ≠ 𝑡 ∈ Thr do

49 𝐼 := I⟨𝑢,𝑡,w,r,𝑥 ⟩ ⊔𝐶prev

50 I⟨𝑢,𝑡,w,r,𝑥 ⟩ := checkRace(AccessHist
⟨𝑢 ⟩
𝑢,w,𝑥 , 𝐼 ,

⟨𝑢, 𝑡, w, r, 𝑥⟩)

51 handler write(𝑡 , 𝑥)

52 𝐶prev := C𝑡
53 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1]; LW𝑥 := C𝑡
54 foreach 𝑢 ∈ Thr do

55 AccessHist
⟨𝑢 ⟩
𝑡,w,𝑥

• addLast((𝐶prev, C𝑡))

56 foreach 𝑢 ≠ 𝑡 ∈ Thr, 𝑎 ∈ {r, w} do

57 𝐼 := I⟨𝑢,𝑡,𝑎,w,𝑥 ⟩ ⊔𝐶prev

58 I⟨𝑢,𝑡,𝑎,w,𝑥 ⟩ := checkRace(AccessHist
⟨𝑢 ⟩
𝑢,𝑎,𝑥 , 𝐼 ,

⟨𝑢, 𝑡, 𝑎, w, 𝑥⟩)

59 handler acquire(𝑡 , ℓ)

60 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1]; 𝔤ℓ := 𝔤ℓ + 1

61 foreach 𝑡1, 𝑡2 ∈ Thr, 𝑎1, 𝑎2 ∈ {r, w}, 𝑥 ∈ Vars do

62 CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

• addLast((𝔤ℓ ,C𝑡 ,⊥))

63 handler release(𝑡 , ℓ)

64 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1]

65 foreach 𝑡1, 𝑡2 ∈ Thr, 𝑎1, 𝑎2 ∈ {r, w}, 𝑥 ∈ Vars do

66 CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

• last() •

updateRelease(C𝑡)

that check for emptiness of 𝐿, add an element at the end of 𝐿 and remove the earliest (first)
element of 𝐿.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:16 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Let us now describe the working of SyncP. The algorithm works in a streaming fashion and
processes each event 𝑒 as soon as it appears, by calling the appropriate handler depending upon
the operation performed in 𝑒 (read, write, acquire or release). The argument for each handler
is the thread performing the event and the object (variable or lock) accessed in the event. In each
handler, the algorithm updates vector clocks to compute timestamps, and maintains the invariants
of the FIFO queues. In addition, inside read and write handlers, the algorithm also checks for
races using a fixpoint computation (function ComputeSPIdeal). We explain some of these briefly.

Computing Vector Timestamps. The algorithm computes the timestamp of an event 𝑒 , denoted
𝐶𝑒 when processing the event 𝑒 . The timestamps computed in the algorithm are such that

∀𝑡 ∈ Thr,𝐶𝑒 (𝑡) = |{𝑓 ∈ Events | thr(𝑓) = 𝑡, 𝑓 ∈ TLClosure(𝑒)}|

Observe that, with this invariant, we have 𝐶𝑒 ⊑ 𝐶𝑒′ iff 𝑒 ∈ TLClosure(𝑒 ′). The algorithm uses
vector clocks {C𝑡 }𝑡 ∈Thr and {LW𝑥 }𝑥 ∈Vars and ensures that after processing an event 𝑒 , (1) C𝑡 stores
the timestamp𝐶𝑒𝑡 , where 𝑒𝑡 is the last event by thread 𝑡 that occurs before 𝑒 , and (2) LW𝑥 stores the
timestamp 𝐶𝑒𝑥 , where 𝑒𝑥 is the last event with op(𝑒𝑥) = w(𝑥) that occurs before 𝑒 . The algorithm
correctly maintains these values by appropriate vector clock operations on Lines 45, 53, 60 and 64.

Let us now describe the invariant for the vector clock I⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩ (given tuple (𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥)).
Let 𝑒𝑡𝑖 ,𝑎𝑖 ,𝑥 be the last event with thr(𝑒𝑡𝑖 ,𝑎𝑖 ,𝑥) = 𝑡𝑖 and op(𝑒𝑡𝑖 ,𝑎𝑖 ,𝑥) = 𝑎𝑖 (𝑥) (𝑖 ∈ {1, 2}). Let 𝐼 ⊆ Events𝜎
be defined as follows. If 𝑒𝑡1,𝑎1,𝑥 does not exist, then 𝐼 = SPClosure𝜎 ({prev𝜎 (𝑒2)}). Otherwise, let
𝑒 be be the first event in 𝜎 (according to trace order ≤𝜎

tr
) with thr(𝑒) = 𝑡1 and op(𝑒) = 𝑎1 (𝑥)

such that (𝑒, 𝑒2) is a sync-preserving race of 𝜎 . If no such event exists, then let 𝑒 = 𝑒𝑡1,𝑎1,𝑥 . Then,

𝐼 = SPIdeal𝜎 (𝑒1, 𝑒2). Then, the timestamp stored in I⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩ is
⊔

𝑢∈Thr𝜎
𝐶𝑒𝐼𝑢

, where 𝑒𝐼𝑢 is the
last event of thread 𝑢 which is in 𝐼 .

Checking Races. When processing an access event 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩, the algorithm checks for a race
as follows. For every other thread 𝑢 and for every other conflicting type 𝑏 ≍ 𝑎, the algorithm calls

checkRace with the list 𝐿𝑠𝑡 = AccessHist
⟨𝑡 ⟩

𝑢,𝑏,𝑥
and the timestamp representation of the current

ideal as argument. This function, similar to Algorithm 2, scans 𝐿𝑠𝑡 and reports races by repeatedly
performing fixpoint computations and checking membership in some set (using the timestamp
comparison in Line 38). The closure computation is performed using the optimizations discussed

in Section 4.2 (use of FIFO queues CSHist
⟨·· ·⟩
𝑡,ℓ).

Space Optimizations. Observe that, for a given thread 𝑡 and lock ℓ , the algorithm, as presented,

maintains 4T 2·V FIFO queues {CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ }𝑡1,𝑡2∈Thr,𝑎1,𝑎2∈{r,w},𝑥 ∈Vars . The total number of

entries across these queues will then be 𝑂 (A · 4T 2·V). To this end, we observe that all the above
data structures essentially have the same content, and are suffixes of a common queue corresponding
to the critical sections on ℓ in thread 𝑡 . Indeed, we exploit this redundancy and instead maintain a
common underlying data-structure that stores all entries corresponding to acquires and releases on ℓ
in 𝑡 , and maintain a pointer for each ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩. Such a pointer keeps track of the starting index

of the FIFO queue CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ . With this optimization, we only store 𝑂 (A) entries along

with additional 4·T 3·V·L pointers, one for every tuple ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩ and every shared queue

indexed by (𝑡, ℓ). The same observations also apply to the FIFO queues {AccessHist
⟨𝑢 ⟩
𝑡,𝑎,𝑥 }𝑢∈Thr

Lemma 4.7 (Correctness). For every access event 𝑒 in the input trace 𝜎 , Algorithm 3 declares a race

when processing 𝑒 iff there is an event 𝑒 ′ such that 𝑒 ′ ≤𝜎
tr
𝑒 and (𝑒 ′, 𝑒) is a sync-preserving race of 𝜎 .

The proof of Lemma 4.7 follows directly from the correctness of the semantics of clocks and
other observations outlined in Section 4.1.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:17

𝑡1 𝑡2

1 acq(𝑏1)

2 acq(𝑏2)

3 acq(𝑐)

4 w1 (𝑥)

5 rel(𝑐)

6 rel(𝑏2)

7 rel(𝑏1)

8 acq(𝑎1)

9 acq(𝑏2)

10 r2 (𝑥)

11 rel(𝑏2)

12 rel(𝑎1)

𝑡1 𝑡2

13 acq(𝑎2)

14 acq(𝑏1)

15 r3 (𝑥)

16 rel(𝑏1)

17 rel(𝑎2)

18 acq(𝑎1)

19 acq(𝑎2)

20 acq(𝑐)

21 w4 (𝑥)

22 rel(𝑐)

23 rel(𝑎2)

24 rel(𝑎1)

𝑡1 𝑡2

25 acq(𝑎1)

26 acq(𝑎2)

27 acq(𝑐)

28 w1 (𝑥)

29 rel(𝑐)

30 rel(𝑎2)

31 rel(𝑎1)

32 acq(𝑏1)

33 acq(𝑎2)

34 r2 (𝑥)

35 rel(𝑎2)

36 rel(𝑏1)

𝑡1 𝑡2

37 acq(𝑏2)

38 acq(𝑎1)

39 acq(𝑐)

40 w3 (𝑥)

41 rel(𝑐)

42 rel(𝑎1)

43 rel(𝑏2)

44 acq(𝑏1)

45 acq(𝑏2)

46 acq(𝑐)

47 w4 (𝑥)

48 rel(𝑐)

49 rel(𝑏2)

50 rel(𝑏1)

Fig. 4. Construction of the trace 𝜎 on input 𝑠 = 𝑢#𝑣 where 𝑢 = 1001 and 𝑣 = 1011. Observe that (𝑒15, 𝑒40)
is a sync-preserving race, which encodes that 𝑒 [3] ≠ 𝑣 [3].

The time complexity of the algorithm can be determined as follows. The algorithm visits each en-

try in the FIFO queues AccessHist
⟨𝑢 ⟩
𝑡,𝑎,𝑥 once, performing constant number of vector clock operations,

each running in 𝑂 (T) time. The total length of all these queues is 𝑂 (T ·N) (more precisely, the
number of access events in the trace). Similarly, the algorithm visits each entry in the FIFO queues

CSHist
⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ once, performing constantly many vector clock operations. The total number of

entries in these queues is 𝑂 (T 2·V·A). This gives us the following complexity for SyncP.
Lemma 4.8 (Complexity). Let 𝜎 be a trace with T threads, L locks,V variables and N events, of

which A are acquire events. Then, Algorithm 3 runs in time 𝑂 (N · T 2 + A · V · T 3) and uses space

𝑂 (N + T 3 · V · L) on input 𝜎 .

The proof of Theorem 3.1 follows from Lemma 4.7 and Lemma 4.8.

4.5 Linear Space Lower Bound

In this section we prove the lower-bounds of Theorem 3.2 and Theorem 3.3, i.e., that any streaming
algorithm for sync-preserving race predictionmust essentially use linear space, while the time-space
product of any algorithm for the problem must be quadratic in the length of the input trace.

The language L𝒏. Given a natural number 𝑛, we define the equality language L𝑛 = {𝑢#𝑣 : 𝑢, 𝑣 ∈

{0, 1}𝑛 and 𝑢 = 𝑣}, i.e., it is the language of two 𝑛-bit strings that are separated by# and are equal.

Lemma 4.9. Any streaming algorithm that recognizes L𝑛 uses Ω(𝑛) space.

Reduction from L𝒏 recognition to sync-preserving race prediction. Consider the language
L𝑛 for some 𝑛. We describe a transducerA𝑛 such that, on input a string 𝑠 = 𝑢#𝑣 , the outputA𝑛 (𝑠)

is a trace 𝜎 with 2 threads,𝑂 (𝑛 · log𝑛) events, 2 · log𝑛 + 1 locks and a single variable such that the
following hold.
(1) If 𝑠 ∉ L𝑛 , then 𝜎 has no predictable race.
(2) If 𝑠 ∈ L𝑛 , then 𝜎 has a single predictable race, which is a sync-preserving race.

Moreover,A𝑛 uses𝑂 (log𝑛) working space. The transducerA𝑛 uses a single variable 𝑥 , two sets of
locks 𝐴 = {𝑎1, . . . , 𝑎log𝑛} and 𝐵 = {𝑏1, . . . , 𝑏log𝑛}, plus one additional lock 𝑐 . The trace 𝜎 consists
of two local traces 𝜋1, 𝜋2 of threads 𝑡1 and 𝑡2 which encode the bits of 𝑢 and 𝑣 , respectively.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:18 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

(1) The local trace 𝜋1 is constructed as follows. For every 𝑖 ∈ [𝑛], 𝜋1 contains an event 𝑒1𝑖 ,

which is a write event w(𝑥) if 𝑢 [𝑖] = 1, and a read event r(𝑥) otherwise. The events 𝑒1𝑖 are
surrounded by locks from 𝐴 and 𝐵 arbitrarily, as long as the following holds. For any 𝑖 < 𝑗 ,
we have

locksHeld𝜎 (𝑒
1
𝑗) ∩𝐴 ⊈ locksHeld𝜎 (𝑒

1
𝑖) ∩𝐴

and locksHeld𝜎 (𝑒
1
𝑖) ∩ 𝐵 ⊈ locksHeld𝜎 (𝑒

1
𝑗) ∩ 𝐵.

Here, the locks held at an event 𝑒 has the obviousmeaning: locksHeld𝜎 (𝑒) = {ℓ ∈ Locks𝜎 | ∃𝑎 ∈

Acquires𝜎 (ℓ) such that 𝑒 ∈ CS𝜎 (𝑎)}.
The above property can be easily met, for example, by making A𝑛 perform a breadth-first
traversal of the subset-lattice of 𝐴 (resp., 𝐵) starting from the top (resp., bottom). Given
the current 𝑖 , the transducer surrounds 𝑒1𝑖 with the locks of the current element in the

corresponding lattice. Finally, every write event 𝑒1𝑖 is surrounded by the lock 𝑐 .

(2) The local trace 𝜋2 is similar to 𝜋1, i.e., we have an event 𝑒2𝑖 for each 𝑖 ∈ [𝑛], which is a write

event w(𝑥) if 𝑢 [𝑖] = 1, otherwise it is a read event r(𝑥). The locks that protect 𝑒2𝑖 satisfy

locksHeld𝜎 (𝑒
2
𝑖) ∩ (𝐴 ∪ 𝐵) = 𝐴 ∪ 𝐵 \ locksHeld𝜎 (𝑒

1
𝑗).

Finally, similarly to 𝜋1, every write event 𝑒1
2
is surrounded by the lock 𝑐 .

See Figure 4 for an illustration. Observe that A𝑛 uses 𝑂 (log𝑛) bits of memory, for storing a bit-set
of locks for each set 𝐴 and 𝐵 that must surround the current event 𝑒1𝑖 and 𝑒2𝑖 .

The key idea of the construction is the following. Any two events 𝑒1𝑖 , 𝑒
2
𝑗 are surrounded by a

common lock from the set 𝐴 ∪ 𝐵 iff 𝑖 ≠ 𝑗 . Hence, (𝑒1𝑖 , 𝑒
2
𝑗) may be a predictable race of 𝜎 only if

𝑖 = 𝑗 . In turn, if 𝑢 [𝑖] = 𝑣 [𝑗], then either both events are read events, or both are write events. In the
former case the events are not conflicting, while in the latter case the two events are surrounded
by lock 𝑐 . In both cases no race occurs between 𝑒1𝑖 and 𝑒2𝑗 . On the other hand, if 𝑢 [𝑖] ≠ 𝑣 [𝑗], then

one event is a read and the other is a write event. Hence, the two events conflicting, and one of
them is not surrounded by lock 𝑐 , thereby constituting a predictable race. The following lemma
makes the above insight formal and establishes the correctness of our reduction.

Lemma 4.10. The following assertions hold.

(1) If 𝑠 ∈ L𝑛 , then 𝜎 has no predictable race.

(2) If 𝑠 ∉ L𝑛 , then 𝜎 has a single predictable race, which is a sync-preserving race.

We now prove Theorem 3.2, and refer to [Mathur et al. 2020b] for the proof of Theorem 3.3.

Proof of Theorem 3.2. Consider any algorithm 𝐴1 for sync-preserving race prediction, exe-
cuted in the family of traces 𝜎 constructed in our above reduction. Let𝑚 = 𝑛/log𝑛, and assume
towards contradiction that 𝐴1 uses 𝑜 (𝑚) space. Then we can pair 𝐴1 with the transducer A𝑚 ,
and obtain a new algorithm 𝐴2 for recognizing L𝑚 . Since A𝑚 uses 𝑂 (log𝑚) space, the space
complexity of 𝐴2 is 𝑜 (𝑚). However, this contradicts Lemma 4.9. The desired result follows. □

5 BEYOND SYNCHRONIZATION-PRESERVING RACES

In this section we explore the problem of dynamic race prediction beyond sync-preservation. We
show Theorem 3.4, i.e., that even when just two critical sections are present in the input trace,
predicting races with witnesses that might reverse the order of the critical sections becomes
intractable. Our reduction is from the realizability problem of Rf-posets, which we present next.

Rf-Posets. An rf-poset is a triplet P = (𝑋, 𝑃,RF), where 𝑋 is a set of read and write events, 𝑃
defines a partial order ≤𝑃 over 𝑋 , and RF: Rds(𝑋) →Wts(𝑋) is a reads-from function that maps

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:19

every read event of 𝑋 to a write event of 𝑋 . Given two distinct events 𝑒1, 𝑒2 ∈ 𝑋 , we write 𝑒1 ∥𝑃 𝑒2
to denote 𝑒1 ≮𝑃 𝑒2 and 𝑒2 ≮𝑃 𝑒1. Given a set 𝑌 ⊆ 𝑋 , we denote by 𝑃 |𝑌 the projection of 𝑃 on 𝑌 , i.e.,
we have ≤𝑃 |𝑌⊆ 𝑌 × 𝑌 , and for all 𝑒1, 𝑒2 ∈ 𝑌 , we have 𝑒1 ≤𝑃 |𝑌 𝑒2 iff 𝑒1 ≤𝑃 𝑒2. Given a partial order
𝑄 over 𝑋 , we say that𝑄 refines 𝑃 denoted𝑄 ⊑ 𝑃 if for every two events 𝑒1, 𝑒2 ∈ 𝑋 , if 𝑒1 ≤𝑃 𝑒2 then
𝑒1 ≤𝑄 𝑒2. We consider that each event of 𝑋 belongs to a unique thread, and there is thread order
≤

TO
that defines a total order on the events of 𝑋 that belong to the same thread, and 𝑃 agrees with

≤
TO

. The number of threads of P is the number of threads of the events of 𝑋 .

The Realizability problem of rf-posets. Given an rf-poset P = (𝑋, 𝑃,RF), the realizability problem
is to decide whether 𝑃 can be linearized to a total order 𝜎 such that lw𝜎 = RF. It has long been
known that the problem is NP-complete [Gibbons and Korach 1997], while it was recently shown
that it is even W[1]-hard [Mathur et al. 2020a].
Our proof of the lower bound of Theorem 3.4 is by a two-step reduction. First we define a

variant of the realizability problem for rf-posets, namely reverse rf-realizability, and show that
it is W[1]-hard when parameterized by the number of threads. Afterwards, we reduce reverse
rf-realizability to the decision problem of dynamic race prediction, which concludes the hardness
of the latter.

Rf-Triplets. Given an RF-poset P = (𝑋, 𝑃,RF), an rf-triplet of P is a tuple 𝜆 = (w, r, w′) such that
(i) r is a read event, (ii) RF(r) = w, and (iii) w ≍ w′. We refer to w, r and w′ as the write, read, and
interfering write event of 𝜆, respectively. We denote by Triplets(P) the set of rf-triplets of P.
We next define a variant of rf-poset realizability, and show that, like the original problem, it is

W[1]-hard parameterized by the number of threads.

Reverse Rf-Poset Realizability. The input is a tuple (P, 𝜆, 𝜎), where P = (𝑋, 𝑃,RF) is an rf-
poset, 𝜆 = (w, r, w′) is a distinguished triplet of P, and 𝜎 is a witness to the realizability of P such
that w′ <𝜎 w. The task is to determine whether P has a linearization 𝜎 ′ with w <𝜎′ w

′. In words, P
is already realizable by a witness that orders w′ before w, and the task is to decide whether P also
has a witness in which this order is reversed.

Hardness of Reverse Rf-Poset Realizability. We show that the problem is W[1]-hard when
parameterized by the number of threads of the rf-poset. Our reduction is from rf-realizability. We
first present the construction and then argue about its correctness.

Construction. Consider an rf-poset P = (𝑋, 𝑃,RF) with 𝑘 threads, and we construct an instance of
reverse rf-poset realizability (P ′ = (𝑋 ′, 𝑃 ′,RF′), 𝜆, 𝜎) with 𝑘 ′ = 𝑂 (𝑘2) threads. We refer to Figure 5
for an illustration. For simplicity of presentation, we assume wlog that the following hold.

(1) 𝑋 contains only the events of the triplets of P.
(2) For every read event r, we have thr(r) = thr(w), i.e., every read observes a local write event.

Let {𝑋𝑖 }1≤𝑖≤𝑘 be a partitioning of 𝑋 such that each 𝜋𝑖 = 𝑃 |𝑋𝑖 is a total order containing all events
of thread 𝑖 (i.e., it is the thread order for thread 𝑖). We first construct the rf-poset P ′ = (𝑋 ′, 𝑃 ′,RF′).
The threads of P ′ are defined implicitly by the sets of events for each thread. In particular, 𝑋 ′

is partitioned in the sets 𝑋𝑖 (which are the events of P), as well as two sets 𝑋
𝑗
𝑖 and 𝑌

𝑗
𝑖 for each

𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , where each such 𝑋
𝑗
𝑖 and 𝑌

𝑗
𝑖 contains events of a unique thread of P ′.

Finally, we have two threads containing the events of the distinguished triplet 𝜆. Hence, P ′ has
𝑘 ′ = 𝑘 + 𝑘 · (𝑘 − 1) + 2 = 𝑘2 + 2 threads.

We first define the set of triplets Triplets(P), which defines the event set 𝑋 ′ and the observation
function RF′. We have 𝑋 ⊆ 𝑋 ′ and Triplets(P) ⊆ Triplets(P ′). In addition, we create a distin-
guished triplet 𝜆 = (w, r, w′), and all its events are in 𝑋 ′. Finally, for every 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , we

have 𝑋
𝑗
𝑖 , 𝑌

𝑗
𝑖 ⊆ 𝑋 ′, where the sets 𝑋

𝑗
𝑖 and 𝑌

𝑗
𝑖 are constructed as follows. We call a pair of events

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:20 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

w1

r1

w′
1

w2

r2

w′
2

(a) An instance of rf-poset realizability.

w1

r1

w′
1

w2

r2

w′
2

wr1,r2

rr1,r2

w′
r1,r2

w
w
′
2
,w′

1

r
w
′
2
,w′

1

w′
w
′
2
,w′

1

w

r

w
′

(b) The reduction to reverse rf-poset realizability.

Fig. 5. Reduction of rf-poset realizability (5a) to reverse rf-poset realizability (5b).

(𝑒1, 𝑒2) ∈ 𝑋𝑖 × 𝑋 𝑗 with 𝑒1 <𝑃 𝑒2 dominant if for any pair (𝑒 ′
1
, 𝑒 ′

2
) ∈ 𝑋𝑖 × 𝑋 𝑗 such that 𝑒1 ≤𝑃 𝑒 ′

1
,

and 𝑒 ′
2
≤𝑃 𝑒2, and 𝑒

′
1
<𝑃 𝑒 ′

2
, we have 𝑒 ′𝑖 = 𝑒𝑖 for each 𝑖 ∈ [2]. In words, a dominant pair identifies

an ordering in 𝑃 that cannot be inferred transitively by other orderings. For every dominant pair

(𝑒1, 𝑒2) ∈ 𝑋𝑖 × 𝑋 𝑗 we create a triplet (w𝑒1,𝑒2 , r𝑒1,𝑒2 , w
′
𝑒1,𝑒2
), and let w𝑒1,𝑒2 , r𝑒1,𝑒2 ∈ 𝑋

𝑗
𝑖 and w′𝑒1,𝑒2 ∈ 𝑌

𝑗
𝑖 .

We now define the partial order 𝑃 ′. For every triplet (w, r, w′) of P ′, we have w <𝑃 ′ r. For every
𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , for every two events 𝑒1, 𝑒

′
1
∈ 𝑋𝑖 such that 𝑒1 <𝑃 𝑒 ′

1
, for every two events

𝑒2, 𝑒
′
2
∈ 𝑋 𝑗 such that 𝑒2 <𝑃 𝑒 ′

2
, if r𝑒1,𝑒2 and w𝑒′

1
,𝑒′

2
are events of 𝑋 ′ (i.e., (𝑒1, 𝑒2) and (𝑒

′
1
, 𝑒 ′

2
) are

dominant pairs), we have (i) r𝑒1,𝑒2 <𝑃 ′ w𝑒′
1
,𝑒′

2
and (ii) w′𝑒1,𝑒2 <𝑃 ′ w

′
𝑒′
1
,𝑒′

2

. Finally, for every triplet of

the form (w𝑒1,𝑒2 , r𝑒1,𝑒2 , w
′
𝑒1,𝑒2
), we have

𝑒1 <𝑃 ′ r𝑒1,𝑒2 and w′𝑒1,𝑒2 <𝑃 ′ 𝑒2 and w𝑒1,𝑒2 <𝑃 ′ r and w
′
<𝑃 ′ w

′
𝑒1,𝑒2

.

The following lemma establishes that 𝑃 ′ is indeed a partial order.

Lemma 5.1. 𝑃 ′ is a partial order.

We now turn our attention to the solution 𝜎 of P ′, which is constructed in two steps. First, we
construct a partial order 𝑄 ⊑ 𝑃 ′ over 𝑋 ′ which orders in every triplet the interfering write before
the write of the triplet. That is, for every triplet (w, r, w′) of P ′, we have w′ <𝑄 w. Then, we obtain
𝜎 by linearizing 𝑄 arbitrarily. The following lemma states that 𝜎 witnesses the realizability of P ′.

Lemma 5.2. The trace 𝜎 realizes P ′.

Observe that the size of P ′ is polynomial in the size of P. The following lemma states the
correctness of the reduction. Here we sketch the argument while the detailed proof is in our
companion technical report [Mathur et al. 2020b].

Lemma 5.3. Reverse rf-poset realizability is W[1]-hard parameterized by the number of threads.

Correctness. We now present the key insight behind the correctness of the reduction. Consider any
dominant pair of events (𝑒1, 𝑒2) in the initial rf-poset, i.e., we have 𝑒1 <𝑃 𝑒2. Observe that the two
events are unordered in 𝑃 ′. Now consider any trace 𝜎∗ that solves the reverse rf-poset realizability
problem for P ′. By definition, 𝜎∗ must reverse the order of the two writes of the conflicting triplet,
i.e., we must have w <𝜎∗ w

′.

(1) Since w <𝜎∗ w
′, we have r <𝜎∗ w

′, so the last write of r is not violated in 𝜎∗.

(2) Since w𝑒1,𝑒2 <𝑃 ′ 𝑟𝑑 , by the previous item we also have transitively w𝑒1,𝑒2 <𝑃 ′ w
′, and since

w
′
<𝑃 ′ w

′
𝑒1,𝑒2

, we have , transitively w𝑒1,𝑒2 <𝜎∗ w
′
𝑒1,𝑒2

.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:21

𝜆 = (w(𝑥2), r(𝑥2), w
′(𝑥2))

𝑡1 𝑡2 𝑡3 𝑡4

1 w
′(𝑥2)

2 w′(𝑥1)

3 w(𝑥2)

4 r(𝑥2)

5 w(𝑥1)

6 r(𝑥1)

≤𝑃

(a) An instance of reverse rf-poset realiz-
ability (P = (𝑋, 𝑃,RF), 𝜆, 𝜎). The figure
shows 𝜎 , and 𝑃 is defined as the thread or-
der together with the cross-thread ordering
w
′(𝑥2) <𝑃 w

′(𝑥1).

𝑡1 𝑡2 𝑡3 𝑡4

1 acq1 (ℓ)

2 w
′(𝑥2)

3 w
(
𝑥
w
′ (𝑥2),w′ (𝑥1)

)

4 w(y)

5 rel1 (ℓ)

6 r
(
𝑥
w
′ (𝑥2),w′ (𝑥1)

)

7 w′(𝑥1)

8 w(𝑥3)

9 acq2 (ℓ)

10 w(𝑥2)

11 rel2 (ℓ)

12 r(𝑥2)

13 w(𝑥1)

14 r(𝑥1)

15 w(𝑥1)

16 r(𝑥1)

17 r(𝑥3)

18 r(y)

(b) The instance of race prediction using our reduction.

Fig. 6. Example of our reduction of an instance of reverse rf-poset realizability (Figure 6a) to an instance of
dynamic data-race prediction (Figure 6b) on the event pair (𝑒4, 𝑒18).

(3) Since w𝑒1,𝑒2 <𝜎∗ w
′
𝑒1,𝑒2

, we have r𝑒1,𝑒2 <𝜎∗ w
′
𝑒1,𝑒2

, so the last write of r𝑒1,𝑒2 is not violated in
𝜎∗.

(4) Finally, since 𝑒1 < 𝑃 ′r𝑒1,𝑒2 and w′𝑒1,𝑒2 < 𝑒2, we also have, transitively, that 𝑒1 <𝜎∗ 𝑒2.

Hence, the witness 𝜎∗ also respects the partial order 𝑃 , and thus also serves as a witness of the
realizability of P (when projected to the set of events 𝑋). Thus, if reverse rf-poset realizability
holds for P ′, then rf-poset realizability holds for P. The inverse direction is similar.

Hardness of 1-Reversal Dynamic Race Prediction.We are now ready to prove our second step
of the reduction, i.e., to establish an FPT reduction from reverse rf-poset realizability to the decision
problem of dynamic race prediction. We first describe the construction.
Consider an instance (P = (𝑋, 𝑃,RF), 𝜆 = (w, r, w′), 𝜎) of reverse rf-poset realizability, and we

construct a trace 𝜎 ′ such a specific event pair of 𝜎 ′ is a predictable race iff P is realizable by a
witness that reverses 𝜆. We assume wlog that 𝑋 contains only events that appear in triplets of P.
We construct 𝜎 ′ by inserting various events in 𝜎 , as follows. Figure 6 provides an illustration.

(1) For every dominant pair (𝑒1, 𝑒2) of P, we introduce a new variable 𝑥𝑒1,𝑒2 , and a write event
w(𝑥𝑒1,𝑒2) and a read event r(𝑥𝑒1,𝑒2). We make thr(w(𝑥𝑒1,𝑒2)) = thr(𝑒1) and thr(r(𝑥𝑒1,𝑒2)) =

thr(𝑒2). Finally, we thread-order w(𝑥𝑒1,𝑒2) after 𝑒1 and r(𝑥𝑒1,𝑒2) before 𝑒2. Notice that any

correct reordering 𝜎∗ of 𝜎 ′ must order w(𝑥𝑒1,𝑒2) ≤
𝜎∗

tr
r(𝑥𝑒1,𝑒2), and thus, transitively, also

order 𝑒1 ≤
𝜎∗

tr
𝑒2.

(2) For every thread 𝑡𝑖 ≠ thr(w), 𝑡𝑖 ≠ thr(w′) we introduce a new variable 𝑥𝑖 , a write event w(𝑥𝑖),
and a read event r(𝑥𝑖). We make thr(w(𝑥𝑖)) = 𝑡𝑖 and thr(r(𝑥𝑖)) = thr(r). We thread-order
each w(𝑥𝑖) as the last event of 𝑡𝑖 , and thread-order all r(𝑥𝑖) as final events of thr(r) so far.

(3) We introduce a new variable 𝑦, and a write event w(𝑦) and a read event r(𝑦). We make
thr(w(𝑦)) = thr(w′) and thr(r(𝑦)) = thr(w). Finally, we thread-order w(𝑦) and r(𝑦) at the
end of their respective threads. In particular, r(𝑦) is thread-ordered after the events r(𝑥𝑖)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:22 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

introduced in the previous item. Notice that because of this ordering and the previous item,
any correct reordering 𝜎∗ of 𝜎 ′ must contain all events of 𝑋 ′.

(4) We introduce a lock ℓ and two pairs of lock-acquire and lock-release events (acq𝑖 (ℓ), rel𝑖 (ℓ)),
for each 𝑖 ∈ [2]. We make thr(acq𝑖 (ℓ)) = thr(rel𝑖 (ℓ)) = 𝑡 𝑗 , where 𝑡 𝑗 = thr(w′) if 𝑖 = 1 and
𝑡 𝑗 = thr(w) otherwise. Finally, we surround with the critical section of acq1 (ℓ), rel1 (ℓ) all
events of the corresponding thread, and surround with the critical section of acq2 (ℓ), rel2 (ℓ)
the event w. Notice that any correct reordering 𝜎∗ that witnesses a race on (w(𝑦), r(𝑦)) is
missing rel1 (ℓ), and thus must order rel2 (ℓ) ≤

𝜎∗

tr
acq1 (ℓ). In turn, this leads to a transitive

ordering w ≤𝜎
∗

tr
w
′, and since the last write of r must be lw𝜎∗ (r) = w, we must have r ≤𝜎

∗

tr
w
′.

We now outline the correctness of the reduction (proof in [Mathur et al. 2020b]). Consider any
correct reordering 𝜎∗ that witnesses a predictable race (w(𝑦), r(𝑦)) on 𝜎 ′. Item 2 and Item 3 above
guarantee that 𝑋 ⊆ Events𝜎∗ , while Item 1 guarantees that 𝜎∗ linearizes 𝑃 , and Item 4 guarantees
that 𝜎∗ reverses 𝜆, i.e., r ≤𝜎

∗

tr
w
′. Finally, note that 𝜎 ′ has size that is polynomial in 𝑛, while the

number of threads of 𝜎 ′ equals the number of threads of P. This concludes the proof of Theorem 3.4.

6 EXPERIMENTS

In this section we report on an implementation and experimental evaluation of the techniques
presented in this work. Our objective is two-fold. The first goal is to quantify the practical relevance
of sync-preservation, i.e., whether in practice the definition captures races that are missed by the
standard notion of happens-before and WCP [Kini et al. 2017] races. The second goal is to evaluate
the performance of our algorithm SyncP for detecting sync-preserving races.

6.1 Experimental Setup

We have implemented SyncP (Algorithm 3) for predicting all sync-preserving races in our tool
RAPID [Mathur 2020], written in Java, and evaluated it on a standard set of benchmarks.

Benchmarks. Our benchmark set consists of standard benchmarks found in the recent litera-
ture [Huang et al. 2014; Kini et al. 2017; Mathur et al. 2018; Pavlogiannis 2019; Roemer et al. 2018; Yu
et al. 2018]. It consists of 30 concurrent programs taken from standard benchmark suites: (i) the IBM
Contest benchmark suite [Farchi et al. 2003], (ii) the Java Grande forum benchmark suite [Smith
et al. 2001], (iii) the DaCapo benchmark suite [Blackburn et al. 2006], (iv) the Software Infrastruc-
ture Repository [Do et al. 2005], and (v) some standalone benchmarks. For each benchmark, we
generated a single trace using RV-Predict [Rosu 2018] and evaluated all methods on the same trace.

Compared Methods. We compare our algorithm with state-of-the-art sound race detectors,
namely, SHB [Mathur et al. 2018], WCP [Kini et al. 2017] and M2 [Pavlogiannis 2019]. Recall
that SHB and WCP are linear time algorithms that perform a single pass of the input trace 𝜎 . SHB
computes happens-before races and is sound even beyond the first race. On the other hand, WCP
is only sound for the first race report. In order to allow WCP to soundly report more than one
race, whenever a race is reported on an event pair (𝑒1, 𝑒2) (i.e., we have 𝑒1 ∥

𝜎
WCP 𝑒2), we force an

order 𝑒1 ≤
𝜎
WCP

𝑒2 before proceeding with the next event of 𝜎 . This is a standard practice that has
been followed in other works, e.g.,[Pavlogiannis 2019; Roemer et al. 2018]. Finally, M2 is a more
heavyweight algorithm that makes sound reports for all races by design, though its running time is
a larger polynomial (of order 𝑛4) [Pavlogiannis 2019].

Optimizations. In general, the benchmark traces can be huge and often scale to sizes of order as
large as 108. A closer inspection shows that many events, even though they perform accesses to
shared memory, are non-racy and even totally ordered by fork-join mechanisms and data flows in
the trace. We have implemented a lightweight, linear time, single-pass optimization of the input

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:23

trace 𝜎 that filters out such events. The optimization simply identifies memory locations 𝑥 whose
conflicting accesses are totally ordered in 𝜎 by thread and data-flow orderings, and ignores all such
accesses in 𝜎 . For a fair comparison, we employ the optimization in all compared methods. This
is similar to FastTrack-like optimizations [Flanagan and Freund 2009], which identify and ignore
thread-local events. We note that, as each of the compared methods attempts to report as many
races as possible, epoch-like optimizations were not applied.

Reported Results. Our experiments were conducted on a 2.6GHz 64-bit Linux machine with Java
1.8 as the JVM and 30GB heap space. Each of the compared methods is evaluated on the same input
trace 𝜎 . For every such input, the respective method reports the following race warnings.

(1) Racy events. We report the number of events 𝑒2 such that there is an event 𝑒1 with 𝑒1 <
tr
𝑒2

for which a race (𝑒1, 𝑒2) is detected. We remark that this is the standard way of reporting
race warnings [Flanagan and Freund 2009; Genç et al. 2019; Kini et al. 2017; Mathur et al.
2018; Roemer et al. 2018], as it allows for one-pass, linear time algorithms that avoid the
overhead of testing for races between all possible Θ(𝑛2) pairs of events.

(2) Racy source-code lines. We report the number of distinct source-code lines which correspond
to events 𝑒2 that are found as racy in Item 1. This is a meaningful measure, as the same
source-code line might be reported by many different events 𝑒2.

(3) Racy memory locations.We report the number of different memory locations that are accessed
by all the events 𝑒2 that are found as racy in Item 1.

(4) Running time.We measure the time of the algorithm required to process each benchmark,
while imposing a 1-hour timeout (TO).

6.2 Experimental Results

We now turn our attention to the experimental results. Table 1 shows the races and running times
reported by each method on each benchmark.

Coverage of Sync-Preserving Races. We find that every race reported by SHB or WCP is a
sync-preserving race, also reported by SyncP. On the other hand, bold-face entries highlight
benchmarks which have sync-preserving races that are not happens-before races. We see that such
races are found in 11 out of 30 benchmarks. Interestingly, in the 5 most challenging out of these
11 benchmarks, the same pattern occurs if we focus on source-code lines (i.e., the entries in the
parentheses). Hence, for these benchmarks, sync-preservation is necessary to capture many racy
source-code lines, which happens-before would completely miss. We also remark that the more
heavyweight analysis M2 misses several of these races due to frequent timeouts. In total, we have
18 unique source-code lines that are racy but only detected by SyncP. On the other hand, there are
only 2 source-code lines that are caught by M2 but not by SyncP.

Running Times. Our experimental times indicate that SyncP is quite efficient in practice. Among
all algorithms, SyncP is the second fastest, being about 1.4 times slower that the fastest, lightweight
SHB, while at the same time, being able to detect considerably more races the SHB (i.e., 1342 more
racy events, and 21 more racy source-code lines). On the other hand, SyncP detects even more
races than M2, due to timeouts, and even has almost equal detection capability with M2 on the
cases that M2 does not time out. Due to the slow performance of M2 (i.e., over 8.5 hours and with
several timeouts), we exclude it from the more refined analysis that follows.

Racy Memory Locations. We next proceed to evaluate the capability of SyncP in detecting racy
memory locations. As all races detected by SHB or WCP are sync-preserving, the same follows for
the racy memory locations, i.e., they are all detected as racy by SyncP. On the other hand, Table 2
shows a few cases in which SyncP has discovered racy variables that are missed by SHB and WCP.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:24 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Table 1. Dynamic race reports in our benchmarks. N and T denote the number of events and number of
threads in the respective trace. For races, an entry ‘𝑟 (𝑠)’ denotes the number 𝑟 of events 𝑒2 found to be in race
with an earlier event 𝑒1, as well as the number 𝑠 of unique source-code lines corresponding to such events 𝑒2.
Bold-face entries highlight cases where there are sync-preserving races that are not happens-before races.

Benchmark N T SHB WCP M2 SyncP

Races Time Races Time Races Time Races Time

array 51 4 0 (0) 0.02s 0 (0) 0.03s 0 (0) 0.09s 0 (0) 0.04s

critical 59 5 3 (3) 0.19s 1 (1) 0.03s 3 (3) 0.11s 3 (3) 0.07s

account 134 5 3 (1) 0 3 (1) 0.06s 3 (1) 0.23s 3 (1) 0.09s

airtickets 140 5 8 (3) 0.02s 5 (2) 0.03s 8 (3) 0.13s 8 (3) 0.05s

pingpong 151 7 8 (3) 1.09s 8 (3) 0.04s 8 (3) 0.17s 8 (3) 0.06s

twostage 193 13 4 (1) 0.02s 4 (1) 0.09s 4 (1) 0.20s 4 (1) 0.10s

wronglock 246 23 12 (2) 0.02s 3 (2) 0.09s 25 (2) 0.43s 25 (2) 0.15s

bbuffer 332 3 3 (1) 0.01s 1 (1) 0.05s 3 (1) 0.11s 3 (1) 0.06s

prodcons 658 9 1 (1) 0.03s 1 (1) 0.09s 1 (1) 0.20s 1 (1) 0.10s

clean 1.0K 10 59 (4) 0.04s 33 (4) 0.14s 110 (4) 0.85s 60 (4) 0.17s

mergesort 3.0K 6 1 (1) 11m10s 1 (1) 0.12s 5 (2) 0.96s 3 (1) 0.13s

bubblesort 4.0K 13 269 (5) 0.03s 100 (5) 0.27s 374 (5) 8.05s 269 (5) 0.50s

lang 6.0K 8 400 (1) 0.10s 400 (1) 0.23s 400 (1) 1.31s 400 (1) 0.31s

readswrites 11K 6 92 (4) 0.12s 92 (4) 0.41s 228 (4) 12.74s 199 (4) 0.77s

raytracer 15K 4 8 (4) 0.02s 8 (4) 0.30s 8 (4) 0.40s 8 (4) 0.30s

bufwriter 22K 7 8 (4) 0.10s 8 (4) 0.70s 8 (4) 2.65s 8 (4) 0.84s

ftpserver 49K 12 69 (21) 6.91s 69 (21) 1.34s 85 (21) 4.11s 85 (21) 4.69s

moldyn 200K 4 103 (3) 0.05s 103 (3) 1.83s 103 (3) 1m25s 103 (3) 1.86s

linkedlist 1.0M 13 5.0K (4) 7.25s 5.0K (3) 27.07s TO TO 7.0K (4) 5m19s

derby 1.0M 5 29 (10) 0.01s 28 (10) 16.48s 30 (11) 22.49s 29 (10) 24.07s

jigsaw 3.0M 12 4 (4) 0.41s 4 (4) 19.53s 6 (6) 11.69s 6 (6) 17.30s

sunflow 11M 17 84 (6) 39.66s 58 (6) 47.14s 130 (7) 50.24s 119 (7) 55.30s

cryptorsa 58M 9 11 (5) 3m4s 11 (5) 6m35s TO TO 35 (7) 9m42s

xalan 122M 7 31 (10) 0.15s 21 (7) 15m30s TO TO 37 (12) 10m44s

lufact 134M 5 21K (3) 7m26s 21K (3) 14m57s TO TO 21K (3) 10m38s

batik 157M 7 10 (2) 9m49s 10 (2) 22m56s TO TO 10 (2) 11m59s

lusearch 217M 8 232 (44) 12.63s 119 (27) 13m40s 232 (44) 27m9s 232 (44) 14m5s

tsp 307M 10 143 (6) 15m2s 140 (6) 29m10s TO TO 143 (6) 20m19s

luindex 397M 3 1 (1) 24m40s 2 (2) 31m6s TO TO 15 (15) 31m46s

sor 606M 5 0 (0) 38m38s 0 (0) TO TO TO 0 (0) 44m36s

Totals 2.0B - 29520 (157) 1h51m 29133 (134) ≥ 3h15m 1846 (131) ≥ 8h30m 30862 (178) 2h40m

Hence, sync-preservation is more adequate to capture not only racy program locations, but also
racy memory locations. We note that, in principle, many different racy memory locations could
correspond to the same static race (e.g., if memory is allocated dynamically). Note, however, that
the additional reports of SyncP in Table 2 occur on benchmarks where it also makes more race
reports in Table 1. Together, the two experimental tables give confidence that the new reported
races are on entirely different variables.

Race Distances.We examine the capability of SyncP to detect races that are far apart in the input
trace. Table 3 shows maximum race distance of races (𝑒1, 𝑒2) in various benchmarks, including
the ones that contains sync-preserving races that are missed by happens-before. In each case, the
distance is counted as the number of events in the input trace between 𝑒1 and 𝑒2, for every event
𝑒2 reported as racy. We see a sharp contrast between SHB/WCP and SyncP, with the latter being

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:25

Table 2. Numbers of different memory locations
that are detected as racy.

Benchmark SHB WCP SyncP

ftpserver 49 49 50

jigsaw 4 4 5

xalan 7 6 9

cryptorsa 4 4 5

luindex 1 2 9

sunflow 14 10 17

linkedlist 927 927 932

Total 1006 1002 1027

Table 3. Maximum race distances.

Benchmark SHB WCP SyncP

tsp 11K 11K 224M

batik 1.7M 1.7M 4.8M

cryptorsa 7.9M 7.9M 8.3M

jigsaw 428 428 121K

sunflow 10M 1.0M 10M

xalan 4K 4K 13K

ftpserver 11K 11K 11K

linkedlist 165K 165K 165K

luindex 783 783 6.9K

mergesort 57 57 1.4K

clean 355 47 1.2K

readswrites 13 13 696

wronglock 50 6 113

able to detect races that are far more distant in the input. This is in direct alignment with our
theoretical observations already illustrated earlier in Section 1 (see Figure 1c). Indeed, as partial
orders, SHB/WCP can only detect races between conflicting accesses that are successive in the
input trace. On the other hand, sync-preserving races may be interleaved with arbitrarily many
conflicting, non-racy accesses, and our complete algorithm SyncP is guaranteed to detect them.
Overall, all our experimental observations suggest that sync-preservation is an elegant notion: it
finely characterizes almost all races that are efficiently detectable, while it captures several races
that are beyond the standard happens-before relation.

Table 4. Statistics of the core of the benchmark traces after the lightweight optimization is applied.N , T ,A,

andV denotes respectively the number of events, threads, lock-acquire events, and variables in the core trace.

Benchmark N T A V Benchmark N T A V Benchmark N T A V

array 14 4 2 2 mergesort 170 6 49 1 jigsaw 3.0K 12 1.0K 51

critical 14 5 0 1 bubblesort 1.0K 13 119 25 sunflow 3.0K 17 585 20

account 18 5 0 1 lang 1.0K 8 0 100 cryptorsa 1.0M 9 156K 18

airtickets 27 5 0 1 readswrites 9.0K 6 1.0K 6 xalan 671K 7 183K 72

pingpong 38 7 0 2 raytracer 529 4 0 3 lufact 891K 5 0 4

twostage 86 13 20 2 bufwriter 10K 7 1.0K 6 batik 132 7 0 5

wronglock 125 23 20 1 ftpserver 17K 12 4.0K 135 lusearch 751K 8 53 77

bbuffer 13 3 0 1 moldyn 21K 4 0 2 tsp 15M 10 91 189

prodcons 248 9 34 3 linkedlist 910K 13 1.0K 932 luindex 15K 3 6.0K 9

clean 871 10 239 2 derby 75K 5 21K 190 sor 1.0M 5 633K 4

Complexity of SyncP and Running Time. Recall the complexity of SyncP established in Theo-

rem 3.1. We have argued that the complexity is 𝑂 (𝑁), i.e., T ,V = 𝑂 (1), meaning that the number
of threads and variables are much smaller than 𝑁 . Here we justify this assumption experimentally,
by presenting these numbers for the benchmark traces in Table 4. For each trace 𝜎 , we report the
parameters of the core trace 𝜎 resulting from our lightweight optimization discussed earlier. We
see that SyncP (and the other algorithms) is, in reality, executed on the core trace 𝜎 where the

number of threads T and variablesV is indeed considerably smaller thanN . Hence, our theoretical

treatment of T ,V = 𝑂 (1) is justified.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:26 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

7 RELATED WORK

The happens-before (HB) partial order, computable in linear time [Fidge 1991; Mattern 1988], is the
basis of many race detectors [Bond et al. 2010; Christiaens and Bosschere 2001; Flanagan and Freund
2009; Pozniansky and Schuster 2003; Schonberg 1989]. However, it can miss many predictable races.
Recent work improves upon this with a small increase of computational resources [Genç et al. 2019;
Kini et al. 2017; Pavlogiannis 2019; Roemer et al. 2018, 2020; Smaragdakis et al. 2012].
Another common approach to race prediction is via lockset-based methods. At a high level,

a lockset is a set of locks that guards all accesses to a given memory location. Such techniques
report races when they discover a write access to a location which is not consistently protected (i.e.,
whose lockset is empty). They were introduced in [Dinning and Schonberg 1991] and equipped
in Eraser [Savage et al. 1997]. The lockset criterion is complete but unsound, and various works
attempt to reduce false positives by enhancements such as random testing [Sen 2008] and static
analysis [Choi et al. 2002; von Praun and Gross 2001]. Locksets have also been combined with
happens-before techniques [Elmas et al. 2007; Yu et al. 2005].
Another direction to dynamic race prediction is symbolic techniques that typically rely on

SAT/SMT encodings of the condition of a correct reordering, and dispatch such encodings to
the respective solver [Huang et al. 2014; Liu et al. 2016; Said et al. 2011; Wang et al. 2009]. The
encodings are typically sound and complete in theory, but the solution takes exponential time. In
practice, windowing techniques are used to fragment the trace into chunks and analyze each chunk
independently. This introduces incompleteness, as races between events of different chunks are
naturally missed. Dynamic techniques have also been used for predicting other types of errors,
such as deadlocks, atomicity violations and synchronization errors [Chen et al. 2008; Farzan and
Madhusudan 2009; Farzan et al. 2009; Flanagan et al. 2008; Kalhauge and Palsberg 2018; Mathur
and Viswanathan 2020; Sen et al. 2005; Sorrentino et al. 2010].

8 CONCLUSION

In this work, we have introduced the new notion of synchronization-preserving races. Conceptually,
this is a completion of the principle behind happens-before races, namely that such races can be
witnessed without reversing the order in which synchronization operations are observed. We have
shown that sync-preservation strictly subsumes happens-before, and can detect races that are far
apart in the input trace. We have developed an algorithm SyncP that is sound and complete for
sync-preserving races, and has nearly linear time and space complexity. In addition, we have shown
that relaxing our definition even slightly, i.e., by allowing a single synchronization reversal suffices
to make the problem W[1]-hard. Finally, we have performed an extensive experimental evaluation
of SyncP. Our experiments show that sync-preservation is an elegant notion that characterizes
almost all races that are efficiently detectable, while it captures several races that are beyond the
standard happens-before. Given the demonstrated relevance of this new notion, we identify as
important future work the development of more efficient race detectors for sync-preserving races,
in a similar manner that happens-before race detectors have been refined over the years.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their constructive feedback on an earlier draft of this manuscript.
Umang Mathur is partially supported by a Google PhD Fellowship. Mahesh Viswanathan is partially
supported by grants NSF SHF 1901069 and NSF CCF 2007428.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:27

REFERENCES

Joaquín Aguado, Michael Mendler, Marc Pouzet, Partha Roop, and Reinhard vonHanxleden. 2018. Deterministic Concurrency:

A Clock-Synchronised Shared Memory Approach. In Programming Languages and Systems, Amal Ahmed (Ed.). Springer

International Publishing, Cham, 86ś113.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and BenWiedermann. 2006. The

DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-oriented Programming Systems, Languages, and Applications (Portland, Oregon, USA) (OOPSLA ’06).

ACM, New York, NY, USA, 169ś190. https://doi.org/10.1145/1167473.1167488

Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir. 2009. Parallel Programming Must Be Deterministic

by Default. In Proceedings of the First USENIX Conference on Hot Topics in Parallelism (Berkeley, California) (HotPar’09).

USENIX Association, USA, 4.

Hans-J. Boehm. 2011. How to Miscompile Programs with łBenignž Data Races. In Proceedings of the 3rd USENIX Conference

on Hot Topic in Parallelism (Berkeley, CA) (HotPar’11). USENIX Association, USA, 3.

Hans-J. Boehm. 2012. Position Paper: Nondeterminism is Unavoidable, but Data Races Are Pure Evil. In Proceedings of the

2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore Scalability (Tucson, Arizona, USA) (RACES

’12). Association for Computing Machinery, New York, NY, USA, 9ś14. https://doi.org/10.1145/2414729.2414732

Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER: Proportional Detection of Data Races. In

Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (Toronto, Ontario,

Canada) (PLDI ’10). ACM, New York, NY, USA, 255ś268. https://doi.org/10.1145/1806596.1806626

Feng Chen, Traian Florin Şerbănuţă, and Grigore Roşu. 2008. jPredictor: a predictive runtime analysis tool for Java. In ICSE

’08: Proceedings of the 30th International Conference on Software Engineering (Leipzig, Germany). ACM, New York, NY,

USA, 221ś230.

Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu Sridharan. 2002. Efficient

and Precise Datarace Detection for Multithreaded Object-oriented Programs. In Proceedings of the ACM SIGPLAN 2002

Conference on Programming Language Design and Implementation (Berlin, Germany) (PLDI ’02). ACM, New York, NY,

USA, 258ś269. https://doi.org/10.1145/512529.512560

Mark Christiaens and Koenraad De Bosschere. 2001. TRaDe: Data Race Detection for Java. In Proceedings of the International

Conference on Computational Science-Part II (ICCS ’01). Springer-Verlag, London, UK, UK, 761ś770.

Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. 2015. Paxos Made Transparent. In Proceedings of the 25th

Symposium on Operating Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery,

New York, NY, USA, 105ś120. https://doi.org/10.1145/2815400.2815427

Anne Dinning and Edith Schonberg. 1991. Detecting Access Anomalies in Programs with Critical Sections. In Proceedings of

the 1991 ACM/ONR Workshop on Parallel and Distributed Debugging (Santa Cruz, California, USA) (PADD ’91). ACM, New

York, NY, USA, 85ś96. https://doi.org/10.1145/122759.122767

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting Controlled Experimentation with Testing

Techniques: An Infrastructure and its Potential Impact. Empirical Software Engineering: An International Journal 10, 4

(2005), 405ś435.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race and Transaction-aware Java Runtime. In Proceedings

of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (San Diego, California, USA)

(PLDI ’07). ACM, New York, NY, USA, 245ś255. https://doi.org/10.1145/1250734.1250762

Eitan Farchi, Yarden Nir, and Shmuel Ur. 2003. Concurrent Bug Patterns and How to Test Them. In Proceedings of the 17th

International Symposium on Parallel and Distributed Processing (IPDPS ’03). IEEE Computer Society, Washington, DC,

USA, 286.2ś.

Azadeh Farzan and P. Madhusudan. 2009. The Complexity of Predicting Atomicity Violations. In Proceedings of the 15th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems: Held As Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2009, (York, UK) (TACAS ’09). Springer-Verlag, Berlin,

Heidelberg, 155ś169. https://doi.org/10.1007/978-3-642-00768-2_14

Azadeh Farzan, P. Madhusudan, and Francesco Sorrentino. 2009. Meta-analysis for Atomicity Violations Under Nested

Locking. In Proceedings of the 21st International Conference on Computer Aided Verification (Grenoble, France) (CAV ’09).

Springer-Verlag, Berlin, Heidelberg, 248ś262. https://doi.org/10.1007/978-3-642-02658-4_21

Colin Fidge. 1991. Logical Time in Distributed Computing Systems. Computer 24, 8 (Aug. 1991), 28ś33. https://doi.org/10.

1109/2.84874

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise Dynamic Race Detection. In Proceedings of

the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).

ACM, New York, NY, USA, 121ś133. https://doi.org/10.1145/1542476.1542490

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

36:28 Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan

Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: A Sound and Complete Dynamic Atomicity Checker

for Multithreaded Programs. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY, USA, 293ś303. https://doi.org/10.1145/1375581.

1375618

Kaan Genç, Jake Roemer, Yufan Xu, and Michael D. Bond. 2019. Dependence-Aware, Unbounded Sound Predictive Race

Detection. Proc. ACM Program. Lang. 3, OOPSLA, Article 179 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360605

Kaan Genç, Yufan Xu, and Michael D. Bond. 2020. Personal Communication. (2020).

Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM J. Comput. 26, 4 (Aug. 1997), 1208ś1244.

https://doi.org/10.1137/S0097539794279614

Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True Positives Theorem for a Static Race Detector. Proc.

ACM Program. Lang. 3, POPL, Article 57 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290370

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. 12, 3 (July 1990), 463ś492. https://doi.org/10.1145/78969.78972

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow

Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 337ś348. https://doi.org/10.1145/2594291.2594315

Jeff Huang and Arun K. Rajagopalan. 2016. Precise and Maximal Race Detection from Incomplete Traces. In Proceedings of

the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(Amsterdam, Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 462ś476. https://doi.org/10.1145/2983990.2984024

Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction. Proc. ACM Program. Lang. 2, OOPSLA,

Article 146 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276516

Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob: Crowdsourced Data Race Detection. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). ACM, New

York, NY, USA, 406ś422.

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race Prediction in Linear Time. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).

ACM, New York, NY, USA, 157ś170. https://doi.org/10.1145/3062341.3062374

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978),

558ś565.

Peng Liu, Omer Tripp, and Xiangyu Zhang. 2016. IPA: Improving Predictive Analysis with Pointer Analysis. In Proceedings

of the 25th International Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016). Association

for Computing Machinery, New York, NY, USA, 59ś69. https://doi.org/10.1145/2931037.2931046

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from Mistakes: A Comprehensive Study on Real

World Concurrency Bug Characteristics. In Proceedings of the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems (Seattle, WA, USA) (ASPLOS XIII). ACM, New York, NY, USA, 329ś339.

https://doi.org/10.1145/1346281.1346323

Umang Mathur. 2020. RAPID. https://github.com/umangm/rapid Accessed: 2020-10-25.

Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-after the First Race? Enhancing the Predictive

Power of Happens-before Based Dynamic Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 145 (Oct. 2018),

29 pages. https://doi.org/10.1145/3276515

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2020a. The Complexity of Dynamic Data Race Prediction.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20).

Association for Computing Machinery, New York, NY, USA, 713ś727. https://doi.org/10.1145/3373718.3394783

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2020b. Optimal Prediction of Synchronization-Preserving

Races. CoRR abs/2010.16385 (2020). arXiv:2010.16385 https://arxiv.org/abs/2010.16385

Umang Mathur and Mahesh Viswanathan. 2020. Atomicity Checking in Linear Time Using Vector Clocks. In Proceedings of

the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems

(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 183ś199. https:

//doi.org/10.1145/3373376.3378475

Friedemann Mattern. 1988. Virtual Time and Global States of Distributed Systems. In Parallel and Distributed Algorithms.

North-Holland, 215ś226.

Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder. 2007. Automatically Classifying

Benign and Harmful Data Races Using Replay Analysis. In Proceedings of the 28th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (San Diego, California, USA) (PLDI ’07). Association for Computing

Machinery, New York, NY, USA, 22ś31. https://doi.org/10.1145/1250734.1250738

Andreas Pavlogiannis. 2019. Fast, Sound, and Effectively Complete Dynamic Race Prediction. Proc. ACM Program. Lang. 4,

POPL, Article 17 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371085

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

Optimal Prediction of Synchronization-Preserving Races 36:29

Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data Race Detection in Multithreaded C++ Programs. In

Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego,

California, USA) (PPoPP ’03). ACM, New York, NY, USA, 179ś190. https://doi.org/10.1145/781498.781529

Jake Roemer and Michael D. Bond. 2019. Online Set-Based Dynamic Analysis for Sound Predictive Race Detection. CoRR

abs/1907.08337 (2019). arXiv:1907.08337 http://arxiv.org/abs/1907.08337

Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage, Unbounded Sound Predictive Race Detection. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). ACM, New York, NY, USA, 374ś389. https://doi.org/10.1145/3192366.3192385

Jake Roemer, Kaan Genç, and Michael D. Bond. 2020. SmartTrack: Efficient Predictive Race Detection. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).

Association for Computing Machinery, New York, NY, USA, 747ś762. https://doi.org/10.1145/3385412.3385993

Grigore Rosu. 2018. RV-Predict, Runtime Verification. Accessed: 2018-04-01.

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011. Generating Data Race Witnesses by an SMT-

based Analysis. In Proceedings of the Third International Conference on NASA Formal Methods (Pasadena, CA) (NFM’11).

Springer-Verlag, Berlin, Heidelberg, 313ś327.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391ś411. https://doi.org/10.

1145/265924.265927

D. Schonberg. 1989. On-the-fly Detection of Access Anomalies. In Proceedings of the ACM SIGPLAN 1989 Conference on

Programming Language Design and Implementation (Portland, Oregon, USA) (PLDI ’89). ACM, New York, NY, USA,

285ś297. https://doi.org/10.1145/73141.74844

Koushik Sen. 2008. Race Directed Random Testing of Concurrent Programs. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY,

USA, 11ś21. https://doi.org/10.1145/1375581.1375584

Koushik Sen, Grigore Roşu, and Gul Agha. 2005. Detecting Errors in Multithreaded Programs by Generalized Predictive

Analysis of Executions. In Proceedings of the 7th IFIP WG 6.1 International Conference on Formal Methods for Open

Object-Based Distributed Systems (Athens, Greece) (FMOODS’05). Springer-Verlag, Berlin, Heidelberg, 211ś226.

Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu. 2012. Maximal causal models for sequentially consistent systems. In

International Conference on Runtime Verification. Springer, 136ś150.

Ilya Sergey. 2019. What Does It Mean for a Program Analysis to Be Sound? https://blog.sigplan.org/2019/08/07/what-does-it-

mean-for-a-program-analysis-to-be-sound/

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound Predictive Race Detection

in Polynomial Time. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Philadelphia, PA, USA) (POPL ’12). ACM, New York, NY, USA, 387ś400. https://doi.org/10.1145/2103656.

2103702

L. A. Smith, J. M. Bull, and J. Obdrizalek. 2001. A Parallel Java Grande Benchmark Suite. In SC ’01: Proceedings of the 2001

ACM/IEEE Conference on Supercomputing. 6ś6. https://doi.org/10.1145/582034.582042

Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. 2010. PENELOPE: Weaving Threads to Expose Atomicity

Violations. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering

(Santa Fe, New Mexico, USA) (FSE ’10). ACM, New York, NY, USA, 37ś46. https://doi.org/10.1145/1882291.1882300

Christoph von Praun and Thomas R. Gross. 2001. Object Race Detection. In Proceedings of the 16th ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications (Tampa Bay, FL, USA) (OOPSLA ’01). ACM, New

York, NY, USA, 70ś82. https://doi.org/10.1145/504282.504288

Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009. Symbolic Predictive Analysis for Concurrent Programs.

In Proceedings of the 2nd World Congress on Formal Methods (Eindhoven, The Netherlands) (FM ’09). Springer-Verlag,

Berlin, Heidelberg, 256ś272.

Misun Yu, Joon-Sang Lee, and Doo-Hwan Bae. 2018. AdaptiveLock: Efficient Hybrid Data Race Detection Based on Real-World

Locking Patterns. International Journal of Parallel Programming (04 Jun 2018). https://doi.org/10.1007/s10766-018-0579-5

Yuan Yu, Tom Rodeheffer, andWei Chen. 2005. RaceTrack: Efficient Detection of Data Race Conditions via Adaptive Tracking.

In Proceedings of the Twentieth ACM Symposium on Operating Systems Principles (Brighton, United Kingdom) (SOSP ’05).

Association for Computing Machinery, New York, NY, USA, 221ś234. https://doi.org/10.1145/1095810.1095832

Qi Zhao, Zhengyi Qiu, and Guoliang Jin. 2019. Semantics-Aware Scheduling Policies for Synchronization Determinism. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (Washington, District of Columbia)

(PPoPP ’19). Association for ComputingMachinery, New York, NY, USA, 242ś256. https://doi.org/10.1145/3293883.3295731

M. Zhivich and R. K. Cunningham. 2009. The Real Cost of Software Errors. IEEE Security and Privacy 7, 2 (March 2009),

87ś90. https://doi.org/10.1109/MSP.2009.56

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 36. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background on Dynamic Data Race Prediction
	2.2 Synchronization-Preserving Data Races

	3 Summary of Main Results
	4 Detecting Synchronization-Preserving Races
	4.1 Insights and Overview of the Algorithm
	4.2 Checking if a Given Pair of Conflicting Events is a Sync-Preserving Race
	4.3 Checking for a Sync-Preserving Race on a Given Event with a Given Thread
	4.4 Algorithm SyncP for Sync-Preserving Race Prediction
	4.5 Linear Space Lower Bound

	5 Beyond Synchronization-Preserving Races
	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

