On Linear Time Decidability of Differential Privacy
for Programs with Unbounded Inputs

Rohit Chadha

Email: chadhar@missouri.edu

Abstract—We introduce an automata model for describing
interesting classes of differential privacy mechanisms/algorithms
that include known mechanisms from the literature. These
automata can model algorithms whose inputs can be an un-
bounded sequence of real-valued query answers. We consider the
problem of checking whether there exists a constant d such that
the algorithm described by these automata are de-differentially
private for all positive values of the privacy budget parameter
€. We show that this problem can be decided in time linear
in the automaton’s size by identifying a necessary and sufficient
condition on the underlying graph of the automaton. This paper’s
results are the first decidability results known for algorithms with
an unbounded number of query answers taking values from the
set of reals.

I. INTRODUCTION

Differential privacy [1], [2] is a technique developed to
preserve individuals’ privacy while performing statistical com-
putations on databases containing private information. The
differential privacy framework trades accuracy for privacy.
In the framework, a differential privacy mechanism mediates
data exchange between the database and data analyst. When
the mechanism returns the answer to an analyst’s query, it
introduces random noise in the query result before forwarding
it to the analyst. The mechanism is parameterized by a privacy
budget parameter €, and the noise added depends on this
parameter. The privacy guarantees are also stated in terms of
€ — a mechanism is said to be de-differentially private if
the probability of observing a given output on two adjacent
databases differ only up-to a factor of e, where d > 0 is
a constant and e is the Euler’s constant. Setting € allows the
database manager to choose the trade-off between accuracy
and privacy. Intuitively, smaller values of ¢ imply improved
privacy guarantees but at the cost of increased inaccuracy in
the observed output.

Designing correct differential privacy mechanisms is subtle
and error-prone, and even relatively minor tweaks to correct
mechanisms can lead to loss of privacy as evidenced by the
Sparse Vector Technique (SVT) [3], [4]. This difficulty has
generated interest in formally verifying the privacy claims of
differential privacy mechanisms. Verifying differential privacy
is challenging for several reasons. First, the behavior of a
privacy mechanism changes with € as the random noise em-
ployed by the mechanism is parameterized by e. The privacy
guarantees are usually required to hold for all € > 0 to allow a
manager to choose the trade-off between privacy and accuracy.

978-1-6654-4895-6/21/$31.00 ©2021 IEEE

A. Prasad Sistla
Email: sistla@uic.edu

Mahesh Viswanathan
Email: vmahesh@illinois.edu

Thus, the verification problem is inherently parametric. Sec-
ondly, the random noise employed by a mechanism typically
samples from the continuous (or discrete) Laplace distribution.
Thus, verification involves the analysis of an infinite-state
stochastic model, even when inputs are constrained to come
from a finite set. Finally, the mechanisms may need to process
a potentially unbounded sequence of query answers, each of
which may take any real value. Verification of differential
privacy is known to be undecidable even when the mechanisms
operate on a bounded sequence of query answers, each of
which takes value from a finite domain [5].

Three major directions of research seek to circumvent this
challenge. The first direction aims to develop automated and
semi-automated techniques to construct privacy proofs [6]-
[15]. These techniques are not guaranteed to be complete
and may fail to construct a proof even if the mechanism is
differentially private. The second line of investigation develops
automated techniques to search for privacy violations [16],
[17] and searches amongst a bounded sequence of inputs. The
third direction explores decision procedures for verifying dif-
ferential privacy [5]. To circumvent the undecidability result,
[5] considers mechanisms that sample from Laplacians only
a bounded number of times and process (only) a bounded
sequence of query answers, each of which is finite valued.
Outputs of these mechanisms are also constrained to take
values from a finite domain. The decision procedure developed
in [5] converts the problem of checking differential privacy to
checking the validity of first-order formulas in the theory of
Reals with the exponential function. While the decidability of
validity for the theory of Reals with exponential function is
a longstanding open problem, formulas obtained in [5] fall
into the decidable fragment identified by [18]. Unfortunately
since it relies on the decision procedure for real arithmetic,
the verification algorithm has very high complexity.

Contributions: In this paper, we present the first decision
procedure for checking differential privacy for mechanisms
that process an unbounded sequence of inputs, each of which
may be real valued. Further, the mechanisms may also output
real values in addition to values from a finite domain. In
order to obtain decidability, we make two choices. First,
we restrict mechanisms to those that can be modeled by a
particular automata class, which we call DiP automata. Several
mechanisms proposed in the literature, such as SVT and its
variants [3], [4] and NumericSparse [2] can be modeled by DiP
automata. Our decision procedure is sound and complete for

mechanisms modeled by such automata, and remarkably, runs
in time linear in the size of the automaton. Second, we consider
the following verification problem. Instead of asking whether
a mechanism is de differentially private for a given constant
d > 0 and for all € > 0, we ask whether there exists a constant
d such that the mechanism is de differentially private for all
€ > 0. While the verification problem considered in this paper
may appear to be less useful, note that a database manager can
choose a lower € to account for a higher d if the mechanism
turns out to be differentially private. The relationship between
the computation difficulty of checking de-differential privacy
for a given d and checking if there is some d such that a
mechanism is de-differentially private is unclear. For example,
the decidability results in [5] do not extend to the verification
problem we consider in this paper.

We briefly describe the DiP automata model introduced
in this paper to model differential privacy mechanisms. A
DiP automaton (DiPA) A takes arbitrarily long sequences of
real-valued query results. Control states of A are classified
into input and non-input states. The automaton also has a
single variable x in which it can store a real value. When
the automaton is in an input state, it reads an input value and
generates a value, insample, using a Laplace distribution, and
compares insample with the stored value of x. It changes state
depending on the result of comparison and outputs a value
during the state transition. During the transition, it may also
store the sampled value insample in x. When the automaton
is in a non-input state, it does not read an input, but generates
insample using constant parameters and resets x by storing
insample in x and transitions to a new control state. The state
transition’s output may be either a discrete value from a finite
domain or a real value. The real value could be sampled value
insample, or freshly sampled value insample’. The mean and
scaling factor of the Laplace distributions used for generating
the sampled values insample and insample’ are determined by
the budget parameter ¢ and by constants that depend only on
the state. Additionally, for input states, the input value is added
to the mean.

Surprisingly, we show that the problem of checking
whether a privacy mechanism, specified by a DiPA A, is
de-differentially private, for some constant d > 0 and all
e > 0, can be reduced to checking some syntactic graph-
theoretic conditions on the finite graph “underlying”.A. These
syntactic conditions are stated as the absence of certain kinds
of cycles and paths (See Definition 11 on Page 10). These
conditions can be checked in time linear in the graph’s size
by constructing the graph of strongly connected components
of the “underlying”control flow graph. These conditions are
independent of the scaling factors and means associated with
sampling, and hence, differential privacy does not need to be
re-proved if these parameters change.

Furthermore, if the privacy mechanism under consideration
is differentially private, we can efficiently compute a constant
d using the graph of strongly connected components, such that
the mechanism is de-differentially private for all values of € >
0. The computed d depends on the scaling parameters of states

in A used when sampling. The computation of the constant
d is once again linear, assuming constant time addition and
comparison of numbers. We also observe that d computed by
our algorithm for SVT and NumericSparse match those known
in literature.

The proof that the given syntactic graph conditions are
necessary and sufficient for differential privacy is highly non-
trivial. To the best of our knowledge, these results are the
first results giving efficient algorithms for checking differential
privacy of interesting classes of mechanisms that process input
query sequences of unbounded length, where the query values
are real-valued, and the outputs may take real values.

Organization: The rest of the paper is organized as
follows. Section II introduces basic notation and the setup of
differential privacy. Our model of DiP automata is introduced
in Section III. The main results characterizing when a DiP
automata is differentially private are presented in Section IV.
Because of their length, proofs of our main theorem are
deferred to the Appendix. Related work is discussed in Sec-
tion V. Finally we present our conclusions (Section VI). An
extended abstract of this paper appeared in the 36th Annual
Symposium on Logic in Computer Science (LICS 2021) [19].
This version consists of proofs omitted in [19].

II. PRELIMINARIES

Sequences: For a set X, X* denotes the set of all finite
sequences/strings over . We shall use 7 to denote the empty
sequence/string over . For two sequences/strings p,o € 3%,
we use their juxtaposition po to indicate the sequence/string
obtained by concatenating them in order. Consider ¢ =
apay -+ ap—1 € X* (where a; € X). We use |o| to denote
it’s length n and use o[i] to denote its ith symbol a;.

Sets and functions: Let N,Z,Q,Q2% R,R>° denote
the set of natural numbers, integers, rational numbers, non-
negative rationals, real numbers and positive real numbers,
respectively. In addition, R, will denote the set RU{—o0, o0},
where —oo is the smallest and oo is the largest element in R .
For a real number = € R, |z| denotes its absolute value, and
sgn(x) denotes the sign function, i.e., sgn(z) = 0 if z = 0,
sgn(z) = —1 if x < 0 and sgn(z) = 1 if © > 0.For any
partial function f : A — B, where A, B are some sets, we
let dom(f) be the set of z € A such that f(z) is defined.

Laplace Distribution: Differential privacy mechanisms
often add noise by sampling values from the Laplace distri-
bution. The distribution, denoted Lap(k, i), is parameterized
by two values — k& > 0 which called the scaling parameter,
and p which is the mean. The probability density function of
Lap(k, i), denoted f ., is given by

k
fk,,u(z) = 567]6'7:7#'.

Therefore, for a random variable X ~ Lap(k,) and ¢ € R,
we have

1
PI’Ob[X < c] = 5 1 —l—sgn(c _ u)(l _ e—k\c—m)})

Finally observe that for any 1, uo > 0, Lap(k, 1 + p2) and
Lap(k, 1) + po are identically distributed.

Differential Privacy: Differential privacy [1] is a frame-
work that enables statistical analysis of databases containing
sensitive, personal information of individuals while ensuring
that the privacy of individuals’ information is not adversely
affected by the results of the analysis. In the differential
privacy framework, a randomized algorithm, M, called the
differential privacy mechanism mediates the interaction be-
tween a (possibly dishonest) data analyst asking queries and a
database D responding with answers. Queries are deterministic
functions and typically include aggregate questions about the
data, like the mean etc. In response to such a sequence of
queries, the mechanism M will respond with a series of
answers, whose value is computed using the actual answers
from the database and random sampling, resulting in “noisy”
answers. Thus, the differential privacy mechanism provides
privacy at the cost of accuracy. Typically, the differential
privacy mechanism’s noisy response depends on a privacy
budget € > 0.

The crucial definition of differential privacy captures the
privacy guarantees of individuals in the database D. For an
individual ¢ in D, let D \ {i} denote the database where
1’s information has been removed. A secure mechanism M
ensures that for any individual ¢ in D, and any sequence
of possible outputs o, the probability that M outputs o on
a sequence of queries is approximately the same whether
the interaction is with the database D or with D \ {i}. To
capture this definition formally, we need to characterize the
inputs on which M is required to behave similarly. Inputs to
a differential privacy mechanism could be seen as answers
from the database to a sequence of queries asked by the data
analyst. If queries are aggregate queries, then answers to ¢
on D and D\ {i}, for individual i, are likely to be away by
at most 1.! This intuition leads to an often-used definition of
adjacency, such as in SVT [2]-[4] and NumericSparse [2], that
characterizes pairs of inputs on which the differential privacy
mechanism M is expected to behave similarly.

Definition 1. Two sequences p, 0 € R* are said to be adjacent
if |p| = |o| and for each i < |p|, |p[i] — oli]| < 1.

Having defined adjacency between inputs, we are ready
to formally define the notion of privacy. In response, to a
sequence of inputs, a differential privacy mechanism produces
a sequence of outputs from the set (say) I'. Since a differential
privacy mechanism M is a randomized algorithm, it will
induce a probability distribution on I'*.

Definition 2 (e-differential privacy). A randomized algorithm
M that gets as input a sequence of real numbers and produces
an output in I'* is said to be e-differentially private if for all
measurable sets S C I'* and adjacent p, 0 € R* (Definition 1),

Prob[M (p) € S] < e“Prob[M (o) € 5],

where e is the Euler constant.

IThe difference in general can be a constant A.

Example 1. Let us look at a couple of classical differential
privacy mechanisms from the literature. These will serve as
running examples to motivate our definitions and highlight
our results.

Input: ¢[1: N]
Output: out[1 : N]

rr < Lap(5,T)

for : < 1 to N do

r < Lap({, qli])

if r > rp then
outli] «+ T
exit

else

| out[i] + L

end

end

Algorithm 1: SVT algorithm

Sparse Vector Technique (SVT) [3], [4] is an algorithm to
answer the following question in a privacy preserving manner:
Given a sequence of query answers ¢[1 : V] and threshold 7,
find the first index ¢ such that g[¢] > T'. The algorithm is shown
as Algorithm 1. It starts by sampling a value from the Laplace
distribution with mean 7', and stores this “noisy threshold” in
the variable rp. After that the algorithm reads query answer
q[é], perturbs it by sampling from the Laplace distribution with
mean ¢[i] to get r, and compares this “noisy query” r with the
“noisy threshold” ry. If r < rp then the algorithm outputs L
and continues by reading the next query. On the other hand, if
r > rp then the algorithm outputs T and stops. This algorithm
is known to be e-differential private. It is worth observing that
SVT is parameterized by ¢; each value of € gives us a new
algorithm which is e-differentially private for that particular
value of e.

Input: ¢[1: N]
Output: out[l : N]

rp 4— Lap(%,T)

for 1 < 1 to N do

r < Lap (3, qfi])

if r > rr then
out[i] + Lap(g, q[i])
exit

else

| out[i] + L

end

end

Algorithm 2: Numeric Sparse algorithm

Consider Algorithm 2 which shows a differential privacy
mechanism called Numeric Sparse [2]. The problem solved
by this algorithm is very similar to the one solved by SVT
(Algorithm 1) — given a sequence of query answers ¢[1 : N|

and threshold T, find the first index ¢ such that ¢[i] > T
and output q[i]. Algorithm 2 is similar to Algorithm 1. The
only difference is that instead of outputting T when r > rp, it
outputs a perturbed value of ¢[i]. This algorithm is also known
to be e-differentially private for each possible assignment of
value to e.

III. DIP AUTOMATA

DiP (Differentially Private) automata (DiPA for short) are
a simple model to describe some differential privacy mecha-
nisms known in the literature. Some of the features we hope
to capture are those highlighted by Algorithms 1 and 2. Recall
that the input to a differential privacy mechanism is a sequence
of real numbers that correspond to answers to queries. The
differential privacy mechanism is a randomized algorithm that
processes this input, samples values from distributions like
Laplace, and produces a sequence of values as output. These
outputs could include real numbers (Algorithm 2). Further,
as observed in Example 1, the behavior of the mechanism
depends on the privacy budget e. DiP automata are a formal
model that have these features.

A. Syntax

A DiPA is a parametric automaton with finitely many con-
trol states and three real-valued variables insample, insample’
and x. While the variables insample and insample” are freshly
sampled in each step, the variable x can store real values
to be used in later steps. The value of the parameter € (the
privacy budget) influences the distribution from which the real
values are sampled during an execution. The input to such an
automaton is a finite sequence of real numbers. In each step
the automaton does the following.

1) It samples two values, called insample and insample/,
drawn from the distributions Lap(de,p) and
Lap(d’e, i), respectively. The scaling factors d,d’
and means p,p’ of these distributions depend on the
current state.

2) Depending on the current state, the automaton will either
read a real number from the input, or not read anything
from the input. If an input value a is read, then insample
and insample’ are updated by adding a to them.

3) The transition results in changing the control state and
outputting a value. The value output could either be a
symbol from a finite set (like L /T in Algorithm 1) or
one of the two real numbers insample and insample’ that
are sampled in this step (like in Algorithm 2). If an input
value is read then the transition could be guarded by the
result of comparing the sampled value insample and the
stored value x. It is possible that for certain values of x
and insample, no transition is enabled from the current
state. In such a case, the computation ends.

4) Finally, the automaton may choose to store the sampled
value insample in x.

The above intuition is captured by the formal definition of
DiPA below and its semantics described later in this section.

Definition 3 (DiPA). Let C be the set of guard conditions
{true,insample > x,insample < x}. A DiP automaton A =
(Q, 2, T, ¢init, X, P,5) where

o (Q is a finite set of states partitioned into two sets: the set
of input states @Q;, and the set of non-input states Qnon,

o Y = R is the input alphabet,

o I is a finite output alphabet,

e ¢init € @ is the initial state,

o X = {x,insample, insample’} is the set of variables,

e P:Q — Q2%xQx Q2" xQ is the parameter function
that assigns to each state a 4-tuple (d, pu,d’, p'), where
insample is sampled from Lap(de, ;1) and insample’ is
sampled from Lap(d'e, i1'),

e and 6 : (Q x C) = (Q x (T' U {insample, insample’}) x
{true, false}) is the transition (partial) function that given
a current state and result of comparing x with insample,
determines the next state, the output, and whether x
should be updated to store insample. The output could
either be a symbol from I' or the values insample and
insample’ that were sampled.

The transition function § of a DiPA will satisfy the following
four conditions.

Determinism: For any state ¢ € @, if §(g, true) is defined then
(g, insample > x) and d(g, insample < x) are undefined.

Output Distinction: For any state ¢ € @, if §(g, insample >
x) is defined to be (q1,01,b1) and (g, insample < x) is
defined to be (g2, 02, b2) then 01 # 09, i.e., distinct transitions
from a state have different outputs. Further at least one out
of 01 and oy belongs to I', i.e., both transitions cannot output
real values.

Initialization: The initial state g, has only one outgoing
transition of the form &§(ginit, true) = (g, 0,true) where q is
a state and o is an output symbol. In other words, the guard
of the first transition is always true and the first value sampled
is stored in x.

Non-input transition: From any ¢ € Qnon, if 0(g,c) is
defined, then ¢ = true; that is, there is at most one transition
from a non-input state which is always enabled.

It is useful to classify transitions of a DiPA into different
types. Consider a transition 6(q,c) = (¢’,0,b). If ¢ € Qi
then it is an input transition and if ¢ € Qnon then it is a
non-input transition. If b = true then the transition will set
x = insample, and hence it is called an assignment transition.
On the other hand, if b = false, the transition will be said to
be a non-assignment transition. A pure assignment transition
is an assignment transition with ¢ = true. The initialization
condition says that the (only) transition out of the initial state
of a DiPA is a pure assignment transition.

Example 2. The differential privacy mechanisms in Exam-
ple 1 can be modeled as DiP automata. These are shown in
Fig. 1 and 2. When drawing DiPAs in this paper, we will
follow these conventions. Input states will be represented as
circles, while non-input states with be shown as rectangles.

insample < x
1, false

true

insample > x
| 90 | T, false m

1, true q1

insample < x
1, false

insample > x

insample’, falsem

1, true q1

, 0 , 0

[NIE
PN

Fig. 1. DiPA Agyt modeling Algorithm 1. Threshold for the algorithm is 0
(mean for sampling insample in state gp).

The name of each state is written above the line, while the
scaling factor d and mean p of the distribution used to sample
insample is written below the line. The parameters d’ and p’
for sampling insample’ are not shown in the figures, but are
mentioned in the caption and text when they are important;
they are relevant only when insample’ is output on a transition.
Edges will be labeled with the guard of the transition, followed
by the output, and a Boolean to indicate whether the transition
is an assignment transition.

The SVT algorithm (Algorithm 1) can be modeled as a
DiPA Asyt shown in Fig. 1. Since Asyt does not output
insample’ in any transition, the parameters used for sampling
insample/ are not relevant. In this representation of SVT, the
threshold used for comparison in the algorithm is hard-coded
in the automaton as the mean parameter of the initial state
qo. In fact, without loss of generality we can take this to be
0 as shown in Fig. 1. The initial state gy of the automaton
is a non-input state with d = % and p = 0 (the threshold
for the algorithm). From ¢g, the algorithm samples a value
that corresponds to the perturbed threshold and stores this in
variable x. In state ¢;, in each step it reads a query value
(input), perturbs it by sampling, and compares this with the
perturbed threshold stored in variable x. If the sampled value
is less that x it stays in g1, outputs L and leaves x unchanged.
On the other hand, if insample > x then it outputs T, and
transitions to a terminal state gs.

Asyt can be used to illustrate our classification of tran-
sitions. The transition from ¢o to ¢; is the only non-input
transition and the only assignment transition in the automaton;
all other transitions are non-assignment, input transitions. In
addition, the transition from qg to ¢; is also a pure assignment
transition, since the guard is true.

Automaton Anyms, modeling Numeric Sparse (Algo-
rithm 2) is shown in Fig. 2. As in the case of Asyt (Fig. 1),
the threshold is hard-coded in the automaton and is taken to
be 0 (without loss of generality). Parameters used to sample
insample’ are not shown in diagram depicting Anymsp. We
take those to be just be é (scaling factor) and 0 (mean) in
every state; in fact, these parameters for insample’ are only
important for state ¢;. The automaton is very similar to Asyt
(Fig. 1) with the only differences being the parameters used
when sampling in each state, and the fact that insample’ is
output on the transition from ¢; to ¢o instead of T.

70 70

©oN
[el[)

Fig. 2. DiPA Anymsp modeling Algorithm 2. The threshold is taken to be
0. Label of each state below the line shows the parameters for sampling
insample. Parameters for sampling insample’ are not shown in the figure;
they are é (scaling factor) and O (mean) in every state.

B. Paths and executions

A DiPA A defines a probability measure on the executions
or paths of A (henceforth just called a path). Informally, a
path is just a sequence of transitions taken by the automa-
ton. Observe that the condition of output distinction ensures
that knowing the current state and output, determines which
transition is taken. The input read determines the value of
insample and insample’, and therefore, to define the probability
of a path, we need to know the inputs read as well. Finally,
on transitions where either insample or insample’ are output,
to define a meaningful measure space, we need to associate
an interval (v, w) in which the output value lies. Because of
these reasons, we define a path to be one that describes the
sequence of (control) states the automaton goes through and
the sequence of inputs read and outputs produced.

Before defining a path formally, it is useful to introduce the
following notation. For a pair of states p,q € Q, a € XU {7}
and o € T' U ({insample,insample’} x R, x R..), we say
p 2% ¢ if a = 7 whenever p € Qnon and a € ¥ whenever
P € Qin, and one of the following two conditions holds.

e If 0 € T then there is a guard ¢ € C' and Boolean b €

{true, false} such that §(p,c) = (g, 0, b).

e If o is of the form (y,v,w) where y €
{insample,insample’} and v,w € R, then there
is a guard ¢ € C and Boolean b € {true,false} such
that §(p,¢) = (q,y,b). Intuitively, an “output” of the
form (insample,v,w) (or (insample’,v,w)) indicates
that the value of insample (insample’) was output in the
transition and the result was a number in the interval
(v, w).

The unique transition, or rather the quintuple (p,c,q,o’,b),
that witnesses p —— ¢ will be denoted by trans(p =% q).

Definition 4 (Path). Let A = (Q, %, T, Ginit, X, P,6) be a
DiPA. An execution or path p of A is a sequence of the form
a0 ,00 a1,01 An—1,0n—1
P=qo—>q1 —>Q42 "Gn-1 ————> (n
where ¢; € @ for 0 < i < n, a; € XU{r} and o; €
' U ({insample, insample’} x Ry, x Ry) for 0 < j < n. In
addition, we require that g; RN gj+1 forall 0 < j < mn.
Such a path p is said to be from state gq (first(p)) to state g,
(last(p)). Its length (denoted |p|) is the number of transitions,

namely, n. If the starting state and ending state of a path are
the same (i.e., go = ¢») and |p| > O then p is said to be a
cycle.

It will be convenient to introduce some notation associated
with paths.

Notation. Let us consider a path
agp,00 a,01 An—1,0n—1
P=q ——q@ —>q2"""Gn-1 — 7 {qn
of length n. If |p| > 0, then the tail of p, denoted tail(p), is
the path of length n — 1 given by

. a1,01 An—1,0n—1
tail(p) =1 —— @2 -1 ———— ¢n.
The ith state of the path is state(p[i]) = ¢; and the ith
transition is trans(p[i]) = trans(q; —> ¢;,1). The guard
of the ith transition is guard(p[i]) = ¢, where trans(p[i]) =
(in G qi+1, O/a b)

Finally, it will be useful to introduce notation for the
sequence of inputs read and outputs produced in a path. The
output produced will be an element of (I'U (R, X Ry))* that
ignores the variable name that was output when a real value
is output. For o € T, define (0) = o, and for o of the form
(y,v,w) where y € {insample,insample’} and v,w € Ry,
define (0) = (v, w).

inseq(p) = aoay -+ an—1
outseq(p) = (00)(01) - - (0n—-1)

Two paths p; and po will be said to be equivalent if they
only differ in the sequence of inputs read. In other words,
equivalent paths are of the same length, go through the same
states, and produce the same outputs (and hence take the same
transitions).

Thanks to output distinction, two paths are equivalent if
and only if they start from the same state and have the same
output sequences. Thus, paths are uniquely determined by
starting state, input and output sequences. Finally, modifying
the values input in a path yields an equivalent path.

Proposition 1. Let p1 and py be paths of a DiPA A starting
from the same state.
e p1 and py are equivalent if and only if outseq(p1) =
outseq(p2)-
o Ifinseq(p1) = inseq(p2) and outseq(p;) = outseq(p2)
then py = po.
o For any sequence of reals a € X* such that |a| =
linseq(p1)|, there is a unique path ps equivalent to p;
such that inseq(p3) = @.

C. Path probabilities

We will now formally define what the probability of each
path is. Recall that in each step, the automaton samples two
values from Laplace distributions, and if the transition is from
an input state, it adds the read input value to the sampled
values and compares the result with the value stored in x.
The step also outputs a value, and if the value output is one
of the two sampled values, the path requires it to belong to

the interval that labels the transition. The probability of such
a transition thus is the probability of drawing a sample that
satisfies the guard of the transition and (if the output is a real
value) producing a number that lies in the interval in the output
label. This intuition is formalized in a precise definition.

Let us fix a path

p=go " g1 T g g T g,

of DIiPA A = (Q, %, T, Ginit, X, P, d). Recall that the param-
eters to the Laplace distribution in each step depend on the
privacy budget €. In addition, the value stored in the variable
x at the start of p influences the behavior of A. Thus, the
probability of path p depends on both the value for € and the
value of x at the start of p; we will denote this probability
as Pr[e, x, p], where z is the initial value of x. We define this
inductively on |p|. For any e and any path p with |p| = 0,
Prle, x, p] = 1.

For a path p of non-zero length, let (go,c,q1,00,b0) =
trans(qo —%% ;) be the Oth transition of p. Let P(gp) =
(d,p,d' 1) and let {ag) = ag if ap € R and {(ag) = 0
if ag = 7. We will define constants ¢ and u as follows. If
o9 € I' then / = —oc0 and u = oo. Otherwise, og is of the
form (y,v,w) where y € {insample,insample’}, and then we
take / = v and u = w. We assume that any integral of the
form fef g(y)dy = 0 when e > f. Finally, when oq is of the
form (y,v,w) where y € {insample,insample’} (i.e., og € T),
define

k = j;ju %e—dE‘Z—M—OIO)‘dz

)0 de ez —(ao)]
k=[] %t dz

The function Pr[-] is defined based on what ¢ and b are.
Let us fix v = pu + (ag). We begin by considering the case
when the Oth transition of p is a non-assignment transition,
i.e., when b = false.

o Case ¢ = true: If o9 € T then Prle,z,p] =
Prle, z,tail(p)]. If oy = (insample,v,w) then
Prle,x,p] = kPrle,z,tail(p)] and if oy =

(insample’, v, w) then Prle, x, p] = k'Pr[e, z, tail(p)]
o Case ¢ = insample > x: If o9 is of the form
(insample’, v, w) (i.e., insample’ is output) then

Prle,z, p] = K </ a;e_d”_”dz) Prle, z, tail(p)].

Otherwise, taking ¢/ = max(z, £),

Prle, x, p] = </ C;eeddz”dz) Prle, z, tail(p)].
¢

’

e Case ¢ = insample < x: If o9 is of the form
(insample’, v, w) (i.e., insample’ is output) then

Prle, z, p| = K’ (/ Céee_delz_”dz) Prle, z, tail(p)].

Otherwise, taking ' = min(z, u),

Prle, z, p] = (/ d;e_d”_”ldz) Prle, z, tail(p)].
¢

Next, when the Oth transition of p is an assignment transition,
i.e., b = true, Pr[-] is defined as follows.
o Case c = true: If o is of the form (insample’, v, w) (i.e.,
insample’ is output) then

Prle, z, p] = k'/

— 00

(Céee_d“_”') Prle, z, tail(p)]dz.

Otherwise,

Prle, z, p] :/ (d;ed””l> Prle, z, tail(p)]dz.
¢

e Case ¢ = insample > x: If o9 is of the form
(insample’, v, w) (i.e., insample’ is output) then

> (d
Prle, z, p] = k’/ <;edflzu|> Prle, z, tail(p)]dz.

Otherwise, taking ¢/ = max(z, ¢),

/4
Prle, z, p] :/ (;e_d”_”|> Prle, z, tail(p)]dz.
e/
e Case ¢ = insample < x: If o9 is of the form
(insample’, v, w) (i.e., insample’ is output) then

! ‘ de —de|z—v| .
Prle, z,p] = k 5¢ Prle, z, tail(p)]dz.
— 00

Otherwise, taking v’ = min(u, z),

Prle, x, p] = / (d;edelz”> Prle, z, tail(p)]d=.
J4

We will abuse notation and use Pr[-] to also refer to Pr[z, p] =
Ae. Prle, z, p]. Notice that when p starts from gj,;;, because of
the initialization condition of DiPA, the value of Pr[-] does
not depend on the initial value of x. For such paths, we may
drop the initial value of x from the argument list of Pr[-] to
reduce notational overhead. Even though we plan to use the
same function name, the number of arguments to Pr[-] will
disambiguate what we mean.

Example 3. Let use consider the DiPA Asyt shown in Fig. 1.
A couple of example paths of the automaton are the following.

T,L 0,L 1, T
P1L=q0 —>q1 —>q1 —7 Q2

L 1,1 1,T
P2 =qo —> q1 —>q1 —> Q2

Paths p; and po only differ in the inputs they read: inseq(p1) =
7-0-1 = 01, while inseq(p2) = 11. Thus, p; and ps
are equivalent paths. Notice that p; and p. are adjacent
(Definition 1). The outputs produced in these executions is
given by outseq(p1) = outseq(pe) = L LT.

Let us now consider Prle, 0, p1]. Since the transition out of
qo is a pure assignment transition, the initial value of x (namely
0 in this example) does not influence the value of Prle, 0, p1].
Let X7, X1, X, be random variables where X7 ~ Lap($,0),
X1 ~ Lap(§,0)+0, and X5 ~ Lap(g,0)+1. We can see that

Pr[e,O,pl] = PI’Ob[Xl <Xr N X9> XT]

Based on how the random variables are distributed, this can
be calculated to be

24e* — 1+ 8ef — 21e3
48¢f '
The calculation of Prle, 0, p2] is similar. Let X{ be the
random variable with X ~ Lap(§,0) + 1. Then the desired
probability is same as Prob[X] < X1 A X5 > Xr|. This can
be calculated to be
Pr[e70,p2] = Prob[X{ <Xt N Xo 2> XT]

_ —22432¢ 3¢
48e2 '

Prob[X1 < Xr AN X9 2> XT] =

The focus of this paper is to study the computational
problem of checking differential privacy for DiP automata.
We conclude this section with a precise definition of this
problem. In order to do that we first specialize the definition
of differential privacy to the setting of DiPA.

Thanks to Proposition 1, the definition of e-differential
privacy [2] specializes to the following in the case of DiPA.

Definition 5. A DiPA A is de-differentially private (for d > 0,
e > 0) iff for every pair of equivalent paths pi, ps starting
from the initial state such that inseq(p;) and inseq(p2) are
adjacent 2,

Pre, p1] < e Prle, pa).

Differential Privacy Problem: Given a DiPA A (with privacy
parameter €), determine if there is a d > 0 such that for every
€ > 0, A is de-differentially private.

IV. DECIDING DIFFERENTIAL PRIVACY

The central computational problem that this paper studies is
the following: Given a DiPA A determine if there is a d > 0
such that for all € > 0, A is de-differentially private. In this
section we present the main result of this paper, namely, that
this problem is efficiently decidable in linear time. We also
show that we can compute an upper bound on d in linear
time if A is differentially private. The crux of the proof is the
identification of simple graph-theoretic conditions that are both
necessary and sufficient to ensure a DiPA is de-differentially
private for all € and some d.

Before presenting the properties that are needed to guarantee
differential privacy, we first define the notion of reachability.
Let us fix a DiPA A = (Q, %, T, ginit, X, P, 0). A state ¢ is
said to be reachable if there is a path p starting from state
ginit and ending in ¢. In addition, we say that a path (cycle) p
is reachable if there is a path p’ from g to first(p). We now
start by identifying the first interesting property.

Definition 6. A path p in a DiPA A is said to be a leaking
path if there exist indices ¢, j with 0 < ¢ < j < |p| such that
the 4th transition trans(p[é]) is an assignment transition and
the guard of the jth transition guard(p[j]) # true. A leaking
path p is said to be a leaking cycle if it is also a cycle.

2See Definition 1 on Page 3.

insample < x

1, true

insample > x
T, false m

Fig. 3. DiPA Ao+ modeling an algorithm that checks whether the sequence
of real numbers given as input are sorted in descending order. Since insample’
is not output in any state, the parameters used in sampling insample’ are not
important.

Intuitively, in a leaking path, the variable x is assigned a
value in some transition which is used in the guard of a later
transition. Observe that if a path is leaking, then all paths
equivalent to it are also leaking. The presence of a reachable
leaking cycle is a witness that the DiPA is not differentially
private. The intuition behind this is as follows. One can show
that there are a pair of adjacent inputs such that traversing the
leaking cycle C' once on these inputs results in two paths, the
ratio of whose probabilities is at least ¢*¢ for some number
k for sufficiently large e. Thus, given d, we can find an /
and an e such that traversing the cycle ¢ times “exhausts the
privacy budget”, i.e., the adjacent inputs corresponding to these
¢ repetitions have probabilities whose ratio is at least e®. We
illustrate this through our next example.

Example 4. Consider an algorithm that checks whether the
input sequence of real numbers is sorted in descending order.
The goal of the algorithm is to read a sequence of numbers,
output | as long as it is sorted, and output T the first time
it encounters two numbers in the wrong order and stop. A
“differentially private” version of this algorithm is modeled by
DiPA Aot shown in Fig. 3. It works as follows. It starts by
reading an input in state gg, perturbing it by sampling from the
Laplace distribution, outputting L, and storing the perturbed
input in x. In state g1, Asort repeatedly reads an input, perturbs
it, and checks if it is less than the previous perturbed value read
by the automaton, which is stored in x. If it is, the automaton
outputs L, saves the new perturbed value, and stays in g; to
read the next input symbol. On the other hand, if the new
value is greater, then it outputs T and moves to a terminal
state. Asort is almost identical to the automaton Asyt (Fig. 1)
— the only difference is that initial state of Ay is an input
state as opposed to a non-input state, and the self loop on state
@1 is an assignment transition.

This difference (that the self loop on ¢ is an assignment
transition) turns out to be critical; Asy is not differen-
tially private even though Asyt is. Observe that the cycle

Q1 SN Q LLIEN q1 is a leaking cycle as the Oth transition
is an assignment transition and the 1st transition’s guard is
insample < x. We can exploit this cycle to demonstrate why
Asort 18 not differentially private. Consider the paths of length

n given as

" 0,1 —1,L —2,1 -3,L —4,1

P1T =9 — q1 q1 q1 q1 g1
n 0,1 —2,1 —1,1 —4,1 -3,1

P2 =qo — q1 q1 q1 q1 qi---

Observe that for all n, inseq(p}) and inseq(p}) are adjacent
(Definition 1). Moreover, for any d > 0, there is an n and e,
such that the ratio of Prle, p?] and Prle, p3] is > ec. Thus,
A is not de-differentially private for any d.

Absence of a leaking cycle does not guarantee differential
privacy. Privacy leaks can occur with other types of paths and
cycles. We define one such path next.

Definition 7. A cycle p of a DiPA A is called an L-
cycle (respectively, G-cycle) if there is an ¢ < |p| such that
guard(p[i]) = insample < x (respectively, guard(p[i]) =
insample > x).

We say that a path p of a DiPA A is an AL-path (respec-
tively, AG-path) if all assignment transitions on p have guard
insample < x (respectively, insample > x).

Observe that a cycle can be both an L-cycle and a G-cycle.
Further, a path with no assignment transitions (including the
empty path) is simultaneously both an AL-path and an AG-
path.

Definition 8. A pair of cycles (C,C’) in a DiPA A is called a

leaking pair if one of the following two conditions is satisfied.

1) C'is an L-cycle, C" is a G-cycle and there is an AG-path
from a state in C' to a state in C”.

2) C'is a G-¢cycle, C' is an L-cycle and there is an AL-path
from a state in C to a state in C’.

Observe that if C' is an L-cycle as well as a G-cycle, then the
pair (C, C) is a leaking pair with the empty path connecting C'
to itself. Also, if (C, C’) is a leaking pair, then for any C7, Cs
that are equivalent to C,C’ respectively, the pair (C7, Cs) is
also a leaking pair.

The presence of a leaking pair is also a witness to a DiPA
not being differentially private. Consider a DiPA A that has
no leaking cycle but has a leaking pair of cycles (C,C")
such that C is reachable. Assume that C’ is a G-cycle. The
case when C’ is an L-cycle is symmetric. Since A has no
leaking cycles, the value stored in x does not change while
the automaton is executing the transitions in either C' or C”.
Let y be the value of x when C’ starts executing. One can
show that if y > 0, then there are a pair of adjacent inputs
such that traversing C’ on those inputs results in paths such
that the ratio of their probabilities is at least e*¢ for some k.
Moreover, this pair of inputs does not depend on the actual
value of y. Further, on these pair of inputs, if y < 0, then
the ratio of these probabilities is > 1. This once again means
that by repeating C’ £ times, we can get adjacent inputs whose
probabilities violate the de privacy budget (for any d) if y > 0.
A similar observation holds for L-cycle C — if the value
of x at the start of C' is < 0, then we can find adjacent
inputs such that traversing C' for those inputs results in paths
whose probabilities have a “high” ratio. Further, on these pair

)

3 % insample > x
, 0 insample < x T, false

1
1
1, false
insample > x
T, false
true
| e | 1, true insample < x

(NI
(=)

, 0 L, false

Fig. 4. DiPA AgyT. modeling an algorithm that processes a sequence of
real numbers and implements a “noisy’ version” of the following process. As
long as the input numbers are less than threshold 7" (= 0) it outputs _L. Once
it sees the first number > 7', it moves to the second phase. In the phase, it
outputs T as long as the numbers are > 7. When it sees the first number
< T, it outputs | and stops. Since insample’ is never output, parameters
used in its sampling are not shown and not important.

of inputs, if the value stored in x is > 0, then the ratio of
these probabilities is > 1. The next observation is that value
stored in x at the end of an AG-path is at least the value at the
beginning of the path. We can now put all these pieces together
to get our witness for a violation of differential privacy. If
the value of x is < 0 at the start of C, then repeating C
{ times gives us a pair of adjacent inputs that violate the
privacy budget. On the other hand, if x at the start of C' is
> 0, it will be > 0 even at the start of C’, and then repeating
C’ ¢ times gives us the witnessing pair. Let us illustrate the
intuition through an example.

Example 5. Consider the automaton Asyt, shown in Fig. 4.
It implements an algorithm that is a slight modification of
Algorithm 1 (or the DiPA Asyt in Fig. 1). Like in SVT,
the automaton starts in state gy by sampling a value that is a
perturbed value of a threshold 7' (which is O here). It stores
this sampled value in x and moves to the first phase (state q1).
In this phase, the automaton outputs L and stays in ¢; as long
as a perturbed value of the input read is less than the perturbed
threshold stored in x. The first time it encounters a perturbed
value that is at least x, it moves to phase two (state ¢2) and
outputs T. In state gs, it outputs T as long as the perturbed
inputs it samples are > x. The first time it encounters a value
< x it outputs _L and terminates. Throughout the computation,
the automaton never over-writes the value stored in the first
step in variable x.

AsvTs has a leaking pair. Observe that C' = ¢4 % q1
is an L-cycle and C' = ¢ LLILIN q2 is a G-cycle. The path
q1 LI g2 is an AG-path from C to C’. Hence (C,C") is a
leaking pair. The presence of this leaking pair can be exploited

to show that Asyt. is not de-differentially private for any
d> 0.

Consider the following two paths.

, _ -1 ¢ 0,T 3T 0,1
P1=G — |1 ——>q1| — |@2 —>q2| —>q3

Vi
¢ T, L %,L 0,T —%,T 0,1
P2 =G0 — |1 — > q1| —7 |2 —> Q2| — Q3

In the above [p —% ¢]* means that the path consists of
repeating this transition ¢ times. Notice that the inseq(pf) =
(—2)f0(3)%0 and inseq(pf) = (3)°0(—2%)%0 are adjacent.
Moreover, for any d > 0, there is a ¢ such that for every
¢ the ratio of Prle, p%] and Prle, p§] is > edc. Thus, for
an appropriately chosen value for ¢, p% and p§ witness the
violation of differential privacy.

The two conditions we have identified thus far — existence
of reachable leaking cycle or leaking pair — demonstrate
differential privacy violations even in DiPAs that do not output
any real value. In automata that output real values, there are
additional sources of privacy violations. We identify these
conditions next.

Definition 9. A cycle C of a DiPA A is a disclosing cycle
if there is an 4, 0 < ¢ < |C| such that trans(C[i]) is an input
transition that outputs either insample or insample’.

Again the existence of a reachable disclosing cycle demon-
strates that the DiPA is not differentially private — outputting
a perturbed input repeatedly exhausts the privacy budget.

We now present the last property of importance that pertains
to paths that have transitions that output the value of insample.
We say that a state ¢ is in a cycle (G-cycle or L-cycle) if
there is a cycle (G-cycle/L-cycle) C and index i such that
q = state(Ci]).

Definition 10. We say that a path p = qq 2090, g 22
G2 Qn_1 SN qn of length n of DiPA A is a privacy
violating path if one of the following conditions hold.

o tail(p) is an AG-path (resp., AL-path) such that last(p)
is in a G-cycle (resp., L-cycle) and the Oth transi-
tion trans(p[0]) is an assignment transition that outputs
insample.

e p is an AG-path (resp., AL-path) such that last(p) is
in a G-cycle (resp., L-cycle) and the Oth transition has
guard(p[0]) = insample < x (resp., guard(p[0]) =
insample > x) and outputs insample.

o pisan AG-path (resp., AL-path) such that first(p) is in an
L-cycle (resp., G-cycle) and the last transition has guard
guard(p[n—1]) = insample > x (resp., guard(p[n—1]) =
insample < x) and outputs insample.

Once again, the presence of a reachable privacy violating
path demonstrates that the automaton is not differentially
private. Let us provide some intuition why that is the case.
We do this for some of the cases that form a privacy violating
path with reasoning for the missing cases being similar. As
before, let us assume that there is no leaking cycle because if
there is one then we already know that the automaton is not
differential privacy. A consequence of this that there are no

insample < x
1, false

true insample > x
insample, false m

, 0

R

, 0

1, true q1

Ol
[N

, 0

©lN

Fig. 5. DiPA Ay,oq is a modification of Anymsp. Label of each state below
the line shows the parameters for sampling insample. Parameters for sampling
insample’ are not shown in the figure; they are é (scaling factor) and O (mean)
in every state.

assignment transitions in a G-cycle or L-cycle and hence the
value stored in x remains unchanged in these cycles. Let us
recall a couple of crucial observations that we used when we
argued in the case of a leaking pair. First, the value stored in
x at the end of an AG-path is at least as large as the value at
the beginning. Next, if a G-cycle (L-cycle) is traversed when
the starting value in x is > 0 (< 0) then we have a family
of pairs of adjacent inputs that correspond to traversing the
cycle multiple times with the property that the ratio of their
probabilities diverges as the cycle is traversed more times. Let
us now consider each of the cases in the definition of privacy
violating path. If p starts with an assignment transition that
outputs insample and if the output of this first step is in the
interval (0,00) then the value of x is > 0 at the end of p
when a G-cycle can be traversed. These observations can be
used to give us a pair of adjacent inputs that violate privacy.
If p starts with a transition whose guard is insample < x that
outputs insample and suppose the value output in this step is in
the interval (0, co) then the value in x at the start is > 0. Like
in the previous case this can be used to get a violating pair
of inputs. Finally, if p ends in transition outputting insample,
guard insample > x and the value output in this last step in
the interval (—oo,0), then we can conclude that the value in
x at the end of p is < 0. This combined with properties of
AG-paths means that x has a value < 0 at the beginning of
p. This means the L-cycle at the start of p can be traversed
with x having a value < 0 which means that a violating pair
of inputs can be constructed.

Let us illustrate this last condition through another example.

Example 6. Consider automaton A.q (Fig. 5) which is
a modification of the Numeric Sparse algorithm modeled
by automaton Anumsp (Fig. 2). The only difference is that
the transition from ¢; to go outputs insample as opposed
to insample’. This change causes this automaton to be not
differentially private.

Observe that the state ¢; is in a L-cycle ¢; LN q1 and then

path p = ¢4 M g2 is an AG-path. Finally, the
last transition (or rather the only transition) of p has guard
insample > x that outputs insample. Thus, p is a privacy
violating path.

We can use p to find a violation for privacy. Consider the
following pair of paths.

4
7, L -3.L 0,(insample, (0,00))
P{ =qy —> |:Q1 2 a1 42

L 3L 0, (i le,(0,00))
pg ~ % T |:q1 3 q1:| insample, (0,00

Observe that inseq(pf) = (—3)0 and inseq(p5) = (3)%0 are
adjacent. Moreover, for any d > 0, there is an ¢ such that for
any e, the ratio of Prle, p] and Pr[e, p§] is > e?€. Thus, p§
and p5 demonstrate the violation of privacy.

As the discussion and examples above illustrate, absence of
leaking cycles, leaking pairs, disclosing cycles, and privacy
violating paths is necessary for a DiPA to be differentially
private. We call such automata well-formed.

Definition 11. A DiPA A is said to be well-formed if A has
no reachable leaking cycle, no leaking pair (C,C’) where C
is reachable, no reachable disclosing cycle, and no reachable
privacy violating path.

Our main theorem is that well-formed DiPAs are exactly the
class of automata that are differentially private. The proof of
this Theorem is carried out in the Appendix (See Appendix B
for the “only if” direction and Appendix C for the “if”
direction).

Theorem 2. Let A be a DiPA. There is a d > 0 such that for
every € > 0, A is de-differentially private if and only if A is
well-formed.

Remark. Before presenting a proof sketch for Theorem 2, it
is useful to point out one special case for the result. Observe
that disclosing cycles and privacy violating paths pertain to
paths that have transitions that output real values. For DiPAs
that do not have real outputs, disclosing cycles and privacy
violating paths are not needed to get an exact characterization
of differential privacy. More precisely, we say that a DiPA
A= (Q,X,T, gnit, X, P,0) has finite valued outputs if every
transition in A outputs a value in I'. Now, a DiPA with finite
valued outputs is differentially private if and only if it has no
reachable leaking cycles and leaking pairs.

Discussion in this section has provided intuitions for why
well-formed-ness is necessary for an automaton to be differ-
entially private; the formal proof that captures these intuitions
is subtle, long, and non-trivial. The proof is postponed to
Appendix B. We sketch some key properties that show why it
is sufficient.

Let us fix a transition ¢ = (p,¢,q,0,b) in a DiPA A =
(Q,2,T, ¢init, X, P,). The transition ¢ is said to lie on a
cycle if there is a reachable cycle p and index ¢ such that
trans(p[é]) = t. On the other hand, we will say ¢ is a critical
transition if t does not lie on a cycle. Let P(p) = (d, p, d’, i)
be the parameters for sampling insample and insample” in state

p. We define the cost of ¢ as follows.

d t is a critical non-input transition
2d t is a critical input transition and
0 # insample’
cost(t) = , # . .p . s :
2d +d’ tis a critical input transition and
o = insample’
0 otherwise
For a path p, define weight of p as wt(p) =

Zy’:lgl cost(trans(pli])), i.e., the sum of the costs of all the
transitions in p. Finally, define wt(.A) to be the supremum over
all paths p, wt(p). In fact, the weight of A could have been
defined as a maximum (as opposed to a supremum) because
they are the same in this case. The crucial observation about
weight of an automaton that is used in proving the sufficiency
of well-formed-ness for differential privacy, is that it provides
an upper bound on the privacy budget for A.

Lemma 3. A well-formed DiPA A is wt(A)e-differentially
private for all € > 0.

Proof. (Sketch.) The Lemma is a consequence of the proof
of Lemma 13 given in Appendix C. This lemma relates the
probabilities of two paths p and p’ of A, such that p and p’
start from the same reachable state, p and p’ are equivalent,
inseq(p) and inseq(p’) are neighbors, and the initial transitions
of p and p’ are assignment transitions. More precisely, for
an initial value 2y of x, Lemma 13 shows that Prle, z, o/
is at least e~"t(P)¢ times one of three quantities: Prle, zq, p],
Prle,zo + 1, p] or Pr[e,xg — 1, p]. The specific quantity the
Lemma compares Prle, g, p'] to depends on some properties
of the path p stated in Lemma 13. Together these mutually
exclusive properties serve as an exhaustive list of properties
that the path p can satisfy. The fact that the list is exhaustive
is a consequence of well-formed-ness. In particular, one of
the parts of the Lemma is that when the guard of the initial
transition is true then Pr[e, xo, p'] > e~ "HP)Pr[e, x, p|. This
immediately implies the statement of the current Lemma. The
proof of Lemma 13 itself is intricate and proceeds by induction
on the number of assignment transitions in p.

O

Example 7. Let us consider the automata Asyt (Fig. 1 on
Page 5) and Anymsp (Fig. 2 on Page 5). Both these automata
are well-formed and hence they are differentially private.
Moreover, we can use Lemma 3 to provide an upper bound
on the required privacy budget.

Observe that the only critical transitions in Asyt are tgq,
the transition from ¢g to ¢, and ¢15, the transition from ¢; to
g2 Now cost(to1) = 3, while cost(t12) = 2(1) = 3. Thus,
wt(AsyTt) = %Jr% =1, or Agyr is e-differentially private for
all e.

Similarly, the only critical transitions in Anymsp are again
transition tg; from gy to ¢; and transition t15 from ¢ to gs.
They have the following costs: cost(tg1) = § and cost(t12) =

2(%) + % = %. Thus, wt(Anumsp) = % + 8 =1 and Anumsp
is e-differentially private for all € > 0.

In both cases, the upper bounds computed through our
methods match the known upper bounds.

Remark. Observe that the means used in sampling insample
and insample’ do not play any role in the definition of well-
formed (Definition 11). They also do not play any role in
the calculation of the weight of an automaton or Lemma 3.
This allows one to make some simple observations. Recall
that Asyt and Anumsp were defined by taking the threshold
T = 0. However, these observations allow us to conclude that
no matter what value is chosen for the threshold 7', Asyt and
Anumsp are e-differentially private for all € > 0.

We get as a corollary of Theorem 2 that the problem of
checking whether a DiPA A is differentially private can be
checked using graph-theoretic algorithms in linear time.

Corollary 4. The differential privacy problem for DiP au-
tomata is decidable in linear time. In addition, wt(A) can be
computed in linear time, assuming addition and comparison
of numbers takes constant time.

Proof. We describe a linear time algorithm that checks
whether a DiPA A is well-formed. The Corollary then follows
from Theorem 2.

Let us fix A = (Q, %, T, ginit, X, P,). Consider the edge-
labeled directed graph G whose vertex set is () and there is an
edge-labeled (c¢,b) from p to ¢ if 6(p,c) = (g, 0,b) for some
o. Without loss of generality, we can assume that every state is
reachable from gjnjt. It is worth observing that because of the
determinism condition of DiPAs, the number of edges in G is
at most twice the number of vertices. The subgraph Gag of G
has the same vertex set but an edge labeled (c, b) is present in
Gag only if whenever b = true, ¢ = insample > x. Similarly,
the subgraph Gai of G only has those edges labeled (¢, b) with
the property that if b = true then ¢ = insample < x. Notice
that the graphs G, Gag and GaL can each be constructed in
linear time from A.

Next, we compute the maximal strongly connected compo-
nents (SCC) of G; this can also be done in linear time. Observe
that a state ¢ is part of some G-cycle if it’s SCC has an edge
with label (insample > x,b). Similarly, ¢ is part of some L-
cycle if it’s SCC has an edge with label (insample < x,b).
Notice that the set of all states that belong to some G-cycle
and those that belong to some L-cycle can be computed in
linear time. Next, the set of all vertices that can be reached by
an AG-path from an L-cycle can be computed in linear time
by performing a BFS on Gag starting from vertices that are on
L-cycles. Similarly, we can compute all vertices from which
a G-cycle can be reached by an AG-path in linear time. Using
BFS on Ga we can also compute the set of all vertices that
can be reached from a G-cycle by an AL-path, and the set
of all vertices from which an L-cycle can be reached by an
AL-path in linear time.

We can now check each of the conditions of well-formed-
ness in linear time using the sets computed in the previous

paragraph.

o leaking cycle: Check if there is a SCC of G that has an
edge labeled (c,true) and an edge labeled (¢/,b’) where
c # true.

o leaking pair: Check if there is a state on an L-cycle that
can reach a G-cycle by an AG-path and check if there
is a state on an G-cycle that can reach a L-cycle by an
AL-path.

o disclosing cycle: Check if there is a SCC of G that
contains an edge from an input state that outputs insample
or insample’.

e privacy violating path: Check if any of the following
conditions holds: (a) there is an AG-path (AL-path) from
the target of an assignment transition to a state on a G-
cycle (L-cycle); (b) there is an AG-path (AL-path) from
the target of a non-assignment transition with output
insample and guard insample < x (insample > x) to a
state on a G-cycle (L-cycle); (c) there is an AG-path (AL-
path) from a state on an L-cycle (G-cycle) to the source
of a transition with guard insample > x (insample < x)
that outputs insample.

We now show how wt(A) can be computed in linear
time assuming that arithmetic operations take constant time.
Observe that we can construct the graph of SCCs of G in linear
time and that critical transitions are those that correspond to
edges in this graph of SCCs. wt(.A) is the length of the longest
path in this graph, where the weight of an edge is the cost of
the corresponding transition. Note that this can be computed
in linear time because the graph of SCCs is a DAG. O

Remark. Observe that the well-formed-ness of an automata A
does not depend on the parameter function P of the automata.
Hence, once we have established that A is differentially
private, we establish it for all possible parameter functions.
The weight of a well-formed A, however, does indeed with
the scaling parameters given by P. It is independent of the
mean parameters given by P.

V. RELATED WORK

Privacy proof construction: Several works [6], [7], [11],
[12], [15], [20] have proposed the use of type systems to
construct proofs of differential privacy. Some of the type-based
approaches such as [6], [7], [12], [20] rely on linear dependent
types, for which the type-checking and type-inference may be
challenging. For example, the type checking problem for the
type system in [20] is undecidable. The type systems in Zhang
and Kifer [11], later expanded on in [15], rely on using the
techniques of randomness alignments and can handle advanced
examples such as the sparse vector technique. Barthe et al. [8]-
[10] develop several program logics based on probabilistic
couplings for reasoning about differential privacy, which have
been used successfully to analyze standard examples from
the literature, including the sparse vector technique. The
probabilistic couplings and randomness alignment arguments
are synthesized into coupling strategies by Albarghouthi and
Hsu [13]. A shadow execution based method is introduced

in [14]. Both [13] and [14] are automated and can handle
advanced examples such as sparse vector technique efficiently.
M. C. Tschantz et. al use probabilistic I/O automata in [21] to
model interactive differential privacy algorithms. Simulation-
based methods are used to verify differential privacy. They
assume that inputs and outputs take values from a discrete
domain and that the sampling is from discrete probability
distributions. While these approaches can handle arbitrarily
long sequences of inputs and verify e-differential privacy, they
are not shown to be complete and may fail to construct a
proof of differential privacy even when the mechanism is
differentially private.

Counterexample generation: Another investigation line
develops automated techniques to search for privacy violations.
Ding et al. [16] use statistical techniques based on hypothesis
testing for automatic generation of counterexamples. Bischel
et al. [17] use optimization-based techniques and symbolic
differentiation to search for counterexamples. These methods
search only amongst a bounded sequence of inputs and as-
sume a concrete value of the parameter e. Wang et al. [15]
use program analysis techniques to generate counterexamples
when it fails to construct a proof.

Model-checking/Markov Chain approaches: The proba-
bilistic model checking approach for verifying e-differential
privacy is employed in [22], [23], where it is assumed that the
program is given as a Markov Chain. These approaches do not
allow for sampling from continuous random variables. Instead,
they assume that the program behavior is given as a finite
Markov Chain, and the transition probabilities are specified as
inputs. Thus, they also implicitly assume a bounded sequence
of inputs and a concrete value of e. In [24], the authors
use labeled Markov Chains to model differential privacy
algorithms. They consider discrete probabilities only. They
only model inputs taking values from a finite set and implicitly
assume a concrete value of e. Further, they check whether the
ratio of probabilities of observations on neighboring inputs is
bounded by a constant. If it is bounded, it implies the algorithm
is e-differentially private for sufficiently large e.

Decision Procedures: The decision problem of checking
whether a randomized program is differentially private is
studied in [5], where it is shown to be undecidable for
programs with a single input and single output, assuming that
the program can sample from Laplacian distributions. They
identify a language that restricts the mechanisms in order
to obtain decidability. The restriction forces sampling from
the Laplace distribution only a bounded number of times.
The number of inputs and outputs are also bounded and
constrained to take values from a finite domain. The decision
procedure in [5] relies on the decision procedure for checking
the validity of a sentence in the fragment of the theory of
Reals with exponentiation identified in [18], and has very high
complexity. The decision procedure allows for verification of
differential privacy for all e.

Complexity: Gaboardi et. al [25] study the complexity
of deciding differential privacy for randomized Boolean cir-
cuits, and show that the problem is coNP#F-complete. They

assume finite number of inputs, the only probabilistic choices
in [25] are fair coin tosses, and e€ is taken to be a fixed rational
number.

VI. CONCLUSION

In this paper, we introduced a model called DiP automata
for modeling differential privacy mechanisms. Such automata
can be used to model some of the interesting classes of mech-
anisms presented in the literature. We studied the problem of
checking if a mechanism given by a DiPA is differentially
private, i.e., it is de-differentially private, for some constant
d > 0 and for all values of the scaling parameter ¢ > 0.
We showed that this problem is decidable in time that is
linear in the size of the automaton. Our decidability result is
based on checking the necessary and sufficient conditions for
differential privacy, presented in the paper. If the mechanism,
given by an automaton, is differentially private, then it outputs
a constant d such that the mechanism is de-differentially
private, for all ¢ > 0. If the mechanism is not differentially
private, a counterexample can be constructed explaining why
it is not differentially private. For the published mechanisms
presented in the literature, that are differentially private, the
constant d computed by our method matches the published
values. The proofs showing that the given conditions presented
in the paper, are necessary and sufficient for differential
privacy, are highly non-trivial.

As part of future work, it will be interesting to come up with
the computation of the optimal constant d for mechanisms
modeled by DiPA, that are differentially private. It will be
interesting to extend our automata model to cover other
interesting differential privacy mechanisms such as private
smart sum algorithm [26], private vertex cover [27] and
NoisyMax [2].

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their interesting and valuable comments. Rohit Chadha was
partially supported by NSF CNS 1553548 and NSF CCF
1900924. A. Prasad Sistla was partially supported by NSF
CCF 1901069, and Mahesh Viswanathan was partially sup-
ported by NSF NSF CCF 1901069 and NSF CCF 2007428.

REFERENCES

[11 C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in JACR Theory of Cryptography
Conference (TCC), 2006, pp. 265-284.

[2] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211-407, 2014.

[3] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P. Vadhan,
“On the complexity of differentially private data release: efficient
algorithms and hardness results,” in ACM SIGACT Symposium on Theory
of Computing (STOC), 2009, pp. 381-390.

[4] M. Lyu, D. Su, and N. Li, “Understanding the sparse vector technique
for differential privacy,” Proceedings of VLDB, vol. 10, no. 6, pp. 637—
648, 2017.

[51 G. Barthe, R. Chadha, V. Jagannath, A. P. Sistla, and M. Viswanathan,
“Deciding differential privacy for programs with finite inputs and
outputs,” in 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, 2020, pp. 141-154.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Reed and B. C. Pierce, “Distance makes the types grow stronger: A
calculus for differential privacy,” in Proceedings of the 15th ACM SIG-
PLAN International Conference on Functional Programming (ICFP),
2010, p. 157-168.

M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce,
“Linear dependent types for differential privacy,” in ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
2013, pp. 357-370.

G. Barthe, B. Kopf, F. Olmedo, and S. Zanella-Béguelin, “Probabilistic
relational reasoning for differential privacy,” ACM Transactions on
Programming Languages and Systems, vol. 35, no. 3, p. 9, 2013.

G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub, “Proving
differential privacy via probabilistic couplings,” in IEEE Symposium on
Logic in Computer Science (LICS), 2016.

G. Barthe, N. Fong, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub, “Ad-
vanced probabilistic couplings for differential privacy,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2016, pp. 55-67.

D. Zhang and D. Kifer, “LightDP: towards automating differential
privacy proofs,” in Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2017, pp. 888-901.
A. A. de Amorim, M. Gaboardi, J. Hsu, and S. Katsumata, ‘“Probabilistic
relational reasoning via metrics,” in 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), 2019, pp. 1-19.

A. Albarghouti and J. Hsu, “Synthesizing coupling proofs of differential
privacy,” in Proceedings of the ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL), 2018, pp. 58:1-58:30.

Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang, “Proving dif-
ferential privacy with shadow execution,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, (PLDI), 2019, pp. 655-669.

Y. Wang, Z. Ding, D. Kifer, and D. Zhang, “CheckDP: An automated and
integrated approach for proving differential privacy or finding precise
counterexamples,” in 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2020, pp. 919-938.

Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting
violations of differential privacy,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2018, pp. 475-489.

B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. T. Vecheyv,
“DP-Finder: Finding differential privacy violations by sampling and
optimization,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2018, pp. 508-524.
S. McCallum and V. Weispfenning, “Deciding polynomial-
transcendental problems,” Journal of Symbolic Computation, vol. 47,
no. 1, pp. 16-31, 2012.

R. Chadha, A. P. Sistla, and M. Viswanathan, “On linear time decidabil-
ity of differential privacy for programs with unbounded inputs,” in 36th
Annual IEEE Symposium on Logic in Computer Science (LICS), 2021,
To Appear.

A. A. de Amorim, M. Gaboardi, E. J. G. Arias, and J. Hsu, “Really
natural linear indexed type checking,” in 26th 2014 International Sym-
posium on Implementation and Application of Functional Languages
(IFL), 2014, pp. 5:1-5:12.

M. C. Tschantz, D. K. Kaynar, and A. Datta, “Formal verification of
differential privacy for interactive systems (extended abstract),” in 27th
Conference on the Mathematical Foundations of Programming Seman-
tics (MFPS), ser. Electronic Notes in Theoretical Computer Science, vol.
276, 2011, pp. 61-79.

K. Chatzikokolakis, D. Gebler, C. Palamidessi, and L. Xu, “Generalized
bisimulation metrics,” in 35th International Conference on Concurrency
Theory (CONCUR), 2014, pp. 32-46.

D. Liu, B. Wang, and L. Zhang, “Model checking differentially private
properties,” in Programming Languages and Systems - 16th Asian
Symposium, (APLAS), ser. Lecture Notes in Computer Science, vol.
11275, 2018, pp. 394-414.

D. Chistikov, S. Kiefer, A. S. Murawski, and D. Purser, “The big-
o problem for labelled markov chains and weighted automata,” in
31st International Conference on Concurrency Theory (CONCUR), ser.
LIPIcs, vol. 171, 2020, pp. 41:1-41:19.

M. Gaboardi, K. Nissim, and D. Purser, “The complexity of verify-
ing loop-free programs as differentially private,” in 47th International
Colloquium on Automata, Languages, and Programming, (ICALP), ser.
LIPIcs, vol. 168, 2020, pp. 129:1-129:17.

[26] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual release
of statistics,” ACM Transactions on Information and System Security,
vol. 14, no. 3, p. 26, 2011.

[27] A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar, “Differen-
tially private combinatorial optimization,” in ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2010, pp. 1106-1125.

APPENDIX A
AUXILIARY DEFINITIONS

We shall start by defining some auxiliary definitions that
shall help us in the proof of Theorem 2.
Path Suffixes: Let A= (Q,%,T, ¢nit, X, P,J) be an DiP
automaton. For any execution/path 1 = qq 2090, g 22
Go Gnoq —=Rl g of A and @ < n, the suff&lx Oof

p starting from state ¢; (or position ¢) is the path ¢ ——

Git1 o qi+2* Gn—1 fnotOnot ¢, and is denoted as

plli. .
Abstract paths: For any execution/path n = g ——
a1,01 An—1,0n—1

g1 — Q2" Gn-1 qn of A, the ab-

straction of p, denoted abstract(p), will be the word

4000q101 * - * Gn—10n—1Gn Where

0; if o, €T

o; = § insample if o; = (insample, r, s)

insample’ otherwise

Note that for DiP automata, o; = o; for each 3.

A sequence 1 = Qo00q101-- - Qn—10n—1Qy 1S said to be
an abstract path if n = abstract(p) for some execution p. By
abuse of notation, we shall say that the length pf the execution
n is n. Further such a p shall be called an execution of 7 on
input & = ag - - - a,. Note that p is unique if o; € I" for each
1. In general, two distinct sequences p and p’ having the same
abstraction 7 will only differ at indices 7 such that o; ¢ T.
At those indices, we would need to specify the values of the
interval end-points, r;, s;, where the real output is assumed to
belong to.

Fix an abstract path 7 = qp00q101 * - - ¢n—10n—1qn. The ith-
transition, denoted trans]i], is the word ¢;0;¢;+1. The guard of
the ith transition, denoted guardtrans[i] is the unique ¢ such
that 6(g;,¢) = (¢, 04,b). The output sequence of 7, denoted
outseq(n) is the sequence oy - - - 0,. Note that we can classify
transitions of an abstract path as input, non-input, assignment
and non-assignment as expected. The notions of paths, cycles,
reachability, leaking cycle, leaking pair, disclosing cycle, pri-
vacy violating path and critical transition extends naturally to
abstract paths.

APPENDIX B
NECESSITY OF WELL-FORMEDNESS

We shall now show that if the DiPA A is not well-formed
then A is not differentially private, thus establishing the “only
if” part of Theorem 2. The proof of necessity will be broken
into four Lemmas. Lemma 6 shall show that if .4 has a leaking
cycle then A is not differentially private. Lemma 7 will deal
with presence of leaking pairs, Lemma 8 with presence of
disclosing cycles, and Lemma 9 with presence of privacy

violating paths. Please note that we shall use the notions of
path suffixes and abstract paths introduced in Appendix A.

Before we proceed, we need a technical lemma that char-
acterizes the probability of two samples from Laplace distri-
butions being ordered.

Lemma 5. Suppose X;, for i = 1,2, are random variables
with X; ~ Lap(k;, ;). Then Prob[X; < X, is given as
follows. When ki # ko

Prob[X1 < XQ] = 1+ sgn(ug — le) (1

__ kB

2(k3 — k%)

+ k% ek2N2M1|>:| .
2(k3 — k)

On the other hand, when k1 = ko = k

DO | =

e Filna—pil

1
Prob[X; < X5] = 3 1+ sgn(pe — 1) (1

k
— e Hmamml(q 4 5 | 12 — M1|))]

Leaking cycles implies no privacy

Lemma 6. A DiPA A is not differentially private if it has a
reachable leaking cycle.

Let A = (Q,%, T, Ginit, X, P,6). Assume that A has a
leaking cycle reachable from the state gjnir. We give the proof
first assuming that all states of 4 are input states. The proof
for the case when the automata has both input and non-input
states can be proved along similar lines and is left out.

Let 1 = qo00q101 " Gmin—10m+n—1qm+n for k =
0,...,m+ n — 1 be an abstract path such that ¢y = ginit,
Gm = Qm+n, and the final n transitions of p, i.e., the abstract
path C = AmOmdm+10m+1 """ dm+n—19m+n—19m+n is a
leaking cycle.

Let t; be the k-th transition of 1 and ¢y, be the guard of the
k-th transition. Further, let dj and pj be such that P(gy) =
(dg, i) for each k. We have that ¢ = true and ¢ is an
assignment transition. Let 4,5 be the smallest integers such
that m < 7 < 7 < m + n and the following properties are
satisfied: (a) ¢; is an assignment transition, (b) ¢; # true and
(c) for every kq such that ¢ < k; < j, t, is a non-assignment
transition and ci, = true. We fix 4, j as above. Consider any
integer ¢ > 0. We define an abstract path 7, starting from
Ginit Dy repeating the cycle ¢,,, ... tmin—1, ¢ times. Formally,
e = 0004101 ** Gmttn—10mien—19m+en SUch that g, =
Qk—n and o = o—p, for m+n < k < m+ n. Let y(¢) =
00 - -+ Om+en—1 be the output sequence of length m + ¢n such
that o, = oy, if o € T, otherwise o, = (0%, —00, 00). Once
again, we let ¢, be the k-th transition of 7, and c; be the
guard of the k-th transition. Now, given ¢ > 0, we define
two neighboring input sequences «(¢) = ag - - - m4en—1 and
B(£) =bg - - byren—1 each of length m + ¢n.

The sequence «(¥) is chosen so that all the guards in the

transitions of 7, are satisfied with joint probability > % for

large €. The input ag = 0 and for 0 < k < m + {n, a, is
defined inductively as given below: let &’ < k be the largest
integer such that ¢/ is an assignment transition, then ay is
given as follows: if cj is the guard insample > x then a;, =
b — g + agr + 1, otherwise ar = pgr — pg + axr — 1.

Now, consider any k&, 0 < k < m + {n, such that
¢, # true and fix it. Let k' < k be the largest integer such
that {5, is an assignment transition. Let X/, X} be the two
random variables with distributions given by Lap(dg€, ag/)
and Lap(dye, ay). Let Yy, denote the random variable denoting
the k" output of 1 on the input sequence «(¢). Now consider
the case when cy, is insample > x. From the way, we defined
a(f) it is the case that pr + ap = pp + apr + 1. Now
Prob[Yy # ox] = Prob[X) < Xi/] = Prob[X) < Xj/]. Let
dmx = max(dy,dy) and dpy, = min(dg, dy). From Lemma
5, we see that if dj # dj then

Prob[X}, < Xp] < —— ¢~ dme,
(dmx2 - dmn2)
If dk = dk:’ then
]. —die dkE

Prob[Xk < Xk/] < 56 k (1 + 7)

From the above, we see that
de
Prob[Y; # ox] < re”%m¢(1 + 5 6)

where 7 is a constant that depends only on A (and not on k).
Now consider the case when ¢y, is insample < x. In this case,
pr+ar = pr+ar —1 and PI’Ob[Yk 7é Ok] = Prob[Xk/ < Xk]
By a similar analysis, in this case also,
dmx€
2)

Let dmax = Inax{’”l (P(q)) | q € Q} and dmin =
min{m1(P(q)) | ¢ € Q}. Then, for every k,0 < k < m + {n,

)

Using the union rule of probabilities, we see that,

Prob[Y; # ox] < re”%m¢(1 +

Amax€

Prob[Y}, # o] < re”®min¢(1 +

dmax
Prob[3k < m+¥n, Yy # o] < r(erén)e*dm“‘e(quTe).
Given ¢ > 0, let ¢ € R, be the smallest value such that
dmaxe

2

1
Ve > ep, r(m + Kn)e_d”““g(l +) < 7

Now,
Prle, pa(£)] =1 — Prob[3k < m + ¢n, Yi, # o).

From the construction of ¢, and above observations, we see
that Ve > €4, Prle, po(€)] > 1.

Now, recall the integers ¢,; fixed earlier. Intuitively, we
define B(¢) so that each of the guards in the transitions
titen,0 < ¢ < (are satisfied with probability < % For
each ¢/, 0 < ¢ < {, we let b oy, = Qjpem + 1 — i and
bjtern = Qe+ p; — . We observe the following. Now, for
each ¢/, 0 < ¢/ < /¢, the following hold. ¢j4¢, = c¢; # true.

If ¢j4prn is the guard insample > x then bjippn + p; =
bjvorn+ ity +18ince ajpn +pj = Qipprn+ i+ 1.1 cjppm
is the guard insample < x then bj ¢y, + f1; = bjporn + i +1
since @iqprn + i = Qjyom + p1j + 1. We define by, for all
values of i’ < m+{fn andi’ ¢ {i+0'n,j+n|0 < <}, s0
that 3(¢) is a neighbour of «(¢). It is not difficult to see that
such a sequence () can be defined. Let pg(¢) be the path
such that abstract(pg(¢)) = n(£) and inseq(pg(f)) = B(£).
For each k£,0 < k < m + #n, let Uy be the random
variable with distribution given by Lap(d,.€,bx) and Zj be
denoting the k*" output of 1 on the input sequence 3(¢). Let
d = min(di,dj) and d’ = max(di,dj). Now, PI’Ob[Zj = Oj]
is given by Prob[U; > U] if ¢; is the guard insample > x,
otherwise it is given by Prob[U; < U;]. Using Lemma 5 and
similar reasoning as given earlier, we see that
, Cl//6
Prob[Z; = 0j] < r'e”¢(1+ 7)

for some constant r’. For each £/, 0 < ¢’ < £, using the same
reasoning as above with the random variables U; ¢y, Ujtprm,
we see that

d’e

2)

Since for any /1, /s such that 0 < ¢; < /5 < /¢, the random
variables U; ¢, n,Ujte,n are independent of Uiy ron, Ujyeon,
we see that

Prob[Z;1em = 0j+pn] < r’e_d,€(1 +

, d//
Prob{YE',0 < ' < £, Zyyim = 0] < e (145
Thus,
' , d"e
Prob[Vk,0 < k < m + n, Zy, = o] <1’ e 441 + 7)".

The LHS of the above equation is exactly Prle, pg(¢)].
Thus, for any ¢ > 0,
Prle, pa(£)] e
Prle, ps(0)] (14 %)
We claim that for any s > 0, 3¢, € such that
1 ed'e '
s
Now the above inequality holds if
6(d'lfs)e
(1+ %)
Choose £ so that d’'¢ > s. Since the denominator of the left
hand side term of the last inequality grows polynomially in e,

while its numerator grows exponentially in e, it is easy to see
that Jey > €, such that

d'e

).

1
VE26£7 25(

> eSE

> QTIE.

e(dlﬁfs)e

(1+ %)
The crucial observation we now make is that, thanks to output
determinism, for every input sequence « and output sequence
7, there is at most one path p, ., such that inseq(pa,) =
and outseq(pa,y) = . This observation combined with the
above inequality shows that A is not differentially private.

14

Ve > €, > 2r'.

Leaking pairs implies no privacy

Lemma 7. A DiPA A is not differentially private if it has a
leaking pair of cycles (C,C") such that C is reachable from
the initial state of A.

Proof. Thanks to Lemma 6, we can assume A does not have
a leaking cycle. Let A = (Q, X, T, ginit, X, P, 0). Assume that
A has a leaking pair of cycles (C, C”) such that C' is reachable
from ginit. Assume that C' is an L-cycle and C” is a G-cycle.
(The proof for the case when C' is a G-cycle and C” is an
L-cycle is similar but symmetric and is left out). Thanks to
our assumption that we do not have leaking cycles, it means
that both C, C’ do not have assignment transitions. We further
assume that C,C’ are distinct. If they are the same then it is
straightforward to prove that A is not differentially private,
using more or less the same proof. We also assume that all
the states in 4 are input states. The case when .4 has both
input and non-input states can also be proved using more or
less the same proof.

Let the lengths of C,C’ be ny,na, respectively. Now, for
any ¢ > 0, consider the following abstract path 7, in A starting
from ¢;ni¢ in which the cycles C, C” are repeated £ times each.
The path

Ne = qooo: " "quluy - GquOy """

QO

Qu4n£—10v+4n0—1 """
Ow+nol—19w+nqt

where the following guards are satisfied. For each k, let g
be the k-th transition of 7. and ¢ be the gaurd of the k-th
transition.

1) go = Ginit

2) QvOvqu+10v+1 """ Quin; —10v+ns —1qv+ny is the CyCIe C

3) tjpn, =t;forall j,v<j<v4+n({—1)

4) quOwqw+10w+1 * " Gu+ns—10w+ns —19w+ng is the Cy-

cle ¢’

5) tjtn, =t; forall j, w<j<w+ng(f—1)

6) t, is an assignment transition and V j,u < j < v + ni¥

and V 3,7 > w, t; is a non-assignment transition

7) for all j, v +mf < j < w, if t; is an assignment

transition then c; is the guard insample > x.

Observe that the last assignment transition before t,4,,¢ is
t., all assignment transitions from %,4,,¢ up to %, have
insample > x as their guard, the segment of the path from
ty, to t, + n1f — 1 is the part where cycle C' is repeated ¢
times and the segment of the path from ¢,, to t,, + nof — 1
is the part where cycle C is repeated ¢ times. Let dy and
g be such that P(qx) = (dg, pi) for each k. We have that
co = true and ¢ is an assignment transition.

Let v(¢) = o0g---Omtim—1 be the output sequence of
length m + ¢n such that o, = oy if o, € I, otherwise
(ok, —00,00). Once again, we let t; be the k-th
transition of 7, and c¢; be the guard of the k-th transition.
Now, given ¢ > 0, we define two neighboring input sequences
al) = ao- - amyen—1 and B(€) = bo---bmien—1 each of
length m + In.

Now, we define two adjacent input sequences «(f) =
ag -+ Qytnye—1 and B(€) = by -+ byinye—1 as follows. For

O —

all j,0 < j <wand forall j,v+nif < j < w,a; = b; = 0; for
all j, v <j <v+4nifand for all j, w < j <w+nol, if ¢; is
the guard insample > x then a; = £ —p;, b; = —1 —p;, if ¢;
is the guard insample < x then a; = f% — Wi, by = % — [
and if ¢; is true then a; = b; = 0. It is not difficult to
see that «(¢) and 3(¢) are adjacent. Let p,(¢) be the path
such that abstract(ps()) = 7(£) and inseq(pa(€)) = a(f).
Let ps(¢) be the path such that abstract(pg) = n(£) and
inseq(pp(€)) = B(L).

Let X;,U; be random variables with distributions given
by Lap(dje, a; + p;) and Lap(dje, bj + 1), respectively. Ob-
serve that ¢, is the last assignment transition in 7,. For
each j > u, for any given y € R, let g;(y), h;(y) be the
probabilities defined as follows: if c; is the guard insample > x
then g;(y) = Prob[X; > y] and h;(y) = Prob[U; > y; if
¢; is the guard insample < x then g;(y) = Prob[X; < y] and
hj(y) = Prob[U; < y]; if ¢; is true then g,(y) = h;(y) = 1.
It should be easy to see that, for all j, © < 5 < v and for all
J, v+nil < j <w,a; =b; and hence g;(y) = h;(y). Now,
we have the following claim.

Claim: For all j,v < j < v+ mn1¥, and for all j, w < j <
w + nok, it is the case that g;(y) > h;(y) for all y € R, and
the following additional inequalities hold.

1) If y <0 and ¢; is the guard insample < x then g;(y) >
exdich; i (y).

2) If y> 0 and ¢; is the guard insample > x then g, (y) >
ez djep, . ()

Proof. Observe that when ¢; = true then trivially g;(y) =
h;(y). Now, consider the case when y < —1.1f ¢; is the guard
insample > x then g;(y) = 1— %e*dfe(%’y) and hj(y) =1-—
Le~die(=3=¥)(this is so since a;+p; = & and bj+p; = —3)
; in this case 3 —y > —1 — y and hence g;(y) > h;(y). If
¢j is the guard insample < x then g;(y) = Se~d%c(-3~v)
and h;(y) = e %<7 from this we see that g;(y) >
d-eh ()

Now consider the case when y € [—3] If ¢; is the guard
insample > x then g;(y) =1 — e -4 (3 -v) and h;(y) =
%e‘die(“%); since g;(y) > 3 and hj(y) < %, we see that
gi(y) > hj(y). If ¢; is the guard insample < z then g;(y)
]__ = _d 6("/"") and h () = %e_dje(%_
we see that g;(y) > e2%h;(y).

Now consider the case when y >0 Ify < % and c; is
insample > x then g;(y) =1— 3 ’d'e(%*y) and h;(y) =
%e*dje(er%); observe that gj(y) > L and hj(y) < l —adse;
from this we get the desired inequality.

v); since g;(y) > 3,

If y < 3 and ¢; is insample < x then g;(y) = 1 —
e h<W) and hy(y) = 3 *Mé*w; since g;(y) > %
and h;(y) < 1, we see g;(y) hi(y). If y > 1 and ¢

is insample > x then g;(y) = ; 4 i€w=2) and h; iy) =
%e’die(’ﬁ%); from this we see that the desired inequality
follows easily. If y > % and ¢; is insample < x then
gily) =1—3e % je(y+3) and hi(y) = 1— Se-diclv-

it is easy to see that g;(y) > h;(y) D

Let S1(£) be the set of all j such that v < j < v+ ny¢ and
¢; is the guard insample < z. Let S3(¢) be the set of all j
such that w < j < w+ngl, and ¢; is the guard insample > x.
Since C' is an L-cycle and C’ is a G-cycle, we see that the
cardinalities of both S1(¢) and Sy(¢) are > (. Let dypin =
min{d; | j € S1(¢) U S>(¢)}. Clearly duyin > 0.

Let p,(¢) be the path such that abstract(p,(¢)) = 7(£) and
inseq(pa(£)) = a(f). For k < q + not, let po(€)||k (resp,
pa(0)||k) be the suffix of p,(€) (resp. po(€)||k) starting with
dk-

Since C’ is a G-cycle, from the above claim, we see that
Wy € R, Pripa(0)liw,y) > Prips(0)l|w,y], and Vy > 0,
Pripa(€)]|w,y] > e2dmnlePr[pg(¢)||w,y]. Using the above
property and the previous claim, together with the assumption
that Vj, v + nif < j < w, if t; is an assignment transition
then it’s guard is insample > x, the following can be proved
by downward induction on k, Vk, v + nif < k < w:
Vy € R Prlpa(O)l[ky] > Prlps(0)][k.y). and ¥y > 0,
Prlpa (O)|k, y] > ezmintPrlpg (€)| |k, y]-

Now, it should be easy to see that Vy € R,

Priy, pa (O)l10] = (T1o<j<otnie 95 W))PrLY, pa(O)][0 + nal]
Priy, ps(O[v] = (ITo<jcon,e i WPy, ps(E)][v +naf].

Observe that Vj, v < j < v+ ni/,
Vy<0: gi(y) > e%dmi'féhj(y% .
Prly, pa(O)]|5] = Prly, ps(€)]17]

9;(y) = h;(y),)
Prly, pa(0)|l7] > e29mintPry, ps(0)]|5].

From this we get the following:

Wy € R, Prly, pa(£)[[v] = ez Prly, ps(£)][v].

and
Yy > 0:

Using this we can show by the definition of probability of a
path that

Prle, pa(£)] > osdminle

—= >e2 .

Prle, pp(€)]

Since ¢ can be made arbitrarily large, we see that A is not
de-differentially private, for any d > 0. Hence A is not
differentially private. O

Disclosing cycles implies no privacy
Lemma 8. A DiPA A is not differentially private if it has a
reachable disclosing cycle.

Proof. Thanks to Lemma 6 and Lemma 7, we can assume A
does not have leaking cycles or leaking pairs. Assume that A
is well-formed, but there is a reachable disclosing cycle C in
A that has a transition whose output is insample. The proof
for the case when C has a transition whose output is insample’
is simpler and is left out. Now, if the transition of C' whose
output is insample has the guard true, then it can be shown
easily that repeating the cycle ¢ times incurs a privacy cost
linear in e, and hence A cannot be de-differentially private
for any d > 0. Thus, we consider more interesting case when
the guard is insample < x or insample > x.

We consider the case when C has a transition with output
insample. Since A is well-formed the cycle C' has no assign-
ment transitions. Let 7 = ¢o00q101 - * @j4m—10j+m—19j+m
fork =0,...,j+m—1 be an abstract path such that gy = ginjt,
gj = Qj+m, and the final m transitions of p is the abstract
cycle corresponding to C. Fix 0 < 7 < m be such that
0j4+r = insample. We assume that the guard of the (j + r)-th
transition is insample > x. The case when it is insample < x
is similar and left out. Further, let dy and uj be such that
P(qx) = (dg, pi) for each k.

Fix ¢ > 0. We define an abstract path 7, starting from
ginit by repeating the cycle C' (¢ times. Formally, 7, =
40009101 * * * @j4+tm—10j4+tm—1Gj+em Such that gx = qr_m
and o = o_,, for j + m < k < j + fm. Let t; be the k-th
transition of 7, and ¢ be the guard of the k-th transition. We
have that 04 ym+r = insample, for all n such that 0 <n < /.

Now we construct two input sequences «(f) =
ao - @jqrem—1 and B(€) = by - - bjyem—1 as follows. We take
ap = —py, for all k£,0 < k < j + ¢m such that ¢, is an input
transition, otherwise we take ay = 7. We take by, = —puy —1 if
k = j+nm+r for some 0 < n < £ and by, = ay, otherwise. Let

agp,00 ai,01 Aj+em—1,0j+4+Lm—1
p(ﬁ) =qo ——> q1 — Q2 j4im—1
qj+em be the path such that

e 1) = abstract(p({)),

o inseq(p(¥)) = a(f), and

e all k,1) op = oy if o € T, ii) op = (0k,0,00) if

k=j74+mnm-+r for some 0 < n < ¢, and iii) o =
(oK, —00,00) otherwise.

bo,00 b1,01

p'(0) = % — 7
G2 Qj+om—1 M) Gj+em be the path that
is equivalent to p and inseq(p’(£)) = B(¢).

Let p(0)||k and p'(£)||k be the suffixes of execu-
tions p(¢) and p'(¢) starting from state g. Using back-
ward induction, we can easily show that for each =z,
Prlxzo, p(£)||k], Pr[zo, p'(£)||k] are non-zero and that

Prlzo, p(0)||K] = e# B Przo, p' (€)]|K]

Let

where #(k) is the number of indices k; such that k < k; <
j+mf—1and k; = j+nm +r for some 0 < n < £. Thus,

Prle, p(6)] = ¢+ “Prle, o (0)]

Now, ¢ is arbitrary and hence for every d > 0, there is
an ¢ such that Prle, p(¢)] > e%Prle, p’(¢)]. Hence A is not
differentially private. O

Privacy violating paths implies no privacy

Lemma 9. A DiPA A is not differentially private if it has a
reachable privacy violating path.

Proof. Thanks to Lemma 6, Lemma 8 and Lemma 7, we can
assume A does not have leaking cycles, disclosing cycles or
leaking pairs. We give the proof for one of the cases of a
privacy violating path, where the path starts with a transition
whose guard is insample < x and which lies on an L-cycle
C which is followed by an AG-path ending in a transition

with guard insample > x and whose output is insample. (The
proofs for other cases of the privacy violating path are similar
and are leftout.) Since A is well-formed, the cycle C' does not
have an assignment transition.

Fix ¢ > 0. Consider an abstract path 7n(¢) =
40004101 * * * Gn—10n—1qn Of length n from the initial state
ginit Such that n(¢) contains the cycle C' repeated ¢ times, and
upon exiting the cycle continues onto the AG-path p such that
the last transition of the AG-path has guard insample > x
and outputs insample. Fix a transition of C' with guard
insample < x, and let ki, ko,...,ky be the indices where
this transition occurs in n(¢). Let P(qx) = (dg,). Next,

we construct two input sequences a(f) = ag---a, and
B(£) = by - -- by, of length n as follows. If the kth transition
of n(¢) is a non-input transition then ay = by = 7. If
k € {ki,ka,...,ke} then a, = —puy and by, = —py + 1. For
all other ks, ap = by = —ug. Let p(f) = qo 20:90, gy 212

Aj4+em—1,05+Lm—1
—>

q2 " qj+em—1 ¢j+¢m be the path such that

o 1) = abstract(p(¥)),
e inseq(p(¥)) = a(¢), and

o for all k, 1) O = Ok ikaEF, 11) ok:(ok,—oo,O) if
k =n, and iii) oy, = (0%, —00, 00) otherwise.
Let p/(0) _ . M) @ b1,01

bjtem—1,0546m—1

g2+ Qjrem—1 Gj+em ibe the path that
is equivalent to p and inseq(p’(£)) = B(¢).

Please note that in p(¢), p'({), the last output is a non-
positive number. As the path p is also an AG-path, this implies
that stored value of x during the ¢ executions of C' is also a
non-positive number. Combined with the fact that C' is an L-
cycle and the construction of p(£), p’(€), it can be shown that

Prle, p(€)] = e€dkl€Pr[6’ pl(g)]‘

As in the case of disclosing cycle (See Lemma 8), we can
conclude that A is not differentially private. O

APPENDIX C
SUFFICIENCY OF WELL-FORMEDNESS

We shall now show that if the DiPA A is well-formed then
A is differentially private, thus establishing the “if” part of
Theorem 2. Please note that it suffices to prove Lemma 3. In
order to manage complexity, we shall first prove the Lemma
for the case that A outputs only elements of the discrete set I
(See Lemma 11). Then we shall tackle the case of all outputs
(See Lemma 13). Please note that we shall use the notions of
path suffixes and abstract paths introduced in Appendix A.

Before we proceed, we need a technical lemma.

Lemma 10. Let f and g; for i = 1,...
Sunctions from R to R, ie., f(y),9i(y) > 0 for all i,y. For
t=1,...,k let 0; € [—1,1]. Let zg,z1 € RU {o0, —o0},
be such that xo < 1. Then, the following inequalities are
satisfied for all k > 0. The empty products (the case when
k = 0) in these inequalities are taken be 1.

,k be non-negative

ffol f(@) Hf:1 I gz y — 0;)dydx >
fai]ljf flz—

zlf gz
zlf

gzy 9)dyd:v >
fI() 1 f(1 1f—

Proof We prove the inequality (1) as follows. For each ¢ =
, k, by substituting z = y—0;, we get f gi(y—0;)dy =
fz 6, gz()dz. Since 0; € [1 ,1] and g; is a positive function,
we get [g, 9i(2)dz > :z:+1 gi(2z)dz. By rewriting the left
hand side of the inequality (1) as specified above and by
substituting, ©v = = + 1, we get the right hand side of the
inequality (1) where the outer integral is over the variable w.
By replacing u by x and z by y, we get the right hand side
of the inequality.
We prove the inequality (2) as follows. As before, for each
i = 1,...,k, we rewrite the integral [~ __ " gy — 0)dy as

ff;a ()dz and then observe that this is > [* " g;(2)dz.
Substituting v = x — 1, and then replacing u by z later we
get the inequality (2). O

y)dy dx

Sz
Zo

y)dy dx

DiP automata with Finite Outputs

Lemma 11. Let A = (Q, %, T, ginit, X, P, 6) be a well-formed
DiPA with finite outputs. Let p be a path of length n > 0 such
that the initial transition (i.e. the Oth transition), to, of p is an
assignment transition. Let ¢y be the guard of to. Let p' be a
path that is equivalent to p such that inseq(p’) is a neighbor
of inseq(p). Then the following properties hold for all zy € R.

1) If the guard cq is insample > x, and the first cycle
transition in p is a G-cycle transition and no assignment
transition with guard insample < x appears before it,
then

Przo, p'] > e " PPrlzy + 1, p].

2) If the guard c is insample > x and one of the following
holds: (a) p has no cycle transitions, (b) the first cycle
transition in p is a G-cycle transition and an assignment
transition with guard insample < x appears before it,
(c) the first cycle transition in p is an L-cycle transition,
then

Pr(zo,p'] > ¢ —wi(p)e “Pr[zo — 1, p].

3) If the guard cqy is insample < x and the first cycle
transition in p is a L-cycle transition and no assignment
transition with guard insample > x appears before it,
then

Prlzo, p'] > e " PPr[zg — 1, p].

4) If the guard cy is insample < x and one of the following
holds: (a) p has no cycle transitions, (b) the first cycle
transition in p is a L-cycle transition and an assignment
transition with guard insample > x appears before it,
(c) the first cycle transition in p is a G-cycle transition,
then

Przo, p'] > e " PPrlzg + 1, pl.

5) If the guard cy is
e " P Pr[g, p].

true, then Pr[zg,p] >

An—1,0n—1

Proof. Let p = qo M@ Mﬂjz'“%—l —— (qn

brn—1,0n—1

/ bo,00 b1,01
and p' = q — @1 —> @2 qn—1 ——— qn. Let
to,...,tn—1 be the transitions of p and let cq,...,c,—1 be
their respective guards. For each k < n, let di, ur be such
that P(qx) = (dg, pux). Recall that, for any k, p||k denotes
the suffix of p starting from g;. We assume that there are no
cycle transitions that are assignments. This is because if there
is a cycle with an assignment then the guards on all other
transitions must be true. Hence, we can never exit the cycle.
Further, it is easy to see that this cycle has the same “behavior”
in both p and p'.
For each k, such that 0 < k < n, let g, gj., 0% be functions
of a single variable given by

— —)
%e drely—px|

W) %e’dke‘y’“k’”k‘ t; is an input transition
9k\y) = .
otherwise

t; is an input transition

Me*dkﬁ\y*bkfuﬂ
9%W) =13 4
dye otherwise

die ,—diely—pg]
2 e

bk—ak
0 =

Observe that, for each k > 0, ¢;.(y) = gx(y — 0%). Since
10k| < 1, we see that g (y) > e~ %<gx(y), for all y € R.

We prove the lemma by induction on the number of assign-
ment transitions in p.

Base Case: In the base case, p has one assignment
transition which is tg. Let S7 and S5 be the sets of k& > 0 such
that ¢ is insample > x and ¢ is insample < x, respectively.
Now, assume the condition of statement (1) of the Lemma
is satisfied. Observe that S; includes all G-cycle transitions
whose guard is insample > x. Observe that, since 4 is well-
formed, for all k& € Ss, ¢, does not lie on a cycle and hence
is a critical transition. Similarly ¢ is also a critical transition.
Now, we see that

and
t; is an input transition

otherwise.

Prian.] = | :Of(fv) I1 [gy

keS,

where f(z) = g{(x) H / gr.(y)dy. Now, substituting
keSy Y

9, (y) = gx(y — 6x) (for k € Sy) in the above equation and

using inequality (1) of Lemma 10, we see that

Prieas)> [fa-0] [awdyde.
zo+1 kesy 7T
Observe that

fa=1) =gla—+00) TT [onty -y

keSy ¥

Now, by introducing a new variable z such that z =y + 1,
we see that

rz—1 T
/ gr(y — 0r)dy :/

From this, it is easy to see that

gr(z — (14 0k))dz.

flz = 1) 2 20+ Enes, Weg (2)

Observe that wt(p) > 2(do+) g, dk)- Putting all the above
observations together, we get

Pr[l'o, pl]
s e [i

o+1

H /;Qk(y)dy H /:Cgk(y)dy.

k€S2 ¥ keS,

Observe that the right hand side of the above inequality is
e "tP)Przq + 1, p|. Property (1) of the lemma follows for
the base case from this observation.

Now, we prove the base case for property (2). Assume the
condition of (2a) is satisfied, i.e., there are no cycle transitions
in p. Now, we see that

PI’[.I'07P/]

-/ :ogsm 1/ dwaw]l [s

kesS, keSs ¥ T

By introducing new variables u,v,w such u =z —1, v =
y—1, w=2z—1, we get

Prin] = [gt 0 IT [ohte

0= keSy

u
+ 1)dv H/ gr(w + 1)dw du.
keSy ¥ T

Observing that, for each k > 0, g}, (u+1) > e~2%<g; (u) and
ti is a critical transition, we get the inequality of property (2).

Now observe that condition of (2b) can not be satisfied as
tp is the only assignment transition in p. Now, assume the
condition of (2c¢) is satisfied. Now, observe that, for all k¥ € Sy,
t;. 1s a critical transition. As before, we see that

Prian.] = | :Of(:c) 1/ swayas

keSy

where f(z) = g{(x) H / 95 (y)dy. Now, using inequal-
keS, ”*
ity (2) of Lemma 10, we 1see that

o

oo)= [a0 IT [oty e

k€S ¥
Now, observe that

fa+1) =gole =@ -) I [

o0
gk (y — Or)dy.
k€S, z+1

Introducing a new variable z and setting z = y — 1, we see
that

flz+1)

= go(z — (6 — 1)) H/ gr(z = (0 —1))dz

k€ES1

and

72(d0+2k65

flx+1) >

H/gk

kES1

From this and the above inequality, it is easily seen that
Prlzg, p/] > e~ 2ot 2nes; W)epripg — 1,).

From this we see that the inequality of property (2) holds.

The proof for the base case of Properties (3) and (4) is
symmetric to those of properties (1) and (2) and is left out. To
prove property (5) for the base case, we see that the proof is
similar to those of properties (1) and (3) depending on whether
G-cycle or L-cycle transitions appear. There are two minor
differences. The first difference is that if the first transition is
a non-input transition then 6y = 0 and hence it only incurs
a cost of dy and not 2dy. The second difference is that the
lower limit of the outer integral will be —oco in the former
case, while the upper limit of the outer integral being oo in
the latter case. In either case, it is straightforward to see that
property (5) holds.

Inductive Step: Now, we prove the inductive step as
follows. Assume that all the properties hold when p has
£ > 0 assignments. Now, consider the case when p has £+ 1
assignments. Let ¢;, for ¢ > 0, be the second assignment
transition in p. Let Sy (resp., S3) be the set of k, 0 < k < 1,
such that ¢ is insample > x (resp., insample < x).

Consider the case when ¢y is insample > x. Now, we
consider two sub-cases. We first consider the sub-case when
there is no cycle transitions before t;. We have Pr[zg, p'] =
fTo I (x)Pr[p’|]z, x]dx where

f'(x H/gkdyn/gk

keSy kESa

Applying the inductive hypothesis for the suffix plls,
get an inequality involving Pr[p’||¢, z] and Pr[z + 1, pli], or
Pr[p’||¢,z — 1], or Prlz,pl||i], based on which of the five
properties of the lemma are satisfied by pl||i. Suppose the
condition of property (1) is satisfied by pl||i, by using the
inductive hypothesis, we get Pr[zq, p'] > j;: f'(z)h(x)dx,
where h(z) = e 2%t0llDePr[z + 1, p||i]. Now, by taking
f(z) = f'(x)h(x), using inequality (1) of Lemma 10 and
by taking k£ = 0 in that inequality, we get property (1) for
the path p using the same simplification/reasoning used in the
base case and by observing that
H / gr(y

Prlzo + 1, p] :/
‘TO+1 keS;

11 / g1 () dyPr[z, pllilde

kES>

We can similarly prove the inductive step when the suffix p||i
satisfies the other properties (i.e., 2 through 5) of the lemma.

Now consider the sub-case when a cycle transition appears
before t;. Assume that the cycle transitions are G-cycle
transitions. If ¢; is also insample > x, then the suffix p||i
can satisfy any of the conditions of the first two properties
of the lemma; In this situation, let f(z) = f'(x)h(zx)
where f'(z) = go(x)[]es, [o 91 (y)dy and h(z) =
e~ 2"tPllDePy[z 41, p||i]. Observe that, if p||i satisfies the con-
dition of property (1) then h(x) is the RHS of the inequality,
we get, by applying the inductive hypothesis to p||i. If p||i
satisfies the condition of property (2) of the lemma then, by
applying the inductive hypothesis to p||i, we get Pr[p’||i, 2] >
e~ 2WPllDepy[z—1, p||i]. Since, Prlz—1, p||i] > Pr[z+1, p||i],
we see that Pr[p’||i,x] > 6*2Wt(P”')5Pr[$ +1 p||] Now,
we have Prlzo,p'] > [™ f'(x)h(2) [Tes, [, 9 (2)dzd.
Applying the inequahty (1) of Lemma 10, we get the des1red
result for the inductive step. On the other hand, if ¢; is
insample < x then the suffix p||i can not satisfy the condition
of property (3) of the lemma due to well-formedness of A;
however it can satisfy the condition of property (4). In this
sub-case also, we can get the result for the induction case as
above by using the inductive hypothesis for p||i and using
similar reasoning as in the base case and applying the first
inequality of Lemma 10.

Now consider the situation where the cycle transitions
appearing before ¢; are L-cycle transitions. Now, we apply
inequality (2) of Lemma 10 to prove that property (2) of
the lemma is satisfied by p. To do this, we define f(z) =
f/(@)h(x) where f(x) = g4(x)]les, [, 9r(y)dy and
h(z) = e~ 2tllDepr[z—1, p||i]. Next, applying the induction
hypothesis to p||i, we show that

/ f(a

Since A is well-formed, p||i cannot satisfy the condition of
property (1) of the lemma. If pl||i satisfies the condition of
property (2) or that of property (3) then, the above inequality
follows directly from the induction hypothesis; If p||¢ satisfies
the condition of property (4), then the above inequality fol-
lows from the induction hypothesis and the observation that
Prlx + 1, p||i] > Prlz — 1, p||i]; If p|| satisfies the condition
of property (5) then the above inequality follows from the
induction hypothesis and the observation that Pr[z, p||i] =
Prlz — 1, p||i] as Pr[x, p||7] is independent of x. Rewriting
the above inequality, we get

/ f(a

Now, using the inequality (2) of Lemma 10, and using sim-
plifications and reasoning as in the base cases, we see that
property (2) of the lemma is satisfied by p.

The proof for the inductive step for the case when ¢ is
insample < x is symmetric. For the case, when ¢y is true,
the proof will be on the same lines excepting that if ¢y is a

r[zo, p H / g1 (y)dydzx.

keSs

l'(),

H/ 9ie(y — Or)d

keS2

non-input transition then it incurs a cost of dy only and the
limits of the outer integrals are —oo and oo. O

DiP automata with Finite and Infinite Qutputs

We shall now show that if a DiPA A is well-formed then it
is differentially private. For simplicity, we will assume that all
states are input states. The case when the A includes non-input
states can be dealt with similarly. Finally, we also assume that
there are no transitions that output the value of insample’. In
case there are transitions from insample’, Lemma 13 can be
proved by appealing to the composition theorem of differential
privacy (See Theorem 3.14 of [2].)

The following proposition follows directly from the defini-
tion of well-formed DiP automata.

Proposition 12. Let A be a well-formed DiPA and p be a
path of A starting from a reachable state. Then p satisfies the
following properties.

o If p starts with an assignment transition to and has no
further assignment transitions, and has a G-cycle or an
L-cycle transition then the output of ty is from T.

o If p has no assignment transitions and has a G-cycle
(resp., L-cycle) transition then the output of every transi-
tion in p, with guard insample < x (resp., insample > x),
is from T.

o If p starts with an L-cycle (resp., G-cycle) transition and
is an AG-path (resp., AL-path) then the output of every
transition, with guard insample > x (resp., insample <
x), is from I

o If pis an AG-path (resp., AL-path) ending with a G-cycle
(resp., L-cycle) then the output of every transition, with
guard insample < x (resp., insample > x) , is from I

Please note that Lemma 3 is an immediate consequence of
the following lemma.

Lemma 13. Let A = (Q, X, T, ¢init, X, P,9) be a well-formed
DiPA and p be a path of length n > 0 Let ty be the initial
transition, i.e., the Oth transition of p, co be its guard and og
be its output. Let ty be an assignment transition, and let p' be
a path that is equivalent to p such that inseq(p') is a neighbor
of inseq(p). Then the following properties hold for all x¢ € R.
1) If the guard cy is insample > x, and the first cycle
transition in p is a G-cycle transition and no assignment
transition with guard insample < x appears before it,

oo €T and

Przo, p'] = e " PPrlzg + 1, p].

2) If the guard cq is insample > x and either, (a) p has no
cycle transitions; or (b) the first cycle transition in p is
a G-cycle transition and an assignment transition with
guard insample < x appears before it; or (c) the first
cycle transition in p is an L-cycle transition, then

Pr['r(b pl] > 67Wt(p)epr[$0a p} .

Furthermore, if the output of every transition, whose
guard is insample > x, is from T, until the first

assignment transition whose guard is insample < x or
until the end of p, then

Prlzo, p'] > e " PPr[zg — 1, p].

3) If the guard cy is insample < x and the first cycle
transition in p is a L-cycle transition and no assignment
transition with guard insample > x appears before it,
then og € I' and

Pr[zo, p'] > e " PPr[zy — 1, pl.

4) If the guard cy is insample < x, and either (a) If p has
no cycle transitions; or (b) The first cycle transition in
p is an L-cycle transition and an assignment transition
with guard insample > x appears before it; or (c) the
first cycle transition in p is a G-cycle transition, then

Pr['r()v pl] > 67Wt(p)6Pr[‘r07 p]

Furthermore, if the output of every transition, whose
guard is insample < x, is from T, until the first
assignment transition whose guard is insample > x or
until the end of p, then

Pr[zo, p'] > e " PPr[zg + 1, pl.

5) If the guard cy is
e W P Pr g, p].

true, then Prl[zg,p] >

An—1,0n—1

Proof. Let p = qo Mm mﬂh'“%—l ——— (n

b 5 t) b — sOn—
and o' = go 2% 1 =% g2 quo1 —— gy Let
to,...,tn—1 be the transitions of p and let cq,...,c,—1 be

their respective guards. For each k < n, let di, ur be such
that P(qi) = (d, k). Recall that, for any k, p||k denotes the
suffix of p starting from gj. Once again, we assume that there
are no cycle transitions that are assignments.

We show, how the proof of Lemma 11 can be modified to
prove this Lemma. First, observe that properties (1), (3) and (5)
of the Lemma are identical to the corresponding properties of
the Lemma 11. When o; € T, for all 7,0 < ¢ < n, the second
parts of the properties (2) and (4) subsume their first parts,
and these two properties become identical to properties (2)
and (4) of the Lemma 11, respectively. For each 7,0 <7 < n,
let (u;,v;) be such that o; = (insample,u;,v;) if o; ¢ T,
otherwise it is the interval (—oo,00). Let gx(y), g.(y) be the
functions as defined in the proof of Lemma 11, and 6, =
b —a for 0 < k < n.

As before, we prove the Lemma by induction on the number
of assignment transitions in p. In the base case, p has one
assignment transition which is ¢g. Let S; and Ss be the sets
of k > 0 such that ¢, is insample > z and ¢y, is insample < z,
respectively.

Now, assume the condition of (1) is satisfied. Observe that
S1 includes all G-cycle transitions whose guard is insample >
x. Let S} be the set of kK € S; such that ¢; is a G-cycle
transition and Sy = S; \ S7. Observe that, using the fact
that A is well-formed and using Proposition 12, we see the
following hold: (i) for all k£ € S} U Sy, o € T (ii) o is a
critical transition and o € T'; (iii) for all £ € SyUSY, ¢, does

not lie on a cycle and hence is a critical transition. Note that,
for any k € SY, o, may be insample. Now, we see that

/f H/gk \dy dz

kes]

.130,

where

e H/gkdyﬂ/

k€S, kesy Y max(z,uk)

g1 (2)dz.

Now, substituting ¢, (y) = gr(y — 0r) (for k € S) in the
above equation and using inequality (1) of Lemma 10, we see

that
PI’[.’I}(), Pl] > /
xo+1

Now, using the same argument as in the proof of Lemma

11, and observing that, for k € SY, fIZ’;X(J . uk)gk(2)dz >

f;i’;x(z) I (2)dz, it is easy to see that

flx—1) H/ gk (y)dy dz.

keS,

e—Q(qu +Zkes"u52 qu)E O(I‘)

H / ar(y
k€S>
H /r;w.x x uk Z.

kes?y

fle—=1) >

Putting all the above observations together, we see that prop-
erty (1) holds.

Now, we prove the base case for property (2). Assume the
condition of (2a) is satisfied, i.e., there are no cycle transitions
in p. Now, we see that

Vo Vi
Prlzo, p'] = / g |1 / 91 (y)dy
max(xo,uo) keS, max(z,uk)
min(z, Uk)
H / z)dz dx.
keSs

It is fairly straightforward to see that Pr[zg,p'] >
e~ P)Pr[z, p] since g} (y) > e largy(y), for all y € R,
0 < k < n. From this, we see that the first part of property(2)
holds. To see that the second part of property (2) holds, assume
that oy € T', and for all £ € Sy, 0x € I'. This means that

Pr(zo, p']

_/ZO

Now introducing new variables w,y’ and setting w = z — 1
and y' =y — 1, we see that

Prlzo,p/] = / 96(w+1)H/ 9 (v +1)dy’
x 1

Ch k651

mm w+1 vk
H / gr(2)dz da.

kES>

min(z, vk)
z)dzdx.

go(x H/gk dyH/

k€St keSs

Now, observe that, for k € Ss, fmm(wﬂ gt (2)dz >
f;’:ln(w) gt (2)dz. Using this we get,

Prico,p] > / gw+1) [/ gh(y+1)dy/
xo—1

0 keSt

min(w,vg)
I/,

keSs

2)dz dx.

Now, the second part of property (2), follows from the above
inequality and the reasoning employed earlier.

Now, condition of (2b) can not be satisfied as ¢ is the only
assignment transition in p. Now, assume the condition of (2c)
is satisfied. Let S} be the set of all k& € Sy such that ¢ is
an L-cycle transition and S5 = S5 \ S5. Now, using the fact
that A4 is well-formed and using Proposition 12 we observe
that the following hold: (i) for all k € S; U SY, ty, is a critical
transition; (ii) tg is a critical transition and og € I'; (iii) for
all k € S1USY, o € T. Now, we see that that

/f H/gk)y d

keS)

xOv

where

min(z vk)

fla H/gk dyH/ y)dy.

kesSy keSy
Now, using inequality (2) of Lemma 10, we see that
o0
Prlzo, p'] > / (x+1) H / gk (y)dy dx.
To—1 k:GS/

Now, observe that

kesl
min(z+1,vx))
11 / 9k (y)dy.
Introducing a new variable z and setting z = y — 1, we see
that
kesl
min(z+1,v))
11 / 9k (y)dy
kesy v vk
and
f(l'—f— 1) Z e 2<dq0+ZkESIUS” qk)F 0(

min(z, vk)

H/gk dZH/

keSy kesSy

From this and the above inequality, it is easily seen that
Pr[zo, p'] > e "(P)Pr[zy — 1, p]. From this we see that the
inequalities of both parts of property (2) hold.

As before, the proof for the base case of Properties (3) and
(4) is symmetric to those of properties (1) and (2) and is left
out. Property (5) is proved as in the case of Lemma 11.

Now, we prove the inductive step as follows. Assume
that all the properties hold when p has ¢ > 0 assignments.
Now, consider the case when p has ¢ + 1 assignments.
Let ¢;, for © > 0, be the second assignment transition in
p. Let S1 (resp., S2) be the set of k, 0 < k < 4, such
that ¢ is insample > x (resp., insample < x). Now,
consider the case when ¢y is insample > x. Now, we
consider two sub-cases. We first consider the sub-case
when there is no cycle transitions before ¢;. We have
Prizo,p'] = [° "(z)Pr[x, p'||i]dx where f'(z)

max(zo,ug)

() Hk€S1 fmdx(w ug) gk()dy Hk65’2 f»;:m(wﬂvk) g;c(y)dy
Applymg the inductive hypothesis for the suffix pl||i, we
get an inequality involving Pr[z,p’||i] and Pr[z + 1, p||d],
or Pr[z — 1, p||i], or Pr[z, pl||i], based on which of the five
properties of the Lemma are satisfied by p||i. Suppose the
condition of property (1) is satisfied by pl||i. Let j > i be
the smallest integer such that t; is a G-cycle transition. Now,
since plj, the prefix of p, is an AG-path, using the fact that
A is well-formed and using Proposition 12, it is easy to
see that oy € T, and for all &k € S5, o € I'. By using the
inductive hypothesis, we get Pr[zg, p/] > f f(z)h(x)dz
where h(x) = ’Wt(p‘“)ePr[:c + 1 p|| . Because
of the previous observation, we see that f'(z) =

()ersl fma,x(g, uk)gk()dka682 ff /()dy Now,
observe that, for each k& € Si, f“’;x(r 1uk)gk(y)dy >

m.

f:}’;x(m k) g5, (y)dy. From this, using the reasoning employed
in the base case, we see that

Pla—1) > &2t Srenus i ()
Uk

II / gu(y)dy
max(z,uk)

keS H /z

keSy Y T

ar(y)dy.

Now, by taking f(z) = f'(z)h(x), using inequality (1) of
Lemma 10 and by taking k£ = 0 in that inequality, we get prop-
erty (1) for the path p using the same simplification/reasoning
used in the base case and by observing that

o0 Vg

Gooot) = [w@ Il [s
xo+1 keS; max(xz,uk)

11 / g (y)dyPrlz, p||i]dx

k€S2

We can similarly prove the inductive step when the suffix p||i
satisfies the other properties (i.e., 2 through 5) of the Lemma.
Now consider the sub-case when a cycle transition appears
before t;. Assume that the cycle transitions are G-cycle
transitions. Let S] be the set of k € Sy such that ¢ is a
G-cycle transition and S7 = Sp '\ 5. Since A is well-formed,
using Proposition 12, we see that oy € I', and for every
keSluSQ,okeF Letf() 1 (x)h(z) where f'(z) =
Hk€5'2 f— gk- dy erS” fmax(x up) gk()dy and
h(x) = e WelDepr[z 4- 1, p||i]. If ¢; is also insample > x,
then the suffix p||¢ can satisfy any of the conditions of the

first two properties of the Lemma; In this situation, observe
that, if p||¢ satisfies the condition of property (1) then h(z)
is the right handside of the inequality, we get, by applying
the inductive hypothesis to pl|i; If p||é satisfies the condition
of property (2) of the Lemma then, by applying the inductive
hypothesis to pl||i, we get Prlxz, p'||i] > e "tPlDePr]a, p||i];
since, Pr[z,p|l]] > Prlz 4+ 1,p|li], we see that
Prz,p'|li] > e "tllDepPrlz + 1,p||i]. Now, assume
that ¢; is insample < x. Now, since A is well-formed, it is
easy to see that the condition of property (3) of the Lemma
cannot be satisfied. Assume that pl||i satisfies the condition
of property (4) of the Lemma. Let &’ be the smallest integer
such that, ¢ < k' < n, and either ¥’ = n, or ¢, is an
assignment transition and cys is insample > x. Now, we
see that the path starting with ¢; and ending with ¢z _; is
an AL-path. Using Proposition 12 and the fact that A is
well-formed, we see that, for all j,7 < 5 < k', such that
c; is insample < x, o; € I'. Now, applying the induction
hypothesis for p||i, using the second part of property (4),
we get Pr[z,p/|li] > e "tClDepr[z 4 1,p|[i]. Now, if
c; 1s true, applying the induction hypothesis and using
property (5), we see that Pr[z, p/||i] > e "tPlDPr[z, p||i];
since Prlx,p||d] is independent of x, we see that
Priz, p'||li] > e "PlDePr[z + 1, p||i]. Thus, irrespective
of what guard ¢; is, we have Pr[z ol > h() Now,
we have Prlzo,p'] > [f'(x) [Ties; 1.5 gp(2)dzd.
Applying the inequahty (1) of Lemma 10, we get Pr[azo, 1 >
Jovid F'(@=1Dh(z 1) [Ties; [.° gi(2)dzdz. Observe that,
for k< SU’ fri)l);x(;c 1uk)gk()dy > fmux%x uk)gk()dy
Using this observation and the reasoning/simp ification as in
the base case, we see that property (1) is satisfied by p.
Now consider the situation where the cycle transitions
appearing before ¢; are L-cycle transitions. Now, we apply
inequality (2) of Lemma 10 to prove that property (2) of the
Lemma is satisfied by p. Let S} be the set of k € Sy such
that ¢5, is an L-cycle transition and S5 = S5 \ S}. Since A is
well-formed, using Proposition 12, we see that oy € I', and for
every k € S1US), o € T Now let f(z) = f’(x)hg x) where

F'@) = gb(@) ies, 17 b @)y sy f™ "™ gh(2)dz
and h(z) = e Wt(p”’)EPr[x — 1, p|li]. Now, applying the
induction hypothes1s to p||é, we show that

/f H/ Gh(y)dydz.

kes)
Since A is well-formed p||i cannot satisfy the condition of
property (1). Now, consider the case when p||i satisfies the
condition of property (2). Let &’ be the smallest integer such
that, ¢ < k’ < n, and either ¥’ = n or ¢}, is an assignment
transition and ¢ is insample < x. Now, we see that the path
starting with ¢; and ending with t;/_; is a AG-path. From
this observation, using the fact that A is well-formed and
using Proposition 12, we see that, for all j,i < j < K/,
such that c¢; is insample > x, o; € I'. Now, applying
the induction hypothesis for pl|i, using the second part of
property (2), we get Pr[z, p/|[i] > e "tlldePr[z — 1, p||i].

an

If p||i satisfies property (3), then we directly see from the
induction hypothesis Pr[z, p/||i] > e "PlID<Pr[z — 1, p||i]. T
p||i satisfies property(4), we get the above inequality, using the
first part of the induction hypothesis and the observation that
Prlz, p||i] > Pr[z — 1, p||7]. If pl||i satisfies property (5) then,
we get the above inequality from the induction hypothesis and
the observation that Pr[z, p||é] is independent of z. In all the
above cases, it is easy to see,

Prloo.)2 [@) [T [only—o0)ay

keS}

Now, using the inequality (2) of Lemma 10, and ob-

serving that, for all k € S, ﬁzin(wﬂ’vk)g;(z)dz >
fmin(wyvk) /(

w 95.(#)dz, and using simplifications and reasoning
as in the base cases, we see that property (2) of the Lemma
is satisfied by p.

O

