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Abstract—We introduce an automata model for describing
interesting classes of differential privacy mechanisms/algorithms
that include known mechanisms from the literature. These
automata can model algorithms whose inputs can be an un-
bounded sequence of real-valued query answers. We consider the
problem of checking whether there exists a constant d such that
the algorithm described by these automata are dε-differentially
private for all positive values of the privacy budget parameter
ε. We show that this problem can be decided in time linear
in the automaton’s size by identifying a necessary and sufficient
condition on the underlying graph of the automaton. This paper’s
results are the first decidability results known for algorithms with
an unbounded number of query answers taking values from the
set of reals.

I. INTRODUCTION

Differential privacy [1], [2] is a technique developed to

preserve individuals’ privacy while performing statistical com-

putations on databases containing private information. The

differential privacy framework trades accuracy for privacy.

In the framework, a differential privacy mechanism mediates

data exchange between the database and data analyst. When

the mechanism returns the answer to an analyst’s query, it

introduces random noise in the query result before forwarding

it to the analyst. The mechanism is parameterized by a privacy

budget parameter ε, and the noise added depends on this

parameter. The privacy guarantees are also stated in terms of

ε — a mechanism is said to be dε-differentially private if

the probability of observing a given output on two adjacent

databases differ only up-to a factor of edε, where d > 0 is

a constant and e is the Euler’s constant. Setting ε allows the

database manager to choose the trade-off between accuracy

and privacy. Intuitively, smaller values of ε imply improved

privacy guarantees but at the cost of increased inaccuracy in

the observed output.

Designing correct differential privacy mechanisms is subtle

and error-prone, and even relatively minor tweaks to correct

mechanisms can lead to loss of privacy as evidenced by the

Sparse Vector Technique (SVT) [3], [4]. This difficulty has

generated interest in formally verifying the privacy claims of

differential privacy mechanisms. Verifying differential privacy

is challenging for several reasons. First, the behavior of a

privacy mechanism changes with ε as the random noise em-

ployed by the mechanism is parameterized by ε. The privacy

guarantees are usually required to hold for all ε > 0 to allow a

manager to choose the trade-off between privacy and accuracy.

Thus, the verification problem is inherently parametric. Sec-

ondly, the random noise employed by a mechanism typically

samples from the continuous (or discrete) Laplace distribution.

Thus, verification involves the analysis of an infinite-state

stochastic model, even when inputs are constrained to come

from a finite set. Finally, the mechanisms may need to process

a potentially unbounded sequence of query answers, each of

which may take any real value. Verification of differential

privacy is known to be undecidable even when the mechanisms

operate on a bounded sequence of query answers, each of

which takes value from a finite domain [5].

Three major directions of research seek to circumvent this

challenge. The first direction aims to develop automated and

semi-automated techniques to construct privacy proofs [6]–

[15]. These techniques are not guaranteed to be complete

and may fail to construct a proof even if the mechanism is

differentially private. The second line of investigation develops

automated techniques to search for privacy violations [16],

[17] and searches amongst a bounded sequence of inputs. The

third direction explores decision procedures for verifying dif-

ferential privacy [5]. To circumvent the undecidability result,

[5] considers mechanisms that sample from Laplacians only

a bounded number of times and process (only) a bounded

sequence of query answers, each of which is finite valued.

Outputs of these mechanisms are also constrained to take

values from a finite domain. The decision procedure developed

in [5] converts the problem of checking differential privacy to

checking the validity of first-order formulas in the theory of

Reals with the exponential function. While the decidability of

validity for the theory of Reals with exponential function is

a longstanding open problem, formulas obtained in [5] fall

into the decidable fragment identified by [18]. Unfortunately

since it relies on the decision procedure for real arithmetic,

the verification algorithm has very high complexity.

Contributions: In this paper, we present the first decision

procedure for checking differential privacy for mechanisms

that process an unbounded sequence of inputs, each of which

may be real valued. Further, the mechanisms may also output

real values in addition to values from a finite domain. In

order to obtain decidability, we make two choices. First,

we restrict mechanisms to those that can be modeled by a

particular automata class, which we call DiP automata. Several

mechanisms proposed in the literature, such as SVT and its

variants [3], [4] and NumericSparse [2] can be modeled by DiP

automata. Our decision procedure is sound and complete for978-1-6654-4895-6/21/$31.00 ©2021 IEEE



mechanisms modeled by such automata, and remarkably, runs

in time linear in the size of the automaton. Second, we consider

the following verification problem. Instead of asking whether

a mechanism is dε differentially private for a given constant

d > 0 and for all ε > 0, we ask whether there exists a constant

d such that the mechanism is dε differentially private for all

ε > 0. While the verification problem considered in this paper

may appear to be less useful, note that a database manager can

choose a lower ε to account for a higher d if the mechanism

turns out to be differentially private. The relationship between

the computation difficulty of checking dε-differential privacy

for a given d and checking if there is some d such that a

mechanism is dε-differentially private is unclear. For example,

the decidability results in [5] do not extend to the verification

problem we consider in this paper.

We briefly describe the DiP automata model introduced

in this paper to model differential privacy mechanisms. A

DiP automaton (DiPA) A takes arbitrarily long sequences of

real-valued query results. Control states of A are classified

into input and non-input states. The automaton also has a

single variable x in which it can store a real value. When

the automaton is in an input state, it reads an input value and

generates a value, insample, using a Laplace distribution, and

compares insample with the stored value of x. It changes state

depending on the result of comparison and outputs a value

during the state transition. During the transition, it may also

store the sampled value insample in x. When the automaton

is in a non-input state, it does not read an input, but generates

insample using constant parameters and resets x by storing

insample in x and transitions to a new control state. The state

transition’s output may be either a discrete value from a finite

domain or a real value. The real value could be sampled value

insample, or freshly sampled value insample′. The mean and

scaling factor of the Laplace distributions used for generating

the sampled values insample and insample′ are determined by

the budget parameter ε and by constants that depend only on

the state. Additionally, for input states, the input value is added

to the mean.

Surprisingly, we show that the problem of checking

whether a privacy mechanism, specified by a DiPA A, is

dε-differentially private, for some constant d > 0 and all

ε > 0, can be reduced to checking some syntactic graph-

theoretic conditions on the finite graph “underlying”A. These

syntactic conditions are stated as the absence of certain kinds

of cycles and paths (See Definition 11 on Page 10). These

conditions can be checked in time linear in the graph’s size

by constructing the graph of strongly connected components

of the “underlying”control flow graph. These conditions are

independent of the scaling factors and means associated with

sampling, and hence, differential privacy does not need to be

re-proved if these parameters change.

Furthermore, if the privacy mechanism under consideration

is differentially private, we can efficiently compute a constant

d using the graph of strongly connected components, such that

the mechanism is dε-differentially private for all values of ε >
0. The computed d depends on the scaling parameters of states

in A used when sampling. The computation of the constant

d is once again linear, assuming constant time addition and

comparison of numbers. We also observe that d computed by

our algorithm for SVT and NumericSparse match those known

in literature.
The proof that the given syntactic graph conditions are

necessary and sufficient for differential privacy is highly non-

trivial. To the best of our knowledge, these results are the

first results giving efficient algorithms for checking differential

privacy of interesting classes of mechanisms that process input

query sequences of unbounded length, where the query values

are real-valued, and the outputs may take real values.
Organization: The rest of the paper is organized as

follows. Section II introduces basic notation and the setup of

differential privacy. Our model of DiP automata is introduced

in Section III. The main results characterizing when a DiP

automata is differentially private are presented in Section IV.

Because of their length, proofs of our main theorem are

deferred to the Appendix. Related work is discussed in Sec-

tion V. Finally we present our conclusions (Section VI). An

extended abstract of this paper appeared in the 36th Annual

Symposium on Logic in Computer Science (LICS 2021) [19].

This version consists of proofs omitted in [19].

II. PRELIMINARIES

Sequences: For a set Σ, Σ∗ denotes the set of all finite

sequences/strings over Σ. We shall use τ to denote the empty

sequence/string over Σ. For two sequences/strings ρ, σ ∈ Σ∗,

we use their juxtaposition ρσ to indicate the sequence/string

obtained by concatenating them in order. Consider σ =
a0a1 · · · an−1 ∈ Σ∗ (where ai ∈ Σ). We use |σ| to denote

it’s length n and use σ[i] to denote its ith symbol ai.
Sets and functions: Let N,Z,Q,Q≥0,R,R>0 denote

the set of natural numbers, integers, rational numbers, non-

negative rationals, real numbers and positive real numbers,

respectively. In addition, R∞ will denote the set R∪{−∞,∞},
where −∞ is the smallest and∞ is the largest element in R∞.

For a real number x ∈ R, |x| denotes its absolute value, and

sgn(x) denotes the sign function, i.e., sgn(x) = 0 if x = 0,

sgn(x) = −1 if x < 0 and sgn(x) = 1 if x > 0.For any

partial function f : A ↪→ B, where A,B are some sets, we

let dom(f) be the set of x ∈ A such that f(x) is defined.
Laplace Distribution: Differential privacy mechanisms

often add noise by sampling values from the Laplace distri-

bution. The distribution, denoted Lap(k, µ), is parameterized

by two values — k ≥ 0 which called the scaling parameter,

and µ which is the mean. The probability density function of

Lap(k, µ), denoted fk,µ, is given by

fk,µ(x) =
k

2
e−k|x−µ|.

Therefore, for a random variable X ∼ Lap(k, µ) and c ∈ R,

we have

Prob[X ≤ c] =
1

2

[

1 + sgn(c− µ)(1− e−k|c−µ|)
]

.

Finally observe that for any µ1, µ2 ≥ 0, Lap(k, µ1 + µ2) and

Lap(k, µ1) + µ2 are identically distributed.



Differential Privacy: Differential privacy [1] is a frame-

work that enables statistical analysis of databases containing

sensitive, personal information of individuals while ensuring

that the privacy of individuals’ information is not adversely

affected by the results of the analysis. In the differential

privacy framework, a randomized algorithm, M , called the

differential privacy mechanism mediates the interaction be-

tween a (possibly dishonest) data analyst asking queries and a

database D responding with answers. Queries are deterministic

functions and typically include aggregate questions about the

data, like the mean etc. In response to such a sequence of

queries, the mechanism M will respond with a series of

answers, whose value is computed using the actual answers

from the database and random sampling, resulting in “noisy”

answers. Thus, the differential privacy mechanism provides

privacy at the cost of accuracy. Typically, the differential

privacy mechanism’s noisy response depends on a privacy

budget ε > 0.

The crucial definition of differential privacy captures the

privacy guarantees of individuals in the database D. For an

individual i in D, let D \ {i} denote the database where

i’s information has been removed. A secure mechanism M
ensures that for any individual i in D, and any sequence

of possible outputs o, the probability that M outputs o on

a sequence of queries is approximately the same whether

the interaction is with the database D or with D \ {i}. To

capture this definition formally, we need to characterize the

inputs on which M is required to behave similarly. Inputs to

a differential privacy mechanism could be seen as answers

from the database to a sequence of queries asked by the data

analyst. If queries are aggregate queries, then answers to q
on D and D \ {i}, for individual i, are likely to be away by

at most 1.1 This intuition leads to an often-used definition of

adjacency, such as in SVT [2]–[4] and NumericSparse [2], that

characterizes pairs of inputs on which the differential privacy

mechanism M is expected to behave similarly.

Definition 1. Two sequences ρ, σ ∈ R∗ are said to be adjacent

if |ρ| = |σ| and for each i ≤ |ρ|, |ρ[i]− σ[i]| ≤ 1.

Having defined adjacency between inputs, we are ready

to formally define the notion of privacy. In response, to a

sequence of inputs, a differential privacy mechanism produces

a sequence of outputs from the set (say) Γ. Since a differential

privacy mechanism M is a randomized algorithm, it will

induce a probability distribution on Γ∗.

Definition 2 (ε-differential privacy). A randomized algorithm

M that gets as input a sequence of real numbers and produces

an output in Γ∗ is said to be ε-differentially private if for all

measurable sets S ⊆ Γ∗ and adjacent ρ, σ ∈ R∗ (Definition 1),

Prob[M(ρ) ∈ S] ≤ eε Prob[M(σ) ∈ S],

where e is the Euler constant.

1The difference in general can be a constant ∆.

Example 1. Let us look at a couple of classical differential

privacy mechanisms from the literature. These will serve as

running examples to motivate our definitions and highlight

our results.

Input: q[1 : N ]
Output: out[1 : N ]

rT ← Lap( ε2 , T )
for i← 1 to N do

r← Lap( ε4 , q[i])
if r ≥ rT then

out[i]← >
exit

else
out[i]← ⊥

end

end

Algorithm 1: SVT algorithm

Sparse Vector Technique (SVT) [3], [4] is an algorithm to

answer the following question in a privacy preserving manner:

Given a sequence of query answers q[1 : N ] and threshold T ,

find the first index i such that q[i] ≥ T . The algorithm is shown

as Algorithm 1. It starts by sampling a value from the Laplace

distribution with mean T , and stores this “noisy threshold” in

the variable rT . After that the algorithm reads query answer

q[i], perturbs it by sampling from the Laplace distribution with

mean q[i] to get r, and compares this “noisy query” r with the

“noisy threshold” rT . If r < rT then the algorithm outputs ⊥
and continues by reading the next query. On the other hand, if

r ≥ rT then the algorithm outputs > and stops. This algorithm

is known to be ε-differential private. It is worth observing that

SVT is parameterized by ε; each value of ε gives us a new

algorithm which is ε-differentially private for that particular

value of ε.

Input: q[1 : N ]
Output: out[1 : N ]

rT ← Lap( 4ε9 , T )
for i← 1 to N do

r← Lap( 2ε9 , q[i])
if r ≥ rT then

out[i]← Lap( ε9 , q[i])
exit

else
out[i]← ⊥

end

end

Algorithm 2: Numeric Sparse algorithm

Consider Algorithm 2 which shows a differential privacy

mechanism called Numeric Sparse [2]. The problem solved

by this algorithm is very similar to the one solved by SVT

(Algorithm 1) — given a sequence of query answers q[1 : N ]



and threshold T , find the first index i such that q[i] ≥ T
and output q[i]. Algorithm 2 is similar to Algorithm 1. The

only difference is that instead of outputting > when r ≥ rT , it

outputs a perturbed value of q[i]. This algorithm is also known

to be ε-differentially private for each possible assignment of

value to ε.

III. DIP AUTOMATA

DiP (Differentially Private) automata (DiPA for short) are

a simple model to describe some differential privacy mecha-

nisms known in the literature. Some of the features we hope

to capture are those highlighted by Algorithms 1 and 2. Recall

that the input to a differential privacy mechanism is a sequence

of real numbers that correspond to answers to queries. The

differential privacy mechanism is a randomized algorithm that

processes this input, samples values from distributions like

Laplace, and produces a sequence of values as output. These

outputs could include real numbers (Algorithm 2). Further,

as observed in Example 1, the behavior of the mechanism

depends on the privacy budget ε. DiP automata are a formal

model that have these features.

A. Syntax

A DiPA is a parametric automaton with finitely many con-

trol states and three real-valued variables insample, insample′

and x. While the variables insample and insample′ are freshly

sampled in each step, the variable x can store real values

to be used in later steps. The value of the parameter ε (the

privacy budget) influences the distribution from which the real

values are sampled during an execution. The input to such an

automaton is a finite sequence of real numbers. In each step

the automaton does the following.

1) It samples two values, called insample and insample′,

drawn from the distributions Lap(dε, µ) and

Lap(d′ε, µ′), respectively. The scaling factors d, d′

and means µ, µ′ of these distributions depend on the

current state.

2) Depending on the current state, the automaton will either

read a real number from the input, or not read anything

from the input. If an input value a is read, then insample

and insample′ are updated by adding a to them.

3) The transition results in changing the control state and

outputting a value. The value output could either be a

symbol from a finite set (like ⊥/> in Algorithm 1) or

one of the two real numbers insample and insample′ that

are sampled in this step (like in Algorithm 2). If an input

value is read then the transition could be guarded by the

result of comparing the sampled value insample and the

stored value x. It is possible that for certain values of x

and insample, no transition is enabled from the current

state. In such a case, the computation ends.

4) Finally, the automaton may choose to store the sampled

value insample in x.

The above intuition is captured by the formal definition of

DiPA below and its semantics described later in this section.

Definition 3 (DiPA). Let C be the set of guard conditions

{true, insample ≥ x, insample < x}. A DiP automaton A =
(Q,Σ,Γ, qinit, X, P, δ) where

• Q is a finite set of states partitioned into two sets: the set

of input states Qin and the set of non-input states Qnon,

• Σ = R is the input alphabet,

• Γ is a finite output alphabet,

• qinit ∈ Q is the initial state,

• X = {x, insample, insample′} is the set of variables,

• P : Q→ Q≥0 ×Q×Q≥0 ×Q is the parameter function

that assigns to each state a 4-tuple (d, µ, d′, µ′), where

insample is sampled from Lap(dε, µ) and insample′ is

sampled from Lap(d′ε, µ′),
• and δ : (Q× C) ↪→ (Q× (Γ ∪ {insample, insample′})×
{true, false}) is the transition (partial) function that given

a current state and result of comparing x with insample,

determines the next state, the output, and whether x

should be updated to store insample. The output could

either be a symbol from Γ or the values insample and

insample′ that were sampled.

The transition function δ of a DiPA will satisfy the following

four conditions.

Determinism: For any state q ∈ Q, if δ(q, true) is defined then

δ(q, insample ≥ x) and δ(q, insample < x) are undefined.

Output Distinction: For any state q ∈ Q, if δ(q, insample ≥
x) is defined to be (q1, o1, b1) and δ(q, insample < x) is

defined to be (q2, o2, b2) then o1 6= o2, i.e., distinct transitions

from a state have different outputs. Further at least one out

of o1 and o2 belongs to Γ, i.e., both transitions cannot output

real values.

Initialization: The initial state qinit has only one outgoing

transition of the form δ(qinit, true) = (q, o, true) where q is

a state and o is an output symbol. In other words, the guard

of the first transition is always true and the first value sampled

is stored in x.

Non-input transition: From any q ∈ Qnon, if δ(q, c) is

defined, then c = true; that is, there is at most one transition

from a non-input state which is always enabled.

It is useful to classify transitions of a DiPA into different

types. Consider a transition δ(q, c) = (q′, o, b). If q ∈ Qin

then it is an input transition and if q ∈ Qnon then it is a

non-input transition. If b = true then the transition will set

x = insample, and hence it is called an assignment transition.

On the other hand, if b = false, the transition will be said to

be a non-assignment transition. A pure assignment transition

is an assignment transition with c = true. The initialization

condition says that the (only) transition out of the initial state

of a DiPA is a pure assignment transition.

Example 2. The differential privacy mechanisms in Exam-

ple 1 can be modeled as DiP automata. These are shown in

Fig. 1 and 2. When drawing DiPAs in this paper, we will

follow these conventions. Input states will be represented as

circles, while non-input states with be shown as rectangles.
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4
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⊥, true

insample < x

⊥, false

insample ≥ x

>, false

Fig. 1. DiPA ASVT modeling Algorithm 1. Threshold for the algorithm is 0

(mean for sampling insample in state q0).

The name of each state is written above the line, while the

scaling factor d and mean µ of the distribution used to sample

insample is written below the line. The parameters d′ and µ′

for sampling insample′ are not shown in the figures, but are

mentioned in the caption and text when they are important;

they are relevant only when insample′ is output on a transition.

Edges will be labeled with the guard of the transition, followed

by the output, and a Boolean to indicate whether the transition

is an assignment transition.

The SVT algorithm (Algorithm 1) can be modeled as a

DiPA ASVT shown in Fig. 1. Since ASVT does not output

insample′ in any transition, the parameters used for sampling

insample′ are not relevant. In this representation of SVT, the

threshold used for comparison in the algorithm is hard-coded

in the automaton as the mean parameter of the initial state

q0. In fact, without loss of generality we can take this to be

0 as shown in Fig. 1. The initial state q0 of the automaton

is a non-input state with d = 1
2 and µ = 0 (the threshold

for the algorithm). From q0, the algorithm samples a value

that corresponds to the perturbed threshold and stores this in

variable x. In state q1, in each step it reads a query value

(input), perturbs it by sampling, and compares this with the

perturbed threshold stored in variable x. If the sampled value

is less that x it stays in q1, outputs ⊥ and leaves x unchanged.

On the other hand, if insample ≥ x then it outputs >, and

transitions to a terminal state q2.

ASVT can be used to illustrate our classification of tran-

sitions. The transition from q0 to q1 is the only non-input

transition and the only assignment transition in the automaton;

all other transitions are non-assignment, input transitions. In

addition, the transition from q0 to q1 is also a pure assignment

transition, since the guard is true.

Automaton ANumSp modeling Numeric Sparse (Algo-

rithm 2) is shown in Fig. 2. As in the case of ASVT (Fig. 1),

the threshold is hard-coded in the automaton and is taken to

be 0 (without loss of generality). Parameters used to sample

insample′ are not shown in diagram depicting ANumSp. We

take those to be just be 1
9 (scaling factor) and 0 (mean) in

every state; in fact, these parameters for insample′ are only

important for state q1. The automaton is very similar to ASVT

(Fig. 1) with the only differences being the parameters used

when sampling in each state, and the fact that insample′ is

output on the transition from q1 to q2 instead of >.

q0

4

9
, 0

q1

2

9
, 0

q2

2

9
, 0

true

⊥, true

insample < x

⊥, false

insample ≥ x

insample′, false

Fig. 2. DiPA ANumSp modeling Algorithm 2. The threshold is taken to be
0. Label of each state below the line shows the parameters for sampling
insample. Parameters for sampling insample′ are not shown in the figure;
they are 1

9
(scaling factor) and 0 (mean) in every state.

B. Paths and executions

A DiPA A defines a probability measure on the executions

or paths of A (henceforth just called a path). Informally, a

path is just a sequence of transitions taken by the automa-

ton. Observe that the condition of output distinction ensures

that knowing the current state and output, determines which

transition is taken. The input read determines the value of

insample and insample′, and therefore, to define the probability

of a path, we need to know the inputs read as well. Finally,

on transitions where either insample or insample′ are output,

to define a meaningful measure space, we need to associate

an interval (v, w) in which the output value lies. Because of

these reasons, we define a path to be one that describes the

sequence of (control) states the automaton goes through and

the sequence of inputs read and outputs produced.

Before defining a path formally, it is useful to introduce the

following notation. For a pair of states p, q ∈ Q, a ∈ Σ∪ {τ}
and o ∈ Γ ∪ ({insample, insample′} × R∞ × R∞), we say

p
a,o
−−→ q if a = τ whenever p ∈ Qnon and a ∈ Σ whenever

p ∈ Qin, and one of the following two conditions holds.

• If o ∈ Γ then there is a guard c ∈ C and Boolean b ∈
{true, false} such that δ(p, c) = (q, o, b).

• If o is of the form (y, v, w) where y ∈
{insample, insample′} and v, w ∈ R∞ then there

is a guard c ∈ C and Boolean b ∈ {true, false} such

that δ(p, c) = (q, y, b). Intuitively, an “output” of the

form (insample, v, w) (or (insample′, v, w)) indicates

that the value of insample (insample′) was output in the

transition and the result was a number in the interval

(v, w).

The unique transition, or rather the quintuple (p, c, q, o′, b),

that witnesses p
a,o
−−→ q will be denoted by trans(p

a,o
−−→ q).

Definition 4 (Path). Let A = (Q,Σ,Γ, qinit, X, P, δ) be a

DiPA. An execution or path ρ of A is a sequence of the form

ρ = q0
a0,o0
−−−→ q1

a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn

where qi ∈ Q for 0 ≤ i ≤ n, aj ∈ Σ ∪ {τ} and oj ∈
Γ ∪ ({insample, insample′} × R∞ × R∞) for 0 ≤ j < n. In

addition, we require that qj
aj ,oj
−−−→ qj+1 for all 0 ≤ j < n.

Such a path ρ is said to be from state q0 (first(ρ)) to state qn
(last(ρ)). Its length (denoted |ρ|) is the number of transitions,



namely, n. If the starting state and ending state of a path are

the same (i.e., q0 = qn) and |ρ| > 0 then ρ is said to be a

cycle.

It will be convenient to introduce some notation associated

with paths.

Notation. Let us consider a path

ρ = q0
a0,o0
−−−→ q1

a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn

of length n. If |ρ| > 0, then the tail of ρ, denoted tail(ρ), is

the path of length n− 1 given by

tail(ρ) = q1
a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn.

The ith state of the path is state(ρ[i]) = qi and the ith

transition is trans(ρ[i]) = trans(qi
ai,oi
−−−→ qi+1). The guard

of the ith transition is guard(ρ[i]) = c, where trans(ρ[i]) =
(qi, c, qi+1, o

′, b).
Finally, it will be useful to introduce notation for the

sequence of inputs read and outputs produced in a path. The

output produced will be an element of (Γ∪(R∞×R∞))∗ that

ignores the variable name that was output when a real value

is output. For o ∈ Γ, define 〈o〉 = o, and for o of the form

(y, v, w) where y ∈ {insample, insample′} and v, w ∈ R∞,

define 〈o〉 = (v, w).

inseq(ρ) = a0a1 · · · an−1

outseq(ρ) = 〈o0〉〈o1〉 · · · 〈on−1〉

Two paths ρ1 and ρ2 will be said to be equivalent if they

only differ in the sequence of inputs read. In other words,

equivalent paths are of the same length, go through the same

states, and produce the same outputs (and hence take the same

transitions).

Thanks to output distinction, two paths are equivalent if

and only if they start from the same state and have the same

output sequences. Thus, paths are uniquely determined by

starting state, input and output sequences. Finally, modifying

the values input in a path yields an equivalent path.

Proposition 1. Let ρ1 and ρ2 be paths of a DiPA A starting

from the same state.

• ρ1 and ρ2 are equivalent if and only if outseq(ρ1) =
outseq(ρ2).

• If inseq(ρ1) = inseq(ρ2) and outseq(ρ1) = outseq(ρ2)
then ρ1 = ρ2.

• For any sequence of reals a ∈ Σ∗ such that |a| =
|inseq(ρ1)|, there is a unique path ρ3 equivalent to ρ1
such that inseq(ρ3) = a.

C. Path probabilities

We will now formally define what the probability of each

path is. Recall that in each step, the automaton samples two

values from Laplace distributions, and if the transition is from

an input state, it adds the read input value to the sampled

values and compares the result with the value stored in x.

The step also outputs a value, and if the value output is one

of the two sampled values, the path requires it to belong to

the interval that labels the transition. The probability of such

a transition thus is the probability of drawing a sample that

satisfies the guard of the transition and (if the output is a real

value) producing a number that lies in the interval in the output

label. This intuition is formalized in a precise definition.

Let us fix a path

ρ = q0
a0,o0
−−−→ q1

a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn

of DiPA A = (Q,Σ,Γ, qinit, X, P, δ). Recall that the param-

eters to the Laplace distribution in each step depend on the

privacy budget ε. In addition, the value stored in the variable

x at the start of ρ influences the behavior of A. Thus, the

probability of path ρ depends on both the value for ε and the

value of x at the start of ρ; we will denote this probability

as Pr[ε, x, ρ], where x is the initial value of x. We define this

inductively on |ρ|. For any ε and any path ρ with |ρ| = 0,

Pr[ε, x, ρ] = 1.

For a path ρ of non-zero length, let (q0, c, q1, o0, b) =

trans(q0
a0,o0
−−−→ q1) be the 0th transition of ρ. Let P (q0) =

(d, µ, d′, µ′) and let 〈a0〉 = a0 if a0 ∈ R and 〈a0〉 = 0
if a0 = τ . We will define constants ` and u as follows. If

o0 ∈ Γ then ` = −∞ and u = ∞. Otherwise, o0 is of the

form (y, v, w) where y ∈ {insample, insample′}, and then we

take ` = v and u = w. We assume that any integral of the

form
∫ f

e
g(y)dy = 0 when e > f . Finally, when o0 is of the

form (y, v, w) where y ∈ {insample, insample′} (i.e., o0 6∈ Γ),

define
k =

∫ w

v
dε
2 e

−dε|z−µ−〈a0〉|dz

k′ =
∫ w

v
d′ε
2 e−d′ε|z−µ′−〈a0〉|dz

The function Pr[·] is defined based on what c and b are.

Let us fix ν = µ + 〈a0〉. We begin by considering the case

when the 0th transition of ρ is a non-assignment transition,

i.e., when b = false.

• Case c = true: If o0 ∈ Γ then Pr[ε, x, ρ] =
Pr[ε, x, tail(ρ)]. If o0 = (insample, v, w) then

Pr[ε, x, ρ] = kPr[ε, x, tail(ρ)] and if o0 =
(insample′, v, w) then Pr[ε, x, ρ] = k′Pr[ε, x, tail(ρ)]

• Case c = insample ≥ x: If o0 is of the form

(insample′, v, w) (i.e., insample′ is output) then

Pr[ε, x, ρ] = k′
(
∫ ∞

x

dε

2
e−dε|z−ν|dz

)

Pr[ε, x, tail(ρ)].

Otherwise, taking `′ = max(x, `),

Pr[ε, x, ρ] =

(
∫ u

`′

dε

2
e−dε|z−ν|dz

)

Pr[ε, x, tail(ρ)].

• Case c = insample < x: If o0 is of the form

(insample′, v, w) (i.e., insample′ is output) then

Pr[ε, x, ρ] = k′
(
∫ x

−∞

dε

2
e−dε|z−ν|dz

)

Pr[ε, x, tail(ρ)].

Otherwise, taking u′ = min(x, u),

Pr[ε, x, ρ] =

(

∫ u′

`

dε

2
e−dε|z−ν|dz

)

Pr[ε, x, tail(ρ)].



Next, when the 0th transition of ρ is an assignment transition,

i.e., b = true, Pr[·] is defined as follows.

• Case c = true: If o0 is of the form (insample′, v, w) (i.e.,

insample′ is output) then

Pr[ε, x, ρ] = k′
∫ ∞

−∞

(

dε

2
e−dε|z−ν|

)

Pr[ε, z, tail(ρ)]dz.

Otherwise,

Pr[ε, x, ρ] =

∫ u

`

(

dε

2
e−dε|z−ν|

)

Pr[ε, z, tail(ρ)]dz.

• Case c = insample ≥ x: If o0 is of the form

(insample′, v, w) (i.e., insample′ is output) then

Pr[ε, x, ρ] = k′
∫ ∞

x

(

dε

2
e−dε|z−ν|

)

Pr[ε, z, tail(ρ)]dz.

Otherwise, taking `′ = max(x, `),

Pr[ε, x, ρ] =

∫ u

`′

(

dε

2
e−dε|z−ν|

)

Pr[ε, z, tail(ρ)]dz.

• Case c = insample < x: If o0 is of the form

(insample′, v, w) (i.e., insample′ is output) then

Pr[ε, x, ρ] = k′
∫ x

−∞

(

dε

2
e−dε|z−ν|

)

Pr[ε, z, tail(ρ)]dz.

Otherwise, taking u′ = min(u, x),

Pr[ε, x, ρ] =

∫ u′

`

(

dε

2
e−dε|z−ν|

)

Pr[ε, z, tail(ρ)]dz.

We will abuse notation and use Pr[·] to also refer to Pr[x, ρ] =
λε. Pr[ε, x, ρ]. Notice that when ρ starts from qinit, because of

the initialization condition of DiPA, the value of Pr[·] does

not depend on the initial value of x. For such paths, we may

drop the initial value of x from the argument list of Pr[·] to

reduce notational overhead. Even though we plan to use the

same function name, the number of arguments to Pr[·] will

disambiguate what we mean.

Example 3. Let use consider the DiPA ASVT shown in Fig. 1.

A couple of example paths of the automaton are the following.

ρ1 = q0
τ,⊥
−−→ q1

0,⊥
−−→ q1

1,>
−−→ q2

ρ2 = q0
τ,⊥
−−→ q1

1,⊥
−−→ q1

1,>
−−→ q2

Paths ρ1 and ρ2 only differ in the inputs they read: inseq(ρ1) =
τ · 0 · 1 = 01, while inseq(ρ2) = 11. Thus, ρ1 and ρ2
are equivalent paths. Notice that ρ1 and ρ2 are adjacent

(Definition 1). The outputs produced in these executions is

given by outseq(ρ1) = outseq(ρ2) = ⊥⊥>.

Let us now consider Pr[ε, 0, ρ1]. Since the transition out of

q0 is a pure assignment transition, the initial value of x (namely

0 in this example) does not influence the value of Pr[ε, 0, ρ1].
Let XT , X1, X2 be random variables where XT ∼ Lap( ε2 , 0),
X1 ∼ Lap( ε4 , 0)+0, and X2 ∼ Lap( ε4 , 0)+1. We can see that

Pr[ε, 0, ρ1] = Prob[X1 < XT ∧ X2 ≥ XT ].

Based on how the random variables are distributed, this can

be calculated to be

Prob[X1 < XT ∧ X2 ≥ XT ] =
24e

3ε
4 − 1 + 8e

ε
4 − 21e

ε
2

48e
3ε
4

.

The calculation of Pr[ε, 0, ρ2] is similar. Let X ′
1 be the

random variable with X ′
1 ∼ Lap( ε4 , 0) + 1. Then the desired

probability is same as Prob[X ′
1 < XT ∧X2 ≥ XT ]. This can

be calculated to be

Pr[ε, 0, ρ2] = Prob[X ′
1 < XT ∧ X2 ≥ XT ]

= −22+32e
ε
4 −3ε

48e
ε
2

.

The focus of this paper is to study the computational

problem of checking differential privacy for DiP automata.

We conclude this section with a precise definition of this

problem. In order to do that we first specialize the definition

of differential privacy to the setting of DiPA.

Thanks to Proposition 1, the definition of ε-differential

privacy [2] specializes to the following in the case of DiPA.

Definition 5. A DiPA A is dε-differentially private (for d > 0,

ε > 0) iff for every pair of equivalent paths ρ1, ρ2 starting

from the initial state such that inseq(ρ1) and inseq(ρ2) are

adjacent 2,

Pr[ε, ρ1] ≤ edε Pr[ε, ρ2].

Differential Privacy Problem: Given a DiPA A (with privacy

parameter ε), determine if there is a d > 0 such that for every

ε > 0, A is dε-differentially private.

IV. DECIDING DIFFERENTIAL PRIVACY

The central computational problem that this paper studies is

the following: Given a DiPA A determine if there is a d > 0
such that for all ε > 0, A is dε-differentially private. In this

section we present the main result of this paper, namely, that

this problem is efficiently decidable in linear time. We also

show that we can compute an upper bound on d in linear

time if A is differentially private. The crux of the proof is the

identification of simple graph-theoretic conditions that are both

necessary and sufficient to ensure a DiPA is dε-differentially

private for all ε and some d.

Before presenting the properties that are needed to guarantee

differential privacy, we first define the notion of reachability.

Let us fix a DiPA A = (Q,Σ,Γ, qinit, X, P, δ). A state q is

said to be reachable if there is a path ρ starting from state

qinit and ending in q. In addition, we say that a path (cycle) ρ
is reachable if there is a path ρ′ from qinit to first(ρ). We now

start by identifying the first interesting property.

Definition 6. A path ρ in a DiPA A is said to be a leaking

path if there exist indices i, j with 0 ≤ i < j < |ρ| such that

the ith transition trans(ρ[i]) is an assignment transition and

the guard of the jth transition guard(ρ[j]) 6= true. A leaking

path ρ is said to be a leaking cycle if it is also a cycle.

2See Definition 1 on Page 3.
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is not output in any state, the parameters used in sampling insample′ are not
important.

Intuitively, in a leaking path, the variable x is assigned a

value in some transition which is used in the guard of a later

transition. Observe that if a path is leaking, then all paths

equivalent to it are also leaking. The presence of a reachable

leaking cycle is a witness that the DiPA is not differentially

private. The intuition behind this is as follows. One can show

that there are a pair of adjacent inputs such that traversing the

leaking cycle C once on these inputs results in two paths, the

ratio of whose probabilities is at least ekε for some number

k for sufficiently large ε. Thus, given d, we can find an `
and an ε such that traversing the cycle ` times “exhausts the

privacy budget”, i.e., the adjacent inputs corresponding to these

` repetitions have probabilities whose ratio is at least edε. We

illustrate this through our next example.

Example 4. Consider an algorithm that checks whether the

input sequence of real numbers is sorted in descending order.

The goal of the algorithm is to read a sequence of numbers,

output ⊥ as long as it is sorted, and output > the first time

it encounters two numbers in the wrong order and stop. A

“differentially private” version of this algorithm is modeled by

DiPA Asort shown in Fig. 3. It works as follows. It starts by

reading an input in state q0, perturbing it by sampling from the

Laplace distribution, outputting ⊥, and storing the perturbed

input in x. In state q1, Asort repeatedly reads an input, perturbs

it, and checks if it is less than the previous perturbed value read

by the automaton, which is stored in x. If it is, the automaton

outputs ⊥, saves the new perturbed value, and stays in q1 to

read the next input symbol. On the other hand, if the new

value is greater, then it outputs > and moves to a terminal

state. Asort is almost identical to the automaton ASVT (Fig. 1)

— the only difference is that initial state of Asort is an input

state as opposed to a non-input state, and the self loop on state

q1 is an assignment transition.

This difference (that the self loop on q1 is an assignment

transition) turns out to be critical; Asort is not differen-

tially private even though ASVT is. Observe that the cycle

q1
a0,⊥
−−−→ q1

a1,⊥
−−−→ q1 is a leaking cycle as the 0th transition

is an assignment transition and the 1st transition’s guard is

insample < x. We can exploit this cycle to demonstrate why

Asort is not differentially private. Consider the paths of length

n given as

ρn1 = q0
0,⊥
−−→ q1

−1,⊥
−−−→ q1

−2,⊥
−−−→ q1

−3,⊥
−−−→ q1

−4,⊥
−−−→ q1 · · ·

ρn2 = q0
0,⊥
−−→ q1

−2,⊥
−−−→ q1

−1,⊥
−−−→ q1

−4,⊥
−−−→ q1

−3,⊥
−−−→ q1 · · ·

Observe that for all n, inseq(ρn1 ) and inseq(ρn2 ) are adjacent

(Definition 1). Moreover, for any d > 0, there is an n and ε,
such that the ratio of Pr[ε, ρn1 ] and Pr[ε, ρn2 ] is > edε. Thus,

A is not dε-differentially private for any d.

Absence of a leaking cycle does not guarantee differential

privacy. Privacy leaks can occur with other types of paths and

cycles. We define one such path next.

Definition 7. A cycle ρ of a DiPA A is called an L-

cycle (respectively, G-cycle) if there is an i < |ρ| such that

guard(ρ[i]) = insample < x (respectively, guard(ρ[i]) =
insample ≥ x).

We say that a path ρ of a DiPA A is an AL-path (respec-

tively, AG-path) if all assignment transitions on ρ have guard

insample < x (respectively, insample ≥ x).

Observe that a cycle can be both an L-cycle and a G-cycle.

Further, a path with no assignment transitions (including the

empty path) is simultaneously both an AL-path and an AG-

path.

Definition 8. A pair of cycles (C,C ′) in a DiPA A is called a

leaking pair if one of the following two conditions is satisfied.

1) C is an L-cycle, C ′ is a G-cycle and there is an AG-path

from a state in C to a state in C ′.
2) C is a G-cycle, C ′ is an L-cycle and there is an AL-path

from a state in C to a state in C ′.

Observe that if C is an L-cycle as well as a G-cycle, then the

pair (C,C) is a leaking pair with the empty path connecting C
to itself. Also, if (C,C ′) is a leaking pair, then for any C1, C2

that are equivalent to C,C ′ respectively, the pair (C1, C2) is

also a leaking pair.

The presence of a leaking pair is also a witness to a DiPA

not being differentially private. Consider a DiPA A that has

no leaking cycle but has a leaking pair of cycles (C,C ′)
such that C is reachable. Assume that C ′ is a G-cycle. The

case when C ′ is an L-cycle is symmetric. Since A has no

leaking cycles, the value stored in x does not change while

the automaton is executing the transitions in either C or C ′.

Let y be the value of x when C ′ starts executing. One can

show that if y > 0, then there are a pair of adjacent inputs

such that traversing C ′ on those inputs results in paths such

that the ratio of their probabilities is at least ekε for some k.

Moreover, this pair of inputs does not depend on the actual

value of y. Further, on these pair of inputs, if y ≤ 0, then

the ratio of these probabilities is ≥ 1. This once again means

that by repeating C ′ ` times, we can get adjacent inputs whose

probabilities violate the dε privacy budget (for any d) if y > 0.

A similar observation holds for L-cycle C — if the value

of x at the start of C is ≤ 0, then we can find adjacent

inputs such that traversing C for those inputs results in paths

whose probabilities have a “high” ratio. Further, on these pair
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Fig. 4. DiPA ASVT∗ modeling an algorithm that processes a sequence of
real numbers and implements a “noisy’ version” of the following process. As
long as the input numbers are less than threshold T (= 0) it outputs ⊥. Once
it sees the first number ≥ T , it moves to the second phase. In the phase, it
outputs > as long as the numbers are ≥ T . When it sees the first number
< T , it outputs ⊥ and stops. Since insample′ is never output, parameters
used in its sampling are not shown and not important.

of inputs, if the value stored in x is > 0, then the ratio of

these probabilities is ≥ 1. The next observation is that value

stored in x at the end of an AG-path is at least the value at the

beginning of the path. We can now put all these pieces together

to get our witness for a violation of differential privacy. If

the value of x is ≤ 0 at the start of C, then repeating C
` times gives us a pair of adjacent inputs that violate the

privacy budget. On the other hand, if x at the start of C is

> 0, it will be > 0 even at the start of C ′, and then repeating

C ′ ` times gives us the witnessing pair. Let us illustrate the

intuition through an example.

Example 5. Consider the automaton ASVT∗ shown in Fig. 4.

It implements an algorithm that is a slight modification of

Algorithm 1 (or the DiPA ASVT in Fig. 1). Like in SVT,

the automaton starts in state q0 by sampling a value that is a

perturbed value of a threshold T (which is 0 here). It stores

this sampled value in x and moves to the first phase (state q1).

In this phase, the automaton outputs ⊥ and stays in q1 as long

as a perturbed value of the input read is less than the perturbed

threshold stored in x. The first time it encounters a perturbed

value that is at least x, it moves to phase two (state q2) and

outputs >. In state q2, it outputs > as long as the perturbed

inputs it samples are ≥ x. The first time it encounters a value

< x it outputs ⊥ and terminates. Throughout the computation,

the automaton never over-writes the value stored in the first

step in variable x.

ASVT∗ has a leaking pair. Observe that C = q1
a1,⊥
−−−→ q1

is an L-cycle and C ′ = q2
a2,>
−−−→ q2 is a G-cycle. The path

q1
a3,>
−−−→ q2 is an AG-path from C to C ′. Hence (C,C ′) is a

leaking pair. The presence of this leaking pair can be exploited

to show that ASVT∗ is not dε-differentially private for any

d > 0.

Consider the following two paths.

ρ`1 = q0
τ,⊥
−−→

[

q1
− 1

2
,⊥

−−−→ q1

]`
0,>
−−→

[

q2
1
2
,>
−−→ q2

]`
0,⊥
−−→ q3

ρ`2 = q0
τ,⊥
−−→

[

q1
1
2
,⊥
−−→ q1

]`
0,>
−−→

[

q2
− 1

2
,>

−−−→ q2

]`
0,⊥
−−→ q3

In the above [p
a,o
−−→ q]` means that the path consists of

repeating this transition ` times. Notice that the inseq(ρ`1) =
(− 1

2 )
`0( 12 )

`0 and inseq(ρ`2) = ( 12 )
`0(− 1

2 )
`0 are adjacent.

Moreover, for any d > 0, there is a ` such that for every

ε the ratio of Pr[ε, ρ`1] and Pr[ε, ρε2] is > edε. Thus, for

an appropriately chosen value for `, ρ`1 and ρ`2 witness the

violation of differential privacy.

The two conditions we have identified thus far — existence

of reachable leaking cycle or leaking pair — demonstrate

differential privacy violations even in DiPAs that do not output

any real value. In automata that output real values, there are

additional sources of privacy violations. We identify these

conditions next.

Definition 9. A cycle C of a DiPA A is a disclosing cycle

if there is an i, 0 ≤ i < |C| such that trans(C[i]) is an input

transition that outputs either insample or insample′.

Again the existence of a reachable disclosing cycle demon-

strates that the DiPA is not differentially private — outputting

a perturbed input repeatedly exhausts the privacy budget.
We now present the last property of importance that pertains

to paths that have transitions that output the value of insample.

We say that a state q is in a cycle (G-cycle or L-cycle) if

there is a cycle (G-cycle/L-cycle) C and index i such that

q = state(C[i]).

Definition 10. We say that a path ρ = q0
a0,o0
−−−→ q1

a1,o1
−−−→

q2 · · · qn−1
an−1,on−1

−−−−−−−→ qn of length n of DiPA A is a privacy

violating path if one of the following conditions hold.

• tail(ρ) is an AG-path (resp., AL-path) such that last(ρ)
is in a G-cycle (resp., L-cycle) and the 0th transi-

tion trans(ρ[0]) is an assignment transition that outputs

insample.

• ρ is an AG-path (resp., AL-path) such that last(ρ) is

in a G-cycle (resp., L-cycle) and the 0th transition has

guard(ρ[0]) = insample < x (resp., guard(ρ[0]) =
insample ≥ x) and outputs insample.

• ρ is an AG-path (resp., AL-path) such that first(ρ) is in an

L-cycle (resp., G-cycle) and the last transition has guard

guard(ρ[n−1]) = insample ≥ x (resp., guard(ρ[n−1]) =
insample < x) and outputs insample.

Once again, the presence of a reachable privacy violating

path demonstrates that the automaton is not differentially

private. Let us provide some intuition why that is the case.

We do this for some of the cases that form a privacy violating

path with reasoning for the missing cases being similar. As

before, let us assume that there is no leaking cycle because if

there is one then we already know that the automaton is not

differential privacy. A consequence of this that there are no
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assignment transitions in a G-cycle or L-cycle and hence the

value stored in x remains unchanged in these cycles. Let us

recall a couple of crucial observations that we used when we

argued in the case of a leaking pair. First, the value stored in

x at the end of an AG-path is at least as large as the value at

the beginning. Next, if a G-cycle (L-cycle) is traversed when

the starting value in x is > 0 (≤ 0) then we have a family

of pairs of adjacent inputs that correspond to traversing the

cycle multiple times with the property that the ratio of their

probabilities diverges as the cycle is traversed more times. Let

us now consider each of the cases in the definition of privacy

violating path. If ρ starts with an assignment transition that

outputs insample and if the output of this first step is in the

interval (0,∞) then the value of x is > 0 at the end of ρ
when a G-cycle can be traversed. These observations can be

used to give us a pair of adjacent inputs that violate privacy.

If ρ starts with a transition whose guard is insample < x that

outputs insample and suppose the value output in this step is in

the interval (0,∞) then the value in x at the start is > 0. Like

in the previous case this can be used to get a violating pair

of inputs. Finally, if ρ ends in transition outputting insample,

guard insample ≥ x and the value output in this last step in

the interval (−∞, 0), then we can conclude that the value in

x at the end of ρ is ≤ 0. This combined with properties of

AG-paths means that x has a value ≤ 0 at the beginning of

ρ. This means the L-cycle at the start of ρ can be traversed

with x having a value ≤ 0 which means that a violating pair

of inputs can be constructed.

Let us illustrate this last condition through another example.

Example 6. Consider automaton Amod (Fig. 5) which is

a modification of the Numeric Sparse algorithm modeled

by automaton ANumSp (Fig. 2). The only difference is that

the transition from q1 to q2 outputs insample as opposed

to insample′. This change causes this automaton to be not

differentially private.

Observe that the state q1 is in a L-cycle q1
a,⊥
−−→ q1 and then

path ρ = q1
a,(insample,(0,∞))
−−−−−−−−−−−→ q2 is an AG-path. Finally, the

last transition (or rather the only transition) of ρ has guard

insample ≥ x that outputs insample. Thus, ρ is a privacy

violating path.

We can use ρ to find a violation for privacy. Consider the

following pair of paths.

ρ`1 = q0
τ,⊥
−−→

[

q1
− 1

2
,⊥

−−−→ q1

]`
0,(insample,(0,∞))
−−−−−−−−−−−→ q2

ρ`2 = q0
τ,⊥
−−→

[

q1
1
2
,⊥
−−→ q1

]`
0,(insample,(0,∞))
−−−−−−−−−−−→ q2

Observe that inseq(ρ`1) = (− 1
2 )

`0 and inseq(ρ`2) = ( 12 )
`0 are

adjacent. Moreover, for any d > 0, there is an ` such that for

any ε, the ratio of Pr[ε, ρ`1] and Pr[ε, ρ`2] is > edε. Thus, ρ`1
and ρ`2 demonstrate the violation of privacy.

As the discussion and examples above illustrate, absence of

leaking cycles, leaking pairs, disclosing cycles, and privacy

violating paths is necessary for a DiPA to be differentially

private. We call such automata well-formed.

Definition 11. A DiPA A is said to be well-formed if A has

no reachable leaking cycle, no leaking pair (C,C ′) where C
is reachable, no reachable disclosing cycle, and no reachable

privacy violating path.

Our main theorem is that well-formed DiPAs are exactly the

class of automata that are differentially private. The proof of

this Theorem is carried out in the Appendix (See Appendix B

for the “only if” direction and Appendix C for the “if”

direction).

Theorem 2. Let A be a DiPA. There is a d > 0 such that for

every ε > 0, A is dε-differentially private if and only if A is

well-formed.

Remark. Before presenting a proof sketch for Theorem 2, it

is useful to point out one special case for the result. Observe

that disclosing cycles and privacy violating paths pertain to

paths that have transitions that output real values. For DiPAs

that do not have real outputs, disclosing cycles and privacy

violating paths are not needed to get an exact characterization

of differential privacy. More precisely, we say that a DiPA

A = (Q,Σ,Γ, qinit, X, P, δ) has finite valued outputs if every

transition in A outputs a value in Γ. Now, a DiPA with finite

valued outputs is differentially private if and only if it has no

reachable leaking cycles and leaking pairs.

Discussion in this section has provided intuitions for why

well-formed-ness is necessary for an automaton to be differ-

entially private; the formal proof that captures these intuitions

is subtle, long, and non-trivial. The proof is postponed to

Appendix B. We sketch some key properties that show why it

is sufficient.

Let us fix a transition t = (p, c, q, o, b) in a DiPA A =
(Q,Σ,Γ, qinit, X, P, δ). The transition t is said to lie on a

cycle if there is a reachable cycle ρ and index i such that

trans(ρ[i]) = t. On the other hand, we will say t is a critical

transition if t does not lie on a cycle. Let P (p) = (d, µ, d′, µ′)
be the parameters for sampling insample and insample′ in state



p. We define the cost of t as follows.

cost(t) =







































d t is a critical non-input transition

2d t is a critical input transition and

o 6= insample′

2d+ d′ t is a critical input transition and

o = insample′

0 otherwise

.

For a path ρ, define weight of ρ as wt(ρ) =
∑|ρ|−1

i=0 cost(trans(ρ[i])), i.e., the sum of the costs of all the

transitions in ρ. Finally, define wt(A) to be the supremum over

all paths ρ, wt(ρ). In fact, the weight of A could have been

defined as a maximum (as opposed to a supremum) because

they are the same in this case. The crucial observation about

weight of an automaton that is used in proving the sufficiency

of well-formed-ness for differential privacy, is that it provides

an upper bound on the privacy budget for A.

Lemma 3. A well-formed DiPA A is wt(A)ε-differentially

private for all ε > 0.

Proof. (Sketch.) The Lemma is a consequence of the proof

of Lemma 13 given in Appendix C. This lemma relates the

probabilities of two paths ρ and ρ′ of A, such that ρ and ρ′

start from the same reachable state, ρ and ρ′ are equivalent,

inseq(ρ) and inseq(ρ′) are neighbors, and the initial transitions

of ρ and ρ′ are assignment transitions. More precisely, for

an initial value x0 of x, Lemma 13 shows that Pr[ε, x0, ρ
′]

is at least e−wt(ρ)ε times one of three quantities: Pr[ε, x0, ρ],
Pr[ε, x0 + 1, ρ] or Pr[ε, x0 − 1, ρ]. The specific quantity the

Lemma compares Pr[ε, x0, ρ
′] to depends on some properties

of the path ρ stated in Lemma 13. Together these mutually

exclusive properties serve as an exhaustive list of properties

that the path ρ can satisfy. The fact that the list is exhaustive

is a consequence of well-formed-ness. In particular, one of

the parts of the Lemma is that when the guard of the initial

transition is true then Pr[ε, x0, ρ
′] ≥ e−wt(ρ)εPr[ε, x0, ρ]. This

immediately implies the statement of the current Lemma. The

proof of Lemma 13 itself is intricate and proceeds by induction

on the number of assignment transitions in ρ.

Example 7. Let us consider the automata ASVT (Fig. 1 on

Page 5) and ANumSp (Fig. 2 on Page 5). Both these automata

are well-formed and hence they are differentially private.

Moreover, we can use Lemma 3 to provide an upper bound

on the required privacy budget.

Observe that the only critical transitions in ASVT are t01,

the transition from q0 to q1, and t12, the transition from q1 to

q2. Now cost(t01) = 1
2 , while cost(t12) = 2( 14 ) = 1

2 . Thus,

wt(ASVT) =
1
2 +

1
2 = 1, or ASVT is ε-differentially private for

all ε.

Similarly, the only critical transitions in ANumSp are again

transition t01 from q0 to q1 and transition t12 from q1 to q2.

They have the following costs: cost(t01) =
4
9 and cost(t12) =

2( 29 ) +
1
9 = 5

9 . Thus, wt(ANumSp) =
4
9 + 5

9 = 1 and ANumSp

is ε-differentially private for all ε > 0.

In both cases, the upper bounds computed through our

methods match the known upper bounds.

Remark. Observe that the means used in sampling insample

and insample′ do not play any role in the definition of well-

formed (Definition 11). They also do not play any role in

the calculation of the weight of an automaton or Lemma 3.

This allows one to make some simple observations. Recall

that ASVT and ANumSp were defined by taking the threshold

T = 0. However, these observations allow us to conclude that

no matter what value is chosen for the threshold T , ASVT and

ANumSp are ε-differentially private for all ε > 0.

We get as a corollary of Theorem 2 that the problem of

checking whether a DiPA A is differentially private can be

checked using graph-theoretic algorithms in linear time.

Corollary 4. The differential privacy problem for DiP au-

tomata is decidable in linear time. In addition, wt(A) can be

computed in linear time, assuming addition and comparison

of numbers takes constant time.

Proof. We describe a linear time algorithm that checks

whether a DiPA A is well-formed. The Corollary then follows

from Theorem 2.

Let us fix A = (Q,Σ,Γ, qinit, X, P, δ). Consider the edge-

labeled directed graph G whose vertex set is Q and there is an

edge-labeled (c, b) from p to q if δ(p, c) = (q, o, b) for some

o. Without loss of generality, we can assume that every state is

reachable from qinit. It is worth observing that because of the

determinism condition of DiPAs, the number of edges in G is

at most twice the number of vertices. The subgraph GAG of G
has the same vertex set but an edge labeled (c, b) is present in

GAG only if whenever b = true, c = insample ≥ x. Similarly,

the subgraph GAL of G only has those edges labeled (c, b) with

the property that if b = true then c = insample < x. Notice

that the graphs G, GAG and GAL can each be constructed in

linear time from A.

Next, we compute the maximal strongly connected compo-

nents (SCC) of G; this can also be done in linear time. Observe

that a state q is part of some G-cycle if it’s SCC has an edge

with label (insample ≥ x, b). Similarly, q is part of some L-

cycle if it’s SCC has an edge with label (insample < x, b).
Notice that the set of all states that belong to some G-cycle

and those that belong to some L-cycle can be computed in

linear time. Next, the set of all vertices that can be reached by

an AG-path from an L-cycle can be computed in linear time

by performing a BFS on GAG starting from vertices that are on

L-cycles. Similarly, we can compute all vertices from which

a G-cycle can be reached by an AG-path in linear time. Using

BFS on GAL we can also compute the set of all vertices that

can be reached from a G-cycle by an AL-path, and the set

of all vertices from which an L-cycle can be reached by an

AL-path in linear time.

We can now check each of the conditions of well-formed-

ness in linear time using the sets computed in the previous



paragraph.

• leaking cycle: Check if there is a SCC of G that has an

edge labeled (c, true) and an edge labeled (c′, b′) where

c′ 6= true.

• leaking pair: Check if there is a state on an L-cycle that

can reach a G-cycle by an AG-path and check if there

is a state on an G-cycle that can reach a L-cycle by an

AL-path.

• disclosing cycle: Check if there is a SCC of G that

contains an edge from an input state that outputs insample

or insample′.

• privacy violating path: Check if any of the following

conditions holds: (a) there is an AG-path (AL-path) from

the target of an assignment transition to a state on a G-

cycle (L-cycle); (b) there is an AG-path (AL-path) from

the target of a non-assignment transition with output

insample and guard insample < x (insample ≥ x) to a

state on a G-cycle (L-cycle); (c) there is an AG-path (AL-

path) from a state on an L-cycle (G-cycle) to the source

of a transition with guard insample ≥ x (insample < x)

that outputs insample.

We now show how wt(A) can be computed in linear

time assuming that arithmetic operations take constant time.

Observe that we can construct the graph of SCCs of G in linear

time and that critical transitions are those that correspond to

edges in this graph of SCCs. wt(A) is the length of the longest

path in this graph, where the weight of an edge is the cost of

the corresponding transition. Note that this can be computed

in linear time because the graph of SCCs is a DAG.

Remark. Observe that the well-formed-ness of an automata A
does not depend on the parameter function P of the automata.

Hence, once we have established that A is differentially

private, we establish it for all possible parameter functions.

The weight of a well-formed A, however, does indeed with

the scaling parameters given by P. It is independent of the

mean parameters given by P.

V. RELATED WORK

Privacy proof construction: Several works [6], [7], [11],

[12], [15], [20] have proposed the use of type systems to

construct proofs of differential privacy. Some of the type-based

approaches such as [6], [7], [12], [20] rely on linear dependent

types, for which the type-checking and type-inference may be

challenging. For example, the type checking problem for the

type system in [20] is undecidable. The type systems in Zhang

and Kifer [11], later expanded on in [15], rely on using the

techniques of randomness alignments and can handle advanced

examples such as the sparse vector technique. Barthe et al. [8]–

[10] develop several program logics based on probabilistic

couplings for reasoning about differential privacy, which have

been used successfully to analyze standard examples from

the literature, including the sparse vector technique. The

probabilistic couplings and randomness alignment arguments

are synthesized into coupling strategies by Albarghouthi and

Hsu [13]. A shadow execution based method is introduced

in [14]. Both [13] and [14] are automated and can handle

advanced examples such as sparse vector technique efficiently.

M. C. Tschantz et. al use probabilistic I/O automata in [21] to

model interactive differential privacy algorithms. Simulation-

based methods are used to verify differential privacy. They

assume that inputs and outputs take values from a discrete

domain and that the sampling is from discrete probability

distributions. While these approaches can handle arbitrarily

long sequences of inputs and verify ε-differential privacy, they

are not shown to be complete and may fail to construct a

proof of differential privacy even when the mechanism is

differentially private.

Counterexample generation: Another investigation line

develops automated techniques to search for privacy violations.

Ding et al. [16] use statistical techniques based on hypothesis

testing for automatic generation of counterexamples. Bischel

et al. [17] use optimization-based techniques and symbolic

differentiation to search for counterexamples. These methods

search only amongst a bounded sequence of inputs and as-

sume a concrete value of the parameter ε. Wang et al. [15]

use program analysis techniques to generate counterexamples

when it fails to construct a proof.

Model-checking/Markov Chain approaches: The proba-

bilistic model checking approach for verifying ε-differential

privacy is employed in [22], [23], where it is assumed that the

program is given as a Markov Chain. These approaches do not

allow for sampling from continuous random variables. Instead,

they assume that the program behavior is given as a finite

Markov Chain, and the transition probabilities are specified as

inputs. Thus, they also implicitly assume a bounded sequence

of inputs and a concrete value of ε. In [24], the authors

use labeled Markov Chains to model differential privacy

algorithms. They consider discrete probabilities only. They

only model inputs taking values from a finite set and implicitly

assume a concrete value of ε. Further, they check whether the

ratio of probabilities of observations on neighboring inputs is

bounded by a constant. If it is bounded, it implies the algorithm

is ε-differentially private for sufficiently large ε.
Decision Procedures: The decision problem of checking

whether a randomized program is differentially private is

studied in [5], where it is shown to be undecidable for

programs with a single input and single output, assuming that

the program can sample from Laplacian distributions. They

identify a language that restricts the mechanisms in order

to obtain decidability. The restriction forces sampling from

the Laplace distribution only a bounded number of times.

The number of inputs and outputs are also bounded and

constrained to take values from a finite domain. The decision

procedure in [5] relies on the decision procedure for checking

the validity of a sentence in the fragment of the theory of

Reals with exponentiation identified in [18], and has very high

complexity. The decision procedure allows for verification of

differential privacy for all ε.
Complexity: Gaboardi et. al [25] study the complexity

of deciding differential privacy for randomized Boolean cir-

cuits, and show that the problem is coNP
#P-complete. They



assume finite number of inputs, the only probabilistic choices

in [25] are fair coin tosses, and eε is taken to be a fixed rational

number.

VI. CONCLUSION

In this paper, we introduced a model called DiP automata

for modeling differential privacy mechanisms. Such automata

can be used to model some of the interesting classes of mech-

anisms presented in the literature. We studied the problem of

checking if a mechanism given by a DiPA is differentially

private, i.e., it is dε-differentially private, for some constant

d > 0 and for all values of the scaling parameter ε > 0.
We showed that this problem is decidable in time that is

linear in the size of the automaton. Our decidability result is

based on checking the necessary and sufficient conditions for

differential privacy, presented in the paper. If the mechanism,

given by an automaton, is differentially private, then it outputs

a constant d such that the mechanism is dε-differentially

private, for all ε > 0. If the mechanism is not differentially

private, a counterexample can be constructed explaining why

it is not differentially private. For the published mechanisms

presented in the literature, that are differentially private, the

constant d computed by our method matches the published

values. The proofs showing that the given conditions presented

in the paper, are necessary and sufficient for differential

privacy, are highly non-trivial.

As part of future work, it will be interesting to come up with

the computation of the optimal constant d for mechanisms

modeled by DiPA, that are differentially private. It will be

interesting to extend our automata model to cover other

interesting differential privacy mechanisms such as private

smart sum algorithm [26], private vertex cover [27] and

NoisyMax [2].
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APPENDIX A

AUXILIARY DEFINITIONS

We shall start by defining some auxiliary definitions that

shall help us in the proof of Theorem 2.

Path Suffixes: Let A = (Q,Σ,Γ, qinit, X, P, δ) be an DiP

automaton. For any execution/path η = q0
a0,o0
−−−→ q1

a1,o1
−−−→

q2 · · · qn−1
an−1,on−1

−−−−−−−→ qn of A and i < n, the suffix of

ρ starting from state qi (or position i) is the path qi
ai,oi
−−−→

qi+1
ai+1,oi+1

−−−−−−→ qi+2 · · · qn−1
an−1,on−1

−−−−−−−→ qn and is denoted as

ρ||i.

Abstract paths: For any execution/path η = q0
a0,o0
−−−→

q1
a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn of A, the ab-

straction of ρ, denoted abstract(ρ), will be the word

q0σ0q1σ1 · · · qn−1σn−1qn where

σi =











oi if oi ∈ Γ

insample if oi = (insample, r, s)

insample′ otherwise

Note that for DiP automata, σi = oi for each i.
A sequence η = q0σ0q1σ1 · · · qn−1σn−1qn is said to be

an abstract path if η = abstract(ρ) for some execution ρ. By

abuse of notation, we shall say that the length pf the execution

η is n. Further such a ρ shall be called an execution of η on

input α = a0 · · · an. Note that ρ is unique if σi ∈ Γ for each

i. In general, two distinct sequences ρ and ρ′ having the same

abstraction η will only differ at indices i such that σi /∈ Γ.
At those indices, we would need to specify the values of the

interval end-points, ri, si, where the real output is assumed to

belong to.

Fix an abstract path η = q0σ0q1σ1 · · · qn−1σn−1qn. The ith-

transition, denoted trans[i], is the word qiσiqi+1. The guard of

the ith transition, denoted guardtrans[i] is the unique c such

that δ(qi, c) = (qi, σi, b). The output sequence of η, denoted

outseq(η) is the sequence σ0 · · ·σn. Note that we can classify

transitions of an abstract path as input, non-input, assignment

and non-assignment as expected. The notions of paths, cycles,

reachability, leaking cycle, leaking pair, disclosing cycle, pri-

vacy violating path and critical transition extends naturally to

abstract paths.

APPENDIX B

NECESSITY OF WELL-FORMEDNESS

We shall now show that if the DiPA A is not well-formed

then A is not differentially private, thus establishing the “only

if” part of Theorem 2. The proof of necessity will be broken

into four Lemmas. Lemma 6 shall show that if A has a leaking

cycle then A is not differentially private. Lemma 7 will deal

with presence of leaking pairs, Lemma 8 with presence of

disclosing cycles, and Lemma 9 with presence of privacy

violating paths. Please note that we shall use the notions of

path suffixes and abstract paths introduced in Appendix A.

Before we proceed, we need a technical lemma that char-

acterizes the probability of two samples from Laplace distri-

butions being ordered.

Lemma 5. Suppose Xi, for i = 1, 2, are random variables

with Xi ∼ Lap(ki, µi). Then Prob[X1 ≤ X2] is given as

follows. When k1 6= k2

Prob[X1 ≤ X2] =
1

2

[

1 + sgn(µ2 − µ1)

(

1

−
k22

2(k22 − k21)
e−k1|µ2−µ1|

+
k21

2(k22 − k21)
e−k2|µ2−µ1|

)]

.

On the other hand, when k1 = k2 = k

Prob[X1 ≤ X2] =
1

2

[

1 + sgn(µ2 − µ1)

(

1

− e−k|µ2−µ1|(1 +
k

2
| µ2 − µ1|)

)]

Leaking cycles implies no privacy

Lemma 6. A DiPA A is not differentially private if it has a

reachable leaking cycle.

Let A = (Q,Σ,Γ, qinit, X, P, δ). Assume that A has a

leaking cycle reachable from the state qinit. We give the proof

first assuming that all states of A are input states. The proof

for the case when the automata has both input and non-input

states can be proved along similar lines and is left out.

Let η = q0σ0q1σ1 · · · qm+n−1σm+n−1qm+n for k =
0, . . . ,m + n − 1 be an abstract path such that q0 = qinit,
qm = qm+n, and the final n transitions of ρ, i.e., the abstract

path C = qmσmqm+1σm+1 · · · qm+n−1σm+n−1qm+n is a

leaking cycle.

Let tk be the k-th transition of η and ck be the guard of the

k-th transition. Further, let dk and µk be such that P (qk) =
(dk, µk) for each k. We have that c0 = true and t0 is an

assignment transition. Let i, j be the smallest integers such

that m ≤ i < j < m + n and the following properties are

satisfied: (a) ti is an assignment transition, (b) cj 6= true and

(c) for every k1 such that i < k1 < j, tk1
is a non-assignment

transition and ck1
= true. We fix i, j as above. Consider any

integer ` > 0. We define an abstract path η` starting from

qinit by repeating the cycle tm, . . . tm+n−1, ` times. Formally,

η` = q0σ0q1σ1 · · · qm+`n−1σm+`n−1qm+`n such that qk =
qk−n and σk = σk−n for m + n ≤ k ≤ m + `n. Let γ(`) =
o0 · · · om+`n−1 be the output sequence of length m+ `n such

that ok = σk if σk ∈ Γ, otherwise ok = (σk,−∞,∞). Once

again, we let tk be the k-th transition of η` and ck be the

guard of the k-th transition. Now, given ` > 0, we define

two neighboring input sequences α(`) = a0 · · · am+`n−1 and

β(`) = b0 · · · bm+`n−1 each of length m+ `n.
The sequence α(`) is chosen so that all the guards in the

transitions of η` are satisfied with joint probability > 1
2 for



large ε. The input a0 = 0 and for 0 < k < m + `n, ak is

defined inductively as given below: let k′ < k be the largest

integer such that tk′ is an assignment transition, then ak is

given as follows: if ck is the guard insample ≥ x then ak =
µk′ − µk + ak′ + 1, otherwise ak = µk′ − µk + ak′ − 1.

Now, consider any k, 0 ≤ k < m + `n, such that

ck 6= true and fix it. Let k′ < k be the largest integer such

that tk′ is an assignment transition. Let Xk′ , Xk be the two

random variables with distributions given by Lap(dk′ε, ak′)
and Lap(dkε, ak). Let Yk denote the random variable denoting

the kth output of η on the input sequence α(`). Now consider

the case when ck is insample ≥ x. From the way, we defined

α(`) it is the case that µk + ak = µk′ + ak′ + 1. Now

Prob[Yk 6= ok] = Prob[Xk < Xk′ ] = Prob[Xk ≤ Xk′ ]. Let

dmx = max(dk, dk′) and dmn = min(dk, dk′). From Lemma

5, we see that if dk 6= dk′ then

Prob[Xk ≤ Xk′ ] <
dmx

2

2(dmx
2 − dmn

2)
e−dmnε.

If dk = dk′ then

Prob[Xk ≤ Xk′ ] <
1

2
e−dkε(1 +

dkε

2
).

From the above, we see that

Prob[Yk 6= ok] ≤ re−dmnε(1 +
dmxε

2
)

where r is a constant that depends only on A (and not on k).

Now consider the case when ck is insample < x. In this case,

µk+ak = µk+ak′−1 and Prob[Yk 6= ok] = Prob[Xk′ < Xk].
By a similar analysis, in this case also,

Prob[Yk 6= ok] ≤ re−dmnε(1 +
dmxε

2
).

Let dmax = max{π1(P (q)) | q ∈ Q} and dmin =
min{π1(P (q)) | q ∈ Q}. Then, for every k, 0 ≤ k < m+ `n,

Prob[Yk 6= ok] ≤ re−dminε(1 +
dmaxε

2
)

Using the union rule of probabilities, we see that,

Prob[∃k < m+`n, Yk 6= ok] ≤ r(m+`n)e−dminε(1+
dmaxε

2
).

Given ` > 0, let ε` ∈ R, be the smallest value such that

∀ε ≥ ε`, r(m+ `n)e−dminε(1 +
dmaxε

2
) ≤

1

2
.

Now,

Pr[ε, ρα(`)] = 1− Prob[∃k < m+ `n, Yk 6= ok].

From the construction of ε` and above observations, we see

that ∀ε ≥ ε`, Pr[ε, ρα(`)] ≥
1
2 .

Now, recall the integers i, j fixed earlier. Intuitively, we

define β(`) so that each of the guards in the transitions

tj+`′n, 0 ≤ `′ < ` are satisfied with probability < 1
2 . For

each `′, 0 ≤ `′ < `, we let bi+`′n = aj+`′n + µj − µi and

bj+`′n = ai+`′n+µi−µj . We observe the following. Now, for

each `′, 0 ≤ `′ < `, the following hold. cj+`′n = cj 6= true.

If cj+`′n is the guard insample ≥ x then bi+`′n + µi =
bj+`′n+µj +1 since aj+`′n+µj = ai+`′n+µi+1. If cj+`′n

is the guard insample < x then bj+`′n +µj = bi+`′n +µi +1
since ai+`′n + µi = aj+`′n + µj + 1. We define bi′ , for all

values of i′ < m+`n and i′ /∈ {i+`′n, j+`′n|0 ≤ `′ < `}, so

that β(`) is a neighbour of α(`). It is not difficult to see that

such a sequence β(`) can be defined. Let ρβ(`) be the path

such that abstract(ρβ(`)) = η(`) and inseq(ρβ(`)) = β(`).
For each k, 0 ≤ k < m + `n, let Uk be the random

variable with distribution given by Lap(dqkε, bk) and Zk be

denoting the kth output of η on the input sequence β(`). Let

d′ = min(di, dj) and d′′ = max(di, dj). Now, Prob[Zj = oj ]
is given by Prob[Uj ≥ Ui] if cj is the guard insample ≥ x,

otherwise it is given by Prob[Uj ≤ Ui]. Using Lemma 5 and

similar reasoning as given earlier, we see that

Prob[Zj = oj ] ≤ r′e−d′ε(1 +
d′′ε

2
)

for some constant r′. For each `′, 0 < `′ < `, using the same

reasoning as above with the random variables Ui+`′n, Uj+`′n,

we see that

Prob[Zj+`′n = oj+`′n] ≤ r′e−d′ε(1 +
d′′ε

2
).

Since for any `1, `2 such that 0 ≤ `1 < `2 < `, the random

variables Ui+`1n, Uj+`1n are independent of Ui+`2n, Uj+`2n,

we see that

Prob[∀`′, 0 ≤ `′ < `, Zj+`′n = oj+`′n] ≤ r′
`
e−d′`ε(1+

d′′ε

2
)`.

Thus,

Prob[∀k, 0 ≤ k < m+ `n, Zk = ok] ≤ r′
`
e−d′`ε(1 +

d′′ε

2
)`.

The LHS of the above equation is exactly Pr[ε, ρβ(`)].
Thus, for any ` > 0,

∀ε ≥ ε`,
Pr[ε, ρα(`)]

Pr[ε, ρβ(`)]
≥

1

2
(

ed
′ε

r′(1 + d′′ε
2 )

)`.

We claim that for any s > 0, ∃`, ε such that

1

2
(

ed
′ε

r′(1 + d′′ε
2 )

)` > esε.

Now the above inequality holds if

e(d
′`−s)ε

(1 + d′ε
2 )`

> 2r′
`
.

Choose ` so that d′` > s. Since the denominator of the left

hand side term of the last inequality grows polynomially in ε,
while its numerator grows exponentially in ε, it is easy to see

that ∃ε0 > ε` such that

∀ε ≥ ε0,
e(d

′`−s)ε

(1 + d′ε
2 )`

> 2r′
`
.

The crucial observation we now make is that, thanks to output

determinism, for every input sequence α and output sequence

γ, there is at most one path ρα,γ such that inseq(ρα,γ) = α
and outseq(ρα,γ) = α. This observation combined with the

above inequality shows that A is not differentially private.



Leaking pairs implies no privacy

Lemma 7. A DiPA A is not differentially private if it has a

leaking pair of cycles (C,C ′) such that C is reachable from

the initial state of A.

Proof. Thanks to Lemma 6, we can assume A does not have

a leaking cycle. Let A = (Q,Σ,Γ, qinit, X, P, δ). Assume that

A has a leaking pair of cycles (C,C ′) such that C is reachable

from qinit. Assume that C is an L-cycle and C ′ is a G-cycle.

(The proof for the case when C is a G-cycle and C ′ is an

L-cycle is similar but symmetric and is left out). Thanks to

our assumption that we do not have leaking cycles, it means

that both C,C ′ do not have assignment transitions. We further

assume that C,C ′ are distinct. If they are the same then it is

straightforward to prove that A is not differentially private,

using more or less the same proof. We also assume that all

the states in A are input states. The case when A has both

input and non-input states can also be proved using more or

less the same proof.

Let the lengths of C,C ′ be n1, n2, respectively. Now, for

any ` > 0, consider the following abstract path η` in A starting

from qinit in which the cycles C,C ′ are repeated ` times each.

The path

η` = q0σ0 · · · quσu · · · qvσv · · · qv+n1`−1σv+n1`−1 · · ·
· · · qwσw · · · ow+n2`−1qw+n2`

where the following guards are satisfied. For each k, let tk
be the k-th transition of η. and ck be the gaurd of the k-th

transition.

1) q0 = qinit
2) qvσvqv+1σv+1 · · · qv+n1−1σv+n1−1qv+n1

is the cycle C

3) tj+n1
= tj for all j, v ≤ j < v + n1(`− 1)

4) qwσwqw+1σw+1 · · · qw+n2−1σw+n2−1qw+n2
is the cy-

cle C ′

5) tj+n2
= tj for all j, w ≤ j < w + n2(`− 1)

6) tu is an assignment transition and ∀ j, u < j < v + n1`
and ∀ j, j ≥ w, tj is a non-assignment transition

7) for all j, v + n1` ≤ j < w, if tj is an assignment

transition then cj is the guard insample ≥ x.

Observe that the last assignment transition before tv+n1` is

tu, all assignment transitions from tv+n1` up to tw have

insample ≥ x as their guard, the segment of the path from

tv to tv + n1` − 1 is the part where cycle C is repeated `
times and the segment of the path from tw to tw + n2` − 1
is the part where cycle C ′ is repeated ` times. Let dk and

µk be such that P (qk) = (dk, µk) for each k. We have that

c0 = true and t0 is an assignment transition.

Let γ(`) = o0 · · · om+`n−1 be the output sequence of

length m + `n such that ok = σk if σk ∈ Γ, otherwise

ok = (σk,−∞,∞). Once again, we let tk be the k-th

transition of η` and ck be the guard of the k-th transition.

Now, given ` > 0, we define two neighboring input sequences

α(`) = a0 · · · am+`n−1 and β(`) = b0 · · · bm+`n−1 each of

length m+ `n.
Now, we define two adjacent input sequences α(`) =

a0 · · · aw+n2`−1 and β(`) = b0 · · · bw+n2`−1 as follows. For

all j, 0 ≤ j < v and for all j, v+n1` ≤ j < w,aj = bj = 0; for

all j, v ≤ j < v+n1` and for all j, w ≤ j < w+n2`, if cj is

the guard insample ≥ x then aj = 1
2−µj , bj = − 1

2−µj , if cj
is the guard insample < x then aj = − 1

2 − µj , bj = 1
2 − µj

and if cj is true then aj = bj = 0. It is not difficult to

see that α(`) and β(`) are adjacent. Let ρα(`) be the path

such that abstract(ρα(`)) = η(`) and inseq(ρα(`)) = α(`).
Let ρβ(`) be the path such that abstract(ρβ(`)) = η(`) and

inseq(ρβ(`)) = β(`).

Let Xj , Uj be random variables with distributions given

by Lap(djε, aj + µj) and Lap(djε, bj + µj), respectively. Ob-

serve that tu is the last assignment transition in η`. For

each j > u, for any given y ∈ R, let gj(y), hj(y) be the

probabilities defined as follows: if cj is the guard insample ≥ x

then gj(y) = Prob[Xj ≥ y] and hj(y) = Prob[Uj ≥ y]; if

cj is the guard insample < x then gj(y) = Prob[Xj < y] and

hj(y) = Prob[Uj < y]; if cj is true then gj(y) = hj(y) = 1.
It should be easy to see that, for all j, u < j < v and for all

j, v+n1` ≤ j < w, aj = bj and hence gj(y) = hj(y). Now,

we have the following claim.

Claim: For all j, v ≤ j < v + n1`, and for all j, w ≤ j <
w + n2`, it is the case that gj(y) ≥ hj(y) for all y ∈ R, and

the following additional inequalities hold.

1) If y ≤ 0 and cj is the guard insample < x then gj(y) ≥
e

1
2
djεhj(y).

2) If y > 0 and cj is the guard insample ≥ x then gj(y) ≥
e

1
2
djεhj(y).

Proof. Observe that when cj = true then trivially gj(y) =
hj(y). Now, consider the case when y < − 1

2 . If cj is the guard

insample ≥ x then gj(y) = 1− 1
2e

−djε(
1
2
−y) and hj(y) = 1−

1
2e

−djε(−
1
2
−y)(this is so since aj+µj =

1
2 and bj+µj = −

1
2 )

; in this case 1
2 − y > − 1

2 − y and hence gj(y) ≥ hj(y). If

cj is the guard insample < x then gj(y) = 1
2e

−djε(−
1
2
−y)

and hj(y) = 1
2e

−djε(
1
2
−y); from this we see that gj(y) ≥

edjεhj(y).

Now consider the case when y ∈ [− 1
2 , 0]. If cj is the guard

insample ≥ x then gj(y) = 1 − 1
2e

−djε(
1
2
−y) and hj(y) =

1
2e

−djε(y+
1
2
); since gj(y) ≥

1
2 and hj(y) ≤

1
2 , we see that

gj(y) ≥ hj(y). If cj is the guard insample < x then gj(y) =
1− 1

2e
−djε(y+

1
2
) and hj(y) = 1

2e
−djε(

1
2
−y); since gj(y) ≥

1
2 ,

we see that gj(y) ≥ e
1
2
djεhj(y).

Now consider the case when y > 0. If y ≤ 1
2 and cj is

insample ≥ x then gj(y) = 1 − 1
2e

−djε(
1
2
−y) and hj(y) =

1
2e

−djε(y+
1
2
); observe that gj(y) ≥

1
2 and hj(y) ≤

1
2e

− 1
2
djε;

from this we get the desired inequality.

If y ≤ 1
2 and cj is insample < x then gj(y) = 1 −

1
2e

−djε(y+
1
2
) and hj(y) = 1

2e
−djε(

1
2
−y); since gj(y) ≥

1
2

and hj(y) ≤
1
2 , we see gj(y) ≥ hj(y). If y > 1

2 and cj
is insample ≥ x then gj(y) = 1

2e
−djε(y−

1
2
) and hj(y) =

1
2e

−djε(y+
1
2
); from this we see that the desired inequality

follows easily. If y > 1
2 and cj is insample < x then

gj(y) = 1 − 1
2e

−djε(y+
1
2
) and hj(y) = 1 − 1

2e
−djε(y−

1
2
);

it is easy to see that gj(y) ≥ hj(y).



Let S1(`) be the set of all j such that v ≤ j < v+n1` and

cj is the guard insample < x. Let S2(`) be the set of all j
such that w ≤ j < w+n2`, and cj is the guard insample ≥ x.
Since C is an L-cycle and C ′ is a G-cycle, we see that the

cardinalities of both S1(`) and S2(`) are ≥ `. Let dmin =
min{dj | j ∈ S1(`) ∪ S2(`)}. Clearly dmin > 0.

Let ρα(`) be the path such that abstract(ρα(`)) = η(`) and

inseq(ρα(`)) = α(`). For k ≤ q + n2`, let ρα(`)||k (resp,

ρβ(`)||k) be the suffix of ρα(`) (resp. ρα(`)||k) starting with

qk.
Since C ′ is a G-cycle, from the above claim, we see that

∀y ∈ R, Pr[ρα(`)||w, y] ≥ Pr[ρβ(`)||w, y], and ∀y > 0,

Pr[ρα(`)||w, y] ≥ e
1
2
dmin`εPr[ρβ(`)||w, y]. Using the above

property and the previous claim, together with the assumption

that ∀j, v + n1` ≤ j < w, if tj is an assignment transition

then it’s guard is insample ≥ x, the following can be proved

by downward induction on k, ∀k, v + n1` ≤ k < w:

∀y ∈ R, Pr[ρα(`)||k, y] ≥ Pr[ρβ(`)||k, y], and ∀y > 0,

Pr[ρα(`)||k, y] ≥ e
1
2
dmin`εPr[ρβ(`)||k, y].

Now, it should be easy to see that ∀y ∈ R,

Pr[y, ρα(`)||v] = (
∏

v≤j<v+n1`
gj(y))Pr[y, ρα(`)||v + n1`]

Pr[y, ρβ(`)||v] = (
∏

v≤j<v+n1`
hj(y))Pr[y, ρβ(`)||v + n1`].

Observe that ∀j, v ≤ j < v + n1`,

∀y ≤ 0 : gj(y) ≥ e
1
2
dminεhj(y),

Pr[y, ρα(`)||j] ≥ Pr[y, ρβ(`)||j]
and

∀y > 0 : gj(y) ≥ hj(y),

Pr[y, ρα(`)||j] ≥ e
1
2
dmin`εPr[y, ρβ(`)||j].

From this we get the following:

∀y ∈ R, Pr[y, ρα(`)||v] ≥ e
1
2
dmin`εPr[y, ρβ(`)||v].

Using this we can show by the definition of probability of a

path that
Pr[ε, ρα(`)]

Pr[ε, ρβ(`)]
≥ e

1
2
dmin`ε.

Since ` can be made arbitrarily large, we see that A is not

dε-differentially private, for any d > 0. Hence A is not

differentially private.

Disclosing cycles implies no privacy

Lemma 8. A DiPA A is not differentially private if it has a

reachable disclosing cycle.

Proof. Thanks to Lemma 6 and Lemma 7, we can assume A
does not have leaking cycles or leaking pairs. Assume that A
is well-formed, but there is a reachable disclosing cycle C in

A that has a transition whose output is insample. The proof

for the case when C has a transition whose output is insample′

is simpler and is left out. Now, if the transition of C whose

output is insample has the guard true, then it can be shown

easily that repeating the cycle ` times incurs a privacy cost

linear in `ε, and hence A cannot be dε-differentially private

for any d > 0. Thus, we consider more interesting case when

the guard is insample < x or insample ≥ x.

We consider the case when C has a transition with output

insample. Since A is well-formed the cycle C has no assign-

ment transitions. Let η = q0σ0q1σ1 · · · qj+m−1σj+m−1qj+m

for k = 0, . . . , j+m−1 be an abstract path such that q0 = qinit,
qj = qj+m, and the final m transitions of ρ is the abstract

cycle corresponding to C. Fix 0 ≤ r < m be such that

σj+r = insample. We assume that the guard of the (j + r)-th
transition is insample ≥ x. The case when it is insample < x

is similar and left out. Further, let dk and µk be such that

P (qk) = (dk, µk) for each k.
Fix ` > 0. We define an abstract path η` starting from

qinit by repeating the cycle C ` times. Formally, η` =
q0σ0q1σ1 · · · qj+`m−1σj+`m−1qj+`m such that qk = qk−m

and σk = σk−n for j +m ≤ k ≤ j + `m. Let tk be the k-th

transition of η` and ck be the guard of the k-th transition. We

have that σj+nm+r = insample, for all n such that 0 ≤ n < `.
Now we construct two input sequences α(`) =

a0 · · · aj+`m−1 and β(`) = b0 · · · bj+`m−1 as follows. We take

ak = −µk, for all k, 0 ≤ k < j + `m such that tk is an input

transition, otherwise we take ak = τ. We take bk = −µk−1 if

k = j+nm+r for some 0 ≤ n < ` and bk = ak otherwise. Let

ρ(`) = q0
a0,o0
−−−→ q1

a1,o1
−−−→ q2 · · · qj+`m−1

aj+`m−1,oj+`m−1

−−−−−−−−−−−→
qj+`m be the path such that

• η = abstract(ρ(`)),
• inseq(ρ(`)) = α(`), and

• all k, i) ok = σk if σk ∈ Γ, ii) ok = (σk, 0,∞) if

k = j + nm + r for some 0 ≤ n < `, and iii) ok =
(σk,−∞,∞) otherwise.

Let ρ′(`) = q0
b0,o0
−−−→ q1

b1,o1
−−−→

q2 · · · qj+`m−1
bj+`m−1,oj+`m−1

−−−−−−−−−−−→ qj+`m be the path that

is equivalent to ρ and inseq(ρ′(`)) = β(`).
Let ρ(`)||k and ρ′(`)||k be the suffixes of execu-

tions ρ(`) and ρ′(`) starting from state qk. Using back-

ward induction, we can easily show that for each x0,
Pr[x0, ρ(`)||k],Pr[x0, ρ

′(`)||k] are non-zero and that

Pr[x0, ρ(`)||k] = e#(k)dj+rεPr[x0, ρ
′(`)||k]

where #(k) is the number of indices k1 such that k ≤ k1 <
j +m`− 1 and k1 = j + nm+ r for some 0 ≤ n < `. Thus,

Pr[ε, ρ(`)] = e`dj+rεPr[ε, ρ′(`)].

Now, ` is arbitrary and hence for every d > 0, there is

an ` such that Pr[ε, ρ(`)] > edεPr[ε, ρ′(`)]. Hence A is not

differentially private.

Privacy violating paths implies no privacy

Lemma 9. A DiPA A is not differentially private if it has a

reachable privacy violating path.

Proof. Thanks to Lemma 6, Lemma 8 and Lemma 7, we can

assume A does not have leaking cycles, disclosing cycles or

leaking pairs. We give the proof for one of the cases of a

privacy violating path, where the path starts with a transition

whose guard is insample < x and which lies on an L-cycle

C which is followed by an AG-path ending in a transition



with guard insample ≥ x and whose output is insample. (The

proofs for other cases of the privacy violating path are similar

and are leftout.) Since A is well-formed, the cycle C does not

have an assignment transition.

Fix ` > 0. Consider an abstract path η(`) =
q0σ0q1σ1 · · · qn−1σn−1qn of length n from the initial state

qinit such that η(`) contains the cycle C repeated ` times, and

upon exiting the cycle continues onto the AG-path p such that

the last transition of the AG-path has guard insample ≥ x

and outputs insample. Fix a transition of C with guard

insample < x, and let k1, k2, . . . , k` be the indices where

this transition occurs in η(`). Let P (qk) = (dk, µk). Next,

we construct two input sequences α(`) = a0 · · · an and

β(`) = b0 · · · bn of length n as follows. If the kth transition

of η(`) is a non-input transition then ak = bk = τ. If

k ∈ {k1, k2, . . . , k`} then ak = −µk and bk = −µk + 1. For

all other ks, ak = bk = −µk. Let ρ(`) = q0
a0,o0
−−−→ q1

a1,o1
−−−→

q2 · · · qj+`m−1
aj+`m−1,oj+`m−1

−−−−−−−−−−−→ qj+`m be the path such that

• η = abstract(ρ(`)),
• inseq(ρ(`)) = α(`), and

• for all k, i) ok = σk if σk ∈ Γ, ii) ok = (σk,−∞, 0) if

k = n, and iii) ok = (σk,−∞,∞) otherwise.

Let ρ′(`) = q0
b0,o0
−−−→ q1

b1,o1
−−−→

q2 · · · qj+`m−1
bj+`m−1,oj+`m−1

−−−−−−−−−−−→ qj+`m ibe the path that

is equivalent to ρ and inseq(ρ′(`)) = β(`).

Please note that in ρ(`), ρ′(`), the last output is a non-

positive number. As the path p is also an AG-path, this implies

that stored value of x during the ` executions of C is also a

non-positive number. Combined with the fact that C is an L-

cycle and the construction of ρ(`), ρ′(`), it can be shown that

Pr[ε, ρ(`)] = e`dk1
εPr[ε, ρ′(`)].

As in the case of disclosing cycle (See Lemma 8), we can

conclude that A is not differentially private.

APPENDIX C

SUFFICIENCY OF WELL-FORMEDNESS

We shall now show that if the DiPA A is well-formed then

A is differentially private, thus establishing the “if” part of

Theorem 2. Please note that it suffices to prove Lemma 3. In

order to manage complexity, we shall first prove the Lemma

for the case that A outputs only elements of the discrete set Γ
(See Lemma 11). Then we shall tackle the case of all outputs

(See Lemma 13). Please note that we shall use the notions of

path suffixes and abstract paths introduced in Appendix A.

Before we proceed, we need a technical lemma.

Lemma 10. Let f and gi for i = 1, . . . , k be non-negative

functions from R to R, i.e., f(y), gi(y) ≥ 0 for all i, y. For

i = 1, . . . , k, let θi ∈ [−1, 1]. Let x0, x1 ∈ R ∪ {∞,−∞},
be such that x0 < x1. Then, the following inequalities are

satisfied for all k ≥ 0. The empty products (the case when

k = 0) in these inequalities are taken be 1.

1.
∫ x1

x0
f(x)

∏k
i=1

∫∞

x
gi(y − θi)dydx ≥

∫ x1+1

x0+1
f(x− 1)

∏k
i=1

∫∞

x
gi(y)dy dx

2.
∫ x1

x0
f(x)

∏k
i=1

∫ x

−∞
gi(y − θi)dydx ≥

∫ x1−1

x0−1
f(x+ 1)

∏k
i=1

∫ x

−∞
gi(y)dy dx

Proof. We prove the inequality (1) as follows. For each i =
1, . . . , k, by substituting z = y−θi, we get

∫∞

x
gi(y−θi)dy =

∫∞

x−θi
gi(z)dz. Since θi ∈ [−1, 1] and gi is a positive function,

we get
∫∞

x−θi
gi(z)dz ≥

∫∞

x+1
gi(z)dz. By rewriting the left

hand side of the inequality (1) as specified above and by

substituting, u = x + 1, we get the right hand side of the

inequality (1) where the outer integral is over the variable u.
By replacing u by x and z by y, we get the right hand side

of the inequality.

We prove the inequality (2) as follows. As before, for each

i = 1, . . . , k, we rewrite the integral
∫ x

−∞
gi(y − θi)dy as

∫ x−θi

−∞
gi(z)dz and then observe that this is ≥

∫ x−1

−∞
gi(z)dz.

Substituting u = x − 1, and then replacing u by x later, we

get the inequality (2).

DiP automata with Finite Outputs

Lemma 11. Let A = (Q,Σ,Γ, qinit, X, P, δ) be a well-formed

DiPA with finite outputs. Let ρ be a path of length n > 0 such

that the initial transition (i.e. the 0th transition), t0, of ρ is an

assignment transition. Let c0 be the guard of t0. Let ρ′ be a

path that is equivalent to ρ such that inseq(ρ′) is a neighbor

of inseq(ρ). Then the following properties hold for all x0 ∈ R.

1) If the guard c0 is insample ≥ x, and the first cycle

transition in ρ is a G-cycle transition and no assignment

transition with guard insample < x appears before it,

then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 + 1, ρ].

2) If the guard c0 is insample ≥ x and one of the following

holds: (a) ρ has no cycle transitions, (b) the first cycle

transition in ρ is a G-cycle transition and an assignment

transition with guard insample < x appears before it,

(c) the first cycle transition in ρ is an L-cycle transition,

then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 − 1, ρ].

3) If the guard c0 is insample < x and the first cycle

transition in ρ is a L-cycle transition and no assignment

transition with guard insample ≥ x appears before it,

then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 − 1, ρ].

4) If the guard c0 is insample < x and one of the following

holds: (a) ρ has no cycle transitions, (b) the first cycle

transition in ρ is a L-cycle transition and an assignment

transition with guard insample ≥ x appears before it,

(c) the first cycle transition in ρ is a G-cycle transition,

then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 + 1, ρ].



5) If the guard c0 is true, then Pr[x0, ρ
′] ≥

e−wt(ρ)εPr[x0, ρ].

Proof. Let ρ = q0
a0,o0
−−−→ q1

a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn

and ρ′ = q0
b0,o0
−−−→ q1

b1,o1
−−−→ q2 · · · qn−1

bn−1,on−1

−−−−−−→ qn. Let

t0, . . . , tn−1 be the transitions of ρ and let c0, . . . , cn−1 be

their respective guards. For each k ≤ n, let dk, µk be such

that P (qk) = (dk, µk). Recall that, for any k, ρ||k denotes

the suffix of ρ starting from qk. We assume that there are no

cycle transitions that are assignments. This is because if there

is a cycle with an assignment then the guards on all other

transitions must be true. Hence, we can never exit the cycle.

Further, it is easy to see that this cycle has the same “behavior”

in both ρ and ρ′.

For each k, such that 0 ≤ k < n, let gk, g
′
k, θk be functions

of a single variable given by

gk(y) =

{

dkε
2 e−dkε|y−ak−µk| ti is an input transition

dkε
2 e−dkε|y−µk| otherwise

,

g′k(y) =

{

dkε
2 e−dkε|y−bk−µk| ti is an input transition

dkε
2 e−dkε|y−µk| otherwise

and

θk =

{

bk − ak ti is an input transition

0 otherwise.

Observe that, for each k ≥ 0, g′k(y) = gk(y − θk). Since

|θk| ≤ 1, we see that g′k(y) ≥ e−dkεgk(y), for all y ∈ R.

We prove the lemma by induction on the number of assign-

ment transitions in ρ.

Base Case: In the base case, ρ has one assignment

transition which is t0. Let S1 and S2 be the sets of k > 0 such

that ck is insample ≥ x and ck is insample < x, respectively.

Now, assume the condition of statement (1) of the Lemma

is satisfied. Observe that S1 includes all G-cycle transitions

whose guard is insample ≥ x. Observe that, since A is well-

formed, for all k ∈ S2, tk does not lie on a cycle and hence

is a critical transition. Similarly t0 is also a critical transition.

Now, we see that

Pr[x0, ρ
′] =

∫ ∞

x0

f(x)
∏

k∈S1

∫ ∞

x

g′k(y)dy dx

where f(x) = g′0(x)
∏

k∈S2

∫ x

−∞

g′k(y)dy. Now, substituting

g′k(y) = gk(y − θk) (for k ∈ S1) in the above equation and

using inequality (1) of Lemma 10, we see that

Pr[x0, ρ
′] ≥

∫ ∞

x0+1

f(x− 1)
∏

k∈S1

∫ ∞

x

gk(y)dy dx.

Observe that

f(x− 1) = g0(x− (1 + θ0))
∏

k∈S2

∫ x−1

−∞

gk(y − θk)dy.

Now, by introducing a new variable z such that z = y + 1,

we see that
∫ x−1

−∞

gk(y − θk)dy =

∫ x

−∞

gk(z − (1 + θk))dz.

From this, it is easy to see that

f(x− 1) ≥ e−2(d0+
∑

k∈S2
dk)εg0(x)

∏

k∈S2

∫ x

−∞

gk(y)dy.

Observe that wt(ρ) ≥ 2(d0+
∑

k∈S2
dk). Putting all the above

observations together, we get

Pr[x0, ρ
′]

≥ e−wt(ρ)ε

∫ ∞

x0+1

g0(x)
∏

k∈S2

∫ x

−∞

gk(y)dy
∏

k∈S1

∫ ∞

x

gk(y)dy.

Observe that the right hand side of the above inequality is

e−wt(ρ)εPr[x0 + 1, ρ]. Property (1) of the lemma follows for

the base case from this observation.

Now, we prove the base case for property (2). Assume the

condition of (2a) is satisfied, i.e., there are no cycle transitions

in ρ. Now, we see that

Pr[x0, ρ
′]

=

∫ ∞

x0

g′0(x)
∏

k∈S1

∫ ∞

x

g′k(y)dy
∏

k∈S2

∫ x

−∞

g′k(z)dz dx.

By introducing new variables u, v, w such u = x − 1, v =
y − 1, w = z − 1, we get

Pr[x0, ρ
′] =

∫ ∞

x0−1

g′0(u+ 1)
∏

k∈S1

∫ ∞

u

g′k(v

+ 1)dv
∏

k∈S2

∫ u

−∞

g′k(w + 1)dw du.

Observing that, for each k ≥ 0, g′k(u+1) ≥ e−2dkεgk(u) and

tk is a critical transition, we get the inequality of property (2).

Now observe that condition of (2b) can not be satisfied as

t0 is the only assignment transition in ρ. Now, assume the

condition of (2c) is satisfied. Now, observe that, for all k ∈ S1,

tk is a critical transition. As before, we see that

Pr[x0, ρ
′] =

∫ ∞

x0

f(x)
∏

k∈S2

∫ x

−∞

g′k(y)dy dx

where f(x) = g′0(x)
∏

k∈S1

∫ ∞

x

g′k(y)dy. Now, using inequal-

ity (2) of Lemma 10, we see that

Pr[x0, ρ
′] ≥

∫ ∞

x0−1

f(x+ 1)
∏

k∈S2

∫ x

−∞

gk(y)dy dx.

Now, observe that

f(x+ 1) = g0(x− (θ0 − 1))
∏

k∈S1

∫ ∞

x+1

gk(y − θk)dy.



Introducing a new variable z and setting z = y − 1, we see

that

f(x+ 1) = g0(x− (θ0 − 1))
∏

k∈S1

∫ ∞

x

gk(z − (θk − 1))dz

and

f(x+ 1) ≥ e−2(d0+
∑

k∈S1
dk)εg0(x)

∏

k∈S1

∫ ∞

x

gk(z)dz.

From this and the above inequality, it is easily seen that

Pr[x0, ρ
′] ≥ e−2(d0+

∑
k∈S2

dk)εPr[x0 − 1, ρ].

From this we see that the inequality of property (2) holds.

The proof for the base case of Properties (3) and (4) is

symmetric to those of properties (1) and (2) and is left out. To

prove property (5) for the base case, we see that the proof is

similar to those of properties (1) and (3) depending on whether

G-cycle or L-cycle transitions appear. There are two minor

differences. The first difference is that if the first transition is

a non-input transition then θ0 = 0 and hence it only incurs

a cost of d0 and not 2d0. The second difference is that the

lower limit of the outer integral will be −∞ in the former

case, while the upper limit of the outer integral being ∞ in

the latter case. In either case, it is straightforward to see that

property (5) holds.

Inductive Step: Now, we prove the inductive step as

follows. Assume that all the properties hold when ρ has

` > 0 assignments. Now, consider the case when ρ has `+ 1
assignments. Let ti, for i > 0, be the second assignment

transition in ρ. Let S1 (resp., S2) be the set of k, 0 < k < i,
such that ck is insample ≥ x (resp., insample < x).

Consider the case when c0 is insample ≥ x. Now, we

consider two sub-cases. We first consider the sub-case when

there is no cycle transitions before ti. We have Pr[x0, ρ
′] =

∫∞

x0
f ′(x)Pr[ρ′||i, x]dx where

f ′(x) = g′0(x)
∏

k∈S1

∫ ∞

x

g′k(y)dy
∏

k∈S2

∫ x

−∞

g′k(y)dy.

Applying the inductive hypothesis for the suffix ρ||i, we

get an inequality involving Pr[ρ′||i, x] and Pr[x + 1, ρ||i], or

Pr[ρ′||i, x − 1], or Pr[x, ρ||i], based on which of the five

properties of the lemma are satisfied by ρ||i. Suppose the

condition of property (1) is satisfied by ρ||i, by using the

inductive hypothesis, we get Pr[x0, ρ
′] ≥

∫∞

x0
f ′(x)h(x)dx,

where h(x) = e−2wt(ρ||i)εPr[x + 1, ρ||i]. Now, by taking

f(x) = f ′(x)h(x), using inequality (1) of Lemma 10 and

by taking k = 0 in that inequality, we get property (1) for

the path ρ using the same simplification/reasoning used in the

base case and by observing that

Pr[x0 + 1, ρ] =

∫ ∞

x0+1

g0(x)
∏

k∈S1

∫ ∞

x

gk(y)dy

∏

k∈S2

∫ x

−∞

gk(y)dyPr[x, ρ||i]dx.

We can similarly prove the inductive step when the suffix ρ||i
satisfies the other properties (i.e., 2 through 5) of the lemma.

Now consider the sub-case when a cycle transition appears

before ti. Assume that the cycle transitions are G-cycle

transitions. If ci is also insample ≥ x, then the suffix ρ||i
can satisfy any of the conditions of the first two properties

of the lemma; In this situation, let f(x) = f ′(x)h(x)
where f ′(x) = g′0(x)

∏

k∈S2

∫ x

−∞
g′k(y)dy and h(x) =

e−2wt(ρ||i)εPr[x+1, ρ||i]. Observe that, if ρ||i satisfies the con-

dition of property (1) then h(x) is the RHS of the inequality,

we get, by applying the inductive hypothesis to ρ||i. If ρ||i
satisfies the condition of property (2) of the lemma then, by

applying the inductive hypothesis to ρ||i, we get Pr[ρ′||i, x] ≥
e−2wt(ρ||i)εPr[x−1, ρ||i]. Since, Pr[x−1, ρ||i] ≥ Pr[x+1, ρ||i],
we see that Pr[ρ′||i, x] ≥ e−2wt(ρ||i)εPr[x + 1, ρ||i]. Now,

we have Pr[x0, ρ
′] ≥

∫∞

x0
f ′(x)h(x)

∏

k∈S1

∫∞

x
g′k(z)dzdx.

Applying the inequality (1) of Lemma 10, we get the desired

result for the inductive step. On the other hand, if ci is

insample < x then the suffix ρ||i can not satisfy the condition

of property (3) of the lemma due to well-formedness of A;

however it can satisfy the condition of property (4). In this

sub-case also, we can get the result for the induction case as

above by using the inductive hypothesis for ρ||i and using

similar reasoning as in the base case and applying the first

inequality of Lemma 10.

Now consider the situation where the cycle transitions

appearing before ti are L-cycle transitions. Now, we apply

inequality (2) of Lemma 10 to prove that property (2) of

the lemma is satisfied by ρ. To do this, we define f(x) =
f ′(x)h(x) where f ′(x) = g′0(x)

∏

k∈S1

∫∞

x
g′k(y)dy and

h(x) = e−2wt(ρ||i)εPr[x−1, ρ||i]. Next, applying the induction

hypothesis to ρ||i, we show that

Pr[x0, ρ
′] ≥

∫ ∞

x0

f ′(x)h(x)
∏

k∈S2

∫ x

−∞

g′k(y)dydx.

Since A is well-formed, ρ||i cannot satisfy the condition of

property (1) of the lemma. If ρ||i satisfies the condition of

property (2) or that of property (3) then, the above inequality

follows directly from the induction hypothesis; If ρ||i satisfies

the condition of property (4), then the above inequality fol-

lows from the induction hypothesis and the observation that

Pr[x + 1, ρ||i] ≥ Pr[x − 1, ρ||i]; If ρ||i satisfies the condition

of property (5) then the above inequality follows from the

induction hypothesis and the observation that Pr[x, ρ||i] =
Pr[x − 1, ρ||i] as Pr[x, ρ||i] is independent of x. Rewriting

the above inequality, we get

Pr[x0, ρ
′] ≥

∫ ∞

x0

f ′(x)h(x)
∏

k∈S2

∫ x

−∞

gk(y − θk)dy.

Now, using the inequality (2) of Lemma 10, and using sim-

plifications and reasoning as in the base cases, we see that

property (2) of the lemma is satisfied by ρ.
The proof for the inductive step for the case when c0 is

insample < x is symmetric. For the case, when c0 is true,

the proof will be on the same lines excepting that if t0 is a



non-input transition then it incurs a cost of d0 only and the

limits of the outer integrals are −∞ and ∞.

DiP automata with Finite and Infinite Outputs

We shall now show that if a DiPA A is well-formed then it

is differentially private. For simplicity, we will assume that all

states are input states. The case when the A includes non-input

states can be dealt with similarly. Finally, we also assume that

there are no transitions that output the value of insample′. In

case there are transitions from insample′, Lemma 13 can be

proved by appealing to the composition theorem of differential

privacy (See Theorem 3.14 of [2].)

The following proposition follows directly from the defini-

tion of well-formed DiP automata.

Proposition 12. Let A be a well-formed DiPA and ρ be a

path of A starting from a reachable state. Then ρ satisfies the

following properties.

• If ρ starts with an assignment transition t0 and has no

further assignment transitions, and has a G-cycle or an

L-cycle transition then the output of t0 is from Γ.

• If ρ has no assignment transitions and has a G-cycle

(resp., L-cycle) transition then the output of every transi-

tion in ρ, with guard insample < x (resp., insample ≥ x),

is from Γ.

• If ρ starts with an L-cycle (resp., G-cycle) transition and

is an AG-path (resp., AL-path) then the output of every

transition, with guard insample ≥ x (resp., insample <
x), is from Γ.

• If ρ is an AG-path (resp., AL-path) ending with a G-cycle

(resp., L-cycle) then the output of every transition, with

guard insample < x (resp., insample ≥ x) , is from Γ.

Please note that Lemma 3 is an immediate consequence of

the following lemma.

Lemma 13. Let A = (Q,Σ,Γ, qinit, X, P, δ) be a well-formed

DiPA and ρ be a path of length n > 0 Let t0 be the initial

transition, i.e., the 0th transition of ρ, c0 be its guard and o0
be its output. Let t0 be an assignment transition, and let ρ′ be

a path that is equivalent to ρ such that inseq(ρ′) is a neighbor

of inseq(ρ). Then the following properties hold for all x0 ∈ R.

1) If the guard c0 is insample ≥ x, and the first cycle

transition in ρ is a G-cycle transition and no assignment

transition with guard insample < x appears before it,

o0 ∈ Γ and

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 + 1, ρ].

2) If the guard c0 is insample ≥ x and either, (a) ρ has no

cycle transitions; or (b) the first cycle transition in ρ is

a G-cycle transition and an assignment transition with

guard insample < x appears before it; or (c) the first

cycle transition in ρ is an L-cycle transition, then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0, ρ].

Furthermore, if the output of every transition, whose

guard is insample ≥ x, is from Γ, until the first

assignment transition whose guard is insample < x or

until the end of ρ, then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 − 1, ρ].

3) If the guard c0 is insample < x and the first cycle

transition in ρ is a L-cycle transition and no assignment

transition with guard insample ≥ x appears before it,

then o0 ∈ Γ and

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 − 1, ρ].

4) If the guard c0 is insample < x, and either (a) If ρ has

no cycle transitions; or (b) The first cycle transition in

ρ is an L-cycle transition and an assignment transition

with guard insample ≥ x appears before it; or (c) the

first cycle transition in ρ is a G-cycle transition, then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0, ρ].

Furthermore, if the output of every transition, whose

guard is insample < x, is from Γ, until the first

assignment transition whose guard is insample ≥ x or

until the end of ρ, then

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 + 1, ρ].

5) If the guard c0 is true, then Pr[x0, ρ
′] ≥

e−wt(ρ)εPr[x0, ρ].

Proof. Let ρ = q0
a0,o0
−−−→ q1

a1,o1
−−−→ q2 · · · qn−1

an−1,on−1

−−−−−−−→ qn

and ρ′ = q0
b0,o0
−−−→ q1

b1,o1
−−−→ q2 · · · qn−1

bn−1,on−1

−−−−−−→ qn. Let

t0, . . . , tn−1 be the transitions of ρ and let c0, . . . , cn−1 be

their respective guards. For each k ≤ n, let dk, µk be such

that P (qk) = (dk, µk). Recall that, for any k, ρ||k denotes the

suffix of ρ starting from qk. Once again, we assume that there

are no cycle transitions that are assignments.

We show, how the proof of Lemma 11 can be modified to

prove this Lemma. First, observe that properties (1), (3) and (5)

of the Lemma are identical to the corresponding properties of

the Lemma 11. When oi ∈ Γ, for all i, 0 ≤ i < n, the second

parts of the properties (2) and (4) subsume their first parts,

and these two properties become identical to properties (2)

and (4) of the Lemma 11, respectively. For each i, 0 ≤ i < n,

let (ui, vi) be such that oi = (insample, ui, vi) if oi /∈ Γ,

otherwise it is the interval (−∞,∞). Let gk(y), g
′
k(y) be the

functions as defined in the proof of Lemma 11, and θk =
bk − ak for 0 ≤ k < n.

As before, we prove the Lemma by induction on the number

of assignment transitions in ρ. In the base case, ρ has one

assignment transition which is t0. Let S1 and S2 be the sets

of k > 0 such that ck is insample ≥ x and ck is insample < x,

respectively.

Now, assume the condition of (1) is satisfied. Observe that

S1 includes all G-cycle transitions whose guard is insample ≥
x. Let S′

1 be the set of k ∈ S1 such that tk is a G-cycle

transition and S′′
1 = S1 \ S

′
1. Observe that, using the fact

that A is well-formed and using Proposition 12, we see the

following hold: (i) for all k ∈ S′
1 ∪ S2, ok ∈ Γ; (ii) t0 is a

critical transition and o0 ∈ Γ; (iii) for all k ∈ S2∪S
′′
1 , tk does



not lie on a cycle and hence is a critical transition. Note that,

for any k ∈ S′′
1 , ok may be insample. Now, we see that

Pr[x0, ρ
′] =

∫ ∞

x0

f(x)
∏

k∈S′

1

∫ ∞

x

g′k(y)dy dx

where

f(x) = g′0(x)
∏

k∈S2

∫ x

−∞

g′k(y)dy
∏

k∈S′′

1

∫ vk

max(x,uk)

g′k(z)dz.

Now, substituting g′k(y) = gk(y − θk) (for k ∈ S1) in the

above equation and using inequality (1) of Lemma 10, we see

that

Pr[x0, ρ
′] ≥

∫ ∞

x0+1

f(x− 1)
∏

k∈S1

∫ ∞

x

gk(y)dy dx.

Now, using the same argument as in the proof of Lemma

11, and observing that, for k ∈ S′′
1 ,
∫ vk

max(x−1,uk)
g′k(z)dz ≥

∫ vk

max(x,uk)
g′k(z)dz, it is easy to see that

f(x− 1) ≥ e
−2(dq0

+
∑

k∈S′′
1

∪S2
dqk

)ε
g0(x)

∏

k∈S2

∫ x

−∞

gk(y)dy

∏

k∈S′′

1

∫ vk

max(x,uk)

g′k(z)dz.

Putting all the above observations together, we see that prop-

erty (1) holds.

Now, we prove the base case for property (2). Assume the

condition of (2a) is satisfied, i.e., there are no cycle transitions

in ρ. Now, we see that

Pr[x0, ρ
′] =

∫ v0

max(x0,u0)

g′0(x)
∏

k∈S1

∫ vk

max(x,uk)

g′k(y)dy

∏

k∈S2

∫ min(x,vk)

uk

g′k(z)dz dx.

It is fairly straightforward to see that Pr[x0, ρ
′] ≥

e−wt(ρ)εPr[x0, ρ] since g′k(y) ≥ e−dqk
εgk(y), for all y ∈ R,

0 ≤ k < n. From this, we see that the first part of property(2)

holds. To see that the second part of property (2) holds, assume

that o0 ∈ Γ, and for all k ∈ S1, ok ∈ Γ. This means that

Pr[x0, ρ
′]

=

∫ ∞

x0

g′0(x)
∏

k∈S1

∫ ∞

x

g′k(y)dy
∏

k∈S2

∫ min(x,vk)

uk

g′k(z)dzdx.

Now introducing new variables w, y′ and setting w = x − 1
and y′ = y − 1, we see that

Pr[x0, ρ
′] =

∫ ∞

x0−1

g′0(w + 1)
∏

k∈S1

∫ ∞

w

g′k(y
′ + 1)dy′

∏

k∈S2

∫ min(w+1,vk)

uk

g′k(z)dz dx.

Now, observe that, for k ∈ S2,
∫min(w+1,vk)

uk
g′k(z)dz ≥

∫min(w,vk)

uk
g′k(z)dz. Using this we get,

Pr[x0, ρ
′] ≥

∫ ∞

x0−1

g′0(w + 1)
∏

k∈S1

∫ ∞

w

g′k(y
′+1)dy′

∏

k∈S2

∫ min(w,vk)

uk

g′k(z)dz dx.

Now, the second part of property (2), follows from the above

inequality and the reasoning employed earlier.

Now, condition of (2b) can not be satisfied as t0 is the only

assignment transition in ρ. Now, assume the condition of (2c)

is satisfied. Let S′
2 be the set of all k ∈ S2 such that tk is

an L-cycle transition and S′′
2 = S2 \ S

′
2. Now, using the fact

that A is well-formed and using Proposition 12 we observe

that the following hold: (i) for all k ∈ S1 ∪S
′′
2 , tk is a critical

transition; (ii) t0 is a critical transition and o0 ∈ Γ; (iii) for

all k ∈ S1 ∪ S′
2, ok ∈ Γ. Now, we see that that

Pr[x0, ρ
′] =

∫ ∞

x0

f(x)
∏

k∈S′

2

∫ x

−∞

g′k(y)dy dx

where

f(x) = g′0(x)
∏

k∈S1

∫ ∞

x

g′k(y)dy
∏

k∈S′′

2

∫ min(x,vk)

uk

g′k(y)dy.

Now, using inequality (2) of Lemma 10, we see that

Pr[x0, ρ
′] ≥

∫ ∞

x0−1

f(x+ 1)
∏

k∈S′

2

∫ x

−∞

gk(y)dy dx.

Now, observe that

f(x+ 1) = g0(x− (θ0 − 1))
∏

k∈S1

∫ ∞

x+1

gk(y − θk)dy

∏

k∈S′′

2

∫ min(x+1,vk)

uk

g′k(y)dy.

Introducing a new variable z and setting z = y − 1, we see

that

f(x+ 1) = g0(x− (θ0 − 1))
∏

k∈S1

∫ ∞

x

gk(z − (θk − 1))dz

∏

k∈S′′

2

∫ min(x+1,vk)

uk

g′k(y)dy

and

f(x+ 1) ≥ e
−2(dq0

+
∑

k∈S1∪S′′
2

dqk
)ε
g0(x)

∏

k∈S1

∫ ∞

x

gk(z)dz
∏

k∈S′′

2

∫ min(x,vk)

uk

gk(y).

From this and the above inequality, it is easily seen that

Pr[x0, ρ
′] ≥ e−wt(ρ)εPr[x0 − 1, ρ]. From this we see that the

inequalities of both parts of property (2) hold.

As before, the proof for the base case of Properties (3) and

(4) is symmetric to those of properties (1) and (2) and is left

out. Property (5) is proved as in the case of Lemma 11.



Now, we prove the inductive step as follows. Assume

that all the properties hold when ρ has ` > 0 assignments.

Now, consider the case when ρ has ` + 1 assignments.

Let ti, for i > 0, be the second assignment transition in

ρ. Let S1 (resp., S2) be the set of k, 0 < k < i, such

that ck is insample ≥ x (resp., insample < x). Now,

consider the case when c0 is insample ≥ x. Now, we

consider two sub-cases. We first consider the sub-case

when there is no cycle transitions before ti. We have

Pr[x0, ρ
′] =

∫ v0

max(x0,u0)
f ′(x)Pr[x, ρ′||i]dx where f ′(x) =

g′0(x)
∏

k∈S1

∫ vk

max(x,uk)
g′k(y)dy

∏

k∈S2

∫min(x,vk)

uk
g′k(y)dy.

Applying the inductive hypothesis for the suffix ρ||i, we

get an inequality involving Pr[x, ρ′||i] and Pr[x + 1, ρ||i],
or Pr[x − 1, ρ||i], or Pr[x, ρ||i], based on which of the five

properties of the Lemma are satisfied by ρ||i. Suppose the

condition of property (1) is satisfied by ρ||i. Let j ≥ i be

the smallest integer such that tj is a G-cycle transition. Now,

since p|j, the prefix of ρ, is an AG-path, using the fact that

A is well-formed and using Proposition 12, it is easy to

see that o0 ∈ Γ, and for all k ∈ S2, ok ∈ Γ. By using the

inductive hypothesis, we get Pr[x0, ρ
′] ≥

∫∞

x0
f ′(x)h(x)dx,

where h(x) = e−wt(ρ||i)εPr[x + 1, ρ||i]. Because

of the previous observation, we see that f ′(x) =
g′0(x)

∏

k∈S1

∫ vk

max(x,uk)
g′k(y)dy

∏

k∈S2

∫ x

−∞
g′k(y)dy. Now,

observe that, for each k ∈ S1,
∫ vk

max(x−1,uk)
g′k(y)dy ≥

∫ vk

max(x,uk)
g′k(y)dy. From this, using the reasoning employed

in the base case, we see that

f ′(x− 1) ≥ e−2(dq0
+
∑

k∈S1∪S2
dqk

)εg0(x)
∏

k∈S1

∫ vk

max(x,uk)

gk(y)dy

∏

k∈S2

∫ x

−∞

gk(y)dy.

Now, by taking f(x) = f ′(x)h(x), using inequality (1) of

Lemma 10 and by taking k = 0 in that inequality, we get prop-

erty (1) for the path ρ using the same simplification/reasoning

used in the base case and by observing that

Gp(x0 + 1) =

∫ ∞

x0+1

g0(x)
∏

k∈S1

∫ vk

max(x,uk)

gk(y)dy

∏

k∈S2

∫ x

−∞

gk(y)dyPr[x, ρ||i]dx.

We can similarly prove the inductive step when the suffix ρ||i
satisfies the other properties (i.e., 2 through 5) of the Lemma.

Now consider the sub-case when a cycle transition appears

before ti. Assume that the cycle transitions are G-cycle

transitions. Let S′
1 be the set of k ∈ S1 such that tk is a

G-cycle transition and S′′
1 = S1 \S

′
1. Since A is well-formed,

using Proposition 12, we see that o0 ∈ Γ, and for every

k ∈ S′
1 ∪ S2, ok ∈ Γ. Let f(x) = f ′(x)h(x) where f ′(x) =

g′0(x)
∏

k∈S2

∫ x

−∞
g′k(y)dy

∏

k∈S′′

1

∫ vk

max(x,uk)
g′k(y)dy and

h(x) = e−wt(ρ||i)εPr[x + 1, ρ||i]. If ci is also insample ≥ x,

then the suffix ρ||i can satisfy any of the conditions of the

first two properties of the Lemma; In this situation, observe

that, if ρ||i satisfies the condition of property (1) then h(x)
is the right handside of the inequality, we get, by applying

the inductive hypothesis to ρ||i; If ρ||i satisfies the condition

of property (2) of the Lemma then, by applying the inductive

hypothesis to ρ||i, we get Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x, ρ||i];
since, Pr[x, ρ||i] ≥ Pr[x + 1, ρ||i], we see that

Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x + 1, ρ||i]. Now, assume

that ci is insample < x. Now, since A is well-formed, it is

easy to see that the condition of property (3) of the Lemma

cannot be satisfied. Assume that ρ||i satisfies the condition

of property (4) of the Lemma. Let k′ be the smallest integer

such that, i ≤ k′ ≤ n, and either k′ = n, or tk′ is an

assignment transition and ck′ is insample ≥ x. Now, we

see that the path starting with t1 and ending with tk′−1 is

an AL-path. Using Proposition 12 and the fact that A is

well-formed, we see that, for all j, i ≤ j < k′, such that

cj is insample < x, oj ∈ Γ. Now, applying the induction

hypothesis for ρ||i, using the second part of property (4),

we get Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x + 1, ρ||i]. Now, if

ci is true, applying the induction hypothesis and using

property (5), we see that Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x, ρ||i];
since Pr[x, ρ||i] is independent of x, we see that

Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x + 1, ρ||i]. Thus, irrespective

of what guard ci is, we have Pr[x, ρ′||i] ≥ h(x). Now,

we have Pr[x0, ρ
′] ≥

∫∞

x0
f ′(x)h(x)

∏

k∈S′

1

∫∞

x
g′k(z)dzdx.

Applying the inequality (1) of Lemma 10, we get Pr[x0, ρ
′] ≥

∫∞

x0+1
f ′(x− 1)h(x− 1)

∏

k∈S′

1

∫∞

x
gk(z)dzdx. Observe that,

for k ∈ S′′
1 ,
∫ vk

max(x−1,uk)
g′k(y)dy ≥

∫ vk

max(x,uk)
g′k(y)dy.

Using this observation and the reasoning/simplification as in

the base case, we see that property (1) is satisfied by ρ.
Now consider the situation where the cycle transitions

appearing before ti are L-cycle transitions. Now, we apply

inequality (2) of Lemma 10 to prove that property (2) of the

Lemma is satisfied by ρ. Let S′
2 be the set of k ∈ S2 such

that tk is an L-cycle transition and S′′
2 = S2 \ S

′
2. Since A is

well-formed, using Proposition 12, we see that o0 ∈ Γ, and for

every k ∈ S1∪S
′
2, ok ∈ Γ. Now, let f(x) = f ′(x)h(x) where

f ′(x) = g′0(x)
∏

k∈S1

∫∞

x
g′k(y)dy

∏

k∈S′′

2

∫min(x,vk)

uk
g′k(z)dz

and h(x) = e−wt(ρ||i)εPr[x − 1, ρ||i]. Now, applying the

induction hypothesis to ρ||i, we show that

Pr[x0, ρ
′] ≥

∫ ∞

x0

f ′(x)h(x)
∏

k∈S′

2

∫ x

−∞

g′k(y)dydx.

Since A is well-formed ρ||i cannot satisfy the condition of

property (1). Now, consider the case when ρ||i satisfies the

condition of property (2). Let k′ be the smallest integer such

that, i ≤ k′ ≤ n, and either k′ = n or tk′ is an assignment

transition and ck′ is insample < x. Now, we see that the path

starting with ti and ending with tk′−1 is a AG-path. From

this observation, using the fact that A is well-formed and

using Proposition 12, we see that, for all j, i ≤ j < k′,
such that cj is insample ≥ x, oj ∈ Γ. Now, applying

the induction hypothesis for ρ||i, using the second part of

property (2), we get Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x − 1, ρ||i].



If ρ||i satisfies property (3), then we directly see from the

induction hypothesis Pr[x, ρ′||i] ≥ e−wt(ρ||i)εPr[x− 1, ρ||i]. If

ρ||i satisfies property(4), we get the above inequality, using the

first part of the induction hypothesis and the observation that

Pr[x, ρ||i] ≥ Pr[x− 1, ρ||i]. If ρ||i satisfies property (5) then,

we get the above inequality from the induction hypothesis and

the observation that Pr[x, ρ||i] is independent of x. In all the

above cases, it is easy to see,

Pr[x0, ρ
′] ≥

∫ ∞

x0

f ′(x)h(x)
∏

k∈S′

2

∫ x

−∞

gk(y − θk)dy.

Now, using the inequality (2) of Lemma 10, and ob-

serving that, for all k ∈ S′′
2 ,
∫min(x+1,vk)

uk
g′k(z)dz ≥

∫min(x,vk)

uk
g′k(z)dz, and using simplifications and reasoning

as in the base cases, we see that property (2) of the Lemma

is satisfied by ρ.


