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ABSTRACT

Proof Blocks is a novel software tool which enables students to
write mathematical proofs by dragging and dropping prewritten
lines into the correct order, rather than writing a proof completely
from scratch. We used Proof Blocks problems as exam questions for
a discrete mathematics course with hundreds of students, allowing
us to collect thousands of student responses to Proof Blocks prob-
lems. Using this data, we provide statistical evidence that Proof
Blocks are easier than written proofs, which are typically very
difficult. We also show that Proof Blocks problems provide about
as much information about student knowledge as written proofs.
Survey results show that students believe that the Proof Blocks user
interface is easy to use, and that the questions accurately represent
their ability to write proofs.

CCS CONCEPTS

+ Mathematics of computing — Discrete mathematics; « So-
cial and professional topics — Computing education; « Ap-
plied computing — Computer-assisted instruction.

KEYWORDS
discrete mathematics, CS education, automatic grading, proofs

ACM Reference Format:

Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West.
2021. Evaluating Proof Blocks Problems as Exam Questions. In Proceedings
of the 14th ACM Conference on International Computing Education Research
(ICER 2021), August 16—19, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3446871.3469741

1 INTRODUCTION

Understanding and writing mathematical proofs is one of the crit-
ical yet difficult skills that students must learn as a part of the
discrete mathematics curriculum. Proofs and proof techniques are
included by the ACM curricular guidelines as a core knowledge
area that should be understood by any student obtaining a degree in
computer engineering, computer science, or software engineering
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[12, 16, 29]. A panel of 21 experts using a Delphi process agreed that
6 of the 11 most difficult topics in a typical discrete mathematics
course are related to proofs and logic [9].

There are many aspects of writing mathematical proofs that are
difficult. Many students fail to produce the basic building blocks
that proofs have, such as properly declaring variables or referenc-
ing theorems [22]. Students get stuck working through the details
of algebraic manipulations. They have a tendency to commit cer-
tain logical fallacies such as confusing a proposisiton with its con-
verse [22, 26]. Studies have shown that even when students have all
the prerequesite content knowledge to write a mathematical proof,
they still struggle to construct one [31]. Thus, there is a gap that
needs to be filled between students having the content knowledge
to write a proof and the aptitude to actually construct one.

Vygotsky’s theory of psychological development posits that be-
tween the tasks which a person can and cannot do, there is a so-
called zone of proximal development: a set of tasks which a person
cannot perform unaided, but which they can perform when given
help and support, called scaffolding [30, 35]. Computer science
instructors and researchers have used various approaches to scaf-
folding students learning to write code for the first time. Block based
programming languages such as Scratch and Blockly [8, 15] scaffold
students by providing them with building blocks from which to
assemble their programs and guarding against the struggles of syn-
tax errors. Research has shown that using block based languages
can accelerate the student learning process when first learning to
program [33]. Parson’s problems are a kind of homework and exam
question where students are asked to assemble prewritten lines of
code into a correct program [17]. Researchers have shown Parson’s
problems to be useful both as test questions [4] and as a learning
tool for helping to accelerate the learning process for beginners
learning to write code [7].

Following from the success of Parson’s problem and similar ap-
proaches to teach programming, we propose Proof Blocks. Proof
Blocks allows students to construct mathematical proofs by drag-
ging and dropping prewritten proof lines into the correct order,
rather than having to write the entire proof from scratch. Figure 1
shows an example of a Proof Blocks problem. Proof Blocks provides
a scaffolded environment, enabling students to construct mathe-
matical proofs without needing to worry about coming up with
all of the details on their own. A Proof Blocks problem may also
contain distractor lines which are not a part of any correct solution.
The design of the Proof Blocks grader [19] is flexible in allowing
any correct arrangement of the lines of the proof. This is enabled by
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the instructor specifying which lines of the proof depend on which
other lines (the full dependence graph of the lines of the proof in
Figure 1 can be seen in Figure 2). Students who fail to construct
a correct proof on their first try can then receive automated feed-
back from the computer, as shown in Figure 3, before being given
additional attempts at the discretion of the instructor.

Proof Blocks problems are also very promising for saving time for
both students and course staff. Many computer science departments
are experiencing a huge increase in enrollments. This increase in
enrollments means course staff lose more time to grading, making it
more difficult for them to spend the time they need helping students
individually. Proof Blocks helps to alleviate this strain by providing
a way to test some of students’ proof skills in a way that can be
automated, saving grading time and allowing course staff more
time for other activities that help students such as office hours and
review sessions.

The ability to receive automated feedback is also a boon to stu-
dents. Due to staff time constraints, students in a discrete mathemat-
ics course may not be able to receive feedback on the correctness of
proofs they write until long after they have completed them. Proof
Blocks also helps with this, as it allows students to receive feedback
instantly, just as they receive instant feedback from the compiler
and from automated testing suites as they write code.

In using a new kind of test question with our students, we wanted
to ensure that we were testing students on the correct set of skills
and that we were providing them with a fair and equitable learning
experience.

In this paper, we seek to answer the following three research
questions:

RQ1: What statistical information about student knowl-
edge do Proof Blocks problems provide relative to
other course content?

RQ2: What is the relationship between the knowl-
edge required to complete Proof Blocks problems and
other types of problems in a discrete mathematics
course?

RQ3: What are students’ perceptions about the fair-
ness, usability, and authenticity of being assessed by
using Proof Blocks problems?

2 RELATED WORK

Anecdotally, we have heard of instructors using scrambled proofs to
assess student knowledge both in euclidean geometry and in higher-
level mathematics. In theory, instructors may have offered such
questions on paper even before the advent of computers, though we
can find no explicit record of this. Additionally, to our knowledge
there has been no research into the merits of these questions either
for learning or for assessment.

We will give a brief overview of related work including Parson’s
problems, research on teaching and learning proofs, and software
tools for constructing mathematical proofs in an educational con-
text.
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2.1 Parson’s Problems

The use of scrambled code problems was first documented by Par-
sons [17]. They have since been studied for their desirable proper-
ties both in assessment and learning [4, 5, 7]. The desirable proper-
ties of Parson’s problems were a major inspiration for the creation
of Proof Blocks.

Denny et al. [4] showed that Parson’s problems are easier to
grade than free-form code writing questions, and yet still offer rich
information about student knowledge. We will show the same to
be true with Proof Blocks problems in relation to free-form proof
writing questions. Ericson et al. [7] showed that students learning
to write code using Parson’s problems learn at an accelerated rate
in the early stages of learning compared to students being taught
to fix code or write code from scratch.

2.2 Research on Teaching and Learning Proofs

There are many threads of research in seeking to illuminate stu-
dents’ understandings and misunderstandings about proofs [23, 25,
26]. One thread establishes that, as they learn, students go through
different phases in the complexity of ways they are able to think
about solving proof problems [32]. Another study demonstrated
that even when students had all of the knowledge required to write
a proof and were able to apply that knowledge in other types of
questions, they were still unable to write a proof [31], thus high-
lighting the need to scaffold students through the proof-writing
process.

On the other hand, there is little research on concrete educational
interventions for improving the proof learning process [11, 26]. In-
deed, a recent review of the literature on teaching and learning
proofs concluded: “more intervention-oriented studies in the area
of proof are sorely needed” [26]. Hodds et al. [11] showed that train-
ing students to engage more with proofs through self-explanation
increased student comprehension of proofs in a lasting way. Proof
Blocks problems similarly force deliberate engagement with proof
content, as close reading is necessary to determine the correct
arrangement of lines. Proof Blocks also shows promise as a tool
that can provide scaffolding that students are so in need of when
learning to write proofs.

2.3 Educational Theorem Proving Software

A few other software tools have been created to enable students to
create proofs in the computer in such a way that they can receive
automated feedback. Some use text-based representations, while
others use visual representations of proofs.

Polymorphic Blocks [13] is a novel user interface which presents
propositions as colorful blocks with uniquely shaped connectors
as a signifier of which types of propositions can be connected
in a proof. While the user interface has been shown to engage
students in learning proofs, it supports only propositional logic. The
Incredible Proof Machine [3] guides students through constructing
proofs as graphs. As with Polymorphic Blocks, the user interface is
engaging, but the formality of the system limits the topics which
can be effectively covered.

Jape [2] is a “Proof calculator,” which guides students through
the process of constructing formal proofs in mathematical notation
with the help of the computer. While Jape can allow students to
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Rational Numbers 2

Recall that a real number r is rational if there are integers @, b suchthatb = O and r = % Drag and drop a
subset of the blocks below to create a proof of the following statement. Note, not all blocks maybe needed in

the proof.

For any real number r # 0, if r is rational then f— + 2 is also rational.

Drag from here:

[Since a, b are integers, 2a + bis an integer.

lSInce r#0,a#0.

ot

(3 1 . 9 s not rational.
r

|2a -+ b and a have no common factors.

il
Ki,) Ia is odd while 2a + bis even.

Construct your solution here:

]Let r be an arbitrary rational number.

1Let a, bbe integers such thatb # Oandr = §.

olclo

H + 2 is rational.

Save & Grade m

New variant

Figure 1: An example of the Proof Blocks user interface used by students. Individual lines of the proof start out shuffled in
the light-blue starting zone, and students attempt to drag and drop them into the correct order in the yellow target zone. The
instructor wrote the problem with 1, 2, 3, 4, 5, 6 as the intended solution, but the Proof Blocks autograder will also accept any
other correct solution as determined by the dependency graph shown Figure 2. For example, both 1,2,5,4,3,6 and 1, 2, 4, 5, 3,

6 would also be accepted as correct solutions.

construct proofs in arbitrary logics, it requires the instructor to
implement these logics in its own custom programming language
before students can use them to construct proofs.

MathsTiles [1] is a block-based programming interface for con-
structing proofs for the Isabelle/HOL proof assistant. In theory,
having an open-ended environment where students could construct
arbitrarily complex proofs seems like it could be a huge advantage.
However, in user studies, the authors found that students only had a
chance at being successful while using MathsTiles if they were pro-
vided a small instructor-procured subset of blocks, namely, those
needed to complete the problem at hand.

Ensley and Winston offer some scrambled proofs in a JavaScript
applet as supplementary material to their discrete mathematics
textbook [6]. However, their tools are restricted in only supporting
grading by simple ordering, greatly restricting the types of proofs
that students can construct using the tool. The directed acyclic
graph-based grading that the Proof Blocks autograder uses enables
assessing proofs which are more complex and use a greater variety
of writing styles.

Most of these tools cover only small subset of the material typi-
cally covered in a discrete mathematics course, and those that are
more flexible require learning complex theorem prover languages.
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Figure 2: The dependency graph of the statements in the
proof shown in Figure 1. The Proof Blocks grader will ac-
cept any topological sort of this directed acyclic graph as a
correct solution. For more details of the implementation of
the Proof Blocks grader, see [19].

In contrast, Proof Blocks enables instructors to easily provide stu-
dents with proof questions on any topic. To our knowledge, no
research has been published on using any of the above tools as part
of student assessments.

3 COURSE CONTEXT

We evaluated Proof Blocks problems by using them for exams in a
discrete mathematics course at the University of Illinois at Urbana-
Champaign. At the University of Illinois, the discrete mathematics
course in the computer science department is taught every semester
(including during the summer) and is taken by hundreds of students
each semester, across multiple sections. Most students are fresh-
men and take the course as part of their computer science major,
computer science minor, or computer engineering major. The listed
prerequisites for the course are introductory programming and
introductory calculus. The course is designed to prepare students
for the theory track in the computer science department and usu-
ally covers logic, proofs, functions, cardinality, graphs and trees,
induction, recursion, number theory, probability, basic algorithm
analysis, and sometimes additional topics as time permits. Though
taught in the computer science department, it is solely a theory
class, with no programming assignments.

In Fall 2020, the course was taught completely online due to the
COVID-19 pandemic. The course was split into 3 sections, each with
aunique instructor, with a total of 404 students. Each week’s content
consisted of a video lecture and small group assignments completed
over video conferencing with teaching assistant guidance and sup-
port. Students were then assigned homework to provide additional
practice with the material. At the beginning of each week, students
took a short exam on the material covered the previous week. Some
weeks, the students were also given a practice exam to assist in
studying. If a student had to miss an exam for some reason, they
were allowed to make up the exam the following week.

In lieu of a final exam, students were given the opportunity to
retake any three of the exams. A full listing of the topics on each
exam, as well as the number of each type of question on each exam,
can be seen in Table 1. While the distribution of questions types

Poulsen et al.

among tests may not be ideal for measuring the qualities of types
of questions, it gives the study a large degree of ecological validity.
That is, in the discrete mathematics class examined in this study,
Proof Blocks problems were not used at an artificially inflated rate,
but rather were used as one would want to use any type of test
question—intermixed with other types of test questions, at times
when they were appropriate.

Students took their exams using PrairieLearn, an open-source
online homework and exam platform [34]. Especially for a course of
this size, Proof Blocks’ fully automated grading was a big advantage
in saving course staff time which could be reallocated in other ways.
In total, students were given 9 Proof Blocks problems on exams and
3 on practice exams. Students received immediate correctness feed-
back on each Proof Blocks problem on their exams and were given
up to 4 or 5 attempts at each question, with a decreasing number
of points awarded depending on the number of attempts used. Stu-
dents were typically given 3 attempts for multiple choice questions,
and 4 or 5 attempts for fill-in-the-blank computation questions, also
with a decreasing number of points awarded depending on which
attempt they successfully answered correctly. In all cases, the stu-
dents were only awarded full points if they completed the question
correctly on the first attempt. Students wrote free response proof
questions in text entry box which supported markdown and LaTeX,
but were told that using plain text (for example, spelling out “and"
instead of using A and spelling out “intersection” instead of using
N) was acceptable as we did not expect them to learn LaTeX for the
course.

In order to combat student cheating efforts, almost all questions
had multiple variants. Many questions had three or four static
variants, one for each of the three course sections on the primary
test day, and the fourth being used the following week for the
make up exams. Other questions had variants generated uniquely
for each student based on a random number generator. Questions
randomized values such as elements of a set, edges in a graph, and
other question properties which could be easily randomized and
then computer graded.

All multiple choice, fill in the blank computation, and Proof
Blocks problems were automatically graded by PrairieLearn as
soon as the student completed them, and they were immediately
shown their grade on these questions. An overview of the workings
of the Proof Blocks autograder can be seen in [19]. Written proof
questions were then hand graded by one of the course’s 8 teaching
assistants, based on rubrics created collaboratively between the
instructors and teaching assistants. The rubrics were different for
each exam, but followed generally students were awarded points for
following the correct proof structure, properly declaring variables,
knowing and correctly applying definitions, and logical flow from
one step to another. Points were not awarded for style. The first
author of this paper was a teaching assistant for the course, and
the second was one of three faculty instructors for the course, with
the other authors having no affiliation with the course.

4 DATA HANDLING

All submissions to exam questions were automatically saved to
a database by PrairieLearn. With approval from our university’s
Institutional Review Board, the course data was accessed by an
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Submitted answer
Submitted at 2021-06-07 11:06:59 (CDT)

Your answer:

1. Let r be an arbitrary rational number.

2. Let a, bbe integers such thath = O and r = %

e
3. - + 2is rational.
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@)=

Your Proof is incorrect starting at line number 3. The problem is most likely one of the following:

e This line is not a part of the correct solution

e This line is not adequately supported by previous lines of the proof
e You have attempted to start a new case without finishing the proof of a previously stated case

Figure 3: Example of feedback given to students working on Proof Blocks problems. To avoid giving students so much infor-
mation that we are not actually testing their knowledge, they are only told at which line their proof fails, not the reason why
or what the solution is. One area of future research is to investigate what kind of feedback is best for students to recieve when

using Proof Blocks as a tool for learning to write proofs.

Exam Number Topics Proof Proof Blocks Other
1 Logic and Proofs 1 2 3
2 Sets, functions, and Relations 2 7
3 Cardinality 1 2 3
4 Directed Graphs 1 1 4
5 Undirected Graphs and Trees 1 1 4
6 Induction 2 3
7 Recursive sets and Structural Induction 1 5
8 Number Theory 1 1 4
9  Probability and Counting 6

10  Series Sums and Solving Recurrences 5
11  Algorithm Analysis and Big O 2 4

Table 1: The breakdown of question types on each exam. Proof Blocks problems were used on exams throughout the semester
as and when the instructors felt that they would be useful. They were not used at an artificially inflated rate for the purposes

of this study.

instructional technology specialist employed by the engineering
college, and then fully anonymized before being delivered to the
research team for analysis. All research team members handling
the data were trained in proper student privacy and human subjects
research protocols.

4.1 Data Preparation

For our analysis, we treat all variants of a question as the same
question. Though there are small differences in difficulty between
question variants, we concluded that these small differences were
not relevant to the research questions we are addressing with this
study.

Because the final exam involved retaking exams which may have
contained questions overlapping with questions that students had
already seen, and we are focusing only on students’ first interactions
with a given question, we exclude the final exam from our analysis,

focusing only on the 11 exams given to the students throughout the
semester. Two questions on Exam 2 had user interface bugs in them,
causing the course staff to award everyone in the course full points
on those questions for fairness, so they were also excluded from the
analysis. The Proof Blocks question given on Exam 8 was nearly
identical to a question given on a practice exam, so we omit it from
the analysis to avoid the analysis being skewed due to students
knowing the answer in advance.

With the anonymity restrictions placed by our Institutional Re-
view Board, we are unable to know which students in our data set
formally dropped the course before the end, so for our analysis
we only kept students who attempted at least 10 of the 11 exams
(325 of 404 students). Due to different questions being used at times
between primary exams and make up exams, we do not have a
response from every student for every question, even for students
who took every exam. Our final data set consisted of 325 students
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over 62 questions. A complete data set would have been 20,150 an-
swers, but we had 569 missing data points, giving us a total of
19,581 student submissions.

To keep all questions on the same scale, remove effects of un-
validated grading rubrics, and to remove the effects of guessing on
additional submissions after feedback, we re-graded all questions
on a dichotomous scale (1 for fully correct, 0 for not fully correct)
and graded only the first submission. This decision aligns our data
more closely with the 2-Parameter Logistic Model of Item Response
Theory (See Section 5.1).

5 METHODS

We use the two-parameter logistic model (2PL) from item response
theory [14] to answer RQ1 and correlation analysis to answer RQ2.
To answer RQ3, we administered a survey.

5.1 Psychometrics

To answer RQ1, we want to understand what level of student knowl-
edge Proof Blocks questions assess, and how accurately it assesses
that knowledge. 2PL has been used widely in psychometrics and has
been used within computer science education mostly for validation
of concept inventories [10, 18, 36]. 2PL is a good fit for our needs
because it provides a way to model the probability of each student
answering each question correctly as a function of a question’s
difficulty and discrimination.

The difficulty is how hard it is to answer a question correctly,
and the discrimination is how well a question differentiates between
students of lower and higher skill levels. In the case of difficulty,
we want to explore whether Proof Blocks problems have lower
difficulty than written proofs, giving evidence that they may provide
scaffolding. For discrimination, higher is always better in the sense
that if a question’s discrimination is higher, it will provide more
information about student knowledge. We would like to explore if
Proof Blocks problems have comparable discrimination to written
proof problems.

We used the R programming language and the package Itm to
clean the data and fit item response theory models [20, 21]. In 2PL,
we assume that the probability of student n correctly responding
to item i can be modeled as a function of the student’s ability, 8,
the discrimination of the item, a;, and the difficulty of the item, b;,
as follows:

1

pi(en) = 1+ e_ai<9n_bi) .

1
The distribution of student ability parameters 6, is normalized to
a mean of 0 and standard deviation of 1. In this case, because the
students were learning across the course of the semester in between
these test questions, the difficulty measurement of the questions
is relative to the student knowledge at the time they took that
particular exam, rather than absolute.
After fitting the 2PL model, we test two null hypotheses:

(1) The distribution of difficulties of Proof Blocks problems is
the same as for written proof problems. (We desire for Proof
Blocks to be easier.)
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(2) The distribution of discriminations of Proof Blocks problems
is the same as for written proof problems. (We desire for
Proof Blocks to be comparably discriminatory.)

After using a Shapiro-Wilk test to confirm the normality of these
distributions, we use a t-test to test the hypotheses.

In order to fit the dichotomous response requirement of 2PL, we
converted all problems to binary responses: 1 for full points and 0 for
anything less than full points (See Section 4.1). To ensure robustness
of our results, we also fit our data to a graded response model, a
type of polytomous item response theory model that accounts for
assignment of partial credit. This model supported our conclusions
just as well as the 2PL model, so we present the simpler model for
ease of presentation. As a further robustness check, we also used
a standard classical test theory model, which again supported the
same conclusions.

5.1.1 Item Response Functions. Inserting the difficulty and discrim-
ination parameters for each test item into Equation 1 gives the item
response functions, which help us visualize the difficulty and dis-
crimination of test items, and the probability that a student with a
given ability level will answer the question correctly. The difficulty
of the item determines the ability level at which a student will have
a 50% probability of getting the question correct. For example, in
Figure 4 the solid line describes an item with difficulty 0, meaning
that if we choose a random student with mean ability level, there is
a 50% chance that student would have answered that item correctly.
The dotted item is an easier item with a difficulty of -0.5, meaning
that students who are half a standard deviation below the mean in
ability level answer that item correctly at a rate of 50%, and students
with mean ability level answer that item correctly at a rate greater
than 50%. A good assessment will have questions with a variety of
difficulty levels to assess student knowledge at all relevant levels
of ability.

The discrimination of an item manifests in the item response
function as the slope, with a higher positive discrimination leading
to a more strongly positive slope. For example, the dashed line in
Figure 4 denotes an item that has the same difficulty as the solid-
line item, but with a higher discrimination, so that the probability
that a student gets the questions correct rises more quickly for
students above mean-ability level, and decreases more quickly for
students below mean-ability level. Questions with high discrimina-
tion allow assessments to measure student knowledge with high
accuracy and less error, so it is always desirable for items to have
high discrimination.

5.1.2  Item Information Functions. The item information function
for an item is the derivative of the item response function for that
item. It shows how much information that item gives about students
taking the test at each level of ability. Figure 4 shows example item
information curves for the same items as it shows item response
functions. The solid item collects more information about higher
performing students than the dotted item, due to having higher
difficulty. The high discrimination of the dashed item allows it to
provide much more information across a range of ability levels than
either of the other two items.

Summing together multiple item information functions gives
the combined information that can be gained about a given student
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Example two-parameter item-response functions

Probability of a Correct Response

-3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 2 25

0 (student ability)
—(a,b) =(1,0) ---- (1,-0.5) = =(2,0)
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Example Item Information Curves
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-

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25 3

0 (student ability)

—(a,b) =(1,0) - (1,-0.5) = =(2,0)

Figure 4: Left: Three example item response functions with varying discrimination (g¢;) and difficulty (b;). Right: Item infor-

mation curves for the same example items.

from a set of items. To better understand the quality of information
that Proof Blocks problems provide about students in a discrete
mathematics course, we calculate the average item information
curve for each category by summing the information curves for
all the items in each category (i.e., Proofs, Proof Blocks, Other),
and then dividing by the total number of items in that category.
We compare the average amount of information each problem
category provides to further explore the relative utility of Proof
Blocks problems.

5.2 Correlation

In order to examine the overlap between the skills needed for dif-
ferent question types (RQ2), we calculated the correlation between
students’ average scores in each question category. By design, Proof
Blocks problems are scaffolded proof problems, and so we expect
that only some of the skills required to solve proof problems are also
required to solve Proof Blocks problems. Thus, we expect to find a
correlation between students’ scores across these question types,
but not a correlation so strong that it would imply the questions
are assessing the exact same knowledge. This shows one of the
limitations of our study: based on our current data, we can take a
broad look at the closeness of the association between Proof Blocks
problems and proof problems, but without further data we are not
yet able to comment on which exact skills are required to answer
one type of question but are not for the other.

After using a Shapiro-Wilk test and finding that the data were
non-normal, we used the Spearman correlation to calculate the
correlation between students’ scores in the different question cate-
gories.

5.3 Survey

We used an anonymous survey to help us answer RQ3: What are
students’ perceptions about the fairness, usability, and authenticity
of being assessed using Proof Blocks problems? We asked these
questions because we wanted to create a scaffolded learning tool

that students would readily engage with during their learning pro-
cess. We asked about fairness and usability, because a negative
response to these issues could cause students to disengage from
Proof Blocks problems. Likewise, when students feel that scaffolded
learning environments are inauthentic, as some students feel about
block-based programming languages [33], they may disengage. We
asked the students Likert scale questions with 5 possible responses:
strongly disagree, somewhat disagree, neutral, somewhat agree, and
strongly agree. Out of the 325 students included in the psychometric
analysis, only 51 responded to the survey (15.7%).

To evaluate student’s perceptions of authenticity, we had stu-
dents rate their agreement to the following:

(1) Proof Blocks accurately represent my understanding of how
to write proofs.

(2) Written proofs accurately represent my understanding of
how to write proofs.

We converted these items to numeric scales of 1-5 so that we
could use statistical tests to help us answer RQ3. We used a Mann-
Whitney U test to determine if students’ responses to these two
questions were significantly different, with the null hypothesis that
students have the same perception of how well Proof Blocks prob-
lems and written proofs represent their understanding of how to
write proofs. To evaluate students’ perceptions of fairness, we had
them rate their agreement to:

(1) The assignment of partial credit for Proof Blocks was fair.
(2) The assignment of partial credit for written proofs was fair.

Again, we used a Mann-Whitney U test to determine if students’
responses to these two questions were significantly different, this
time with the null hypothesis that students believed that the assign-
ment of partial credit was equally fair for Proof Blocks problems
and written proofs. To understand students’ perceptions of the
usability of Proof Blocks, we had them rate their agreement to:

(1) The Proof Blocks user interface was easy to use.
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We do not apply any statistical tests for this construct because
the user interface for Proof Blocks is incommensurate with the
interface for writing proofs.

Finally, to see if student’s perceptions of Proof Blocks’ difficulty
aligned with the empirical evidence about question difficulty, we
had students to rate their agreement to:

(1) Proof Blocks problems are easier than written proofs.

Again, there were no statistical test for this item, but we felt it would
be desirable to know if the students’ perception of the difficulty of
Proof Blocks questions aligned with the empirical evidence.

We also asked three optional open ended questions, mainly with
the goal of giving students the opportunity to voice any major
concerns they may have had with Proof Blocks:

(1) How do you think we could improve Proof Blocks Questions?

(2) Given more practice problems, what do you think Proof
Blocks would help you learn?

(3) Do you have any other feedback about Proof Blocks?

No major concerns were raised. While we did not have enough
responses to the open ended questions to do a qualitative analysis,
we will use some of them to help us interpret the results of the
quantitative survey questions.

6 RESULTS AND DISCUSSION

6.1 Psychometrics

6.1.1 Results. We will now examine the fit of the 2PL model to
answer RQ1. The full model fit of the 2PL is shown in Table 2,
with the test questions divided by category. It is important to recall
that in this case, because the students were learning across the
course of the semester in between these test questions, the difficulty
measurement of the questions is relative to the student knowledge
at the time they took that particular exam, rather than absolute.

Figure 5 is a box and whisker plot that compares the difficulty
of the different types of questions. We first used a Shapiro-Wilk
normality test to show that the distributions of difficulty of proof
problems (W = 0.92, p = 0.39) and Proof Blocks problems (W =
0.99,p = 0.99) are both close enough to normal distributions to
justify using a standard t-test. The t-test shows that proof ques-
tions are significantly more difficult than Proof Blocks problems
(p = 0.003). Proof questions had a mean difficulty of 0.64 (95% CI
[0.025, 1.27]), meaning that students who had an ability level of 0.64
standard deviations above the mean had a 50% chance of recieving
full credit on a proof problem, with students at mean ability level
having a lower chance of recieving full credit. Proof Blocks prob-
lems had a mean difficulty of -0.68 (95% CI [-1.22, -0.134]), meaning
that students with ability level 0.68 standard deviations below the
mean had a 50% chance of recieving full credit on a Proof Blocks
problem, on average.

A Shapiro-Wilk normality test showed that the distribution of
discrimination parameters was also normal for both written proofs
(W = 0.96,p = 0.77) and Proof Blocks questions (W = 0.96,p =
0.80). A t-test shows that the two distributions are indistinguishable
(p = 0.40), so we do not reject the null hypothesis that written
proofs and Proof Blocks problems measure knowledge with the
same discrimination. The mean of the discriminations is 1.08 (95%
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Figure 5: Box and whisker plot showing the relative diffi-
culty of Proof, Proof Blocks, and Other questions. There is
a clear separation between the difficulty level of proof prob-
lems and Proof Blocks problems, with Proof Blocks prob-
lems being slightly easier (p = 0.003).

CI [0.84, 1.32]) for written proofs, and 0.95 (95% CI [0.68, 1.21]) for
Proof Blocks problems.

Figure 6 shows the relative information given by the types of
questions, normalized by the number of questions in each category.
In the information curves, the height and area under the curve are
influenced by the discrimination of the questions (with more area
meaning more information about student knowledge and a more
accurate measurement), and the location of the peak of the curve
shows the difficulty.

6.1.2  Discussion. The statistical evidence is clear: Proof Blocks
problems were easier than proof problems, and on average, Proof
Blocks problems provided a similar amount of information about
student knowledge as did written proof questions. This makes Proof
Blocks problems ideal test questions: they are straightforward to
write, give substantial information about student knowledge, and
can be graded fully automatically.

6.2 Correlations with other Questions

6.2.1 Results. Table 3 gives the correlations between students’
performance on different types of exam questions. All questions
types were highly correlated.

6.2.2  Discussion. The high correlation between all types suggests
that the types of skills assessed by the different types of questions
are not dissimilar. By engaging students with Proof Blocks problems,
which require similar skills to written proofs, but are easier, we
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Type Question Topic Diff. Disc. | Question Topic Diff. Disc.
Proof 1 Logic and Proofs -0.54 1.04 2 Sets, functions -0.28  1.68
3 Sets, functions 0.55 0.84 4 Cardinality 1.66  0.67

5 Directed graphs 0.24 093 6 Undirected Graphs  2.41  0.64

7 Induction 0.75 1.19 8 Induction 0.87 1.18

9 Recursive sets 054 1.45 10 Number Theory 0.27 1.20

ProofBlocks 11 Logic and Proofs -1.18  0.80 12 Logic and Proofs -0.99 1.16
13 Cardinality -0.52  1.38 14 Cardinality -0.28  1.26

15 Directed graphs -0.34 049 16 Undirected Graphs  0.38  0.90

17 Algorithm analysis -1.76 ~ 0.57 18 Algorithm analysis -0.71  1.04

Other 19 Logic and Proofs -2.54 091 20 Logic and Proofs -4.97  0.39
21 Logic and Proofs -332  0.73 22 Sets, functions 0.02  0.64

23 Sets, functions -6.75 0.37 24 Sets, functions -2.06 0.83

25 Cardinality -2.85 1.06 26 Cardinality -3.77  0.61

27 Cardinality -1.79  0.66 28 Directed graphs -0.01 0.58

29 Directed graphs -2.33 045 30 Directed graphs 054 0.78

31 Directed graphs -1.97  0.99 32 Undirected Graphs -0.45 0.64

33 Undirected Graphs -0.35 0.44 34 Undirected Graphs -1.72  0.88

35 Undirected Graphs 0.25  0.27 36 Induction -1.44 137

37 Induction -0.29  1.69 38 Induction -1.06  1.29

39 Recursive sets -0.12  0.87 40 Recursive sets -142 091

41 Recursive sets -248 114 42 Recursive sets -2.33 158

43 Recursive sets -2.22 0.90 44 Number Theory -2.03 0.88

45 Number Theory -1.91  0.92 46 Number Theory -1.20  1.01

47 Number Theory -1.31  1.10 48 Probability -1.31  0.93

49 Probability -0.70 111 50 Probability 195 111

51 Probability -1.29  0.95 52 Probability -0.72  0.96

53 Probability -0.02 1.24 54 Series sums 0.22 147

55 Series sums 0.46 1.49 56 Series sums -0.18  0.82

57 Series sums 038 1.84 58 Series sums 0.16  1.00

59 Algorithm analysis  -1.39  1.03 60 Algorithm analysis -4.12  0.43

61 Algorithm analysis  0.42  0.87 62 Algorithm analysis -0.06  0.79

Table 2: Difficulty (Diff.) and Discrimination (Disc.) parameters for all items in the 2PL model fit. Topic names have been

shortened to save space. For the full names, refer to Table 1.

Correlation Low. 95% C.I.  Up. 95% C.I.

Proof-Proof Blocks 0.65 0.58 0.71
Proof Blocks-Other 0.75 0.68 0.80
Proof-Other 0.72 0.65 0.77

Table 3: Correlations between question types. Student
grades are highly correlated between all types of questions
given to students on their exams. Each of the correlations is
significant at p < 0.001.

hope to bridge the gap from students having the content knowledge
required to understand proofs, to actually being able to write proofs.

6.3 Survey

6.3.1 Results. Only 51 of the 325 students included in the psycho-
metric analysis responded to the survey (15.7%). The results of the
Likert scale survey questions are show in Figure 7. A Mann-Whitney
U test fails to show significant difference (p = .087, W = 1058)
between student agreement with to the statement “Proof Blocks

accurately represent my understanding of how to write proofs”
(mean = 3.67) and the statement “Written proofs accurately rep-
resent my understanding of how to write proofs” (mean = 3.98).
As with all hypothesis tests, this could mean either that there is no
difference, or that the effect size was small enough that our sample
wasn’t large enough to detect it.

A Mann-Whitney U test also shows no significant difference
(p = 0.75, W = 1255) between student agreement with the statement
“The assignment of partial credit for Proof Blocks was fair" (mean =
3.64) and student agreement with the statement “The assignment
of partial credit for written proofs was fair" (mean = 3.75). No
students disagreed that the user interface was easy to use.

6.3.2 Discussion. We find it very encouraging that 71% of respon-
dents agreed that Proof Blocks problems did accurately represent
their ability to write proofs, giving support to the authenticity of
Proof Blocks—nearly as many as the 75% who believed that written
proofs problems accurately represented their ability. It is difficult to
have a scaffolded activity feel as authentic as the real thing. For ex-
ample, some students have concerns over the authenticity of writing
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Figure 6: Information given by each type of test question,
normalized by number of questions of that type. This plot
can be viewed as a summary of the psychometric results: the
large amount of area under the curve for both Proof Blocks
problems and written proofs showed that they give a sub-
stantial amount of information about student knowledge,
while the location of the peaks shows that Proof Blocks
problems are easier than written proofs.

code using block based languages [33]. We also find it encouraging
that students felt that the assignment of partial credit for Proof
Blocks problems was just as fair as the partial credit assignment
for written proofs.

Some students gave answers to the free response questions that
helped give more meaning to the quantitative survey results. One
student elaborated on the benefits of the scaffolding provided by
Proof Blocks:

Usually my biggest struggle when it comes to writing
proofs is finding a place to start and using concrete
wording/reasoning to do so. With Proof Blocks, I get
the skeleton and concrete wording given to me so I
can focus on applying theorems and having a coherent
train of thought.

Another student gave more insight into why they felt that Proof
Blocks were easier than written proofs, a sentiment that most stu-
dents seemed to share based on the Likert scale data:

I think they’re much easier than written proofs be-
cause of how much information the problem gives.
There were a lot of proof block questions that I would
have no clue how to do as a written proof but I got full
credit on them through simple process of elimination.

Poulsen et al.

For example, some proofs have multiple sets of “con-
sider” where you pick the function f and correspond-
ing next steps based on which function was picked.
It’s very easy to tell which blocks go with which “set”
of steps go together, which effectively makes the ques-
tion multiple choice(with fewer choices) because the
last step of the proof is obvious.

7 LIMITATIONS

The primary limitation of our study is the fact that our data set
allows us only to answer certain questions about Proof Blocks prob-
lems and not others. For example, we are able to make a strong
claim that Proof Blocks problems function well as test questions,
assessing student knowledge of discrete mathematics in an accu-
rate and useful way, but we are not yet able to comment on the
usefulness of Proof Blocks problems for learning to write proofs.
Since nearly all of the data we collected was quantitative, we are
largely unaware of students thought processes and affect as they
work through Proof Blocks problems. Furthermore, as distractors
for questions were chosen in an ad-hoc manner, we are not able
to comment on what types of distractor lines do or don’t work
well in Proof Blocks problems, or what their impact is on learning
or assessment. Another limitation is that our survey sample was
a small percentage of the course (15.7%), and because the survey
was completely anonymous, we have no way of knowing any de-
mographic information about those who chose to complete the
survey.

The discrete mathematics course was taught by multiple instruc-
tors, some of whom had reservations about putting unproven prob-
lem formats onto the exams. Consequently, we could not include
Proof Blocks problems and traditional proofs on every relevant
exam, limiting the types of analyses we could perform. However,
we believe that our study has very high ecological validity—we
demonstrated that Proof Blocks problems are useful in flow of a
normal discrete math course, without special changes being made
and without emphasizing Proof Blocks problems during instruction
or assignments.

8 ADOPTING PROOF BLOCKS

Documentation, instructions, and more examples for Proof Blocks
and PrairieLearn can be found online in the PrairieLearn documen-
tation and example courses [27, 28]. PrairieLearn is integrated with
Learning Tools Interoperability [24] to enable easier sharing of
student data across learning platforms. Authors may be contacted
with questions.

9 CONCLUSIONS

We have shown that Proof Blocks problems have many properties
that instructors desire when writing tests. First, they have high dis-
crimination and thus provide a substantial amount of information
about student knowledge—comparable to written proofs. They are
also easier than written proof problems, and thus may be appro-
priate for scaffolding students from content knowledge to writing
proofs. Proof Blocks decrease the grading burden on course staff,
allowing more time for office hours and other activities that help
students learn. Furthermore, students felt that the Proof Blocks
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Figure 7: Responses to the Likert scale questions on the survey. Notable highlights of the survey are that no students disagreed
that the user interface was easy to use, 71% felt that Proof Blocks accurately represented their understanding of how to write
proofs (versus 75% for written proofs), and 57% felt that the assignment of partial credit for Proof Blocks problems was fair

(versus 63% for written proofs).

interface was easy to use, that the questions accurately represented
their understanding of how to write proofs—almost as well as actu-
ally writing proofs.
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