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ABSTRACT

Proof Blocks is a novel software tool which enables students to

write mathematical proofs by dragging and dropping prewritten

lines into the correct order, rather than writing a proof completely

from scratch. We used Proof Blocks problems as exam questions for

a discrete mathematics course with hundreds of students, allowing

us to collect thousands of student responses to Proof Blocks prob-

lems. Using this data, we provide statistical evidence that Proof

Blocks are easier than written proofs, which are typically very

difficult. We also show that Proof Blocks problems provide about

as much information about student knowledge as written proofs.

Survey results show that students believe that the Proof Blocks user

interface is easy to use, and that the questions accurately represent

their ability to write proofs.

CCS CONCEPTS

• Mathematics of computing → Discrete mathematics; • So-

cial and professional topics → Computing education; • Ap-

plied computing→ Computer-assisted instruction.
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1 INTRODUCTION

Understanding and writing mathematical proofs is one of the crit-

ical yet difficult skills that students must learn as a part of the

discrete mathematics curriculum. Proofs and proof techniques are

included by the ACM curricular guidelines as a core knowledge

area that should be understood by any student obtaining a degree in

computer engineering, computer science, or software engineering
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[12, 16, 29]. A panel of 21 experts using a Delphi process agreed that

6 of the 11 most difficult topics in a typical discrete mathematics

course are related to proofs and logic [9].

There are many aspects of writing mathematical proofs that are

difficult. Many students fail to produce the basic building blocks

that proofs have, such as properly declaring variables or referenc-

ing theorems [22]. Students get stuck working through the details

of algebraic manipulations. They have a tendency to commit cer-

tain logical fallacies such as confusing a proposisiton with its con-

verse [22, 26]. Studies have shown that even when students have all

the prerequesite content knowledge to write a mathematical proof,

they still struggle to construct one [31]. Thus, there is a gap that

needs to be filled between students having the content knowledge

to write a proof and the aptitude to actually construct one.

Vygotsky’s theory of psychological development posits that be-

tween the tasks which a person can and cannot do, there is a so-

called zone of proximal development: a set of tasks which a person

cannot perform unaided, but which they can perform when given

help and support, called scaffolding [30, 35]. Computer science

instructors and researchers have used various approaches to scaf-

folding students learning to write code for the first time. Block based

programming languages such as Scratch and Blockly [8, 15] scaffold

students by providing them with building blocks from which to

assemble their programs and guarding against the struggles of syn-

tax errors. Research has shown that using block based languages

can accelerate the student learning process when first learning to

program [33]. Parson’s problems are a kind of homework and exam

question where students are asked to assemble prewritten lines of

code into a correct program [17]. Researchers have shown Parson’s

problems to be useful both as test questions [4] and as a learning

tool for helping to accelerate the learning process for beginners

learning to write code [7].

Following from the success of Parson’s problem and similar ap-

proaches to teach programming, we propose Proof Blocks. Proof

Blocks allows students to construct mathematical proofs by drag-

ging and dropping prewritten proof lines into the correct order,

rather than having to write the entire proof from scratch. Figure 1

shows an example of a Proof Blocks problem. Proof Blocks provides

a scaffolded environment, enabling students to construct mathe-

matical proofs without needing to worry about coming up with

all of the details on their own. A Proof Blocks problem may also

contain distractor lines which are not a part of any correct solution.

The design of the Proof Blocks grader [19] is flexible in allowing

any correct arrangement of the lines of the proof. This is enabled by
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the instructor specifying which lines of the proof depend on which

other lines (the full dependence graph of the lines of the proof in

Figure 1 can be seen in Figure 2). Students who fail to construct

a correct proof on their first try can then receive automated feed-

back from the computer, as shown in Figure 3, before being given

additional attempts at the discretion of the instructor.

Proof Blocks problems are also very promising for saving time for

both students and course staff. Many computer science departments

are experiencing a huge increase in enrollments. This increase in

enrollments means course staff lose more time to grading, making it

more difficult for them to spend the time they need helping students

individually. Proof Blocks helps to alleviate this strain by providing

a way to test some of students’ proof skills in a way that can be

automated, saving grading time and allowing course staff more

time for other activities that help students such as office hours and

review sessions.

The ability to receive automated feedback is also a boon to stu-

dents. Due to staff time constraints, students in a discrete mathemat-

ics course may not be able to receive feedback on the correctness of

proofs they write until long after they have completed them. Proof

Blocks also helps with this, as it allows students to receive feedback

instantly, just as they receive instant feedback from the compiler

and from automated testing suites as they write code.

In using a new kind of test questionwith our students, wewanted

to ensure that we were testing students on the correct set of skills

and that we were providing them with a fair and equitable learning

experience.

In this paper, we seek to answer the following three research

questions:

RQ1:What statistical information about student knowl-

edge do Proof Blocks problems provide relative to

other course content?

RQ2: What is the relationship between the knowl-

edge required to complete Proof Blocks problems and

other types of problems in a discrete mathematics

course?

RQ3: What are students’ perceptions about the fair-

ness, usability, and authenticity of being assessed by

using Proof Blocks problems?

2 RELATED WORK

Anecdotally, we have heard of instructors using scrambled proofs to

assess student knowledge both in euclidean geometry and in higher-

level mathematics. In theory, instructors may have offered such

questions on paper even before the advent of computers, though we

can find no explicit record of this. Additionally, to our knowledge

there has been no research into the merits of these questions either

for learning or for assessment.

We will give a brief overview of related work including Parson’s

problems, research on teaching and learning proofs, and software

tools for constructing mathematical proofs in an educational con-

text.

2.1 Parson’s Problems

The use of scrambled code problems was first documented by Par-

sons [17]. They have since been studied for their desirable proper-

ties both in assessment and learning [4, 5, 7]. The desirable proper-

ties of Parson’s problems were a major inspiration for the creation

of Proof Blocks.

Denny et al. [4] showed that Parson’s problems are easier to

grade than free-form code writing questions, and yet still offer rich

information about student knowledge. We will show the same to

be true with Proof Blocks problems in relation to free-form proof

writing questions. Ericson et al. [7] showed that students learning

to write code using Parson’s problems learn at an accelerated rate

in the early stages of learning compared to students being taught

to fix code or write code from scratch.

2.2 Research on Teaching and Learning Proofs

There are many threads of research in seeking to illuminate stu-

dents’ understandings and misunderstandings about proofs [23, 25,

26]. One thread establishes that, as they learn, students go through

different phases in the complexity of ways they are able to think

about solving proof problems [32]. Another study demonstrated

that even when students had all of the knowledge required to write

a proof and were able to apply that knowledge in other types of

questions, they were still unable to write a proof [31], thus high-

lighting the need to scaffold students through the proof-writing

process.

On the other hand, there is little research on concrete educational

interventions for improving the proof learning process [11, 26]. In-

deed, a recent review of the literature on teaching and learning

proofs concluded: łmore intervention-oriented studies in the area

of proof are sorely neededž [26]. Hodds et al. [11] showed that train-

ing students to engage more with proofs through self-explanation

increased student comprehension of proofs in a lasting way. Proof

Blocks problems similarly force deliberate engagement with proof

content, as close reading is necessary to determine the correct

arrangement of lines. Proof Blocks also shows promise as a tool

that can provide scaffolding that students are so in need of when

learning to write proofs.

2.3 Educational Theorem Proving Software

A few other software tools have been created to enable students to

create proofs in the computer in such a way that they can receive

automated feedback. Some use text-based representations, while

others use visual representations of proofs.

Polymorphic Blocks [13] is a novel user interface which presents

propositions as colorful blocks with uniquely shaped connectors

as a signifier of which types of propositions can be connected

in a proof. While the user interface has been shown to engage

students in learning proofs, it supports only propositional logic. The

Incredible Proof Machine [3] guides students through constructing

proofs as graphs. As with Polymorphic Blocks, the user interface is

engaging, but the formality of the system limits the topics which

can be effectively covered.

Jape [2] is a łProof calculator,ž which guides students through

the process of constructing formal proofs in mathematical notation

with the help of the computer. While Jape can allow students to
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Figure 1: An example of the Proof Blocks user interface used by students. Individual lines of the proof start out shuffled in

the light-blue starting zone, and students attempt to drag and drop them into the correct order in the yellow target zone. The

instructor wrote the problem with 1, 2, 3, 4, 5, 6 as the intended solution, but the Proof Blocks autograder will also accept any

other correct solution as determined by the dependency graph shown Figure 2. For example, both 1, 2, 5, 4, 3, 6 and 1, 2, 4, 5, 3,

6 would also be accepted as correct solutions.

construct proofs in arbitrary logics, it requires the instructor to

implement these logics in its own custom programming language

before students can use them to construct proofs.

MathsTiles [1] is a block-based programming interface for con-

structing proofs for the Isabelle/HOL proof assistant. In theory,

having an open-ended environment where students could construct

arbitrarily complex proofs seems like it could be a huge advantage.

However, in user studies, the authors found that students only had a

chance at being successful while using MathsTiles if they were pro-

vided a small instructor-procured subset of blocks, namely, those

needed to complete the problem at hand.

Ensley and Winston offer some scrambled proofs in a JavaScript

applet as supplementary material to their discrete mathematics

textbook [6]. However, their tools are restricted in only supporting

grading by simple ordering, greatly restricting the types of proofs

that students can construct using the tool. The directed acyclic

graph-based grading that the Proof Blocks autograder uses enables

assessing proofs which are more complex and use a greater variety

of writing styles.

Most of these tools cover only small subset of the material typi-

cally covered in a discrete mathematics course, and those that are

more flexible require learning complex theorem prover languages.
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Figure 3: Example of feedback given to students working on Proof Blocks problems. To avoid giving students so much infor-

mation that we are not actually testing their knowledge, they are only told at which line their proof fails, not the reason why

or what the solution is. One area of future research is to investigate what kind of feedback is best for students to recieve when

using Proof Blocks as a tool for learning to write proofs.

Exam Number Topics Proof Proof Blocks Other

1 Logic and Proofs 1 2 3

2 Sets, functions, and Relations 2 7

3 Cardinality 1 2 3

4 Directed Graphs 1 1 4

5 Undirected Graphs and Trees 1 1 4

6 Induction 2 3

7 Recursive sets and Structural Induction 1 5

8 Number Theory 1 1 4

9 Probability and Counting 6

10 Series Sums and Solving Recurrences 5

11 Algorithm Analysis and Big O 2 4

Table 1: The breakdown of question types on each exam. Proof Blocks problems were used on exams throughout the semester

as and when the instructors felt that they would be useful. They were not used at an artificially inflated rate for the purposes

of this study.

instructional technology specialist employed by the engineering

college, and then fully anonymized before being delivered to the

research team for analysis. All research team members handling

the data were trained in proper student privacy and human subjects

research protocols.

4.1 Data Preparation

For our analysis, we treat all variants of a question as the same

question. Though there are small differences in difficulty between

question variants, we concluded that these small differences were

not relevant to the research questions we are addressing with this

study.

Because the final exam involved retaking exams which may have

contained questions overlapping with questions that students had

already seen, andwe are focusing only on students’ first interactions

with a given question, we exclude the final exam from our analysis,

focusing only on the 11 exams given to the students throughout the

semester. Two questions on Exam 2 had user interface bugs in them,

causing the course staff to award everyone in the course full points

on those questions for fairness, so they were also excluded from the

analysis. The Proof Blocks question given on Exam 8 was nearly

identical to a question given on a practice exam, so we omit it from

the analysis to avoid the analysis being skewed due to students

knowing the answer in advance.

With the anonymity restrictions placed by our Institutional Re-

view Board, we are unable to know which students in our data set

formally dropped the course before the end, so for our analysis

we only kept students who attempted at least 10 of the 11 exams

(325 of 404 students). Due to different questions being used at times

between primary exams and make up exams, we do not have a

response from every student for every question, even for students

who took every exam. Our final data set consisted of 325 students
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over 62 questions. A complete data set would have been 20,150 an-

swers, but we had 569 missing data points, giving us a total of

19,581 student submissions.

To keep all questions on the same scale, remove effects of un-

validated grading rubrics, and to remove the effects of guessing on

additional submissions after feedback, we re-graded all questions

on a dichotomous scale (1 for fully correct, 0 for not fully correct)

and graded only the first submission. This decision aligns our data

more closely with the 2-Parameter Logistic Model of Item Response

Theory (See Section 5.1).

5 METHODS

We use the two-parameter logistic model (2PL) from item response

theory [14] to answerRQ1 and correlation analysis to answerRQ2.

To answer RQ3, we administered a survey.

5.1 Psychometrics

To answerRQ1, wewant to understandwhat level of student knowl-

edge Proof Blocks questions assess, and how accurately it assesses

that knowledge. 2PL has been used widely in psychometrics and has

been used within computer science education mostly for validation

of concept inventories [10, 18, 36]. 2PL is a good fit for our needs

because it provides a way to model the probability of each student

answering each question correctly as a function of a question’s

difficulty and discrimination.

The difficulty is how hard it is to answer a question correctly,

and the discrimination is how well a question differentiates between

students of lower and higher skill levels. In the case of difficulty,

we want to explore whether Proof Blocks problems have lower

difficulty thanwritten proofs, giving evidence that theymay provide

scaffolding. For discrimination, higher is always better in the sense

that if a question’s discrimination is higher, it will provide more

information about student knowledge. We would like to explore if

Proof Blocks problems have comparable discrimination to written

proof problems.

We used the R programming language and the package ltm to

clean the data and fit item response theory models [20, 21]. In 2PL,

we assume that the probability of student 𝑛 correctly responding

to item 𝑖 can be modeled as a function of the student’s ability, 𝜃𝑛 ,

the discrimination of the item, 𝑎𝑖 , and the difficulty of the item, 𝑏𝑖 ,

as follows:

𝑝𝑖 (𝜃𝑛) =
1

1 + 𝑒−𝑎𝑖 (𝜃𝑛−𝑏𝑖 )
. (1)

The distribution of student ability parameters 𝜃𝑛 is normalized to

a mean of 0 and standard deviation of 1. In this case, because the

students were learning across the course of the semester in between

these test questions, the difficulty measurement of the questions

is relative to the student knowledge at the time they took that

particular exam, rather than absolute.

After fitting the 2PL model, we test two null hypotheses:

(1) The distribution of difficulties of Proof Blocks problems is

the same as for written proof problems. (We desire for Proof

Blocks to be easier.)

(2) The distribution of discriminations of Proof Blocks problems

is the same as for written proof problems. (We desire for

Proof Blocks to be comparably discriminatory.)

After using a Shapiro-Wilk test to confirm the normality of these

distributions, we use a t-test to test the hypotheses.

In order to fit the dichotomous response requirement of 2PL, we

converted all problems to binary responses: 1 for full points and 0 for

anything less than full points (See Section 4.1). To ensure robustness

of our results, we also fit our data to a graded response model, a

type of polytomous item response theory model that accounts for

assignment of partial credit. This model supported our conclusions

just as well as the 2PL model, so we present the simpler model for

ease of presentation. As a further robustness check, we also used

a standard classical test theory model, which again supported the

same conclusions.

5.1.1 Item Response Functions. Inserting the difficulty and discrim-

ination parameters for each test item into Equation 1 gives the item

response functions, which help us visualize the difficulty and dis-

crimination of test items, and the probability that a student with a

given ability level will answer the question correctly. The difficulty

of the item determines the ability level at which a student will have

a 50% probability of getting the question correct. For example, in

Figure 4 the solid line describes an item with difficulty 0, meaning

that if we choose a random student with mean ability level, there is

a 50% chance that student would have answered that item correctly.

The dotted item is an easier item with a difficulty of -0.5, meaning

that students who are half a standard deviation below the mean in

ability level answer that item correctly at a rate of 50%, and students

with mean ability level answer that item correctly at a rate greater

than 50%. A good assessment will have questions with a variety of

difficulty levels to assess student knowledge at all relevant levels

of ability.

The discrimination of an item manifests in the item response

function as the slope, with a higher positive discrimination leading

to a more strongly positive slope. For example, the dashed line in

Figure 4 denotes an item that has the same difficulty as the solid-

line item, but with a higher discrimination, so that the probability

that a student gets the questions correct rises more quickly for

students above mean-ability level, and decreases more quickly for

students below mean-ability level. Questions with high discrimina-

tion allow assessments to measure student knowledge with high

accuracy and less error, so it is always desirable for items to have

high discrimination.

5.1.2 Item Information Functions. The item information function

for an item is the derivative of the item response function for that

item. It shows howmuch information that item gives about students

taking the test at each level of ability. Figure 4 shows example item

information curves for the same items as it shows item response

functions. The solid item collects more information about higher

performing students than the dotted item, due to having higher

difficulty. The high discrimination of the dashed item allows it to

provide much more information across a range of ability levels than

either of the other two items.

Summing together multiple item information functions gives

the combined information that can be gained about a given student
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We do not apply any statistical tests for this construct because

the user interface for Proof Blocks is incommensurate with the

interface for writing proofs.

Finally, to see if student’s perceptions of Proof Blocks’ difficulty

aligned with the empirical evidence about question difficulty, we

had students to rate their agreement to:

(1) Proof Blocks problems are easier than written proofs.

Again, there were no statistical test for this item, but we felt it would

be desirable to know if the students’ perception of the difficulty of

Proof Blocks questions aligned with the empirical evidence.

We also asked three optional open ended questions, mainly with

the goal of giving students the opportunity to voice any major

concerns they may have had with Proof Blocks:

(1) How do you thinkwe could improve Proof Blocks Questions?

(2) Given more practice problems, what do you think Proof

Blocks would help you learn?

(3) Do you have any other feedback about Proof Blocks?

No major concerns were raised. While we did not have enough

responses to the open ended questions to do a qualitative analysis,

we will use some of them to help us interpret the results of the

quantitative survey questions.

6 RESULTS AND DISCUSSION

6.1 Psychometrics

6.1.1 Results. We will now examine the fit of the 2PL model to

answer RQ1. The full model fit of the 2PL is shown in Table 2,

with the test questions divided by category. It is important to recall

that in this case, because the students were learning across the

course of the semester in between these test questions, the difficulty

measurement of the questions is relative to the student knowledge

at the time they took that particular exam, rather than absolute.

Figure 5 is a box and whisker plot that compares the difficulty

of the different types of questions. We first used a Shapiro-Wilk

normality test to show that the distributions of difficulty of proof

problems (𝑊 = 0.92, 𝑝 = 0.39) and Proof Blocks problems (𝑊 =

0.99, 𝑝 = 0.99) are both close enough to normal distributions to

justify using a standard t-test. The t-test shows that proof ques-

tions are significantly more difficult than Proof Blocks problems

(𝑝 = 0.003). Proof questions had a mean difficulty of 0.64 (95% CI

[0.025, 1.27]), meaning that students who had an ability level of 0.64

standard deviations above the mean had a 50% chance of recieving

full credit on a proof problem, with students at mean ability level

having a lower chance of recieving full credit. Proof Blocks prob-

lems had a mean difficulty of -0.68 (95% CI [-1.22, -0.134]), meaning

that students with ability level 0.68 standard deviations below the

mean had a 50% chance of recieving full credit on a Proof Blocks

problem, on average.

A Shapiro-Wilk normality test showed that the distribution of

discrimination parameters was also normal for both written proofs

(𝑊 = 0.96, 𝑝 = 0.77) and Proof Blocks questions (𝑊 = 0.96, 𝑝 =

0.80). A t-test shows that the two distributions are indistinguishable

(𝑝 = 0.40), so we do not reject the null hypothesis that written

proofs and Proof Blocks problems measure knowledge with the

same discrimination. The mean of the discriminations is 1.08 (95%

l
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Figure 5: Box and whisker plot showing the relative diffi-

culty of Proof, Proof Blocks, and Other questions. There is

a clear separation between the difficulty level of proof prob-

lems and Proof Blocks problems, with Proof Blocks prob-

lems being slightly easier (𝑝 = 0.003).

CI [0.84, 1.32]) for written proofs, and 0.95 (95% CI [0.68, 1.21]) for

Proof Blocks problems.

Figure 6 shows the relative information given by the types of

questions, normalized by the number of questions in each category.

In the information curves, the height and area under the curve are

influenced by the discrimination of the questions (with more area

meaning more information about student knowledge and a more

accurate measurement), and the location of the peak of the curve

shows the difficulty.

6.1.2 Discussion. The statistical evidence is clear: Proof Blocks

problems were easier than proof problems, and on average, Proof

Blocks problems provided a similar amount of information about

student knowledge as did written proof questions. This makes Proof

Blocks problems ideal test questions: they are straightforward to

write, give substantial information about student knowledge, and

can be graded fully automatically.

6.2 Correlations with other Questions

6.2.1 Results. Table 3 gives the correlations between students’

performance on different types of exam questions. All questions

types were highly correlated.

6.2.2 Discussion. The high correlation between all types suggests

that the types of skills assessed by the different types of questions

are not dissimilar. By engaging students with Proof Blocks problems,

which require similar skills to written proofs, but are easier, we
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Type Question Topic Diff. Disc. Question Topic Diff. Disc.

Proof 1 Logic and Proofs -0.54 1.04 2 Sets, functions -0.28 1.68

3 Sets, functions 0.55 0.84 4 Cardinality 1.66 0.67

5 Directed graphs 0.24 0.93 6 Undirected Graphs 2.41 0.64

7 Induction 0.75 1.19 8 Induction 0.87 1.18

9 Recursive sets 0.54 1.45 10 Number Theory 0.27 1.20

ProofBlocks 11 Logic and Proofs -1.18 0.80 12 Logic and Proofs -0.99 1.16

13 Cardinality -0.52 1.38 14 Cardinality -0.28 1.26

15 Directed graphs -0.34 0.49 16 Undirected Graphs 0.38 0.90

17 Algorithm analysis -1.76 0.57 18 Algorithm analysis -0.71 1.04

Other 19 Logic and Proofs -2.54 0.91 20 Logic and Proofs -4.97 0.39

21 Logic and Proofs -3.32 0.73 22 Sets, functions 0.02 0.64

23 Sets, functions -6.75 0.37 24 Sets, functions -2.06 0.83

25 Cardinality -2.85 1.06 26 Cardinality -3.77 0.61

27 Cardinality -1.79 0.66 28 Directed graphs -0.01 0.58

29 Directed graphs -2.33 0.45 30 Directed graphs 0.54 0.78

31 Directed graphs -1.97 0.99 32 Undirected Graphs -0.45 0.64

33 Undirected Graphs -0.35 0.44 34 Undirected Graphs -1.72 0.88

35 Undirected Graphs 0.25 0.27 36 Induction -1.44 1.37

37 Induction -0.29 1.69 38 Induction -1.06 1.29

39 Recursive sets -0.12 0.87 40 Recursive sets -1.42 0.91

41 Recursive sets -2.48 1.14 42 Recursive sets -2.33 1.58

43 Recursive sets -2.22 0.90 44 Number Theory -2.03 0.88

45 Number Theory -1.91 0.92 46 Number Theory -1.20 1.01

47 Number Theory -1.31 1.10 48 Probability -1.31 0.93

49 Probability -0.70 1.11 50 Probability 1.95 1.11

51 Probability -1.29 0.95 52 Probability -0.72 0.96

53 Probability -0.02 1.24 54 Series sums 0.22 1.47

55 Series sums 0.46 1.49 56 Series sums -0.18 0.82

57 Series sums 0.38 1.84 58 Series sums 0.16 1.00

59 Algorithm analysis -1.39 1.03 60 Algorithm analysis -4.12 0.43

61 Algorithm analysis 0.42 0.87 62 Algorithm analysis -0.06 0.79

Table 2: Difficulty (Diff.) and Discrimination (Disc.) parameters for all items in the 2PL model fit. Topic names have been

shortened to save space. For the full names, refer to Table 1.

Correlation Low. 95% C.I. Up. 95% C.I.

Proof-Proof Blocks 0.65 0.58 0.71

Proof Blocks-Other 0.75 0.68 0.80

Proof-Other 0.72 0.65 0.77

Table 3: Correlations between question types. Student

grades are highly correlated between all types of questions

given to students on their exams. Each of the correlations is

significant at 𝑝 < 0.001.

hope to bridge the gap from students having the content knowledge

required to understand proofs, to actually being able to write proofs.

6.3 Survey

6.3.1 Results. Only 51 of the 325 students included in the psycho-

metric analysis responded to the survey (15.7%). The results of the

Likert scale survey questions are show in Figure 7. AMann-Whitney

U test fails to show significant difference (𝑝 = .087,𝑊 = 1058)

between student agreement with to the statement łProof Blocks

accurately represent my understanding of how to write proofsž

(mean = 3.67) and the statement łWritten proofs accurately rep-

resent my understanding of how to write proofsž (mean = 3.98).

As with all hypothesis tests, this could mean either that there is no

difference, or that the effect size was small enough that our sample

wasn’t large enough to detect it.

A Mann-Whitney U test also shows no significant difference

(𝑝 = 0.75,𝑊 = 1255) between student agreementwith the statement

łThe assignment of partial credit for Proof Blocks was fair" (mean =

3.64) and student agreement with the statement łThe assignment

of partial credit for written proofs was fair" (mean = 3.75). No

students disagreed that the user interface was easy to use.

6.3.2 Discussion. We find it very encouraging that 71% of respon-

dents agreed that Proof Blocks problems did accurately represent

their ability to write proofs, giving support to the authenticity of

Proof BlocksÐnearly as many as the 75% who believed that written

proofs problems accurately represented their ability. It is difficult to

have a scaffolded activity feel as authentic as the real thing. For ex-

ample, some students have concerns over the authenticity of writing
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Figure 6: Information given by each type of test question,

normalized by number of questions of that type. This plot

can be viewed as a summary of the psychometric results: the

large amount of area under the curve for both Proof Blocks

problems and written proofs showed that they give a sub-

stantial amount of information about student knowledge,

while the location of the peaks shows that Proof Blocks

problems are easier than written proofs.

code using block based languages [33]. We also find it encouraging

that students felt that the assignment of partial credit for Proof

Blocks problems was just as fair as the partial credit assignment

for written proofs.

Some students gave answers to the free response questions that

helped give more meaning to the quantitative survey results. One

student elaborated on the benefits of the scaffolding provided by

Proof Blocks:

Usually my biggest struggle when it comes to writing

proofs is finding a place to start and using concrete

wording/reasoning to do so. With Proof Blocks, I get

the skeleton and concrete wording given to me so I

can focus on applying theorems and having a coherent

train of thought.

Another student gave more insight into why they felt that Proof

Blocks were easier than written proofs, a sentiment that most stu-

dents seemed to share based on the Likert scale data:

I think they’re much easier than written proofs be-

cause of how much information the problem gives.

There were a lot of proof block questions that I would

have no clue how to do as a written proof but I got full

credit on them through simple process of elimination.

For example, some proofs have multiple sets of łcon-

siderž where you pick the function f and correspond-

ing next steps based on which function was picked.

It’s very easy to tell which blocks go with which łsetž

of steps go together, which effectively makes the ques-

tion multiple choice(with fewer choices) because the

last step of the proof is obvious.

7 LIMITATIONS

The primary limitation of our study is the fact that our data set

allows us only to answer certain questions about Proof Blocks prob-

lems and not others. For example, we are able to make a strong

claim that Proof Blocks problems function well as test questions,

assessing student knowledge of discrete mathematics in an accu-

rate and useful way, but we are not yet able to comment on the

usefulness of Proof Blocks problems for learning to write proofs.

Since nearly all of the data we collected was quantitative, we are

largely unaware of students thought processes and affect as they

work through Proof Blocks problems. Furthermore, as distractors

for questions were chosen in an ad-hoc manner, we are not able

to comment on what types of distractor lines do or don’t work

well in Proof Blocks problems, or what their impact is on learning

or assessment. Another limitation is that our survey sample was

a small percentage of the course (15.7%), and because the survey

was completely anonymous, we have no way of knowing any de-

mographic information about those who chose to complete the

survey.

The discrete mathematics course was taught by multiple instruc-

tors, some of whom had reservations about putting unproven prob-

lem formats onto the exams. Consequently, we could not include

Proof Blocks problems and traditional proofs on every relevant

exam, limiting the types of analyses we could perform. However,

we believe that our study has very high ecological validityÐwe

demonstrated that Proof Blocks problems are useful in flow of a

normal discrete math course, without special changes being made

and without emphasizing Proof Blocks problems during instruction

or assignments.

8 ADOPTING PROOF BLOCKS

Documentation, instructions, and more examples for Proof Blocks

and PrairieLearn can be found online in the PrairieLearn documen-

tation and example courses [27, 28]. PrairieLearn is integrated with

Learning Tools Interoperability [24] to enable easier sharing of

student data across learning platforms. Authors may be contacted

with questions.

9 CONCLUSIONS

We have shown that Proof Blocks problems have many properties

that instructors desire when writing tests. First, they have high dis-

crimination and thus provide a substantial amount of information

about student knowledgeÐcomparable to written proofs. They are

also easier than written proof problems, and thus may be appro-

priate for scaffolding students from content knowledge to writing

proofs. Proof Blocks decrease the grading burden on course staff,

allowing more time for office hours and other activities that help

students learn. Furthermore, students felt that the Proof Blocks
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Figure 7: Responses to the Likert scale questions on the survey. Notable highlights of the survey are that no students disagreed

that the user interface was easy to use, 71% felt that Proof Blocks accurately represented their understanding of how to write

proofs (versus 75% for written proofs), and 57% felt that the assignment of partial credit for Proof Blocks problems was fair

(versus 63% for written proofs).

interface was easy to use, that the questions accurately represented

their understanding of how to write proofsÐalmost as well as actu-

ally writing proofs.
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