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We study the wetting of a thin elastic filament floating on a fluid surface by a droplet of another,
immiscible fluid. This quasi-2D experimental system is the lower-dimensional counterpart of the wetting
and wrapping of a droplet by an elastic sheet. The simplicity of this system allows us to study the
phenomenology of partial wetting and wrapping of the droplet by measuring angles of contact as a
function of the elasticity of the filament, the applied tension and the curvature of the droplet. We find
that a purely geometric theory gives a good description of the mechanical equilibria in the system. The
estimates of applied tension and tension in the filament obey an elastic version of the Young-Laplace—
Dupré relation. However, curvatures close to the contact line are not captured by the geometric theory,
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possibly because of 3D effects at the contact line. We also find that when a highly-bendable filament
completely wraps the droplet, there is continuity of curvature at the droplet-filament interface, leading
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1 Introduction

The wetting properties of a drop on a rigid substrate deter-
mines the angle of contact with the solid, known as the Young
angle of contact. However if the substrate is a soft solid' ™ or an
unstretchable but thin film,*® it can deform under the capillary
action of the drop. In the former case, the liquid-vapour
surface tension induces large localised stretching close to the
contact line while in the latter, the film bends without stretch-
ing, resulting in large bending close to the contact-line. Due to
the deformation of the substrate under the localized force of
the contact line, different contact angles may be perceived at
length scales corresponding to the size of the drop, or the scale
of the elastic stretching or bending deformation. At any given
scale, the contact angle may deviate from the Young contact
angle 9,,>'® and the magnitude of this contact often has to be
obtained from a global energy minimization rather than a
simple local force balance.”’* The anomalous contact-angle
behaviour has implications ranging from bio-locomotion,"***
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to seamless wrapping as observed in a 3D droplet.

micropatterning surfaces,'* 15,16

hydrophobic fabric."”

We study a two-dimensional version of the wetting experi-
ment (as shown in Fig. 1(a)) at an air-water interface, where the
thin sheet is replaced by a slender elastic filament and is wet by
a nearly flat oil drop floating on the water interface. The three-
dimensional problem of a droplet of liquid on top of a floating
thin sheet was initially studied because the capillary forces at
the contact-line generate a radial wrinkling pattern.®” However,
from the viewpoint of studying the contact angle, the wrinkles
are a hindrance, as they impede the measurement of the
contact angle and the deformation of the sheet close to the
contact line where there is large localised bending. In addition,
imaging contact angle both above and below the substrate is
more complex in the case of a 3D drop on a 2D sheet, and
requires flipping the drop,’ or using a 3D imaging technique.®
The 2D system we consider here does not have the complica-
tions of wrinkles. In the regime of wetting geometry where
droplet size approaches the size of the sheet, if the sheet is
highly bendable then it can wrap around the droplet and
enclose it entirely.'®'® Wrapping in 2D can occur with smooth,
isometric bending, unlike in 3D, thus the 2D filament-droplet
system allows us to study phenomenon of wrapping of the
droplet by the filament more easily than in the 3D system.

We obtain the entire range of phenomena, from the Young
contact geometry, to large deviations from apparent Young
contact, to wrapping by two methods. The first of these is to
tune the competition between the liquid-vapour surface tension,
and the bending rigidity of the sheet over the scale of the drop.

cargo transport to creating
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Fig. 1 (a) Schematic of the experimental setup where a droplet of Mineral oil (orange) is placed in the vicinity of a floating thin elastic filament at the
air—water interface of a water bath. One end of the filament is connected to a soft beam (green) whose end displacement is used to measure the applied
tension T,. Tension in our experiments is controlled by inducing in-plane displacement of the free end of the filament. (b) Variables of interest are shown
on top of an image from experiments: 9, ¢ — angle made by the droplet with the buckled filament; T, — applied boundary tension and T, — tension in the
droplet-wet region, y — effective surface tension of the 2-D droplet along ‘contact-line’ as detailed in the article; Ry, Ry, — radius of curvature of the free
interface of droplet and the radius of curvature of the filament wet by droplet. The scale bar in the image is 5 mm.

This competition is captured in a dimensionless parameter
called the bendability, which is the ratio of the droplet-size,
w to the capillary-bending length, /.. which is the length scale at
which bending and capillary forces are similar in magnitude.
Most studies'®>* are in the regime where the bendability is ¢(1)
while our experiments are in the high-bendability limit. We
achieve this limit by using thin filaments and large droplet sizes.
This guarantees a separation in scales between droplet size and
capillary-bending length, and the behaviour in this limit is drama-
tically different from that in the low bendability limit.”'*'® The
second method we use to traverse these phases is to smoothly
modify the rigidity of the filament by varying the tension imposed
on the filament. As we will show in this article, when the filament
is under large tension, it does not deform under the capillary force
of the droplet, and Young scenario is recovered; when it is slack,
then large deformation and wrapping can occur.

In the absence of tension, the sheet can undergo a budding
transition explored in the context of lipid membranes.”>?°
When a large droplet of liquid is in contact with a lipid
membrane, the bending energy of the membrane can be
neglected and in this limit the membrane can change its shape
to wrap the droplet completely. This transition is driven by
competition between membrane tension and the wetting property
of the droplet, analogous to the wrapping transition of an elastic
sheet.'" On the other hand when an elastic nanoparticle or a
vesicle>”?® is covered by a lipid membrane, deformations of the
vesicle can now cost energy. When the adhesion energy between
the membrane and vesicle as well as the surface tension of the
exposed vesicle are varied, they can exhibit three phases: no
wrapping, partial wrapping, fullwrapping. Interestingly, in the
limit of vanishing bending stiffness of the vesicle, the theory of Yu
et al*”*® coincides with the calculation of Brau et al.'* for a 2-D
elastic filament wrapping a macroscopic droplet. In addition, Brau
et al."* provide predictions for the effects of finite tension, which
we explore in this article. Schulman et al.® have studied the wetting
of a sheet under tension by a droplet, and use an expression
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for local force balance to obtain a relation between the wetting
angles and tensions in the wet and unwet parts of the sheet.
These expressions become identical to those of Brau et al'' in
the limit of very thin substrates. As we will describe later, the
filaments we use are of sufficiently high-bendability to apply these
expressions.

As shown in Fig. 1(b), we measure the contact angles 9, ¢ of
a partially wetted filament as a function of applied tension. We
show in this paper that the contact angles exhibit a universal
behaviour in the thin-filament limit which were not measured
in earlier work on the equivalent 3-D systems.®® In the limit of
infinite bendability, our results match well with a recent
theory,"" with the effective surface tension of the 2-D droplet
being the only fitting parameter. Under large magnitudes of
applied tension, the theory predicts that though ¢ and (% — ) — 0,
the ratio (3y — 3)/¢ asymptotes to 1/2. We measure this ratio in
our experiments and observe the trend predicted by the theory to
hold true. We also find that the applied tension and the tension
in the buckled zone obey a force balance relation remarkably
similar to the Young-Laplace relation. This relation is shown by
Brau et al.'! to arise out of global energy minimisation. In the
theory of vanishing bending stiffness, the region close to the
contact-line is of infinite curvature. However, in the experiments
the filament has a finite magnitude of curvature denoted by
1/R.p, an elasto-bending scale; we study the variation of R}, with
T,, the applied boundary tension. The effects of finite bendabil-
ity here produce deviations from the high-bendability theory.
In the wrapped regime when the filament length is less than the
perimeter of the droplet, we find that the filament forms part of
a circle around the drop, unlike a 3D wrapping experiment'®
where the optimal wrapping assumes the shape of a parachute or
a mylar balloon resembles a parachute. The circular shape
ensures that there is no jump in curvature at the interface
between filament end and droplet interface; this leads to seam-
less wrapping as observed in the case of ultra-thin sheets."®
On the other hand, for low-bendability filaments, the radius of
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curvature of the droplet-interface diverges as the ends of the
filament approach each other.

2 Relevant variables

Four length scales govern the overall mechanics of the
filament-drop system. These are the diameter d of the filament,
the droplet radius w, the length of the filament L, the capillary-
bending length scale l.. = (B/y)"® with y being the droplet-
vapour surface tension, B the bending stiffness, given for a
filament of circular cross-section as: B = End'/64, (E - Youngs’
modulus of filament material). A fifth length scale arising out
of stretching, /,,, = y/E is irrelevant in our experiments because
Im =0.03 pm <« d ~ (10 pm). Moreover we are interested in a
high-bendability regime where the size of droplet is much
larger than the capillary-bending length scale, w >» I.. The
non-dimensional quantity that indicates this scale separation is
the bendability: & * = (w/l.c)>

By varying these length-scales and the applied tension we
can explore the phases of the filament-drop phase diagram. The
axes of the diagram are three non-dimensional quantities
constructed from these variables:

T="To(yd), ¢ *=Wwil)?, @=(Lw). (1)

Here T, is the applied tension at the boundary, as seen in
Fig. 1(b); T is the non-dimensional applied tension; @ the ratio
of filament length L to droplet radius w. In the partially wet
regime we maintain the limit: e* > 1, @ » 2r. In the second
part of the article we explore the other regime of e ' » 1, ® < 2n
to understand the wrapping mechanism.

3 Experimental set-up

Our experiment consists of a thin elastic filament floating at
air-water interface, placed in contact with a floating oil droplet
as shown in Fig. 1(a). One end of the filament is attached to a
translation stage and the other end to a beam made out of a
soft elastic material (vinyl polysiloxane). We control the tension
in the filament by moving the beam. As described in detail
later, the floating droplet is flattened by gravity and so behaves
approximately like a two-dimensional object. We define the
contact angles 3 and ¢ in the plane of the air-water interface
(see Fig. 1(b)). The contact angle of the droplet is a scale
dependent quantity and here we measure them at the scale of
the size of the droplet. The effective surface tension of this 2-D
droplet is the line tension of the droplet at the air-water
interface. In the partially-wrapped state we vary the size of the
droplet, diameter of the filament and the applied boundary
tension, while in the wrapping experiments, we vary the droplet
size for various filament diameters. These parameters help
us explore different high-bendability morphologies of the fila-
ment. We image the filament shape and measure the curvature
of the filament close to contact-line of the droplet. Near full
wrapping, we use fluorescence imaging to accurately capture
the shape of the filament. This allows us to calculate the radius
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of curvature of the filament and that of the droplet as a
function of its bendability.

Making filaments

The thin filaments used in our experiments are made out of
polydimethylsiloxane (PDMS) using a mixture of PDMS base,
accelerator and cross-linker (Sylgard 184, Dow Corning) in the
ratio (10:2:1) at room temperature, and as the mixture begins
to set, we take a droplet of this mixture and pull it using a
tweezer to create a thin long thread which then sets. We
measured the Young’s modulus of the resulting material to
be E = 1 MPa. We make filaments whose diameter d varies
between 80-200 pm and with length, L = 1000d.

Measuring tension

The capillary forces originate from surface tensions that are
~10 mN m ™, and they act on filaments ~ 100 pm in diameter,
resulting in forces of ((uN) in magnitude; this demands a
sensitive force sensor. We clamp a long, soft beam at one end
to a translation stage and attach the filament at its other end.
This is shown schematically in Fig. 1(a). The soft beam is made
of vinyl polysiloxane (VPS) and has a diameter of 0.5 mm,
length of [ = 6 cm and Young’s modulus of Eg = 200 kPa. When
the translational stage is displaced the beam bends and we
track the tip of the soft beam at the end attached to the
filament. The standard small deflection approximation gives
the dependence of force on displacement as: F ~ 3Bdx/I’
where Bs is the bending stiffness of soft beam, given by B =
Egnt’/4, t - beam diameter, 6x - horizontal displacement,
I - length of soft-beam as shown in Fig. 2(a).

However, for the range of tension we are interested in, we
require the solution to the full non-linear beam equation. Here,
unlike in the small displacement limit, the displacement in the
vertical direction of the beam, Jy cannot be neglected and for
large tensions the displacement in this direction is sensitive to
applied tension as shown in Fig. 2(b). Furthermore, the angle
between the end of the filament and the initial configuration
changes as a function of tension creating an angle g. We
measure g, ox, 0y for each tension value in the experiments.
We then find solutions to the non-linear problem given by:

W"(s) + Fecosasiny(s) + Fsinocosy(s) = 0 2)

where i is the angle between the tangent to the beam and
vertical (see Fig. 2(a)), s the non-dimensional arc-length along
beam (non-dimensionalised using /) with s = 0 indicating the
fixed end and s = 1 is the end connected to the elastic filament.
F = FI%/B; is the non-dimensional applied force. We solve this
system numerically using a shooting method® under the
boundary conditions: /(0) = 0, and ¥/(1) = 0. From the solution
for different values of F for a given ¢ we look for the F that
corresponds to the measured ox/l and dy/l, which is the
required quantity to compute T,. This procedure is executed
for all displacements and we show in Fig. 2(a) that the com-
puted shape (green line) matches well with the experimentally
observed shape (gray line).
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Fig. 2 (a) Schematic of the soft beam attached to one end of the filament to measure tension in the filament with the relevant variables: y(s) — angle

between tangent and vertical; F — non-dimensional force applied at beam'’s end; ¢ — angle at which the force is applied; s — non-dimensional arc-length;
ox/l, dyll — non-dimensional displacement along x,y-direction. Alongside is the image of the beam from the experiment superimposed on the
numerically-solved shape from eqn (2). (b) Numerically computed displacement dy/! vs. non-dimensional force, F for three different ¢ values: n/2, n/4,
n/8. (c) Fluorescence intensity along two radial lines, indicating the height profile of the droplet from the side view, one close to the contact-line of PDMS
filament and one far from it (shown schematically in the inset). This indicates that the presence of the filament does not distort the 3D height profile of the
drop, except perhaps very close to the 4-phase contact region as shown in close-up top-view image (d) where we see 3-D effects appear as the droplet
becomes thin near the contact line, seen as a region of wet zone with large changes in interface curvature. The scale bar in the image is 2.5 mm.

Droplet and scale separation

We use mineral oil of density 0.86 g mL ™" for the droplets. The
oil is dyed with Sudan red G, a hydrophobic, water-insoluble
dye. This captures the shape of the droplet precisely as we image
it under uniform light. The oil droplet is a three-dimensional
object with three length-scales relevant at different regions of the
droplet. These are w - radius of droplet, d — diameter of filament,
l. — capillary length. The droplet size w is the largest of these
length-scales, d is relevant close to the region where the droplet
is in contact with filament and /. in the curved region approach-
ing air-water interface. For large droplets, gravity ensures a
uniform thickness ~ [. and if we work with small-d filaments,
then we are in a scale separated regime given by: d « . « w.
Furthermore the quantities of interest in our experiments 9 and
¢, are the macroscopic angles and not the microscopic wetting
angle. We ensure this separation by choosing w in the range
0.5-2 cm with the capillary length of Mineral oil /. = 1.8 mm and
d = 80-200 um. In Fig. 2(c) we plot the droplet surface profile
close to filament contact line, and far from it, to show that the
shape of the droplet is not strongly perturbed in the thin
direction by the presence of the filament and thus the 2-D
approximation is valid.}

Visualising filament

In order to visualise the filaments in our wrapping experiments
we wet the filament in a solution of Nile Red in ethanol and
allow the ethanol to evaporate. We leave the droplet uncoloured
and shine a laser beam (Wicked Laser, 500 mW at 500 nm) on
the filament. The filament fluoresces in the red, and a filter is
used to eliminate the green illumination line. Though Nile Red
is a hydrophobic dye and diffuses into mineral oil at long

+ We do not explore here in detail the question of why the filament chooses to sit
at the three phase contact line instead of passing undeviated over or under the
drop. Possibly the bending energy lost in curving around the drop is more than
compensated by the oil-air and water-air interface protected by the filament.

1500 | Soft Matter, 2021, 17, 1497—-1504

timescale, our experiments were performed before the dye
diffuses into the droplet.

Highlights of theory

We make comparisons to a theory of a 2-D drop-on-sheet
problem ie., a drop modelled as a cylinder sitting on top of
an inextensible rectangular sheet, in the infinite-bendability
limit.>'" This involves minimising the total surface energy of
the system, with contributions from liquid-vapour, liquid-
solid, and solid-vapour interfaces. The analysis reduces to a
purely geometric question with contact angle, 3y and applied
tension, T being the relevant parameters. Given these para-
meters, the complete shape of the droplet and sheet is predicted,
for a fixed area of droplet. The expressions for the angles 9, ¢ are
given by:"

(1+2T cos 9y — cos? 9y)

cos 9 = -
2T

; (3)

(1 —cos 9y /T + (cos® §y — 1)/2T7?)

cos ¢ = -
¢ 1 —cosdy/T

(4)

The critical tension is determined from the criterion for the
validity of the above expressions i.e. 0 < 9, ¢ < n from which
we get T. = cos®(9y/2). This is precisely the transition from a
partially wet state where only a part of the drop boundary is
covered by the sheet, to a wrapped state where the droplet
boundary is completely encapsulated. Interestingly the tension
at which 9 = ¢ occurs at T = 27,. We will use the critical tension,
T. to measure the unknown line tension 7y in our experiments.

4 Results

Contact angle and critical wrapping tension

In Fig. 3(a) we plot 3, ¢ as functions of T, scaled by the critical
tension for wrapping, 7.. We show data for filaments of two

This journal is © The Royal Society of Chemistry 2021
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(a) Measured values of 3 and ¢ from experiments for different bendability values of the drop-filament system. For the filament diameter 205 pm,

we choose four different droplet sizes: 12.7 mm, 13.8 mm, 18.0 mm, 20.2 mm shown using O. Similar angles 3 and ¢ measured for a filament of diameter
77 um and three different droplet sizes: 10.6 mm, 14.2 mm, 16.6 mm plotted as ¢. We see a clear collapse of all the data indicating a universal behaviour of
perceived contact angle in the high-bendability limit, with solid line being eqgn (3) and (4) for 9y = 115° (corresponding to the thick filament) and dashed
line for 9y = 125°. The point where 9, ¢ intersect is where T = 2T, which in our experiments give T./d = 22 MmN m~% from y = 7.6 mN m~%, 9, = 115°.
(b) Computed values of (3y — 9)/¢ in experiments (symbols) compared to the theoretical predictions from egn (3) and (4) which approach a value of 1/2 at
large tensions. O corresponds to the thicker and ¢ to the thinner of the filaments. (i)—(iv) show the experimental shapes of filament-drop system as the

tension in the filament is decreased. Scale bar in (i) is 5 mm.

different diameters, 77 um and 205 pm. The data were taken by
varying the tension while holding the drop size fixed. The drop
size was then varied in the range 10.6-20.2 mm. These two
filament diameters and the different droplet sizes helped us
span bendability values between ¢ ' = 80-1920. In order to
compute the bendability ¢ * = (w/l..)> of the droplet-filament
system, we need the line-tension of the oil droplet. To obtain y,
we note in Fig. 3(a) that as the magnitude of tension increases
there is a crossover in magnitude between ¢ and 3. From the
infinite bendability theory we expect this cross-over to happen
at 7/T, = 2 (see eqn (3) and (4)). In order to match this cross-over
point in experiments, y is the only fitting parameter. We find
that all the data collapse with the analytical expression in
Fig. 3(a) for y = 7.6 mN m™'. To extract 9y we measure the
contact angle for 7 » T.. For this surface tension y, we find T./d =
2.2 mN m™~! when 9y = 115° for the thicker filament and T./d =
1.6 mN m~* when 9y = 125° for the thinner filament. Now for
T » cos’(9y/2) we can expand the eqn (3) and (4) to get
2 sin 9y N sin Jy

~ 0T g g Y 5
R )

From this it is easy to see that for applied tension, 7 > 1, the
asymptotic value of the function (3y — 9)/¢ — 1/2. Using the
measured values of 9, ¢ and 9y in our experiments, we compute
(3y — 3)/¢ as shown in Fig. 3(b). The trend predicted by the
analytical expression is captured, though the data are noisier at
large tensions due to finite precision in the measurement of

This journal is © The Royal Society of Chemistry 2021

¢ when its magnitude approaches zero. In the model of Brau
et al.'" the normalized internal stresses are related to geometric
variables 3 and ¢ alone through the expressions

= sin(9+¢)

-~ sin 9
T = To=———. 6
! sin ¢’ © sin ¢ (©)

These expressions are derived by using the relation that the
tension in the buckled zone is given by T7/(dR},) = y/Rq where Ry,
Ry are the radius of buckled zone of sheet and the radius of the
droplet interface. Now the ratio Ty = Ty/(dy) = Rp/Rq can be
written in terms of 9, ¢. The expression for T, on the other
hand is derived by minimising the total energy of the system as
detailed in the previous section. In Fig. 4(a) we compare the
boundary tension T, computed from 9, ¢ and eqn (6) and the
direct measurement of tension using the deflection of the soft
beam-7. We next compare in Fig. 4(b) experimental data for 77,
the stress in the buckled zone obtained from the measured
contact angles, to the analytical expression for 7; for two
different 3y = 115°, 125° corresponding to the thick and thin
filament. The jump in the magnitude of tension at the contact
line is proportional to the equilibrium contact-angle 9y and is
given by:

(To — T1) = cos Yy, )

which is the equivalent of the Young-Laplace-Dupré relation
for elastic filaments or sheets. In Fig. 4(c) we compare the
difference (T, — Tj) as a function of applied tension T and see

Soft Matter, 2021, 17,1497-1504 | 1501
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Fig. 4 (a) Non-dimensional applied tension T, (b) tension in the portion
of the filament wet by the droplet T,, and (c) the difference between these
tension values, (T, — T)) evaluated by using angles 9, ¢ measured from
experiments (using eqn (5)) as functions of the applied tension, T measured
using soft-beam displacement. O correspond to filament diameter 205
um and ¢ to diameter 77 pm for different droplet sizes. The solid and
dashed lines respectively indicate theoretical predictions from egn (6).

that it remains constant, close to the value cos 9y, predicted
by theory. There is a reasonable match between experiments
and the above expression 6 with the biggest deviations at small
tensions.

Close to the contact-line

The angles and tensions measured in the previous section were
compared with an infinite-bendability theoretical model.
In this section, we explore quantities that reflect more obviously
the finite bendability of the filaments. In the infinite-bendability
prediction, the filament is buckled into a circle of radius Ry,
where it is in contact with the droplet, and straight elsewhere
with a sharp cusp connecting the straight region and the wetted
region. However, finite bendability introduces finite curvature,
1/Rep, in this transition zone close to the contact line.

We measure 1/R.;, as a function of applied tension, T for
three different droplet sizes (w = 6.2 mm, 7.6 mm, 9.4 mm) as
shown in Fig. 5(c). To image the filament shape near the
droplet, we dye the filament (and not the droplet as in the
previous section) with Sudan Red G and illuminate with a
uniform white light source. After extracting the filament shape,
we do a B-Spline curve fit to the filament shape and calculate
the signed curvature as a function of filament arc length as
shown in Fig. 5(b). The three shapes in Fig. 5(a) correspond to
three different tensions in decreasing magnitude for a fixed
droplet size of w = 6.2 mm. We identify the maximum value of
curvature max(x(s)) with 1/R., and the minimum value,
min(x(s)) with 1/Rp. We find that both curvatures decrease with
increasing outer tension T, as shown in Fig. 5(c and d).
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Fig. 5 (a) Three different filament shapes extracted from experiments as
the applied tension T, is decreased for a fixed droplet size of w = 6.2 mm
and filament diameter d = 120 um. (b) Corresponding signed curvature,
Kk(s) of shapes in (a) computed as a function of non-dimensional arc length
s (scaled using filament length) after fitting Bezier spline to the extracted
shapes. 1/Rep, 1/Rp, correspond to maximum and minimum of k(s). (c) The
non-dimensional curvature of transition-zone close to the contact-line
between filament and droplet, w/Rep, and (d) the non-dimensional curvature
of the droplet wet part of filament, w/R,, as a function of non-dimensional
boundary tension T, for a filament of diameter d = 120 um for three different
droplet sizes w = 6.2 mm (A), 7.6 mm (O), 9.4 mm (0O) and several values of
T, non-dimensionalised using an estimate of 3 = 5 mN m™. The corres-
ponding bendability values are ¢* = 49, 72, 125. The solid line in
(c) corresponds to 7'0’1 and the dashed line is 7'0’1’2 while the solid line in
(d) corresponds to the complete expression for T, using eqn (8) for ¢ = 0.

The curvature 1/R;, of the buckled part of the filament may
be estimated in terms of the 2D Laplace pressure of the free
surface of the droplet. We can relate R}, as a function of T,
using the expression for area as

sin® (9 — sin(20)/2) + sin® 9(¢ — sin(2¢)/2)
sin® 9

w? /R = , (8)

where 9, ¢ are related to tension under eqn (3) and (4). The
length-scale R}, close to the contact line can be estimated from
balancing bending forces and tension in the filament. In an
idealized 2D situation, the tension jumps across the contact
line resulting in a change in curvature from ¢ 7,2 in the
region wet by the droplet to ¢ **7,~** outside. The experi-
mental data for w/R.p, in Fig. 5(c) do not clearly show the T,/
trend (dashed line), and are perhaps closer to T, " (solid line).
There are three major differences between the experiment and
the model: one is that the filament bendability ranges from
74-190, whereas the model assumes large bendability; this
leads to poor scale-separation between R., and Rp. A second
respect in which the experiment is non-ideal is that the
meniscus near the contact line is fully 3-dimensional, as shown
in Fig. 2(d). Lastly the theoretical estimates also assume fixed
area of the droplet while in the experiments a fixed volume of
droplet is maintained as the tension is varied. In this process
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Fig. 6 (a and b) Fluorescence images showing shape of filament encap-
sulating the droplet for a filament of diameter d = 90 um, 170 pm and a
droplet of size w = 7.5 mm, 2.3 mm with droplet-interface shown as
dashed-line. The scale bar is 3.7 mm. (c) Radius of curvature of the buckled
zone in the filament, Ry, vs. the radius of curvature of free interface of the
droplet, Rq in mm. Solid line indicates Ry, = Rq. We consider three different
filament diameters d = 80 um (A), 90 um (), 170 pm (O).

the projected area does vary, however there is only 5% change
in area over the range of tensions in the experiment.

Wrapping process

In order to emulate the process of complete wrapping of the
droplet, we adopt the following procedure. A freely floating
filament is brought into contact with a floating droplet such
that @ < 2m and the droplet size is reduced until the ends of the
filament come close to touching. We extract the shape of the
filament from fluorescence images such as in Fig. 6(a). This
procedure is followed for three different filament diameters,
d =80 pm, 90 um, 170 um. The parameters Rq and Ry, the radius
of curvature of the droplet-water interface and radius of curva-
ture of the buckled zone describe the geometry of the droplet-
filament system. In the high-bendability limit, as we shall see,
these are enough to describe the system’s entire shape.

First, we observe that the thinnest filament has a constant
curvature along the length as shown in Fig. 6(a). This radius of
curvature matches that of the droplet interface radius of curva-
ture, Ry plotted in Fig. 6(c) corresponding to open triangles (A),
where the solid line indicates Rq = Rp,. As the droplet size
decreases the buckling radius decreases as does the droplet
interface radius. However the thickest filament corresponding
to open circles (O) shows a deviation from the straight line
hinting that the interface becomes flatter before the ends come
in contact. This divergence is a low-bendability effect which does
not exist for the thinnest filament as seen in Fig. 6(b).

Second, in the high-bendability limit the shape of the
filament is part of a circle which is in contrast with the
behaviour of an axisymmetric sheet seen in Paulsen et al.'®

This journal is © The Royal Society of Chemistry 2021
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where the solution is not part of a sphere but resembles that of
parachute. This difference comes about from geometric con-
straints of area being preserved in inextensible sheets where it is
the length that is preserved in filaments. From the force-balance
equation we have:

3 (s)

B{ié(s) +— } — Tox(s) = —~

w

)

where x(s) is the curvature along the filament. Now in the high-
bendability limit the dominant balance comes from tension in
filament and droplet surface tension, y. However since T, &
this implies ¥ ~ w™". The partially wrapped circular droplet now
obeys the Young-Laplace relation over free interface of the
droplet and the elastic Young-Laplace relation in eqn (7) over
the filament. We see that w determines the entire shape of the
filament-droplet system, independent of any physical parameters
in the system, just as in the unwrapping scenario. The seamless
wrappings of drops within sheets seen in Kumar et al."® must be a
consequence of the continuity of curvature at the sheet-droplet
boundary, as we observe in the case of filaments. This is in stark
contrast with the capillary origami,'® where the wrapped state of the
origami presents openings with pointed ends because ¢ ' ~ ((1).

5 Conclusion

The two dimensional experimental system developed here to
study capillary bending and wrapping illuminates some
features of its three dimensional counterpart. We have shown
that contact angles and critical wrapping tension of the fila-
ment can be described by an infinite bendability theoretical
model>"" and have also characterized the finite bendability
effect close to the contact line. The tension inside the wetted
region and the applied tension obey the predicted elastic
version of the Young-Laplace-Dupré relation. However, some
features of the experimental system, such as the 3D geometry of
the drop near the contact line, affect the comparison with the
purely 2D model. In our experiments, the line tension of the
droplet at the air water interface was a fitting parameter and the
physical mechanism behind this effective surface tension need
further probing. The 2-D system also provides a venue to further
explore different phases in the phase-diagram of Brau et al.''
such as the partially wrapped and the completely wrapped phase.
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