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ABSTRACT
BFT protocols in the synchronous setting rely on a strong assump-
tion: every message sent by a party will arrive at its destination
within a known bounded time. To allow some degree of asynchrony
while still tolerating a minority corruption, recently, in Crypto’19,
a weaker synchrony assumption called mobile sluggish faults was
introduced. In this work, we investigate the support for mobile
sluggish faults in existing synchronous protocols such as Dfinity,
Streamlet, Sync HotStuff, OptSync and the optimal latency BFT
protocol. We identify key principles that can be used to “compile”
these synchronous protocols to tolerate mobile sluggish faults.

CCS CONCEPTS
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1 INTRODUCTION
Byzantine fault tolerant (BFT) protocols relying on a network syn-
chrony assumption can tolerate up to one-half Byzantine faults.
However, the synchrony assumption may be too strong in practice;
it requires every message sent by a replica to arrive at its destina-
tion within a known bounded delay Δ. In practice, this assumption
may not hold all the time due to irregularities in the sender’s or
receiver’s network. To tolerate such aberrations, one can rely on a
partially synchronous or asynchronous network. However, under
these network assumptions, consensus is impossible in the presence
of more than one-third fraction of Byzantine faults.
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In a recent work from Crypto’19, Guo, Pass, and Shi [7] presented
a weakly synchronous model where the synchrony assumption
holds for most of the network but allows for messages from a few
replicas to be arbitrarily delayed. In particular, the model states
that, at any time, a fraction of the replicas are honest and prompt,
i.e., they respect the synchrony assumption. The remaining replicas
can either be sluggish (their messages can be delayed) or Byzantine.
Moreover, during the protocol execution, the sluggish replicas can
be mobile. Thus, over the course of execution of the protocol, it
is possible for every honest party to be sluggish at some point. A
subsequent work, thus, referred to this model as themobile sluggish
synchronous model [2]. This model is stronger than partial syn-
chrony or asynchrony; however, we have a better fault tolerance.
As Guo et al. [7] show, we can have consensus protocols where
the fraction of Byzantine and sluggish replicas together is up to
one-half. The model is also a strict generalization of synchrony
since synchrony requires there to be no sluggish replicas.

Subsequent to the work of Guo et al. [7], there have beenmultiple
works presenting consensus protocols under a synchrony assump-
tion as well as a version that tolerates mobile sluggish faults [2, 3, 5].
In these works, the techniques to make a synchronous protocol
tolerant to mobile sluggish faults seem specific to the protocol itself.
In this work, we ask,

What support do existing synchronous protocols have for mobile
sluggish faults? Can we compile existing synchronous protocols to
their mobile sluggish counterparts?

We address these questions by analyzing many of the existing
synchronous protocols, namely, Dfinity [8], Streamlet [4], Opt-
Sync [10], Sync HotStuff [2] and the optimal latency BFT proto-
col [3], and presenting their mobile sluggish counterparts. We iden-
tify a common theme to make these protocols secure under the
weaker synchrony model. Compiling any synchronous protocol to
one under the weaker model still remains an open question.

2 MODEL AND NOTATIONS
We consider 𝑛 replicas in a reliable, authenticated all-to-all network,
where up to 𝑓 replicas can be Byzantine or sluggish at any time 𝑡 .
Honest replicas that are not sluggish are prompt. Messages sent by
sluggish replicas may suffer arbitrary delays while messages sent by
prompt replicas will respect the synchrony bound. Specifically, if a
replica 𝑟 is prompt at time 𝑡 , then any message sent by 𝑟 at time ≤ 𝑡

will arrive at a replica 𝑟 ′ prompt at time 𝑡 ′ if 𝑡 ′ ≥ 𝑡 + Δ. The set of
sluggish replicas can arbitrarily change at every instant of time. We
denote the number of sluggish replicas by 𝑑 and Byzantine replicas
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by 𝑏 such that 𝑓 = 𝑏 + 𝑑 . Without loss of generality, we assume
𝑛 = 2𝑓 + 1. Thus, at least 𝑓 + 1 replicas are honest and prompt at
any time. We assume standard digital signatures and public-key
infrastructure (PKI). We use ⟨𝑥⟩𝑝 to denote a signed message 𝑥 by
replica 𝑝 and 𝐻 (𝑥) to denote the invocation of the random oracle
𝐻 on input 𝑥 .

All of the protocols we consider make progress through a series
of numbered views. A view is usually coordinated by a distinct
leader where the leader proposes values in the form a block to
make progress. Each block references its predecessor to form a
block chain. We call a block’s position in the chain as its height.
A block 𝐵𝑘 at height 𝑘 has the format, 𝐵𝑘 := (𝑏𝑘 , 𝐻 (𝐵𝑘−1)) where
𝑏𝑘 denotes the proposed payload at height 𝑘 , 𝐵𝑘−1 is the block at
height 𝑘 − 1 and 𝐻 (𝐵𝑘−1) is the hash digest of 𝐵𝑘−1. A block 𝐵𝑘
extends a block 𝐵𝑙 (𝑘 ≥ 𝑙 ) if 𝐵𝑙 is an ancestor of 𝐵𝑘 .

A block certificate on a block 𝐵𝑘 consists of 𝑓 + 1 distinct sig-
natures in a view 𝑣 and is represented by C𝑣 (𝐵𝑘 ). Two blocks 𝐵𝑘
and 𝐵′

𝑘′
equivocate one another if they are not equal to and do not

extend one another.

3 TOLERATING MOBILE SLUGGISH FAULTS:
KEY IDEA

Synchronous protocols require all messages sent by every honest
replica to arrive at its destination within a known bounded delay.
At a high level, these messages are used by a replica to (i) learn
the state of other replicas, or (ii) make deductions based on ab-
sence of messages within a specific time. Partially synchronous
and asynchronous protocols rely only on the former; typically, a
replica updates its state after receiving messages from a quorum
of other replicas. The use of absence-of-messages crucially enables
synchronous protocols to circumvent the lower bound by Dwork
et al. [6].

In the presence of mobile sluggish faults, a key requirement,
thus, is to enable communication between sluggish and prompt
honest replicas.Wemake a simple observation: if a sluggish replica 𝑠
receives amessage𝑚 from a quorum of 𝑓 +1 replicas, thenwithin the
next Δ time all honest and prompt replicas will receive the message
𝑚 too (assuming𝑚 was sent in an all-to-all communication). This is
because at least one of the 𝑓 + 1 senders of𝑚 is honest and prompt
at a time before 𝑠 receives this quorum of messages. Assuming
all-to-all communication is used by the protocol, all replicas will
receive𝑚 within Δ time. Moreover, from the perspective of 𝑠 , only
one of the 𝑓 + 1 messages is guaranteed to be from an honest and
prompt replica; the remaining messages can potentially be from
Byzantine or sluggish replicas.

In the context of protocols that we analyzed, the above generally
breaks down to two simple rules. In order to commit a block 𝐵𝑘 , a
mobile-sluggish protocol needs to have: (i) the certificate for 𝐵𝑘 , i.e.,
C𝑣 (𝐵𝑘 ), should be buried deep enough and a replica needs to wait
at least Δ time after receiving a sufficiently buried certificate, (ii) a
replica needs to commit only after hearing from 𝑓 +1 replicas stating
that it has not received equivocations or equivocating certificates.

The first constraint ensures that at least one replica, say replica
𝑝 , that voted for 𝐵𝑘 is honest and prompt when a replica starts
waiting (say, at time 𝑡 ). So, all prompt replicas will learn about 𝐵𝑘
within next Δ time (i.e., by time 𝑡 + Δ). This prevents the prompt

replicas from deciding on other conflicting values. How deep should
a certificate be buried depends on the underlying synchronous con-
sensus protocol. For example, protocols like Dfinity and Streamlet
make decisions based on whether or not there are any equivocating
certificates. In order for certificates to be propagated among the
prompt replicas, C𝑣 (𝐵𝑘 ) should be buried at least 2 deep, i.e., a
replica needs to receive C𝑣′ (C𝑣 (𝐵𝑘 )) before it starts waiting. When
the replica does not detect any equivocation or equivocating cer-
tificates, the replica makes a decision on 𝐵𝑘 and we call this step as
pre-commit.

Despite receiving a sufficiently deep certificate and waiting long
enough, a sluggish replica may still not detect equivocation or
equivocating certificates and commit on conflicting values. The
second constraint prevents conflicting commits on such occasions.
Waiting for confirmations from 𝑓 +1 replicas ensures safety because
either equivocation or equivocating certificates could not have
missed all 𝑓 + 1 replicas.

We note that Sync HotStuff [2] used similar ideas to tolerate
mobile-sluggish faults. In this work, we abstract these ideas so
they can be applied more generally to other protocols. Existing
protocols like Dfinity [1, 8] and Streamlet [4] already meet the
first criteria we presented. Thus, adding the second rule of waiting
confirmations from 𝑓 + 1 replicas can easily make these protocols
tolerate mobile-sluggish faults. Due to space constraints, we present
detailed protocols in the full version [9].

In general, the above rules suffice for all protocols that we ana-
lyzed. However, the first rule requires a party to wait for at least
Δ time after burying C𝑣 (𝐵𝑘 ). Protocols like OptSync [10] are de-
signed to commit faster and decide as soon as a unique certificate
for a value is formed (and achieve responsiveness). Modifying this
protocol to meet above constraints does make the protocol secure
in the presence of mobile-sluggish faults at the expense of slower
fast commits. In Section 4, we explore an alternative direction to
allow the protocol to commit responsively.

4 OPTSYNC UNDER MOBILE SLUGGISH
FAULT MODEL

OptSync [10] is an optimistically responsive synchronous protocol
that commits at network speed when some optimistic conditions are
met i.e, ⌊3𝑛/4⌋ + 1 replicas behave honestly. It contains two distinct
commit rules that exist simultaneously–(i) the optimistic commit
rule that commits immediately when ⌊3𝑛/4⌋ + 1 replicas vote for
a block (ii) synchronous commit rule that commit within 2Δ from
voting and detecting no equivocation. A set of ⌊3𝑛/4⌋ + 1 votes for
a block 𝐵𝑘 forms a unique certificate , we call responsive certificate
(denoted by C3/4

𝑣 (𝐵𝑘 )). We use the notion of chain certificate and
ranking introduced in OptSync for ranking chains. Due to space
constraints, we refer readers to OptSync [10] for more details on
chain certificates and chain ranking rules.

We can follow the guidelines presented in Section 3 to make
OptSync mobile-sluggish secure at the expense of slower commits.
In order to facilitate responsive commits, we first present an alterna-
tive direction, we call two-blames technique, to support responsive
commits that helps in propagating the unique certificate among
prompt replicas to ensure a conflicting certificate cannot be formed
at some later point in time.
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Let 𝑣 be the view number and replica 𝐿 be the leader of the current view. While in view 𝑣, a replica 𝑟 runs the following steps in iterations:
(1) Propose. If replica 𝑟 is the leader 𝐿, upon receiving C𝑣 (𝐵𝑘−1) , it broadcasts ⟨propose, 𝐵𝑘 , 𝑣, C𝑣 (𝐵𝑘−1) ⟩𝐿 where 𝐵𝑘 extends 𝐵𝑘−1.
(2) Vote. Upon receiving the first proposal ⟨propose, 𝐵𝑘 , 𝑣, C𝑣 (𝐵𝑘−1) ⟩𝐿 with a valid view 𝑣 certificate for 𝐵𝑘−1 (not necessarily from 𝐿) where 𝐵𝑘

extends 𝐵𝑘−1, forward the proposal to all replicas, broadcast a vote in the form of ⟨vote, 𝐵𝑘 , 𝑣⟩𝑟 . Set commit-timer𝑣,𝑘−2 to 2Δ and start counting
down.

(3) Pre-commit. Replica r pre-commits block 𝐵𝑘 using either of the following rules if r is still in view v:
(a) Responsive. If ⌊3𝑛/4⌋ + 1 votes for 𝐵𝑘 , i.e., C3/4

𝑣 (𝐵𝑘 ) have been received, pre-commit 𝐵𝑘 and broadcast ⟨resp-commit, 𝐵𝑘 , 𝑣⟩𝑟 .
(b) Synchronous. If commit-timer𝑣,𝑘 reaches 0, pre-commit 𝐵𝑘 and broadcast ⟨sync-commit, 𝐵𝑘 , 𝑣⟩.

(4) (Non-blocking) Commit. If replica 𝑟 is still in view 𝑣, 𝑟 commits 𝐵𝑘 using the following rules:
(a) Responsive. On receiving 𝑓 + 1 resp-commit messages for 𝐵𝑘 in view 𝑣, commit 𝐵𝑘 and all its ancestors. Stop commit-timer𝑣,𝑘 .
(b) Synchronous. On receiving 𝑓 + 1 sync-commit messages for 𝐵𝑘 , commit 𝐵𝑘 and all its ancestors.

(5) (Non-blocking) Blame and quit view.
- Blame. For 𝑝 > 0, if fewer than 𝑝 proposals trigger 𝑟 ’s votes in (2𝑝 + 4)Δ time in view 𝑣 broadcast ⟨blame, 𝑣⟩𝑟 . If leader equivocation is detected,
broadcast ⟨blame, 𝑣⟩𝑟 along with the equivocating proposals.

- Quit view on 𝑓 + 1 blame messages. Upon gathering 𝑓 + 1 distinct blame messages, broadcast ⟨quit-view, 𝑣,𝐶𝐶 ⟩𝑟 along with 𝑓 + 1 blame messages
where CC is the highest ranked chain certificate known to 𝑟 . Abort all view 𝑣 timers, and stop voting in view 𝑣.

Figure 1: OptSync Steady state protocol under mobile sluggish model.

Let 𝐿 and 𝐿′ be the leader of view 𝑣 and 𝑣 + 1, respectively.
(1) Status. On receiving 𝑓 + 1 quit-view messages, quit view 𝑣, set view-timer𝑣+1 to 2Δ and start counting down. When view-timer𝑣+1 expires, update

its chain certificate CC to the highest possible rank. Set lock𝑣+1 to CC and send ⟨status, lock𝑣+1 ⟩𝑟 to 𝐿′. Enter view 𝑣 + 1.
(2) New View. Upon receiving a set S of 𝑓 + 1 distinct status messages after entering view 𝑣 + 1, broadcast ⟨new-view-resp, 𝑣 + 1, lock𝑣+1 ⟩𝐿′ along

with S where lock𝑣+1 is highest ranked chain certificate in S.
(3) First Vote. Upon receiving the first ⟨new-view-resp, 𝑣 + 1, lock′⟩𝐿′ along with S, if lock′ has a highest rank in S, update lock𝑣+1 to lock′, broadcast

⟨new-view-resp, 𝑣 + 1, lock′⟩𝐿′ , and ⟨vote, tip(lock′), 𝑣 + 1⟩𝑟 .
Figure 2: The view-change protocol with mobile sluggish faults

Two blames technique. First, the protocol is modified to commit
when a set 𝑅 of 𝑓 + 1 replicas say they have the unique certificate.
Second, the fallback protocol (e.g., view-change protocol) is modified
to include two types of blame messages. When a replica receives
𝑓 + 1 blame messages (blame certificate) , it forwards the blame
certificate along with the unique certificate and sends second blame
message (e.g., quit-view message in Figure 2). If a replica receives
𝑓 + 1 quit-view (quit-view certificate) messages at time 𝑡 , at least
one of them, say replica 𝑝 , should be prompt at time 𝑡 . Since, replica
𝑝 forwarded a blame certificate at time ≤ 𝑡 , prompt replicas at time
𝑡 + Δ will receive the blame certificate. At least one of the prompt
replicas at time 𝑡 + Δ belongs to set 𝑅 which broadcasts the unique
certificate. Within next Δ time, 𝑓 + 1 prompt replicas receive the
unique certificate by time 𝑡 + 2Δ. The safety of the protocol relies
on the fact that these 𝑓 + 1 honest replicas that received the unique
certificate do not vote for conflicting values.

Using the above guideline, we present mobile-sluggish secure
version of OptSync is presented in Figures 1 and 2. In order to make
the synchronous commit rule secure in the presence of mobile-
sluggish faults, a replica waits for a double certificate for block 𝐵𝑘
and waits for 2Δ time and no equivocation before pre-committing.
Waiting for double certificate for block 𝐵𝑘 ensures 𝑓 + 1 honest
replicas receive C𝑣 (𝐵𝑘 ) before view-change is executed. Note that
the optimistic commit rule commits immediately. As per our guide-
line, we modify the view-change protocol of OptSync with the two
blames technique (refer Figure 2) to propagate the unique respon-
sive certificate. In addition, the protocol also requires a replica to
wait for 𝑓 + 1 pre-commits before committing to prevent sluggish
replicas from committing before hearing from majority replicas.
Observe that the protocol has two different commit messages i.e.,

sync-commit for synchronous pre-commits and resp-commit for
responsive pre-commits. Due to space constraints, we present de-
tailed proofs in the full version [9].
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