

Distributed State Estimation in Large-scale Processes

Decomposed into Observable Subsystems Using Community Detection

Leila Samandari Masooleh1, Jeffrey E. Arbogast2,3, Warren D. Seider4, Ulku Oktem5, and Masoud

Soroush1*

1Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104,

USA

2American Air Liquide, Newark, DE 19702, USA

3Air Liquide (China) R&D Co., Ltd., Shanghai, China 201108

4Department of Chemical and Biomolecular Engineering, University of Pennsylvania,

Philadelphia, PA 19104-6393, USA

5Near-Miss Management, LLC, 1800 JFK Blvd., Suite 300, Philadelphia, PA 19103, USA

September 9, 2021

REVISED VERSION

Submitted for Publication in Computers and Chemical Engineering

Keywords: Nonlinear Kalman filtering, distributed state estimation, network decomposition,

observable subsystems, parallel computation

*Corresponding author. soroushm@drexel.edu; (215) 895-1710 (phone); (215) 895-5837 (fax)

1

Abstract

Adequate frequent information on state variables of a process is sometimes needed for effective

control and monitoring of the process. However, it is not often available in practice, which can be

addressed using a state estimator. This work deals with distributed state estimation in large-scale

processes. The decomposition of a process into observable subsystems is formulated as an

optimization problem, which is solved using an efficient whale optimization algorithm. Four

nonlinear state estimation methods (extended Kalman, unscented Kalman, spherical unscented

Kalman, and cubature Kalman filtering) are then implemented and compared using distributed and

centralized architectures on a process consisting of two reactors and a separator, and the Tennessee

Eastman process. A parallelization strategy that improves the computational efficiency of the

distributed architecture is proposed. Simulation results show that the parallel implementation of

the distributed filtering methods is computationally more efficient than their centralized

counterparts while yielding similarly accurate state estimates.

2

1. Introduction

Effective control, monitoring, and functional safety of manufacturing processes sometimes require

adequate online information on the state variables of the processes1-5. However, online

measurements of many essential state variables are often not available due to high sensor-hardware

costs or the unavailability of reliable online sensors6. In such cases, online estimates of unmeasured

state variables can be obtained using a state estimator7, which is model-based and driven by

available input and output process measurements. When the process is linear, the classic Kalman

filter8 (KF) or Luenberger observer9 can be applied. However, linear state estimators are unable to

provide accurate state estimates when the process is nonlinear7. This inability has motivated the

development of nonlinear state estimator design methods10-12.

Extensive studies on nonlinear filters based on the Bayesian approach have been

conducted. The Bayesian approach provides a robust general framework for dynamic state

estimation problems. This approach constructs the posterior probability density function (PDF) of

the system state based on past and current measurements. The posterior PDF can be obtained using

two approximation approaches, local and global. The local approach assumes that the PDF is

Gaussian, but the global approach does not. The extended Kalman filtering (EKF)13, unscented

Kalman filtering (UKF)14, and cubature Kalman filtering (CKF)15 use the local approach, but

particle filtering (PF)16 is based on the global approach. Many efforts have been made to develop

state estimation methods suitable for chemical processes and apply these methods to these

processes5,17-19. Several recent review articles have put advances in state estimation into

perspective; discussed classification, design, and applications of nonlinear state estimators; and

highlighted challenges and opportunities in this area 20-23.

A centralized implementation of these nonlinear estimators on large-scale systems is not

robust, scalable, or computationally efficient24. These limitations can be addressed using a

distributed implementation. In a distributed implementation, a large-scale system is decomposed

into subsystems with minimum inter-connection and maximum intra-connections. A distributed

implementation offers advantages of low computational burden, ease of implementation, and more

robustness to sensor failures25.

Community detection allows for decomposing a system into subsystems with the minimum

number of inter-connection and the maximum number of intra-connections. Community detection

based on graph theory has attracted a lot of attention in recent years26,27. The modularity function

3

has been used widely as a basis for detecting communities in complex networks28. In such

approaches, a directed graph is first constructed based on a state-space model. Input, state, and

measured variables are treated as nodes and are connected to each other through weighted links.

These weighted links represent the strength of the interactions between each pair of nodes. Based

on the weighted directed graph, the modularity function is evaluated. Of interest in distributed state

estimation (distributed control) is finding the observable (controllable) subsystems that maximize

the modularity function. For the purpose of distributed state estimation, Pourkargar et al.

decomposed a nonlinear system into smaller subsystems using community detection based on a

state–output digraph26,29. Also, Zhang et al. and Yin et al. proposed approaches based on weighted

graphs and high-gain observers, for distributed state estimation in large-scale processes30-32.

In this work, we formulate community detection as a multi-objective optimization problem,

the solution(s) of which is (are) observable subsystems that maximize the modularity function. A

parallel algorithm is proposed and implemented on a computer with parallel processors. Next, a

distributed state estimator consisting of a local state estimator for each subsystem is designed. The

local estimators communicate to exchange local state estimates and measurements. As each

nonlinear filtering method has its own domain of applicability, a single filter may not be optimal

or accurate in a wide range of operating conditions. To address this, we investigate distributed

implementations of EKF, UKF, spherical unscented Kalman filterings (SUKF), and CKF. The

performances of distributed and centralized state estimation schemes are evaluated via numerical

simulations. We also develop a parallelized scheme that reduces computation time without

sacrificing solution accuracy in the community detection and in the distributed state estimation.

The article proceeds as follows. As preliminaries, general formulations of the KF

extensions, the observability concept, and the detailed design of the distributed KF extensions are

presented. Next, a method of decomposing a large-scale system into observable subsystems and

its parallel implementation are presented. The proposed method is implemented on two case

studies with different levels of complexity via numerical simulations, and performances of the four

KF extensions are compared when implemented distributedly and centrally. The article ends with

concluding remarks.

2. Preliminaries

2.1. Widely-Used Nonlinear State Estimation Methods

4

2.1.1. Extended Kalman Filtering

An extended Kalman filter (EKF)13 is designed based on a linear approximation of a nonlinear

model around the current estimate. Extended Kalman filtering is the most widely used estimation

method due to the ease of its implementation. However, the accuracy of an EKF deteriorates as

the degree of nonlinearity of the process increases.

Consider a lumped-parameter system described by a discrete-time state-space model in the

form:

{
𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝑤𝑘−1 , 𝑤𝑘−1 ∼ (0, 𝑄𝑘−1)

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 , 𝑣𝑘 ∼ (0, 𝑅𝑘)
 (1)

where 𝑥ϵ ℝ𝑛𝑥is the vector of state variables, 𝑦 ϵ ℝ𝑛𝑦 is the vector of output measurements, 𝑢 ϵ ℝ𝑛𝑢

is the vector of input measurements, and f (.) and h(.) are smooth vector functions. 𝑤 and 𝑣 are

state and output noise vectors, which are assumed to have zero-mean Gaussian distributions

with diagonal covariance matrices 𝑄𝑘−1 and 𝑅𝑘, respectively. Every process variable is assumed

to be normalized (to be dimensionless and vary within [0, 1]). Although inaccurate approximations

of process and measurement noise covariances can lead to slower convergence and overall

suboptimal estimation performance, it is common to simply provide arbitrary covariance values,

as it is often challenging to quantify model and measurement uncertainty in real processes33. To

improve the robustness of the estimators, process parameters that are highly uncertain are typically

identified, modelled as random walk or ramp, and together with the state variables estimated from

available measurements. Of course, this combined state and parameter estimation requires a

stronger observability condition.

An EKF calculates state estimates using:

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘[𝑦𝑘 − ℎ(𝑥̂𝑘
−)] (2)

where

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄𝑘−1

𝑥̂𝑘
− = 𝑓(𝑥̂𝑘−1

+ , 𝑢𝑘−1)

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−

𝐹𝑘−1 =
𝜕𝑓

𝜕𝑥
|
(𝑥̂𝑘−1
+ ,𝑢𝑘−1)

, 𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|
𝑥̂𝑘
−

https://en.wikipedia.org/wiki/Covariance_matrix

5

Extended Kalman filtering requires the functions 𝑓 and ℎ to be differentiable, an initial state

estimate (𝑥̂0
+), and an estimate of the estimation error covariance matrix (𝑃0

+). In the model of

Eq.(1), the state and output equations are assumed to be linear in the noise signals. Efforts have

been made to apply extended Kalman filtering to the processes in which state and output equations

are nonlinear in the noise signals34. Several modified extended Kalman filtering techniques, such

as the iterated extended Kalman filtering35 and the second-order extended Kalman filtering36, have

been introduced to improve the performance of EKF. The former improves the linearization error

by recursively modifying the center point of the Taylor expansion using 𝑥̂𝑘
+ instead of 𝑥̂𝑘

− 35, and

the latter reduces the linearization error by considering the second-order term of the Taylor

expansion36.

2.1.2. Unscented Kalman Filtering

Unscented Kalman filtering14 was proposed as an alternative to extended Kalman filtering. An

unscented Kalman filter (UKF) propagates mean and covariance information through nonlinear

transformations. A UKF constructs a set of deterministic vectors called sigma points that allow for

parameterizing the mean and covariance of a probability distribution. The nonlinear state and

output functions are applied to each sigma point to obtain transformed points from which a new

mean and covariance estimate are then formed. As a UKF is not based on a linear approximation

of a process model, it is suitable for applications in which the model state and output functions are

not differentiable. The computational cost of a UKF is comparable to or less than that of an EKF.

The greatest advantage of unscented Kalman filtering is that sigma points completely capture the

posterior mean and covariance accurately to the third order for any nonlinearity, while EKF will

match the mean and covariance up to the first order34. Like an EKF, a UKF requires the initial

values 𝑥̂0
+ and 𝑃0

+.

For a system described by Eq.(1), UKF equations are:

(a)

𝑥̂𝑘−1
(𝑖)

= 𝑥̂𝑘−1
+ + 𝑥̃𝑘−1

(𝑖)
, 𝑖 = 1, , ⋯ ,2𝑛𝑥

𝑥̃𝑘−1
(𝑖)

= |[√𝑛𝑥𝑃𝑘−1
+]

𝑖

|

𝑇

, 𝑖 = 1, ,⋯ , 𝑛𝑥

𝑥̃𝑘−1
(𝑖+𝑛𝑥) = |[√𝑛𝑥𝑃𝑘−1

+]
𝑖
|
𝑇

, 𝑖 = 1, , ⋯ , 𝑛𝑥 (3)

6

where [𝐴]𝑖 denotes the ith row of the matrix A.

(b) Propagating sigma points (𝑥̂𝑘−1
(𝑖)
) through the function 𝑓:

𝑥̂𝑘
(𝑖)
= 𝑓(𝑥̂𝑘−1

(𝑖) , 𝑢𝑘−1) (4)

(c) Assigning weight to the propagated sigma points and calculating the prior state estimate

and error covariance:

𝑥̂𝑘
− =

1

2𝑛𝑥
 ∑ 𝑥̂𝑘

(𝑖)

2𝑛𝑥

𝑖=1

𝑃𝑘
− =

1

2𝑛𝑥
 ∑(𝑥̂𝑘

(𝑖) − 𝑥̂𝑘
−)(𝑥̂𝑘

(𝑖) − 𝑥̂𝑘
−)
𝑇

2𝑛𝑥

𝑖=1

+ 𝑄𝑘−1 (5)

(d) Propagating the sigma points (𝑥̂𝑘
(𝑖)) through the function ℎ:

 𝑦̂𝑘
(𝑖)
= ℎ(𝑥̂𝑘

(𝑖)) (6)

(e) Assigning weights to the propagated sigma points (𝑦̂𝑘
(𝑖)
) and calculating an estimate of

the output variables at time 𝑘:

𝑦̂𝑘 =
1

2𝑛𝑥
 ∑ 𝑦̂𝑘

(𝑖)

2𝑛𝑥

𝑖=1

 (7)

(f) Calculating the prior estimate of the covariance of the output estimates (𝑃𝑘
𝑦
) and the

cross-covariance matrix of the state and output estimates (𝑃𝑘
𝑥𝑦
):

𝑃𝑘
𝑦
=
1

2𝑛𝑥
 ∑

2𝑛𝑥

𝑖=1

(𝑦̂𝑘
(𝑖) − 𝑦̂𝑘)(𝑦̂𝑘

(𝑖) − 𝑦̂𝑘)
𝑇

+ 𝑅𝑘

𝑃𝑘
𝑥𝑦
=
1

2𝑛𝑥
 ∑(𝑥̂𝑘

(𝑖) − 𝑥̂𝑘
−)(𝑦̂𝑘

(𝑖) − 𝑦̂𝑘)
𝑇

2𝑛𝑥

𝑖=1

 (8)

The term
1

2𝑛𝑥
 in Eqs.(5), (7), and (8) represents the assigned weight to each sigma point.

(g) Calculating the measurement update using the standard Kalman filter equations:

 𝐾𝑘 = 𝑃𝑘
𝑥𝑦
(𝑃𝑘
𝑦
)−1

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘[𝑦𝑘 − 𝑦̂𝑘]

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝑃𝑘
𝑦
 𝐾𝑘

𝑇 (9)

7

In the preceding UKF algorithm, the state and output equations were assumed to be linear in the

noise signals. To handle cases in which the state and output equations are nonlinear in the noise

signals, one can use the UKF algorithm in Ref37.

2.1.3. Spherical Unscented Kalman Filtering

A spherical unscented Kalman filter (SUKF)38 provides a better sigma point selection strategy by

choosing (𝑛𝑥 + 2) sigma points, while keeping the estimation accuracy the same as UKF. Using

less sigma points can significantly reduce computational costs. The SUKF algorithm includes the

following steps:

(a) Assigning the following scalar weights to the (𝑛𝑥 + 2) sigma points:

𝑊(0) ∈ [0, 1)

𝑊(1) = ⋯ = 𝑊(𝑛𝑥+1) =
1 −𝑊(0)

𝑛𝑥 + 1
 (10)

(b) Forming the 𝑛𝑥 × (𝑛𝑥 + 2) matrix:

0
−1

√2𝑊(1)

+1

√2𝑊(1)
 0 ⋯ ⋯ ⋯ 0

0
−1

√6𝑊(1)

−1

√6𝑊(1)

2

√6𝑊(1)
 0 ⋯ ⋯ 0

0
−1

√12𝑊(1)

−1

√12𝑊(1)

−1

√12𝑊(1)

3

√12𝑊(1)
 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0
−1

√(𝑛𝑥 − 1)𝑛𝑥𝑊(1)

−1

√(𝑛𝑥 − 1)𝑛𝑥𝑊(1)
 ⋯ ⋯ ⋯

𝑛𝑥 − 1

√(𝑛𝑥 − 1)𝑛𝑥𝑊(1)
 0

0
−1

√𝑛𝑥(𝑛𝑥 + 1)𝑊(1)

−1

√𝑛𝑥(𝑛𝑥 + 1)𝑊(1)
 ⋯ ⋯ ⋯

−1

√𝑛𝑥(𝑛𝑥 + 1)𝑊(1)

𝑛𝑥
√𝑛𝑥(𝑛𝑥 + 1)𝑊(1)

(c) Constructing the sigma points:

𝑥̂𝑘−1
(𝑖)

= 𝑥̂𝑘−1
+ +√𝑃𝑘−1

+ 𝜎𝑖
(𝑛𝑥) 𝑖 = 0, 1,⋯ , 𝑛𝑥 + 1 (11)

 where 𝜎𝑖
(𝑛𝑥) is the (𝑖 + 1)th column of the preceding 𝑛𝑥 × (𝑛𝑥 + 2) matrix.

(d) Propagating the constructed sigma points through the nonlinear state and measurement

equations (𝑓 and ℎ).

8

(e) Calculating the prior estimation of the covariance of the output estimates (𝑃𝑘
𝑦
), the cross-

covariance matrix of the state and output estimates (𝑃𝑘
𝑥𝑦
), and measurement update

according to Eqs. (8) and (9).

Since the computational cost in the UKF is proportional to the number of sigma points, SUKF is

more attractive in terms of computational costs.

2.1.4. Cubature Kalman Filtering

Cubature Kalman filtering15 is another Kalman extension that was proposed for high-dimensional

state estimation problems. A cubature Kalman filtering (CKF) is a derivative-free estimator and

can be applied to those applications for which an analytical from of the Jacobian matrix does not

exist. The CKF algorithm uses the cubature rule to solve the multi-dimensional integrals

encountered in the nonlinear Bayesian filter15. In general, CKF is a special case of UKF for high-

dimensional nonlinear filtering problems. The computational burden of CKF is similar to the UKF

with better numerical stability15.

Assuming that at time 𝑘 the PDF is 𝑝(𝑥𝑘−1|𝐷𝑘−1) = 𝑁(𝑥̂𝑘−1
+ , 𝑃𝑘−1

+), the CKF algorithm

can be summarized as follows:

(a) Calculating cubature points (𝑥̂𝑘−1
(𝑖)
) for 𝑖 = 1,2,⋯ ,2𝑛𝑥, and propagating them through the

function 𝑓:

𝑥̂𝑘−1
(𝑖)

= √𝑃𝑘−1
+ 𝜉𝑖 + 𝑥̂𝑘−1

+

𝑥̂𝑘
(𝑖)
= 𝑓(𝑥̂𝑘−1

(𝑖)
, 𝑢𝑘−1) (12)

where 𝜉𝑖 is the unit cubature points and is defined as √𝑛𝑥{1}𝑖, {1}𝑖 is the 𝑖𝑡ℎ column of matrix

[𝐼𝑛𝑥 − 𝐼𝑛𝑥], and 𝑛𝑥 is the identity matrix of size 𝑛𝑥.

(b) Estimating the predicted state and error covariance:

𝑥̂𝑘
− =

1

2𝑛𝑥
 ∑ 𝑥̂𝑘

(𝑖)

2𝑛𝑥

𝑖=1

𝑃𝑘
− =

1

2𝑛𝑥
 ∑(𝑥̂𝑘

(𝑖) − 𝑥̂𝑘
−)(𝑥̂𝑘

(𝑖) − 𝑥̂𝑘
−)
𝑇

2𝑛𝑥

𝑖=1

+ 𝑄𝑘−1 (13)

9

(c) Evaluating cubature points (𝑥̂𝑘
(𝑖)
), for 𝑖 = 1,2,⋯ ,2𝑛𝑥 and propagating them through the

function ℎ:

𝑥̂𝑘
(𝑖)
= √𝑃𝑘

−𝜉𝑖 + 𝑥̂𝑘
−

𝑦̂𝑘
(𝑖)
= ℎ(𝑥̂𝑘

(𝑖)
) (14)

(d) Estimating the predicted measurement, measurement covariance, and cross-covariance

matrix using:

𝑦̂𝑘 =
1

2𝑛𝑥
 ∑ 𝑦̂𝑘

(𝑖)

2𝑛𝑥

𝑖=1

𝑃𝑘
𝑦
=
1

2𝑛𝑥
 ∑

2𝑛𝑥

𝑖=1

(𝑦̂𝑘
(𝑖))(𝑦̂𝑘

(𝑖))
𝑇

− (𝑦̂𝑘)(𝑦̂𝑘)
𝑇 + 𝑅𝑘

𝑃𝑘
𝑥𝑦
=
1

2𝑛𝑥
 ∑(𝑥̂𝑘

(𝑖))(𝑦̂𝑘
(𝑖))

𝑇

− (𝑥̂𝑘
−)(𝑦̂𝑘)

𝑇

2𝑛𝑥

𝑖=1

 (15)

(e) Estimating Kalman gain, update state, and error covariance using:

 𝐾𝑘 = 𝑃𝑘
𝑥𝑦
(𝑃𝑘
𝑦
)−1

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘[𝑦𝑘 − 𝑦̂𝑘]

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝑃𝑘
𝑦
 𝐾𝑘

𝑇 (16)

2.2. Observability of nonlinear systems

Observability is a major requirement in the design of state estimators for dynamic systems. Its

existence indicates that output measurements contain information on all state variables7. To

implement distributed state estimation, we decompose an observable system into a set of

observable subsystems. The system of Eq.(1) is locally observable if the following

𝑛𝑥𝑛𝑦 × 𝑛𝑥 observability matrix is full column rank:

𝜕

𝜕𝑥
[

𝑦(𝑘)

𝑦(𝑘 + 1)
⋮

𝑦(𝑘 + 𝑛𝑥 − 1)

]

(𝑥𝑠𝑠,𝑢𝑠𝑠)

=
𝜕

𝜕𝑥
[

ℎ(𝑥)

ℎ ∘ 𝑓(𝑥, 𝑢)
⋮

ℎ ∘ 𝑓 ∘ ⋯ ∘ 𝑓(𝑥, 𝑢)

]

(𝑥𝑠𝑠,𝑢𝑠𝑠)

𝑓 is repeated (𝑛𝑥 − 1) times

10

where ℎ ∘ 𝑓(𝑥, 𝑢) = ℎ(𝑓(𝑥, 𝑢)), ℎ ∘ 𝑓 ∘ 𝑓(𝑥, 𝑢) = ℎ(𝑓(𝑓(𝑥, 𝑢), 𝑢)), and so on. 𝑢𝑠𝑠 and 𝑥𝑠𝑠

are the steady-state values of the input and state vectors. Alternatively, one can evaluate the

structural observability of a system by determining whether all state variables affect measured

output(s) directly or indirectly. In the next section, we propose a systematic approach for

checking the structural observability of a system. The approach is then used to ensure that

each subsystem is observable from its local measurements.

2.3. Distributed State Estimation Scheme

The majority of previous studies on distributed state estimation have focused on a given distributed

architecture 39,40. The literature on distributed state estimation includes approaches based on

Kalman filtering 41, particle filtering 42, and moving-horizon estimation 43 and others. Since most

of these approaches have addressed challenges like preserving the stability, performance, and

robustness as much as their centralized counterparts, it is sufficient to review the concept of

distributed schemes.

A distributed state estimation architecture for a large-scale system is depicted in Figure 1.

For each subsystem, a local estimator is designed. The local estimators exchange their local input

and output measurements as well as their state estimates over the network to exchange information.

At each time instant 𝑘, an 𝑖th local estimator calculates the state variable estimates 𝑥̂𝑘
(𝑖)

 in parallel,

by employing the local input and output measurements, 𝑢𝑘
(𝑖) and 𝑦𝑘

(𝑖), as well as the past estimates

of the state variables of all subsystems received by communicating over the network.

11

3. Decomposing a Nonlinear Complex System into Observable Subsystems

3.1. Optimization Formulation

We optimally decompose an observable nonlinear system in the form of Eq.(1) into the 𝑛𝐶

observable subsystems:

{

𝑥𝑘
(𝑖) = 𝑓

(𝑖)
(𝑥𝑘−1
(𝑖) , 𝑢𝑘−1

(𝑖) , ∅𝑘−1
(𝑖)
)+𝑤𝑘−1

(𝑖)

𝑦
𝑘

(𝑖)
= ℎ

(𝑖)
(𝑥𝑘
(𝑖)
)+ 𝑣𝑘

(𝑖)

 𝑖 = 1,⋯ ,𝑛𝐶 (17)

where 𝑥(𝑖) ∈ ℝ𝑛𝑥𝑖 , 𝑦(𝑖) ∈ ℝ𝑛𝑦𝑖 , and 𝑢(𝑖) ∈ ℝ𝑛𝑢𝑖 is the vectors of process state variables, measured

outputs, and measured inputs of the 𝑖th subsystem, and ∅(𝑖) is the vector of the state variables of

the remaining (𝑛𝐶 − 1) subsystems.

The basis for the decomposition is the degrees of interactions among the state variables,

input variables, and outputs. A measure of each interaction is the sensitivity of one variable to

another:

𝑆̃𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑢𝑗
|
𝑠𝑠

, 𝑆𝑖̅𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑗
|
𝑠𝑠

, 𝑆𝑖̿𝑗 =
𝜕ℎ𝑖

𝜕𝑥𝑗
|
𝑠𝑠

 (18)

Figure 1: Distributed state estimation.

12

where 𝑆̃𝑖𝑗 is a measure of the sensitivity of 𝑥𝑖 to 𝑢𝑗 , 𝑆𝑖̅𝑗 a measure of the sensitivity of 𝑥𝑖 to 𝑥𝑗, and

𝑆𝑖̿𝑗 a measure of the sensitivity of 𝑦𝑖 to 𝑥𝑗. The results of such a sensitivity analysis can be presented

in matrix form.

 𝑢1 ⋯ 𝑢𝑛𝑢 𝑥1 ⋯ 𝑥𝑛𝑥 𝑦1 … 𝑦𝑛𝑦

 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 𝑢1

 ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

 0 … 0 0 … 0 0 … 0 𝑢𝑛𝑢

[𝑆𝑖𝑗] =

𝑆̃11 ⋯ 𝑆̃1𝑛𝑢 𝑆1̅1 ⋯ 𝑆 ̅1𝑛𝑥 0 ⋯ 0 𝑥1

 ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

 𝑆̃𝑛𝑥1 ⋯ 𝑆̃𝑛𝑥𝑛𝑢 𝑆𝑛̅𝑥1 ⋯ 𝑆𝑛̅𝑥𝑛𝑥 0 ⋯ 0 𝑥𝑛𝑥

 0 ⋯ 0 𝑆1̿1 ⋯ 𝑆1̿𝑛𝑥 0 ⋯ 0 𝑦1

 ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

 0 ⋯ 0 𝑆𝑛̿𝑦1 … 𝑆𝑛̿𝑦𝑛𝑥 0 ⋯ 0 𝑦𝑛𝑦

In this work, we use the relation:

𝑤𝑖𝑗 = {
|(log |𝑆𝑖𝑗|)|, 𝑆𝑖𝑗 ≠ 0

0, 𝑆𝑖𝑗 = 0
, 𝑖, 𝑗 = 1,⋯ , (𝑛𝑥+𝑛𝑢+𝑛𝑦)

to assign a weight to each pair of the interactions.

 Based on the degrees of the interactions (weights), a modularity index is then defined28:

𝑄𝑤 = 𝑄1 − 𝑄2 (19)

where

 𝑄1(𝐶1,⋯ , 𝐶𝑛𝐶) =
1

𝑊
∑∑𝑤𝑖𝑗

𝑗𝑖

 𝛿(𝑀𝑖 , 𝑀𝑗),

 𝑄2(𝐶1,⋯ , 𝐶𝑛𝐶) =
1

𝑊
∑∑

𝑤𝑖
𝑜𝑢𝑡𝑤𝑗

𝑖𝑛

𝑊
𝑗𝑖

 𝛿(𝑀𝑖, 𝑀𝑗)

13

where 𝑤𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑗𝑖𝑗 , 𝑤𝑗

𝑖𝑛 = ∑ 𝑤𝑗𝑖𝑖 , and 2𝑤 = ∑ 𝑤𝑖
𝑜𝑢𝑡

𝑖 = ∑ 𝑤𝑗
𝑖𝑛

𝑗 = ∑ ∑ 𝑤𝑖𝑗𝑗𝑖 . 𝐶1,⋯ , 𝐶𝑛𝐶 are

the sets of the variables (nodes) that the communities (subsystems) 1,⋯ , 𝑛𝐶 include, respectively.

𝑀𝑖 is the 𝑖th node, and δ is the Kronecker delta symbol; if both 𝑀𝑖 and 𝑀𝑗 belong to the same

community, 𝛿(𝑀𝑖 , 𝑀𝑗) is equal to 1; otherwise, it is zero:

𝛿(𝑀𝑖, 𝑀𝑗) = 1, if 𝑀𝑖 , 𝑀𝑗 ∈ 𝐶𝑙

𝛿(𝑀𝑖 , 𝑀𝑗) = 0, if 𝑀𝑖 ∈ 𝐶𝑙 , 𝑀𝑗 ∉ 𝐶𝑙

We require each subsystem to be structurally observable, as defined in the next definition. The use

of structural observability allows one not to consider weak connections among variables and

prevents the algorithm from finding structures that have an ill-conditioned observability matrix.

Of course, the user decides on the interaction-strength threshold; interactions, the strengths of

which are below this threshold are ignored.

Definition 1. A system in the form of Eq.(1) is structurally observable if the following

𝑛𝑥𝑛𝑦 × 𝑛𝑥 matrix is full column rank:

[

𝐷̿
𝐷̿𝐷̅
⋮

𝐷̿𝐷̅𝑛𝑥−1

]

where 𝐷̅ = [𝐷̅𝑖𝑗], 𝐷̿ = [𝐷̿𝑖𝑗], and

𝐷̅𝑖𝑗 = {
1, |𝑆𝑖̅𝑗| ≥ 𝜖1

0, |𝑆𝑖̅𝑗| < 𝜖1
, 𝑖, 𝑗 = 1,⋯ , 𝑛𝑥

𝐷̿𝑖𝑗 = {
1, |𝑆𝑖̿𝑗 | ≥ 𝜖2 , 𝑖 = 1,⋯ , 𝑛𝑦

0, |𝑆𝑖̿𝑗 | < 𝜖2, 𝑗 = 1,⋯ , 𝑛𝑥

Here, 𝜖1 and 𝜖2 are positive scalar constants are set by the user.

Definition 2. If a system in the form of Eq.(1) is structurally observable in the sense of

Definition 1, then the structural observability index of the system, 𝑂 = 1, otherwise 𝑂 = 0.

We formulate community detection as a multi-objective optimization problem. Multi-objective

community detection methods describe multiple structure properties of networks by optimizing

two conflicting objectives, intra-connections (𝑄1) and inter-connections (𝑄2).

Using these definitions, the resulting community detection problem is:

14

max
𝑛𝐶,𝐶1,⋯,𝐶𝑛𝐶

𝑄𝑤 (𝐶1,⋯ , 𝐶𝑛𝐶) = 𝛾𝑄1(𝐶1,⋯ , 𝐶𝑛𝐶) − (1 − γ)𝑄2(𝐶1,⋯ , 𝐶𝑛𝐶) (20)

subject to:

𝑂1 = ⋯ = 𝑂𝑛𝐶 = 1

where 𝛾 ∈ [0, 1] and is varied in this range to find the Pareto front.

 The objective of the optimization problem here is to maximize 𝑄𝑤 to identify the

communities that are structural observable. Since in the described multi-objective optimization

problem, there does not typically exist a feasible solution that maximizes 𝑄1 and minimizes 𝑄2

simultaneously, we use the concept of the Pareto optimal to find the set of non-dominated

solutions.

 The optimization problem defined in Eq.(20) is also subject to the observability of all

produced subsystems since the observability of the entire system does not guarantee the

observability of produced subsystems. These constraints can be relaxed by requiring the

detectability of every subsystem7.

 In the set of Pareto observable optimal solutions, the configuration corresponds to the

largest modularity is preferred, as a larger value of modularity indicates better partitioning.

Moreover, among Pareto observable optimal solutions, those solutions aligning with the physical

topology of the system are more desirable than any other solution. Because this approach benefits

the reduction of the computational burden associated with their implementation in real-time and

the ease of use in distributed state estimation implementation.

3.2. A Multi-objective WOA Algorithm for Community Detection in Large-scale Systems

Since community detection based on optimizing a modularity function is an NP-hard problem44,

metaheuristic algorithms have been adopted to solve NP-problems owing to their simplicity, ease

of implementation, and the ability to avoid local optima.45

15

It has been demonstrated by Masooleh et al.46 that solving the modularity function using

WOA47 results in finding solutions in a short computing time. The whale optimization algorithm

is a metaheuristic algorithm that imitates the social behavior of humpback whales. In this

algorithm, the bubble-net hunting strategy of humpback whales is exploited. However, this

algorithm, in its present form, is appropriate for solving single-objective optimization problems

with continuous variables. To make it applicable to solve multi-objective optimization problems

with discrete variables, a discrete version of this algorithm was proposed46. In the proposed

approach, a transfer function is utilized to update the position of the whales. A non-sorting genetic

algorithm (NSGA)-II48 has been used to generate a list of non-dominated solutions. In the non-

dominated sorting method, a comparison between each solution with every single solution is made

to check whether the solutions dominate each other. This comparison is made for all individuals

to find Pareto optimal members (Rank #1). Figure 2 shows the graphical illustration of the Pareto

front and Pareto optimal solutions in community detection problems.

 Apart from convergence to the Pareto-optimal set, the solutions should be diverse along

the Pareto front. The crowding distance mechanism is employed to preserve the diversity along

the Pareto front46,48. The crowding distance is calculated in the same front to reflect the distribution

of the optimal solutions. The solution with a larger crowding distance has good performance in

diversity. Table 1 is the pseudocode of the proposed non-dominated sorting multi-objective whale

Figure 2: Graphical illustration of Pareto

front and Pareto optimal solutions in

community detection problems.

16

optimization algorithm for detecting observable communities. A directed weighted graph is first

constructed based on a state-space process model. The algorithm starts by initializing the

population described in Ref 46. It then maximizes the modularity index subject to the structural

observability of each subsystem as described in Eq.(20). To this end, the position of each whale is

compared with the positions of the other whales to rank those non-dominated solutions (positions)

in an archive. The crowding distance is used to keep diversity along the Pareto optimal members.

In every iteration, the position of each whale is updated using WOA equations. Solutions are

calculated based on the updated positions, and the archive is updated accordingly. When the

archive is updated, the best solution (leader) is chosen by random from the first Pareto front. This

operation continues until the maximum number of iterations is reached. Each of these generated

solutions corresponds to the observable communities with different cluster numbers.

3.3. Parallel Computation

In the design of state estimators, performance (rate of convergence to true values) and robustness

(low sensitivity of the estimates to system model uncertainty and unmeasured input disturbances)

are of importance. There is a tradeoff between these two properties that should be considered in

practice. Reduced-order estimators have been proposed for large-scale models49. Distributed state

estimation architectures that run in parallel, offer several advantages over their centralized

counterparts, including scalability, flexibility, and robustness24. Furthermore, parallel computing

allows for reducing the computational cost of the implementation for large-scale processes. This

study develops a parallelization scheme consisting of the following steps: (i) decomposing the

entire problem into small problems; (ii) assigning tasks to existing processors; and (iii)

communicating among the involved processors to exchange information. Such communication

leads to the exchange and synchronization of data and tasks between all of the processors.

 The proposed parallelization scheme utilizes a master-slave (MS) scheme. A master

processor is responsible for decomposing the entire problem into small problems and allocating

tasks to other processors (slave processors). The salve processors are in charge of carrying out

their assigned tasks. Each slave processor focuses on completing its assigned tasks and updating

the master processor about the results. Before initiating their next task executions, all processors

wait until they have received all the data computed by the other processors at the previous task

17

execution step. It is worth noting that parallelization lowers computational costs when the

optimization problem is sufficiently large. In order words, the computational time needed to solve

small problems increases with parallelization, as the time needed to execute individual tasks on

different processors is comparable to the time needed to communicate information between the

processors. In the proposed algorithm, we use the parallelization scheme in two separate sections:

a) in the community detection framework and b) in the distributed state estimator scheme. In the

community detection framework, the master processor is in charge of assigning the global search

operations, while slave processors do the objective function evaluations. In parallel computation

applied to the distributed state estimation, the local state estimation tasks are executed by slave

processors while the master processor exchanges information for each time instant between the

18

local estimators. Table 2 summarizes the parallel computations in the proposed algorithm for

implementing the distributed state estimators.

4. Case Study

This section focuses on the implementation and validation of the proposed methods in two case

studies.

4.1. Reactor-separator process

This reactor-separator process consists of two continuous stirred tank reactors (CSTRs) and one

flash tank separator, as shown in Figure 3 1,50. The exothermic first-order series reactions

𝐴
 𝑟`1
→ 𝐵

 𝑟2
→ 𝐶 take place inside the reactors before the outlet stream from the second CSTR

Table 1: Pseudocode of proposed algorithm for decomposing a large-scale process into

observable subsystems.

Input: Adjacency matrix of the process

Output: Observable subsystems in the first Pareto front

Begin:

Set iteration number tCurrent = 0;

Generate the ordered neighbor list

Initialize N populations based on modified LAR described in Ref 50

Compute the objective functions subject to described constraints according to Eq. (20) and choose the leader

Store the observable nondominated solutions into an archive

Sort solutions according to non-domination rank as described in Ref 48

Compute the crowding distance for each non-dominated solution stored in the archive

While tCurrent < 𝑡Max Iter,

For each whale,

Do the whale optimization algorithm to update the position of each whale as specified in Ref 50

End for

Calculate the objective functions and check the structural observability index of the solutions, 𝑂

Sort solutions according to non-domination rank

Compute the crowding distance for each non-dominated solution stored in the archive

Update archive

Update leader by random from Pareto optimal Front

tCurrent = tCurrent + 1

End while

Return to archive

Until the maximum number of iterations is reached

19

is fed to the flash tank. The overhead gas stream from the separator is condensed and is partially

recycled to the first CSTR. The bottom stream of the separator is the product stream.

A mathematical model of the process is described in Ref.1,50. It is based on the following

assumptions: well-mixed conditions; the physical properties such as density and heat capacity are

constant; the two feed streams (𝐹10, 𝐹20) contain only component 𝐴; the split ratio for each of the

components remains constant within the operating temperature range of the flash tank.

𝑑𝑥𝐴,1
𝑑𝑡

=
𝐹10
𝑉1
(𝑥𝐴,10 − 𝑥𝐴,1) +

𝐹𝑟
𝑉1
(𝑥𝐴,𝑟 − 𝑥𝐴,1) − 𝑘1𝑒

−𝐸1
𝑅 𝑇1𝑥𝐴,1

𝑑𝑥𝐵,1
𝑑𝑡

=
𝐹10
𝑉1
(𝑥𝐵,10 − 𝑥𝐵,1) +

𝐹𝑟
𝑉1
(𝑥𝐵,𝑟 − 𝑥𝐵,1) + 𝑘1𝑒

−𝐸1
𝑅 𝑇1𝑥𝐴,1 − 𝑘2𝑒

−𝐸2
𝑅 𝑇1𝑥𝐵,1

𝑑𝑇1
𝑑𝑡
=
𝐹10
𝑉1
(𝑇10 − 𝑇1) +

𝐹𝑟
𝑉1
(𝑇3 − 𝑇1) +

−∆𝐻1
𝐶𝑝

𝑘1𝑒
−𝐸1
𝑅 𝑇1𝑥𝐴,1 +

−∆𝐻2
𝐶𝑝

𝑘2𝑒
−𝐸2
𝑅 𝑇1𝑥𝐵,1 +

𝑄1
𝜌𝐶𝑝𝑉1

𝑑𝑥𝐴,2
𝑑𝑡

=
𝐹1
𝑉2
(𝑥𝐴,1 − 𝑥𝐴,2) +

𝐹20
𝑉2
(𝑥𝐴,20 − 𝑥𝐴,2) − 𝑘1𝑒

−𝐸1
𝑅 𝑇2𝑥𝐴,2

𝑑𝑥𝐵,2
𝑑𝑡

=
𝐹1
𝑉2
(𝑥𝐵,1 − 𝑥𝐵,2) +

𝐹20
𝑉2
(𝑥𝐵,20 − 𝑥𝐵,2) + 𝑘1𝑒

−𝐸1
𝑅 𝑇2𝑥𝐴,2 − 𝑘2𝑒

−𝐸2
𝑅 𝑇2𝑥𝐵,2

𝑑𝑇2
𝑑𝑡
=
𝐹1
𝑉2
(𝑇1 − 𝑇2) +

𝐹20
𝑉2
(𝑇20 − 𝑇2) +

−∆𝐻1
𝐶𝑝

𝑘1𝑒
−𝐸1
𝑅 𝑇2𝑥𝐴,2 +

−∆𝐻2
𝐶𝑝

𝑘2𝑒
−𝐸2
𝑅 𝑇2𝑥𝐵,2 +

𝑄2
𝜌𝐶𝑝𝑉2

𝑑𝑥𝐴,3
𝑑𝑡

=
𝐹2
𝑉3
(𝑥𝐴,2 − 𝑥𝐴,3) −

𝐹𝑟 + 𝐹𝑝

𝑉3
(𝑥𝐴,𝑟 − 𝑥𝐴,3)

𝑑𝑥𝐵,3
𝑑𝑡

=
𝐹2
𝑉3
(𝑥𝐵,2 − 𝑥𝐵,3) −

𝐹𝑟 + 𝐹𝑝

𝑉3
(𝑥𝐵,𝑟 − 𝑥𝐵,3)

𝑑𝑇3
𝑑𝑡
=
𝐹2
𝑉3
(𝑇2 − 𝑇3) +

𝑄3
𝜌𝐶𝑝𝑉3

 (21)

20

where 𝑥𝐴,𝑗 and 𝑥𝐵,𝑗 describe the mass fractions of A and B in the 𝑗𝑡ℎ vessel, respectively, and 𝑇𝑗 is

the temperature inside the 𝑗th vessel. The model parameter values are given in Table 3. We assume

that only temperature measurements are available. The proposed method is applied to decompose

Figure 3: Reactor–separator process with recycle.

Table 2: Parallel implementation of the proposed algorithm.

Master Processor

Send data to slave processors Community Detection State Estimation

Receive data from all slave

processors
t=0 t=0

Exchange the results Initialize N populations (N is the number of

whales)

For i=1 to l (l is the number of

subsystems), do

 the following activities:

Send N/S populations to each slave processor

(S is the number of processors)

Set the parameters and initial guesses

Assign estimation task to slave processors

 While (Not stopping criteria PS 1) Receive the executed estimation tasks

from each slave processor and share them

with other slave processors
 Receive computed fitness values from slave

processors, choose the leader, and update all

of the whale positions to obtain new

populations, update best solutions in the

archive

Slave Processors

Receive data t=0 Receive the local measurements

Compute assigned tasks Receive N/S populations Execute estimation based on local

measurements

and data received from the master

processor about the last time instant of

other slave processors

Send the results to the master

processor

Evaluate N/S populations

 Send the evaluated fitness function to the

master processor
Send the results to the master processor

 While (Not stopping criteria PS 1) Wait till other processors finish their tasks

and share their information with the master
 Evaluate N/S populations based on the

updated archive

PS 1: The maximum allowable iteration number is considered stopping criteria to avoid an increase the in computation time.

21

the reactor-separator process into observable subsystems. To this end, the weighted adjacency

matrix showing interconnections between each pair of variables is constructed based on the state-

space model of Eq. (21). The strength of the interconnections between each variable pair are

determined using sensitivity analyses. The structural observability matrix given in Definition.1 is

formed accordingly. A whale population size of 50 is used, and the maximum iteration number as

a stopping criterion is set to 250. The results indicate the maximum modularity that decomposes

the process into observable subsystems is about 0.451, which corresponds to three subsystems.

The assigned state and measured variables to each subsystem are reported in Table 4. In addition

to the observability, this decomposition captures the physical topology of the plant, which may

result in reducing the computational complexity.

Table 3: Reactor–separator process parameters.

Variables Description Value (Unit)

𝑭𝟏𝟎, 𝑭𝟐𝟎 Feed flow rates to vessels 1,2 5.04 (m3/hr)

𝑽𝒊 Volumes of vessel 𝑗, 𝑗 = 1, 2, 3, respectively 1, 0.5, 1 (m3)

𝑭𝒓 Flow rate of the recycle 17 (m3/hr)

𝑭𝒑 Flow rate of the purge 0.34 (m3/hr)

𝒌𝟏 Pre-exponential values for reactions 1 9.97×106 (hr-1)

𝑬𝟏 Activation energy for reactions 1 50 (kJ/mol)

𝒌𝟐 Pre-exponential values for reactions 1 9×106 (hr-1)

𝑬𝟐 Activation energy for reactions 2 60 (kJ/mol)

𝑻𝟏𝟎, 𝑻𝟐𝟎 Temperatures of inlet streams of vessels 1 and 2 359 (°K)

∆𝑯𝟏 Heat of reaction for reactions 1 -60 (kJ/mol)

∆𝑯𝟐 Heat of reaction for reactions 2 -70 (kJ/mol)

𝑸𝒊 Heat input to the vessel 𝑗, 𝑗 = 1, 2, 3 715.3, 579.8, 568.7 (MJ/hr)

𝑪𝒑 Heat capacity 4.2 (KJ/kg. °K)

𝑹 Gas constant 8.314 (J/°K mol)

𝝆 Solution density 1000 (kg/m3)

𝒙𝑨,𝟏𝟎, 𝒙𝑩,𝟏𝟎 Mass fractions of A and B in inlet stream to vessel 1 1,0

𝒙𝑨,𝟐𝟎, 𝒙𝑩,𝟐𝟎 Mass fractions of A and B in inlet stream to vessel 2 1,0

𝜶𝑨,𝜶𝑩, 𝜶𝑪 Split Ratio of A, B, and C 5, 1, 0.5

22

 Considering this decomposition, the distributed state estimation algorithms described in

sections 2.1 and 2.3 are implemented for the reactor-separator process. Each of the filters starts

with the initial state estimate 𝑥̂0
+ = 1.05 𝑥0 and the initial estimation-error covariance 𝑃0

+ = 𝑄,

where 𝑄 = diag(10−2 × ‖𝑥0‖
2), and 𝑅 = diag(10−4 × ‖𝑦0‖

2). For the distributed estimators,

the initial state estimates are the same as those for the centralized estimators. Figure 4 compares

the actual values and estimates of the state variables obtained using the distributed estimators. As

can be seen, all extensions can track the trajectory of the actual system well. Moreover, all

estimators show similar performance at steady-state conditions, while there is some difference in

the performance of filters before the variables reach the steady-state condition, as shown in Figure

5. Among these distributed estimators, SUKF converges faster to the noise covariance and thus

achieves a better performance in terms of robustness, accuracy, and computation for nonlinear

estimation, which is demonstrated by the simulation results. These results motivate us to

investigate the performance of SUKF in the centralized and distributed schemes in detail. We have

also implemented our proposed parallelization scheme to explore how this scheme reduces the

running time.

Before we proceed, first, the effect of random noise on the measurements and process

variables is considered. Since noise vectors are randomly generated on the basis of the known PDF

of 𝑤𝑘−1 and 𝑣𝑘, it is difficult to verify the results of different estimators in a single run. To avoid

this, we apply the Monte Carlo simulation method using repeated sampling to obtain results by

assigning random values to the uncertain variables. Once the simulation is complete for all of the

simulations, the results are averaged to provide estimates.

Table 4: Variables of the reactor-separator process found observable

subsystems.

Subsystem State variables Measured variables

1 𝑥𝐴,1, 𝑥𝐵,1, 𝑇1 𝑇1

2 𝑥𝐴,2, 𝑥𝐵,2, 𝑇2 𝑇2

3 𝑥𝐴,3, 𝑥𝐵,3, 𝑇3 𝑇3

23

 To compare the performance of the centralized and the distributed estimators, we compare

the standard deviations of the estimation error by computing the standard deviations of the 𝑁

(Monte Carlo simulation) estimation errors for each time step according to:

𝑆𝑇𝐷 = √
1

𝑁 − 1
 ∑(𝑥̂𝑖(𝑡) − 𝑥𝑖(𝑡))2
𝑖=𝑁

𝑖=1

 (22)

In this case study, we calculate and compare the standard deviations of the estimation errors for

the distributed and centralized schemes of SUKF by running 50 Monte Carlo simulations, as shown

in Figure 6. These results indicate no significant difference between the mean error values

associated with those two schemes. Note that the distributed scheme may improve the mean error

compared to the centralized scheme.

Figure 4: True values (blue lines) and measurements (light blue lines) of the state variables.

Estimates of the state variables calculated by the distributed EKF (red lines), the distributed

CKF (yellow lines), the distributed UKF (purple lines), and the distributed SUKF (green lines).

24

The parallel computation scheme introduced in section 3.4 is applied to the distributed

framework. The hardware used in this work is Intel® Core™ i7 with a CPU 3.4 GHz and 32 GB

of memory. Programming is done in MATLAB 2018b. Figure 7 indicates that the parallel

implementation of the estimator requires about 20% less CPU time without sacrificing accuracy.

Figure 5: True values (blue lines) and measurements (light blue lines) of the state variables.

Estimates of the state variables calculated by the distributed EKF (red lines), the distributed

CKF (yellow lines), the distributed UKF (purple lines), and the distributed SUKF (green lines).

25

4.2. Tennessee Eastman Process (TEP)

The proposed algorithm is tested on the Tennessee Eastman process (TEP)51. The TEP consists of

five main components: a reactor, a condenser, a centrifugal compressor, a vapor-liquid separator,

and a stripper. The mathematical model51,52 is based on the following assumptions: all vapors

behave as ideal gases; vapor/liquid equilibria follow Raoult’s law with the vapor pressure

calculated using the Antoine equation, and all vessels are assumed to be perfectly mixed.

𝑑𝑁𝑖,𝑟
𝑑𝑡

= 𝑦𝑖,6𝐹6 − 𝑦𝑖,7𝐹7 +∑𝜈𝑖𝑗

3

𝑗=1

𝑅𝑗 𝑖 = 𝐴, 𝐵,… , 𝐻

𝑑𝑁𝑖,𝑠
𝑑𝑡

= 𝑦𝑖,7𝐹7 − 𝑦𝑖,8(𝐹8 + 𝐹9) − 𝑥𝑖,10𝐹10 𝑖 = 𝐴, 𝐵, … , 𝐻

𝑑𝑁𝑖,𝑚
𝑑𝑡

= 𝑧𝑖,1𝐹1 + 𝑧𝑖,2𝐹2 + 𝑧𝑖,3𝐹3 + 𝑦𝑖,5𝐹5 + 𝑦𝑖,8𝐹8 + 𝐹𝑖
∗ − 𝑦𝑖,6𝐹6 𝑖 = 𝐴, 𝐵,… ,𝐻

𝑑𝑁𝑖,𝑝

𝑑𝑡
= (1 − 𝜑𝑖)𝑥𝑖,10𝐹10 − 𝑥𝑖,11𝐹11 𝑖 = 𝐺,𝐻 (23)

Figure 6: Standard deviations of the estimation errors. Distributed (red lines) and centralized (blue

lines) SUKF.

26

The measurements are assumed to be available at each sampling instant. Moreover, all

measurements come in without delay. All control variables are kept at their base case level as

reported in Ref51,52. The proposed decomposition method is applied to decompose the TEP into

observable subsystems. To do that, the adjacency matrix of the process is constructed based on the

state-space model in Eq.(23). The strength of the interconnections between each variable pair is

determined using sensitivity analyses. The elements of the adjacency matrix are weighted

accordingly. The results allow determining the 58 × 58 weighted adjacency matrix. The structural

observability matrix given in Definition1 is formed. A whale population size of 50 is used, and the

maximum iteration number as a stopping criterion is set to 250. The results show that the TEP is

decomposed into three subsystems in which all communities are structurally observable for the

distributed implementation of state estimators. The reactor and feeding zone are in the first

subsystem, the separator in the second subsystem, and the stripper in the third subsystem. The

modularity corresponding to these communities is about 0.374.

 According to the dynamic model of the TEP, there are 26 state variables, including the

molar holdup of all the reactants in the mixing zone, reactor, separator, and stripper. The direct

measurement of these state variables is difficult, but their measurement plays an important role in

monitoring, control, and process model accuracy. Hence, the estimation of these states is justified

for the reasons mentioned above. A total of 30 process variables are measured in the process

according to Ref51,52.

Figure 7: CPU time vs. the number of runs.

27

 Since there are many measured outputs and state variables in the TEP, showing all state

variable estimates are not possible. Here, only some of the state estimates are shown. Different

state estimation methods have been implemented centrally to estimate the state variables of the

Tennessee Eastman Process 53-55. In particular, the central implementations of EKF and UKF state

estimators were tested on the TEP55, 57, and the performances of the estimators were compared. A

moving horizon estimator was also applied to the TEP by fusing past measurements within a given

time horizon and calculating state estimates based on the maximum-likelihood principle56. To

evaluate the performances of the four estimators, we assume that 𝑥̂0
+ = 1.05 𝑥0, 𝑄 =

 diag(10−2 × 𝑥0), and 𝑅 = diag(10−1 × 𝑦0). The plots in the top row of Figure 8 compare the

measured, estimated, and true values of the volume of the liquid in the reactor (𝑉𝑙𝑟) and the molar

concentrations of the products G and H. They show that despite the large measurement noise

signals, the four estimators provide adequately accurate state estimates. The plots in the bottom

row of Figure 8 show the true values of the rate of the production of G in the reactor (𝑅𝐺,𝑟), the

molar holdup of G in the reactor (𝑁𝐺,𝑟), and molar holdup of G in the separator (𝑁𝐺,𝑠) and their

estimated values calculated using the four distributed state estimators. The results demonstrate the

satisfactory performances of distributed UKF and SUKF estimators.

 To compare the performances of the centralized and distributed estimators, we calculate

the estimation errors by conducting 50 Monte Carlo simulations. Table 5 compares the root mean

square errors (RMSEs) of the four distributed estimators for some state variables. The results

indicate the poor performance of the distributed EKF due to the poor accuracy of the linear

approximation. However, as the distributed UKF and SUKF do not use the linear approximation,

their performances are much better.

Table 5. RMSE of the distributed EKF, UKF, and SUKF for some variables.

State Variables DEKF DCKF DUKF DSUKF

Component G in Product 0.541 0.321 0.267 0.308

Component H in Product 1.167 0.484 0.431 0.309

Molar Holdup G in the Reactor 1.881 0.961 0.682 0.442

Molar Holdup G in the Separator 3.451 0.923 0.321 0.371

28

We also compare the performances of the parallel-implemented distributed UKS and SUKF with

those of their centralized counterparts to see how parallelization reduces the running time. This

comparison (Figure 9) indicates that the centralized estimators require 20% longer CPU time than

their distributed counterparts. Furthermore, the SUKF requires fewer calculations than the UKF,

as it utilizes fewer sigma points to approximate the states’ probability distribution.

5. Conclusion

We studied distributed implementation of state estimators in large-scale systems. To this end, we

proposed an algorithm that decomposes a large-scale system into structurally observable

subsystems. The proposed algorithm is based on community detection in a directed weighted graph

constructed from a state-space process model. We solved the community detection problem as a

multi-objective optimization problem using the Whale optimization algorithm. To make sure that

each subsystem is observable from its local measurements, we proposed a systematic approach for

Figure 8: True values (blue lines) and measurements (cross points) of the state variables.

Estimates of the state variables calculated by the distributed EKF (red lines), the distributed CKF

(yellow lines), the distributed UKF (purple lines), and the distributed SUKF (green lines).

29

checking the structural observability of a system. This approach used the degrees of interactions

among variables measured by sensitivity analysis. The proposed algorithm is implemented and

validated in two case studies. In each case study, the distributed Kalman filter extensions are

implemented in the subsystems derived from the proposed decomposition algorithm to compare

their performance with their centralized counterparts. We also proposed a parallelization strategy

that achieves superior performance without compromising accuracy. The parallelization scheme

is used a) in solving multi-objective optimization problems to identify communities and b) in

executing the local state estimation at every sampled time instant. The results showed that the

distributed configuration reduced the computational burden in local estimations, and the

parallelization scheme improved the computational efficiency.

 An application of this work is in the design of partial state observers/estimators, which

estimate a subset of the state variables that are of importance. Partial state observers/estimators are

much easier to design and are more robust. In this case, the community detection problem is

formulated as that of finding the subset of input and output measurements that are essential to

reliably estimate the important state variables. The solution to this problem will be the subset of

measurable inputs that strongly affect the important state variables and the subset of measurable

outputs from which the important state variables are observable. A partial state observers/estimator

Figure 9: CPU time vs. the number of runs

30

is then designed to estimate the important state variables from these essential input and output

measurements.

Acknowledgment

This material is based upon work supported by the U.S. National Science Foundation under Grant

Nos. CBET–1704915 and CBET–1704833. Any opinions, findings, and conclusions, or

recommendations expressed in this material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.

References

1. Christofides PD, Liu J, De La Pena DM. Networked and distributed predictive control:
Methods and nonlinear process network applications. Springer Science & Business
Media; 2011.

2. Soroush M, Masooleh LS, Seider WD, Oktem U, Arbogast JE. Model‐predictive safety
optimal actions to detect and handle process operation hazards. AIChE Journal.
2020;66(6):e16932.

3. Soroush M, Masooleh LS, Arbogast JE, Seider WD, Oktem U. Model-predictive safety: A
new evolution in functional safety. In: Smart Manufacturing. Elsevier; 2020:283-321.

4. Stavropoulos P, Chantzis D, Doukas C, Papacharalampopoulos A, Chryssolouris G.
Monitoring and control of manufacturing processes: A review. Procedia CIRP.
2013;8:421-425.

5. Spivey BJ, Hedengren JD, Edgar TF. Constrained nonlinear estimation for industrial
process fouling. Industrial & Engineering Chemistry Research. 2010;49(17):7824-7831.

6. Soroush M. Nonlinear state-observer design with application to reactors. Chemical
Engineering Science. 1997;52(3):387-404.

7. Soroush M. State and parameter estimations and their applications in process control.
Computers & Chemical Engineering. 1998;23(2):229-245.

8. Kalman RE. A new approach to linear filtering and prediction problems. 1960.
9. Luenberger DG. Observing the state of a linear system. IEEE transactions on military

electronics. 1964;8(2):74-80.
10. Kazantzis N, Kravaris C. Nonlinear observer design using Lyapunov’s auxiliary theorem.

Systems & Control Letters. 1998;34(5):241-247.
11. Valluri S, Soroush M. Nonlinear state estimation in the presence of multiple steady

states. Industrial & engineering chemistry research. 1996;35(8):2645-2659.
12. Dochain D. State and parameter estimation in chemical and biochemical processes: a

tutorial. Journal of process control. 2003;13(8):801-818.
13. Julier SJ, Uhlmann JK. New extension of the Kalman filter to nonlinear systems. Paper

presented at: Signal processing, sensor fusion, and target recognition VI1997.

31

14. Julier S, Uhlmann J, Durrant-Whyte HF. A new method for the nonlinear transformation
of means and covariances in filters and estimators. IEEE Transactions on automatic
control. 2000;45(3):477-482.

15. Arasaratnam I, Haykin S. Cubature kalman filters. IEEE Transactions on automatic
control. 2009;54(6):1254-1269.

16. Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. Paper presented at: IEE proceedings F (radar and signal
processing)1993.

17. Frank PM. Fault diagnosis in dynamic systems via state estimation-a survey. In: System
fault diagnostics, reliability and related knowledge-based approaches. Springer;
1987:35-98.

18. Lima FV, Rawlings JB. Nonlinear stochastic modeling to improve state estimation in
process monitoring and control. AIChE journal. 2011;57(4):996-1007.

19. Campani G, Ribeiro MP, Zangirolami TC, Lima FV. A hierarchical state estimation and
control framework for monitoring and dissolved oxygen regulation in bioprocesses.
Bioprocess and biosystems engineering. 2019;42(9):1467-1481.

20. Ali JM, Hoang NH, Hussain MA, Dochain D. Review and classification of recent observers
applied in chemical process systems. Computers & Chemical Engineering. 2015;76:27-
41.

21. Afshari HH, Gadsden SA, Habibi S. Gaussian filters for parameter and state estimation: A
general review of theory and recent trends. Signal Processing. 2017;135:218-238.

22. Alexander R, Campani G, Dinh S, Lima FV. Challenges and opportunities on nonlinear
state estimation of chemical and biochemical processes. Processes. 2020;8(11):1462.

23. Rawlings JB, Ji L. Optimization-based state estimation: Current status and some new
results. Journal of Process Control. 2012;22(8):1439-1444.

24. Khan UA, Moura JM. Distributing the Kalman filter for large-scale systems. IEEE
Transactions on Signal Processing. 2008;56(10):4919-4935.

25. Carli R, Chiuso A, Schenato L, Zampieri S. Distributed Kalman filtering based on
consensus strategies. IEEE Journal on Selected Areas in communications.
2008;26(4):622-633.

26. Pourkargar DB, Almansoori A, Daoutidis P. Impact of decomposition on distributed
model predictive control: A process network case study. Industrial & Engineering
Chemistry Research. 2017;56(34):9606-9616.

27. Tang W, Daoutidis P. Network decomposition for distributed control through
community detection in input–output bipartite graphs. Journal of Process Control.
2018;64:7-14.

28. Newman ME, Girvan M. Finding and evaluating community structure in networks.
Physical review E. 2004;69(2):026113.

29. Pourkargar DB, Moharir M, Almansoori A, Daoutidis P. Distributed estimation and
nonlinear model predictive control using community detection. Industrial & Engineering
Chemistry Research. 2019;58(30):13495-13507.

30. Yin X, Liu J. Distributed state estimation for a class of nonlinear processes based on high-
gain observers. Chemical Engineering Research and Design. 2020;160:20-30.

32

31. Zhang L, Yin X, Liu J. Complex system decomposition for distributed state estimation
based on weighted graph. Chemical Engineering Research and Design. 2019;151:10-22.

32. Yin X, Arulmaran K, Liu J, Zeng J. Subsystem decomposition and configuration for
distributed state estimation. AIChE journal. 2016;62(6):1995-2003.

33. Lima FV, Rajamani MR, Soderstrom TA, Rawlings JB. Covariance and state estimation of
weakly observable systems: Application to polymerization processes. IEEE Transactions
on Control Systems Technology. 2012;21(4):1249-1257.

34. Simon D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John
Wiley & Sons; 2006.

35. Bell BM, Cathey FW. The iterated Kalman filter update as a Gauss-Newton method. IEEE
Transactions on Automatic Control. 1993;38(2):294-297.

36. Särkkä S. Bayesian filtering and smoothing. Vol 3: Cambridge University Press; 2013.
37. Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proceedings of the

IEEE. 2004;92(3):401-422.
38. Julier SJ. The spherical simplex unscented transformation. Paper presented at:

Proceedings of the 2003 American Control Conference, 2003.2003.
39. Zeng J, Liu J, Zou T, Yuan D. Distributed extended Kalman filtering for wastewater

treatment processes. Industrial & Engineering Chemistry Research. 2016;55(28):7720-
7729.

40. Hu Z, Hu J, Yang G. A survey on distributed filtering, estimation and fusion for nonlinear
systems with communication constraints: new advances and prospects. Systems Science
& Control Engineering. 2020;8(1):189-205.

41. Cattivelli FS, Sayed AH. Diffusion strategies for distributed Kalman filtering and
smoothing. IEEE Transactions on automatic control. 2010;55(9):2069-2084.

42. Hlinka O, Hlawatsch F, Djuric PM. Distributed particle filtering in agent networks: A
survey, classification, and comparison. IEEE Signal Processing Magazine. 2012;30(1):61-
81.

43. Farina M, Ferrari‐Trecate G, Scattolini R. Distributed moving horizon estimation for
nonlinear constrained systems. International Journal of Robust and Nonlinear Control.
2012;22(2):123-143.

44. Brandes U, Delling D, Gaertler M, et al. On modularity clustering. IEEE transactions on
knowledge and data engineering. 2007;20(2):172-188.

45. Saka MP, Hasançebi O, Geem ZW. Metaheuristics in structural optimization and
discussions on harmony search algorithm. Swarm and Evolutionary Computation.
2016;28:88-97.

46. Masooleh LS, Arbogast JE, Seider WD, Oktem U, Soroush M. An Efficient Algorithm for
Community Detection in Complex Weighted Networks. AIChE Journal. 2020.

47. Mirjalili S, Lewis A. The whale optimization algorithm. Advances in engineering software.
2016;95:51-67.

48. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE transactions on evolutionary computation. 2002;6(2):182-197.

49. Hernandez EM. A natural observer for optimal state estimation in second order linear
structural systems. Mechanical Systems and Signal Processing. 2011;25(8):2938-2947.

33

50. Liu J, Munoz de la Pena D, Christofides PD. Distributed model predictive control of
nonlinear process systems. AIChE journal. 2009;55(5):1171-1184.

51. Downs JJ, Vogel EF. A plant-wide industrial process control problem. Computers &
chemical engineering. 1993;17(3):245-255.

52. Ricker N, Lee J. Nonlinear modeling and state estimation for the Tennessee Eastman
challenge process. Computers & chemical engineering. 1995;19(9):983-1005.

53. Upendra JV, Prakash J. Comparison of State Estimation Algorithms on the Tennessee
Eastman Process. In: Recent Advancements in System Modelling Applications. Springer;
2013:357-368.

54. Kraus T, Kuhl P, Wirsching L, Bock HG, Diehl M. A moving horizon state estimation
algorithm applied to the tennessee eastman benchmark process. Paper presented at:
2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent
Systems2006.

55. Kottakki KK, Bhushan M, Bhartiya S. Unconstrained Nonlinear State Estimation for
Tennessee Eastman Challenge Process. IFAC-PapersOnLine. 2017;50(1):12919-12924.

