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Abstract

Adequate frequent information on state variables of a process is sometimes needed for effective
control and monitoring of the process. However, it is not often available in practice, which can be
addressed using a state estimator. This work deals with distributed state estimation in large-scale
processes. The decomposition of a process into observable subsystems is formulated as an
optimization problem, which is solved using an efficient whale optimization algorithm. Four
nonlinear state estimation methods (extended Kalman, unscented Kalman, spherical unscented
Kalman, and cubature Kalman filtering) are then implemented and compared using distributed and
centralized architectures on a process consisting of two reactors and a separator, and the Tennessee
Eastman process. A parallelization strategy that improves the computational efficiency of the
distributed architecture is proposed. Simulation results show that the parallel implementation of
the distributed filtering methods is computationally more efficient than their centralized

counterparts while yielding similarly accurate state estimates.



1. Introduction

Effective control, monitoring, and functional safety of manufacturing processes sometimes require
adequate online information on the state variables of the processes'. However, online
measurements of many essential state variables are often not available due to high sensor-hardware
costs or the unavailability of reliable online sensors®. In such cases, online estimates of unmeasured
state variables can be obtained using a state estimator’, which is model-based and driven by
available input and output process measurements. When the process is linear, the classic Kalman
filter® (KF) or Luenberger observer’ can be applied. However, linear state estimators are unable to
provide accurate state estimates when the process is nonlinear’. This inability has motivated the
development of nonlinear state estimator design methods'%!2,

Extensive studies on nonlinear filters based on the Bayesian approach have been
conducted. The Bayesian approach provides a robust general framework for dynamic state
estimation problems. This approach constructs the posterior probability density function (PDF) of
the system state based on past and current measurements. The posterior PDF can be obtained using
two approximation approaches, local and global. The local approach assumes that the PDF is
Gaussian, but the global approach does not. The extended Kalman filtering (EKF)!*, unscented
Kalman filtering (UKF)!4, and cubature Kalman filtering (CKF)!° use the local approach, but
particle filtering (PF)!® is based on the global approach. Many efforts have been made to develop
state estimation methods suitable for chemical processes and apply these methods to these
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processes . Several recent review articles have put advances in state estimation into

perspective; discussed classification, design, and applications of nonlinear state estimators; and
highlighted challenges and opportunities in this area 2%,
A centralized implementation of these nonlinear estimators on large-scale systems is not

robust, scalable, or computationally efficient®*

. These limitations can be addressed using a
distributed implementation. In a distributed implementation, a large-scale system is decomposed
into subsystems with minimum inter-connection and maximum intra-connections. A distributed
implementation offers advantages of low computational burden, ease of implementation, and more
robustness to sensor failures®.

Community detection allows for decomposing a system into subsystems with the minimum

number of inter-connection and the maximum number of intra-connections. Community detection

based on graph theory has attracted a lot of attention in recent years>®?’. The modularity function



has been used widely as a basis for detecting communities in complex networks?®. In such
approaches, a directed graph is first constructed based on a state-space model. Input, state, and
measured variables are treated as nodes and are connected to each other through weighted links.
These weighted links represent the strength of the interactions between each pair of nodes. Based
on the weighted directed graph, the modularity function is evaluated. Of interest in distributed state
estimation (distributed control) is finding the observable (controllable) subsystems that maximize
the modularity function. For the purpose of distributed state estimation, Pourkargar et al.
decomposed a nonlinear system into smaller subsystems using community detection based on a
state—output digraph?®2°. Also, Zhang et al. and Yin et al. proposed approaches based on weighted
graphs and high-gain observers, for distributed state estimation in large-scale processes®*-32,

In this work, we formulate community detection as a multi-objective optimization problem,
the solution(s) of which is (are) observable subsystems that maximize the modularity function. A
parallel algorithm is proposed and implemented on a computer with parallel processors. Next, a
distributed state estimator consisting of a local state estimator for each subsystem is designed. The
local estimators communicate to exchange local state estimates and measurements. As each
nonlinear filtering method has its own domain of applicability, a single filter may not be optimal
or accurate in a wide range of operating conditions. To address this, we investigate distributed
implementations of EKF, UKF, spherical unscented Kalman filterings (SUKF), and CKF. The
performances of distributed and centralized state estimation schemes are evaluated via numerical
simulations. We also develop a parallelized scheme that reduces computation time without
sacrificing solution accuracy in the community detection and in the distributed state estimation.

The article proceeds as follows. As preliminaries, general formulations of the KF
extensions, the observability concept, and the detailed design of the distributed KF extensions are
presented. Next, a method of decomposing a large-scale system into observable subsystems and
its parallel implementation are presented. The proposed method is implemented on two case
studies with different levels of complexity via numerical simulations, and performances of the four
KF extensions are compared when implemented distributedly and centrally. The article ends with

concluding remarks.

2. Preliminaries

2.1. Widely-Used Nonlinear State Estimation Methods



2.1.1. Extended Kalman Filtering

An extended Kalman filter (EKF)" is designed based on a linear approximation of a nonlinear
model around the current estimate. Extended Kalman filtering is the most widely used estimation
method due to the ease of its implementation. However, the accuracy of an EKF deteriorates as
the degree of nonlinearity of the process increases.

Consider a lumped-parameter system described by a discrete-time state-space model in the

form;

{xk = f(Xp-1,Ug—1) T Wi—1 ,  Wi—g ~ (0, Qk-1) ()
Vi = h(xg) + v, vr ~ (0,Ry)

where xe R™xis the vector of state variables, y € R™ is the vector of output measurements, u € R™«
is the vector of input measurements, and f'(.) and 4(.) are smooth vector functions. w and v are
state and output noise vectors, which are assumed to have zero-mean Gaussian distributions
with diagonal covariance matrices Q,_; and Ry, respectively. Every process variable is assumed
to be normalized (to be dimensionless and vary within [0, 1]). Although inaccurate approximations
of process and measurement noise covariances can lead to slower convergence and overall
suboptimal estimation performance, it is common to simply provide arbitrary covariance values,
as it is often challenging to quantify model and measurement uncertainty in real processes>>. To
improve the robustness of the estimators, process parameters that are highly uncertain are typically
identified, modelled as random walk or ramp, and together with the state variables estimated from
available measurements. Of course, this combined state and parameter estimation requires a
stronger observability condition.
An EKF calculates state estimates using:

Xg =X + Ki[yre — h(2;))] (2)
where

Ky = Pg Hi (H P Hg + Ri)™!

Py = Fk—1P;—1FkT—1 + Qk-1

X = f(R-1 we-1)
P¢ = (I — KeH )Py
af dh

Fr_1 =+ , Hy

0x (flt—l'uk—l) 0x R


https://en.wikipedia.org/wiki/Covariance_matrix

Extended Kalman filtering requires the functions f and h to be differentiable, an initial state
estimate (X7), and an estimate of the estimation error covariance matrix (P;"). In the model of
Eq.(1), the state and output equations are assumed to be linear in the noise signals. Efforts have
been made to apply extended Kalman filtering to the processes in which state and output equations
are nonlinear in the noise signals®*. Several modified extended Kalman filtering techniques, such
as the iterated extended Kalman filtering® and the second-order extended Kalman filtering*®, have
been introduced to improve the performance of EKF. The former improves the linearization error
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by recursively modifying the center point of the Taylor expansion using £; instead of £}, %3, and

the latter reduces the linearization error by considering the second-order term of the Taylor

expansion®®.

2.1.2. Unscented Kalman Filtering

Unscented Kalman filtering'* was proposed as an alternative to extended Kalman filtering. An
unscented Kalman filter (UKF) propagates mean and covariance information through nonlinear
transformations. A UKF constructs a set of deterministic vectors called sigma points that allow for
parameterizing the mean and covariance of a probability distribution. The nonlinear state and
output functions are applied to each sigma point to obtain transformed points from which a new
mean and covariance estimate are then formed. As a UKF is not based on a linear approximation
of a process model, it is suitable for applications in which the model state and output functions are
not differentiable. The computational cost of a UKF is comparable to or less than that of an EKF.
The greatest advantage of unscented Kalman filtering is that sigma points completely capture the
posterior mean and covariance accurately to the third order for any nonlinearity, while EKF will
match the mean and covariance up to the first order’®. Like an EKF, a UKF requires the initial
values 3 and Py
For a system described by Eq.(1), UKF equations are:

(a)

2O _ o+ = () P —
Xply = X T X2, i=1,,-

T
) i=1i1'“1nx

J?IELL = H nxpl:-—ll
i

. T
w0 = VP ]| i= 1, m, 3)



where [A]; denotes the ith row of the matrix A.
(b) Propagating sigma points (3?,(21) through the function f:
£ = f @21 0-1) 4)
(c) Assigning weight to the propagated sigma points and calculating the prior state estimate

and error covariance:

) 21,
o— _ = NO)
k= o, Zxk
i=
2Ny
__ 1 NONEPSRYNG I
Pk =E : (Xk _xk)(xk _xk) +Qk—1 (5)

(d) Propagating the sigma points (3?,?)) through the function h:
9 = h(2) (6)
(e) Assigning weights to the propagated sigma points (37,?)) and calculating an estimate of

the output variables at time k:

1 2Ny
~ A~ (D)
- 7
Vi n. Zyk (7)
l=

(f) Calculating the prior estimate of the covariance of the output estimates (Pky ) and the

cross-covariance matrix of the state and output estimates (kay ):

21,
Py = % ; (59 =5)(5P - 5:) + R
1 2Ny -
= 30 - ) - ®

i=1
The term i in Egs.(5), (7), and (8) represents the assigned weight to each sigma point.
(g) Calculating the measurement update using the standard Kalman filter equations:
K =P (B!
X = %+ Kielye — 9]
Pf =Py — K P K" 9)



In the preceding UKF algorithm, the state and output equations were assumed to be linear in the
noise signals. To handle cases in which the state and output equations are nonlinear in the noise

signals, one can use the UKF algorithm in Ref®’.

2.1.3. Spherical Unscented Kalman Filtering

A spherical unscented Kalman filter (SUKF)* provides a better sigma point selection strategy by
choosing (n, + 2) sigma points, while keeping the estimation accuracy the same as UKF. Using
less sigma points can significantly reduce computational costs. The SUKF algorithm includes the
following steps:

(a) Assigning the following scalar weights to the (n,, + 2) sigma points:

w© e[o,1)
—_ 10
WD = ... = yhtD) = 1—W (10)
n,+1
(b) Forming the n, X (n, + 2) matrix: i,
o -1 +1 o o
2w @ V2w @
-1 -1 2
0 0
6w @ 6w @ 6w
-1 -1 -1 3
0 — 0 0
12W® 12W® Jizw® 12w ®
-1 -1 n,—1
Vo, —Dnw® J/n, - Hn WO Ve =D, w®
-1 -1 -1 Ny
0 J
— Iny My + DWO ny(ny + HDWD Jn (e + DWO n, (e + HWDO

(¢) Constructing the sigma points:
290 =2+ [Pr o™ i=0,1n+1 (11)
(

where o; ™) is the (i + 1)th column of the preceding n, X (n, + 2) matrix.

(d) Propagating the constructed sigma points through the nonlinear state and measurement

equations (f and h).



(e) Calculating the prior estimation of the covariance of the output estimates (Pky ), the cross-
covariance matrix of the state and output estimates (kay ), and measurement update
according to Egs. (8) and (9).

Since the computational cost in the UKF is proportional to the number of sigma points, SUKF is

more attractive in terms of computational costs.

2.1.4. Cubature Kalman Filtering

Cubature Kalman filtering'® is another Kalman extension that was proposed for high-dimensional
state estimation problems. A cubature Kalman filtering (CKF) is a derivative-free estimator and
can be applied to those applications for which an analytical from of the Jacobian matrix does not
exist. The CKF algorithm uses the cubature rule to solve the multi-dimensional integrals
encountered in the nonlinear Bayesian filter!®. In general, CKF is a special case of UKF for high-
dimensional nonlinear filtering problems. The computational burden of CKF is similar to the UKF
with better numerical stability!”.
Assuming that at time k the PDF is p(xj_1|Dx—1) = N(X5_,, Pi—,), the CKF algorithm
can be summarized as follows:
(a) Calculating cubature points (9?,(21) fori = 1,2,---,2n,, and propagating them through the

function f:
’?1(31 = |Pioaéi+ %
20 = (22 wes) (12)
where §; is the unit cubature points and is defined as /n,{1},, {1}, is the ith column of matrix

[ I, —In,], and n, is the identity matrix of size n,.

(b) Estimating the predicted state and error covariance:

1 2n,
o ~(0)
xk - Zxk
21y i=1
2N,
-_ 1 5@ _ o=\ (o0 _ o\
=



(c) Evaluating cubature points (x,(c )) for i =1,2,---,2n, and propagating them through the

function h;:

o0 = e+
5@ _ 2@
9 = h(z?) (14)
(d) Estimating the predicted measurement, measurement covariance, and cross-covariance

matrix using:

2Ny

1 .
~ E ~ (1)

i=1

2Ny
R =32 50)68) - 00607 + R

i=1
(e) Estimating Kalman gain, update state, and error covariance using:
Ky =P (PY)™?
X =% + K[y — 9]
P{ = P; — K.PY K" (16)

Observability of nonlinear systems

Observability is a major requirement in the design of state estimators for dynamic systems. Its

existence indicates that output measurements contain information on all state variables’. To

implement distributed state estimation, we decompose an observable system into a set of

observable subsystems. The system of Eq.(1) is locally observable if the following

nyN, X N, observability matrix is full column rank:

y(k) h(x)
9| yk+1) s
0x : ox
y(k + Ny — 1) (XssUss) h ? f °ere f(x u)l (XssUss)

f is repeated (nx — 1) times



where h o f(x,u) = h(f(x,u)), hofof(x,u) =h(f(f(x w),u)), and so on. ug and x;
are the steady-state values of the input and state vectors. Alternatively, one can evaluate the
structural observability of a system by determining whether all state variables affect measured
output(s) directly or indirectly. In the next section, we propose a systematic approach for
checking the structural observability of a system. The approach is then used to ensure that

each subsystem is observable from its local measurements.

2.3. Distributed State Estimation Scheme

The majority of previous studies on distributed state estimation have focused on a given distributed
architecture %, The literature on distributed state estimation includes approaches based on
Kalman filtering #!, particle filtering **, and moving-horizon estimation ** and others. Since most
of these approaches have addressed challenges like preserving the stability, performance, and
robustness as much as their centralized counterparts, it is sufficient to review the concept of
distributed schemes.

A distributed state estimation architecture for a large-scale system is depicted in Figure 1.
For each subsystem, a local estimator is designed. The local estimators exchange their local input
and output measurements as well as their state estimates over the network to exchange information.
~ (0

K

Ateach time instant k, an ith local estimator calculates the state variable estimates X, ~ in parallel,

by employing the local input and output measurements, u,((i) and y(i), as well as the past estimates

of the state variables of all subsystems received by communicating over the network.
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Figure 1: Distributed state estimation.

3. Decomposing a Nonlinear Complex System into Observable Subsystems
3.1. Optimization Formulation

We optimally decompose an observable nonlinear system in the form of Eq.(1) into the n,

observable subsystems:

x]((i) = f© (xl(cill'ul(cizl' (Z)I(ci—l) + Wl(cizl
i=1,-,nc (17)
®_ ,®(,0 @
v, =h (xk )+vk

where x® € R™i,y® € R™i, and u® € R™ is the vectors of process state variables, measured
outputs, and measured inputs of the ith subsystem, and @@ is the vector of the state variables of

the remaining (nc — 1) subsystems.
The basis for the decomposition is the degrees of interactions among the state variables,

input variables, and outputs. A measure of each interaction is the sensitivity of one variable to

another:

= U S = S.o= (18)
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where S is a measure of the sensitivity of x; to u;, S; ; ameasure of the sensitivity of x; to x;, and

S; ij ameasure of the sensitivity of y; to x;. The results of such a sensitivity analysis can be presented

in matrix form.

_ ul unu x1 xnx y]_ J’ny
0 0 0 0 0 0 | u
0 0 0 0 0 0 | up,
511 Slnu 511 Slnx 0 0| x
[Sij] =
Snxl Snxnu Snxl Snxnx 0 0 | xn,
0 O 511 glnx 0 0 Y1
0 0 S‘nyl Snyn, 0 0 | ¥n,
In this work, we use the relation:
log |S;;: D1, S;i #0 ..
wy; = | (log [Si; ] g l;]=1;""(nx+nu+ny)
0, ;=0

to assign a weight to each pair of the interactions
Based on the degrees of the interactions (weights), a modularity index is then defined®®
(19)

Qw =01 —0;

where

Q1(Cp, -+, Cpp) WZZW” 5(ML,M)

02(C1,++, Crp) WZZ WO (1)
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out __ in _ _ out __ in _
where wi™" = ¥ wy, wit =Y wyi, and 2w = X wt = Y iwit = X Y iwyj. Cy, e, Gy are

the sets of the variables (nodes) that the communities (subsystems) 1, -+, n. include, respectively.
M; is the ith node, and & is the Kronecker delta symbol; if both M; and M; belong to the same
community, § (Ml-, Mj) is equal to 1; otherwise, it is zero:

§(Mi,M;)=1, if M, M; €

§(M,M;)=0, if M€ C, M ¢ (
We require each subsystem to be structurally observable, as defined in the next definition. The use
of structural observability allows one not to consider weak connections among variables and
prevents the algorithm from finding structures that have an ill-conditioned observability matrix.
Of course, the user decides on the interaction-strength threshold; interactions, the strengths of

which are below this threshold are ignored.

Definition 1. A system in the form of Eq.(1) is structurally observable if the following

NyNy, X N, matrix is full column rank:

Here, €; and €, are positive scalar constants are set by the user.

Definition 2. If a system in the form of Eq.(1) is structurally observable in the sense of
Definition 1, then the structural observability index of the system, O = 1, otherwise O = 0.
We formulate community detection as a multi-objective optimization problem. Multi-objective
community detection methods describe multiple structure properties of networks by optimizing
two conflicting objectives, intra-connections (Q4) and inter-connections (Q,).

Using these definitions, the resulting community detection problem is:

13



max  Qw (C1,+, Crp) = ¥Q1(Cr, Crp) — (1 =¥)Q2(Cr, -, Cr) (20)

TlC,C1," .’Cn

subject to:

where y € [0, 1] and is varied in this range to find the Pareto front.

The objective of the optimization problem here is to maximize Q,, to identify the
communities that are structural observable. Since in the described multi-objective optimization
problem, there does not typically exist a feasible solution that maximizes @, and minimizes Q,
simultaneously, we use the concept of the Pareto optimal to find the set of non-dominated
solutions.

The optimization problem defined in Eq.(20) is also subject to the observability of all
produced subsystems since the observability of the entire system does not guarantee the
observability of produced subsystems. These constraints can be relaxed by requiring the

detectability of every subsystem’.

In the set of Pareto observable optimal solutions, the configuration corresponds to the
largest modularity is preferred, as a larger value of modularity indicates better partitioning.
Moreover, among Pareto observable optimal solutions, those solutions aligning with the physical
topology of the system are more desirable than any other solution. Because this approach benefits
the reduction of the computational burden associated with their implementation in real-time and

the ease of use in distributed state estimation implementation.

3.2. A Multi-objective WOA Algorithm for Community Detection in Large-scale Systems

Since community detection based on optimizing a modularity function is an NP-hard problem*,
metaheuristic algorithms have been adopted to solve NP-problems owing to their simplicity, ease

of implementation, and the ability to avoid local optima.*
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It has been demonstrated by Masooleh et al.*® that solving the modularity function using
WOA? results in finding solutions in a short computing time. The whale optimization algorithm
is a metaheuristic algorithm that imitates the social behavior of humpback whales. In this
algorithm, the bubble-net hunting strategy of humpback whales is exploited. However, this
algorithm, in its present form, is appropriate for solving single-objective optimization problems
with continuous variables. To make it applicable to solve multi-objective optimization problems
with discrete variables, a discrete version of this algorithm was proposed*®. In the proposed
approach, a transfer function is utilized to update the position of the whales. A non-sorting genetic
algorithm (NSGA)-II*® has been used to generate a list of non-dominated solutions. In the non-

dominated sorting method, a comparison between each solution with every single solution is made

A
c
°
1]
[]
c
c
8 Pareto front
-
[7]
e~
£
Pareto solution

Intra-Connection

Figure 2: Graphical illustration of Pareto
front and Pareto optimal solutions in
community detection problems.

to check whether the solutions dominate each other. This comparison is made for all individuals
to find Pareto optimal members (Rank #1). Figure 2 shows the graphical illustration of the Pareto
front and Pareto optimal solutions in community detection problems.

Apart from convergence to the Pareto-optimal set, the solutions should be diverse along
the Pareto front. The crowding distance mechanism is employed to preserve the diversity along
the Pareto front*®**. The crowding distance is calculated in the same front to reflect the distribution
of the optimal solutions. The solution with a larger crowding distance has good performance in

diversity. Table 1 is the pseudocode of the proposed non-dominated sorting multi-objective whale
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optimization algorithm for detecting observable communities. A directed weighted graph is first
constructed based on a state-space process model. The algorithm starts by initializing the
population described in Ref 6. It then maximizes the modularity index subject to the structural
observability of each subsystem as described in Eq.(20). To this end, the position of each whale is
compared with the positions of the other whales to rank those non-dominated solutions (positions)
in an archive. The crowding distance is used to keep diversity along the Pareto optimal members.
In every iteration, the position of each whale is updated using WOA equations. Solutions are
calculated based on the updated positions, and the archive is updated accordingly. When the
archive is updated, the best solution (leader) is chosen by random from the first Pareto front. This
operation continues until the maximum number of iterations is reached. Each of these generated

solutions corresponds to the observable communities with different cluster numbers.

3.3. Parallel Computation

In the design of state estimators, performance (rate of convergence to true values) and robustness
(low sensitivity of the estimates to system model uncertainty and unmeasured input disturbances)
are of importance. There is a tradeoff between these two properties that should be considered in
practice. Reduced-order estimators have been proposed for large-scale models*. Distributed state
estimation architectures that run in parallel, offer several advantages over their centralized
counterparts, including scalability, flexibility, and robustness®*. Furthermore, parallel computing
allows for reducing the computational cost of the implementation for large-scale processes. This
study develops a parallelization scheme consisting of the following steps: (i) decomposing the
entire problem into small problems; (ii) assigning tasks to existing processors; and (iii)
communicating among the involved processors to exchange information. Such communication

leads to the exchange and synchronization of data and tasks between all of the processors.

The proposed parallelization scheme utilizes a master-slave (MS) scheme. A master
processor is responsible for decomposing the entire problem into small problems and allocating
tasks to other processors (slave processors). The salve processors are in charge of carrying out
their assigned tasks. Each slave processor focuses on completing its assigned tasks and updating
the master processor about the results. Before initiating their next task executions, all processors

wait until they have received all the data computed by the other processors at the previous task
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execution step. It is worth noting that parallelization lowers computational costs when the
optimization problem is sufficiently large. In order words, the computational time needed to solve
small problems increases with parallelization, as the time needed to execute individual tasks on
different processors is comparable to the time needed to communicate information between the
processors. In the proposed algorithm, we use the parallelization scheme in two separate sections:
a) in the community detection framework and b) in the distributed state estimator scheme. In the
community detection framework, the master processor is in charge of assigning the global search
operations, while slave processors do the objective function evaluations. In parallel computation
applied to the distributed state estimation, the local state estimation tasks are executed by slave

processors while the master processor exchanges information for each time instant between the

17



local estimators. Table 2 summarizes the parallel computations in the proposed algorithm for

implementing the distributed state estimators.

Table 1: Pseudocode of proposed algorithm for decomposing a large-scale process into
observable subsystems.

Input: Adjacency matrix of the process

Output: Observable subsystems in the first Pareto front

Begin:

Set iteration number tcyrent = 0;

Generate the ordered neighbor list

Initialize N populations based on modified LAR described in Ref *°

Compute the objective functions subject to described constraints according to Eq. (20) and choose the leader
Store the observable nondominated solutions into an archive

Sort solutions according to non-domination rank as described in Ref *

Compute the crowding distance for each non-dominated solution stored in the archive

While teyrrent < tMax ters

For each whale,

Do the whale optimization algorithm to update the position of each whale as specified in Ref *°
End for

Calculate the objective functions and check the structural observability index of the solutions, O
Sort solutions according to non-domination rank

Compute the crowding distance for each non-dominated solution stored in the archive
Update archive

Update leader by random from Pareto optimal Front

teurrent = teurrent + 1

End while

Return to archive

Until the maximum number of iterations is reached

4. Case Study

This section focuses on the implementation and validation of the proposed methods in two case
studies.

4.1. Reactor-separator process

This reactor-separator process consists of two continuous stirred tank reactors (CSTRs) and one

flash tank separator, as shown in Figure 3 !°°. The exothermic first-order series reactions

A—5B -2 take place inside the reactors before the outlet stream from the second CSTR
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is fed to the flash tank. The overhead gas stream from the separator is condensed and is partially
recycled to the first CSTR. The bottom stream of the separator is the product stream.

A mathematical model of the process is described in Ref.!*°. It is based on the following
assumptions: well-mixed conditions; the physical properties such as density and heat capacity are
constant; the two feed streams (F;q, F,o) contain only component A; the split ratio for each of the

components remains constant within the operating temperature range of the flash tank.

i v, (xA 10 xA,l) + VZ (xA,r - xA,l) —kieRTix, 4

dx F E —E; ZE;
=2 (xB 10 — XB 1) +_r(xBr Xp 1) + k1eR Tixyq — kpeRTixg,

dt ’ Vi
ar; F1°(T _Ty+ -y + 22, Ry + ot Ry, -
J— —_— — 1

dt 10 1 v, 3 1 Cp 1€7 "1X41 Cp 2€7 '1Xpq ,OCpV1
dxA,z 1 F —Ey

FTa 7 (xA,l - xA,Z) + % (XA,zo - xA,Z) —kieRTzxy,

de,Z F1 on —Ey ZE;
at (xB 1~ XB 2) + (xB 20 xB,Z) + kieRTexy, — kyeRTexg,
dT2 Fl F20 _AH _El _AH —E2 QZ
—=—(T,—-T,))+—(T,,—T,) + L k,eRT: + 2 k,eRT: +
dt Vz( 1 2) v, (T2 2) Cp 1€7 "2X4 2 Cp 27 2Xp - PCsz
dx,z F, E-+E
dt v (xA 2 xA,S) - v, (xA,r - xA,3)
dxgz F, FE +F
qt = 73 Xp2 — XB,S) —= V3 i (XB,T - XB,3)
dT; F, Q3
—=—=(T, —-T. 21
AR O R 2D
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where x, ; and xp ; describe the mass fractions of A and B in the jth vessel, respectively, and Tj is

the temperature inside the jth vessel. The model parameter values are given in Table 3. We assume

that only temperature measurements are available. The proposed method is applied to decompose

Table 2: Parallel implementation of the proposed algorithm.

Master Processor

Send data to slave processors

Receive data from all slave
processors
Exchange the results

Slave Processors

Community Detection
=0

Initialize N populations (N is the number of
whales)

Send N/S populations to each slave processor
(S is the number of processors)

While (Not stopping criteria PS 1)

Receive computed fitness values from slave
processors, choose the leader, and update all
of the whale positions to obtain new
populations, update best solutions in the
archive

State Estimation
=0

For i=1 to / (/ is the number of
subsystems), do

the following activities:

Set the parameters and initial guesses

Assign estimation task to slave processors
Receive the executed estimation tasks
from each slave processor and share them
with other slave processors

Receive data

Compute assigned tasks

Send the results to the master
processor

=0

Receive N/S populations
Evaluate N/S populations

Send the evaluated fitness function to the
master processor

While (Not stopping criteria "5 1)

Evaluate N/S populations based on the
updated archive

Receive the local measurements
Execute estimation based on local
measurements

and data received from the master
processor about the last time instant of
other slave processors

Send the results to the master processor

Wait till other processors finish their tasks
and share their information with the master

PS 1: The maximum allowable iteration number is considered stopping criteria to avoid an increase the in computation time.

Figure 3: Reactor—separator process with recycle.
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the reactor-separator process into observable subsystems. To this end, the weighted adjacency
matrix showing interconnections between each pair of variables is constructed based on the state-
space model of Eq. (21). The strength of the interconnections between each variable pair are
determined using sensitivity analyses. The structural observability matrix given in Definition.1 is
formed accordingly. A whale population size of 50 is used, and the maximum iteration number as
a stopping criterion is set to 250. The results indicate the maximum modularity that decomposes
the process into observable subsystems is about 0.451, which corresponds to three subsystems.
The assigned state and measured variables to each subsystem are reported in Table 4. In addition
to the observability, this decomposition captures the physical topology of the plant, which may

result in reducing the computational complexity.

Table 3: Reactor—separator process parameters.

Variables Description Value (Unit)
F19, F20 Feed flow rates to vessels 1,2 5.04 (m3/hr)
V; Volumes of vessel j, j = 1,2,3, respectively 1,0.5, 1 (m?)
F, Flow rate of the recycle 17 (m?/hr)
F, Flow rate of the purge 0.34 (m*/hr)
k, Pre-exponential values for reactions 1 9.97x10° (hr)
E4 Activation energy for reactions 1 50 (kJ/mol)
k, Pre-exponential values for reactions 1 9x10° (hr)
E, Activation energy for reactions 2 60 (kJ/mol)
T105 T2o Temperatures of inlet streams of vessels 1 and 2 359 (°K)
AH4 Heat of reaction for reactions 1 -60 (kJ/mol)
AH, Heat of reaction for reactions 2 -70 (kJ/mol)
Q; Heat input to the vessel j, j = 1,2,3 715.3,579.8, 568.7 (MJ/hr)
Cp Heat capacity 4.2 (KJ/kg. °K)
R Gas constant 8.314 (J/°K mol)
p Solution density 1000 (kg/m®)
Xa10-X10 Mass fractions of A and B in inlet stream to vessel 1 1,0
Xa20,Xg20 Mass fractions of A and B in inlet stream to vessel 2 1,0
ay,ag, ac  Split Ratio of A, B, and C 5,1,0.5
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Table 4: Variables of the reactor-separator process found observable

subsystems.
Subsystem State variables Measured variables
1 X41> XB,1, 11 Ty
2 X2, XB2> 12 T,
3 X43> Xp3> I3 T3

Considering this decomposition, the distributed state estimation algorithms described in
sections 2.1 and 2.3 are implemented for the reactor-separator process. Each of the filters starts
with the initial state estimate 5 = 1.05 x, and the initial estimation-error covariance Py’ = Q,
where Q = diag(1072 X ||x,|?), and R = diag(10™* X ||y,||?). For the distributed estimators,
the initial state estimates are the same as those for the centralized estimators. Figure 4 compares
the actual values and estimates of the state variables obtained using the distributed estimators. As
can be seen, all extensions can track the trajectory of the actual system well. Moreover, all
estimators show similar performance at steady-state conditions, while there is some difference in
the performance of filters before the variables reach the steady-state condition, as shown in Figure
5. Among these distributed estimators, SUKF converges faster to the noise covariance and thus
achieves a better performance in terms of robustness, accuracy, and computation for nonlinear
estimation, which is demonstrated by the simulation results. These results motivate us to
investigate the performance of SUKF in the centralized and distributed schemes in detail. We have
also implemented our proposed parallelization scheme to explore how this scheme reduces the

running time.

Before we proceed, first, the effect of random noise on the measurements and process
variables is considered. Since noise vectors are randomly generated on the basis of the known PDF
of wy_; and vy, it 1s difficult to verify the results of different estimators in a single run. To avoid
this, we apply the Monte Carlo simulation method using repeated sampling to obtain results by
assigning random values to the uncertain variables. Once the simulation is complete for all of the

simulations, the results are averaged to provide estimates.
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Figure 4: True values (blue lines) and measurements (light blue lines) of the state variables.
Estimates of the state variables calculated by the distributed EKF (red lines), the distributed
CKEF (yellow lines), the distributed UKF (purple lines), and the distributed SUKF (green lines).

To compare the performance of the centralized and the distributed estimators, we compare
the standard deviations of the estimation error by computing the standard deviations of the N

(Monte Carlo simulation) estimation errors for each time step according to:

1 =N
STD = |=— Z(a@-(t) ~xi(6))? (22)

In this case study, we calculate and compare the standard deviations of the estimation errors for
the distributed and centralized schemes of SUKF by running 50 Monte Carlo simulations, as shown
in Figure 6. These results indicate no significant difference between the mean error values
associated with those two schemes. Note that the distributed scheme may improve the mean error

compared to the centralized scheme.
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Figure 5: True values (blue lines) and measurements (light blue lines) of the state variables.
Estimates of the state variables calculated by the distributed EKF (red lines), the distributed
CKEF (yellow lines), the distributed UKF (purple lines), and the distributed SUKF (green lines).

The parallel computation scheme introduced in section 3.4 is applied to the distributed
framework. The hardware used in this work is Intel® Core™ 17 with a CPU 3.4 GHz and 32 GB
of memory. Programming is done in MATLAB 2018b. Figure 7 indicates that the parallel

implementation of the estimator requires about 20% less CPU time without sacrificing accuracy.
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Figure 6: Standard deviations of the estimation errors. Distributed (red lines) and centralized (blue

lines) SUKF.

4.2. Tennessee Eastman Process (TEP)

The proposed algorithm is tested on the Tennessee Eastman process (TEP)’!. The TEP consists of
five main components: a reactor, a condenser, a centrifugal compressor, a vapor-liquid separator,
and a stripper. The mathematical model®’>? is based on the following assumptions: all vapors
behave as ideal gases; vapor/liquid equilibria follow Raoult’s law with the vapor pressure

calculated using the Antoine equation, and all vessels are assumed to be perfectly mixed.

dN, °

d:r = YiesFe — Yi7F7 +ZVURJ' i=4B,.. . H

=1

dN. .

d;ls = yi7F7 — ¥ig(Fg + Fo) — x;10F10 i=AB,.. . H
dN;
ﬁ =2j1F1 + 2;5F, + 7;3F5 + y;sFs + yigFg + F; — yi6Fe i=A4B, .., H

dN;
Wl'p = (1= @i)xi10F10 — Xi11F11 1=G,H (23)
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The measurements are assumed to be available at each sampling instant. Moreover, all
measurements come in without delay. All control variables are kept at their base case level as
reported in Ref’!>2. The proposed decomposition method is applied to decompose the TEP into
observable subsystems. To do that, the adjacency matrix of the process is constructed based on the
state-space model in Eq.(23). The strength of the interconnections between each variable pair is
determined using sensitivity analyses. The elements of the adjacency matrix are weighted
accordingly. The results allow determining the 58 X 58 weighted adjacency matrix. The structural
observability matrix given in Definition] is formed. A whale population size of 50 is used, and the
maximum iteration number as a stopping criterion is set to 250. The results show that the TEP is
decomposed into three subsystems in which all communities are structurally observable for the
distributed implementation of state estimators. The reactor and feeding zone are in the first
subsystem, the separator in the second subsystem, and the stripper in the third subsystem. The
modularity corresponding to these communities is about 0.374.

According to the dynamic model of the TEP, there are 26 state variables, including the
molar holdup of all the reactants in the mixing zone, reactor, separator, and stripper. The direct
measurement of these state variables is difficult, but their measurement plays an important role in
monitoring, control, and process model accuracy. Hence, the estimation of these states is justified
for the reasons mentioned above. A total of 30 process variables are measured in the process

according to Ref>!:>2,

Time (s)

0.9

0.8

0.7 ‘ ‘ .
0 5 10 15 20
Number of Runs

Figure 7: CPU time vs. the number of runs.
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Since there are many measured outputs and state variables in the TEP, showing all state
variable estimates are not possible. Here, only some of the state estimates are shown. Different
state estimation methods have been implemented centrally to estimate the state variables of the
Tennessee Eastman Process >3, In particular, the central implementations of EKF and UKF state

estimators were tested on the TEP>> 37

and the performances of the estimators were compared. A
moving horizon estimator was also applied to the TEP by fusing past measurements within a given
time horizon and calculating state estimates based on the maximum-likelihood principle®®. To
evaluate the performances of the four estimators, we assume that X5 = 1.05x,, Q =
diag(1072 X x,), and R = diag(10™! X y,). The plots in the top row of Figure 8 compare the
measured, estimated, and true values of the volume of the liquid in the reactor (V},-) and the molar
concentrations of the products G and H. They show that despite the large measurement noise
signals, the four estimators provide adequately accurate state estimates. The plots in the bottom
row of Figure 8 show the true values of the rate of the production of G in the reactor (R; ;), the
molar holdup of G in the reactor (N; ,-), and molar holdup of G in the separator (Ng ) and their
estimated values calculated using the four distributed state estimators. The results demonstrate the

satisfactory performances of distributed UKF and SUKF estimators.

To compare the performances of the centralized and distributed estimators, we calculate

the estimation errors by conducting 50 Monte Carlo simulations. Table 5 compares the root mean

Table 5. RMSE of the distributed EKF, UKF, and SUKF for some variables.

State Variables DEKF DCKF DUKF DSUKF
Component G in Product 0.541 0.321 0.267 0.308
Component H in Product 1.167 0.484 0.431 0.309
Molar Holdup G in the Reactor 1.881 0.961 0.682 0.442
Molar Holdup G in the Separator 3.451 0.923 0.321 0.371

square errors (RMSEs) of the four distributed estimators for some state variables. The results
indicate the poor performance of the distributed EKF due to the poor accuracy of the linear
approximation. However, as the distributed UKF and SUKF do not use the linear approximation,

their performances are much better.
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Figure 8: True values (blue lines) and measurements (cross points) of the state variables.
Estimates of the state variables calculated by the distributed EKF (red lines), the distributed CKF
(yellow lines), the distributed UKF (purple lines), and the distributed SUKF (green lines).

We also compare the performances of the parallel-implemented distributed UKS and SUKF with
those of their centralized counterparts to see how parallelization reduces the running time. This
comparison (Figure 9) indicates that the centralized estimators require 20% longer CPU time than
their distributed counterparts. Furthermore, the SUKF requires fewer calculations than the UKF,

as it utilizes fewer sigma points to approximate the states’ probability distribution.

5. Conclusion

We studied distributed implementation of state estimators in large-scale systems. To this end, we
proposed an algorithm that decomposes a large-scale system into structurally observable
subsystems. The proposed algorithm is based on community detection in a directed weighted graph
constructed from a state-space process model. We solved the community detection problem as a
multi-objective optimization problem using the Whale optimization algorithm. To make sure that

each subsystem is observable from its local measurements, we proposed a systematic approach for
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Figure 9: CPU time vs. the number of runs

checking the structural observability of a system. This approach used the degrees of interactions
among variables measured by sensitivity analysis. The proposed algorithm is implemented and
validated in two case studies. In each case study, the distributed Kalman filter extensions are
implemented in the subsystems derived from the proposed decomposition algorithm to compare
their performance with their centralized counterparts. We also proposed a parallelization strategy
that achieves superior performance without compromising accuracy. The parallelization scheme
is used a) in solving multi-objective optimization problems to identify communities and b) in
executing the local state estimation at every sampled time instant. The results showed that the
distributed configuration reduced the computational burden in local estimations, and the

parallelization scheme improved the computational efficiency.

An application of this work is in the design of partial state observers/estimators, which
estimate a subset of the state variables that are of importance. Partial state observers/estimators are
much easier to design and are more robust. In this case, the community detection problem is
formulated as that of finding the subset of input and output measurements that are essential to
reliably estimate the important state variables. The solution to this problem will be the subset of
measurable inputs that strongly affect the important state variables and the subset of measurable

outputs from which the important state variables are observable. A partial state observers/estimator
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is then designed to estimate the important state variables from these essential input and output

measurements.
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