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Abstract— Wireless networks of different technologies may
interfere with each other when they are deployed at proximity.
Such cross-technology interference (CTI) has become prevalent
with the surge of IoT devices. In this paper, we exploit CTI in
coexisting WiFi-Zigbee networks and propose DeepJam, a new
stealthy jamming strategy, to jam Zigbee traffic. DeepJam relies
on deep learning techniques to capture the temporal pattern
of the past wireless traffic and predict the future wireless
traffic. By only jamming the victim’s transmissions that are not
disrupted by CTI, DeepJam can significantly reduce the victim’s
throughput with far fewer jamming signals and is thus much
more stealthy than conventional jamming strategies. Detailed
evaluations show that DeepJam can converge within 10 sec
and achieve the jamming-efficiency gains of up to 742% and
285% over conventional random and reactive jamming strategies,
respectively, in practical scenarios. We also propose a simple yet
effective countermeasure against DeepJam.

Index Terms— Jamming, cross-technology interference, WiFi
and Zigbee, reinforcement learning.

I. INTRODUCTION

JAMMING is a critical threat against wireless communi-
cations. Different jamming attacks have been proposed

for attackers with various capabilities [1]–[3], and there have
also been many studies on defeating or detecting jamming
attacks [4], [5]. The current wireless environment has become
much more complex than before due to the surge of IoT
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Fig. 1. Targeted CTI context of DeepJam.

devices all over the world, which results in new threats to
wireless security as shown in previous studies [6]. The emerg-
ing deep learning technique has demonstrated its efficacy in
compromising wireless security [7], [8]. It is thus meaningful
to investigate whether the attacker can exploit the complex
wireless environment and deep learning technique to launch
more effective jamming attacks and also devise corresponding
countermeasures.

The unlicensed frequency bands are now crowded with
devices of different wireless technologies. For example, WiFi,
Zigbee, and Bluetooth all use the 2.4 GHz ISM band. The
Cross-Technology Interference (CTI) happens when different
kinds of wireless networks on the same frequency band are
deployed at proximity. For instance, previous work shows that
the throughput of a Zigbee network may drop by more than
60% if a WiFi network coexists [9], [10].

This paper proposes DeepJam, a new deep learning-guided
jamming attack that exploits CTI in the complex wireless
environment. We illustrate the basic idea of DeepJam with
an example CTI context shown in Fig. 1, where a WiFi net-
work and a Zigbee network coexist. We consider this context
because of the prevalence of WiFi and Zigbee networks, and
our work can be extended to other scenarios in which CTI
exists. The WiFi network contains one Access Point (AP)
and multiple WiFi devices, which can be mobile devices,
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computers, or smart home devices. The Zigbee network con-
tains one coordinator and multiple Zigbee devices, and the
network can be the alarm system in a house or the temperature
monitoring system in a factory. The adversary aims to disrupt
the Zigbee traffic from a specific device in an efficient and
stealthy manner. In this context, the victim’s transmission may
fail with a high probability when CTI happens. Therefore,
reactive jamming, which generates a jamming signal upon
detection of any Zigbee preamble, is inefficient because it
wastes significant energy jamming the victim’s transmissions
already disrupted by CTI and also the transmissions of other
Zigbee devices. Random jamming that transmits a jamming
signal regardless of the presence or absence of the victim’s
transmissions is not only more energy-inefficient but also
easier to detect. By comparison, DeepJam can significantly
reduce the victim’s throughput with far fewer jamming signals
by only jamming the victim’s transmissions which are not
subject to CTI and thus achieve much more stealthy jamming
than conventional random and reactive jamming strategies.

It is challenging to accurately predict when jamming is
necessary. The random backoff periods and the asynchronous
clocks of the WiFi and Zigbee networks result in chaotic
wireless traffic, making it difficult to capture the temporal
traffic patterns. We first investigate the Zigbee MAC protocol
and propose a slotted formulation of the jamming attack.
By properly choosing the slot duration and carefully defining
the status and actions, we convert the jamming attack to a
time series process. Then we propose a deep learning-guided
strategy to predict the attacker’s optimal action in the coming
slot according to sniffed traffic in the past. Deep learning has
been proven more efficient in solving time series problems
than traditional machine learning methods and thus is more
suitable for DeepJam.

We evaluate the performance of DeepJam with comprehen-
sive comparison with random jamming and reactive jamming
in different scenarios. The results show that DeepJam signifi-
cantly outperforms random jamming in all scenarios. Although
reactive jamming performs better than DeepJam in a simple
system with one Zigbee device, DeepJam outperforms reactive
jamming in terms of efficiency and stealth when there are mul-
tiple Zigbee devices, and its advantage becomes more signifi-
cant with the increase of the network complexity. For example,
in a system that contains five Zigbee devices, 42% of Deep-
Jam’s jamming actions are necessary, while only 13% of reac-
tive jamming actions are necessary. Due to the random backoff
mechanism of the Zigbee network, DeepJam cannot fully jam
the traffic of the victim device. But we show that DeepJam
can decrease the throughput of the victim by 60% in the worst
case and by 78% in the best case. We also propose a simple
countermeasure against DeepJam and evaluated its efficacy.

The rest of the paper is organized as follows. Section II
reviews the background of Zigbee and CTI. Section III
presents the system and adversary models. Section IV gives
the problem formulation. Sections V illustrates the techni-
cal details of DeepJam. Section VI discusses two counter-
measures. Section VII outlines the simulation process for
Zigbee and WiFi networks. Section VIII evaluates DeepJam
with comparison to random jamming and reactive jamming.

Section IX briefs the related work. Section X concludes our
work.

II. BACKGROUND

A. Zigbee MAC Layer

The Zigbee MAC layer is defined in IEEE 802.15.4. The
network can be beacon-disabled or beacon-enabled. The for-
mer adopts unslotted Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) for media access con-
trol, and the latter adopts slotted CSMA/CA. The acknowl-
edgment (ACK) is optional in Zigbee MAC layer. In a
beacon-disabled Zigbee network, a device first conducts the
Clear Channel Assessment (CCA) to determine the channel
status when it attempts to transmit a MAC frame. The device
immediately transmits the MAC frame when the channel is
idle. Otherwise, the device waits for a period and tries again.
The backoff time Bz is defined by an exponential back-
off algorithm. In a beacon-enabled network, the coordinator
periodically generates beacons which divide the channel to
superframes of the same duration. A superframe contains a
mandatory active period and an optional inactive period, and
the active period is equally divided into 16 slots. During the
active period, a device accesses the channel in a similar manner
as in the beacon-disabled Zigbee network, while the frame
transmission must start at the beginning of one slot.

A Zigbee network can adopt Energy Detection (ED) or
Carrier Sensing (CS) for CCA. ED considers the channel busy
if the energy level is above a predefined threshold, while CS
considers the channel busy only if Zigbee signals are detected.
Payload encryption is optional in Zigbee MAC layer, and the
Frame Check Sum (FCS) occupying the last 2 bytes of a MAC
frame is used to detect bit errors. The MAC frame header,
which contains the source and destination MAC addresses,
and FCS are transmitted in plaintext.

B. Cross-Technology Interference (CTI) Illustration

As shown in Fig. 2, the Zigbee and WiFi channels overlap
in frequency. For example, the WiFi channel 6 uses the
same frequency band as Zigbee channels 16-19. Consequently,
a WiFi network working on channel 6 may interfere with a
Zigbee network working on channel 18 if those two networks
are deployed at proximity.

Previous studies have experimentally evaluated the inter-
ference between WiFi and Zigbee networks [9], [10]. Since
a WiFi transmitter’s power is more than 30 times larger
than a Zigbee transmitter’s, Zigbee signals’ impact on WiFi
transmissions is insignificant. In contrast, WiFi signals have
significant impact on Zigbee transmissions. Although WiFi
signals do not fully jam Zigbee signals, the throughput of the
Zigbee network may drop by 60% due to CTI.

III. SYSTEM AND ADVERSARY MODELS

A. System Model

We consider a system in which a Zigbee network and
a WiFi network coexist, and the system model is shown
in Fig. 1. The experimental result in [9] shows that the
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Fig. 2. Zigbee and WiFi channels.

cross-technology interference between Zigbee and Bluetooth
networks is insignificant, so we do not consider Bluetooth
networks in our system. The WiFi network follows IEEE
802.11 and contains one AP and multiple WiFi devices. The
Zigbee network follows IEEE 802.15.4 and contains one
coordinator and multiple Zigbee devices. Without loss of
generality, we assume that the WiFi network keeps working
on WiFi channel 6 (with a center frequency of 2,437 MHz
and bandwidth of 20 MHz), and the Zigbee network keeps
working on channel 18 (with a center frequency of 2,440 MHz
and a bandwidth of 2 MHz). In this case, the WiFi network
interferes with the Zigbee network. IEEE 802.15.4 does not
adopt frequency hopping, so the Zigbee network does not hop
to another channel due to the interference. Although the WiFi
network adopts channel hopping, the Zigbee signal’s power is
too low to cause significant interference to the WiFi network
which thus does not change the channel either.

We make the following assumptions about the Zigbee
network. First, the Zigbee network is busy and all the MAC
frames are of the maximum length Lz to maximize the data
transmission rate. Lz equals 127 bytes as defined in 802.15.4.
Second, we assume that the network’s traffic load and pattern
are both stable within a short period (less than 1 min). For
simplicity, we assume that the number of Zigbee MAC frames
generated (not transmitted) by a Zigbee device within a short
period follows the Poisson distribution, and the possibility
that a device generates kz new MAC frames within τ sec
is formulated as

P (kz) =
e−λzτ (λzτ)kz

kz!
, (1)

where λz is the arrival rate. The arrival rate varies with the
device’s ongoing task, so we only assume that λz is stable
within a short period.

B. Adversary Model

We consider an attacker who is aware of the Zigbee channel
by passive eavesdropping and attempts to disrupt the traffic
from a specific Zigbee device in a stealthy manner. Particu-
larly, the objective of the attacker is to reduce the throughput of
the victim device by a target percentage with as few jamming
signals as possible. Without loss of generality, we assume that
the victim is z1 whose MAC address is known to the attacker.

To launch the DeepJam attack, the attacker installs a mon-
itor, which can be a COTS Zigbee device, around the victim
device. The monitor sniffs the Zigbee traffic, measures the
power level within the Zigbee channel, and also decodes any
overheard Zigbee MAC frame. Since the header and FCS of
a Zigbee MAC frame are not encrypted, the attacker is aware
of the source device of the MAC frame and can also verify
whether the frame is corrupted by checking its FCS. If the
attacker detects an uncorrupted MAC frame of z1, it considers
the frame being successfully transmitted.

Since the Zigbee traffic is assumed stable within a short
period, the attacker attempts to predict the victim’s traffic in
the near future from the signal overheard in the short past
period. Specifically, the attacker uses the deep learning model
to predict when z1 may successfully transmit a MAC frame
and then generates a predefined jamming signal, which is
fixed Gaussian noise in the targeted Zigbee channel, during
the predicted period. The power of the jamming signal is five
times larger than that of the Zigbee signal, which is sufficient
to disrupt Zigbee transmissions but still much weaker than the
WiFi signal’s power. So the attacker’s action has no significant
impact on the WiFi network.

After taking a jamming action, the attacker can determine
whether the action is necessary. The signal captured by the
adversarial monitor is mixed with the jamming signals, but
the attacker can subtract the jamming signal from the sniffed
signal to restore the original signal. The jamming action is
necessary if the restored signal contains z1’s uncorrupted MAC
frame and is unnecessary otherwise.

IV. PROBLEM FORMULATION

We provide a slotted formulation of the jamming attack and
an overview of DeepJam in this section.

A. Slot Duration

We determine the slot duration based on the maximum MAC
frame length Lz of the Zigbee network. In particular, the slot
duration Ts equals Tz/2, where Tz denotes the time consumed
to transmit a Zigbee MAC frame of length Lz .

The choice of the slot duration is critical. First, the slot
must be short enough so that the slot status space is of small
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Fig. 3. Slot status.

size. Multiple MAC frames of the victim may appear in one
slot, and the slot’s status is defined based on the status of
those frames (corrupted or not). A proper slot duration must
be short so that only a few MAC frames of the victim may be
present in one slot. Second, the slot must be long enough so
that the optimal action in a future slot is significantly impacted
by only a small number of passing slots.

A slot duration of Tz/2 satisfies the need. Since at most two
MAC frames of the victim may appear in a slot, the slot has
only three possible status which are detailed in Section IV-B.
As demonstrated in Section VIII, the number of slots that may
have significant impact on the coming slot is at most 10. The
evaluation results show that it is feasible to launch DeepJam
in real time with a slot duration of Tz/2.

B. Slot Status

We define three slot status: IDLE, TRANSMISSION, and
OCCUPY, based on the attacker’s observation, and we use
an example in Fig. 3 to illustrate how we determine the
slot status. Fig. 3 shows an example of the wireless traffic
within 10 slots. The device transmits during blue periods and
keeps silent during white periods. For simplicity, we assume
that only three devices, z1 (the victim Zigbee device), z2

(another Zigbee device), and w1 (a WiFi device), transmit
within those 10 slots. The attacker monitors the wireless signal
within the Zigbee channel, measures the power level within
each slot, and decodes the signal captured in each slot.

In sloti−9, the power level is always below a threshold, and
the attacker can conclude that there is no wireless transmission
within this slot and considers the slot IDLE. In sloti−8 and
sloti−1, the attacker can detect a MAC frame header containing
z1’s address, but the frame does not fully occupy the slot.
Those two slots are also considered IDLE. If the attacker
detects a complete and uncorrupted MAC frame of z1, the first
slot fully occupied by the frame, such as sloti−7, is considered
TRANSMISSION, and the following slot, such as sloti−6,
is considered IDLE. Apart from IDLE and TRANSMIS-
SION slots, all the rest slots are considered OCCUPY.

It is worth noting that the attacker may be uncertain about
the status of a slot in some cases. For example, the attacker
cannot determine the status of sloti because FCS has not been
received yet. In this case, the attacker temporally considers
sloti a TRANSMISSION slot.

Three cases can result in an OCCUPY slot. First, z1 does
not transmit, but Wi-Fi devices or other Zigbee devices trans-
mit in this slot. sloti−5 and sloti−4 belong to the first case.
Second, z1 transmits, but Wi-Fi devices transmit simultane-
ously. Due to interference, the frame of z1 cannot be correctly

decoded. sloti−3 belongs to this case. Third, only z1 transmits
in this slot, but the frame’s header is within the previous
slot and cannot be decoded due to interference. Consequently,
the monitor, as well as the destination device, cannot decode
the source address correctly to recognize the frame as z1’s.
sloti−2 belongs to this case.

C. DeepJam Basics

The main idea of DeepJam is predicting the optimal action
in a future slot based on the observations in past slots. It takes
time to process the captured signal and compute the prediction.
Therefore, the attacker cannot immediately obtain the status
of a slot and make a proper prediction at the beginning of the
next slot. The experimental result in Section VIII shows that
the signal processing and prediction computation can be done
within one slot. Therefore, we add a gap of one slot between
the most recent channel observation and the prediction. To be
more specific, within the ith slot, the attacker first processes
the signal captured in slot i − 1. Then the attacker uses the
observed channel status before and in slot i− 1 to predict the
optimal action he should take in slot i + 1.

The attacker can take two actions, WAIT or JAM, in each
slot. If the attacker predicts that the coming slot is a TRANS-
MISSION slot, the attacker takes action JAM by sending
jamming signals in this slot. Otherwise, the attacker takes
action WAIT and keeps silent. Since no error correction code
is adopted, jamming half of the MAC frame, i.e., one slot, can
disrupt the frame with a high probability. Attacker’s actions
also impact the channel status. If the attacker takes action JAM
in slot i, the channel status is OCCUPY no matter whether
there is wireless traffic or not. As we discussed in Section III,
the attacker can restore the original signal, so he can determine
whether his prediction for an ended slot is correct and thus
amend the prediction model.

V. DEEPJAM DETAILS

DeepJam follows an online-learning process. In particular,
the attacker takes actions based on a prediction model and
updates the model based on the results of actions. It is well
known that Reinforcement Learning (RL) [11] is an effective
solution to online-learning problems, so we adopts RL in
DeepJam. This section first briefly introduces RL and explains
how we convert DeepJam to a typical RL problem. Then we
detail the DeepJam RL algorithm.

A. Reinforcement Learning

RL considers an agent who interacts with the environment in
a sequence of time slots and tries to maximize some notion of a
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cumulative reward [11]. More specifically, the agent observes
the state of the environment in the ith slot, denoted by si.
Based on the observation, the agent takes an action ai ∈ Asi ,
where Asi is the set of possible actions in state si. As a result
of the action, the agent gets a reward ri+1, and the environment
state changes to si+1. The goal of the agent is to maximize
the cumulative reward Ri �

∑∞
j=i γj−irj+1, where γ ∈ (0, 1]

is a discount factor.
To convert DeepJam to a typical RL problem, we define the

slot states, the attacker’s actions, and the rewards as follows.
1) Slot States: Due to the MAC method, the channel status

and the corresponding optimal action of the ith slot are related
to the previous slots. We thus abuse the notation and use si to
represent the state of slot i and refer to the channel status of
all the slots that significantly impact the optimal action in slot
i. As shown in Section IV, the attacker cannot immediately
obtain the status of a slot and complete the prediction at the
beginning of the next slot. So si does not contain the channel
status in slot i − 1. If we consider NR slots before slot i
except slot i − 1, si can be formulated as a 1×NR vector
< ui−NR−1, · · · , ui−2 >. Here uj ∈ {1, 2, 3} indicates the
channel status of slot j and is defined as follows:

uj =

⎧⎪⎨
⎪⎩

1, if slot j is IDLE;
2, if slot j is OCCUPY;
3, if slot j is TRANSMISSION.

(2)

A large NR can achieve a high prediction accuracy but
results in long converge time. Since the temporal pattern of the
wireless traffic comes from the exponential backoff algorithm,
we choose NR based on the maximum backoff periods of the
WiFi and Zigbee networks. Particularly, we calculate NR as:

NR = �max(Dw,Dz)/Ts� − 1, (3)

where Dw and Dz denote the maximum backoff periods in
the WiFi and Zigbee networks, respectively; Ts denotes the
duration of a time slot.

2) Actions: We denote the attacker’s action in slot i with ai,
where ai ∈ {JAM, WAIT}. The details of JAM and WAIT
actions have been given in Section IV.

3) Rewards: We define the reward of action ai based on
the channel status of slot i. To be more specific, if ai = JAM
and slot i is TRANSMISSION, the attacker gets a reward
ri+1 = Rj ∈ (0, 1] for successfully jamming a MAC frame of
the victim. If ai = WAIT and slot i is IDLE or OCCUPY,
the attacker gets a reward ri+1 = Rs ∈ [0, 1]) for saving
energy. If ai = WAIT and slot i is TRANSMISSION,
the attacker misses a successfully transmitted MAC frame of
the victim and receives a negative reward ri+1 = Rm ∈
[−1, 0). If ai = JAM and slot i is IDLE or OCCUPY,
the attacker wastes energy on an unnecessary jamming and
gets a negative reward ri+1 = Rw ∈ [−1, 0].

Attackers can adjust Rj , Rs, Rm, and Rw based on their
own constraints. For example, if the energy limitation is a
big concern, the attacker can adopt large absolute values for
Rw and Rs and adopt a small absolute value for Rm. Since
hindering the wireless communication should always be the
primary goal of the attacker, Rj and Rm cannot be zero.

Fig. 4. DeepJam DNN architecture.

B. RL Algorithm of DeepJam

DeepJam adopts Q-Learning (QL) [12], which is a popular
RL algorithm, to determine the optimal action in a future slot.
QL aims to obtain a Q-function Q(s, a) � E[Ri|si = s, ai =
a] (also called Q-value) to calculate the expected maximum
cumulative reward of taking action a at state s. The action
with the maximum Q-value is considered the optimal.

Traditional QL obtains Q-function in a tabular manner
which results in long converge time and thus is not suitable
for DeepJam. More specifically, the QL algorithm must go
through all the combinations of slot states and actions to
obtain the Q-function. For example, consider the scenario
in Section VIII where the slot state contains the channel
status of 10 slots with the slot duration around 2 ms. The
QL algorithm takes at least 2 ms ∗ 2 ∗ 310 ≈ 4 min to
converge and obtain the Q-function. The wireless traffic is
highly dynamic, and the temporal pattern is very likely to have
changed before the algorithm converges. So DeepJam cannot
use traditional QL.

We adopt Deep Q-Learning (DQL) [13] to deal with the
large state space and approximate the Q-function with a
tailored Deep Neural Network (DNN). The input to the DNN
is the slot state, and the outputs are the Q-values of taking
JAM and WAIT actions in the slot. Fig. 4 shows the structure
of DeepJam DNN that contains one LSTM cell and two Fully
Connected (FC) Layers. We also show the input and output
dimensions of each layer in the figure.

The LSTM cell [14] can capture long-time temporal patterns
of the wireless traffic. As mentioned in Section V-A.1, the slot
state si contains the channel status of slots i−NR−1 to i−2.
Since the slots earlier than slot i − NR − 1 may also have
non-trivial impact on the optimal action in slot i, we use the
LSTM cell to memorize those early slots without increasing
the dimension of the slot state. In particular, the LSTM cell
contains four gates to maintain a hidden state and calculate
the output [14]. The hidden state is affected by the long-time
history of inputs and is updated iteratively based on the newly
coming input. The four gates control how the hidden state is
affected by the newly coming input and how the output is
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affected by the hidden state. Therefore, the long-time history
of the wireless traffic is memorized by the hidden state of the
LSTM cell and contributes to the prediction of optimal actions.
The input and output of the LSTM cell are all 1×NR vectors.
The output of the LSTM cell is fed into two FC layers, both
of which contain 32 neurons and adopt the Rectified Liner
Unit (ReLU) function as the active functions. The output layer
is a linear FC layer that outputs the Q-values of JAM and
WAIT actions.

DeepJam DNN is an estimation of the Q-function, and
the training process iteratively reduces the estimation error.
The observation on slot i, including the state, the action,
and the reward, is one training sample, which is denoted by
oi =< si, ai, ri+1 >. We adopt the techniques of separate
target network and batch gradient descent to stabilize the
training process. We maintain a target network whose structure
is the same as that of DeepJam DNN. The Q-values given
by DeepJam DNN and the target network are denoted by
q(s, a; ΘQ) and q′(s, a; Θ′

Q), respectively. Here ΘQ and Θ′
Q

denote the parameter vectors of DeepJam DNN and the target
network, respectively; s denotes the slot state; a denotes the
action. With oi as the training sample, the loss function is
defined as follows:

LQ(i, ΘQ)=(ri+1 + γ max
a

q′(si+1, a; Θ′
Q)

− q(si, ai; ΘQ))2, (4)

where γ ∈ (0, 1] is the discount factor. In each iteration,
we update DeepJam DNN’s parameter vector with a batch
containing five training samples, and the batch is denote by
b =< oI(1), oI(2), oI(3), oI(4), oI(5) >, where I(j) is the slot
index of the jth training sample. We update ΘQ as

ΘQ ← ΘQ −
ρQ

5

5∑
j=1

∂LQ(I(j), ΘQ)
∂ΘQ

(5)

every iteration and replace Θ′
Q with ΘQ every NΘ iterations.

Here ρQ is the learning rate.
We adopt experience replay [15] to accelerate the train-

ing process. More specifically, we maintain a memory
pool containing the observations on the latest 500 slots.
In the training process, we select 20 batches that are
continuous in time from the memory pool. To be more
specific, if the first batch is b1 =< oI(1), oI(2), oI(3),
oI(4), oI(5) >, the mth batch is bm =< oI(1)+m−1, oI(2)+m−1,
oI(3)+m−1, oI(4)+m−1, oI(5)+m−1 >. We use the 20 batches to
update the DNN parameter vector successively, and the whole
process is referred to as one epoch. An attacker can conduct
multiple epochs in one slot according to his computational
capacity. To capture the long-time temporal pattern, we only
initialize the hidden state of the LSTM cell at the beginning of
each epoch. We also update the target network at the beginning
of each epoch and keep it stable within one epoch. The
memory pool is updated at the beginning of each slot. We only
take WAIT actions in the first 21+NR slots to collect training
samples, and we use all the past slots as the memory pool
from slot 21 + NR to slot 501 + NR. Here NR is still the
aforementioned dimension of the slot state.

In case that DeepJam DNN gets stuck before converg-
ing to the optimal estimation of the Q-function, we choose
actions in an ε-greedy manner. In particular, we take action
a = argmaxa q(si, a; ΘQ) in slot i with a probability of
1 − ε and take the other action with a probability of ε. The
hidden state of the LSTM cell is calculated with the states of
the 20 slots that are ahead of slot i. The pseudocode of the
DeepJam RL algorithm is given in Algorithm 1.

Algorithm 1 RL Algorithm of DeepJam
Initialize ε, ρQ, γ, NR

Initialize memory pool M
Initialize LSTM hidden state h, DNN parameter
vector ΘQ

Copy ΘQ to target network parameter vector Θ′
Q

for slot i in DeepJam do
if i ≤ 21 + NR then

take action WAIT
else

Calculate LSTM hidden state hi

Input si to DNN and output q(si, a; ΘQ) for
a ∈ {JAM, WAIT}
Take action according to ε-greedy policy
for each epoch do

Initialize LSTM hidden state
Randomly selected 20 continuous batches B
for each batch in B do

ΘQ ← ΘQ −
ρQ

5
∑5

j=1

∂LQ(I(j), ΘQ)
∂ΘQ

end for
Θ′

Q ← ΘQ

end for
end if
Process the signal obtained in slot i− 1
Update si−1, ai−1, and ri to M

end for

VI. COUNTERMEASURES

We propose two countermeasures against DeepJam for
networks with different capabilities.

Networks with advanced devices which have powerful
computing capacity can defeat DeepJam by adopting deep
learning-based MAC protocols. The victim device can learn
the attacker’s behavior pattern with DNN and thus predict
the slots that are less likely to be jammed. A more powerful
victim can train a defense DNN in advance with Generative
Adversarial Network (GAN) [16] which can even mislead or
manipulate the attacker’s behaviors. Specifically, the victim
jointly trains two DNNs, including an attack DNN and a
defense DNN, in an adversarial manner. Both DNNs take the
traffic history as inputs. The attack DNN simulates the attacker
and predicts the optimal time to generate the next jamming
signal just as DeepJam does. The defense DNN predicts the
optimal time to transmit the next MAC frame and attempts
to maximize the throughput of the victim. After sufficient
rounds of competitions, the defense DNN can capture the
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behavior pattern of the attacker, and the victim can partially
mitigate the attack’s impact by acting according to the defense
DNN’s prediction. However, most COTS IoT devices only
have limited computing capacity and thus cannot adopt the
DNN-based countermeasure.

We also propose the dynamic network configuration as
a simple yet effective countermeasure against DeepJam.
As demonstrated in Section VIII, a sudden change of wireless
traffic can immediately and significantly harm the performance
of DeepJam, and it takes time for DeepJam DNN to converge
again. The victim network can introduce sudden changes to
the wireless traffic by changing the network configuration
frequently. Consequently, the DeepJam DNN may never con-
verge, and thus the impact of DeepJam is weakened. Our
evaluation results show that the dynamic network configuration
can indeed harm the performance of DeepJam. However,
the dynamic network configuration may bring extra manage-
ment burden to the network.

VII. SIMULATING ZIGBEE AND WI-FI NETWORKS

Shi et al. [17] and Yu et al. [18] evaluated the implication of
deep learning for wireless security with simulations. Following
their work, we built a Matlab simulator to simulate the system
in Fig. 1 and evaluated DeepJam with the generated data.
We assumed that the WiFi network and the Zigbee network
coexist in a 10m × 10m room, and the locations of the AP,
coordinator, WiFi and Zigbee devices were randomly chosen.
In the simulation, we set the transmission power of the WiFi
device to be 30 times larger than that of the Zigbee device.

A. Simulation of Wi-Fi Network

Zigbee transmissions have negligible impact on WiFi trans-
missions, so we first simulated the behavior of the WiFi
network. Multiple versions of IEEE 802.11 have defined the
WiFi standard on 2.4 GHz band. We considered the most
popular 802.11g in this paper and leave the analysis of other
versions to future work.

We simulated a WiFi network that contains three WiFi
devices. The WiFi MAC frame length in the simulator were
evenly distributed between 34 bytes (the length of the MAC
frame header) and 2,346 bytes (the maximum length of a
WiFi MAC frame) with an average of 1,190 bytes. We set the
transmission speed of the WiFi network as 54 Mbps, in which
case the average transmission time of a MAC frame is around
388 μs (including the time consumed by the acknowledgment).
The number of MAC frames generated (not transmitted) by
a WiFi device within a short period followed the Poisson
distribution illustrated in Section III. In a congested WiFi
network, the time consumed to transmit the MAC frames
generated during a period of τ is larger than τ , and the
number of cached MAC frames increases with time. The
number of MAC frames transmitted within one second cannot
exceed 	1 s/388 μs
 = 2, 577. So we set the arrival rate
of a congesting WiFi network as λw = 1, 000 fps. We also
consider the busy and idle WiFi networks whose arrival rates
are set as 500 fps and 100 fps, respectively. The channel is
occupied for around 70% and 15% of the time in the busy

and idle WiFi networks, respectively. WiFi devices accessed
the channel with CSMA/CA, and the maximum backoff period
was 20,460 μs as defined in the standard. In the PHY layer of
the WiFi network, we adopted the Additive White Gaussian
Noise (AWGN) model to simulate the WiFi channel. We set
the SNR as 14 dB, roughly the power ratio of the WiFi signal
to the Zigbee signal.

B. Simulation of Zigbee Network

We simulated the behavior of the Zigbee network after
obtaining the WiFi traffic. We considered a congesting Zigbee
network in which all the MAC frames were of the maximum
length, 127 bytes. It takes 4,256 μs to transmit one MAC
frame. The generation of MAC frames in the Zigbee device
was also a Poisson process. For similar reasons explained in
Section VII-A, we set the arrival rate of the busy Zigbee
network as λz =260 fps, in which case a single Zigbee
device can fully occupy the channel. We simulated both
beacon-enabled and beacon-disabled Zigbee networks. The
superframe in the beacon-enabled network only contained the
active period, and the length of the superframe was 15,360 μs.
Zigbee devices accessed the channel with slotted CSMA/CA in
the beacon-enabled network and with unslotted CSMA/CA in
the beacon-disabled network. The maximum backoff periods
of beacon-enabled and beacon-disabled Zigbee networks were
both 9,920 μs as defined in IEEE 802.15.4. We also simulated
both Energy Detection (ED) or Carrier Sensing (CS) for CCA.
In the simulation with ED, Zigbee devices could detect both
Zigbee and Wi-Fi signals and considered the channel idle if
and only if there was no wireless traffic. In the simulation with
CS, Zigbee devices cannot detect WiFi signals and considered
the channel idle if it did not detect Zigbee signals. Since
our study focuses on the efficiency of the jamming strategy,
i.e., the ratio of the jammed MAC frames, we considered a
Zigbee network without acknowledgment for the convenience
of analysis.

We used the MATLAB Communications Toolbox Library
for Zigbee [19] to simulate the Zigbee PHY layer. More
specifically, we used the AWGN model to simulate the Zigbee
channel. We assumed that the noise in the wireless environ-
ment is negligible, and the Zigbee PHY frame can always be
successfully transmitted without the interference from other
wireless signals. If another wireless signal was present during
the transmission of a Zigbee PHY frame, we considered that
wireless signal white Gaussian noise. Finally, we obtained
the number of incorrectly decoded bits in a Zigbee MAC
frame from the Matlab simulator. Since the Cyclic Redundancy
Check (CRC) code adopted by the Zigbee network can only
correct one incorrectly decoded bit in a MAC frame, we con-
sidered the transmission of a MAC frame failed if more than
one bit were incorrectly decoded.

VIII. EVALUATION

This section first introduces the evaluation setup, including
the hardware and software, evaluation metrics, parameter
setting, and comparison method. Then we evaluate our scheme
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in various scenarios. Since Zigbee networks in different appli-
cation scenarios may differ in MAC and CCA methods,
we evaluate DeepJam’s performance under different Zigbee
network configurations. We also evaluate the impacts of the
WiFi network’s traffic load and the Zigbee network size.
Finally, we evaluate the latency of DeepJam and the efficiency
of the countermeasure.

A. Evaluation Setup

1) Hardware and Software: We implemented DeepJam
DNN with PyTorch 1.4 [20]. To make minimum assumptions
about the attacker’s ability, we conducted all the experiments
on a COTS personal computer. The computer is equipped
with an Intel Core i7-3770 3.4 GHz CPU, where all the
computations were conducted.

2) Evaluation Metrics: We used two metrics to evaluate
DeepJam. The first is hit rate (HR) defined as

HR = Nh/Nj , (6)

where Nj denotes the number of slots that are predicted
to be TRANSMISSION and thus jammed by the attacker;
Nh denotes the number of the victim’s MAC frames that are
corrupted not by the wireless signal of other devices but by
the jamming signal. In other words, Nh predictions among the
Nj TRANSMISSION predictions are correct, so HR reflects
the prediction accuracy of the DeepJam DNN.

We define the second metric jam rate (JR) as

JR = Nh/(Nh +Ns), (7)

where Ns denotes the number of the victim’s MAC frames
that are successfully transmitted.

HR measures the ratio of necessary jamming actions, and
JR measures the victim’s throughput decrease due to jamming.
The jamming attack is said to be efficient if both HR and JR
are high; i.e., the attacker can significantly reduce the victim’s
throughput with limited energy consumption.

3) Parameter Setting: We adopted 0.8, 0.1, −0.8, and
−0.3 as Rj , Rs, Rm, and Rw, respectively. The discount factor
and the learning rate are 0.9 and 0.01, respectively. We trained
the DNN for five epochs in each slot. The slot duration Ts

equals 2,128 μs, and slot state’s dimension NR equals 10.
4) Comparison Methods: We compare DeepJam with con-

ventional random jamming and reactive jamming as follows.
We first launch DeepJam for 10,000 slots among which N d

j

slots are jammed and calculate the HR and JR, denoted by
HRd and JRd. Then we launch random jamming and reactive
jamming each for 10,000 slots, aiming to achieve the same jam
rate as DeepJam’s. To be more specific, we jam each slot with
a probability of JRd in random jamming and jam the slot that
follows a slot containing a Zigbee preamble with a probability
of JRd in reactive jamming. The number of jamming actions
token in random jamming and reactive jamming are denoted by
N ra

j and N re
j , respectively. We also calculate the hit rates of

random jamming and reactive jamming, denoted by HRra and
HRre, respectively. We define a metric jamming-efficiency
gain (JEG) for more straightforward comparison. The JEGs
of DeepJam over random jamming and reactive jamming are

Fig. 5. Comparison of DeepJam, random jamming, and reactive jamming.

defined as JEGd/ra = N ra
j /N d

j and JEGd/re = N re
j /N d

j ,
respectively. JEG measures the advantage of DeepJam over
random jamming and reactive jamming in terms of the jam-
ming actions’ efficiency.

B. Efficiency of DeepJam

In this subsection, we first compare DeepJam, random
jamming, and reactive jamming in a specific scenario. Then
we evaluate the impact of multiple parameters.

1) Performance Comparison: The initial configuration of
the experiment was as follows. The arrival rate of the WiFi
network was λw = 500 fps. The Zigbee network contained
three Zigbee devices, was beacon-disabled, and adopted CS for
CCA. We changed the configuration at slot 5,000 by adjusting
λw to 300 fps. The HRs and JRs calculated for every 200 slots
are shown in Fig. 5.

With the initial configuration, DeepJam converged after
around 3,100 slots (about 6.3 sec) and achieved an HRd

of 0.43 and a JRd of 0.68. The performance of DeepJam
dramatically decreased around slot 5,000 due to the sudden
change of wireless traffic, but DeepJam converged again after
about 3.3 sec and achieved an HRd of 0.44 and a JRd of 0.69.
With short converge time, DeepJam can handle the highly
dynamic wireless traffic. DeepJam significantly outperformed
random jamming and reactive jamming with an JEGd/ra

of 4.9 and an JEGd/re of 1.7.
To better understand the comparison between DeepJam and

reactive jamming, it is worth noting that reactive jamming is
triggered by the detection of Zigbee preambles. So reactive
jamming wastes energy on jamming Zigbee traffic which is
not from the victim device. Besides, some corrupted Zigbee
packets contain correct preambles which also trigger a reactive
jammer to launch unnecessary jamming. Therefore, DeepJam
improved the HR of reactive jamming by more than 1.7 times
because it can identify the uncorrupted packets of the victim
more accurately.

2) Impact of WiFi Traffic Loads: In the experiment, the
Zigbee network contained three Zigbee devices, was beacon-
disabled, and adopted CS for CCA. We first evaluated Deep-
Jam with a congesting WiFi network (λw = 1, 000 fps) and
then repeated the evaluation with the busy and idle WiFi
networks (λw = 500 fps and λw = 100 fps, respectively).
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TABLE I

PERFORMANCE WITH DIFFERENT WIFI TRAFFIC LOADS

TABLE II

PERFORMANCE WITH DIFFERENT MAC AND CCA METHODS

For each evaluation, we launched DeepJam for 50 times. The
average converge time and the average HRd and JRd after
convergence are shown in Table I. The table also lists HRra,
HRre, JEGd/ra, and JEGd/re for comparison.

DeepJam performs well with the busy and idle WiFi net-
works, but its performance in a congested WiFi network is
less satisfactory. We found that 95% of the victim’s frames
were corrupted due to the interference of the congested WiFi
network. So the training samples, i.e., slots, containing uncor-
rupted transmissions were few, which resulted in long converge
time and poor performance. However, the throughput of the
victim is extremely low when it coexists with a congested
WiFi network, so it does not make sense for the attacker
to launch the jamming attack in such a scenario. DeepJam
performs similarly with busy and idle WiFi networks. So we
only considered the busy WiFi network hereafter, which is
more common in practice.

3) Impact of MAC and CCA Methods: The Zigbee network
in this experience contained three Zigbee devices, and the
WiFi network was busy. We considered four scenarios: a
beacon-enabled Zigbee network adopting CS (scenario 1),
a beacon-enabled Zigbee network adopting ED (scenario 2),
a beacon-disabled Zigbee network adopting CS (scenario 3),
and a beacon-disabled Zigbee network adopting ED (sce-
nario 4). We repeated DeepJam 50 times in each scenario
and calculated the average converge time, HRs, and JRs. The
results are shown in Table II. The table also lists the corre-
sponding HRra, HRre, JEGd/ra, and JEGd/re for comparison.

In all scenarios, DeepJam significantly outperformed ran-
dom jamming and reactive jamming in terms of energy
efficiency and converged within 8 sec. CCA methods had
no significant impact on DeepJam, while the performance of
DeepJam with beacon-disabled Zigbee networks was slightly
better than that with beacon-enabled ones. The main reason
is that slotted CSMA/CA is more complex than unslotted
CSMA/CA. In particular, the end of the backoff period is

TABLE III

PERFORMANCE WITH DIFFERENT NUMBERS OF ZIGBEE DEVICES

synchronized with slot boundaries, and the device may conduct
CCA multiple times before transmission even though the
channel is idle, resulting in more chaotic wireless traffic.
So DeepJam converged slower with beacon-enabled Zigbee
networks, and HRd and JRd were both lower as well. To eval-
uate DeepJam in the worst case, we considered beacon-enabled
Zigbee networks adopting CS hereafter.

4) Impact of Zigbee Devices’ Amount ND: This experiment
considered a beacon-enabled Zigbee network adopting CS and
an busy WiFi network. We evaluated ND equal to 1, 2, 3, 4,
or 5. For each value, we launched DeepJam 50 times. The
average HRs, JRs, and converge time are shown in Table III.
The table also lists the corresponding HRra, HRre, JEGd/ra,
and JEGd/re for comparison.

DeepJam outperformed random jamming in all scenarios,
and the advantage of DeepJam over reactive jamming became
more significant with the increase of ND (especially for
ND ≥ 3). DeepJam achieved an JEGd/re of 2.8 with ND

equaled 5. With the increase of ND, reactive jamming wasted
more energy on jamming Zigbee traffic that was not from the
victim, thus decreasing the HRre. In contrast, the impact of
ND on DeepJam was negligible. HRd, JRd, and the converge
time of DeepJam were stable for different ND .

C. Latency

This section evaluated the latency of DeepJam. To launch
DeepJam in real time, the attacker needs to process the data
captured in the previous slot, calculate the output of the deep
neural network, and update the deep neural network within one
slot, i.e., 2,128 μs. We denote the time taken to process the
captured data, calculate the DNN output, and update the DNN
by Tp, Tc, and Tu, respectively. As mentioned in Section V,
the attacker can finish the three tasks in parallel, so DeepJam
is feasible in real time if max(Tp, Tc, Tu) ≤ 2, 128 μs.
As defined in 802.15.4, the interval between two continuous
MAC frames is 40 symbols during which the Zigbee device
can process a MAC frame. We assume that the attacker uses
a COTS Zigbee receiver as the monitor, so Tp is no more
than 40 symbols, i.e., 640 μs. In all the aforementioned
experiments, the maximum values of Tc and Tu are 10 μs and
1,870 μs, respectively. Both are less than 2,128 μs. Therefore,
the real-time DeepJam attack is feasible.

D. Efficiency of Dynamic Network Configuration

Finally, we evaluated the efficacy of the dynamic network
configuration countermeasure. This section reports the results
for two configurations, the backoff unit and the superframe
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length. We considered a beacon-enable Zigbee network that
adopts CS and contained 3 Zigbee devices in this experiment.

We first evaluated the efficacy of dynamic backoff units. The
backoff units of the Zigbee network were chosen from {20,
40, 60, 80, 100} samples, and the network randomly changed
the backoff unit every 2 sec. We launched DeepJam in this
scenario for 20 min. The average HRd and JRd were only
0.21 and 0.37, respectively; and the JEGd/ra and JEGd/re were
2.3 and 0.78, respectively. Then we evaluated the dynamic
superframe length, which was randomly chosen from {10,240,
15,360, 20,480, 25,600} μs every 2 sec. We also launched
DeepJam in this scenario for 20 min. The average HRd and
JRd were only 0.16 and 0.23, respectively; and JEGd/ra and
JEGd/re were 1.7 and 0.59, respectively.

The performance of DeepJam with dynamic network con-
figurations was much worse than that with stable network
configurations. Due to the network-configuration changes,
the wireless traffic pattern always changed before Deep-
Jam DNN converged, which effectively weakened DeepJam’s
impact. The evaluation results show that dynamic network
configuration is indeed an effective countermeasure against
DeepJam.

IX. RELATED WORK

With the surge of IoT devices, the cross-technology inter-
ference has become a critical problem. There have been many
studies evaluating the impact of the cross-technology interfer-
ence [9], [10] or exploring new media access control schemes
to mitigate it [18], [21]. In this paper, we focus on another
negative consequence of the cross-technology interference,
which makes the wireless network more vulnerable to the
jamming attack.

There has been significant research on jamming attacks and
defenses. Traditional jammers can be classified into constant
jammers, deceptive jammers, random jammers, and reactive
jammers [22], [23]. A reactive jammer only disrupts the
targeted channel upon detection of a specific signal such as
the Zigbee MAC frame header, so it significantly outperforms
other categories of jammers in terms of efficiency. In spite of
the strict real-time requirement, researchers have successfully
implemented the reactive jammer in the real environment [2].
However, the reactive jammer becomes less efficient in the CTI
context. Specifically, the detection-based jamming strategy
would waste energy on jamming the victim’s transmissions
which have been disrupted by CTI and also the transmissions
of other devices.

With the surge of deep learning, there have been recent
studies adopting deep neural networks to launch or mitigate the
jamming attack [17], [24], [25]. The work in [17] is the most
related to ours. Shi et al. [17] considered a slotted cognitive
network in which the victim accesses the channel with a deep
learning-based media access control method. They proposed a
generative adversarial network-based jamming strategy which
is efficient as shown in their experimental result. Unlike the
scenario considered in [17], we consider a more realistic,
chaotic scenario with cross-technology interference, in which
an unslotted Wi-Fi network coexists with an unslotted Zigbee
network.

X. CONCLUSION

In this paper, we present the design of DeepJam, a deep
learning-guided jamming strategy which exploits CTI in com-
plex wireless environments. Detailed evaluations confirm that
DeepJam is more stealthy and energy-efficient than conven-
tional random and reactive jamming strategies. We also pro-
pose a simple yet effective countermeasure against DeepJam.
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