Learning-Based Workload Phase Classification and
Prediction Using Performance Monitoring Counters

Erika S. Alcorta and Andreas Gerstlauer
Electrical and Computer Engineering, The University of Texas at Austin
{esalcort, gerstl}@utexas.edu

Abstract—Predicting coarse-grain variations in workload be-
havior during execution is essential for dynamic resource op-
timization of processor systems. Researchers have proposed
various methods to first classify workloads into phases and then
learn their long-term phase behavior to predict and anticipate
phase changes. Early studies on phase prediction proposed table-
based phase predictors. More recently, simple learning-based
techniques such as decision trees have been explored. However,
more recent advances in machine learning have not been applied
to phase prediction so far. Furthermore, existing phase predictors
have been studied only in connection with specific phase classifiers
even though there is a wide range of classification methods.
Early work in phase classification proposed various clustering
methods that required access to source code. Some later studies
used performance monitoring counters, but they only evaluated
classifiers for specific contexts such as thermal modeling.

In this work, we perform a comprehensive study of source-
oblivious phase classification and prediction methods using hard-
ware counters. We adapt classification techniques that were used
with different inputs in the past and compare them to state-of-the-
art hardware counter based classifiers. We further evaluate the
accuracy of various phase predictors when coupled with different
phase classifiers and evaluate a range of advanced machine learn-
ing techniques, including SVMs and LSTMs for workload phase
prediction. We apply classification and prediction approaches to
SPEC workloads running on an Intel Core-i9 platform. Results
show that a two-level kmeans clustering combined with SVM-
based phase change prediction provides the best tradeoff between
accuracy and long-term stability. Additionally, the SVM predictor
reduces the average prediction error by 80% when compared to
a table-based predictor.

Index Terms—workload phase prediction, phase classification

I. INTRODUCTION

Predicting program behaviors has been a crucial step for
runtime optimizations such as dynamic cache reconfigura-
tion [14] or power and thermal management [12]. Predictions
allow runtime systems to make proactive decisions instead of
reactive ones. It has been shown that proactive decisions yield
better optimization results [1]. However, proactive approaches
are challenging because they require predicting the future.

Programs are known to go through phases that typically
show repetitive patterns. Researchers have proposed predicting
phase patterns to achieve proactive runtime optimizations [3],
[71, [9], [11], [15]. This requires two main tasks: (1) identify-
ing the phases, i.e., phase classification, and (2) learning their
patterns to anticipate changes, i.e., phase prediction.

Phase classification requires selecting a set of inputs that can
characterize phases and a clustering method that groups similar
inputs together. The inputs proposed in prior studies are very
diverse. Some of them focus on defining similar blocks of code

978-1-6654-3166-8/21/$31.00 ©2021 IEEE

while others measure the system’s workload with performance
metrics. Finding similar blocks of code typically requires
accessing the source code [2] or augmenting the hardware [16],
which limits their applicability. By contrast, performance met-
rics can be obtained transparently by sampling the hardware
counters available in most modern processors. Prior work has
proposed various methods to classify these hardware counters
into phases [3], [11], [18]. However, there is no comprehensive
study to evaluate the best counter-based clustering method. In
this work, we adapt phase classification methods previously
used with other inputs to support hardware counters and
compare them to existing counter-based solutions.

Classified phases are used by phase prediction methods to
learn patterns between them and foretell future phase behavior.
Early work proposed methods that predicted the phase ID of
the next sample interval [6]. Later studies realized that many
phases last for multiple consecutive intervals and proposed
other prediction strategies. A recent approach predicts the
phase IDs of a window of several upcoming samples [2],
showing that decision trees are superior to different variations
of maximum likelihood predictions. An alternative strategy
consists of using run-length encoding to compress phase
information and predict both the duration of a phase and the
ID of the next phase, where previous work proposed using
table-based predictors for this purpose [14]. To the best of
our knowledge, no existing work has, however, investigated
application of more advanced machine learning approaches
in the context of either window- or change-based phase
prediction. Furthermore, the accuracy of phase prediction can
be strongly influenced by the quality of phase classification.
However, existing phase predictors have only been studied in
limited and specific combinations with phase classifiers.

In this work, we study hardware counter-based phase classi-
fication and prediction tasks both in isolation and in different
combinations. We first compare several classification tech-
niques using hardware counters and characterize the phases
that they output. We then evaluate the performance of mul-
tiple predictors against different classifiers and compare the
performance of traditional table-based predictors and decision
trees to more advanced machine learning techniques, specif-
ically support vector machines (SVM) and long-short term
memory (LSTM). Finally, we assess whether the classification
technique influences their accuracy and discuss the best-
performing pairs.

In summary, the contributions of this paper are as follows:

1) We perform a comprehensive study of different cluster-

ing algorithms to assess their performance in classifying

TABLE I
SUMMARY OF EXISTING PHASE CLASSIFIERS.

Ref Inputs Granularity Classifier
[13] Basic block frequency vectors 100M instructions Random linear projection and k-means clustering
[6] Hardware counters 100M instructions Static value ranges

[31, [11] Hardware counters 100 ms Principal component analysis and k-means clustering
[4] Frequency vectors of branch instruction pointers 100M instructions Leader-Follower clustering with centroid learning
[16] Instruction type frequency vectors 10M instructions Two-level past footprints table
[5] Frequency vectors of hashed EIP samples 100M instructions Phase history table
[14] Signature of instruction counts between branches | 10M and 50M instructions Signature tables and similarity threshold
[18] Hardware counters W *1 ms Two-level k-means clustering
[2] Frequency vector of executed branches 10,000 branches Gaussian Mixture Model clustering

TABLE 11
SUMMARY OF EXISTING PHASE PREDICTORS.

Ref Predicts Inputs

Predictor Classifier

[6]

Next sample

Previous samples

Global history table [6]

[17] Next sample

Previous sub-phases

Precursor vectors and distance threshold [18]

[14] | Next sample, next phase, phase duration

Previous samples

Multilevel phase history table [14]

[12] Phase duration

Previous durations

Linear adaptive filter [16]

[2] Next £ samples

Branch frequency vectors

Decision tree

(2]

program phases with hardware counters. Our study in-
cludes phase classification techniques that, to the best
of our knowledge, have not previously been adopted for
clustering hardware counters into phases.

We evaluate the outcomes of phase classifiers in com-
bination with multiple phase predictors to find the pair
that results in the most accurate phase predictions. This
evaluation includes advanced machine learning-based
prediction techniques that had not been investigated for
phase prediction before.

We perform studies with large-scale workloads from
the SPEC benchmark suite running on a single core
of a state-of-the-art desktop-class Intel Core 19-9900k
workstation. Results show that the best classification and
prediction combination is a two-level kmeans clustering
approach combined with an SVM to predict phase ID
changes and another SVM to predict phase duration.

2)

3)

The remainder of this paper is organized as follows: Sec-
tion II discusses related work. Sections III and IV describe
details of the evaluated classifiers and predictors, respectively.
Section V presents results. Finally, in Section VI, we discuss
our conclusions and future work.

II. RELATED WORK

In this section, we discuss prior work related to phase clas-
sification and prediction. We summarize our survey of various
representative phase classifiers and predictors in Table I and
Table II, respectively.

The set of inputs and granularity that researchers have used
to define a phase is very diverse. Examples of these are shown
in the second and third column of Table I. Some researchers
aim at finding similar blocks of code [2], [4], [5], [8], [10],
[13], [14], [16], while others focus on execution time workload
metrics [3], [6], [18]. Previous work has observed that most
performance metrics are highly correlated with the executed
code [4]; therefore, the resulting classified phases are very
similar. Finding similar blocks of code typically requires either
access to the source code [2], [13], [14] or augmenting the

hardware [8], [10], [16]. To avoid this limitation, we focus
on using hardware counters as the input data to the phase
classifiers that we evaluate in this work.

A list of various classification methods used in prior work is
shown in the last column of Table I. Some studies have looked
at methods that can perform clustering in an incremental and
online fashion [4], [5], [10], [14], [16] while others propose
iterative clustering methods [2], [3], [13], [18]. Incremental
approaches have not been used with hardware counters in
the past. Their online implementation is cheaper than iterative
approaches, and they do not require knowing the number of
phases that a workload has. We apply the technique from
[4] to classification with hardware counters. In [6], a pre-
defined static set of value ranges are used to bin workloads
based on their memory boundedness. The ranges are relevant
to dynamic power management (DPM) as their target use
case, and require manual definition. A hierarchical, multi-
level phase approach is presented in [14] and [18]. In [14]
two separate table-based classifiers are used with different
granularities to define fine and coarse phases. In [18] k-means
is used to generate one sub-phase per sample and the sub-
phases are then grouped into fixed-size windows to define
phases with a second instance of k-means. This approach may
generate more stable phases, but it can also lose precision
when detecting phase changes. Out of these, we include the
approach from [18] in our evaluation.

Prior research has followed multiple strategies to predict
upcoming phases at runtime. We survey various predictors
in Table II. Traditionally, table-based predictors like global
history table (GHT) [6] and Markov chain tables [5], [8],
[14] were used. Most of these predictors foretell the phase
of the following interval. Many researchers have noticed that
the same phase may last multiple intervals. Consequently,
previous work has also proposed either predicting the duration
of phases [5], [12], [14] and the phase ID of the next
change [5], [14] or predicting multiple future intervals instead
of just one [2]. Predicting the exact duration of a phase is a
challenging task. Chang et al. [5] approximated the duration

, Ue
a Bes

Phase -
Classifier, 8

Fig. 1. Overview of phase classification and prediction.

N
Phase
Predictor, ¥
—

of phases into ranges, limiting the precision of a prediction of
when a change will happen. Srinivasan et al. [12] proposed to
use a linear adaptive filter that learns and predicts the duration
of phases online. Other researchers have proposed predicting
the phase of a window of upcoming sample intervals instead.
For example, in [2] a decision tree predictor is trained offline
to predict the phase labels of the following 30 intervals with
high accuracy. Each phase predictor has been evaluated with
a single classification scheme. In this work, we look at how
different classifiers impact their accuracies. Additionally, we
propose other machine learning-based prediction techniques
that have not been evaluated for these tasks in the past.

III. PHASE CLASSIFICATION

Fig. 1 shows an overview of phase classification and pre-
diction using performance monitoring counters. Phase clas-
sification is the first step that uses samples of a trace of
hardware counters and determines their phase classification.
Formally, we refer to the trace of hardware counter samples
as U € RT*M where T is the number of observations of M
hardware counters. We use U; to denote the vector of hardware
counters observations at time ¢. Additionally, we refer to any
phase classifier, O, as a function that maps each sample U, in
the input trace to a series of discrete phase IDs «;.

In the following, we describe the different phase classifiers
that we evaluate in this work. We adopt some classifiers shown
in Table I and modify the inputs of those that do not use
hardware counters.

a) Table-based: Several classifiers use a table to in-
crementally cluster samples as they arrive in a streaming
fashion. They are variations of the leader-follower clustering
algorithm. This method facilitates an online implementation
and eliminates the need to provide the number of clusters
as input. It requires a distance metric, a threshold, and an
updating policy as input parameters. Some variations limit the
maximum number of clusters and use eviction policies such
as LRU to add new clusters. We did not find this necessary
for our workloads; instead, we can control the threshold to
limit the number of clusters. As suggested by prior work, we
implement this algorithm using Manhattan distance and sweep
different thresholds to find an optimized threshold value. In the
rest of the paper we refer to this classifier as rable.

b) Two-level k-means: This method uses the same ap-
proach as in [18]. The workloads are classified into sub-phases

and phases. The granularity of sub-phases is one sample, while
the granularity of a phase consists of a fixed size number of
sub-phases, W. We used the same maximum number of sub-
phases as in [18], N; = 10. We sweep different values of W
to select an optimized value that minimizes the average CPI
corrected coefficient of variation (CCoV). Finally, we need to
select a number of phases per benchmark. We execute k-means
multiple times, incrementing the number of clusters until the
CPI CCoV is no longer decreased by more than 5%. In the
rest of this paper we refer to this classifier as 2kmeans

c) PCA with k-means: This method first reduces the
dimensionality of the input space with principal component
analysis (PCA). Then, the k-means clustering algorithm is
applied to the reduced space. We follow the same approach
that we use to select the number of phases of 2kmeans. In the
rest of this paper we refer to this classifier as pcakmeans

d) Gaussian Mixture Model: This is an iterative cluster-
ing algorithm that finds its clusters in a similar way as k-means
does. It assumes that combining different Gaussian models
creates the data points in a cluster. Therefore, in addition to
considering the cluster means, it also considers their variances
when assigning samples to clusters. This algorithm requires the
number of clusters as an input. We follow the same approach
that we used in other iterative algorithms. We refer to this
classification method as gmm in the rest of this paper.

e) Manual Oracle Classifier: We inspected the work-
loads manually and assigned phase labels based on our obser-
vations while prioritizing long-term phase stability over short-
term variations. We use it as an oracle to compare against
other classifiers and to evaluate phase predictors accuracy. We
call it manual in the rest of this paper.

IV. PHASE PREDICTION

As shown in Fig. 1, a phase predictor takes the history of
phased IDs at the output of the phase classifier or a sub-trace
of past hardware counter samples to predict the phase ID of
one or more future samples. We denote these predictions as
Q&+, k > 1. Different phase prediction strategies use as input
either a window of the collected samples U;, or a window
of classified phases, o;. We separate the phase prediction
strategies into two groups: window phase prediction and phase
change prediction. This section presents the predictors that we
propose for each strategy.

A. Window-Based Phase Prediction

The goal of window-based prediction is to accurately de-
termine the phase ID of the immediately upcoming sample
window of size k. These predictors can either look at the
history of phase IDs or look at the history of pre-classification
data, in our case, hardware counters. Some workload phases
last for very long periods, and using the history of phase IDs
may not be helpful information to the predictor. Therefore,
all our window predictors use the trace of hardware counters
as inputs. The assumption is that the predictors will find
relationships between the counters’ short-term variations and
the upcoming phase IDs. Note that while predictions do not

directly utilize the output of phase classifiers, phase classifi-
cation ground truth is needed to train the predictors. Formally,
the window-based phase prediction problem is defined as:
(Qpg1y oo, Qpgr) = \If((Ut_hH, - Ut)), where W is the phase
prediction model, & is the input window size, and &, denotes
the predicted phase IDs ¢ steps into the future at time ¢.

For this task, we propose using LSTMs and SVMs. LSTMs
are known for their robust capabilities of handling time-
dependent data. Our models use a single-layer LSTM to
encode the history of hardware counters, followed by a fully
connected layer that classifies the phase ID of the upcoming &
data samples using one one-hot encoded vector per sample. For
the SVM, we transform the input trace into a vector and train
k SVM models. We compare this LSTM to another learning-
based structure used in previous work, the decision tree (DT).

B. Phase Change Prediction

The same phase ID may last multiple consecutive intervals.
Phase change prediction focuses on learning and predicting
phase transitions. To do so, the series o is transformed using
run-length encoding to generate a new series, C;. The new
series consists of pairs C; = (a;,d;) of phase IDs ¢; and
their duration d;. At each detected phase transition, j, we use
separate models to predict the ID of the next phase, &1 and
how far into the future the transition to this next phase will
happen, i.e., the duration of the current phase a;, ch

1) Next Phase Prediction: These predictors look at the
history of different phases as a sequence «; to predict the
ID of the next phase &;1. For workloads with uniform phase
patterns that repeat without variations, table-based predictors
can trivially solve this problem. However, when the pattern is
not entirely uniform, more robust predictors that can generalize
the input data can yield better results. For this reason, we
propose to apply support vector machines (SVM), whose
design objective is to generalize unseen data rather than just
fitting the training set, as well as an LSTM network, due to
its ability to predict sequences, for this task. Both models
take a history of one-hot encoded phase IDs as inputs. We
compare these approaches to a global history table (GHT)
based prediction technique as baseline.

2) Phase Duration Prediction: Phase duration prediction
aims at accurately determining how long a phase will last.
We frame the duration prediction as a regression problem.
We consider two types of inputs. The first is to use the
duration history of past phase «; with the same phase ID
aj, (dili < j,a; = a;). The second is using the history
of phase IDs and their duration, C;,7 < j. The best choice
depends on the predictor and the workload. In general, we
find that the relationships between durations of the same phase
are linear; therefore, linear predictors are better suited for
these inputs. Some workloads may have relationships between
the duration of different phases, and in general, these inter-
phase relationships may not be linear. We propose to use a
linear SVM and a multi-layer perceptron (MLP). Previous
work proposed a linear filter for duration predictions. Since
we train the SVM and MLP models offline, we compare the

performance of SVM and MLP to a linear regression (LR)
model. Additionally, we implement a baseline which predicts
the duration to be the same as the previous execution of phase
ID a4, i.e., last value (LV) prediction.

V. EXPERIMENTS AND RESULTS

We evaluate our approach on a desktop-class Intel Core
19-9900K running Debian 9.13. We execute workloads on
one core and collect data every 10ms using Intel’s EMON
tool. The Intel hardware can sample 4 fixed counters and
up to 4 variable counters simultaneously. We select the four
variable counters to characterize the workload by its memory
boundedness (.2 misses and main memory read accesses),
control flow predictability (mispredicted branch instructions),
and operation mix (floating-point operations).

To generate the workload traces, we used the SPEC CPU
2017 benchmark suite. We selected a subset of workloads
that show distinctive phases with several transitions throughout
their execution to allow sufficient data for training and valida-
tion. The workloads that we used and their corresponding total
number of samples are cactuBSSN with 149,597, fotonik3d
with 91,977, mcf with 47,834, nab with 234,753, pop2 with
167,548, and wrf with 296,786. We used the ref inputs given
by the benchmark suite. We split the traces into 70% of
samples for training and 30% for testing and comparison of
predictors. The training set is further split into 30% of the
samples used as a validation set to tune hyperparameters.

A. Phase Classification

Phase classifiers require selecting hyperparameters to op-
timize their output. The table classifier takes the distance
threshold as an external input, and the iterative classifiers
take the number of clusters. To determine the threshold of
the table classifier, we evaluated the trade-off between the
CPI CCoV and the distinct number of phases. We selected a
threshold value of 1 that achieves the best tradeoff. To obtain
an optimized number of clusters for iterative classifiers, we
followed the approach described in Section III. This resulted
in a different optimized number of phases for each benchmark
and classifier summarized in Table III.

To evaluate the phase classifiers, we use the corrected
coefficient of variation (CCoV) metric introduced in [4].
Additionally, we use the average phase duration JJ in number
of samples as a measure of long-term stability. Table III also
shows the CCoV metric for each classifier and benchmark. We
observe that fable can achieve a CCoV that is similar to itera-
tive classifiers gmm and pcakmeans at the expense of requiring
a larger number of phases. Iterative classifiers, therefore, yield
a more efficient classification. However, they trade off the
easy online implementation that table provides. Notice that
2kmeans yields the highest CCoV on average with cactuBSSN
having the highest CCoV overall. This benchmark has short
regions where the CPI is significantly higher than the rest of
the trace. When the fixed-size windows of 2kmeans miss these
transitions, it assigns them to surrounding contiguous regions,
causing the increase in CCoV.

TABLE III
SUMMARY OF PHASE CLASSIFICATION RESULTS.

manual 2kmeans gmm pcakmeans table
CCoV | d; #ph. | CCoV | d; #ph. | CCoV | d; #ph. | CCoV | d; #ph. | CCoV | d; # ph.
cactuBSSN | 0.17 111.0 | 7 4.72 1055 | 5 0.17 76.9 4 0.25 72.4 4 0.22 3596 | 9
fotonik3d 0.34 2412 | 6 0.4 24.1 3 0.26 13.63 | 3 0.23 1394 | 4 0.25 6.56 10
mcf 0.19 430.0 | 7 0.24 67.63 | 3 0.18 11.4 3 0.16 8.17 4 0.14 9.84 11
nab 0.03 3587 | S 0.03 41.8 7 0.02 2153 | 5 0.01 1337 | 6 0.12 236.7 | 10
pop2 0.05 4226 | 4 0.08 10.14 | 4 0.04 24.06 | 3 0.06 1.36 5 0.08 5.32 12
wrf 0.36 16.07 | 3 0.26 6.17 5 0.24 3.08 3 0.27 3.29 3 0.18 1.27 14
AVERAGE | 0.19 163.7 | 5.33 0.95 4255 | 4.5 0.15 5739 | 35 0.16 38.8 4.33 0.16 49.27 | 11.0
1.0 Jvy 1 X 1.0
. oz R ETAEE T e
>
7. o A 4 4 4 4.4 4 5 21 41N
s, @ M oo M M MW OMI: M M8 a a 1a A
O 04 9 0.4
oL BB BN R RN a0 0 q 0
i Acc2o DT B LSTM BEm SVM 0.2 GHT mm LSTM BEE SVM
0.0 — — - - - - J
cactuBSSN fotonik3d mcf nab pop2 wrf mean 0.0 cactuBSSN fotonik3d mcf nab pop2 wrf mean

Fig. 2. Accuracy of 20-step window predictors trained with manual classifier.

The best performing classifier in terms of average CCoV is
gmm, closely followed by pcakmeans and table. They are all
performing better than manual in terms of CCoV. However,
manual trades off variability for long-term stability. This is
noticeable in the average duration of phases, where manual is
2.8x longer than the average duration of gmm.

B. Phase Prediction

To evaluate phase predictors, we use accuracy for window
and next phase predictors and mean absolute error (MAE)
for duration predictors. We average the accuracy across all
outputs of window predictors as a comparison metric. We also
measured the inference time of a software implementation for
each model to evaluate their runtime complexities.

1) Window Prediction: We studied the models’ hyperpa-
rameter space using our validation sets and determined that
they performed best with an input window size of h = 20
steps. Additionally, we find that a tree depth of 8 for DT, a
single-layer LSTM with 128 neurons, and a linear SVM return
the best validation accuracy. Fig. 2 shows the average accuracy
of window-based predictors across the test set when using
phases obtained from a manual classifier. All three models
have very similar accuracies across benchmarks, except for fo-
tonik3d. This trace has some minor variations towards the end.
They cause the LSTM model to predict false phase changes,
while DT and SVM are more robust to these variations. The
poorest performing benchmark is mcf. The workload behavior
changes continuously throughout its execution, which makes
the workload generally very hard to predict. None of the
models were able to learn such changes. The fastest model
is DT with an average inference time of 1.8ms, followed by
SVM with 2.2 ms, and lastly, LSTM with 3.8ms.

2) Phase Change Prediction: We evaluated GHT, LSTM,
and SVM models for phase change prediction. We determined
that a history of 10 phases as input yields the most accurate
results in the validation sets. We also studied hyperparameter
spaces for LSTM and SVM. A single-layer LSTM with 40

Fig. 3. Accuracy of phase change predictors trained with manual classifier.
w12 LV w LR HE MLP N SVM | |

P = o

Dos 1 i N |

goo u L .
€ o4 B | ‘A M n
2 0.2 — - ‘ - - -

cactuBSSN fotonik3d mcf nab pop2 wrf mean

Fig. 4. Normalized MAE of duration predictors with manual classifier.

cells and a polynomial kernel for SVM return the highest
average validation accuracy. Fig. 3 displays the test set results.
The higher accuracy results of LSTM and SVM showcase how
learning-based techniques generalize historical data. The most
significant gap in the accuracy of GHT and learning-based
techniques is shown by mcf. Its phase sequence suffers some
changes over time, causing the models’ accuracy to be sig-
nificantly lower than in other benchmarks. By contrast, wrf’s
phase sequence remains unchanged throughout its execution,
resulting in 100% accuracy for all models. Inference times
and accuracy have opposite trends. The fastest model is GHT
(0.05ms), followed by SVM (0.07ms), and LSTM (1.03m:s).
3) Phase Duration Prediction: We evaluate three models
for duration prediction: LR, MLP, and SVM. With the vali-
dation set, we determined that the best input history for each
model is different. For LR, we use the duration of 5 previous
executions of the target phase; for SVM, the duration of the
5 previous phases of any type and the duration of the prior
execution of the target phase; and for MLP, the duration of 3
previous executions of the target phase and the duration of the
last phase. We used a LV predictor as baseline. To visualize the
results in the same scale for all benchmarks, we plot the MAE
of each predictor normalized against LV MAE for the test set
in Fig. 4. The MAE of LV is 12.29, 14.26, 101.04, 11.56,
0.76, and 0.47 for cactuBSSN, fotonik3d, mcf, nab, pop2, and
wrf, respectively. All models improved the prediction accuracy
over LV. On average, MLP is the best performing model,
closely followed by SVM. In mcf, the duration of phases gets

Window Predictor Phase change with LSTM

Phase change with SVM Phase change with GHT

DT LSTM SVM LV LR SVM MLP Lv LR SVM MLP Lv LR SVM MLP
manual{ 0.175 0.145 0.10 [{ 0.172 0.091 0109 0111 |{ 0414 0316 0333 0302 16
14
2kmeans { 0.211 0.226 0.302 |{ 0.194 0.201 0.186 0.188 |{ 0.195 0202 0.185 0.188 ---- 12

10

gmm { 0.526 | 0.551 4 0.191 0.482 |4 0.191 0.482 g 3
pcakmeans - 0.491 = {0526 0450 0482 0507 |{ 0536 0.453 0.513 0.449 ---- 6
4
2

table

N I I I

13.399 | 13.098 13.239

Fig. 5. EFP of all classifiers and predictors.

significantly shorter over time, and the models struggled to
improve over LV. LR is the fastest with 1.1ms inference time,
followed by SVM and MLP with 1.3ms and 1.6ms.

C. Combined Classification and Prediction

To compare combinations of classifiers and predictors, we
introduce error-frequency product (EFP) as a metric that penal-
izes both prediction inaccuracies and classification overfitting:

BEP = 100. 1% S (e = 90)]
d;

where N is the number of predicted samples and 100 is a
scale factor. We select CPI as our variable of interest, y. To
determine the error, we use a vector (vq,...,v.), where c is
the corresponding total number of phases and each element
v; represents the average CPI that characterizes phase . At
each timestep ¢, we transform the prediction of phase &; to
a prediction §; = wvga, and measure the error y; — ¢:. We
normalize average errors by the average phase duration d_J
We define EFP as the product of the average error and the
average transition frequency 1/ d}

The EFP of all combinations of classifiers and predictors
is shown as a heatmap in Fig. 5. For window predictors,
the columns correspond to the models that we studied. For
phase change predictors, we evaluated all combinations of
next phase and duration prediction. The individual column
labels correspond to the duration predictor and the shared titles
correspond to the next phase predictors. Without considering
the manual classifier, the best combination of classification
and prediction that reduces the EFP is 2kmeans with an SVM
for next phase and duration prediction. 2kmeans resulted is
the best classifier for 13 out of 15 predictors, performing
sometimes even better than manual. The most remarkable
difference between 2kmeans and the other classifiers is its
two-level clustering approach which considers a window of
samples instead of a single sample to define phases. Out of
all the classifiers, we observe that fable tends to have the
worst EFP values. When comparing window and phase change
predictors, a phase change predictor is always best across all
classifiers. For the manual classifier, the LSTM model for
next phase prediction shows strong superiority over the SVM
model. However, such a clear trend is not exhibited by other
classifiers. Clearly, GHT shows the highest EFP values for any
classifier and duration prediction. This shows that learning-
based predictors are more suitable for workload prediction.

; D

VI. SUMMARY AND CONCLUSIONS

In this paper, we performed a comprehensive study of
hardware counter-based workload phase classification and pre-
diction techniques. We showed that learning-based techniques
result in more accurate results than traditional table-based
methods. Our isolated studies concluded that GMM was the
best classifier in terms of minimizing both CPI variations
between phases and phase transitions. However, when we
studied classification in combination with phase prediction,
results showed that a two-level kmeans clustering approach is
the best option for 87% of the predictors that we studied. Fu-
ture work includes evaluating multi-core settings and applying
phase prediction to various use cases.

ACKNOWLEDGMENTS
This work was supported by NSF grant CCF-1763848.
REFERENCES

C. Ababei and M. Moghaddam. A survey of prediction and classification
techniques in multicore processor systems. IEEE TPDS, 2018.
M.-C. Chiu and E. Moss. Run-time program-specific phase prediction
for Python programs. In ManLang, 2018.
R. Cochran and S. Reda. Consistent runtime thermal prediction and
control through workload phase detection. In DAC, 2010.
A. Sembrant et al. Efficient software-based online phase classification.
In IEEE [ISWC, 2011.
C.-H. Chang et al. Sampling-based phase classification and prediction
for multi-threaded program execution on multi-core architectures. In
ICPP, 2013.
C. Isci et al. Live, runtime phase monitoring and prediction on real
systems with application to dynamic power management. In MICRO,

[1]
[2]
[3]
[4]
[5]

[6]

2006.

[7]1 E. Alcorta et al. Phase-aware cpu workload forecasting. In SAMOS,
2021.

[8] J. Lau et al. Transition phase classification and prediction. In HPCA,
2005.

[9]
[10]

M. Rapp et al. Neural network-based performance prediction for task
migration on s-nuca many-cores. /[EEE TC, 2020.

M. T. Cruz et al. Unsupervised variable-grained online phase clustering
for heterogeneous/morphable processors. In HPCS, 2016.

R. Khanna et al. Phase-aware predictive thermal modeling for proactive
load-balancing of compute clusters. In ICEAC, 2012.

S. Srinivasan et al. Program phase duration prediction and its application
to fine-grain power management. In ISVLSI, 2013.

T. Sherwood et al. Automatically characterizing large scale program
behavior. In ASPLOS, 2002.

W. Zhang et al. Multilevel phase analysis. ACM TECS, 2015.

Y. Kim et al. P*: Phase-based power/performance prediction of hetero-
geneous systems via neural networks. In /CCAD, 2017.

O. Khan and S. Kundu. Microvisor: A runtime architecture for thermal
management in chip multiprocessors. In Transactions on HIPEAC. 2011.
S. Khoshbakht and N. Dimopoulos. Execution phase prediction based
on phase precursors and locality. In E2SC, 2017.

S. Khoshbakht and N. Dimopoulos. A new approach to detecting
execution phases using performance monitoring counters. In ARCS,
2017.

(11]
[12]
[13]

[14]
[15]

[16]
[17]

[18]

